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ABSTRACT

A priori error estimation provides information about the asymptotic behavior of the

approximate solution and information on convergence rates of the problem. Contrarily,

a posteriori error estimation derives the estimation of the exact error by employing the

approximate solution and provides a practical accurate error estimation. Additionally,

a posteriori error estimates can be used to steer adaptive schemes, that is to decide the

refinement processes, namely local mesh refinement or local order refinement schemes.

Adaptive schemes of finite element methods for numerical solutions of partial differential

equations are considered standard tools in science and engineering to achieve better

accuracy with minimum degrees of freedom.

In this thesis, we focus on a posteriori error estimations of mixed finite element

methods for nonlinear time dependent partial differential equations. Mixed finite ele-

ment methods are methods which are based on mixed formulations of the problem. In a

mixed formulation, the derivative of the solution is introduced as a separate dependent

variable in a different finite element space than the solution itself. We implement the

H1-Galerkin mixed finite element method (H1MFEM) to approximate the solution and

its derivative. Two nonlinear time dependent partial differential equations are consid-

ered in this thesis, namely the Benjamin-Bona-Mahony (BBM) equation and Burgers

equation. Our a posteriori error estimations are based on implicit schemes of a posteri-

ori error estimations, where the error estimators are locally computed on each element.

We propose a posteriori error estimates by using the approximate solution produced by

H1MFEM and use the a posteriori error estimates to compute the local error estimators,

respectively for the BBM and Burgers equations. Then, we prove that the introduced a

posteriori error estimates are accurate and efficient estimations of the exact errors.

The last part of this study is on numerical studies of adaptive mesh refinement

schemes for the two equations mentioned above. By implementing the introduced a pos-

teriori error estimates, we propose adaptive mesh refinement schemes of H1MFEM for

both equations.





iii

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all

praises to Allah for the strengths and His blessing in completing this thesis.

I am grateful to my supervisor, Associate Professor Thanh Tran for the guidance,

encouragement and patience he has afforded me during my candidature.

I recognize that this study would not have been possible without the financial assis-

tances of Ministry of Higher Education Malaysia (MOHE) and Faculty of Science and

Mathematics, Sultan Idris Education University (UPSI), Malaysia and express my grat-

itude to those institutions. I would also like to extend my gratitude to all the members

of the School of Mathematics and Statistics, University of New South Wales (UNSW)

who at one point or another have been involved in the process that led to the completion

of this thesis.

I would also like to thank my family for the support they provided me through my

entire life and in particular, I must acknowledge my father, mother and siblings, without

whose love and encouragement, I would not have finished this thesis. A special thanks

to my beloved husband Mohd Fauzi bin Rahimi. Words cannot describe my thanks for

the sacrifice, support, and love you have provided with throughout my time as a PhD

student.

Finally, thank you to my friends and fellow PhD students especially Zhu Houying,

He Jieyi, Nina Ribbat and Dinh Tran, thank you for your support, encouragement and

friendship.





Contents

Abstract i

Acknowledgement iii

List of figures vi

List of tables viii

1 Introduction 1

1.1 Subject of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5

2.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Important theorems and results . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Finite element discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 H1-Galerkin mixed finite element method . . . . . . . . . . . . . . . . . . 11

2.6 The Benjamin-Bona-Mahony equation . . . . . . . . . . . . . . . . . . . . 15

2.7 The Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 A posteriori error estimation: a general framework 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Techniques of a posteriori error estimation . . . . . . . . . . . . . . . . . . 20



vi List of figures

3.3 A posteriori error estimation for time dependent partial differential equations 26

4 Benjamin-Bona-Mahony equation: a mixed finite element method 29

4.1 Formulation of weak solutions and finite element scheme . . . . . . . . . . 29

4.2 A priori error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 A posteriori error estimation . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Burgers equation: a mixed finite element method 63

5.1 Formulation of weak solutions and finite element scheme . . . . . . . . . . 63

5.2 A priori error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 A posteriori error estimation . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Adaptive schemes: numerical studies 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Adaptive procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Adaptive scheme for the Benjamin-Bona-Mahony equation . . . . 112

6.3.2 Adaptive scheme for the Burgers equation . . . . . . . . . . . . . . 114

7 Conclusion 121

Bibliography 122



List of Figures

2.1 Hierarchical shape functions of degrees 2 (−·), 3 (solid), 4 (−−) and 5 (··)

on reference element [−1, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Effectivity indices Θ by Method (ii) at t = 0.8 with different values of h. . 60

5.1 Effectivity indices Θ by Method (iii) (refer to Page 80), at ν = 1 and

t = 0.8 with different values of h. . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Effectivity indices Θ by Method (iv) (refer to Page 80), at ν = 1 and

t = 0.8 with different values of h. . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Effectivity indices Θ by Method (iii) (refer to Page 80), at ν = 0.5 and

t = 0.8 with different values of h. . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Effectivity indices Θ by Method (iv) (refer to Page 80), at ν = 0.5 and

t = 0.8 with different values of h. . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Effectivity indices Θ by Method (iii) (refer to Page 80), at ν = 0.05 and

t = 0.8 with different values of h. . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Effectivity indices Θ by Method (iv) (refer to Page 80), at ν = 0.05 and

t = 0.8 with different values of h. . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Effectivity indices Θ by Method (iii) (refer to Page 80), at ν = 0.01 and

t = 0.8 with different values of h. . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Effectivity indices Θ by Method (iv) (refer to Page 80), at ν = 0.01 and

t = 0.8 with different values of h. . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Four steps of an adaptive scheme. . . . . . . . . . . . . . . . . . . . . . . . 106



viii List of tables

6.2 Adaptive process applied for the BBM and Burgers equations. . . . . . . . 108

6.3 Refinement processes by Adaptive Method AM(1). . . . . . . . . . . . . . 111

6.4 Refinement processes by Adaptive Method AM(3). . . . . . . . . . . . . . 111

6.5 The BBM equation: exact solution u(x, t). . . . . . . . . . . . . . . . . . . 113

6.6 The BBM equation: exact solution v(x, t). . . . . . . . . . . . . . . . . . . 114

6.7 Example 1 for BBM by Adaptive Method AM(1). . . . . . . . . . . . . . . 115

6.8 Example 1 for BBM by Adaptive Method AM(3). . . . . . . . . . . . . . . 115

6.9 Example 2 for BBM by Adaptive Method AM(1). . . . . . . . . . . . . . . 116

6.10 Example 2 for BBM by Adaptive Method AM(3). . . . . . . . . . . . . . . 116

6.11 The Burgers equation: exact solution u(x, t). . . . . . . . . . . . . . . . . 116

6.12 The Burgers equation: exact solution v(x, t). . . . . . . . . . . . . . . . . 117

6.13 Example 1 for Burgers by Adaptive Method AM(1). . . . . . . . . . . . . 118

6.14 Example 1 for Burgers by Adaptive Method AM(3). . . . . . . . . . . . . 118

6.15 Example 2 for Burgers by Adaptive Method AM(1). . . . . . . . . . . . . 119

6.16 Example 2 for Burgers by Adaptive Method AM(3). . . . . . . . . . . . . 119



List of Tables

4.1 Experiments justifying (4.3.12) by Example 1. . . . . . . . . . . . . . . . . 43

4.2 Experiments justifying (4.3.12) by Example 2. . . . . . . . . . . . . . . . . 44

4.3 Experiments justifying (4.3.12) by Example 3. . . . . . . . . . . . . . . . . 45

4.4 Experiments justifying (4.3.12) by Example 4. . . . . . . . . . . . . . . . . 46

4.5 Experiments justifying (4.3.12) by Example 5. . . . . . . . . . . . . . . . . 47

4.6 The orders of convergence κu and κv at t = 0.8. . . . . . . . . . . . . . . . 60
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Chapter 1

Introduction

1.1 Subject of study

Disciplines such as engineering, physics, economics and biology involve many real models

which are translated into solving mathematical models, e.g. partial differential equations

in space and time. One of the well-known mathematical models is the boundary value

problem (BVP). For example, a description of waves in electromagnetic and fluid dy-

namics is represented by a wave equation with specified boundary conditions, which is

often stated as a boundary value problem.

Consistent with the application of the BVP in real problems, the number of numerical

methods and analysis for solving the BVP is rapidly growing. In general, there is no

closed form for the exact solution u of the BVP. Numerical methods as the finite difference

method, the finite element method, the finite volume method, and spline interpolation

are used as a tool to compute the approximate solution Uh of the exact solution u.

Motivated by this situation, our study is considering the finite element method (FEM)

for the boundary value problems.

During the approximation of the BVP, it is normal to question “How good are the

approximate solutions produced by the numerical methods? When should we stop the

computation process and which of the approximate solutions should be taken as the best

approximation to the real problem?” In order to answer these questions, one way is to
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perform another approximation in a specified norm of the exact error e,

‖e‖H = ‖u− Uh‖H ,

i.e. by letting the exact error be approximated such as

‖E‖H ≈ ‖e‖H .

Extra concern should be put on deciding the methods to compute values of E, the error

estimator. The computability and cost of computation are factors that are considered

in deciding the efficiency of the error estimation.

In this study, we focus on a posteriori error estimation which is a method to compute

the error estimator. Details about the a posteriori error estimation of finite element

methods can be found in [6, 8] and the references therein. The a posteriori error esti-

mation is based on a situation where we have the approximate solutions Uh which are

generated by a FEM, then our aim is to obtain a quantitative estimate for the exact

error e measured in a specified norm.

A posteriori error estimates provide useful indications of the accuracy of a calculation

and provide a basis for adaptive mesh refinement schemes. We will give the details of

a posteriori error estimation in Chapter 3.

1.2 Scope of study

This study focuses on a posteriori error estimation of a mixed finite element method

(mixed FEM) for the Benjamin-Bona-Mahony equation and Burgers equation. The

mixed FEM is a FEM which is based on a mixed formulation of the problem. In a

mixed formulation, the derivative of the solution u is introduced as a separate dependent

variable in a different finite element space than the solution itself. In this study, we

implement the H1-Galerkin mixed finite element method which is based on the procedure

introduced by Pani [45]. Our scope of study can be categorized into three main parts.

The first part is devoted to a posteriori error estimation of the H1-Galerkin mixed

finite element method for the Benjamin-Bona-Mahony equation. The Benjamin-Bona-

Mahony equation is a nonlinear equation which is widely used in modelling physical
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problems involving long waves. The Benjamin-Bona-Mahony equation is studied by

Benjamin et al. as an alternative to the Korteweg-de Vries equation for describing

unidirectional long dispersive waves [12].

Secondly, we study a posteriori error estimation of the H1-Galerkin mixed finite

element method for the Burgers equation. The Burgers equation is a well-known equation

and named after Johannes Martinus Burgers [18, 19]. The Burgers equation is also known

as a nonlinear diffusion equation, and a simplified version of Navier-Stokes equation. We

will give details about the H1-Galerkin mixed finite element method, the Benjamin-

Bona-Mahony equation and the Burgers equation in the following chapter (Chapter 2).

The last part of this study is on adaptive schemes for two equations mentioned

above. The a posteriori error estimates are known as a fundamental component in the

designation of efficient adaptive algorithms for solving partial differential equations. By

implementing the a posteriori error estimates introduced in the first two objectives,

our third objective is on numerical studies of adaptive schemes for the Benjamin-Bona-

Mahony equation and the Burgers equation.

1.3 Structure of thesis

This thesis consists of six chapters. Chapter 1 is the introduction. In Chapter 2, some

important function spaces, theorems and results are reviewed. We complete Chapter 2

with an introduction for H1-Galerkin mixed finite element method, the Benjamin-Bona-

Mahony equation and the Burgers equation.

Chapter 3 is devoted to a general framework of a posteriori error estimation. In

this chapter, we present some known a posteriori error estimation techniques and the

procedure of a posteriori error estimation considered in this study.

In Chapter 4, we present the first contribution of the thesis which is a posteriori

error estimation of H1-Galerkin mixed finite element method for the Benjamin-Bona-

Mahony equation. In this chapter, we propose some error estimators to compute the

error estimation of the Benjamin-Bona-Mahony equation. We prove that the introduced

a posteriori error estimates are accurate and efficient approximations of the exact errors.
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We finish this chapter with some numerical experiments.

Our second contribution (Chapter 5) is a posteriori error estimation of H1-Galerkin

mixed finite element method for the Burgers equation. This chapter consists of analysis

and numerical studies of a posteriori error estimation of H1-Galerkin mixed finite element

method for the Burgers equation.

Our third contribution (Chapter 6) is numerical studies of adaptive schemes for

the Benjamin-Bona-Mahony and Burgers equations. We present the procedure of the

adaptive schemes for both equations where the approximate solutions are computed

by H1-Galerkin mixed finite element method and the a posteriori error estimations are

proposed in Chapter 4 and Chapter 5. We finish the chapter with numerical experiments.



Chapter 2

Preliminaries

This chapter provides a range of fundamental results which will be used in the remain-

der of the thesis. We begin by introducing some important function spaces. We then

introduce the fundamental results for variational formulation of differential equations.

Important theorems and results that will be used in the analysis of finite element methods

are introduced in the next section. We finish this chapter with an introduction on finite

element discretization, the H1-Galerkin mixed finite element method, the Benjamin-

Bona-Mahony equation and the Burgers equation, respectively in Section 2.5, Section 2.6

and Section 2.7.

2.1 Function spaces

All of the results stated in this section are well-known and can be found in different

literatures; see e.g. [16, 53]. Since the equations we study in this thesis are posed in one

spatial dimension, we mention only results for this case.

We let Ω = (a, b) be an open subset in R and u be a scalar function defined on Ω.

For p ∈ [1,∞], the Lebesgue space Lp(Ω) is defined as

Lp(Ω) = {u : Ω → R
∣∣ ‖u‖Lp(Ω) <∞}.

The Lp(Ω)-norm is defined by

‖u‖Lp(Ω) :=

(∫
Ω
|u(x)|p dx

)1/p

,
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for 0 < p <∞, and

‖u‖L∞(Ω) := inf{C ≥ 0 : |u(x)| ≤ C for almost all x ∈ Ω}

for p = ∞. A special role is taken when p = 2. The L2(Ω) is a Hilbert space with the

inner product

〈u, v〉L2(Ω) =

∫
Ω
u(x)v(x) dx u, v ∈ L2(Ω)

and the norm ‖u‖L2(Ω).

Let Cm(Ω) be the space of all functions φ : Ω −→ R such that φ, φ′, · · · , φ(m) are

continuous on Ω. The space Cm0 (Ω) denoted the space of all functions φ ∈ Cm such that

φ(x) = 0 for all x ∈ Ω0 for some bounded subset Ω0 of Ω.

We recall the definition of derivative in a weak sense. A function u ∈ Lp(Ω) is called

the weak derivative of order m = 1, 2, 3, . . . of a function v ∈ Lp(Ω) if∫
Ω
u(x)φ(x) dx = (−1)m

∫
Ω
v(x)φ(m)(x) dx ∀φ ∈ Cm0 (Ω).

In the following part, we recall the Sobolev spaces and norms to be used in this thesis.

The Sobolev space W k
p (Ω), 1 ≤ p <∞ and k = 1, 2, . . . is defined as

W k
p (Ω) := {u ∈ Lp(Ω) : u′, u′′, · · · , u(k)exist in the weak sense}

and W k
p (Ω) norm is defined by

‖u‖Wk
p (Ω) :=

(
k∑
i=0

∥∥∥u(i)
∥∥∥p
Lp(Ω)

)1/p

.

When p = 2, we have W k
2 (Ω) = Hk(Ω), which is a Hilbert space equipped with the

inner product

〈u, v〉Hk(Ω) :=

∫
Ω

(
uv + u′v′ + · · ·+ u(k)v(k)

)
dx ∀u, v ∈ Hk(Ω),

and norm

‖u‖Hk(Ω) :=

(
‖u‖2L2(Ω) +

∥∥u′∥∥2

L2(Ω)
+ · · ·+

∥∥∥u(k)
∥∥∥2

L2(Ω)

)1/2

∀u ∈ Hk(Ω).

The space Hk
0 (Ω) contains all functions in Hk(Ω) whose traces are zero at a and b.

In the case p =∞, W k
∞(Ω) norm is defined by

‖u‖Wk
∞(Ω) := max

0≤i≤k

∥∥∥u(i)
∥∥∥
L∞(Ω)

.
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2.2 Notations

In the remaining part of the thesis, we use the following notations for the norm spaces

and inner products. For any p ∈ [1,∞] and any normed vector space D, by Lp(D) we

denote the space Lp(0, T ;D) of all functions defined in [0, T ], with values in D. We will

write ‖·‖Lp(L∞) and ‖·‖Lp(H1) instead of ‖·‖Lp(L∞(D)) and ‖·‖Lp(H1(D)). We will also write

H0(D) = L2(D). The Hn(D) norm, for n = 0, 1, . . . is represented by ‖u(t)‖n instead of

‖u(t)‖Hn(D). Similarly, we will write ‖u‖W 1
∞(Hn) instead of ‖u‖W 1

∞(0,T ;Hn(D)).

In general, the inner product in Hs(X) is denoted by 〈·, ·〉Hs(X), where s = 0, 1, . . .

and X is a subset of R. In particular, when s = 0 and X = Ω we write 〈·, ·〉0 instead of

〈·, ·〉H0(Ω). When s = 1 and X = Ω, we write 〈·, ·〉1 instead of 〈·, ·〉H1(Ω).

Besides that, when there is no confusions we omit the dependence of the function on

t to avoid crowded notations. For example, we write 〈u, v〉s instead of 〈u(t), v(t)〉Hs(Ω).

Finally, for l > 0, we define the local inner product in Hs(Ωl) by

〈u, v〉s,Ωl
=

∫
Ωl

u(x)v(x)dx ∀u, v ∈ Hs(Ωl). (2.2.1)

2.3 Important theorems and results

The following well-known results will be frequently used. They are recalled here for the

reader’s convenience.

Theorem 2.3.1 (Imbedding Theorem [16, Theorem 1.4.6]). Let k be a positive integer

and p be a real number in the range 1 ≤ p <∞ such that

k ≥ 1 when p = 1

k > 1/p when p > 1.

Then there is a constant C such that for all u ∈W k
p (Ω)

‖u‖L∞(Ω) ≤ C ‖u‖Wk
p (Ω) .

