Publication Search Results

Now showing 1 - 4 of 4
  • (2006) Bandyopadhyay, Srikanta; Zeng, Qinghua; Berndt, Christopher C.; Rizkalla, Sami; Gowripalan, N.; Matisons, Janis
    Conference Paper
    The topics of ACUN-5 will cover all aspects of the science and technology of composite materials, from materials fabrication, processing, manufacture, structural and property characterisation, theoretical analysis, modelling and simulation, materials design to a variety of applications, such as aerospace, automotive, infrastructure, packaging, ship-building, and recreational products. ACUN-5 will bring together the latest research and developments of the complete range of composite materials, including biocomposites, medical-composites, functional and smart composites, gradient and layered composites, nanocomposites, structural composites and mimicking natural materials. The reinforcements will range from nano-, micro-, meso- to macro-scale in polymer, metal, ceramic and cementitious matrices.

  • (2008) Guo, Jun; Wong, Eric; Chan, Sammy; Taylor, Peter; Zukerman, Moshe; Tang, Kit-Sang
    Journal Article
    The designers of a large scale video-on-demand system face an optimization problem of deciding how to assign movies to multiple disks (servers) such that the request blocking probability is minimized subject to capacity constraints. To solve this problem, it is essential to develop scalable and accurate analytical means to evaluate the blocking performance of the system for a given file assignment. The performance analysis is made more complicated by the fact that the request blocking probability depends also on how disks are selected to serve user requests for multicopy movies. In this paper, we analyze several efficient resource selection schemes. Numerical results demonstrate that our analysis is scalable and sufficiently accurate to support the task of file assignment optimization in such a system. © 2008 IEEE.

  • (2007) Cho, Eun-Chel; Green, Martin A.; Corkish, Richard Paul; Reece, Peter; Gal, Michael; Lee, Soo-Hong
    Journal Article
    Crystalline silicon single quantum wells (QWs) were fabricated by high temperature thermal oxidation of ELTRAN® (Epitaxial Layer TRANsfer) silicon-on-insulator (SOI) wafers. The Si layer thicknesses enclosed by thermal SiO2 range from 0.8 to 5nm. Luminescence energies from ELTRAN QWs vary from 700nm (1.77eV) to 920nm (1.35eV) depending on the Si layer thickness, without evidence for the interface-mediated transitions observed in earlier reported work. The ability to detect quantum confined luminescence seems to arise from the use of ELTRAN SOI wafers, from suppressed interface state luminescence by high temperature oxidation and, possibly, from interface matching by crystalline silicon oxide. In contrast, SOI wafers prepared by the SIMOX (Separation by IMplantation of OXygen) process showed strong interface mediated features.

  • (2009) Russell, Carol; Spralja, Zlatko
    Conference Paper
    The University of New South Wales introduced interviews for undergraduate admissions in 2006. This was one of several initiatives to broaden engineering study and move from focusing on traditional academic knowledge towards building ability in professional engineering design problem solving. We analysed interview and 1st year academic results for 600 FEAS applicants who subsequently became undergraduate engineering students at the University. The analyses show that that student success overall is still strongly related to theoretical skills, despite curriculum change initiatives. Other studies suggest a potential explanation: established engineering academic value systems are hard to shift. Both the interviews and undergraduate coursework assessment are conducted mainly by academic researchers who have themselves successfully come through a traditional engineering education. The results of this study have not only suggested how to improve the interview processes, but have also provided quantitative evidence of the systemic mechanisms that sustain established learning and teaching practices.