Publication:
The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo.

dc.contributor.author Funnell, Alister en_US
dc.contributor.author Norton, Laura en_US
dc.contributor.author Mak, Ka Sin en_US
dc.contributor.author Burdach, John en_US
dc.contributor.author Artuz, Crisbel en_US
dc.contributor.author Twine, Natalie en_US
dc.contributor.author Wilkins, Marc en_US
dc.contributor.author Hung, TT en_US
dc.contributor.author Perdomo, Jose en_US
dc.contributor.author Power, Carl en_US
dc.contributor.author Koh, P en_US
dc.contributor.author Bell Anderson, Kim en_US
dc.contributor.author Orkin, S en_US
dc.contributor.author Fraser, Stuart en_US
dc.contributor.author Perkins, Andrew en_US
dc.contributor.author Pearson, Richard en_US
dc.contributor.author Crossley, Merlin en_US
dc.date.accessioned 2021-11-25T12:27:39Z
dc.date.available 2021-11-25T12:27:39Z
dc.date.issued 2012 en_US
dc.description.abstract The CACCC-box binding protein erythroid Krüppel-like factor (EKLF/KLF1) is a master regulator that directs the expression of many important erythroid genes. We have previously shown that EKLF drives transcription of the gene for a second KLF, basic Krüppel-like factor, or KLF3. We have now tested the in vivo role of KLF3 in erythroid cells by examining Klf3 knockout mice. KLF3-deficient adults exhibit a mild compensated anemia, including enlarged spleens, increased red pulp, and a higher percentage of erythroid progenitors, together with elevated reticulocytes and abnormal erythrocytes in the peripheral blood. Impaired erythroid maturation is also observed in the fetal liver. We have found that KLF3 levels rise as erythroid cells mature to become TER119(+). Consistent with this, microarray analysis of both TER119(-) and TER119(+) erythroid populations revealed that KLF3 is most critical at the later stages of erythroid maturation and is indeed primarily a transcriptional repressor. Notably, many of the genes repressed by KLF3 are also known to be activated by EKLF. However, the majority of these are not currently recognized as erythroid-cell-specific genes. These results reveal the molecular and physiological function of KLF3, defining it as a feedback repressor that counters the activity of EKLF at selected target genes to achieve normal erythropoiesis. en_US
dc.identifier.issn 0270-7306 en_US
dc.identifier.uri http://hdl.handle.net/1959.4/53158
dc.language English
dc.language.iso EN en_US
dc.rights CC BY-NC-ND 3.0 en_US
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/au/ en_US
dc.source Legacy MARC en_US
dc.subject.other Transcriptional regulation en_US
dc.subject.other KLF3 en_US
dc.subject.other KLF1 en_US
dc.subject.other Erythropoiesis en_US
dc.subject.other Globin en_US
dc.title The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo. en_US
dc.type Journal Article en
dcterms.accessRights open access
dspace.entity.type Publication en_US
unsw.accessRights.uri https://purl.org/coar/access_right/c_abf2
unsw.identifier.doiPublisher http://dx.doi.org/10.1128/MCB.00173-12 en_US
unsw.relation.FunderRefNo 1025877 en_US
unsw.relation.FunderRefNoURL http://purl.org/au-research/grants/nhmrc/1025877 en_US
unsw.relation.faculty Medicine & Health
unsw.relation.faculty Other UNSW
unsw.relation.faculty Science
unsw.relation.fundingScheme NHMRC Project en_US
unsw.relation.ispartofissue 16 en_US
unsw.relation.ispartofjournal Molecular and Cellular Biology en_US
unsw.relation.ispartofpagefrompageto 3281-3292 en_US
unsw.relation.ispartofvolume 32 en_US
unsw.relation.originalPublicationAffiliation Funnell, Alister, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Norton, Laura, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Mak, Ka Sin, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Burdach, John, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Artuz, Crisbel, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Twine, Natalie, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Wilkins, Marc, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Hung, TT, Faculty of Medicine, UNSW en_US
unsw.relation.originalPublicationAffiliation Perdomo, Jose, UNSW en_US
unsw.relation.originalPublicationAffiliation Power, Carl, UNSW en_US
unsw.relation.originalPublicationAffiliation Koh, P en_US
unsw.relation.originalPublicationAffiliation Bell Anderson, Kim en_US
unsw.relation.originalPublicationAffiliation Orkin, S en_US
unsw.relation.originalPublicationAffiliation Fraser, Stuart en_US
unsw.relation.originalPublicationAffiliation Perkins, Andrew en_US
unsw.relation.originalPublicationAffiliation Pearson, Richard, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.originalPublicationAffiliation Crossley, Merlin, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW en_US
unsw.relation.school School of Biotechnology & Biomolecular Sciences *
unsw.subject.fieldofresearchcode 060199 Biochemistry and Cell Biology not elsewhere classified en_US
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
Peer reviewed version.pdf
Size:
14.29 MB
Format:
application/pdf
Description:
Resource type