Medicine & Health

Publication Search Results

Now showing 1 - 7 of 7
  • (1997) O'Sullivan, Anthony; Casey, John
    Journal Article

  • (1997) Kennedy, Michael; O'Sullivan, Anthony
    Journal Article

  • (1995) O'Sullivan, Anthony; Kelly, John; Hoffman, David; Baxter, R; Ho, K.K.Y.
    Journal Article
    Short term GH administration increases lipid breakdown and oxidation (lipidox) and reduces glucose uptake and carbohydrate oxidation (CHOox). It is not clear whether similar shifts in substrate oxidation occur in acromegaly, and our aim was to investigate this. Using indirect calorimetry, we compared energy expenditure, CHOox, and lipidox in 20 acromegalic patients and 20 normal subjects pair-matched for sex, age, height, and weight. Investigations were performed in the basal state (12-h fast) and during a 75-g oral glucose tolerance test (OGTT). Acromegalic patients had significantly higher fasting glucose levels and greater glucose and insulin responses during an OGTT than normal subjects. Fasting nonesterified free fatty acid and insulin-like growth factor (IGF)-binding protein-1 levels were similar in the two groups, and both were acutely suppressed by oral glucose to the same degree. Basal energy expenditure was significantly greater in the acromegalic patients (1682 +/- 49 vs. 1540 +/- 45 Cal/24 h; P < 0.05), who showed a trend toward higher basal CHOox. Oral glucose resulted in a significantly higher rise in energy expenditure in the normal compared to the acromegalic subjects. During the OGTT, CHOox significantly increased in both groups, but rose to a higher level in the acromegalic patients (177 +/- 10 vs. 138 +/- 9 mg/min; P = 0.004). Oral glucose significantly reduced lipidox in both groups, but lipidox was reduced to a significantly lower level in the acromegalic patients (32 +/- 4 vs. 46 +/- 3 mg/min; P = 0.004). In acromegaly, basal CHOox (r = 0.56; P = 0.01) and postglucose CHOox (r = 0.79; P = 0.0001) were both positively correlated to IGF-I, but not to insulin and/or glucose. In normal subjects, postglucose CHOox was positively correlated to IGF- I. In summary, hyperinsulinemia in acromegaly was associated with higher glucose levels and a blunted thermogenic response to glucose, and displayed no relationship to the pattern of substrate oxidation. CHOox was increased, and lipidox was reduced in acromegaly, and the extent of IGF-I elevation was related to CHOox in the basal and postglucose states. We conclude that 1) the chronic effects of GH excess on substrate oxidation differ from the short term effects of GH administration; 2) impaired insulin action in acromegaly extends to effects on energy expenditure; and 3) IGF-I may be an important regulator of substrate oxidation in acromegaly.


  • (1999) Diwan, Ashish Dhar
    Thesis


  • (1999) Mangos, George Jack
    Thesis
    Models of steroid-induced hypertension in man and rat have been well characterized but the mechanisms by which ACTH and glucocorticoids raise blood pressure are not fully understood. Recently described paracrine (eg endothelial nitric oxide) and humoral (eg PHF) factors may be important in human essential hypertension. These factors were examined in cortisol-induced hypertension in man and ACTH-induced hypertension in the rat respectively. In man, the haemodynamic effects of ACTH can be attributed to the adrenal production of cortisol, but whether the major rodent glucocorticoid corticosterone is responsible for ACTH-induced hypertension in the rat has not been resolved. This question was examined in these studies. In male volunteers, exogenous cortisol raised blood pressure and suppressed endothelium-dependent vasodilatation, by a mechanism which may be nitric oxide synthase dependent. Although dexamethasone and fludrocortisone also raised blood pressure, attenuation of cholinergic vasodilatation was not observed. From these studies, the data suggest that the effect of cortisol on endothelium-dependent vasodilatation is unique to the endogenous hormone and not reproduced by synthetic agonists of GR or MR. Impaired endothelial vasodilator function may contribute to cortisol-induced hypertension in man. In the rat, exogenous corticosterone, administered in doses to achieve circulating concentrations similar to those observed in the experimental model of ACTH excess, reproduced the haemodynamic and some of the metabolic changes which characterize ACTH-induced hypertension. Further, like ACTH-induced hypertension, corticosterone-induced hypertension was prevented by L- but not D-arginine, and this effect was completely prevented by NOLA. It is likely that adrenal corticosterone mediates the hypertensive effects of ACTH excess. Parathyroidectomy had no significant effect on the rise in blood pressure secondary to ACTH excess. It is unlikely that PHF contributes to the model of ACTH-induced hypertension in the rat. The bioassay for the measurement of PHF could not be reproduced in our laboratory, leaving a question mark about the relevance of this putative factor in hypertension research.