Engineering

Publication Search Results

Now showing 1 - 3 of 3
  • (2006) Bandyopadhyay, Srikanta; Zeng, Qinghua; Berndt, Christopher C.; Rizkalla, Sami; Gowripalan, N.; Matisons, Janis
    Conference Paper
    The topics of ACUN-5 will cover all aspects of the science and technology of composite materials, from materials fabrication, processing, manufacture, structural and property characterisation, theoretical analysis, modelling and simulation, materials design to a variety of applications, such as aerospace, automotive, infrastructure, packaging, ship-building, and recreational products. ACUN-5 will bring together the latest research and developments of the complete range of composite materials, including biocomposites, medical-composites, functional and smart composites, gradient and layered composites, nanocomposites, structural composites and mimicking natural materials. The reinforcements will range from nano-, micro-, meso- to macro-scale in polymer, metal, ceramic and cementitious matrices.

  • (2008) Guo, Jun; Wong, Eric; Chan, Sammy; Taylor, Peter; Zukerman, Moshe; Tang, Kit-Sang
    Journal Article
    The designers of a large scale video-on-demand system face an optimization problem of deciding how to assign movies to multiple disks (servers) such that the request blocking probability is minimized subject to capacity constraints. To solve this problem, it is essential to develop scalable and accurate analytical means to evaluate the blocking performance of the system for a given file assignment. The performance analysis is made more complicated by the fact that the request blocking probability depends also on how disks are selected to serve user requests for multicopy movies. In this paper, we analyze several efficient resource selection schemes. Numerical results demonstrate that our analysis is scalable and sufficiently accurate to support the task of file assignment optimization in such a system. © 2008 IEEE.

  • (2007) Cho, Eun-Chel; Green, Martin A.; Corkish, Richard Paul; Reece, Peter; Gal, Michael; Lee, Soo-Hong
    Journal Article
    Crystalline silicon single quantum wells (QWs) were fabricated by high temperature thermal oxidation of ELTRAN® (Epitaxial Layer TRANsfer) silicon-on-insulator (SOI) wafers. The Si layer thicknesses enclosed by thermal SiO2 range from 0.8 to 5nm. Luminescence energies from ELTRAN QWs vary from 700nm (1.77eV) to 920nm (1.35eV) depending on the Si layer thickness, without evidence for the interface-mediated transitions observed in earlier reported work. The ability to detect quantum confined luminescence seems to arise from the use of ELTRAN SOI wafers, from suppressed interface state luminescence by high temperature oxidation and, possibly, from interface matching by crystalline silicon oxide. In contrast, SOI wafers prepared by the SIMOX (Separation by IMplantation of OXygen) process showed strong interface mediated features.