UNSW Canberra

Publication Search Results

Now showing 1 - 2 of 2
  • (2007) Wright, Christopher; Burton, Michael; Van Dishoeck, Ewine; van Langevelde, Huib-Jan; Wilner, David; Hughes, Annie; Lommen, Dave; Maddison, Sarah; Jorgensen, Jes; Bourke, Tyler
    Journal Article
    Context. Low-mass stars form with disks in which the coagulation of grains may eventually lead to the formation of planets. It is not known when and where grain growth occurs, as models that explain the observations are often degenerate. A way to break this degeneracy is to resolve the sources under study. Aims. Our aim is to find evidence for the existence of grains of millimetre sizes in disks around T Tauri stars, implying grain growth. Methods. The Australia Telescope Compact Array (ATCA) was used to observe 15 southern T Tauri stars, five in the constellation Lupus and ten in Chamaeleon, at 3.3 mm. The five Lupus sources were also observed with the SubMillimeter Array (SMA) at 1.4 mm. Our new data are complemented with data from the literature to determine the slopes of the spectral energy distributions in the millimetre regime. Results. Ten sources were detected at better than 3 sigma with the ATCA, with sigma approximate to 1-2 mJy, and all sources that were observed with the SMA were detected at better than 15 sigma, with sigma approximate to 4 mJy. Six of the sources in our sample are resolved to physical radii of similar to 100 AU. Assuming that the emission from such large disks is predominantly optically thin, the millimetre slope can be related directly to the opacity index. For the other sources, the opacity indices are lower limits. Four out of six resolved sources have opacity indices <= 1, indicating grain growth to millimetre sizes and larger. The masses of the disks range from < 0.01 to 0.08 M-circle dot, which is comparable to the minimum mass solar nebula. A tentative correlation is found between the millimetre slope and the strength and shape of the 10-mu m silicate feature, indicating that grain growth occurs on similar (short) timescales in both the inner and outer disk.

  • (2006) Maercker, M; Burton, Michael; Wright, Christopher
    Journal Article
    Context. We present a JHK(s)L survey of the massive star forming region RCW 57 (NGC 3576) based on L-band data at 3.5 mu m taken with SPIREX ( South Pole Infrared Explorer), and 2MASS JHK(s) data at 1.25-2.2 mu m. This is the second of two papers, the first one concerning a similar JHK(s)L survey of 30 Doradus. Aims. Colour-colour and colour-magnitude diagrams are used to detect sources with infrared excess. This excess emission is interpreted as coming from circumstellar disks, and hence gives the cluster disk fraction (CDF). Based on the CDF and the age of RCW 57, it is possible to draw conclusions on the formation and early evolution of massive stars. Methods. The infrared excess is detected by comparing the locations of sources in JHKsL colour-colour and L vs. (K-s - L) colour - magnitude diagrams to the reddening band due to interstellar extinction. Results. A total of 251 sources were detected. More than 50% of the 209 sources included in the diagrams have an infrared excess. Conclusions. Comparison with other JHKsL surveys, including the results on 30 Doradus from the first paper, support a very high initial disk fraction (> 80%) even for massive stars, although there is an indication of a possible faster evolution of circumstellar disks around high mass stars. 33 sources only found in the L-band indicate the presence of heavily embedded, massive Class I protostars. We also report the detection of diffuse PAHs emission throughout the RCW 57 region.