Publication:
Gel layer formation and hollow fiber membrane filterability of polysaccharide dispersions

dc.contributor.author Wang, XiaoMao en_US
dc.contributor.author Waite, T en_US
dc.date.accessioned 2021-11-25T14:13:43Z
dc.date.available 2021-11-25T14:13:43Z
dc.date.issued 2008 en_US
dc.description.abstract Gel layer formation on the membrane surface during filtration plays a significant role in membrane fouling that, in many instances, controls water production and energy consumption in the treatment of waters and wastewaters. In this study, alginate is selected as a model of the polysaccharides prevalent in wastewaters which, on membrane filtration, may form a gel on the membrane surface which subsequently limits filtrate throughput. We show that over the range of the applied pressures of 11.7-135 kPa considered here, constant pressure ultrafiltration of alginate follows the behavior of cake filtration. The material properties of the alginate are determined by the employment of the previously developed steady-state filtration approach. The consolidation of the gel layer is found to be controlled by the hydraulic flow resistance rather than the rearrangement of particles. Under these conditions, it is valid to apply the derived material properties for the quantification of both constant pressure and constant flux filtration. The gel layer formed from alginate is very compressible and far from uniform over its depth. Within the range of the applied pressures, the gel layer is very porous with a water content of more than 96% but very low Darcy permeability of less than 1 × 10-17 m2. During hollow fiber membrane filtration, the local flux is neither uniform nor constant along the fiber length, resulting in non-uniformity of the growth rate, the average porosity and the thickness of the gel layer. The non-uniformity is most apparent at the start of filtration and then gradually diminishes as the gel layer builds up with ongoing filtration. © 2008 Elsevier B.V. All rights reserved. en_US
dc.identifier.issn 0376-7388 en_US
dc.identifier.uri http://hdl.handle.net/1959.4/42253
dc.language English
dc.language.iso EN en_US
dc.rights CC BY-NC-ND 3.0 en_US
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/au/ en_US
dc.source Legacy MARC en_US
dc.subject.other Filtration en_US
dc.subject.other Alginate en_US
dc.subject.other Biopolymers en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.subject.other Coagulation en_US
dc.title Gel layer formation and hollow fiber membrane filterability of polysaccharide dispersions en_US
dc.type Journal Article en
dcterms.accessRights metadata only access
dspace.entity.type Publication en_US
unsw.accessRights.uri http://purl.org/coar/access_right/c_14cb
unsw.relation.faculty Engineering
unsw.relation.ispartofissue 1 en_US
unsw.relation.ispartofjournal Journal of Membrane Science en_US
unsw.relation.ispartofpagefrompageto 204-213 en_US
unsw.relation.ispartofvolume 322 en_US
unsw.relation.originalPublicationAffiliation Wang, XiaoMao, Civil & Environmental Engineering, Faculty of Engineering, UNSW en_US
unsw.relation.originalPublicationAffiliation Waite, T, Civil & Environmental Engineering, Faculty of Engineering, UNSW en_US
unsw.relation.school School of Civil and Environmental Engineering *
Files
Resource type