Engineering

Publication Search Results

Now showing 1 - 5 of 5
  • (2022) Cao, Jun
    Thesis
    This thesis focuses on the development and applications of magnetic resonance electrical properties tomography (MREPT), which is an emerging imaging modality to noninvasively obtain the electrical properties of tissues, such as conductivity and permittivity. Chapter 2 describes the general information about human research ethics, MRI scanner, MR sequence and the method of phase-based MREPT implemented in this thesis. Chapter 3 examines the repeatability of phase-based MREPT in the brain conductivity measurement using balanced fast field echo (bFFE) and turbo spin echo (TSE) sequences, and investigate the effects of compressed SENSE, whole-head B_1 shimming and video watching during scan on the measurement precision. Chapter 4 investigates the conductivity signal in response to short-duration visual stimulus, compares the signal and functional activation pathway with that of BOLD, and tests the consistency of functional conductivity imaging (funCI) with visual stimulation across participants. Chapter 5 extends the use of functional conductivity imaging to somatosensory stimulation and trigeminal nerve stimulation to evaluate the consistency of functional conductivity activation across different types of stimuli. In addition, visual adaptation experiment is performed to test if the repetition suppression effect can be observed using funCI. Chapter 6 explores if resting state conductivity networks can be reliably constructed using resting state funCI, evaluates the consistency of persistent homology architectures, and compares the links between nodes in the whole brain. Chapter 7 investigates the feasibility of prostate conductivity imaging using MREPT, and distinctive features in the conductivity distribution between healthy participants and participants with suspected abnormalities.

  • (2022) Wang, Shuangyue
    Thesis
    Two-dimensional transition metal dichalcogenide (TMD) nanocrystals (NCs) exhibit unique optical and electrocatalytic properties. However, the growth of uniform and high-quality NCs of monolayer TMD remains a challenge. Until now, most of them are synthesized via solution-based hydrothermal process or ultrasonic exfoliation method, in which the capping ligands introduced from organic solution often quench the optical and electrocatalytic properties of TMD NCs. Moreover, it is difficult to homogeneously disperse the solution-based TMD NCs on a substrate for device fabrication since the dispersed NCs can easily aggregate. Here, we put forward a novel CVD method to grow closely-spaced TMD NCs and explored the growth mechanism and attempts on the size control. Their applications acting as electrocatalysts and adhesion layer for Au film deposition have been also well displayed. Through the whole chapters of this thesis, the following aspects are highlighted: 1. MoS2 and other TMD nanocrystals have been grown on the c-plane sapphire. The surface oxygen vacancies determine the density of TMD nanocrystals. The MoS2 nanocrystals demonstrate excellent hydrogen evolution reaction and surface-enhanced Raman scattering performance owing to the abundant edges. 2. Deep insights into the growth of MoS2 nanograins have been explored. The surface step edges and lattice structures of the underlying sapphire substrates have a significant influence on the growth behaviors. The step edges could modulate the aggregation of MoS2 nanograins to form unidirectional triangular islands. The Raman spectra of MoS2 demonstrate a linear relationship with the crystal size of MoS2. 3. The orientation of sapphire substrate has an of importance effect on the critical size of MoS2 nanocrystals. The MoS2 nanocrystals have the smallest size on the r-plane sapphire, besides, the MoS2 on r-plane sapphire demonstrates the sintering-resistance feature, which is attributed to the edge-pinning effect when MoS2 edges are anchored on the sapphire surface. 4. The MoS2 nanocrystalline layer was utilized as the adhesion layer for Au film depositing on a sapphire substrate. The Au films on MoS2 displayed superior transmittance and electrical conductivity as well as outstanding thermal stability, which lay in the strong binding of Au film with MoS2 nanocrystalline layer.

  • (2022) Qiao, Laicong
    Thesis
    There has been a rapid-growing market and academic enthusiasm for small wearable molecular diagnostic platforms driven by the growing demand for continuous monitoring of human health. Wearable devices need to be portable, stretchable, and ideally re-configurable to be able to work for different analytes. Such flexible physiological monitoring devices which are non-invasive or minimally-invasive represent the next frontier of biomedical diagnostics. They may make it possible to predict and prevent diseases or facilitate treatment by diagnosing diseases at the initial stages. However, there are many problems that restrict further applications of these devices. Firstly, there are a limited number of bio-materials which are highly flexible, biocompatible and have anti-fouling properties; such biomaterials are needed as substrates for wearable devices. Secondly, traditional biosensors used in wearable devices focus on the detection of physical signals (such as heartbeat) and small chemical molecules, e.g. Na+, K+. These are not sufficient to provide in depth health information which requires sensing of large molecules such as proteins, ideally in real time, which is currently challenging. This provides a motivation to develop highly sensitive wearable biosensors for the detection of large molecules in sweat. This thesis centres on the development of a bio-material based wearable device for continuous detection of crucial analytes in human sweat. To achieve this target, our first aim was to design a highly bio-compatible flexible material as a substrate for wearable devices. A tough and anti-fouling three-network hydrogel has been prepared by integrating a zwitterionic polymer network into a robust double-network hydrogel. Secondly, to fill the gap between technological development of continuous and non-invasive detection of different analytes in human sweat, a patterned sweat-based biosensor was created for the detection of key biomolecules. This sensor was produced by placing specific aptamers or enzymes on flexible working electrodes. In addition, nanotechnology methods have been applied to refine the bio-sensing interface to further increase the sensitivity of our sensors. Finally, a sample collection chip has been combined with our high sensitivity sensors to fabricate a wearable device for sweat bio-sensing purposes. Future research may involve integration of a commercially available wireless signal readout module with this wearable biosensing device. The outcomes of this work may provide new insights for the development of wearable devices for continuous measurement of a spectrum of analytes in sweat, as an important step towards point-of-care diagnostics

