Medicine & Health

Publication Search Results

Now showing 1 - 7 of 7
  • (1998) Bradley, Peter; Rozenfeld, Anatoly; Lee, Kevin; Jamieson, Dana; Heiser, Gernot; Satoh, S
    Journal Article
    The first results obtained using a SOI device for microdosimetry applications are presented. Microbeam and broadbeam spectroscopy methods are used for determining minority carrier lifetime and radiation damage constants. A spectroscopy model is presented which includes the majority of effects that impact spectral resolution. Charge collection statistics were found to substantially affect spectral resolution. Lateral diffusion effects significantly complicate charge collection

  • (2008) Braidy, Nady; Guillemin, Gilles; Grant, Ross
    Journal Article
    Oxidative imbalance is a prominent feature in Alzheimer's disease and ageing. Increased levels of reactive oxygen species (ROS) can result in disordered cellular metabolism due to lipid peroxidation, protein-cross linking, DNA damage and the depletion of nicotinamide adenine dinucleotide (NAD+). NAD+ is a ubiquitous pyridine nucleotide that plays an essential role in important biological reactions, from ATP production and secondary messenger signalling, to transcriptional regulation and DNA repair. Chronic oxidative stress may be associated with NAD+ depletion and a subsequent decrease in metabolic regulation and cell viability. Hence, therapies targeted toward maintaining intracellular NAD+ pools may prove efficacious in the protection of age-dependent cellular damage, in general, and neurodegeneration in chronic central nervous system inflammatory diseases such as Alzheimer's disease, in particular.

  • (2018) Rasoli Pirozyan, Mehdi
    The CD8+ T cell responses play a pivotal role in controlling viral replication during HCV infection. HCV evades the immune system by rapid viral evolution affording escape from immune selection pressure including at MHC-I restricted epitopes. However, some CTL epitopes remain conserved well past the time of establishment of chronic infection, implying additional mechanisms immune failure exists. CD8+ T cells exhibiting an exhausted phenotype have been extensively reported during the chronic stage of illness for chronic viral infections, such as HCV and HIV. Additionally, impaired differentiation and trafficking of CD8+ T cells is known to be associated with immune escape and exhaustion of CTLs, but the timing and mechanisms and expression patterns of inhibitory receptors as wells as impairments in differentiation during primary HCV infection remains unclear. HCV-specific CD8+ T cell responses against the transmitted founder virus identified via ELISpot. Immune escape was observed in the NGS data set in ~33% of all ELISpot identified epitopes. The majority of HCV-specific CD8+ responses identified via IFN- ELSPOT in chronic progressors were also characterised by a dominant population of terminally differentiated effector memory cells (CCR7lowCD45ROhighKLRG1highCD127low), and elevated expression of co-inhibitory markers (PD-1 and 2B4) targeting both conserved as well as escaped HCV variants at the peak of immune response (as early as 70-90 days post infection). However, evidence of long-term central memory subpopulations with moderate IFN-γ production was identified in a subset of responses. There was an association of viral escape with the magnitude (IFN- production) of the response, suggesting ongoing evolution of CTLs in response to prolonged viral exposure. Analysis of T-bet expression revealed that T-bet expression on HCV-specific CD8+ T cell was not associated with clearance. Immuno-phenotyping of liver showed that, liver was enriched with T cells expressing the chemokine receptors CCR2, CCR5, CXCR3, and CXCR6. Additionally, the studies revealed preferential expression of CXCR3 on HCV-specific CD8+ T cells in both chronic and acute HCV infection suggesting a key role for CXCR3 in regulation of HCV-specific CD8+ T cell trafficking to the site of infection in the liver. Taken together the studies in this thesis provide both consistent findings with more limited studies in HCV and comparable contexts in HIV, and clear contrasts with previous reports in murine LCMV models. The findings offer novel insights into our understanding of the immunopathgenesis of primary HCV and into HCV vaccine design.

