Engineering

Publication Search Results

Now showing 1 - 3 of 3
  • (2006) Lee, Cathryn; Gaeta, Bruno; Malming, H; Bain, Michael; Sewell, William; Collins, Andrew
    Journal Article
    We have used a bioinformatics approach to evaluate the completeness and functionality of the reported human immunoglobulin heavy-chain IGHD gene repertoire. Using the hidden Markov-model-based iHMMune-align program, 1,080 relatively unmutated heavy-chain sequences were aligned against the reported repertoire. These alignments were compared with alignments to 1,639 more highly mutated sequences. Comparisons of the frequencies of gene utilization in the two databases, and analysis of features of aligned IGHD gene segments, including their length, the frequency with which they appear to mutate, and the frequency with which specific mutations were seen, were used to determine the reliability of alignments to the less commonly seen IGHD genes. Analysis demonstrates that IGHD4-23 and IGHD5-24, which have been reported to be open reading frames of uncertain functionality, are represented in the expressed gene repertoire; however, the functionality of IGHD6-25 must be questioned. Sequence similarities make the unequivocal identification of members of the IGHD1 gene family problematic, although all genes except IGHD1-14*01 appear to be functional. On the other hand, reported allelic variants of IGHD2-2 and of the IGHD3 gene family appear to be nonfunctional, very rare, or nonexistent. Analysis also suggests that the reported repertoire is relatively complete, although one new putative polymorphism (IGHD3-10*p03) was identified. This study therefore confirms a surprising lack of diversity in the available IGHD gene repertoire, and restriction of the germline sequence databases to the functional set described here will substantially improve the accuracy of IGHD gene alignments and therefore the accuracy of analysis of the V-D-J junction.

  • (1999) Gosbell, Iain; Ross, Alfred; Turner, Ian
    Journal Article

  • (2023) Zillur Rahman, Kazi Mohammad
    Thesis
    Current healthcare infection surveillance rarely monitors the distribution of antimicrobial resistance (AMR) in bacteria beyond clinical settings in Australia and overseas. This results in a significant gap in our ability to fully understand and manage the spread of AMR in the general community. This thesis explores whether wastewater-based monitoring could reveal geospatial-temporal and demographic trends of antibiotic-resistant bacteria in the urban area of Greater Sydney, Australia. Untreated wastewater from 25 wastewater treatment plants sampled between 2017 and 2019 consistently contained extended-spectrum β-lactamases-producing Enterobacteriaceae (ESBL-E) isolates, suggesting its endemicity in the community. Carbapenem-resistant Enterobacteriaceae (CRE), vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA) isolates were occasionally detected. Demographic and healthcare infection-related factors correlated with the ESBL-E load, and demographic variables influenced the VRE load. In contrast, the healthcare infection-related factor mainly drove the CRE load. These findings demonstrate the potential of wastewater-based surveillance to understand the factors driving AMR distribution in the community. The subsequent thesis work covers the genomic characterisation of selected ESBL-E and CRE wastewater isolates to reveal their nature, origin, and underlying resistance mechanisms. Phylogenetic analysis showed that Escherichia coli isolates were related to high-risk human-associated pandemic clones and non-human-associated clones. The Klebsiella pneumoniae and K. variicola isolates were related to globally disseminated and emerging human-associated clones, and some were detected for the first time in Australia. Genomic analysis also indicated novel resistance mechanisms against nitrofurantoin in E. coli, and against piperacillin/tazobactam and ticarcillin/clavulanic acid in Klebsiella isolates. The virulence gene content indicated that some E. coli and Klebsiella isolates were likely associated with infections, while the asymptomatic carriage was suggested for other isolates. These results demonstrate a clear potential for wastewater-based surveillance to monitor the emergence and dissemination of resistance in non-clinical isolates, and in particular, isolates from the community and non-human sources. The findings of this study can complement healthcare infection surveillance to inform management strategies to mitigate the emergence and dissemination of AMR and important human pathogens in the general community.