Engineering

Publication Search Results

Now showing 1 - 10 of 17





  • (2006) Neal, Peter Ross
    Thesis
    Securing water in the right quantities at the right quality for the right price is a major issue around the world. Membranes are making an increasingly important contribution to meeting this need; however their performance is limited by fouling. This thesis reports on an investigation into the fouling of systems related to water treatment using the Direct Observation Through the Membrane (DOTM). The investigation focused on the measurement of critical flux and observation of particle behaviour under a variety of conditions and for a number of different particles. The range of meanings attributed to critical flux in the literature was analysed and several proposals made for the improved use of the concept. In particular, critical flux determination techniques were classified by whether they measure resistance changes or particle deposition; leading to the definition of Critical Resistance and Critical Deposition Fluxes. In this thesis the deposition definition is used exclusively. The effect of Reynolds number and spacer orientation on critical flux was correlated for spacer-filled channels. The heterogeneous deposition patterns observed with regions of heavy deposition next to areas of little or no deposition. This pattern was related to the local hydrodynamics of spacer cells (a few mm2 in size). The correlations developed for critical flux in spacer-filled channels were adjusted for submicron particle size and incorporated into a SpiralWound Module (SWM) leaf model and then used to simulate the fouling of SWM leaves under a range of operating conditions and operating policies. The Mass Balance technique of critical flux determination was also briefly assessed. The applicability of critical flux criteria to SWM arrays was discussed. Fouling, particle behaviour and critical flux were also investigated in air-sparged systems. The post-cleaning water flux was found to be enhanced when the membrane is fouled in the presence of bubbles. The rate of flux decline was reduced by bubbles. Critical flux increased with air flowrate, and decreased with increased liquid flowrate and concentration. Bubbles caused particles to periodically deposit on the membrane. Particles were observed to stream past the membrane under the influence of back-diffusive forces. Video clips of particulate fouling are provided.

  • (2006) Zwaneveld, Nikolas Anton Amadeus
    Thesis
    The use of living radical polymerization methods has shown significant potential to control grafting of polymers from inert polymeric substrates. The objective of this thesis is to create advanced substrates for use in combinatorial chemistry applications through the use of g-radiation as a radical source, and the use of RAFT, ATRP and RATRP living radical techniques to control grafting polymerization. The substrates grafted were polypropylene SynPhase lanterns from Mimotopes and are intended to be used as supports for combinatorial chemistry. ATRP was used to graft polymers to SynPhase lanterns using a technique where the lantern was functionalized by exposing the lanterns to gamma-radiation from a 60Co radiation source in the presence of carbon tetra-bromide, producing short chain polystyrene tethered bromine atoms, and also with CBr4 directly functionalizing the surface. Styrene was then grafted off these lanterns using ATRP. MMA was graft to the surface of SynPhase lanterns, using g-radiation initiated RATRP at room temperature. It was found that the addition of the thermal initiator, AIBN, successfully increased the concentration of radicals to a level where we could achieve proper control of the polymerization. RAFT was used to successfully control the grafting of styrene, acrylic acid and N,N’-dimethylacrylamide to polypropylene SynPhase Lanterns via a -initiated RAFT agent mediated free radical polymerization process using cumyl phenyldithioacetate and cumyl dithiobenzoate RAFT agents. Amphiphilic brush copolymers were produced with a novel combined RAFT and ATRP system. Polystyrene-co-poly(vinylbenzyl chloride) created using gamma-radiation and controlled with the RAFT agent PEPDA was used as a backbone. The VBC moieties were then used as initiator sites for the ATRP grafting of t-BA to give a P(t-BA) brush that was then hydrolyzed to produce a PAA brush polymer. FMOC loading tests were conducted on all these lanterns to assess their effectiveness as combinatorial chemistry supports. It was found that the loading could be controlled by adjusting the graft ratio of the lanterns and had a comparable loading to those commercially produced by Mimotopes.

