An Approach for Building Efficient Composable Simulation Models

Download files
Access & Terms of Use
open access
Copyright: Mohamed, Ebrahim
Altmetric
Abstract
Models are becoming invaluable instruments for comprehending and resolving the problems originating from the interactions between humans, mainly their social and economic systems, and the environment. These interactions between the three systems, i.e. the socio-economic-natural systems, lead to evolving systems that are infamous for being extremely complex, having potentially conflicting goals, and including a considerable amount of uncertainties over how to characterize and manage them. Because models are inextricably linked to the system they attempt to represent, models geared towards addressing complex systems not only need to be functional in terms of their use and expected result but rather, the modeling process in its entirety needs to be credible, practically feasible, and transparent. In order to realize the full potential of models, the modeling workflow needs to be seen as an integral part of the model itself. Poor modeling practices at any stage of the model-building process, from conceptualization to implementation, can lead to adverse consequences when the model is in operation. This can undermine the role of models as enablers for tackling complex problems and lead to skepticism about their effectiveness. Models need to possess a number of qualities in order to be effective enablers for dealing with complex systems and addressing the issues that are associated with them. These qualities include being constructed in a way that supports model reuse and interoperability, having the ability to integrate data, scales, and algorithms across multiple disciplines, and having the ability to handle high degrees of uncertainty. Building models that fulfill these requirements is not an easy endeavor, as it usually entails performing problem description and requirement analysis tasks, assimilating knowledge from different domains, and choosing and integrating appropriate technique(s), among other tasks that require the utilization of a significant amount of time and resources. This study aims to improve the efficiency and rigor of the model-building process by presenting an artifact that facilitates the development of probabilistic models targeting complex socioeconomic-environmental systems. This goal is accomplished in three stages. The first stage deconstructs models that attempt to address complex systems. We use the Sustainable Development Goals (SDG) as a model problem that includes economic, social, and environmental systems. The SDG models are classified and mapped against the desirable characteristics that need to be present in models addressing such a complex issue. The results of stage one are utilized in the second stage to create an Object-Oriented Bayesian Networks (OOBN) model that attempts to represent the complexity of the relationships between the SDGs, long-term sustainability, and the resilience of nations. The OOBN model development process is guided by existing modeling best practices, and the model utility is demonstrated by applying it to three case studies, each relevant to a different policy analysis context. The final section of this study proposes a Pattern Language (PL) for developing OOBN models. The proposed PL consolidates cross-domain knowledge into a set of patterns with a hierarchical structure, allowing its prospective user to develop complex models. Stage three, in addition to the OOBN PL, presents a comprehensive PL validation framework that is used to validate the proposed PL. Finally, the OOBN PL is used to rebuild and address the limitations of the OOBN model presented in stage two. The proposed OOBN PL resulted in a more fit-for-purpose OOBN model, indicating the adequacy and usefulness of such an artifact for enabling modelers to build more effective models.
Persistent link to this record
Link to Publisher Version
Link to Open Access Version
Additional Link
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2023
Resource Type
Thesis
Degree Type
PhD Doctorate
UNSW Faculty
Files
download public version.pdf 15.24 MB Adobe Portable Document Format
Related dataset(s)