Lemma 2.3.2 (Gronwall’s Lemma [11, Theorem 4.2] or [28]). Let ϕ, ψ and θ be locally

integrable functions defined on [0, T ] which satisfy

θ(t) ≥ 0 and ϕ(t) ≤ ψ(t) +

∫ t

0
θ(s)ϕ(s) ds ∀t ∈ [0, T ].



8 2 Preliminaries

Then

ϕ(t) ≤ ψ(t) +

∫ t

0
θ(s)ψ(s) exp

[∫ t

s
θ(r)dr

]
ds ∀t ∈ [0, T ].

If ψ is a constant, then

ϕ(t) ≤ ψ exp

[∫ t

0
θ(s) ds

]
.

Lemma 2.3.3 (General Gronwall’s Lemma [11, Theorem 4.3] or [13, Section 3]). If β

is a positive constant and θ is a non-decreasing function satisfying θ(s) > 0 for s > 0,

then the inequality

ϕ(t) ≤ β +

∫ t

0
θ[ϕ(τ)] dτ ∀t ∈ [0, T ]

implies

ϕ(t) ≤ Θ−1(t) ∀t ∈ [0, T ∗]

where Θ−1 is the inverse of

Θ(σ) =

∫ σ

β

ds

θ(s)
, σ ≥ 0,

and T ∗ = min(T, T1) with [0, T1] being the range of Θ.

Proof. Let

ψ(t) = β +

∫ t

0
θ[ϕ(τ)] dτ.

Then from ϕ(t) ≤ ψ(t) and the monotonicity of θ we deduce

ψ′(t)

θ[ψ(t)]
=
θ[ϕ(t)]

θ[ψ(t)]
≤ 1.

This implies

d

dt
Θ[ψ(t)] ≤ 1.

By integrating from 0 to t and noting that Θ[ψ(0)] = 0, we obtain

Θ[ψ(t)] ≤ t.

Now if t ∈ [0, T ∗] then by applying the inverse function Θ−1, we obtain ψ(t) ≤ Θ−1(t),

and thus the required inequality follows from ϕ(t) ≤ ψ(t).
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2.4 Finite element discretization

In this section, we introduce the hierarchical basis functions of finite element spaces used

in the thesis. We partition the interval Ω = (a, b) into

a = x1 < x2 < · · · < xN+1 = b, (2.4.1)

and let hl := xl+1 − xl, l = 1, . . . , N , and h := maxl hl. We define the linear basis

functions by using the hat functions φl1 on (xl−1, xl+1) for l = 2, . . . , N , i.e.,

φl1(x) =



x−xl−1

hl−1
, xl−1 ≤ x < xl,

xl+1−x
hl

, xl ≤ x < xl+1,

0, otherwise.

At the endpoints of Ω we define

φ11(x) =


x2−x
h1

, x1 ≤ x < x2,

0, otherwise,

(2.4.2)

and

φN+1,1(x) =


x−xN
hN

, xN ≤ x < xN+1,

0, otherwise.

(2.4.3)

For l = 1, . . . , N and k = 2, 3, 4, . . ., functions φlk are defined as antiderivatives of the

Legendre polynomials Pk−1 of degree k − 1 scaled to the subinterval [xl, xl+1], i.e.,

φlk(x) =


√

2(2k−1)
hl

∫ x
xl
Pk−1(y) dy, xl ≤ x < xl+1,

0, otherwise.

(2.4.4)

Figure 2.4 shows functions φl,k of degree k = 2, . . . , 5 on the reference element [−1, 1].

Let Sh be the space of piecewise linear functions on Ω i.e.,

Sh := span {φ11, φ21 . . . , φN+1,1},

and S̊h its subspace consisting of functions vanishing at a and b, i.e.,

S̊h := span {φ21, . . . , φN,1}.
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Figure 2.1: Hierarchical shape functions of degrees 2 (−·), 3 (solid), 4 (−−) and 5 (··)

on reference element [−1, 1].

The spaces of bubble functions in Ω are defined by

Skh := span {φ1k, . . . , φNk}, k ≥ 2,

where, for l = 1, . . . , N and k = 2, 3, 4, . . ., φlk is defined by (2.4.4).

For p ∈ N and p ≥ 2, let Vph and V̊ph be finite dimensional subspaces of H1(Ω) and

H1
0 (Ω), respectively, defined by

Vph := Sh +

p∑
k=2

Skh , and V̊ph := S̊h +

p∑
k=2

Skh . (2.4.5)

With χh ∈ V̊ph and wh ∈ Vph, we have the following approximation properties

inf
χh∈V̊p

h

{
‖u− χh‖0+h ‖∂x(u− χh)‖0

}
≤ Chp+1 ‖u‖p+1 ∀u ∈ H1

0 (Ω)∩Hp+1(Ω) (2.4.6)

and

inf
wh∈Vp

h

{
‖v − wh‖0 + h ‖∂x(v − wh)‖0

}
≤ Chp+1 ‖v‖p+1 ∀v ∈ Hp+1(Ω). (2.4.7)



2.5 H1-Galerkin mixed finite element method 11

2.5 H1-Galerkin mixed finite element method

The mathematical analysis and applications of mixed FEM have been widely developed

since decades ago. For example, a general analysis for this kind of methods is studied

by Brezzi [17]. A mixed FEM is a type of FEM which is based on a mixed formulation

of the problem. The mixed FEM is originally considered for problems where there are

possibilities of having numerical ill-posedness if discretized by using the normal FEM.

An example of such problems is computation of stress and strain fields in an almost in-

compressible elastic body. Besides that, the mixed FEM is also applied for cases where

we have to discretize the gradient of the solution. The need to approximate the gradient

of the solution is originated from solid mechanics problems which require more accu-

rate approximations of certain derivatives of the displacement [16]. The mathematical

elements of classical mixed FEM can be found in the books on mathematical theory of

FEM [16, 53].

By using mixed FEM, the original problem is reformulated into a problem of two

bilinear forms and two finite element spaces. As an example we consider the following

one dimensional parabolic partial differential equation:

∂tu(x, t)− ∂xxu(x, t) = f(x, t), x ∈ Ω = (0, 1), t ∈ (0, T ], T <∞, (2.5.1)

with boundary conditions

u(0, t) = u(1, t) = 0, t ∈ [0, T ], (2.5.2)

and initial condition

u(x, 0) = u0(x), x ∈ Ω. (2.5.3)

By using a mixed formulation, the derivative of the solution u is introduced as a second

unknown. The second order problem is reformulated into a system of first order equations

having the form

v(x, t) = ∂xu(x, t), (2.5.4)

∂tu(x, t)− ∂xv(x, t) = f(x, t) (2.5.5)
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with boundary condition (2.5.2) and initial condition (2.5.3). We note that, with α ∈

H1(Ω) and β ∈ H0(Ω) are arbitrary test functions, the solution (u, v) ∈ H0(Ω)×H1(Ω)

also solves the weak formulation

〈v(t), α〉0 = −〈u(t), ∂xα〉0 ∀α ∈ H1(Ω) (2.5.6)

〈∂tu(t), β〉0 − 〈∂xv(t), β〉0 = 〈f(t), β〉0 ∀β ∈ H0(Ω). (2.5.7)

It should be noted that the boundary condition u = 0 (see (2.5.2)) is implicitly contained

in the formulation (2.5.6)–(2.5.7). Using integration by parts in (2.5.6), we have

〈v, α〉0 = −〈u, ∂xα〉0 = 〈∂xu, α〉0 ∀α ∈ H1(Ω),

and hence, formally, v = ∂xu in Ω and u = 0 at the endpoints of Ω. Since v = ∂xu from

(2.5.6), noting that ∂xv ∈ H0(Ω) and taking β = ∂tu− ∂xv − f ∈ H0(Ω) in (2.5.7), we

have (2.5.1).

This way of mixed formulation needs two finite dimensional spaces W ⊂ H0(Ω)

and V ⊂ H1(Ω) which are required to satisfy inf-sup condition or Ladyzhenskaya-

Babuška-Brezzi (LBB) condition to have a stable numerical scheme. Details of the

mixed formulation by classical mixed FEM for a general parabolic partial differential

equation can be found in [30].

In this study, we implement a mixed FEM called H1-Galerkin mixed finite element

method (H1MFEM) which is based on an approach suggested by Pani et. al for nonlinear

parabolic equations and second order hyperbolic equations [45, 46]. The H1MFEM is

closely related to least square mixed methods in that the second order partial differential

equation is reformulated into a system of first order partial differential equations with a

new unknown defined as the flux. Studies on the least square mixed finite element method

can be found in [20, 21, 49, 48] and the references therein. By using the H1MFEM, a

problem is reformulated into a system of first order partial differential equations, which

allows the approximation for u and its gradient v.

As an example, we consider parabolic partial differential equation (2.5.1)–(2.5.3).

Using the H1MFEM, equation (2.5.1) is reduced to a system of first order equations
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by defining a new variable v = ∂xu. As a consequence, we have (2.5.4)–(2.5.5). By

multiplying (2.5.4) by ∂xα and (2.5.5) by −∂xβ where α ∈ H1
0 (Ω) and β ∈ H1(Ω) we

have

〈v, ∂xα〉0 = 〈∂xu, ∂xα〉0 ∀α ∈ H1
0 (Ω) (2.5.8)

and

〈∂tv, β〉0 + 〈∂xv, ∂xβ〉0 = −〈f, ∂xβ〉0 ∀β ∈ H1(Ω). (2.5.9)

For the first term in (2.5.9), we have used integration by parts and the Dirichlet boundary

conditions ∂tu(0, t) = ∂tu(1, t) = 0.

The weak formulation by H1MFEM is formulated as: Given u0 ∈ H1
0 (Ω) ∩H2(Ω),

find (u, v) : [0, T ]→ H1
0 (Ω)×H1(Ω), satisfying for t > 0

〈v(t), ∂xα〉0 = 〈∂xu(t), ∂xα〉0 ∀α ∈ H1
0 (Ω) (2.5.10)

〈∂tv(t), β〉0 + 〈∂xv(t), ∂xβ〉0 = −〈f(t), ∂xβ〉0 ∀β ∈ H1(Ω) (2.5.11)

and for t = 0,

〈v(0), β〉0 = 〈∂xu0, β〉0 ∀β ∈ H1(Ω). (2.5.12)

If u ∈W 1
∞(0, T ;H1

0 (Ω)∩H2(Ω)), v ∈W 1
∞(0, T ;H1(Ω)) and (u, v) satisfies (2.5.10)–

(2.5.11) then (u, v) satisfies (2.5.4)–(2.5.5). Indeed, by using integration by parts we

deduce from (2.5.10) that ∂x(v − ∂xu) = 0 ∈W 1
∞(0, T ;H0(Ω)), which implies

v(x, t) = ∂xu(x, t) + g(t) a.e. in Ω × (0, T ) (2.5.13)

for some function g depending on t. We note that we also have

v(x, 0) = ∂xu(x, 0) + g(0).

By integrating over Ω, noting (2.5.12), we infer g(0) = 0. On the other hand, it follows

from (2.5.13) and (2.5.11) (with β = 1) that∫
Ω
∂txu+ g′(t) = 0, (2.5.14)

implying g′(t) = 0. Hence g ≡ 0, i.e. (u, v) satisfies (2.5.4). This immediately gives

(2.5.5).
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Some of the attractive features of the H1MFEM are firstly this method does not

require the LBB condition. Secondly, finite element spaces of u and v are allowed to be

of different polynomial degrees. For example, by using the H1MFEM, the approximate

solutions Uh and Vh of the finite element spaces V̊ph and Vqh (see (2.4.5)) are allowed to

be of different polynomial degrees, i.e. we can have different values of p and q where

p, q ≥ 1. Thirdly, this procedure required extra regularity of the solution which gives a

better order of convergence for v, in H0(Ω) norm [45]. For one dimensional cases, the

orders of convergence obtained by H1MFEM are

‖u− Uh‖1 ≤ Ch
min(p,q+1) (2.5.15)

and

‖v − Vh‖1 ≤ Ch
min(p+1,q), (2.5.16)

which are comparable with results generated by a classical mixed FEM. Details of the

mixed formulation by the H1MFEM for a general parabolic partial differential equation

can be found in [45].

In 2007, the H1MFEM is adapted for a priori error estimation of the Burgers equa-

tion [47]. Besides that, Tripathy et. al studied on the superconvergence properties of

the H1MFEM for second order elliptic equations [56]. Recently, Zhang et. al studied the

H1MFEM with the linearised Crank-Nicolson for couple BBM equations [59].

In this thesis, we are interested in a posteriori error estimations of the H1MFEM for

the BBM and Burgers equations. Mixed finite element methods allow approximation to

the solution of the BBM and Burgers equations and its derivative, by reformulating the

BBM and Burgers equations into a system of first order equations. Therefore, instead

of dealing with second order nonlinear partial differential equations, the problem is re-

formulated and the computation is less hard compared to the approximation by using

a normal finite element method. Mixed finite element methods give better orders of

convergence for the unknown derivative by requiring extra regularity of the unknown.

To the best of our knowledge, this is the first time the procedure of a posteriori error es-

timation in this study (to be explained in Chapter 3) is applied to the BBM and Burgers

equations, where the approximate solutions are computed by using the H1MFEM.
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2.6 The Benjamin-Bona-Mahony equation

The Benjamin-Bona-Mahony (BBM) equation

∂tu(x, t)− ∂xxtu(x, t) + u(x, t)∂xu(x, t) + ∂xu(x, t) = 0, (2.6.1)

where ∂t = ∂/∂t, ∂xxt = ∂3/∂x2∂t and ∂x = ∂/∂x is studied by Benjamin et al., with

u(x, t) being considered in a class of real nonperiodic functions defined for −∞ < x <∞

and t ≥ 0 [12]. The BBM equation is studied in flows of fluid. Examples where the BBM

equation is used are acoustic-gravity waves in compressible fluids, hydromagnetic waves

in cold plasma and acoustic waves in anharmonic crystal.

The BBM equation is studied as an alternative and improvement of the Korteweg-de

Vries (KdV) equation

∂tu(x, t) + ∂xxxu(x, t) + u(x, t)∂xu(x, t) + ∂xu(x, t) = 0, (2.6.2)

particularly for describing unidirectional long dispersive waves. In general, the KdV

model in physical science and engineering has difficulty with the dispersion ratio; a

ratio of dispersion’s effect in a medium, when a wave is travelling within the medium.

The dispersion term ∂xxxu in the KdV model has a tendency to emphasise the short-

wave components which is unnatural with respect to the original physical problem. The

dispersion relation ∂xxtu in the BBM model overcomes this difficulty by giving a bounded

dispersion relation [37]. Besides that, modelling with the BBM equation also overcomes

the stability problem with high wave number components in the KdV model.

Details on the uniqueness and stability of the BBM model for long waves in nonlinear

dispersive systems can be found in [12]. The existence and uniqueness of (2.6.1) and

its non-homogeneous form are studied by Benjamin et al. Besides that, the uniqueness,

global existence and continuous dependence of solutions on initial and boundary data for

model equation (2.6.1) with an additional term −∂xxu are studied by Bona and Dougalis

[14]. Another general case of the BBM equation, namely

∂tu(x, t)− ∂xxtu(x, t) + ∂xf(u) = g(x, t) (2.6.3)

where f ∈ C1(R) and g ∈ L∞(0, T ;L2(0, 1)), is studied by Medeiros and Miranda [39].

They prove existence, uniqueness and regularity of (2.6.3). The BBM equation is also
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studied for periodic solutions (periodic with respect to the x variable) [23], [38]. For

higher dimensions, a study on the existence, uniqueness and regularity is conducted by

Goldstein et. al [27].

Since decades ago, initial boundary value problems for various generalized BBM

equations have been studied. For example, in [32], a linearised method which is based on

a differential quadrature method is studied as a new method to approximate the BBM

equation on a semi-infinite interval. A linearised Crank-Nicolson H1MFEM is studied for

coupled BBM equations in [59]. Besides that, a numerical study on the BBM equation

with a mixed FEM (differently from the method studied in Chapter 4 of this thesis) can

be found in [33]. In this study, we are interested on a posteriori error estimation for the

BBM equation, where the approximate solutions are computed by using the H1MFEM.

2.7 The Burgers equation

The Burgers equation

∂tu(x, t) + u(x, t)∂xu(x, t) = ν∂xxu(x, t) (2.7.1)

is a fundamental one dimensional nonlinear partial differential equation occurring in var-

ious areas of mathematical modelling, particularly in mathematical models of turbulence

and shock wave theory. Solution u(x, t) can be considered as a quantity of a velocity for

space x and time t. The value of ν is a small parameter known as a viscosity coefficient

of the fluid motion, which is related to the Reynolds number R = 1
ν . The Burgers model

has been studied as the simplest form of nonlinear advection term u∂xu and dissipation

term ν∂xxu for simulating the physical phenomena of wave motions.

Since decades ago, the Burgers model became an interest of researchers due to the

tendency of a steep gradient (shocks) which almost becomes discontinuous when the

viscosity coefficient ν = 0 in (2.7.1) i.e.

∂tu(x, t) + u(x, t)∂xu(x, t) = 0. (2.7.2)

Equation (2.7.2) is also known as inviscid Burgers equation.
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Because of the nonlinear convection term and the occurrence of the viscosity term,

the Burgers equation (2.7.1) shows similar features with Navier-Stokes equation and it

is viewed as the simplified version of the Navier-Stokes equation. Due to the complexity

in obtaining the analytical solutions, many researchers have used numerical methods as

a tool to approximate the solution, e.g. finite element methods and spline interpolation.

In 1950, Hopf and Cole introduced a method to solve (2.7.1), which is known as

a Hopf-Cole transformation [29]. By the Hopf-Cole transformation, a new dependent

variable w(x, t) is introduced such that

u(x, t) = −2ν

(
∂xw(x, t)

w(x, t)

)
.

Then, the nonlinear Burgers equation (2.7.1) is transformed to a linear heat equation

∂tw(x, t) = ν∂xxw(x, t).

Since the heat equation is explicitly solvable in terms of the so-called heat kernel, then

the general solution of the Burgers equation can be obtained. There are many numeri-

cal studies conducted which are relied on the Hopf-Cole transformation of the Burgers

equation, e.g. [43, 44].

There are many studies have been done on the numerical methods for the Burgers

equation. Numerical studies of Burgers equation by FEM can be found in [4, 25, 43]. A

series of study on application of FEM and spline in approximating the Burgers equation

can be found in [5, 31, 44, 60] and the references therein. Some studies on the a posteriori

error estimations for the Burgers equation are studied by Patera et.al [41, 50].