  • (2006) Ndinisa, Nkosinathi Vincent
    Thesis
    Submerged flat sheet membranes are mostly used in membrane bioreactors for wastewater treatment. The major problems for these modules are concentration polarization and subsequent fouling. By using gas-liquid two-phase flow, these problems can be ameliorated. This thesis aimed to optimize the use of gas-liquid two-phase flow as a cleaning mechanism for submerged flat sheet membrane. The effect of various hydrodynamic factors such as airflow rate, nozzle size, nozzle geometry, intermittent bubbling, intermittent filtration, channel gap width, feed concentration and membrane baffles were investigated for model feed materials (yeast suspensions and mixed liquor from activated sludge plants). Insights into mechanisms by which two-phase flow reduces fouling for submerged flat sheet membranes were obtained by using Computational Fluid Dynamics. Experiments conducted showed that an optimal airflow rate exists beyond which no further flux enhancement was achieved. Fouling reduction increased with nozzle size at constant airflow. Nozzles of equal surface area but different geometries performed differently in terms of fouling reduction. Bubble size distribution analyses revealed that the percentage of larger bubbles and bubble rise velocities increased with the airflow rate and nozzle size. Thus the results of this study suggest that the effectiveness of two-phase flow depends on the bubble size. CFD simulations revealed that average shear stress on the membrane increased with airflow rate and bubble size and further indicated that an optimal bubble size possible exists. Using intermittent filtration as an operating strategy was found to be more beneficial than continuous filtration. This study also showed the importance of the size of the gap between the submerged flat sheet membranes. Increasing the gap from 7 mm to 14 mm resulted in an increase in fouling by about 40% based on the rate of increase in suction pressure (dTMP/dt). Finally, this is the first study which investigated the effect of baffles in improving air distribution across a submerged flat sheet membrane. It was found that baffles decreased the rate of fouling at least by a factor of 3.0 based on the dTMP/dt data.

  • (2006) Wicaksana, Filicia
    Thesis
    This study focuses on the optimisation of submerged hollow fibre membrane performance by analysing the role of air sparging on the reduction of membrane fouling. In submerged hollow fibre membranes, rising bubbles have been shown to induce shear, liquid movement and fibre displacement. The interaction between fibre movement induced by bubbling and the microfiltration performance was assessed for various parameters (fibre tightness, fibre length, fibre diameter, air flowrate, nozzle size, and feed concentration). A model feed of yeast suspension and a series of isolated fibres were used. The fibre movement was assessed by monitoring the displacement using video recording. Bubble population parameters were also measured. The results suggest that bubbleinduced fibre movement plays an important role in controlling membrane fouling. Investigations of the critical flux at various operating conditions also supported these conclusions. Since energy consumption for aeration is a major contributor to the cost in submerged membranes, the potential to minimise the aeration cost has been tested by implementing intermittent aeration and different nozzle sizes. It was found that an optimum condition associated with a low fouling rate could be reached by combining various aeration intermittencies and nozzle sizes. An attempt to suppress fouling without aeration was made by incorporating vibrations into a submerged hollow fibre membrane system. The effects of vibration frequency, type of yeast (washed and unwashed) on the filtration performance were observed. The impact of coagulant addition on filtration enhancement was also analysed. The performance of microfiltration was evaluated based on its critical flux value. The findings in this preliminary study indicated potential fouling control by applying vibrations to submerged membranes. A semi-empirical model was developed to predict the filtration behaviour by taking into account the bubble-induced shear and fibre movement. The predicted critical flux values suggested that membrane fouling appears to be more prominent at low air flowrate, with tight fibres, and higher feed concentrations. The model fits the experimental data with discrepancies from approximately 0.3% to 20%. The predicted filtration profiles at different operating modes demonstrate the importance of bubble-induced shear and fibre movement in the improvement of filtration performance.

  • (2006) Djongkah, Cissillia Young
    Thesis
    The photocatalytic oxidation of trichloroethylene (TCE), ethylene. ethane and toluene on TiO2, Pt/TiO2 and Ag/TiO2 were investigated in a dedicated reactor set-up operated at room temperature and ambient pressure condition. The gas phase experiments were carried out for both single and binary mixtures of these chemicals to identify the role of Pt and Ag metallisation in the photocatalytic oxidation of different contaminants. In a single contaminant system, the presence of Pt enhanced the oxidation of ethylene, ethane and toluene but detrimental to the oxidation of TCE. In the oxidation of ethylene, Pt enhanced the oxidation by acting as catalyst and as electron sink. However, in ethane oxidation, the enhancement was solely associated to the ability of Pt to act as electron sink. The detrimental effect observed in TCE oxidation was attributed to Pt and Cl interaction, which formed a persistent inorganic chlorine species decreasing the overall Pt/TiO2 photocatalyst performance. Interestingly, Ag did not show any significant effect to the oxidation of any single system degradation. In binary system degradation, where TCE and another organic compound either ethylene, ethane or toluene were degraded simultaneously, Pt always caused a detrimental effect due to its strong interaction with Cl. However, the presence of Ag and Cl gives a more synergetic effect. Ag was found to provide sites to temporarily trap chlorine radicals as AgCl. Under illumination, electrons transferred from Cl to Ag forming chlorine radicals that could react with the surface contaminant enhancing its breakdown and mineralization.