Engineering

Publication Search Results

Now showing 1 - 1 of 1
  • (2022) Chen, Yuhui
    Thesis
    Ride-sourcing services are rapidly spreading around the world. The ride-sourcing service refers to a point-to-point on-demand ride service operated by various companies, which organize and coordinate drivers using their vehicles to provide passengers with ride services. How ride-sourcing services and public transport are interacting with each other and thus yielding system-wide impacts have not received sufficient attention. This thesis extends the literature by proposing multi-class, multi-modal traffic assignment models to optimize the transport system with the presence of ride-sourcing and public transport services. The first part of the thesis develops a stylized model with a simple network with single origin-destination pair in order to analytically examine the mode choice behavior of travelers and the operation strategies of a public transport operator and a ride-sourcing operator. In such a multi-modal system, users may travel by bus, train, or ride-sourcing service. In particular, we develop a tractable bi-level model that quantifies the user equilibrium travel choices in the lower-level, where the travel choice equilibrium can be formulated as a variational inequality problem, and optimizes the operation strategies of the public transport operator that aims to minimize total system cost and the ride-sourcing operator that aims to maximize its profit in the upper-level. The existence and uniqueness of the multi-modal travel choice equilibrium are also analyzed. How the operation decision variables might affect users' mode choices and system performance is investigated both analytically and numerically. The second part of the thesis extends the stylized model to a general network model, which includes also solo-driving, and multiple OD pairs to depict a more realistic problem setting. The general network model is applied on a case study in the context of Sydney. The existence and uniqueness are also investigated for the general network model. The method of Frank-Wolfe combined with diagonalization is applied to generate numerical solutions, and illustrate the analytical observations and generate further understanding. The results show that the total system cost can be reduced while the profit of the ride-sourcing company can be increased under appropriate operating strategies of the public transport operator and the ride-sourcing operator.