Other UNSW

Publication Search Results

Now showing 1 - 10 of 12
  • (2022) Mostyn, Benjamin
    Thesis
    The adoption of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances 1988 (“the 1988 Convention”) has been widely viewed as the final step in establishing global drug prohibition. This thesis provides an examination of Australia’s decision to support and sign the Convention which has not been analysied before. It also provides a detailed history of the development of the Convention as Australia was a key participant in UN drug meetings at the time. This thesis is based on the first research to access archival files, primarily from Foreign Affairs but also from the AFP and Department of Health. Nearly 180 folders, totalling approximately 35,000 pages, were copied from the Australian archives. These files provide detailed reports of almost all meetings and drafts that progressed the 1988 Convention. Interviews with key participants were also conducted. It provides an interdisciplinary legal history of Australia’s involvement in the 1988 Convention using the lens of the international relations theory of neorealism and the political theory of historical institutionalism. Through process tracing, it uses the theories to examine whether neorealist geopolitical forces and institutional forces caused Australia to support and sign the Convention. The analysis finds that geopolitical considerations trumped early concerns that a third convention was not necessary. The analysis also demonstrates that institutional forces within the UN benefitted financially from drug prohibition and played an unusually strong role in encouraging the development of the 1988 Convention. It also finds that institutional forces within the Australian government, such as the AFP and Foreign Affairs, supported the new Convention to increase their own jurisdiction and powers. Lastly, it looks at whether alternative policies such as regulation or decriminalization were considered by key policymakers. It finds that key individuals did support decriminalization but were overpowered by institutional and geopolitical forces. The significance of the dissertation includes: large amounts of new data to explain the development of the 1988 Convention; it increases knowledge around the institutional forces of criminalization and global criminalization; it significantly increases our knowledge of the role of the United Nations in waging the War on Drugs; and it increases knowledge around how mid-level nations interact with global institutions.

  • (2022) Maranan, Noahlyn
    Thesis
    The 2016 vice-presidential election in the Philippines was contested on Facebook, the nation’s most prominent social media platform. Among the contenders was Ferdinand ‘Bongbong’ Marcos, son of former president Ferdinand Marcos Sr, who ruled between 1965 and 1986. Memes played a significant role in the election. They potentially enriched participatory engagement and information dissemination to a broader public. Through them, opposing camps worked through different versions of the Philippines’ past, present, and future. This case presents a novel opportunity to contribute to the growing scholarly debate about the relationship between social media and democratic politics. This study asks, “Can social media contribute to strengthening democracy in the Philippines?” It approaches this question through a conceptual framework that integrates work on democracy and political memory while also taking seriously the propensity of social media to be enlisted in information campaigns of a propagandist nature. Having analysed a sample of Facebook memes for their form and content, the study comes to an ambivalent conclusion. As immensely pliable and flexible texts, created and circulated with ease, the thesis finds that memes play a dual role in democratic politics. In the 2016 Philippine election, they (a) allowed for the inclusion of competing perspectives, narratives, and voices about Marcos Sr’s past regime and his son’s electoral bid. Rational and passionate voices, as one would expect from models of deliberative and agonistic democracy, were visible in this study. Enabled by digital platforms, memes became an important medium for the creative, potentially deliberative, and agonistic (if not outwardly antagonistic) articulation of sidelined memories about the regime of Marcos Sr. At the same time, (b) memes served as instruments for persuasive networked influence. While this may seem contrary to democratic communication, such propagandistic communication carries the potential to enrich reasoned argumentations in the broader public sphere when viewed from the lens of the wider literature on deliberative democracy. This potential, however, also depends on other factors, which include the techno-discursive platform in which propagandistic content circulates and the characteristics of the electorate.

