Engineering

Publication Search Results

Now showing 1 - 10 of 32

  • (2009) Carley, J.T.; Rayner, D.S.
    Report





  • (2009) Han, Hyungjin
    Thesis
    Hazardous and recalcitrant pollutants in the environments have led to a great many environmental issues these days. Many researchers have focused on the approaches to treatment of these pollutants which contaminate environments such as soil, surface and groundwater. As an advanced oxidation processes (AOPs), sonolysis which is the oxidation technology involving the use of ultrasonic irradiation, has proven to be successful for the treatment and remediation of contaminated environments. In this thesis, hydrogen peroxide formation and formic acid degradation by ultrasonic irradiation of well-characterised solutions are described under various conditions in order to determinate reaction mechanism by which peroxide degradation and contaminant degradation occur. The effect of gas properties and frequency on hydrogen peroxide and formic acid degradation are examined. Experimental results obtained are analyzed in light of the reactions occurring. Successful mathematical modeling of the result s obtained confirms that, for the most part, hydrogen peroxide and formic degradation occur by free radical generation within bubbles with subsequent transfer of these radicals to the bubble-water interface where the majority of the degradation occurs. The effect of Fe(II) addition which can lead to Fenton reactions in the bulk solution are also investigated. Experimental and model results show that the heterogeneous reactions can enhance the degradation of formic acid in the presence of Fe(II). Oxidation of phenol by ultrasonic irradiation under a variety of initial conditions and solution environments is also described and validated by a simple kinetic model. The model developed will be useful for improving our understanding of free radicals behaviour and the interplay between free radical generation and contaminant degradation.

  • (2009) Charles, Katrina
    Thesis
    On-site sewage systems, such as septic tank-absorption trenches, are used by approximately 20 000 people who live within the catchments that supply Sydney’s drinking water. These systems discharge sewage, treated to varying degrees depending on the system type and level of maintenance, to the environment. This can result in contamination of drinking water supplies if systems are not designed or managed appropriately. The aim of the project was to develop a methodology to define appropriate buffer distances between on-site sewage systems and waterways in Sydney’s drinking water catchments, to ensure the protection of drinking water quality. Specific objectives included: identifying the current status of on-site sewage management; assessing the effluent quality and treatment performance of septic tanks, aerated wastewater treatment systems (AWTS) with disinfection and an amended material sand mound; and development of an appropriate methodology for delineating buffer distances and assessing development applications. Viruses were used as a focus for delineating the buffer distances due to their mobility and robustness in the environment, and the potential health consequences of their presence in drinking water. A Quantitative Microbial Risk Assessment (QMRA) model was developed to calculate the cumulative impact of the on-site sewage systems in the Warragamba catchment based on data from literature and experiments, with consideration of virus loads from sewage treatment plants within the catchments. The model enabled consideration of what was a tolerable impact in terms of the resulting infections within the community. The QMRA the tolerable loads of viruses from the Warragamba catchment were 108 viruses per year in raw water and 104 viruses per year in treated water. A log reduction method was developed to facilitate individual site development assessments. This method was compared to other management approaches to development assessment: fixed minimum buffer distances of 100m, reducing failure rates to zero, and the use of a preferred system. Each of these methods had a limit for how much they could reduce virus loads to the catchment due to either failure or short buffer distances at some sites. While the log reduction method is limited by the failure rates, the method provides a quantitative measure of risk by which maintenance inspections can be prioritised.

  • (2009) Richards, Eric Wesley
    Thesis
    The past years has seen the advent of the availability of high resolution commercial satellite imagery. This study shows that whilst high resolution commercial satellite imagery is capable of producing reasonable spatial data both in quality and cost for use in an urban GIS the challenges of supplying this data commercially is not limited to simply the provision of the imagery. Since a significant amount of work has been done by others to examine and quantify the technical suitability and limitations of high resolution commercial satellite imagery, this study examines the practical limitations and opportunities presented with the arrival of this new spatial data source. In order to do this a number of areas are examined; the historical development of the satellite systems themselves, the business evolution of the owning commercial ventures, Geographical Information Systems (GIS) data and service requirements for a diverse range of spatial data applications and finally the evaluation and comparison of the imagery as a spatial data source. The study shows that high resolution commercial satellite imagery is capable of providing spatial data and imagery for a variety of uses at different levels of accuracy as well as opening up a new era in the supply and application of metric imagery. From a technical approach high resolution commercial satellite imagery provides remote access, one metre or better resolution, 11 bit imagery and a multispectral capability not previously available from space. Equally as challenging is the process or achievement in making the technical capability a reality in a commercial world requiring a financial return at all levels; from the image vendors to the spatial science professional providing a service to a paying customer. The imagery must be financially viable for all concerned.

  • (2009) Walker, James William
    Thesis
    A series of detailed laboratory investigations were conducted to examine low solubility gas transfer across wind-forced wavy air-water interfaces. The study focuses on the increase in gas flux associated with the microphysical interfacial wind momentum exchange and the complex wave coupled hydrodynamics. Key elements of the laboratory investigations included the measurement of hydrodynamic behaviour within the aqueous viscous sub-layer using a particle image velocimetry (PIV) system and the development of a Laser Induced Fluorescent (LIF) system capable of measuring reliable dissolved oxygen concentration profiles to within 28µm of the air-water interface. Major achievements and findings included: 1. The first phase resolved gas flux measurements along wind forced microscale waves, indicating the highest mean gas fluxes are located in the wave troughs. This finding demonstrated the relative importance of wave orbital straining in gas flux enhancement; a wave coupled hydrodynamic process whose significance has previously been neglected. 2. The relative contributions to gas flux from wind shear, wave orbital straining, increased surface area of the waves, parasitic capillary ripples and microscale breaking are quantified with respect to friction velocity, wave steepness and an efficiency of microscale wave breaking. The parasitic capillary ripples are shown to have a negligible role in gas enhancement. A hybrid model is developed to estimate the gas flux based on both wind and wave characteristics. 3. Gas enhancement due to microscale wave breaking and the significance of the highly localised subduction at the toe of the spilling region on the leeward face of the wave crests was investigated using data from the LIF experiments. The highly localised subduction was shown to substantially reduce the thickness of the diffusion sub-layer, resulting in an increase in gas flux when waves transitioned from the incipient breaking to the microscale breaking wave form. 4. Consideration of previously unidentified optical distortions in LIF imagery due to non-linear effects is presented that is critical for robust LIF data processing and experimental design. A formal mathematical description of optical distortions has been developed and presented.