Engineering

Publication Search Results

Now showing 1 - 10 of 206
  • (1998) Walsh, Andrew; Burton, Michael; Robinson, Garry; Nyland, A
    Journal Article

  • (1999) Walsh, Andrew; Burton, Michael; Hyland, A; Robinson, Garry
    Journal Article
    A survey towards a selection of 35 methanol maser and/or ultracompact (UC) H ii regions, reported in Papers I and II and by Norris et al., has been conducted in the near-infrared (NIR). Out of 25 methanol maser sites surveyed, 12 are associated with a NIR counterpart. Out of 18 UC H ii regions (8 of which overlap with maser emission), 12 are associated with a NIR counterpart. Counterparts can be confidently identified not only by the positional agreements, but also by their unusually red colours. Spectral types for the embedded stars can be unambiguously determined for six sources, all of which imply massive, ionizing stars. One of these infrared sources has methanol maser emission, but no UC H ii region. It is possible that the maser emission associated with this source arises from a pre-UC H ii phase of massive stellar evolution or it could be that nearly all the ultraviolet photons are absorbed by dust within the UC H ii region. We have modelled the spectral energy distributions (SEDs) for some sources and find that a single blackbody can be used to estimate the stellar luminosity, but cannot represent the whole infrared SED. A two-component blackbody model and a radiative transfer model were also used to derive essential parameters of the infrared sources. The radiative transfer model also indicates which infrared sources are relatively young and which are older. Both models show that silicate absorption at 9.7 μm must be a dominant feature of these SEDs.

  • (1997) Bradley, Peter
    Thesis
    Space exploration and the rapid growth of the satellite communications industry has promoted substantial research into the effects of ionising radiation on modem electronic technology. The enabling electronics and computer processing has seen a commensurate growth in the use of radiation for diagnostic and therapeutic purposes in medicine. Numerous studies exist in both these fields but an analysis combining the fields of study to ascertain the effects of radiation on medically implantable electronics is lacking. A review of significant ground level radiation sources is presented with particular emphasis on the medical environment. Mechanisms of permanent and transient ionising radiation damage to Metal Oxide Semiconductors are summarised. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses of high energy radiation. With respect to cosmic radiation, the most sensitive circuit structure within a typical microcomputer architecture is the Random Access Memory(RAM). A theoretical model which predicts the susceptibility of a RAM cell to single event upsets from secondary cosmic ray neutrons is presented. A previously unreported method for calculating the collection efficiency term in the upset model has been derived along with an extension of the model to enable estimation of multiple bit upset rates. An Implantable Cardioverter Defibrillator is used as a case example to demonstrate model applicability and test against clinical experience. The model correlates well with clinical experience and is consistent with the expected geographical variations of the secondary cosmic ray neutron flux. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future implantable device designs to cosmic radiation. The model is also used as a basis for developing radiation hardened circuit techniques and system design. A review of methods to radiation harden electronics to single event upsets is used to recommend methods applicable to the low power/small area constraints of implantable systems.






  • (1994) Davatgar, Mohammad T. A.
    Thesis