  • (2006) Doran, Michael
    Thesis
    The transplantation of ex vivo expanded mobilized peripheral blood haematopoietic stem cells (PBSC), in place of unmanipulated cells following high dose chemotherapy, reduces the period of cytopenia associated with the therapy’s hemotoxicity. In this thesis the development and optimization of a preclinical prototype hollow fiber bioreactor (HFBR) for the ex vivo expansion of PBSC is described. Mass transport measurements and model of metabolite profiles demonstrate that Cuprophan and Polyflux are suitable membrane material for high-density cell expansion in a HFBR. Materials selected for the HFBR were found to be non-toxic following a 20-day saline extraction. Growth factor (GF) adsorption to the Polyflux membrane makes it unsuitable for expansion of GF dependent cells. However, the GF retention and minimal adsorption characteristics of the Cuprophan membrane are appropriate for this application. Cell-free medium degrades at 37ºC by an oxygen dependent process generating byproducts that inhibit cell growth. This process is relevant to perfusion bioreactors where the bulk of the medium is maintained at 37ºC and is cell-free. Albumin was shown to slow the degradation process but was itself degraded by shear damage inflicted during recirculation. Treating recirculating medium with dialysis against albumin was shown to be a more effective way to mitigate the effects of degradation and lengthen the functional life of albumin over conventional suspension of albumin in the recirculating medium. The preclinical prototype HFBR utilised dialysis against albumin to expand KG-1a cultures from densities as low as 3.5x10^5 cells/ml up to as high as 2x10^8 cells/ml with expansion rates equivalent to T-flask cultures. This process was then applied to PBSC where the targeted 100-fold expansion was achieved. Process optimization was continued using cord blood (CB) CD34+ cells. Growth factor loading sufficient for PBSC expansion in the HFBR was inadequate for CB expansions due to greater than anticipated CB uptake rates. The cell product from the HFBR contained significantly greater yields of CD34+ cells than attained using T-flask cultures. The HFBR platform is suitable for PBSC expansion and appears promising for CB expansion.

  • (2022) Fan, Hui
    Thesis
    The integration of variable distributed energy resources and vehicle electrification has come to focus over the last few years. While much work has been done to address the challenges that arise in modern distribution system planning and operation, continuous improvement to the models with the change is essential. The objective of this thesis is to improve the distribution network planning and operation models in the presence of distributed generation and electric vehicles. It aims to build stochastic models including the power generation and the charging demand, determine the location and sizing of the energy resources and charging stations in the coupled systems, and evaluate the impacts of the new low-carbon technologies on the network. Using a mixed-integer nonlinear programming framework through an optimal power flow analysis, this thesis presents three major methodological contributions including uncertainty modelling, coordinated mathematical formulation, and conflicting objective solutions. First, a multivariate stochastic process based on the notion of copula is applied to derive probabilistic charging patterns and to obtain the stochastic charging profiles. Second, a two-stage stochastic program based on statistical analysis and numerical simulation is introduced to generate synthetic time series of solar and wind power generation. The continuous distributions are discretized to generate the scenarios and the number of scenarios is reduced using Kantorovich metrics. Third, a two-dimensional Pareto front of dominant solutions is given for the competing objectives using a multiobjective Tchebycheff decomposition-based evolutionary algorithm. Case studies are conducted to evaluate the effectiveness of the proposed methods. An optimal charging scheduling problem is formulated to assess the stochastic charging models. The problem is formulated as a conic quadratic optimal power flow model and solved with a convex optimization algorithm. Network expansion planning problems are presented with carsharing and non-carsharing models, as well as the distributed energy generations. Overall, these problems aim to minimize the planning and operational cost of feeder routing, and substation alterations while maximizing the utilization of charging stations. It is found that an accurate estimation of the randomness intrinsic to the network is critical to ensure the secure and economic operation and planning of the distribution system intertwined with the transport network.

  • (2019) Zhang, Weizheng
    Thesis
    Wireless communication has been developed rapidly in recent years with the utilization of multiple-input multiple-output (MIMO) systems. One promising technique to support ultra-high data rate communication is massive MIMO, or large MIMO, where the number of antennas goes to tens or hundreds. Unmanned Aerial Vehicles (UAVs) have the advantages of high mobility and flexibility that can be used as aerial nodes to provide communication to ground users or base stations. In this thesis, the optimization of pilot based channel estimation with limited pilot length is studied for a massive MIMO system. The pilot length is optimized to maximize the system spectral efficiency. Then, the optimal pilot design is discussed under the constraint of finite pilot length. The performance of uplink signal-to-interference-plus-noise ratio (SINR) and the effect of feedback error are also analyzed in time division duplex (TDD) and frequency division duplex (FDD), respectively. Then, a large MIMO system is utilized for UAV communication. In order to provide directional beamforming, the channel estimation in UAV millimeter wave (mmWave) system is studied. A beam training and tracking method is proposed with user mobility. For beam training, a training codebook is designed based on user location distribution. For beam tracking, two tracking methods are proposed based on different types of user mobility to reduce the training overhead. The proposed beam training codebook provides larger average downlink capacity than the conventional codebook. The proposed beam tracking design is also shown to outperform the existing methods. Lastly, a multiple UAV system in mmWave band is considered and studied. Hybrid beamforming is designed for both fully connected antenna array and partially connected subarray structures. Furthermore, a simultaneous beam tracking scheme for multiple UAV users is proposed based on subarray structure, where both UAV mobility and instability effects are taken into consideration. Simulation results show that with the proposed method, the average downlink sum capacity is improved.