Considering the importance of the Burgers equation as a mathematical model of

turbulence and shock wave theory and a simplified model to study the Navier-Stokes

equation, we are interested to study the error estimation of the Burgers equation. In

this study, we focus on approximation of the Burgers equation without the Hopf-Cole

transformation. We first implement the H1MFEM to compute the approximate solution

of the Burgers equation. Secondly, we design a posteriori error estimation for the Burgers

equation, using the approximate solution produced by the H1MFEM.





Chapter 3

A posteriori error estimation: a

general framework

In this chapter, we give the general framework of a posteriori error estimation in finite

element analysis. We begin this chapter with an introduction about a posteriori error

estimation, and properties of a good a posteriori error estimation. Section 3.2 is devoted

to discussing some known a posteriori error estimation techniques. We finish this chapter

with a discussion on a posteriori error estimation for time dependent partial differential

equations in Section 3.3.

3.1 Introduction

Error estimation of finite element solutions has been studied since the late 1970s [6].

A priori error estimation gives information about the asymptotic behavior of the ap-

proximation. With a priori error estimates, we obtain information on convergence rates

of the problem. This is not enough to give a quantitative error information of the prob-

lem.

On the other hand, a posteriori error estimation derives the estimation of the exact

error by employing the approximate solution and provides a practical accurate estima-

tion. Additionally, a posteriori error estimates can be used to steer adaptive schemes,

that is to decide the refinement processes, namely local mesh refinement or local order



20 3 A posteriori error estimation: a general framework

refinement schemes. After having computed an approximate solution, it is possible to

obtain a posteriori error estimates which give quantitative information about the accu-

racy of the solution. A posteriori error estimation of finite element solutions for one

dimensional problems have been first studied by Babuška et al. in 1981 [8]. Babuška et

al. developed the theory for a posteriori error estimates under any Lp-energy norm for

2 ≤ p ≤ ∞.

In general, a good a posteriori error estimation should have several properties. Firstly,

an error estimator should be accurate in the sense that it is close to the exact error. Sec-

ondly, the error estimation should be applicable for a wide range of mesh spacings and

different polynomial degrees. Thirdly, the procedure of computing the error estimators

should be inexpensive relative to the cost of computing the approximate solutions. This

means, the error estimator should be computed locally on each element. The localization

of the error estimate equations to the element level is a key step in reducing the compu-

tation cost in dealing with the global problem. This theme is applied in the derivation

of all a posteriori error estimates. Lastly, an error estimation should be possible to be

applied in the refinement process in adaptive schemes. Error estimators which are com-

puted locally for an element provide an indication about where approximation accuracy

is insufficient and where the refinement process should be applied.

3.2 Techniques of a posteriori error estimation

In this section, we mention some of the known a posteriori error estimations. The

materials contained in this section are mainly taken from the book by M. Ainsworth and

J. T. Oden [3].

In order to discuss the techniques of a posteriori error estimation, we consider a one

dimensional model elliptic boundary value problem of finding the solution u of

−u′′(x) + u(x) = f(x) x ∈ Ω = (0, 1), (3.2.1)

where f ∈ H0(Ω) and u = 0 at the endpoints of Ω. A weak formulation of the problem

is to find u ∈ H1
0 (Ω) such that

B(u, α) = 〈f, α〉0 ∀α ∈ H1
0 (Ω),
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where B(·, ·) represents the H1(Ω)-inner product.

Let Uh ∈ V̊ph be a finite element approximation of u such that

B(Uh, αh) = 〈f, αh〉0 ∀αh ∈ V̊ph.

By noting the weak formulation and the finite element approximation, the residual equa-

tion of the exact error e = u− Uh satisfies

B(e, α) = 〈f, α〉0 −B(Uh, α) ∀α ∈ H1
0 (Ω). (3.2.2)

The first two techniques are explicit and implicit schemes of a posteriori error estima-

tion. The third technique of a posteriori error estimation is the recovery methods. And

finally, the forth technique is a posteriori error estimation which is based on hierarchical

bases.

Explicit schemes

Explicit schemes involve a direct computation using available data in which the error

estimators are computed directly from the finite element approximations. As an example,

the residual equation (3.2.2) of the exact error is decomposed into local contributions

from each element l for l = 1, . . . , N , namely

B(e, α) =
N∑
l=1

{
〈f, α〉0,Ωl

−Bl(Uh, α)
}
∀α ∈ H1

0 (Ω),

where Bl(·, ·) represents elementwise of the bilinear form, on Ωl. Let U ′h and U ′′h be the

piecewise first order and second order derivatives of Uh. By using integration by parts

on 〈U ′h, α′〉0,Ωl
of Bl(Uh, α) and rearranging the terms, we have

B(e, α) =

N∑
l=1

〈R,α〉0,Ωl
∀α ∈ H1

0 (Ω)

where R = f + U ′′h − Uh is the element residual. Recalling the Galerkin orthogonality

condition

B(e, αh) = 0 ∀αh ∈ V̊ph

and introducing the interpolation operator Πh : H1
0 → V̊

p
h, we have

B(e, α) =
N∑
l=1

〈R,α−Πhα〉0,Ωl
∀α ∈ H1

0 (Ω).
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Then, by using the Cauchy Schwarz inequality elementwise and

‖α−Πhα‖H0(Ωl)
≤ Chl ‖α‖H1(Ωl)

with hl is the diameter of Ωl, the error estimate is computed such that

‖e‖H1(Ω) ≤

{
N∑
l=1

Ch2
l ‖R‖

2
H0(Ωl)

}1/2

. (3.2.3)

Explicit estimators are derived originally by Babuška and Rheinboldt for problem

posed in one space dimension [7]. Babuška and Rheinboldt show the existence of unique

mesh distribution for a two point boundary value problem by using the explicit a pos-

teriori error estimates. Explicit schemes generally require less computational effort but

involving compromises in robustness and utility as a way to have an accurate and quan-

titative error estimation [3].

Implicit schemes

On the other hand, implicit schemes involve the solution of an algebraic system of equa-

tions. The interest in implicit schemes results from the fact that in explicit schemes

the whole information for the total error is obtained only from the computed solution,

when it might be possible to obtain more accurate information on the error by solv-

ing additional auxiliary problems. It is known as implicit error estimator because the

approximation of the error must be solved over each element to determine the error es-

timator. The global problem is replaced by sequence of uncoupled local boundary value

problems which are posed either over a single element (element residual method) or over

a small patch of elements (subdomain residual method). The error estimator is obtained

by evaluating the norms of the solutions of the local problems and summing the local

approximations over the elements.

In general, the subdomain residual method involves a decomposition process of the

global error equation into a number of local residual problems on small element patches

with homogeneous Dirichlet boundary conditions. Consider this method in our model

problem for a mesh of N nodes. Let ψi ∈ V̊ph be the shape function corresponding to
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node i. These functions are characterized by the conditions

ψi(xj) = δij ,

where xj is any of the N nodes and

N∑
i=1

ψi(x) = 1 x ∈ Ω̄. (3.2.4)

We introduce on each patch of elements, Ω̃i as the support of node function ψi containing

xi. Using (3.2.4), equation (3.2.2) is replaced by a sequence of independent equations

posed on small subdomains such that

B(e, α) =

〈
f, α

N∑
i=1

ψi

〉
0

−B(Uh, α

N∑
i=1

ψi)

=

N∑
i=1

〈f, αψi〉0 −
N∑
i=1

B(Uh, αψi) ∀α ∈ H1
0 (Ω). (3.2.5)

The function αψi is supported on the set Ω̃i and vanishes on the boundary. Therefore,

it follows that αψi belongs to the space H1
0 (Ω̃i). The local bilinear and linear forms

associated with this space are respectively given by

Bi(u, α) =

∫
Ω̃i

(uα+ u′α′) dx

and

〈f, α〉0,i =

∫
Ω̃i

fα dx.

The subdomain residual problem consists of finding ei ∈ H1
0 (Ω̃i) such that

Bi(ei, α) = 〈f, α〉0,i −Bi(Uh, α) ∀α ∈ H1
0 (Ω̃i). (3.2.6)

By referring to (3.2.5), the error estimator ηi associated with the subdomain Ω̃i is taken

to be

ηi = ‖ei‖H1(Ω̃i)

and the global error estimator η is computed by summing the contributions from the

subdomains

η =

{
N∑
i=1

η2
i

}1/2

.
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There are two disadvantages of this method. Firstly, the local patch problems are rather

expensive to solve accurately. Secondly, each element is treated several times according

to the number of patches associated with it. Solving local problems posed over individual

elements (element residual method) is an alternative to overcome these disadvantages.

In the element residual method, a local error el is defined on a single element l, i.e.

Bl(el, α) = 〈f, α〉0,Ωl
−Bl(Uh, α) ∀α ∈ H1

0 (Ωl), (3.2.7)

recalling that Ωl is element lth whereas the subdomain Ω̃i is a union of Ωl’s. It is noted

that all of the local errors el have disjoint supports and thus, are orthogonal in H1
0 (Ω).

Then the local problem means to find a function el ∈ H1
0 (Ωl) that satisfies (3.2.7). With

the solution el of the single element known, the error estimator is computed by using

‖e‖2H1(Ω) =
N∑
l=1

‖el‖2H1(Ω) .

In this study, we implement an implicit scheme of a posteriori error estimation, where

the error estimators are locally computed on the elements. Details of the implicit scheme

a posteriori error estimation consider in this study will be explained in Section 3.3.

Recovery methods

The main idea of this technique is to smoothen the gradients of the finite element solution.

Then, the error estimator is computed by comparing the unsmoothed and the smoothed

gradients of the approximation. Let the approximation to the gradient of the exact

solution be denoted by G[Uh], then the a posteriori error estimator is taken to be

η2 =

∫
Ω
|G[Uh]− U ′h|2dx.

This technique uses the fact that the gradient of the finite element solution is gener-

ally discontinuous across the interelement boundaries. The main ingredient is on the

derivation of the recovery operator G. Since the finite element approximation Uh is itself

piecewise linear, meaning that the same numerical procedures already present in the

finite element code may be reused to store and handle the post-processed gradient G.

As an example, the post-processed gradient is measured by interpolating the gradient of
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the finite element approximation at the centroids of the elements that sharing the node.

Then the estimator associated with element l is then defined to be

ηl =
∥∥G(Uh)− U ′h

∥∥
H0(Ωl)

,

and the global estimator is computed as the summation of ηl for l = 1, . . . , N . In some

cases, there is a superconvergence phenomenon, where the unsmoothed approximation

U ′h is closer to the smoothed gradient G[Uh] than to the exact gradient u′, i.e. for a

linear interpolation case, we have

∥∥G(Uh)− U ′h
∥∥
H0(Ω)

≤ Ch2

and ∥∥u′ − U ′h∥∥H0(Ω)
≤ Ch.

Hierarchical bases error estimates

A study on general theory of hierarchical a posteriori error estimations can be found in

[10]. Details of an analysis of hierarchical bases error estimation technique can be found

in [3, 10] and the references therein.

The hierarchical bases error estimate is based on the idea of obtaining the computable

error estimates by solving the problem of interest using two discretization schemes of

different accuracy. Then, the estimate of the exact error is measured from the difference

in the approximations. There are two ways in enriching the space, for example by

augmenting the original space with higher order basis functions or by using uniform

refinement on the mesh used to construct the original space.

Suppose that the finite element approximation Uh ∈ V̊ph is known. Let the finite

dimensional subspace W̊p
h ⊂ H1

0 (Ω) be an enrichment of the original finite element

subspace V̊ph. It is assumed that these spaces satisfy

V̊ph ∩ W̊
p
h = {0}.

An improved approximation of the exact solution u is obtained from the space

V̊p∗h = V̊ph ⊕ W̊
p
h
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by solving

B(U∗h , α
∗
h) = 〈f, α∗h〉0 ∀α∗h ∈ V̊

p∗
h . (3.2.8)

As mentioned before, the enhanced space V̊p∗h can be constructed by augmenting the

original space V̊ph with higher order basis functions or by using a uniform refinement of

the mesh to construct the space V̊ph. Let U∗h be the solution of (3.2.8), then

‖e‖H1(Ω) = ‖u− Uh‖H1(Ω) ≈ ‖U
∗
h − Uh‖H1(Ω) = ‖e∗‖H1(Ω) .

The difference between two approximations U∗h −Uh will provide a computable estimate

for the error.

3.3 A posteriori error estimation for time dependent par-

tial differential equations

The solution of time dependent partial differential equations is involved in many engi-

neering applications. From a numerical point of view, in addition to the usual space

discretization, a time discretization has to be applied for time dependent problems.

Moreover, the relationship between space discretization and time discretization should

be considered to ensure the accuracy of the approximation. In this study, we focus on

nonlinear time dependent partial differential equations, which are the BBM and Burgers

equations.

A posteriori error estimation for time dependent problems considered in this study

is based on the procedure developed by Adjerid et al. for one dimensional parabolic

systems [2]. In their study, a finite element method of lines using hierarchical piecewise

polynomial bases of degree p ≥ 1 is considered to approximate the solution. Then, the

a posteriori error estimates of the spatial discretization error is calculated by solving

local parabolic or local elliptic finite element problems with piecewise polynomial func-

tions of degree p+ 1. Details on the analysis and numerical studies of a posteriori error

estimation with finite element methods of lines for one dimensional and two dimensional

linear parabolic systems can be found in [2, 1] and the references therein. This procedure

of a posteriori error estimates is then studied for one dimensional nonlinear parabolic
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systems [40, 54]. In 2005, Tran et al. studied this procedure of a posteriori error estima-

tion with finite element method of lines for a Sobolev equation [55]. The interest points

of this idea include the simplicity of the derivation, the ease of implementation and the

provision of a basis for a local mesh refinement or local order refinement schemes, h and

p refinement, respectively.

As an example, we consider a one dimensional parabolic system

∂tu(x, t) + g(u) = ∂xxu(x, t) x ∈ Ω = (0, 1), t > 0 (3.3.1)

with

u(x, 0) = u0(x), x ∈ Ω, u(0, t) = u(1, t) = 0 t > 0, (3.3.2)

where g is a smooth functions satisfying a global Lipschitz condition. A weak formulation

of this problem is to find u ∈ H1
0 (Ω) such that

〈∂tu(t), α〉0 + 〈g(u), α〉0 + 〈∂xu(t), ∂xα〉0 = 0 ∀α ∈ H1
0 (Ω).

By using the FEM, the approximate solution Uh ∈ V̊ph of u ∈ H1
0 (Ω) is computed by

solving

〈∂tUh(t), αh〉0 + 〈g(Uh), αh〉0 + 〈∂xUh(t), ∂xαh〉0 = 0 ∀αh ∈ V̊ph.

Denoting the exact error by e(x, t) = u(x, t) − Uh(x, t), we infer that e satisfies the

following error representation

〈∂te(t), αh〉0 + 〈∂xe(t), ∂xαh〉0 = −〈g(Uh + e), αh〉0 − 〈∂tUh(t), αh〉0 − 〈∂xUh(t), ∂xαh〉0

for any αh ∈ V̊ph.

Due to superconvergence property at mesh points, we are able to approximate the

exact error e by E having the form

E(x, t) =

N∑
l=1

El(t)φl,p+1(x),

where φl,p+1 is defined by (2.4.4). For a given partition (2.4.1), we associate with every

subinterval Ωl an error estimator El, l = 1, . . . , N . The local error estimator El is

computable in terms of Uh on Ωl, by solving local parabolic or local elliptic equations
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using piecewise polynomials of degree p+ 1. Noting (2.2.1), E is computed by solving a

local parabolic equation

〈∂tE(t), φl,p+1〉0,Ωl
+ 〈∂xE(t), ∂xφl,p+1〉0,Ωl

= −〈g(U + E), φl,p+1〉0,Ωl
− 〈∂tU(t), φl,p+1〉0,Ωl

− 〈∂xU(t), ∂xφl,p+1〉0,Ωl

or a local elliptic equation

〈∂xE(t), ∂xφl,p+1〉0,Ωl
= −〈g(U + E), φl,p+1〉0,Ωl

− 〈∂tU(t), φl,p+1〉0,Ωl

− 〈∂xU(t), ∂xφl,p+1〉0,Ωl
.

Since these approximations are locally computed, we are able to identify elements for

mesh refinement in an adaptive scheme. Then, the quality of error estimate E is judged

by the global effectivity index, Θ which is defined by

Θ(t) =
‖E(t)‖1
‖e(t)‖1

.

In 2014, Tripathy et al. implement a residual approach of a posteriori error estimation

for two dimensionals parabolic problems with the approximate solution is computed by

the H1MFEM. References on the residual approach of a posteriori error estimation can

be found in [57] and the references therein. By using the residual approach of a posteriori

error estimation of the H1MFEM for parabolic problem (3.3.1)–(3.3.2), the equivalence of

residual equations and exact errors are analysed by using the standard energy argument.

Then, error indicators with respect to both time and space are compared with the residual

equations.

In this study, we use a mixed formulation of finite element methods of lines (H1MFEM)

for the approximations of the solution and its derivative. Then, we propose a posteriori

error estimations of the H1MFEM by using the procedure developed by Adjerid et al. To

the best of our knowledge, this is the first time this way of a posteriori error estimation

is considered for nonlinear equations such as the BBM and Burgers equations, where the

approximate solution is computed by the H1MFEM. Details of the H1MFEM, the BBM

and Burgers equations are stated in Section 2.5–Section 2.7.



Chapter 4

Benjamin-Bona-Mahony equation:

a mixed finite element method

In this chapter, we focus on a priori and a posteriori error estimations of H1MFEM for

the BBM equation. In Section 4.1, we elaborate on a formulation of weak solutions and a

finite element scheme for the BBM equation. Section 4.2 and Section 4.3 are respectively

devoted to the analysis of a priori and a posteriori error estimations. The chapter

ends with implementation and numerical experiments in Section 4.4 and Section 4.5,

respectively.

4.1 Formulation of weak solutions and finite element scheme

We consider the following BBM equation

∂tu(x, t)− ∂xxtu(x, t) + u(x, t)∂xu(x, t) + ∂xu(x, t) = 0 x ∈ Ω, t ∈ (0, T ], (4.1.1)

with Dirichlet boundary conditions

u(0, t) = u(1, t) = 0, t ∈ [0, T ], (4.1.2)

and initial condition

u(x, 0) = u0(x), x ∈ Ω, (4.1.3)

where ∂t := ∂/∂t, ∂x := ∂/∂x, ∂xxt := ∂3/∂x2∂t, T is a positive constant and Ω := (0, 1).
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In this chapter, C denotes a generic constant which may take different values at

different occurrences.

