On shape-preserving probabilistic wavelet approximators

Access & Terms of Use
metadata only access
Altmetric
Abstract
We introduce a general class of shape-preserving wavelet approximating operators (approximators) which transform cumulative distribution functions and densities into functions of the same type. Our operators can be considered as a generalization of the operators introduced by Anastassiou and Yu [1]. Further, we extend the consideration by studying the approximation properties for the whole variety of Lp:-norms, 0
Persistent link to this record
DOI
Link to Open Access Version
Additional Link
Author(s)
Dechevsky, Lubomir
Penev, Spiridon
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
1997
Resource Type
Journal Article
Degree Type
UNSW Faculty