Simulated Gas Turbine Casing Response to Rotor Blade Pressure Excitation

Download files
Access & Terms of Use
open access
Abstract
Non-intrusive measurement of blade condition within gas turbines is of major interest within all areas of their use. It is proposed that the measurement of the casing vibration, due to the aerodynamic-structural interaction within the turbine, could provide a means of blade condition monitoring and modal parameter estimation. In order to understand the complex relationship between blade vibrations and casing response, an analytical model of the casing and simulated pressure signal associated with the rotor blades is presented. A mathematical formulation is undertaken of the internal pressure signal due to both the rotating bladed disk as well as individual blade vibrations and the solution of the casing response is formulated. Excitation by the stator blades and their contribution to the casing response is also investigated. Some verification of the presented analytical model is provided by comparison with Finite Element Analysis results for various rotor rotational speeds
Persistent link to this record
Link to Publisher Version
Author(s)
Forbes, Gareth Llewellyn
Randall, Robert Bond
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2007
Resource Type
Conference Paper
Degree Type
UNSW Faculty
Files
download Peer-reviewed version.pdf 513.51 KB Adobe Portable Document Format
Related dataset(s)