Following [45, 47], we use the H1MFEM which reduces equation (4.1.1) to a system

of first order equations by defining a new variable v = ∂xu. As a consequence, (4.1.1) is

reformulated as

∂xu(x, t) = v(x, t), (4.1.4)

∂tu(x, t)− ∂txv(x, t) + u(x, t)v(x, t) + v(x, t) = 0 (4.1.5)

and for t = 0

v(x, 0) = v0(x) = ∂xu0(x). (4.1.6)

By multiplying (4.1.4) by ∂xχ where χ ∈ H1
0 (Ω), we obtain

〈∂xu(t), ∂xχ〉0 = 〈v(t), ∂xχ〉0 ∀χ ∈ H1
0 (Ω).

On the other hand, by multiplying (4.1.5) by −∂xw where w ∈ H1(Ω) we have

〈∂tv(t), w〉1 = 〈u(t)v(t), ∂xw〉0 + 〈v(t), ∂xw〉0 ∀w ∈ H1(Ω),

where we have used integration by parts and the Dirichlet boundary conditions ∂tu(0, t) =

∂tu(1, t) = 0 for the first term.

A weak formulation of the problem reads: Given u0 ∈ H1
0 (Ω) ∩H2(Ω), find (u, v) :

[0, T ]→ H1
0 (Ω)×H1(Ω) such that for t > 0

〈∂xu(t), ∂xχ〉0 = 〈v(t), ∂xχ〉0 ∀χ ∈ H1
0 (Ω), (4.1.7)

〈∂tv(t), w〉1 = 〈u(t)v(t), ∂xw〉0 + 〈v(t), ∂xw〉0 ∀w ∈ H1(Ω), (4.1.8)

and that for t = 0

〈v(0), w〉1 = 〈v0, w〉1 ∀w ∈ H1(Ω), (4.1.9)

where v0 = ∂xu0.

Lemma 4.1.1. If u ∈ W 1
∞(0, T ;H1

0 (Ω) ∩H2(Ω)) and v ∈ W 1
∞(0, T ;H1(Ω)) and (u, v)

are solutions to (4.1.7)–(4.1.8), then we have (u, v) satisfies (4.1.4)–(4.1.5).
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Proof. To show this fact, firstly by using integration by parts to (4.1.7), we have ∂x(v−

∂xu) = 0 in W 1
∞(0, T ;H0(Ω)), which implies

v(x, t) = ∂xu(x, t) + f(t) (4.1.10)

for all t and a.e. in Ω, and in particular

v(x, 0) = ∂xu(x, 0) + f(0) (4.1.11)

for some function f depending on t. Secondly, by integrating (4.1.11) over Ω, we obtain∫
Ω
v(x, 0) =

∫
Ω
∂xu(x, 0) + f(0).

Noting v(0) = v0 by (4.1.9) and v0 = ∂xu0 by (4.1.6), we infer that f(0) = 0. By

differentiating with respect to t and integrating over Ω, it follows from (4.1.10) that∫
Ω
∂tv(x, t) =

∫
Ω
∂txu(x, t) + f ′(t).

This together with (4.1.8) with w = 1 yields f ′(t) = 0. Hence, we have (u, v) satisfies

(4.1.4). A similar argument using integration by parts gives (4.1.5).

Let p and q be two positive integers. A semidiscrete approximation to (4.1.7)–(4.1.9)

reads: Find (Uh, Vh) : [0, T ]→ V̊ph × V
q
h such that

〈∂xUh(t), ∂xχh〉0 = 〈Vh(t), ∂xχh〉0 ∀χh ∈ V̊ph, t ∈ (0, T ], (4.1.12)

〈∂tVh(t), wh〉1 = 〈Uh(t)Vh(t), ∂xwh〉0 + 〈Vh(t), ∂xwh〉0 ∀wh ∈ Vqh, t ∈ (0, T ],

(4.1.13)

and at t = 0

〈Vh(0), wh〉1 = 〈v0, wh〉1 ∀wh ∈ Vqh, (4.1.14)

where the finite dimensional subspaces V̊ph and Vqh are defined by (2.4.5).

4.2 A priori error estimation

In this section we present an analysis for a priori error estimates for the approximation of

the solution of (4.1.7)–(4.1.9) by that of (4.1.12)–(4.1.14). We first show the boundedness

of the families {Uh} and {Vh}.
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Lemma 4.2.1. If (u, v) and (Uh, Vh) are solutions to (4.1.7)–(4.1.6) and (4.1.12)–

(4.1.14) respectively, then the following inequality holds

‖Uh‖L∞(L∞) + ‖Vh‖L∞(L∞) ≤ C(T ).

Proof. Substituting χh = Uh into (4.1.12) and noting Hölder’s inequality, we deduce

‖∂xUh(t)‖0 ≤ ‖Vh(t)‖0 .

By using the Poincaré inequality and the Sobolev imbedding theorem, we obtain

‖Uh(t)‖L∞(Ω) ≤ C ‖Vh(t)‖0 . (4.2.1)

Letting wh = Vh in (4.1.13), we obtain

1

2

d

dt
‖Vh(t)‖21 ≤ ‖Uh(t)‖L∞(Ω) ‖Vh(t)‖0 ‖∂xVh(t)‖0 + ‖Vh(t)‖0 ‖∂xVh(t)‖0

≤
(
C ‖Vh(t)‖20 + ‖Vh(t)‖0

)
‖∂xVh(t)‖0 ,

where we use (4.2.1) in the last inequality. Integrating from 0 to t, noting from (4.1.14)

that

‖Vh(0)‖1 ≤ ‖v0‖1 ,

and using the inequality

2ab ≤ εa2 +
b2

ε
∀a, b ≥ 0, ε > 0, (4.2.2)

we have

‖Vh(t)‖21 ≤ ‖Vh(0)‖21 + C

∫ t

0

(
‖Vh(s)‖20 + ‖Vh(s)‖0

)
‖∂xVh(s)‖0 ds

≤ C
(

1 +

∫ t

0

(
‖Vh(s)‖40 + ‖Vh(s)‖20

)
ds

)
+ C

∫ t

0
‖∂xVh(s)‖20 ds

≤ C
(

1 +

∫ t

0

(
‖Vh(s)‖41 + ‖Vh(s)‖21

)
ds

)
.

By using Lemma 2.3.3 (with ϕ(t) = ‖Vh(t)‖21, a = C, and θ(s) = C(s2 + s) for s ≥ 0) we

deduce from the above inequality

‖Vh(t)‖21 ≤ C ∀t ∈ [0, T ∗],
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where T ∗ is defined in Lemma 2.3.3. Since∫ σ

a

ds

θ(s)
→∞ as σ → 0,

we have T ∗ = T . Therefore, we deduce that

‖Vh(t)‖21 ≤ C(T ) ∀t ∈ [0, T ].

This together with (4.2.1) implies

‖Uh‖L∞(L∞) + ‖Vh‖L∞(L∞) ≤ C(T ),

thus completing the proof of the lemma.

It is usual in the error analysis for parabolic equations to consider elliptic projections;

see [53, 58]. We define Ūh ∈ W 1
∞(0, T ; V̊ph) and V̄h ∈ W 1

∞(0, T ;Vqh) satisfying, for t ∈

[0, T ], 〈
∂xu(t)− ∂xŪh,p(t), ∂xχh

〉
0

= 0 ∀χh ∈ V̊ph. (4.2.3)〈
v(t)− V̄h(t), wh

〉
1

= 0 ∀wh ∈ Vqh. (4.2.4)

Let the errors in the approximation of (4.1.7)–(4.1.6) by (4.1.12)–(4.1.14) be denoted

by eh and fh, i.e.,

eh(x, t) := u(x, t)− Uh(x, t) (4.2.5)

and

fh(x, t) := v(x, t)− Vh(x, t). (4.2.6)

By defining the following notations

η(x, t) = u(x, t)− Ūh(x, t) (4.2.7)

ζ(x, t) = Ūh(x, t)− Uh(x, t), (4.2.8)

ρ(x, t) = v(x, t)− V̄h(x, t), (4.2.9)

ξ(x, t) = V̄h(x, t)− Vh(x, t), (4.2.10)

we then rewrite eh and fh respectively as

eh(x, t) = η(x, t) + ζ(x, t) and fh(x, t) = ρ(x, t) + ξ(x, t). (4.2.11)
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Therefore, to estimate eh and fh, we estimate each of the terms η, ζ, ρ, and ξ. The

next lemma shows the approximation properties of the elliptic projections defined in

(4.2.3)–(4.2.4).

Lemma 4.2.2. Assume that u ∈W 1
∞(0, T ;H1

0 (Ω)∩Hp+1(Ω)). Assume further that v ∈

W 1
∞(0, T ;Hq+1(Ω)). Then the functions η and ρ defined by (4.2.7) and (4.2.9) satisfy

for j = 0, 1

‖η(t)‖j ≤ Ch
p+1−j ‖u(t)‖p+1 , (4.2.12)

‖∂tη(t)‖j ≤ Ch
p+1−j ‖∂tu(t)‖p+1 , (4.2.13)

‖ρ(t)‖j ≤ Ch
q+1−j ‖v(t)‖q+1 , (4.2.14)

‖∂tρ(t)‖j ≤ Ch
q+1−j

(
‖v(t)‖q+1 + ‖∂tv(t)‖q+1

)
. (4.2.15)

Proof. We start with j = 1 for (4.2.12). Noting (4.2.7) and using (4.2.3) we have for any

χ̄h ∈ V̊ph

‖∂xη(t)‖20 =
〈
∂xu− ∂xŪh, ∂xu− ∂xŪh

〉
0

=
〈
∂xu− ∂xŪh, ∂xu− ∂xχ̄h

〉
0

+
〈
∂xu− ∂xŪh, ∂xχ̄h − ∂xŪh

〉
0

=
〈
∂xu− ∂xŪh, ∂xu− ∂xχ̄h

〉
0
≤
∥∥∂xu(t)− ∂xŪh(t)

∥∥
0
‖∂xu(t)− ∂xχ̄h‖0 .

Hence by using the Poincaré inequality and (2.4.6) we have

‖η(t)‖1 ≤ C ‖∂xη(t)‖0 ≤ C inf
χ̄h∈V̊p

h

‖∂xu(t)− ∂xχ̄h‖0 ≤ Ch
p ‖u(t)‖p+1 . (4.2.16)

Similarly we prove (4.2.14) with j = 1, noting that the H1-inner product is used in

(4.2.4).

The results for j = 0 can be obtained by using the Aubin-Nitsche trick [53, 58].

We prove only (4.2.12) for j = 0. Let ϕ ∈ H0(Ω) and consider the problem of finding

ψ ∈ H2(Ω) ∩H1
0 (Ω) such that

−∂xxψ = ϕ in Ω (4.2.17)

with ψ(0) = ψ(1) = 0. Recalling that the solution ψ of (4.2.17) is smoother by two

derivatives in H0(Ω) than the right hand side ϕ, thus we have

‖ψ‖2 ≤ C ‖∂xxψ‖0 = C ‖ϕ‖0 . (4.2.18)
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For any ψh ∈ V̊ph we have

〈
u− Ūh, ϕ

〉
0

= −
〈
u− Ūh, ∂xxψ

〉
0

=
〈
∂xu− ∂xŪh, ∂xψ

〉
0

=
〈
∂xu− ∂xŪh, ∂xψ − ∂xψh

〉
0

≤
∥∥∂xu− ∂xŪh∥∥0

‖∂xψ − ∂xψh‖0 .

From (2.4.6), we have

∥∥∂xu− ∂xŪh∥∥0
≤ inf

χh∈V̊p
h

‖∂xu− ∂xχh‖0 ≤ Ch
p ‖u‖p+1 .

This together with

‖∂xψ − ∂xψh‖0 ≤ h ‖ψ‖2

yield 〈
u− Ūh, ϕ

〉
0
≤ Chp+1 ‖u‖p+1 ‖ψ‖2 .

Then, (4.2.18) gives 〈
u− Ūh, ϕ

〉
0
≤ Chp+1 ‖u‖p+1 ‖ϕ‖0 .

We obtain (4.2.12) by choosing ϕ = u− Ūh.

On the other hand, by differentiating (4.2.3) and (4.2.4) with respect to t, it can be

seen that ∂tŪh and ∂tV̄h are respectively the elliptic projections of ∂tu and ∂tv, namely

〈
∂txu(t)− ∂txŪh(t), ∂xχh

〉
0

= 0 ∀χh ∈ V̊ph (4.2.19)

and 〈
∂tv(t)− ∂tV̄h(t), wh

〉
1

= 0 ∀wh ∈ Vqh. (4.2.20)

Therefore, (4.2.13) and (4.2.15) can be proved in a similar way to (4.2.12) and (4.2.14).

It is well-known that the elliptic projection approximates the Galerkin solution better

than the exact solution; see e.g. [53]–[55], [58]. The next lemma shows this property,

namely the superconvergence property of ξ and ζ.

Lemma 4.2.3. Assume that u ∈W 1
∞(0, T ;H1

0 (Ω)∩Hp+1(Ω)) and v ∈W 1
∞(0, T ;Hq+1(Ω)).

Then, the following estimates hold

‖ζ‖W 1
∞(H1) ≤ Ch

γ
(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

)
(4.2.21)
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and

‖ξ‖W 1
∞(H1) ≤ Ch

γ
(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

)
, (4.2.22)

where γ = min(p+ 1, q + 1).

Proof. Firstly, by subtracting (4.1.12) from (4.1.7) and using (4.2.7)–(4.2.10) we have

〈∂xη, ∂xχh〉0 + 〈∂xζ, ∂xχh〉0 = 〈ρ, ∂xχh〉0 + 〈ξ, ∂xχh〉0 ∀χh ∈ V̊ph. (4.2.23)

By noting (4.2.3) the first term in (4.2.23) vanishes, and thus we obtain

〈∂xζ, ∂xχh〉0 = 〈ρ, ∂xχh〉0 + 〈ξ, ∂xχh〉0 ∀χh ∈ V̊ph. (4.2.24)

Substituting χh = ζ ∈ V̊ph in (4.2.24) and using the Hölder inequality give

‖∂xζ(t)‖20 ≤ ‖ρ(t)‖0 ‖∂xζ(t)‖0 + ‖ξ(t)‖0 ‖∂xζ(t)‖0 .

This and the Poincaré inequality yield

‖ζ(t)‖1 ≤ C
(
‖ρ(t)‖0 + ‖ξ(t)‖0

)
. (4.2.25)

Therefore, (4.2.21) is proved if we prove (4.2.22), noting the bound for ‖ρ(t)‖0 given in

Lemma 4.2.2.

By subtracting (4.1.13) from (4.1.8) and noting v−Vh = fh = ρ+ ξ, for any wh ∈ Vqh
we have

〈∂tρ, wh〉1 + 〈∂tξ, wh〉1 = 〈uv, ∂xwh〉0 + 〈ρ, ∂xwh〉0 + 〈ξ, ∂xwh〉0 − 〈UhVh, ∂xwh〉0
(4.2.26)

By referring to (4.2.20), we note that 〈∂tρ, wh〉1 = 0. Rewriting

uv − UhVh = u(fh + Vh)− UhVh = ufh + Vh(u− Uh) = ufh + Vheh = u(ρ+ ξ) + Vheh

we deduce from (4.2.26)

〈∂tξ, wh〉1 = 〈u(ρ+ ξ), ∂xwh〉0 + 〈Vheh, ∂xwh〉0 + 〈ρ, ∂xwh〉0 + 〈ξ, ∂xwh〉0

= 〈(u+ 1)(ρ+ ξ), ∂xwh〉0 + 〈Vheh, ∂xwh〉0 ∀wh ∈ Vqh. (4.2.27)
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Letting wh = ξ ∈ Vqh and using

〈∂tξ, ξ〉1 =
1

2

d

dt
‖ξ(t)‖21

we have from (4.2.27)

1

2

d

dt
‖ξ(t)‖21 = 〈(u+ 1)(ρ+ ξ), ∂xξ〉0 + 〈Vheh, ∂xξ〉0 .

By integrating from 0 to t, and using the fact that ξ(0) = 0, we have

‖ξ(t)‖21 ≤ 2

∫ t

0

∣∣∣ 〈(u(s) + 1)(ρ(s) + ξ(s)), ∂xξ(s)〉0
∣∣∣ ds+ 2

∫ t

0

∣∣∣ 〈Vh(s)eh(s), ∂xξ(s)〉0
∣∣∣ ds

=: T1 + T2. (4.2.28)

By using the Cauchy-Schwarz inequality and (4.2.11), we have

T1 ≤ 2
(
‖u‖L∞(L∞) + 1

)∫ t

0

(
‖ρ(s)‖0 ‖∂xξ(s)‖0 + ‖ξ(s)‖0 ‖∂xξ(s)‖0

)
ds

≤ C
∫ t

0

(
‖ρ(s)‖0 ‖∂xξ(s)‖0 + ‖ξ(s)‖0 ‖∂xξ(s)‖0

)
ds

≤ C ‖ρ‖2L2(H0) + C

∫ t

0
‖ξ(s)‖21 ds.

Noting the bound of ‖ρ(t)‖0 in Lemma 4.2.1, we have

T1 ≤ Ch2(q+1) + C

∫ t

0
‖ξ(s)‖21 ds. (4.2.29)

Similarly, by referring to Lemma 4.2.1 and using (4.2.25) we have

T2 ≤ 2 ‖Vh‖L∞(L∞)

∫ t

0
‖eh(s)‖0 ‖∂xξ(s)‖0 ds

≤ C
∫ t

0

(
‖η(s)‖0 + ‖ζ(s)‖0

)
‖∂xξ(s)‖0 ds

≤ C
∫ t

0

(
‖η(s)‖0 + ‖ρ(s)‖0 + ‖ξ(s)‖0

)
‖∂xξ(s)‖0 ds

≤ C
(
‖η‖2L2(H0) + ‖ρ‖2L2(H0)

)
+ C

∫ t

0
‖ξ(s)‖21 ds

≤ Ch2γ
(
‖u‖2L∞(Hp+1) + ‖v‖2L∞(Hq+1)

)
+ C

∫ t

0
‖ξ(s)‖21 ds. (4.2.30)

Thus, (4.2.28)–(4.2.30) yield

‖ξ(t)‖21 ≤ Ch
2γ
(
‖u‖2L∞(Hp+1) + ‖v‖2L∞(Hq+1)

)
+ C

∫ t

0
‖ξ(s)‖21 ds.

