Medicine & Health

Publication Search Results

Now showing 1 - 2 of 2
  • (2022) Watfern, Chloe
    Thesis
    There are studios all over the world where neurodiverse artists work together in a supportive way. This thesis is an inquiry into how art works in two of these organisations—Studio A in Sydney, Australia, and Project Art Works in Hastings, UK. It draws from traditions of narrative inquiry and ethnography to understand the lived experiences of the people at the heart of these studios, and the role that art has played in their storied lives. As such, the thesis contributes to knowledge in three ways: 1) It documents the important practices of makers and organisations whose work has not yet received significant critical or academic attention. It explores the dimensions of these practices that hold potential for reshaping normative understandings of both art and disability; 2) It conceptualises the role of art as a point of connection between neurodiverse people, and as a way of coming to express and understand lived experience. It maps the resonances across different fields that help articulate empathic encounters with and through art; 3) It demonstrates, through its written form, an ecological mode of creative inquiry that resists reductionism—an inquiry that is, like the practices it studies, embodied and relational. It interrogates the value, and ethical implications, of this mode of research. To contribute to knowledge in this way, the thesis assembles many forms of pre-existing knowledge, including the lived experience of its subjects, and the academic literature preceding it. It is grounded in an ecological understanding of cognition, informed by theories that help situate thought in the world, as a dynamic system of relationships between self, others, and the environment. It draws links between disability aesthetics, care ethics, and an ecological approach to empathy, through detailed insights into the social and aesthetic dynamics operating in the work of the two studios. These insights were built up over three years of fieldwork, including over one hundred interviews, and hundreds of hours spent looking, listening, and making alongside artists in the studio. This thesis is an invitation to enter the world of the studios, and of some of the people who work there. It offers a way of paying attention to art, and to other people, that is attuned to the senses, and that allows us to be comfortable with not knowing—or, knowing differently. It argues that this is a practice of ethical importance, in a world where both disability and art are still poorly understood.

  • (2022) Ahmed-Cox, Aria
    Thesis
    Cancer persists as a major public health concern with poor survival rates for aggressive tumours. Nanotechnology offers opportunities to develop delivery vehicles (nanoparticles) which can improve drug efficacy in cancer cells while reducing collateral toxicity caused by many current therapies. A key challenge in the clinical translation of therapeutic nanoparticles stems from the complexities of drug delivery; namely a need for greater understanding of how the biophysical characteristics of nanoparticles affects their tumour penetration and cell uptake. This thesis sought to address this challenge, developing advanced imaging and analysis methodologies to evaluate nanoparticle uptake and efficacy in quantitative cell models. We initially investigated the capability of rapid fluorescence lifetime imaging microscopy to measure nanoparticle cellular uptake. Results showcased the ability of this emerging quantitative imaging approach to track and quantify changes in nanoparticle dynamics on a second time scale, localising significant changes in nanoparticle lifetime with uptake across extracellular and nuclear boundaries in live cells. Broadening our study into tumour models which recapitulate key elements of the tumour microenvironment, glioblastoma, neuroblastoma and non-small cell lung cancer cells were grown as 3D spheroids and used to study the penetration kinetics of nanoparticles with confocal microscopy. The development of rigorous analysis methods enabled direct evaluation of nanoparticle kinetics. Subsequent study by lightsheet microscopy and real-time force imaging cytometry identified that nanoparticle uptake was influenced not only by nanoparticle size but also the stiffness and density of the cell model. Applying these analyses to functionalised nanoparticles for brain cancer delivery, we identified that lactoferrin coated nanoparticles (Lf-NP) had enhanced penetration kinetics. Low-density lipoprotein receptor (LRP1), for which lactoferrin is a key ligand, was shown to be highly expressed on the blood-brain barrier (BBB) and in glioblastoma. Following, in vitro models identified that Lf-NP could cross the BBB, and drug-loaded iterations of these nanoparticles were revealed to have elevated efficacy against glioblastoma cells. Collectively, these findings showcase methods to systematically visualise and quantify nanoparticle tumour cell uptake and highlight functionalised drug-loaded nanoparticles for further investigation in brain cancer.