  • (2023) Al Taief, Karrar
    Thesis
    Self-assembled short peptide hydrogels based on natural proteins have been designed to mimic natural environment of extracellular matrix (ECM) in tissue. Yet this class of hydrogels solely lacks the ability to represent the entire complexity of the ECM. To address this problem, requires novel design of synthetic materials incorporating natural biopolymers. In this work, library of peptides based on protein motifs were designed that form self-assembled hydrogel. Animal source or human source biopolymers were then mixed with these peptides to fabricate dual-functional hybrid hydrogels. The incorporation of biopolymers at a concentration much lower than the peptide concentration, drastically enhanced the mechanical property of these hybrid systems. Both animal and human biopolymers are commercially available at high cost, however, incorporating minimum concentrations of both into this novel hybrid hydrogel will reduce the need for the biopolymer in a cost-effective manner. Additionally, these hybrid hydrogel systems are readily tuned by designing or re-arranging the target peptides sequences to fulfil the required applications of these hydrogels. Another peptide carrying cell-adhesion epitope, was designed based on a key binding motif for skin cells. The peptide self-assembled into self-supporting hydrogel. While biological compatibility of this gelator with skin cells was suboptimal over a long period of time, on the other hand, in 2D cultures of human Mesenchymal Stem Cells (hMSCs) no adverse reactions were noted and the hMSCs were shown to spread over a 7 days period on top of the hydrogel formed. Remarkably, exposure of this peptide to light triggered dynamic assembly. This photo-induced modulation of peptide assembly could be harvested for future therapeutic applications.

  • (2023) Poonjatt, Justin Jos
    Thesis
    In disputes between corporations and individuals, those seeking remedies through court litigation may find themselves in protracted legal and financial battles. Right-holders may face possible structural disadvantages if they do not have access to adequate resources, whereas corporations are risking their market reputation. Because of the risks involved, corporations may establish private processes to settle disputes outside of courts and avoid litigation. During the process, corporations use different tools that facilitate dispute settlement, which may adversely affect the right to access judicial remedies. One such tool is a legal waiver. This thesis investigates the use of legal waivers by corporations in private processes (also called operational-level grievance mechanisms) to settle human rights claims using cases from Papua New Guinea and Tanzania. Through examining the two cases, I explore the use of legal waivers to facilitate corporate-friendly remedies while limiting the right of victims to access judicial remedies. The use of legal waivers in private processes raises doubts regarding their consistency with different legal frameworks, such as international human rights law and the United Nations Guiding Principles on Business and Human Rights. The thesis interrogates legal waivers through multiple lenses, such as the role of inequality of bargaining power, the emerging regulatory gulf between states and corporations and the legal validity of waivers as per the domestic laws of Papua New Guinea and Tanzania. It concludes that legal waivers should be transparent, facilitate victim-oriented remedies, be limited to civil claims and not be a tool for enforcing standardised remedies.

  • (2023) Luo, Xiaoxuan
    Thesis
    Complex borohydrides have the potential to act as solid-state electrolytes for all-solid-state batteries. In this respect, sodium borohydride (NaBH4) is of high interest because it is thermally stable (up to 500 degrees celsius), and it has a high deformability and electrochemical stability against sodium anodes. However, its ionic conductivity at room temperature is extremely low ( ~ 10-10 S cm-1). Accordingly, this thesis aimed at investigating means to create defective NaBH4 structures with the intent to significantly enhance its ionic conductivity. To this aim, several strategies were investigated including the creation of intermediate interfaces, partial anionic substitution, the generation of defects and conducting interfaces through partial hydrolysis. By converting the surface of NaBH4 particles into Na2B12H12 of higher Na+ conductivity, to form NaBH4@Na2B12H12 core-shell structures, the resulting interface was found to lead to an ionic conductivity of 4 × 10-4 S cm-1at 115 degrees celsius, i.e., significantly higher to that of pristine Na2B12H12 (10-7 S cm-1). This demonstrates that it was possible to generate disordered interfaces trough anion mixing. The results suggested that the creation of defects may be more prone to lead to high ionic conductivity. Through partial substitution of BH4- anion by I- in NaBH4, defective NaBH4 structures with varied lattice constants could be created. This anion substitution strategy enhanced the ionic conductivity of NaBH4 doped with NaI to 1.6 × 10-3 S cm-1 at 65 degrees celsius. To further improve upon this, the idea of partial hydrolysis was also investigated with the idea to create both conductivity interfaces and defective NaBH4 structures by exposing NaBH4 to controlled amount of water. The disordered trapped interface located between alpha-NaBH4 and NaB(OH)4 showed fast Na+ dynamics, which led to a Na+ conductivity of 2.6 × 10-3 S cm-1 at 75 degrees celsius. Further addition of poly(ethylene oxide) (PEO) was found to help better control the levels of hydrolysis and the hydrolysed NaBH4-PEO composite electrolyte reached an ionic conductivity of 1.6 × 10-3 S cm-1 at 45 degrees celsius. These results indicate that the controlled formation of defects within NaBH4 is key to the conversion of such hydrides into superionic Na conductors.