The desired estimate (4.2.22) now follows from Lemma 2.3.2 (Gronwall’s Lemma).
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In the following lemma, we prove the bounds for ‖∂tξ(t)‖1 and ‖∂tζ(t)‖1.

Lemma 4.2.4. Assume that ∂tu ∈ L∞(0, T ;H1
0 (Ω) ∩Hp+1(Ω)) and

∂tv ∈ L∞(0, T ;Hq+1(Ω)). Then, the following estimates hold

‖∂tξ‖L∞(H1) ≤ Ch
γ
(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

)
(4.2.31)

and

‖∂tζ‖L∞(H1) ≤ Ch
γ
(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1) + ‖∂tv‖L∞(Hq+1)

)
(4.2.32)

where γ = min(p+ 1, q + 1).

Proof. Substituting wh = ∂tξ ∈ Vqh in (4.2.27) yields

‖∂tξ(t)‖21 = 〈(u+ 1)(ρ+ ξ), ∂txξ〉0 + 〈Vheh, ∂txξ〉0

By using Lemma 4.2.1 and the Cauchy-Schwarz inequality, we have

‖∂tξ(t)‖21 ≤
(

1 + ‖u‖L∞(L∞)

)(
‖ρ(t)‖0 + ‖ξ(t)‖0

)
‖∂txξ(t)‖0

+ ‖Vh‖L∞(L∞) ‖eh(t)‖0 ‖∂txξ(t)‖0

≤ C
(
‖ρ(t)‖0 + ‖ξ(t)‖0 + ‖eh(t)‖0

)
‖∂tξ(t)‖1 .

Noting eh = η + ζ, we have

‖∂tξ(t)‖1 ≤ C
(
‖ρ(t)‖0 + ‖ξ(t)‖0 + ‖η(t)‖0 + ‖ζ(t)‖0

)
.

Hence, inequality (4.2.31) is obtained by referring to Lemma 4.2.2 and Lemma 4.2.3.

On the other hand, in order to have (4.2.32), firstly we differentiate (4.2.24) with

respect to t to have

〈∂txζ, ∂xχh〉0 = 〈∂tρ, ∂xχh〉0 + 〈∂tξ, ∂xχh〉0 ∀χh ∈ V̊ph.

Letting χh = ∂tζ ∈ V̊ph and using the Cauchy-Schwarz inequality we have

‖∂txζ(t)‖20 ≤ ‖∂tρ(t)‖0 ‖∂txζ(t)‖0 + ‖∂tξ(t)‖0 ‖∂txζ(t)‖0 .

Using the Poincaré inequality yields

‖∂tζ(t)‖1 ≤ C
(
‖∂tρ(t)‖0 + ‖∂tξ(t)‖0

)
. (4.2.33)

Therefore, we complete the proof by noting (4.2.15) and (4.2.31).
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By combining the results in Lemma 4.2.2–Lemma 4.2.4, we are now ready to state

the results for a priori error estimates of (4.1.7)–(4.1.8) by (4.1.12)–(4.1.13).

Theorem 4.2.5. Assume that u ∈W 1
∞(0, T ;H1

0 (Ω) ∩Hp+1(Ω)) and

v ∈W 1
∞(0, T ;Hq+1(Ω)). Assume further that Vh and V̄h satisfy Vh−V̄h = ∂tVh−∂tV̄h = 0

at t = 0. Then, for j = 0, 1 there exists a positive constant C > 0 independent of h such

that

‖eh(t)‖j ≤ Ch
min(p+1−j,q+1)

(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

)
,

‖fh(t)‖j ≤ Ch
min(p+1,q+1−j)

(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

)
,

‖∂teh(t)‖j ≤ Ch
min(p+1−j,q+1)

(
‖u‖L∞(Hp+1) + ‖∂tu‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

+ ‖∂tv‖L∞(Hq+1)

)
,

‖∂tfh(t)‖j ≤ Ch
min(p+1,q+1−j)

(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1) + ‖∂tv‖L∞(Hq+1)

)
.

4.3 A posteriori error estimation

In this section, we design strategies to compute a posteriori error estimates from the

finite element solutions Uh and Vh computed by using (4.1.12)–(4.1.13).

We approximate the exact errors eh and fh, see (4.2.5)–(4.2.6), by E ∈ Sp+1
h and

F ∈ Sq+1
h , respectively. As in [54] and [55], the approximate errors E and F should

maintain some properties of the exact errors. Moreover, our strategies involve the local

computation of E and F on each subinterval to facilitate parallel computation.

From (4.1.12)–(4.1.13) and (4.1.7)–(4.1.8), we infer that the exact errors satisfy for

all χh ∈ V̊ph
〈∂xeh(t), ∂xχh〉0 = 〈fh(t), ∂xχh〉0 (4.3.1)

and for all wh ∈ Vqh

〈∂tfh(t), wh〉1 − 〈eh(t)fh(t), ∂xwh〉0 − 〈Uh(t)fh(t), ∂xwh〉0 − 〈Vh(t)eh(t), ∂xwh〉0

− 〈fh(t), ∂xwh〉0 = 〈Uh(t)Vh(t), ∂xwh〉0 + 〈Vh(t), ∂xwh〉0 − 〈∂tVh(t), wh〉1 . (4.3.2)

At t = 0, noting (4.1.9) and (4.1.14), we have

〈fh(0), wh〉1 = 0 ∀wh ∈ Vqh. (4.3.3)



40 4 Benjamin-Bona-Mahony equation

Due to (4.1.13), the right hand side of (4.3.2) vanishes. However, for the purpose

of developing a posteriori error estimates, we keep these terms in the equation as an

indication of how the a posteriori error estimation should be.

Recalling 〈·, ·〉0,Ωl
defined by (2.2.1) on the subinterval Ωl, l = 1, . . . , N , we propose

to compute E and F locally on each subinterval Ωl, by one of the following two methods.

Method (i): Nonlinear parabolic error estimate

Let E ∈ Sp+1
h and F ∈ Sq+1

h be defined on Ωl by

〈∂xE(t), ∂xχ̂h〉0,Ωl
= 〈F (t), ∂xχ̂h〉0,Ωl

+ 〈Vh(t), ∂xχ̂h〉0,Ωl
∀χ̂h ∈ Sp+1

h , (4.3.4)

and

〈∂tF (t), ŵh〉1,Ωl
− 〈E(t)F (t), ∂xŵh〉0,Ωl

− 〈Uh(t)F (t), ∂xŵh〉0,Ωl
− 〈Vh(t)E(t), ∂xŵh〉0,Ωl

− 〈F (t), ∂xŵh〉0,Ωl
= 〈Uh(t)Vh(t), ∂xŵh〉0,Ωl

+ 〈Vh(t), ∂xŵh〉0,Ωl

− 〈∂tVh(t), ŵh〉1,Ωl
∀ŵh ∈ Sq+1

h , (4.3.5)

when t ∈ (0, T ] and

〈F (0), ŵh〉1,Ωl
= 〈v0, ŵh〉1,Ωl

− 〈Vh(0), ŵh〉1,Ωl
∀ŵh ∈ Sq+1

h (4.3.6)

when t = 0.

Method (ii): Linear parabolic error estimate

Let E ∈ Sp+1
h and F ∈ Sq+1

h be defined on Ωl by

〈∂xE(t), ∂xχ̂h〉0,Ωl
= 〈F (t), ∂xχ̂h〉0,Ωl

+ 〈Vh(t), ∂xχ̂h〉0,Ωl
(4.3.7)

for all χ̂h ∈ Sp+1
h and

〈∂tF (t), ŵh〉1,Ωl
− 〈Uh(t)F (t), ∂xŵh〉0,Ωl

− 〈Vh(t)E(t), ∂xŵh〉0,Ωl
− 〈F (t), ∂xŵh〉0,Ωl

= 〈Uh(t)Vh(t), ∂xŵh〉0,Ωl
+ 〈Vh(t), ∂xŵh〉0,Ωl

− 〈∂tVh(t), ŵh〉1,Ωl
(4.3.8)

for any ŵh ∈ Sq+1
h and when t ∈ (0, T ]. The initial condition at t = 0 is defined by

〈F (0), ŵh〉1,Ωl
= 〈v0, ŵh〉1,Ωl

− 〈Vh(0), ŵh〉1,Ωl
∀ŵh ∈ Sq+1

h . (4.3.9)
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In the computation of a posteriori error estimator F , an additional saving on the

computation cost can be obtained by neglecting the term 〈E(t)F (t), ∂xŵh〉0,Ωl
, therefore

reducing the nonlinear equation (4.3.5) of Method (i) by the linear equation (4.3.8) of

Method (ii).

Since suppφl,p+1 = Ω̄l, if ψ ∈ H0(Ω) then the statement

〈ψ, χ̂h〉0 = 0 ∀χ̂h ∈ Sp+1
h

is equivalent to

〈ψ, χ̂h〉0,Ωl
= 0 ∀χ̂h ∈ Sp+1

h , l = 1, . . . , N.

Hence, in fact (4.3.4)–(4.3.9) hold for the inner product on the whole domain Ω.

In order to emphasize on the polynomial degrees p and q, as in the remaining part

we will need different projection onto spaces of different polynomial degree, we rewrite

Ūh,p := Ūh ∈W 1
∞(0, T ; V̊ph) and V̄h,q := V̄h ∈W 1

∞(0, T ;Vqh), where Ūh and V̄h are defined

by (4.2.3)–(4.2.4). For example, by Ūh,p+1 we mean the projection defined by (4.2.3)

onto the space V̊p+1
h instead of V̊ph.

Let V̄h,q+1 ∈ Vq+1
h be defined by

〈
v − V̄h,q+1, wh

〉
1

= 0 ∀wh ∈ Vq+1
h . (4.3.10)

By noting that Vq+1
h = Vqh ⊕ S

q+1
h , we can write V̄h,q+1 as

V̄h,q+1 = Ṽh,q + f̃h where Ṽh,q ∈ Vqh and f̃h ∈ Sq+1
h . (4.3.11)

Letting

ê(t) := ‖eh(t)‖1 + ‖fh(t)‖1

where eh and fh are defined by (4.2.5)–(4.2.6) and letting

Ê(t) := ‖E(t)‖1 + ‖F (t)‖1 ,

we define the effectivity index by

Θ(t) =
Ê(t)

ê(t)
.

We now state the main result of this section.
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Conjecture 4.3.1. For any V ∈ Hq+1(Ω), let Ṽh,q, V̄h,q ∈ Vqh be defined respectively by

(4.3.11) and (4.2.4). Then we conjecture that:∥∥∥Ṽh,q − V̄h,q∥∥∥
1
≤ Chq+1, (4.3.12)

where C is independent of h.

We computed
∥∥∥Ṽh,q − V̄h,q∥∥∥

1
for the following functions V , with Ω = [0, 1].

1. Example 1: V (x) = x2 exp(2x+ 1)− x exp(3);

2. Example 2: V (x) = sin(πx);

3. Example 3: V (x) = log(1 + x)− x log(2);

4. Example 4: V (x) = x5/2;

5. Example 5: V (x) = x7/3.

The numerical convergence orders κV presented in Table 4.1–Table 4.5 justify our con-

jecture. In fact, the results of Example 1, Example 2 and Example 3, where the functions

V are smooth show a higher convergence order for q ≥ 2, namely O(hq+2) rather than

O(hq+1).

Theorem 4.3.2. Let Ṽh,q and V̄h,q be defined respectively by (4.3.11) and (4.2.4). As-

sume that the Conjecture 4.3.1 holds and

ê(t) ≥ Chmin(p,q). (4.3.13)

Then the approximate errors E ∈ Sp+1
h and F ∈ Sq+1

h defined by Method (i) and

Method (ii) satisfy for almost all t ∈ [0, T ]

lim
h→0

Θ(t) = 1.

We now provide the proof of Theorem 4.3.2, which is based on the following lemmas.

For the analysis, we first define ēh ∈ Sp+1
h and f̄h ∈ Sq+1

h such that for l = 1, . . . , N

〈∂xēh(t), ∂xχ̂h〉0,Ωl
=
〈
∂xu(t)− ∂xŪh,p(t), ∂xχ̂h

〉
0,Ωl

∀χ̂h ∈ Sp+1
h (4.3.14)
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q h
∥∥∥Ṽh,q − V̄h,q∥∥∥

1
κV

1

1/4 4.2572E-01

1/8 1.0773E-01 1.983

1/16 2.7017E-02 1.996

1/32 6.7594E-03 1.998

1/64 1.6902E-03 1.999

1/128 4.2257E-04 2.000

2

1/4 1.8450E-03

1/8 1.1865E-04 3.958

1/16 7.4697E-06 3.989

1/32 4.6771E-07 3.997

1/64 2.9245E-08 3.999

1/128 1.8275E-09 4.000

3

1/4 3.5090E-05

1/8 1.1253E-06 4.963

1/16 3.5397E-08 4.991

1/32 1.1080E-09 4.998

1/64 3.8795E-11 4.836

Table 4.1: Experiments justifying (4.3.12) by Example 1.
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q h
∥∥∥Ṽh,q − V̄h,q∥∥∥

1
κV

1

1/4 3.3110E-02

1/8 8.2216E-03 2.009

1/16 2.0521E-03 2.002

1/32 5.1281E-04 2.001

1/64 1.2819E-04 2.000

1/128 3.2047E-05 2.000

2

1/4 1.1657E-04

1/8 7.3449E-06 3.988

1/16 4.5997E-07 3.997

1/32 2.8762E-08 3.999

1/64 1.7979E-09 3.999

1/128 1.1243E-10 3.999

3

1/4 2.2898E-06

1/8 7.2066E-08 4.989

1/16 2.2561E-09 4.997

1/32 7.0535E-11 4.999

1/64 2.9263E-12 4.591

Table 4.2: Experiments justifying (4.3.12) by Example 2.
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q h
∥∥∥Ṽh,q − V̄h,q∥∥∥

1
κV

1

1/4 2.6102E-03

1/8 6.5485E-04 1.995

1/16 1.6386E-04 1.998

1/32 4.0974E-05 1.999

1/64 1.0244E-05 1.999

1/128 2.5611E-06 2.000

2

1/4 4.5141E-06

1/8 2.8871E-07 3.967

1/16 1.8155E-08 3.991

1/32 1.1364E-09 3.998

1/64 7.1053E-11 3.999

1/128 4.4416E-12 3.999

3

1/4 7.1648E-08

1/8 2.3339E-09 4.940

1/16 7.3752E-11 4.984

1/32 2.3113E-12 4.996

1/64 1.4046E-13 4.041

Table 4.3: Experiments justifying (4.3.12) by Example 3.
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q h
∥∥∥Ṽh,q − V̄h,q∥∥∥

1
κV

1

1/4 1.3135e-02

1/8 3.2771e-03 2.003

1/16 8.1861e-04 2.001

1/32 2.0459e-04 2.001

1/64 5.1141e-05 2.000

1/128 1.2785e-05 2.000

2

1/4 1.8952e-05

1/8 1.2979e-06 3.868

1/16 8.7633e-08 3.889

1/32 5.8552e-09 3.904

1/64 3.8811e-10 3.915

1/128 2.5601e-11 3.922

3

1/4 4.9335e-07

1/8 3.0902e-08 3.996

1/16 1.9326e-09 3.999

1/32 1.2081e-10 4.999

1/64 7.5972e-12 3.991

Table 4.4: Experiments justifying (4.3.12) by Example 4.
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q h
∥∥∥Ṽh,q − V̄h,q∥∥∥

1
κV

1

1/4 1.2242e-02

1/8 3.0525e-03 2.004

1/16 7.6225e-04 2.002

1/32 1.9047e-04 2.001

1/64 4.7609e-05 2.000

1/128 1.1901e-05 2.000

2

1/4 1.4244e-05

1/8 1.0518e-06 3.759

1/16 7.6583e-08 3.780

1/32 5.5227e-09 3.794

1/64 3.9556e-10 3.803

1/128 2.8213e-11 3.809

3

1/4 5.4899e-07

1/8 3.8583e-08 3.831

1/16 2.7082e-09 3.833

1/32 1.9002e-10 3.833

1/64 1.3360e-11 3.830

Table 4.5: Experiments justifying (4.3.12) by Example 5.
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and 〈
f̄h(t), ŵh

〉
1,Ωl

=
〈
v(t)− V̄h,q(t), ŵh

〉
1,Ωl

∀ŵh ∈ Sq+1
h . (4.3.15)

Letting

η̄ = u−
(
Ūh,p + ēh

)
, (4.3.16)

ζ̄ = ēh − E, (4.3.17)

ρ̄ = v −
(
V̄h,q + f̄h

)
, (4.3.18)

and

ξ̄ = f̄h − F, (4.3.19)

we rewrite

eh − E = η̄ + ζ̄ + ζ (4.3.20)

and

fh − F = ρ̄+ ξ̄ + ξ. (4.3.21)

In the following part, our aim is to estimate each of the terms η̄, ζ̄, ζ, ρ̄, ξ̄ and ξ

of (4.3.20)–(4.3.21). The estimates of ‖ζ(t)‖1 and ‖ξ(t)‖1 are presented in Section 4.2.

We first focus on estimating ‖η̄(t)‖1.

Lemma 4.3.3. Assume that u ∈W 1
∞(0, T ;H1

0 (Ω) ∩Hp+2(Ω)) then there holds

‖η̄‖W 1
∞(H1) ≤ Ch

p+1 ‖u‖L∞(Hp+2) . (4.3.22)

Proof. Due to orthogonality of the Legendre polynomials, we have

〈∂xēh(t), ∂xχh〉0 = 0 ∀χh ∈ V̊ph. (4.3.23)

Therefore, by noting V̊p+1
h = V̊ph ⊕ S

p+1
h , using (4.3.14), (4.2.3) and (4.3.23), we have

〈η̄(t), ∂xχh〉0 =
〈
∂xu(t)− ∂xŪh,p(t)− ∂xēh(t), ∂xχh

〉
0

= 0 ∀χh ∈ V̊p+1
h .

