Simulation and optimization of metal-insulator-semiconductor inversion-layer silicon solar cells

Access & Terms of Use
metadata only access
Abstract
Metal-insulator-semiconductor inversion-layer (MIS-IL) silicon solar cells are promising devices for photovoltaic energy conversion due to the ease of junction fabrication. In order to improve the fundamental understanding of these devices, this paper presents a detailed three-dimensional analysis of existing MIS-IL cells by means of two-dimensional (2-D) numerical modeling and circuit simulation. We implement a physical model suggested in the literature for the tunneling current through the MIS tunnel contact into a device simulator and solve the complete set of drift-diffusion equations for electrons and holes within the silicon in two dimensions. Based on experimentally determined device parameters, a good agreement between simulated and experimental current-voltage (I-V) characteristics is obtained, enabling the spatially resolved determination of resistive and recombinative losses. Furthermore, an optimization study is performed to reveal the efficiency limit of MIS-IL silicon solar cells
Persistent link to this record
DOI
Link to Publisher Version
Additional Link
Author(s)
Kuhlmann, Burhard
Aberle, Armin
Hezel, Rudolf
Heiser, Gernot
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2000
Resource Type
Journal Article
Degree Type
UNSW Faculty