  • (2022) Godinho, Myron
    To achieve Universal Health Coverage and the United Nations’ Sustainable Development Goals’ by 2030, the World Health Organisation recommended the use of social enterprise, digital technology, and citizen engagement in the delivery of Integrated People-Centered Health Services (IPCHS). We aimed to develop and test a framework for using social enterprise, digital health, and citizen engagement to deliver IPCHS and achieve the WHO strategic vision for 21st-century primary care. We conducted a hermeneutic review of frameworks, models, and theories on social enterprise, digital health, citizen engagement, and IPCHS. This involved multiple iterative cycles of (i) searching and acquisition, followed by (ii) critical analysis and interpretation of literature to assemble arguments and evidence for conceptual relationships. This process identified a set of constructs that we synthesized into a conceptual framework to provide theoretical grounding for an empirical inquiry into how social enterprises use digital technology to engage citizens in co-creating IPCHS. We tested this preliminary framework with two community health alliances (CHAs) in South Western Sydney (SWS), namely the Wollondilly Health Alliance and the Fairfield City Health Alliance (FCHA). Each CHA comprised the local council of the local government area (LGA), the SWS Local Health District, and the SWS Primary Health Network who collaborated to address the health challenges faced by local communities. We developed comparative case studies using a combination of documentary analysis and semi-structured interviews with stakeholders from both CHAs. The reassignment of CHA staff to address the COVID-19 pandemic limited CHA operations and prevented many CHA stakeholders from participating in the case study, possibly introducing selection bias. Nonetheless, findings from the case studies yielded evidence for several of the conceptual relationships between social enterprise, digital health citizen engagement, and IPCHS identified in our initial framework; but also suggested that greater organizational maturity was required for the CHAs to operate as social enterprises. Considering these findings, we revised our initial framework, and then used it to develop a maturity model to suggest how health organizations like CHAs can achieve greater organizational maturity to operate as social enterprises that use digital technology to engage citizens in co-creating IPCHS.

  • (2022) Neuen, Brendon
    Type 2 diabetes is a major global health issue. It is projected that by 2045, 783 million people worldwide will be living with diabetes, making it one of the leading contributors to premature death globally. Approximately 30 to 40% of individuals with diabetes develop chronic kidney disease (CKD), making diabetes the leading cause of CKD worldwide. Despite glucose, blood pressure and lipid lowering, and treatment with renin-angiotensin system (RAS) blockade, the risk of cardiovascular events, kidney failure and death remains high for millions of people with diabetes and CKD worldwide. Originally developed to lower blood glucose, sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to have favourable effects on multiple metabolic risk factors including blood pressure, glucose, body weight and albuminuria. Large, randomized trials, including those reported herein, have demonstrated the capacity of these agents to reduce the risk of cardiovascular events, kidney failure and extend survival in increasingly diverse populations, including those without diabetes. This doctorate aims to evaluate the efficacy and safety of SGLT2 inhibitors in people with type 2 diabetes and CKD. Chapter 1 introduces the doctorate, summarizing the epidemiology of type 2 diabetes and CKD, as well as traditional approaches to improving outcomes in this population and the potential role for SGLT2 inhibition in people with diabetes. Chapter 2 provides an overview of SGLT2 inhibitors, practical considerations and evidence for their use in people with type 2 diabetes from cardiovascular outcome trials. Chapters 3 to 5 assess the efficacy and safety of the SGLT2 inhibitor, canagliflozin, across different levels of kidney function, defined by estimated glomerular filtration rate (eGFR) and albuminuria, using data from the CANVAS Program. Whilst the relative effects of canagliflozin on cardiovascular and kidney outcomes are consistent across different levels of eGFR and albuminuria, absolute risk reductions are largest for individuals with severely increased albuminuria. Further, the Kidney Disease Improving Global Outcomes classification of CKD, which combines eGFR and albuminuria to risk stratify individuals, can accurately identify those who are likely to derive the greatest absolute benefits with treatment. In Chapter 6, the results of a systematic review and meta-analysis are presented, which demonstrate that for people with type 2 diabetes, SGLT2 inhibitors substantially reduce the risk of the most important patient-centred kidney outcome – the need for dialysis, kidney transplantation or death due to kidney disease – and provide protection against acute kidney injury. The results of a meta-analysis are presented in Chapter 7, indicating that the benefits of SGLT2 inhibitors are similar with and without metformin, which is widely recommended as first-line glucose lowering therapy in type 2 diabetes. In Chapter 8, an individual participant data meta-analysis demonstrated that SGLT2 inhibitors reduce the risk of serious hyperkalaemia in people with type 2 diabetes at high cardiovascular risk and/or with CKD, which may enable better use of RAS blockade and mineralocorticoid receptor antagonists to improve cardiorenal outcomes. Chapter 9 explores questions about this class of agent that remain to be answered by ongoing randomized trials, and how SGLT2 inhibitors and other kidney protective therapies might be used for people with CKD in the future. Taken together, the findings of this doctorate provide compelling evidence that SGLT2 inhibitors should be routinely offered to individual with type 2 diabetes to safely reduce the risk of major kidney outcomes and cardiovascular events.