By noting that 〈
∂xu(t)− ∂xŪh,p+1(t), ∂xχh

〉
0

= 0 ∀χh ∈ V̊p+1
h
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thus, we have Ūh,p + ēh is the elliptic projection Ūh,p+1 of u into V̊p+1
h . Therefore, we

have for any χ̄h ∈ V̊p+1
h

‖∂xη̄(t)‖20 =
〈
∂xu− ∂xŪh − ∂xēh, ∂xu− ∂xŪh − ∂xēh

〉
0

=
〈
∂xu− ∂xŪh − ∂xēh, ∂xu− ∂xχ̄h

〉
0

+
〈
∂xu− ∂xŪh − ∂xēh, ∂xχ̄h − ∂xŪh − ∂xēh

〉
0

=
〈
∂xu− ∂xŪh − ∂xēh, ∂xu− ∂xχ̄h

〉
0

≤
∥∥∂xu(t)− ∂xŪh(t)− ∂xēh(t)

∥∥
0
‖∂xu(t)− ∂xχ̄h‖0 .

Hence, by using the Poincaré inequality we have

‖η̄(t)‖1 ≤ C ‖∂xη̄(t)‖0 ≤ C inf
χ̄h∈V̊p+1

h

‖∂xu(t)− ∂xχ̄h‖0 ≤ Ch
p+1 ‖u(t)‖p+2 ,

thus proving the lemma.

We now focus on estimating ‖ρ̄(t)‖1,
∥∥ζ̄(t)

∥∥
1

and
∥∥ξ̄(t)∥∥

1
.

Lemma 4.3.4. Assume that v ∈ W 1
∞(0, T ;Hq+2(Ω)). Let Ṽh,q and V̄h,q be defined

respectively by (4.3.11) and (4.2.4), and assume that the Conjecture 4.3.1 holds. Then

there holds

‖ρ̄‖W 1
∞(H1) ≤ Ch

q+1 ‖v‖L∞(Hq+2) .

Proof. By noting (4.3.10) and using standard finite element arguments we have

∥∥v(t)− V̄h,q+1(t)
∥∥

1
≤ Chq+1 ‖v(t)‖q+2 .

By using the triangle inequality we obtain

‖ρ̄(t)‖1 =
∥∥v(t)− V̄h,q(t)− f̄h(t)

∥∥
1

≤
∥∥v(t)− V̄h,q+1(t)

∥∥
1

+
∥∥V̄h,q+1(t)− V̄h,q(t)− f̄h(t)

∥∥
1

≤ Chq+1 +
∥∥V̄h,q+1(t)− V̄h,q(t)− f̄h(t)

∥∥
1
. (4.3.24)

The lemma will be proved if we can prove
∥∥V̄h,q+1(t)− V̄h,q(t)− f̄h(t)

∥∥
1
≤ Chq+1. Noting

that V̄h,q+1 − V̄h,q − f̄h ∈ Vq+1
h , due to (4.3.10) we have

〈
V̄h,q+1, V̄h,q+1 − V̄h,q − f̄h

〉
1

=
〈
v, V̄h,q+1 − V̄h,q − f̄h

〉
1
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Therefore, (4.3.11) together with (4.3.15) give∥∥V̄h,q+1(t)− V̄h,q(t)− f̄h(t)
∥∥2

1
=
〈
v − V̄h,q − f̄h, V̄h,q+1 − V̄h,q − f̄h

〉
1

=
〈
v − V̄h,q − f̄h, Ṽh,q − V̄h,q

〉
1

+
〈
v − V̄h,q − f̄h, f̃h − f̄h

〉
1

=
〈
V̄h,q+1 − V̄h,q − f̄h, Ṽh,q − V̄h,q

〉
1

≤
∥∥V̄h,q+1(t)− V̄h,q(t)− f̄h(t)

∥∥
1

∥∥∥Ṽh,q(t)− V̄h,q(t)∥∥∥
1
.

This implies ∥∥V̄h,q+1(t)− V̄h,q(t)− f̄h(t)
∥∥

1
≤
∥∥∥Ṽh,q(t)− V̄h,q(t)∥∥∥

1
.

If v ∈ H1
0 (Ω) and if V̄h,q and V̄h,q+1 are defined with the H1

0 -inner product then it

follows from (4.3.23) that Ṽh,q = V̄h,q. In the present case with the H1-inner product

our numerical experiments show that
∥∥∥Ṽh,q(t)− V̄h,q(t)∥∥∥

1
≤ Chq+1. Since we are unable

to prove this result, we resort to posing a conjecture (see Conjecture 4.3.1). With this

conjecture, we obtain the required result.

In the following lemma, we estimate ζ̄ and ξ̄ (see (4.3.19) and (4.3.17)) in the H1(Ω)-

norm.

Lemma 4.3.5. Assume that u ∈W 1
∞(0, T ;H1

0 (Ω)∩Hp+2(Ω)) and v ∈W 1
∞(0, T ;Hq+2(Ω)).

Then the following estimates hold:∥∥ζ̄∥∥
W 1
∞(H1)

≤ Chγ
(
‖u‖L∞(Hp+2) + ‖v‖L∞(Hq+2)

)
(4.3.25)

and ∥∥ξ̄∥∥
W 1
∞(H1)

≤ Chγ
(
‖u‖L∞(Hp+2) + ‖v‖L∞(Hq+2)

)
(4.3.26)

where γ = min(p+ 1, q + 1).

Proof. We present the proof only for the case that E and F are defined by (4.3.7) and

(4.3.8). It follows from (4.1.7) and (4.3.7) that

〈∂xu, ∂xχ̂h〉0 − 〈∂xE, ∂xχ̂h〉0 = 〈v, ∂xχ̂h〉0 − 〈F, ∂xχ̂h〉0 − 〈Vh, ∂xχ̂h〉0 (4.3.27)

for any χ̂h ∈ Sp+1
h . It follows from (4.3.20) that

u− E = Uh + eh − E = Uh + η̄ + ζ̄ + ζ.
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Similarly, it follows from (4.3.21) that

v − F − Vh = fh − F = ρ̄+ ξ̄ + ξ.

Hence, (4.3.27) can be rewritten as

〈∂xUh, ∂xχ̂h〉0 + 〈∂xη̄, ∂xχ̂h〉0 +
〈
∂xζ̄, ∂xχ̂h

〉
0

+ 〈∂xζ, ∂xχ̂h〉0

= 〈ρ̄, ∂xχ̂h〉0 +
〈
ξ̄, ∂xχ̂h

〉
0

+ 〈ξ, ∂xχ̂h〉0 ∀χ̂h ∈ Sp+1
h . (4.3.28)

Due to orthogonality of the Legendre polynomials we have 〈∂xUh, ∂xχ̂h〉0 = 0 and due

to (4.3.14) we have 〈∂xη̄, ∂xχ̂h〉0 = 0. Therefore, (4.3.28) gives

〈
∂xζ̄, ∂xχ̂h

〉
0

= 〈ρ̄, ∂xχ̂h〉0 +
〈
ξ̄, ∂xχ̂h

〉
0

+ 〈ξ, ∂xχ̂h〉0 − 〈∂xζ, ∂xχ̂h〉0 ∀χ̂h ∈ Sp+1
h .

Substituting χ̂h = ζ̄ ∈ Sp+1
h and using Hölder’s inequality give

∥∥∂xζ̄(t)
∥∥2

0
≤
(
‖ρ̄(t)‖0 +

∥∥ξ̄(t)∥∥
0

+ ‖ξ(t)‖0 + ‖∂xζ(t)‖0
)∥∥∂xζ̄(t)

∥∥
0
.

By dividing both sides by
∥∥∂xζ̄(t)

∥∥
0

and using the Poincaré inequality, we deduce

∥∥ζ̄(t)
∥∥

1
≤ ‖ρ̄(t)‖0 +

∥∥ξ̄(t)∥∥
0

+ ‖ξ(t)‖0 + ‖ζ(t)‖1 . (4.3.29)

Referring to Lemma 4.3.4 for ‖ρ̄(t)‖0 and Lemma 4.2.3 for ‖ξ(t)‖0 and ‖ζ(t)‖1, we obtain

∥∥ζ̄∥∥
L∞(H1)

≤ Chγ
(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+2)

)
+
∥∥ξ̄∥∥

L∞(H0)
. (4.3.30)

Therefore, (4.3.25) is proved if we prove (4.3.26).

Due to (4.3.19) and (4.3.18), we have

ξ̄ = f̄h − F = v − V̄h,q − ρ̄− F = ρ− ρ̄− F.

Therefore, for any ŵh ∈ Sq+1
h〈

∂tξ̄, ŵh
〉

1
= 〈∂tρ, ŵh〉1 − 〈∂tρ̄, ŵh〉1 − 〈∂tF , ŵh〉1 . (4.3.31)

By differentiating (4.3.15) with respect to t, the second term on the right hand side of

(4.3.31) vanishes:

〈∂tρ̄, ŵh〉1 =
〈
∂tv − ∂tV̄h,q − ∂tf̄h, ŵh

〉
1

= 0 ∀ŵh ∈ Sq+1
h . (4.3.32)
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From (4.3.8),

〈∂tF , ŵh〉1 = 〈UhF , ∂xŵh〉0 + 〈VhE, ∂xŵh〉0 + 〈F, ∂xŵh〉0 + 〈UhVh, ∂xŵh〉0

+ 〈Vh, ∂xŵh〉0 − 〈∂tVh, ŵh〉1 ∀ŵh ∈ Sq+1
h . (4.3.33)

Combining (4.3.31)–(4.3.33), we have

〈
∂tξ̄, ŵh

〉
1

= 〈∂tρ, ŵh〉1 − 〈UhF , ∂xŵh〉0 − 〈VhE, ∂xŵh〉0 − 〈F, ∂xŵh〉0

− 〈UhVh, ∂xŵh〉0 − 〈Vh, ∂xŵh〉0 + 〈∂tVh, ŵh〉1 ∀ŵh ∈ Sq+1
h . (4.3.34)

For the last term on the right hand side of (4.3.34) we use (4.1.8) to have

〈∂tVh, ŵh〉1 = 〈∂tv, ŵh〉1 − 〈∂tfh, ŵh〉1 = 〈uv, ∂xŵh〉0 + 〈v, ∂xŵh〉0

− 〈∂tfh, ŵh〉1 ∀ŵh ∈ Sq+1
h . (4.3.35)

Therefore, (4.3.35) and (4.3.34) give

〈
∂tξ̄, ŵh

〉
1

= 〈∂tρ, ŵh〉1 − 〈UhF , ∂xŵh〉0 − 〈VhE, ∂xŵh〉0 − 〈F, ∂xŵh〉0

− 〈UhVh, ∂xŵh〉0 − 〈Vh, ∂xŵh〉0 + 〈uv, ∂xŵh〉0 + 〈v, ∂xŵh〉0 − 〈∂tfh, ŵh〉1

for any ŵh ∈ Sq+1
h . Noting that ρ − fh = −ξ, F = ρ − ρ̄ − ξ̄, E = η − η̄ − ζ̄ and

v − Vh − F = ρ̄+ ξ̄ + ξ, we have

〈
∂tξ̄, ŵh

〉
1

= −〈∂tξ, ŵh〉1 −
〈
Uh(ρ− ρ̄− ξ̄), ∂xŵh

〉
0
−
〈
Vh(η − η̄ − ζ̄), ∂xŵh

〉
0

+
〈
ρ̄+ ξ̄ + ξ, ∂xŵh

〉
0
− 〈UhVh, ∂xŵh〉0 + 〈uv, ∂xŵh〉0 ∀ŵh ∈ Sq+1

h .

Rewriting

uv − UhVh = v(eh + Uh)− UhVh = v eh + Uh(v − Vh) = v eh + Uhfh,

we obtain

〈
∂tξ̄, ŵh

〉
1

= −〈∂tξ, ŵh〉1 −
〈
Uh(ρ− ρ̄− ξ̄), ∂xŵh

〉
0
−
〈
Vh(η − η̄ − ζ̄), ∂xŵh

〉
0

+
〈
ρ̄+ ξ̄ + ξ, ∂xŵh

〉
0

+ 〈v eh, ∂xŵh〉0 + 〈Uhfh, ∂xŵh〉0 . (4.3.36)
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Substituting ŵh = ξ̄ ∈ Sq+1
h , integrating (4.3.36) from 0 to t and noting ξ̄(0) = 0 give∥∥ξ̄(t)∥∥2

1
= −

∫ t

0

〈
∂tξ(s), ξ̄(s)

〉
1
ds−

∫ t

0

〈
Uh(s)

(
ρ(s)− ρ̄(s)− ξ̄(s)

)
, ∂xξ̄(s)

〉
0
ds

−
∫ t

0

〈
Vh(s)

(
η(s)− η̄(s)− ζ̄(s)

)
, ∂xξ̄(s)

〉
0
ds

+

∫ t

0

〈
ρ̄(s) + ξ̄(s) + ξ(s), ∂xξ̄(s)

〉
0
ds+

∫ t

0

〈
v(s)eh(s), ∂xξ̄(s)

〉
0
ds

+

∫ t

0

〈
Uh(s)fh(s), ∂xξ̄(s)

〉
0
ds =: T1 + · · ·+ T6. (4.3.37)

Recalling the Hölder inequality and Lemma 4.2.1, we estimate

|T2| ≤ ‖Uh‖L∞(L∞)

∫ t

0

(
‖ρ(s)‖0 + ‖ρ̄(s)‖0 +

∥∥ξ̄(s)∥∥
0

) ∥∥∂xξ̄(s)∥∥0
ds

≤ C
(
‖ρ‖2L2(H0) + ‖ρ̄‖2L2(H0)

)
+

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds

≤ Ch2(q+1) ‖v‖L∞(Hq+2) +

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds.

Similarly, together with (4.3.22) and (4.3.29), we estimate

|T3| ≤ ‖Vh‖L∞(L∞)

∫ t

0

(
‖η(s)‖0 + ‖η̄(s)‖0 +

∥∥ζ̄(s)
∥∥

0

) ∥∥∂xξ̄(s)∥∥0
ds

≤ C
(
‖η‖2L2(H0) + ‖η̄‖2L2(H0) +

∥∥ζ̄∥∥2

L2(H0)

)
+

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds

≤ Ch2(p+1) ‖u‖L∞(Hp+2) + C
(
‖ρ̄‖2L2(H0) +

∥∥ξ̄∥∥2

L2(H0)
+ ‖ξ‖2L2(H0) + ‖ζ‖2L2(H0)

)
+

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds

≤ Ch2γ
(
‖u‖L∞(Hp+2) + ‖v‖L∞(Hq+2)

)
+

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds

where γ = min(p+ 1, q + 1). By referring to Theorem 4.2.5, we estimate

|T5|+ |T6| ≤ ‖v‖L∞(L∞)

∫ t

0
‖eh(s)‖0

∥∥ξ̄(s)∥∥
1
ds+ ‖Uh‖L∞(L∞)

∫ t

0
‖fh(s)‖0

∥∥ξ̄(s)∥∥
1
ds

≤ C ‖eh‖2L2(H0) + C ‖fh‖2L2(H0) + C

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds

≤ Ch2γ
(
‖u‖2L∞(Hp+1) + ‖v‖2L∞(Hq+1)

)
+ C

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds.

The remaining terms can be estimated in a simpler way, noting that (4.2.31) is used for

‖∂tξ(t)‖0. Hence, (4.3.37) yields∥∥ξ̄(t)∥∥2

1
≤ Ch2γ

(
‖u‖2L∞(Hp+2) + ‖v‖2L∞(Hq+2)

)
+ C

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds.
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The desired estimate (4.3.26) followed by using Lemma 2.3.2.

Proof of Theorem 4.3.2

We are now ready to prove the main result stated in the Theorem 4.3.2.

Proof. By referring to (4.3.20)–(4.3.21) and using the triangle inequality, we deduce

|Θ(t)− 1| =

∣∣∣∣∣Ê(t)

ê(t)
− 1

∣∣∣∣∣ =

∣∣∣( ‖E(t)‖1 + ‖F (t)‖1
)
−
(
‖eh(t)‖1 + ‖fh(t)‖1

)∣∣∣∣∣ê(t)∣∣
≤

∣∣∣ ‖E(t)‖1 − ‖eh(t)‖1
∣∣∣+
∣∣∣ ‖F (t)‖1 − ‖fh(t)‖1

∣∣∣∣∣ê(t)∣∣
≤
‖η̄(t)‖1 +

∥∥ζ̄(t)
∥∥

1
+ ‖ζ(t)‖1 + ‖ρ̄(t)‖1 +

∥∥ξ̄(t)∥∥
1

+ ‖ξ(t)‖1∣∣ê(t)∣∣ .

By using (4.3.22), Lemma 4.3.5, Lemma 4.2.3, Lemma 4.3.4 and inequality (4.3.13),

we infer

|Θ(t)− 1| ≤ Ch,

thus proving the theorem.

4.4 Implementation issues

In this section, we show the computations of (Uh, Vh) and (E,F ) respectively by using

(4.1.12)–(4.1.14) and Method (ii) (see page 40).

With φl,k , l = 1, . . . , N and k = 1, 2, . . . , defined by (2.4.2)– (2.4.4), the approximate

solution (Uh, Vh) can be represented as

Uh(x, t) =
N∑
l=2

Ul,1(t)φl,1(x) +
N∑
l=1

p∑
k=2

Ul,k(t)φl,k(x),

Uh(x, t) =

N+1∑
l=1

Vl,1(t)φl,1(x) +

N∑
l=1

q∑
k=2

Vl,k(t)φl,k(x).

Let the L2-inner products

αl,l
′

k,k′ =
〈
φl,k, φl′,k′

〉
0
, (4.4.1)

ᾱl,l
′

k,k′ =
〈
∂xφl,k, ∂xφl′,k′

〉
0
, (4.4.2)



4.4 Implementation issues 55

and

βl,l
′

k,k′ =
〈
φl,k, ∂xφl′,k′

〉
0
. (4.4.3)

For each l = 1, . . . , N , and r, r′ = 2, 3, . . ., we define a 2× 2 matrix M l
1,1, a 2× (r − 1)

matrix M l
1,r, and an (r − 1)× (r′ − 1) matrix M l

r,r′ with entries, respectively,

(M l
1,1)ij = αl+j−1,l+i−1

1,1 , i, j = 1, 2

(M l
1,r)ij = αl,l+i−1

j,1 , i = 1, 2, j = 2, . . . , r,

(M l
r,r′)ij = αl,lj,i, i = 2, . . . , r, j = 2, . . . , r′.

