Porous media combustion-based thermophotovoltaic (PMC-TPV) reactor experiment

Download files
Access & Terms of Use
open access
Copyright: Copyright 2019, Philippe Gentillon Molina
Abstract
Temperature, PV electric energy and spectrum measurements: The high temperatures of combustion systems make them suitable for coupling with thermophotovoltaic systems. In practice, it is quite challenging to reduce heat losses and the spectral mismatch between the emission of the combustion source and the spectral response of photovoltaic (PV) cells. In an effort to pull these disparate energy-focussed research fields together, this paper explores the use of a low-cost erbia (Er2O3) coating on a novel porous media combustion-based thermophotovoltaic (PMC-TPV) reactor for continuous combined heat and power generation. In this work, three different configurations were analysed, including a non-coated porous foam, a coated porous foam, and a coated quartz container. As such, this study provides the first in-depth analysis and characterisation of all salient components of a PMC-TPV system. It includes a detailed characterisation of a 24-cell gallium antimonide (GaSb) array, which was attached to a heat sink and used to harvest the radiant emission from a hot (> 1200°C), yttria-stabilised zirconia/alumina composite (YZA) ceramic foam. Since the ceramic foam does not have an ideal emissivity curve for these cells, the ability of the erbia coating to control the spectral emission was measured. The results show that by applying the erbia coating to the outer surface of the YZA foam (e.g. using a simple 2-step process of dip coating followed by curing/calcination), it is possible to increase performance, achieving a maximum in-band emission fraction of 25.4% at a firing rate of 1300 kW/m2 (i.e. around 10% of increase than that for non-coated configuration), which provides a temperature of 1285°C. Additionally, a maximum power output of 1W was achieved by using erbia coating on YZA foam. For the third configuration, the use of the erbia coating on the quartz tube (instead of the YZA foam) leads to an increase in the maximum core temperature of the reactor up to 1443°C; however, this also leads to a decrease in electrical performance due to a lower in-band fraction. These findings show that applying an erbia coating on an industrial radiant emitter could enable a combined heat and power processes to gain around 30% increase of electrical output. Finally, since the PV fill factor was lower than expected, and electroluminescence measurements indicated cell damage, these findings also reveal the importance of continuously monitoring PV parameters in PMC-TPV systems
Link to External Data Repository
Electronic Location
Contact Information
Lead Chief Investigator
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
2019
Resource Type
Dataset
Keyword(s)
Thermophotovoltaics
Porous Media Combustion
Direct energy conversion systems
UNSW Faculty
Files
download dataarchive.rar 275.06 MB WinRAR Compressed Archive
Related dataset(s)
Related grant(s)
A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission