Platinum(II) and Palladium(II) Metallacycles Derived from Cationic 4,4’-Bipyridinium, 3-Aminopyrazinium and 2-Aminopyrimidinium Ligands

Access & Terms of Use
metadata only access
Altmetric
Abstract
A series of cationic, ditopic N-donor ligands based on 4,4-bipyridine (4,4-bipy), 3-aminopyrazine (apyz) and 2-aminopyrimidine (apym), each incorporating two positively-charged N-heterocycles linked by a conformationally-flexible spacer unit, have been synthesised and treated with palladium(II) or platinum(II) precursors [M(2,2-bipy)(NO3)2] (M = Pd(II) or Pt(II)) to form highly cationic metallocyclic species. Treatment of 1,6-bis(4,4-bipyridinium)hexane nitrate with [M(2,2-bipy)(NO3)2] in aqueous solution, followed by the addition of KPF6, resulted in the formation of the [2+2] species [M2(2,2-bipy)2{4,4-bipy(CH2)64,4-bipy}2](PF6)8. Treatment of [Pd(PhCN)2Cl2] with 1,3-bis(4,4-bipyridinium)propane hexafluorophosphate in MeCN afforded [Pd2Cl4{4,4-bipy(CH2)34,4-bipy}2](PF6)4. When the cationic apyz or apym ligands were used in aqueous solution, the analogous metallomacrocycles did not form. Instead, deprotonation of the exocyclic amino group occurred upon coordination of the ligand to afford a tetranuclear [4+2] species in the case of platinum(II), with Pt(II)Pt(II) bonding supported by strong UV-vis absorption at = 428 nm which was assigned to a metal-metal-to-ligand charge transfer (MMLCT) band. Thus, treatment of 1,6-bis(3-aminopyrazinium)hexane nitrate with [Pt(2,2-bipy)(NO3)2], followed by the addition of KPF6, led to the formation of the red species [Pt4(2,2-bipy)4{apyz(CH2)6apyz–2H}2](PF6)8. No related products could be identified with palladium(II), consistent with the low propensity for this metal ion to form strong Pd(II)Pd(II) bonding interactions
Persistent link to this record
DOI
Link to Publisher Version
Link to Open Access Version
Additional Link
Author(s)
Schilter, David
;
Clegg, Jack
;
Harding, Margaret
;
Rendina, Louis
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2010
Resource Type
Journal Article
Degree Type
UNSW Faculty