  • (2023) Pappas, Billy
    Thesis
    Devices which exploit the quantum properties of materials are widespread, with information processors and sensors showing significant recent progress. Organic materials offer interesting opportunities for quantum technologies owing to their engineerable spin properties, with spintronic operation and magnetic field sensing demonstrated in research grade devices, as well as proven compatibility with large scale fabrication techniques. Yet several important challenges remain as we move toward scaling these proof-of-principle quantum devices to larger integrated logic systems or spatially smaller sensing elements – particularly those associated with the variation of spin properties both within and between devices. In this thesis, we explore three aspects influencing the homogeneity of spin interactions experienced by excitations in their local molecular environments – spatial, temporal and energetic variations. The resolution of these variations is realised through magneto-optical spin spectroscopy, whereby the modulation of optoelectronic processes in organic light-emitting diodes are imaged under the application of external magnetic fields. Using this technique, we map the spatiotemporal and energetic distributions of important spin quantum properties common to many molecular compounds, the results of which highlight the challenges of miniaturising and integrating these technologies for sensing and logic-based applications. In addition to characterising the variability of hyperfine interactions across the microscopic molecular landscape, we observe the spatial correlation of this property for lengths up to 7 micrometres in both a polymer and small molecule material, and dynamic at room temperature. The energy dependence of exchange interaction strengths were also resolved in thermally activated delayed fluorescence materials, with variabilities exceeding 50% and which should be accounted for in future design rules of high performance fluorescent molecules. Our investigations into the variation and correlation of spin interactions in space, time and energy provide important characterisations of the spin properties possessed by molecular materials for use in quantum devices. The miniaturisation, integration and scaling of technologies employing these materials will have to contend with this variation.

  • (2023) Lam, Nga
    Thesis
    The self-assembly of proteins into intricate high-order structures can be harnessed for the precise positioning of functional molecules in nanotechnology. The organisation of enzymes on protein scaffolds has been previously shown to enhance enzyme catalytic activity. Additionally, the alignment of metal-binding proteins, known as metalloproteins, on filamentous proteins has been exploited to produce electrically conductive nanowires. The focus of this thesis is on the development of improved biosynthetic strategies for the creation of multifunctional nanomaterials by harnessing the self-assembly of filamentous proteins. Central to the engineering in this thesis is prefoldin, which is a molecular chaperone from archaea with the ability to self-assemble into hetero-hexameric complexes and filamentous structures. Prefoldin proteins exhibits high thermal stability and have engineerable interfaces for bioconjugation of functional proteins. Therefore, the research goal of this thesis was to engineer robust and modular protein scaffolds for the precise position of enzymes and alignment of electrically conductive subunits to create biocatalysis and bioelectronic systems. The first aim of the research was to construct a protein scaffold from a hexameric self-assembling protein and immobilise enzymes on the protein scaffold to examine for enhanced sequential catalytic reactions. The second aim explored the capability of prefoldin filaments to align various metalloproteins in proximity over large distances for electron transfer. Distinct metalloproteins were exploited to create nanowires with various electronic properties for applications in bioelectronic devices. The third aim developed a strategy to localise redox enzymes at either end of the metalloprotein nanowires and potentially demonstrate energy transfer along the nanowire between enzymes undergoing redox reactions. The successful achievement of these aims establishes a biostrategy to use a controllable and modular prefoldin protein scaffold for the fabrication of biocatalysis and bioelectronic devices.