Similarly, we define Sl1,1, Sl1,r, S
l
r,r′ by using ᾱl,l

′
r,r , and Bl

1,1, Bl
1,r, B

l
r,r′ by using βl,l

′
r,r ,

instead of αl,l
′

r,r . By using these notations, we then define matrices

M l
r =

 M l
1,1 M l

1,r(
M l

1,r

)>
M l

rr

 , (4.4.4)

Slr =

 Sl1,1 Sl1,r(
Sl1,r

)>
Slrr

 (4.4.5)

and

Bl
r,r′ =

 Bl
1,1 Bl

1,r′(
Bl

1,r

)>
Bl
r,r′

 , (4.4.6)

where > denotes the transpose matrix. We note that the matrices M l
r and Slr have size

(r + 1)× (r + 1), whereas the matrix Bl
r,r′ has size (r + 1)× (r′ + 1).

By using M l
r, Slr and Bl

r,r′ , we assemble the global matrices M r, Sr and Br,r′ ,

respectively. We note that the sizes of the global matrices M r and Sr are (Nr + 1) ×

(Nr + 1) and of Br,r′ is (Nr + 1)× (Nr′ + 1).

We also define, for each l = 1, . . . , N and p, q = 2, 3, . . .,

U l = [Ul,1, Ul+1,1, Ul,2 . . . , Ul,p]
>

and

V l = [Vl,1, Vl+1,1, Vl,2 . . . , Vl,q]
>

where U1,1 and UN+1,1 are zeros. The vectors U and V are of size (Np + 1) × 1 and

(Nq + 1)× 1, respectively, and are assembled from the vectors U l and V l.
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With the above matrices defined, the matrix representation of (4.1.12)–(4.1.13) is of

the form

SpU(t) = Bp,qV (t), (4.4.7)

(M q + Sq) ∂tV (t) = H(U(t),V (t)). (4.4.8)

Here, the vector H(U ,V ) is an (Nq + 1)× 1 vector defined by

H(U ,V ) = [H(0),H(1), . . . ,H(N)]>

where

H(0) = [〈(U + 1)V , φ1,1〉0 , 〈(U + 1)V , φ2,1〉0 , . . . , 〈(U + 1)V , φN+1,1〉0]>

and

H(l) = [〈(U + 1)V , φl,2〉0 , 〈(U + 1)V , φl,3〉0 , . . . , 〈(U + 1)V , φl,q〉0]>

for l = 1, . . . , N . We use the Matlab ODE solver to solve (4.4.7)–(4.4.8). Therefore, the

right hand side of (4.4.8) is computed by first solving (4.4.7) for a given V (t).

In the following part, we discuss the computation of (E,F ) which are computed

locally on each Ωl, for l = 1, . . . , N , from the approximate solutions (Uh, Vh), and have

the forms

E(x, t) =
N∑
l=1

El(t)φl,p+1(x) and F (x, t) =
N∑
l=1

Fl(t)φl,q+1(x).

Equations (4.3.8) and (4.3.7) are rewritten as

〈∂tF (t), φl,q+1〉1,Ωl
− 〈Uh(t)F (t), ∂xφl,q+1〉0,Ωl

− 〈Vh(t)E(t), ∂xφl,q+1〉0,Ωl

− 〈F (t), ∂xφl,q+1〉0,Ωl
= 〈Uh(t)Vh(t), ∂xφl,q+1〉0,Ωl

+ 〈Vh(t), ∂xφl,q+1〉0,Ωl

− 〈∂tVh(t), φl,q+1〉1,Ωl
(4.4.9)

and

〈∂xE(t), ∂xφl,p+1〉0,Ωl
= 〈F (t), ∂xφl,p+1〉0,Ωl

+ 〈Vh(t), ∂xφl,p+1〉0,Ωl
. (4.4.10)

Recalling (4.4.1)–(4.4.3), we have

〈∂tVh(t), φl,q+1〉1,Ωl
= ∂tVl+1,1(t)

(
αl+1,l

1,q+1 + ᾱl+1,l
1,q+1

)
+

q∑
k′=1

∂tVl,k′(t)
(
αl,lk′,q+1 + ᾱl,lk′,q+1

)
:= T1,
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〈Vh(t), ∂xφl,q+1〉0,Ωl
= Vl+1,1(t)βl+1,l

1,q+1 +

q∑
k′=1

Vl,k′(t)β
l,l
k′,q+1 := T2 (4.4.11)

and

〈Vh(t), ∂xφl,p+1〉0,Ωl
= Vl+1,1(t)βl+1,l

1,p+1 +

p∑
k′=1

Vl,k′(t)β
l,l
k′,p+1 := T3. (4.4.12)

We note that

αl,lp+1,p+1 =
hl

(2p+ 3)(2p− 1)
, (4.4.13)

ᾱl,lp+1,p+1 =
2

hl
(4.4.14)

and

βl,lp+1,q+1 =



1√
(2q+3)(2q+1)

, p = q + 1,

−1√
(2q+1)(2q−1)

, p = q − 1,

0, otherwise.

(4.4.15)

By defining

β̄lk̄,k′,q =
〈
φl,k̄φl,k′ , ∂xφl,q+1

〉
0,Ωl

,

β̃lk̄,k′,q =
〈
φl+1,k̄φl,k′ , ∂xφl,q+1

〉
0,Ωl

and

β̂lk̄,k′,q =
〈
φl+1,k̄φl+1,k′ , ∂xφl,q+1

〉
0,Ωl

,

we have

〈Uh(t)F (t), ∂xφl,q+1〉0,Ωl
= Fl(t)

[
Ul+1,1(t)β̃l1,q+1,q +

p∑
k=1

Ul,k(t)β̄
l
k,q+1,q

]

:= T4Fl(t), (4.4.16)

〈Vh(t)El(t), ∂xφl,q+1〉0,Ωl
= El

[
Vl+1,1(t)β̃l1,p+1,q +

q∑
k′=1

Vl,k′(t)β̄
l
k′,p+1,q

]

:= T5El(t), (4.4.17)
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and

〈Uh(t)Vh(t), ∂xφl,q+1〉0,Ωl
= Ul+1,1(t)

[
Vl+1,1(t)β̂l1,1,q +

q∑
k′=1

Vl,k′(t)β̄
l
1,k′,q+1

]

+

p∑
k=1

Ul,k(t)

[
Vl+1,1(t)β̂lk,1,q +

q∑
k′=1

Vl,k′(t)β̄
l
k,k′,q

]

:= T6. (4.4.18)

Note that, the values of β̄l
k̄,k′,q

, β̃l
k̄,k′,q

and β̂l
k̄,k′,q

can be computed by using Matlab or

Maple.

By using the above notations, (4.4.9)–(4.4.10) can be rewritten as(
hl

(2q + 3)(2q − 1)
+

2

hl

)
∂tFl(t)−

(
T4 + βl,lq+1,q+1

)
Fl(t)− T5El(t) = T6 + T2 − T1

and
2

hl
El(t) = βl,lp+1,q+1Fl(t) + T3.

Then, by using the Backward Euler Formulation, we compute Fl(tj) recursively by

Fl(tj) =
T6 + T2 − T1 + hl

2 T5T3 + dFl(tj−1)

d− T4 − βl,lq+1,q+1 −
hl
2 β

l,l
p+1,q+1T5

(4.4.19)

where

d =

(
hl

(2q + 3)(2q − 1)
+

2

hl

)(
1

tj − tj−1

)
and tj = j4t for j = 1, 2, 3, . . .. The time step 4t is chosen to be not less than h.

4.5 Numerical experiment

In this section, we present the numerical results when we solve the following BBM

equation

∂tu(x, t)− µ

d2
∂xxtu(x, t) +

1

d
u(x, t)∂xu(x, t) = g(x, t), x ∈ (0, 1), t ∈ (0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],

whose exact solution (u, v) is

u(x, t) = 3 sech2
(
k(dx− a)

)
− 3(1− x) sech2

(
− k a

)
− 3x sech2

(
k(d− a)

)
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and

v(x, t) = −6kd sech2
(
k(dx− a)

)
tanh

(
k(dx− a)

)
− 3sech2

(
k(d− a)

)
+ 3sech2

(
− k a

)
,

where the constants are a = x0 +νt, k = 0.35, µ = 1/4k2, ν = 0.5, x0 = 20, and d = 2x0.

The initial value v0 is given by

v0(x) = −6kd sech2
(
k(dx− x0)

)
tanh

(
k(dx− x0)

)
− 3sech2

(
k(d− x0)

)
+ 3sech2

(
− k x0

)
.

In the numerical experiment, we compute the approximate solutions (Uh, Vh) by

solving (4.1.12)–(4.1.13). After that, the errors eh and fh are computed and the order of

convergence given by Theorem 4.2.5 is checked. Finally, we compute the error estimates

E and F by using the linear parabolic error estimate (see Method (ii) in page 40).

In Table 4.6, the relative exact errors
‖eh(t)‖1
‖u(t)‖1

and
‖fh(t)‖1
‖v(t)‖1

for N elements and t = 0.8

are presented. We compute the relative errors for p = q + 1, with p = 2, 3, 4.

In Table 4.7, we present the error estimations Ê(t) and exact errors ê(t) at t =

0.8. For these numerical results, we choose 4t = 0.4. Figure 4.5 shows the computed

effectivity indices for the numbers in Table 4.7. The results show that our a posteriori

error estimations are efficient.
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dofu dofv p q N ‖eh(t)‖1 / ‖u(t)‖1 κu ‖fh(t)‖1 / ‖v(t)‖1 κv

39 21

2 1

20 1.6102E-01 4.8905E-01

79 41 40 3.5722E-02 2.172 2.3826E-01 1.037

159 81 80 8.8314E-03 2.016 1.1937E-01 0.997

319 161 160 2.2015E-03 2.004 5.9711E-02 0.999

639 321 320 5.4999E-04 2.001 2.9859E-02 1.000

1279 641 640 1.3747E-04 2.000 1.4930E-02 1.000

2559 1281 1280 3.4349E-05 2.001 7.4651E-03 1.000

59 41

3 2

20 1.7780E-02 1.1054E-01

119 81 40 2.8360E-03 2.648 3.2042E-02 1.787

239 161 80 3.6641E-04 2.952 8.1051E-03 1.983

479 321 160 4.6186E-05 2.988 2.0321E-03 1.996

959 641 320 5.7854E-06 2.997 5.0839E-04 1.999

79 61

4 3

20 3.5710E-03 2.8850E-02

159 121 40 2.1257E-04 4.070 3.4321E-03 2.703

239 181 60 4.2714E-05 3.958 1.0320E-03 2.964

319 241 80 1.3589E-05 3.981 4.3735E-04 2.984

399 301 100 5.5803E-06 3.989 2.2440E-04 2.990

Table 4.6: The orders of convergence κu and κv at t = 0.8.

Figure 4.1: Effectivity indices Θ by Method (ii) at t = 0.8 with different values of h.
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p q h Ê(t) ê(t)

2 1

1/20 1.3590E+02 1.3616E+02

1/40 6.5493E+01 6.5840E+01

1/80 3.3539E+01 3.2879E+01

1/160 1.6879E+01 1.6422E+01

1/320 8.4519E+00 8.2053E+00

1/640 4.2271E+00 4.1012E+00

1/1280 2.1136E+00 2.0502E+00

3 2

1/20 2.5227E+01 3.0560E+01

1/40 8.6034E+00 8.8314E+00

1/80 2.1798E+00 2.2298E+00

1/160 5.4657E-01 5.5853E-01

1/320 1.3673E-01 1.3967E-01

4 3

1/20 8.4505E+00 7.9635E+00

1/40 8.9120E-01 9.4488E-01

1/60 2.6800E-01 2.8387E-01

1/80 1.1359E-01 1.2025E-01

1/100 5.8283E-02 6.1681E-02

Table 4.7: Values of Ê by Method (ii) at t = 0.8.





Chapter 5

Burgers equation: a mixed finite

element method

In this chapter, we focus on a priori and a posteriori error estimations of H1MFEM for

the Burgers equation. In Section 5.1, we elaborate on a formulation of weak solutions and

finite element scheme for the Burgers equation. Section 5.2 provides an analysis of a priori

error estimation. Section 5.3 focuses on an analysis of a posteriori error estimation. The

chapter ends with implementation and numerical experiments in Section 5.4 and Section

5.5.

Throughout this chapter, C denoted a generic constant which may take different

values at different occurrences.

5.1 Formulation of weak solutions and finite element scheme

Let Ω := (0, 1) and T and ν (viscosity coefficient) be positive constants. We consider

the following Burgers equation

∂tu(x, t)− ν∂xxu(x, t) + u(x, t)∂xu(x, t) = 0, x ∈ Ω, t ∈ (0, T ], (5.1.1)

with Dirichlet boundary conditions

u(0, t) = u(1, t) = 0, t ∈ [0, T ], (5.1.2)
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and initial condition

u(x, 0) = u0(x), x ∈ Ω, (5.1.3)

where ∂t := ∂/∂t, ∂x := ∂/∂x, ∂xx := ∂2/∂x2.

By H1MFEM, equation (5.1.1) is reduced to a system of first order equations using

a new variable define as v = ∂xu [45, 47]. Thus, (5.1.1) is reformulated as

∂xu(x, t) = v(x, t), (5.1.4)

∂tu(x, t)− ν∂xv(x, t) + u(x, t)v(x, t) = 0 (5.1.5)

and for t = 0

v(x, 0) = v0(x) = ∂xu0(x). (5.1.6)

Multiplying (5.1.4) by ∂xχ and (5.1.5) by −∂xw, where χ ∈ H1
0 (Ω) and w ∈ H1(Ω), we

have

〈∂xu(t), ∂xχ〉0 = 〈v(t), ∂xχ〉0 ∀χ ∈ H1
0 (Ω)

and

〈∂tv(t), w〉0 + ν 〈∂xv(t), ∂xw〉0 = 〈u(t)v(t), ∂xw〉0 ∀w ∈ H1(Ω),

noting that ∂tu(0, t) = ∂tu(1, t) = 0.

A weak formulation of the problem reads: Given u0 ∈ H1
0 (Ω) ∩H2(Ω), find (u, v) :

[0, T ]→ H1
0 (Ω)×H1(Ω) such that for t > 0

〈∂xu(t), ∂xχ〉0 = 〈v(t), ∂xχ〉0 ∀χ ∈ H1
0 (Ω), (5.1.7)

〈∂tv(t), w〉0 + ν 〈∂xv(t), ∂xw〉0 = 〈u(t)v(t), ∂xw〉0 ∀w ∈ H1(Ω), (5.1.8)

and

〈v(0), w〉0 = 〈∂xu0, w〉0 ∀w ∈ H1(Ω) (5.1.9)

for t = 0.

Lemma 5.1.1. If u ∈ W 1
∞(0, T ;H1

0 (Ω) ∩ H2(Ω)), v ∈ W 1
∞(0, T ;H1(Ω)) and (u, v)

satisfies (5.1.7)–(5.1.8), then we have (u, v) are solutions to (5.1.4)–(5.1.5).
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Proof. Indeed, by using integration by parts we deduce from (5.1.7) that

∂x (v(x, t)− ∂xu(x, t)) = 0

in W 1
∞(0, T ;H0(Ω)) which implies that

v(x, t) = ∂xu(x, t) + g(t) (5.1.10)

for all t and a.e. in Ω, and for some function g depending on t. Particularly, we have

v(x, 0) = ∂xu(x, 0) + g(0). (5.1.11)

By integrating (5.1.11) over Ω, noting (5.1.9) and (5.1.6), we infer that g(0) = 0. On

the other hand, it follows from differentiating (5.1.10) with respect to t and (5.1.8) with

w = 1, that ∫
Ω
∂txu+ g(′t) = 0,

implying that g′(t) = 0. Therefore, we have g ≡ 0, that is (u, v) satisfies (5.1.4). A

similar argument using integration by parts gives (5.1.5).

Let p and q be two positive integers and V̊ph and Vqh are the finite dimensional sub-

spaces ofH1
0 (Ω) andH1(Ω) (see (2.4.5)). A semidiscrete approximation to (5.1.7)–(5.1.9)

reads: Find (Uh, Vh) : [0, T ]→ V̊ph × V
q
h such that for t > 0

〈∂xUh(t), ∂xχh〉0 = 〈Vh(t), ∂xχh〉0 ∀χh ∈ V̊ph, (5.1.12)

〈∂tVh(t), wh〉0 + ν 〈∂xVh(t), ∂xwh〉0 = 〈Uh(t)Vh(t), ∂xwh〉0 ∀wh ∈ Vqh, (5.1.13)

and for t = 0

〈Vh(0), wh〉0 = 〈∂xu0, wh〉0 ∀wh ∈ Vqh. (5.1.14)

5.2 A priori error estimation

In this section we carry out a rigorous analysis for a priori error estimates for the ap-

proximation of the solution of (5.1.12)–(5.1.14) by that of (5.1.7)–(5.1.9), filling the gap

in [47]. We first show the boundedness of the sequences {Uh} and {Vh}.
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Lemma 5.2.1. If (u, v) and (Uh, Vh) are solutions to (5.1.7)–(5.1.9) and (5.1.12)–

(5.1.14), respectively, and if

‖∂tVh(0)‖0 ≤ C, (5.2.1)

then the following inequality holds

‖Uh‖L∞(L∞) + ‖∂tUh‖L∞(L∞) + ‖Vh‖L∞(L∞) + ‖∂tVh‖L2(L∞) ≤ C(T ).

Proof. Substituting χh = Uh and wh = Vh respectively in (5.1.12) and (5.1.13), and

using the Hölder inequality, we have

‖∂xUh(t)‖0 ≤ ‖Vh(t)‖0 (5.2.2)

and

1

2

d

dt
‖Vh(t)‖20 + ν ‖∂xVh(t)‖20 ≤ ‖Uh(t)‖L∞(Ω) ‖V (t)‖0 ‖∂xVh(t)‖0 . (5.2.3)

The Sobolev imbedding theorem, Poincaré inequality, and (5.2.2) imply

‖Uh(t)‖L∞(Ω) ≤ C ‖Vh(t)‖0 . (5.2.4)

Hence, by integrating (5.2.3) from 0 to t, using (4.2.2) and noting from (5.1.14) that

‖Vh(0)‖0 ≤ ‖∂xu0‖0 ,

we obtain

‖Vh(t)‖20 + 2ν

∫ t

0
‖∂xVh(τ)‖20 dτ ≤ ‖Vh(0)‖20 + C

∫ t

0
‖Vh(τ)‖20 ‖∂xVh(τ)‖0 dτ

≤ C
(

1 +

∫ t

0
‖Vh(τ)‖40 ds+ ε

∫ t

0
‖∂xVh(τ)‖20 dτ

)
.

