Engineering

Publication Search Results

Now showing 1 - 10 of 23
  • (2006) Ho, Minh; Allinson, G; Wiley, Dianne
    Journal Article
    The sequestration of CO2 as a greenhouse mitigation option is becoming an increasingly important priority for industry. Theoretically membrane based CO2 removal systems have the potential to provide a cost effective, low maintenance approach for removing CO2 from gas streams. This study examines the effect of membrane characteristics, operating parameters and system design on sequestration costs for any source-sink combination. The total sequestration cost per tonne of CO2 avoided for separation, transport and storage are compared for the separation of CO2 from a black coalfired power plant in Australia. The results show that the membranes currently available have a total sequestration cost of US$55-61/tonne CO2 avoided. Lower costs for CO2 avoided can be achieved using an MEA amine based absorption separation system. Gas separation membranes would require significant improvements in CO2 permeability and selectivity, together with reductions in the cost of membranes and changes to the process configurations and operating pressures to be competitive against MEA systems for the purposes of geo-sequestration.









  • (2006) Lea, Santa Cinzia
    Thesis
    Poly (co iso-butyl vinyl ether-alt-maleic anhydride), an alternating copolymer, was synthesised. For this class of copolymers the formation of an electron-donor complex is invoked to explain their microstructure in which the two comonomers strictly alternate. Due to its polarity, this copolymer constitutes a potential additive for imparting hydrophilic properties to a hydrophobic matrix. In order to obtain narrow molecular weight polymers and study the relation between the molecular weight of this additive and its ability to migrate to the host polymer surface, chain transfer agents were introduced in the system and also the Reversible Addition-Fragmentation chain Transfer (RAFT) process was employed. Free radical polymerisation was first carried out to allow for a comparison with the RAFT process and kinetics of copolymerisation was studied by NIR-FTIR and 1H NMR spectroscopy in order to analyse the rate of reaction of each comonomer. Dibenzyl trithiobenzoate, 3-benzyl sulfanyl thiocarbonyl sulfanyl-propionic acid and dibenzyl trithiobenzoate were used as RAFT agents. Results demonstrate that only benzyl dithiobenzoate is able to control the molecular weight of this copolymer and decrease its polydispersity index; possible reasons laying behind this result are discussed. It was also found that, in particular in the presence of benzyl dithiobenzoate, poly(iso-butyl vinyl ether) forms. This is an unusual phenomenon considering that the free radical polymerisation affords alternating copolymers and that iso-butyl vinyl ether is a monomer that polymerises through the cationic process. Experiments were carried out in various solvents in an attempt to counteract this side-reaction, but no appreciable correlation between the properties of the solvents and the formation of homopolymer were found. Various hypothesis are considered, however it is likely that, in the conditions adopted, the presence of the RAFT agents alters the equilibrium constant of complex formation favouring the synthesis of the homopolymer. In addition to this side-reaction also inhibition of the copolymerisation reaction was at times encountered and an investigation into this phenomenon was also conducted.