Publication Search Results

Now showing 1 - 1 of 1
  • (2023) Luo, Xiaoxuan
    Complex borohydrides have the potential to act as solid-state electrolytes for all-solid-state batteries. In this respect, sodium borohydride (NaBH4) is of high interest because it is thermally stable (up to 500 degrees celsius), and it has a high deformability and electrochemical stability against sodium anodes. However, its ionic conductivity at room temperature is extremely low ( ~ 10-10 S cm-1). Accordingly, this thesis aimed at investigating means to create defective NaBH4 structures with the intent to significantly enhance its ionic conductivity. To this aim, several strategies were investigated including the creation of intermediate interfaces, partial anionic substitution, the generation of defects and conducting interfaces through partial hydrolysis. By converting the surface of NaBH4 particles into Na2B12H12 of higher Na+ conductivity, to form NaBH4@Na2B12H12 core-shell structures, the resulting interface was found to lead to an ionic conductivity of 4 × 10-4 S cm-1at 115 degrees celsius, i.e., significantly higher to that of pristine Na2B12H12 (10-7 S cm-1). This demonstrates that it was possible to generate disordered interfaces trough anion mixing. The results suggested that the creation of defects may be more prone to lead to high ionic conductivity. Through partial substitution of BH4- anion by I- in NaBH4, defective NaBH4 structures with varied lattice constants could be created. This anion substitution strategy enhanced the ionic conductivity of NaBH4 doped with NaI to 1.6 × 10-3 S cm-1 at 65 degrees celsius. To further improve upon this, the idea of partial hydrolysis was also investigated with the idea to create both conductivity interfaces and defective NaBH4 structures by exposing NaBH4 to controlled amount of water. The disordered trapped interface located between alpha-NaBH4 and NaB(OH)4 showed fast Na+ dynamics, which led to a Na+ conductivity of 2.6 × 10-3 S cm-1 at 75 degrees celsius. Further addition of poly(ethylene oxide) (PEO) was found to help better control the levels of hydrolysis and the hydrolysed NaBH4-PEO composite electrolyte reached an ionic conductivity of 1.6 × 10-3 S cm-1 at 45 degrees celsius. These results indicate that the controlled formation of defects within NaBH4 is key to the conversion of such hydrides into superionic Na conductors.