Engineering

Publication Search Results

Now showing 1 - 6 of 6
  • (1996) Sproul, Alistair; Edminston, Sean; Puzzer, Tom; Heiser, Gernot; Wenham, Stuart; Green, Martin; Young, Timothy
    Conference Paper
    An analytical model is developed to decribe recombination currents arising from recombination at grain boundaries (GBs) in the depletion region of a p-n junction solar cell. Grain boundaries are modelled as having a single energy evel in the energy gap, and partial occupancy of these stats gives raise to a chage on the GB. The analytical model is compared to a complete numerical simulation package (DESSIS) and found to be in excellent agreement. Additionally,. cross sectional EBIC images of a multilayer device containing vertical GBs are presented. The experimental data is comared qualitatively with results derived from numerical modelling.

  • (1997) Smith, John; Epps, Julien; Wolfe, Joseph
    Journal Article
    Acoustic resonances of the vocal tract give rise to formants (broad bands of acoustic power) in the speech signal when the vocal tract is excited by a periodic signal from the vocal folds. This paper reports a novel instrument which uses a real-time, non-invasive technique to measure these resonances accurately during phonation. A broadband acoustic current source is located just outside the mouth of the subject and the resulting acoustic pressure is measured near the lips. The contribution of the speech signal in the pressure spectrum is then digitally suppressed and the resonances are calculated from the input impedance of the vocal tract as a function of frequency. The external excitation signal has a much smaller harmonic spacing than the periodic signal from the vocal folds and consequently the resonances are determined much more accurately due to the closer sampling. This is particularly important for higher pitched voices and we demonstrate that this technique can be markedly superior to the curve-fitting technique of linear prediction. The superior frequency resolution of this instrument which results from external vocal tract excitation can provide the precise, stable, effective, articulatory feedback considered essential for some language-learning and speech therapy applications.

  • (1997) Xu, M; Zhang, Kai; Jaeger, H; Hinks, D; Crabtree, G; Goregtta, K; Zhao, Yong; Choi, C
    Journal Article
    The magnetization of melt-textured Y-123 and single crystal La-214 has been measured in magnetic field up to 5.5 T using a SQUID magnetometer. Partial and nearly complete flux jumps were observed at about 10 K in Y-123 and 5 K in La-214 single crystals, respectively.

  • (2000) Zhao, Yong; Nakao, K; Huang, Yuetao
    Conference Paper

  • (1997) Epps, Julien; Dowd, Annette; Smith, John; Wolfe, Joseph
    Conference Paper
    The formants of speech sounds are usually attributed to resonances of the vocal tract. Formant frequencies are usually estimated by inspection of spectrograms or by automated techniques such as linear prediction. In this paper we measure the frequencies of the first two resonances of the vocal tract directly, in real time, using acoustic impedance spectrometry. The vocal tract is excited by a carefully calibrated, broad band, acoustic current signal applied outside the lips while the subject is speaking. The sound pressure response is analysed to give the resonant frequencies. We compare this new method (Real-time Acoustic Vocal tract Excitation or RAVE) with linear prediction and we report the vocal tract resonances for eleven vowels of Australian English. We also report preliminary results of using feedback from vocal tract excitation as a speech trainer, and its effect on improving the pronunciation of foreign vowel sounds by monolingual anglophones.

  • (2010) Willems van Beveren, Laurens; Huebl, H.; Starrett, Robert; Morello, Andrea
    Conference Paper
    We demonstrate radio frequency (RF) readout of electrically detected magnetic resonance in phosphorus-doped silicon metal-oxide field-effecttransistors (MOSFETs), operated at liquid helium temperatures. For the first time, the Si:P hyperfine lines have been observed using radio frequency reflectometry, which is promising for high-bandwidth operation and possibly time-resolved detection of spin resonance in donor-based semiconductor devices. Here we present the effect of microwave (MW) power and MOSFET biasing conditions on the EDMR signals.