  • (2020) Rowlands, Benjamin
    Sirtuins (SIRTs) comprise a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, capable of affecting health-span and DNA expression. In cell-culture and peripheral-tissue models, researchers have identified that SIRT1 and SIRT2 are also capable of changing enzymatic activity in glycolysis and Krebs cycle. In brain, the impact of SIRT1 and SIRT2 deacetylase activity on metabolism is poorly understood. The aim of this project was to determine if metabolic pathways in brain could be regulated by SIRT1 and SIRT2-mediated deacetylation in mammalian systems. An established ex vivo reductionist model of brain metabolism was used to test the hypothesis that direct inhibition, activation or ablation of SIRT1 or SIRT2 deacetylase activity would result in significant changes in brain metabolism. Alterations in brain metabolism were assessed by examining changes in 13C-enriched substrates, and metabolite pools with 13C and 1H nuclear magnetic resonance spectroscopy. Chapter three provides evidence that approximately 30% of the GABA synthesized from [1,2-13C]acetate was made directly in neurons. Activation of neuronal specific SIRT1 caused an increase in the incorporation of [1,2-13C]acetate into brain, while activation of astrocytes with potassium depolarization caused a decrease in [1,2-13C]acetate incorporation. These results indicate that acetate is not a reliable marker, nor exclusively metabolised in astrocytes. Further, brain metabolism of acetate is modulated through enzyme acetylation regulated by SIRT1 deacetylase activity. Results in chapter four posit that activation of SIRT1 with SRT 1720 directly stimulated incorporation of 13C into Krebs cycle intermediates and reduced incorporation into lactate. Several off-target effects were observed for SIRT1 activator resveratrol and SIRT1 inhibitory EX-527 that questions their suitability for study of SIRT1 activity. Chapter five concludes that inhibition of SIRT deacetylase activity by AGK2 produced an effect consistent with glutamatergic AMPA receptor activation, in keeping with known SIRT2 targets. Potent SIRT2 inhibitor C64 increased 13C label incorporation into GABA from [1-13C]D-glucose in guinea pigs, and glutamine from [1,2-13C]acetate in WT mice, an effect that was also observed in SIRT2 KO mice. These results indicate that SIRT2 deacetylase activity may impact neurotransmitter systems. This thesis supports the theory that SIRT1 and SIRT2 deacetylase activity can influence brain metabolism in mammalian systems.

  • (2023) Ireland, Jake
    Pluripotent stem cell-derived cardiomyocytes (hPSC–CM) have great importance for predicting safety parameters for pharmaceutical compounds and models of healthy versus disease states of the human heart. In recent years, there has been an insistence that all new pharmaceutical products are tested on in vitro models for potential proarrhythmic effects and the increased demand for improved biomimetic hPSC-CM in pharmaceutical safety assays such as the Comprehensive in vitro Proarrhythmic Assay (CiPA). In addition, hPSC-CM are being utilised in cell therapies to treat and reverse the effects of ischaemic heart disease, offering potential cures for cardiovascular diseases instead of treatments for delaying progressive heart failure. In the first part of this thesis, I will examine how purified extracellular matrix proteins (ECMPs) can influence pluripotent stem cell (PSC) behaviour and how we may use this to precondition cardiac progenitor lineage specifications. I use array-based techniques to investigate how protein combinations affect proliferation, pluripotency, germ layer, and cardiac progenitors. This method allows us to visualise how individual proteins can affect cells' behaviour in a larger array whilst highlighting how specific combinations can precondition pluripotent cells towards a cardiomyocyte lineage. This combinatorial approach led to the identification of several unique matrices that promote differentiation, which will aid efforts at producing therapeutically useful cell types with greater efficiency. In the second part of this thesis, I demonstrate a novel bioreactor that attenuates a magnetic field to dynamically modulate the stiffness of magnetoactive hydrogel to look at how biomimetic dynamic stiffening of a substrate can influence cardiomyocyte lineage specification. We investigate how biomimetic in vivo mechanics may influence cell fate by following the expression profiles of cells in different dynamic environments. Non-invasive electromagnetic signals affect substrate stiffness when combined with magnetic particles and magnetic fibres and how this can help direct cell orientation and accompanying lineage specification Finally, I investigate how variability in cell phenotypes and expression patterns are influenced by biomimetic cues and how these variabilities could be utilised in future safety assessment protocols and cell therapy treatments for cardiovascular disease.