  • (2022) Oudone, Phetdala
    Thesis
    Dissolved organic carbon is stored and processed in groundwater in three ways. It is stored on minerals by adsorption, it is biologically processed through biodegradation, and it also undergoes a process to return to groundwater called desorption. This biophysiochemical research shows that the groundwater system is therefore a vital part of the global carbon cycle and carbon sink. This research fills a gap in the existing understanding of how to calculate the global carbon budget, as does not yet include the dissolved organic carbon that is stored in groundwater. This thesis exclusively explores processes determining dissolved organic carbon character and concentration in groundwater in different geological environments. This is new, useful knowledge to describe the biophysiochemical process. This research did not examine human interference in adding carbon to groundwater. This research found how dissolved organic carbon is stored and processed in groundwater due to biodegradation and desorption, and how it is adsorbed onto sediment surface. This research explored the characteristics and concentration of Dissolved organic carbon in groundwater by using Liquid Chromatography-Organic Carbon Detection, and other techniques, to examine dissolved organic carbon in terms of its fractions: humic substances, hydrophobic organic carbon, biopolymers, building blocks (BB), low molecular weight neutrals and low molecular weight acids. There were several key findings. First, the results showed that both semi-arid inland low sedimentary organic carbon environments – i.e., Maules Creek and Wellington – were a carbon source; while the high rainfall temperate coastal peatland environment of Anna Bay was a carbon sink. Secondly, another key finding was that dissolved organic carbon was not processed as a whole chemical compound, but it was processed by its fractions where each fraction was processed distinctly. For example, humic substances were only adsorbed/desorbed in groundwater; while low molecular weight neutrals were only consumed by microbes in the biodegradation process in groundwater.

  • (2022) Al-Farsi, Mo
    Thesis
    Multijunction solar cells based on silicon are predicted to achieve an efficiency of 40-45% for a top cell with a band gap of 1.6-1.9 eV. However, there are currently no known materials with suitable band gaps able to deliver high efficiencies. Two classes of materials that have been proposed for top cells are alloys of CuGaSe2 and alloyed oxide perovskites. CuGaSe2 has a suitable band gap (1.68 eV) for a top cell on silicon, but the maximum efficiency achieved is only 11%, while that of the closely-related CuInGaSe2 (band gap 1.14 eV) is 23.35%. The low efficiency of CuGaSe2 has been attributed to anti-site defects. Therefore, suppressing this defect formation is critical to achieving higher efficiencies. On the other hand, most oxide perovskites have band gaps that are too high (>2 eV) to be used as top cells on silicon, hence strategies such as alloying are required to lower their band gaps. In this work, the effects of alloying CuGaSe2 with Ag, Na, K, Al, In, La and S were investigated using Density Functional Theory (DFT) calculations. The band gaps of the alloyed compounds and formation energies of anti-site defects were calculated to find alloying elements that can increase the defect formation energy but maintain the band gap. CuGaSe2 alloyed with Al at 50at% showed the highest increase (compared to unalloyed CuGaSe2) in the defect formation energy (by ~0.20 eV) followed by Na (~0.15 eV) and S (~0.10 eV), both at 50at%. However, the band gap of the Al alloy (~2.15 eV) is too high for a top cell, while those of Na (~1.95 eV) and S (~1.91 eV) are slightly above the upper limit. Thus, alloying with these elements is not an ideal route towards significantly increasing the formation energy of anti-site defects while maintaining the band gap of CuGaSe2. However, some of the factors that influence the defect formation energy are identified, potentially leading to design rules for future work. Defect formation energies were found to be higher in structures with more positively charged Ga and negatively charged Se atoms. Analysis of bond lengths revealed a positive correlation between shorter Ga and Se bonds and higher defect formation energies. Band gaps of various alloyed oxide perovskites were calculated using DFT. BiFeO3 was alloyed with Y and Sb; LaFeO3 with Cr and Sb and YFeO3 with Bi and Sb. YFeO3 alloyed with Sb at 50at%, was found to have a band gap of 1.4-2.1 eV (depending on the basis set used) which is in the range for a top cell.