By choosing ε > 0 sufficiently small so that 2ν − Cε > 0 we deduce

‖Vh(t)‖20 +

∫ t

0
‖∂xVh(s)‖20 ds ≤ C

(
1 +

∫ t

0
‖Vh(s)‖40 ds

)
. (5.2.5)

Lemma 2.3.3 (with ϕ(t) = ‖Vh(t)‖20, a = C and θ(s) = Cs2 for s ≥ 0) gives

‖Vh(t)‖20 ≤ C ∀t ∈ [0, T ∗],
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where T ∗ is defined in Lemma 2.3.3. Since∫ σ

a

ds

θ(s)
→∞ as σ → 0,

we have T ∗ = T . Therefore, noting (5.2.5) we deduce

‖Vh(t)‖20 +

∫ t

0
‖∂xVh(s)‖20 ds ≤ C(T ) ∀t ∈ [0, T ].

This together with (5.2.4) implies

‖Uh‖L∞(L∞) + ‖Vh‖L∞(H0) + ‖Vh‖L2(H1) ≤ C(T ). (5.2.6)

We next show a bound for ‖∂tVh(t)‖0. By differentiating (5.1.12) and (5.1.13) with

respect to t, we have the following results for t > 0

〈∂txUh(t), ∂xχh〉0 = 〈∂tVh(t), ∂xχh〉0 (5.2.7)

for any χh ∈ V̊ph and

〈∂ttVh(t), wh〉0 + ν 〈∂txVh(t), ∂xwh〉0 = 〈∂tUh(t)Vh(t), ∂xwh〉0

+ 〈Uh∂tVh(t), ∂xwh〉0 (5.2.8)

for any wh ∈ Vqh. Substituting χh = ∂tUh into (5.2.7), wh = ∂tVh into (5.2.8), and using

the same argument as above we obtain

‖∂tUh(t)‖L∞(Ω) ≤ C ‖∂tVh(t)‖0 (5.2.9)

and

1

2

d

dt
‖∂tVh(t)‖20 + ν ‖∂txVh(t)‖20 ≤ ‖∂tUh(t)‖L∞(Ω) ‖Vh(t)‖0 ‖∂txVh(t)‖0

+ ‖Uh(t)‖L∞(Ω) ‖∂tVh(t)‖0 ‖∂txVh(t)‖0

≤ C(T ) ‖∂tVh(t)‖0 ‖∂txVh(t)‖0 ,

where in the last step we have used (5.2.6) and (5.2.9). By integrating the above inequal-

ity from 0 to t, using (5.2.1), inequality (4.2.2) and invoking Lemma 2.3.2 (Gronwall’s

Lemma), we deduce

‖∂tVh(t)‖20 +

∫ t

0
‖∂txVh(s)‖20 ds ≤ C(T ).



68 5 Burgers equation

By noting (5.2.9), we have

‖∂tUh‖L∞(L∞) + ‖∂tVh‖L∞(H0) + ‖∂tVh‖L2(H1) ≤ C(T ). (5.2.10)

By using [35, Lemma 1.2] or [36, Theorem 3.1] we deduce from

‖Vh‖L2(H1) + ‖∂tVh‖L2(H1) ≤ C(T ),

see (5.2.6) and (5.2.10), that (after a possible modification on a set of measure zero)

‖Vh‖L∞(H1) ≤ C(T ),

which implies by the Sobolev imbedding theorem

‖Vh‖L∞(L∞) ≤ C(T ).

The final estimate ‖∂tVh‖L2(L∞) ≤ C(T ) also follows from (5.2.10) and the Sobolev

imbedding theorem, completing the proof of the lemma.

As is usual in the error analysis for parabolic equations, it is necessary to consider

elliptic projections. We define Ūh ∈ W 1
∞(0, T ; V̊ph) and V̄h ∈ W 1

∞(0, T ;Vqh) satisfying, for

t ∈ [0, T ],

〈
∂xu(t)− ∂xŪh(t), ∂xχh

〉
0

= 0 ∀χh ∈ V̊ph, (5.2.11)

A (u(t); v(t)− V̄h(t), wh) = 0 ∀wh ∈ Vqh, (5.2.12)

where the bounded bilinear form A (u; ·, ·) on H1(Ω) is defined by (see [45])

A (u; υ1, υ2) = ν 〈∂xυ1, ∂xυ2〉0 − 〈uυ1, ∂xυ2〉0 + λ 〈υ1, υ2〉0 ∀υ1, υ2 ∈ H1(Ω). (5.2.13)

Here, the constant λ > 0 is chosen appropriately to ensure that A (u; ·, ·) is H1(Ω)-

coercive. We note that

A (u; v, v) ≥ ν ‖∂xv‖20 − ‖u‖L∞(Ω) ‖v‖0 ‖∂xv‖0 + λ ‖v‖20

≥ ν ‖∂xv‖20 − C(
1

2ε
‖v‖20 +

ε

2
‖∂xv‖20) + λ ‖v‖20

≥ (ν − Cε

2
) ‖∂xv‖20 + (λ− C

2ε
) ‖v‖20 .
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By choosing ε > 0 sufficiently small and λ > 0 sufficiently large so that

α := min

(
ν − Cε

2
, λ− C

2ε

)
> 0, (5.2.14)

we deduce that A (u; ·, ·) is coercive and satisfies

A (u; v, v) ≥ α ‖v‖21 . (5.2.15)

Let the errors in the approximation of (5.1.7)–(5.1.9) by (5.1.12)–(5.1.14) be denoted

by eh and fh, i.e.,

eh(x, t) := u(x, t)− Uh(x, t) and fh(x, t) := v(x, t)− Vh(x, t). (5.2.16)

Recalling the symbols η, ζ, ρ and ξ defined by (4.2.7)–(4.2.10) as

η = u− Ūh, ζ = Ūh − Uh, ρ = v − V̄h, ξ = V̄h − Vh,

we rewrite eh and fh as:

eh(x, t) = η(x, t) + ζ(x, t) and fh(x, t) = ρ(x, t) + ξ(x, t). (5.2.17)

Therefore, to estimate eh and fh, we estimate each of the terms η, ζ, ρ, and ξ. In the

following lemma, we show the approximation properties of the elliptic projections defined

in (5.2.11) and (5.2.12).

Lemma 5.2.2. Assume that u ∈ W 1
∞(0, T ;H1

0 (Ω) ∩ Hp+1(Ω)). Assume further that

v ∈ W 1
∞(0, T ;Hq+1(Ω)). Then the functions η and ρ defined by (4.2.7) and (4.2.9)

satisfy for j = 0, 1

‖η(t)‖j ≤ Ch
p+1−j ‖u(t)‖p+1 , (5.2.18)

‖∂tη(t)‖j ≤ Ch
p+1−j ‖∂tu(t)‖p+1 , (5.2.19)

‖ρ(t)‖j ≤ Ch
q+1−j ‖v(t)‖q+1 , (5.2.20)

‖∂tρ(t)‖j ≤ Ch
q+1−j

(
‖v(t)‖q+1 + ‖∂tv(t)‖q+1

)
. (5.2.21)

Moreover, if ∂ttv ∈ L∞(0, T ;Hq+1(Ω)) and ∂ttV̄h belongs to L∞(0, T ;H1(Ω)), then

‖∂ttρ(t)‖j ≤ Ch
q+1
(
‖v(t)‖q+1 + ‖∂tv(t)‖q+1 + ‖∂ttv(t)‖q+1

)
, j = 0, 1. (5.2.22)
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Proof. By differentiating (5.2.11) with respect to t, it can be seen that ∂tŪh is the elliptic

projection of ∂tu such that

〈∂txUh(t), ∂xχh〉0 = 〈∂tVh(t), ∂xχh〉0 ∀χh ∈ V̊ph.

Hence, (5.2.18) and (5.2.19) with j = 1 follow from standard argument. The results for

j = 0 can be obtained by using the Aubin–Nitsche trick, which is also called the duality

argument; see e.g. [53, 58].

Similarly, (5.2.20) can be proved. The proof of (5.2.21) is slightly different since ∂tV̄h

is not the elliptic projection of ∂tv if one differentiates (5.2.12) due to the fact that u

also depends on t. More precisely, we have from (5.2.12)

A (u(t); ∂tρ(t), wh) = 〈(∂tu(t))ρ(t), ∂xwh〉0 ∀wh ∈ Vqh. (5.2.23)

We follow the technique used in the proof of [58, Lemma 3.2]. Let V̄ ∗h ∈ V
q
h be the elliptic

projection of ∂tv defined by

A (u(t); ∂tv(t)− V̄ ∗h (t), wh) = 0 ∀wh ∈ Vqh. (5.2.24)

Then ∥∥∂tv(t)− V̄ ∗h (t)
∥∥

1
≤ Chq ‖∂tv(t)‖q+1 . (5.2.25)

By using (5.2.15) and (5.2.24) we obtain∥∥V̄ ∗h (t)− ∂tV̄h(t)
∥∥2

1
≤ CA (u; V̄ ∗h − ∂tV̄h, V̄ ∗h − ∂tV̄h)

= CA (u; (V̄ ∗h − ∂tv) + (∂tv − ∂tV̄h), V̄ ∗h − ∂tV̄h)

= CA (u; ∂tρ, V̄
∗
h − ∂tV̄h).

This and (5.2.23) yield∥∥V̄ ∗h (t)− ∂tV̄h(t)
∥∥2

1
= C

〈
(∂tu)ρ, ∂x(V̄ ∗h − ∂tV̄h)

〉
0

≤ C ‖∂tu(t)‖L∞(Ω) ‖ρ(t)‖0
∥∥(V̄ ∗h − ∂tV̄h)(t)

∥∥
1
,

so that due to (5.2.20)∥∥V̄ ∗h (t)− ∂tV̄h(t)
∥∥

1
≤ C ‖∂tu(t)‖L∞(Ω) ‖ρ(t)‖0 ≤ Ch

q+1 ‖∂tu(t)‖L∞(Ω) ‖v(t)‖q+1

≤ Chq+1 ‖v(t)‖q+1
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for h sufficiently small. This inequality together with (5.2.25) and the triangle inequality

gives (5.2.21) in the case j = 1. The result for j = 0 can be obtained by using Aubin–

Nitsche’s trick again.

Finally, by differentiating (5.2.23) with respect to t we obtain

A (u; ∂ttρ(t), wh) = 〈2∂tu(t) ∂tρ(t) + ∂ttu(t)ρ(t), ∂xwh〉0 ∀wh ∈ Vqh.

Inequality (5.2.22) follows by using the same argument as above, thus completing the

proof.

The next lemma shows the superconvergence property of ξ and ζ.

Lemma 5.2.3. Assume that u ∈W 1
∞(0, T ;H1

0 (Ω)∩Hp+1(Ω)) and v ∈W 1
∞(0, T ;Hq+1(Ω)).

Then, the following estimates hold

‖ζ‖W 1
∞(H1) ≤ Ch

γ
(
‖u‖L∞(Hp+1) + ‖∂tu‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

+ ‖∂tv‖L∞(Hq+1)

)
(5.2.26)

and

‖ξ‖L∞(H1) + ‖∂tξ‖L∞(H0) + ‖∂tξ‖L2(H1) ≤ Ch
γ
(
‖u‖L∞(Hp+1) + ‖∂tu‖L∞(Hp+1)

+ ‖v‖L∞(Hq+1) + ‖∂tv‖L∞(Hq+1)

)
, (5.2.27)

where γ = min(p+ 1, q + 1). The positive constant C depends on T , α and λ defined in

(5.2.13) and (5.2.14).

Proof. First we note that by subtracting (5.1.12) from (5.1.7) we have

〈∂xη, ∂xχh〉0 + 〈∂xζ, ∂xχh〉0 = 〈ρ, ∂xχh〉0 + 〈ξ, ∂xχh〉0 ∀χh ∈ V̊ph.

By using (5.2.11) we have

〈∂xζ, ∂xχh〉0 = 〈ρ, ∂xχh〉0 + 〈ξ, ∂xχh〉0 ∀χh ∈ V̊ph. (5.2.28)

Substituting χh = ζ ∈ V̊ph in (5.2.28) and using the Cauchy Schwarz-inequality, we deduce

‖∂xζ(t)‖0 ≤ ‖ρ(t)‖0 + ‖ξ(t)‖0 .
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Since ζ(t) ∈ H1
0 (Ω) this implies

‖ζ(t)‖1 ≤ C
(
‖ρ(t)‖0 + ‖ξ(t)‖0

)
. (5.2.29)

Moreover, by differentiating (5.2.28) with respect to t we have

〈∂txζ, ∂xχh〉0 = 〈∂tρ, ∂xχh〉0 + 〈∂tξ, ∂xχh〉0 ∀χh ∈ V̊ph. (5.2.30)

By using the same argument we obtain

‖∂tζ(t)‖1 ≤ C
(
‖∂tρ(t)‖0 + ‖∂tξ(t)‖0

)
. (5.2.31)

Consequently, (5.2.26) is proved if we prove (5.2.27), noting that the bounds for ‖ρ(t)‖0
and ‖∂tρ(t)‖0 are given by Lemma 5.2.2.

In the following part, we prove (5.2.27), which is divided into three steps.

Step 1: We first prove

‖ξ‖L∞(H0) + ‖ξ‖L2(H1) ≤ Ch
γ
(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1) + ‖∂tv‖L∞(Hq+1)

)
(5.2.32)

and prove (5.2.26).

By subtracting (5.1.13) from (5.1.8) and recalling (5.2.16), we obtain

〈∂tfh, wh〉0 + ν 〈∂xfh, ∂xwh〉0 = 〈uv − UhVh, ∂xwh〉0 ∀wh ∈ Vqh.

Since

uv − UhVh = u(fh + Vh)− UhVh = ufh + Vheh,

we have

〈∂tfh, wh〉0 + ν 〈∂xfh, ∂xwh〉0 = 〈ufh, ∂xwh〉0 + 〈Vheh, ∂xwh〉0 ∀wh ∈ Vqh. (5.2.33)

On the other hand, it follows successively from (5.2.17) and (5.2.12)

A (u; ξ, wh) = A (u; fh + ρ, wh) = A (u; fh, wh),

and the definition (5.2.13) of A (u; ·, ·) that

A (u; ξ, wh) = ν 〈∂xfh, ∂xwh〉0 − 〈ufh, ∂xwh〉0 + λ 〈fh, wh〉0 . (5.2.34)
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Rewriting

〈∂tfh, wh〉0 = 〈∂tρ, wh〉0 + 〈∂tξ, wh〉0

and adding (5.2.33) and (5.2.34) give

〈∂tξ, wh〉0 + A (u; ξ, wh) = −〈∂tρ, wh〉0 + 〈Vheh, ∂xwh〉0 + λ 〈fh, wh〉0 (5.2.35)

for any wh ∈ Vqh. Letting wh = ξ ∈ Vqh we have

1

2

d

dt
‖ξ(t)‖20 + A (u; ξ, ξ) = −〈∂tρ, ξ〉0 + 〈Vheh, ∂xξ〉0 + λ 〈fh, ξ〉0 . (5.2.36)

By integrating (5.2.36) from 0 to t, using the coercivity of A (u; ·, ·) and the fact that Vh

and V̄h can be chosen such that ξ(0) = 0, we obtain

‖ξ(t)‖20 +

∫ t

0
‖ξ(s)‖21 ds ≤ C

∫ t

0

∣∣∣ 〈∂tρ(s), ξ(s)〉0
∣∣∣ ds+ C

∫ t

0

∣∣∣ 〈Vh(s)eh(s), ∂xξ(s)〉0
∣∣∣ ds

+ C

∫ t

0

∣∣∣ 〈fh(s), ξ(s)〉0
∣∣∣ ds. (5.2.37)

For the middle term on the right-hand side, Lemma 5.2.1, (5.2.29), and Hölder’s inequal-

ity give, for any ε > 0,∫ t

0

∣∣∣ 〈Vh(s)eh(s), ∂xξ(s)〉0
∣∣∣ ds ≤ ‖Vh‖L∞(L∞)

∫ t

0

(
‖η(s)‖0 + ‖ζ(s)‖0

)
‖∂xξ(s)‖0 ds

≤ C
∫ t

0

(
‖η(s)‖0 + ‖ρ(s)‖0 + ‖ξ(s)‖0

)
‖∂xξ(s)‖0 ds

≤ C
(
‖η‖2L2(H0) + ‖ρ‖2L2(H0)

)
+ Cε

∫ t

0
‖ξ(s)‖21 ds.

The first and last terms on the right-hand side of (5.2.37) can be estimated as follows.∫ t

0

∣∣∣ 〈∂tρ(s), ξ(s)〉0
∣∣∣ ds ≤ ∫ t

0
‖∂tρ(s)‖0 ‖ξ(s)‖0 ds ≤ C ‖∂tρ‖

2
L2(H0) + Cε

∫ t

0
‖ξ(s)‖21 ds

and∫ t

0

∣∣∣ 〈fh(s), ξ(s)〉0
∣∣∣ ds ≤ ∫ t

0
‖fh(s)‖0 ‖ξ(s)‖0 ds ≤ C ‖ρ‖

2
L2(H0) + Cε

∫ t

0
‖ξ(s)‖21 ds.

Thus, (5.2.37) gives

‖ξ(t)‖20 +

∫ t

0
‖ξ(s)‖21 ds ≤ C

(
‖η‖2L∞(H0) + ‖ρ‖2L∞(H0) + ‖∂tρ‖2L∞(H0)

)
+ Cε

∫ t

0
‖ξ(s)‖21 ds.
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By choosing ε > 0 sufficiently small such that 1− Cε > 0 we deduce

‖ξ(t)‖20 +

∫ t

0
‖ξ(s)‖21 ds ≤ C

(
‖η‖2L∞(H0) + ‖ρ‖2L∞(H0) + ‖∂tρ‖2L∞(H0)

)
.

Inequality (5.2.32) now follows from Lemma 5.2.2.

Step 2: We next prove

‖ξ‖L∞(H1) + ‖∂tξ‖L2(H0) ≤ Ch
γ
(
‖u‖L∞(Hp+1) + ‖∂tu‖L∞(Hp+1) + ‖v‖L∞(Hp+1)

+ ‖∂tv‖L∞(Hq+1)

)
. (5.2.38)

By choosing wh = ∂tξ in (5.2.35) we have

‖∂tξ(t)‖20+A (u; ξ, ∂tξ) = −〈∂tρ, ∂tξ〉0+〈Vheh, ∂txξ〉0+λ 〈fh, ∂tξ〉0 ∀wh ∈ Vqh. (5.2.39)

Since

〈uξ, ∂txξ〉0 =
d

dt
〈uξ, ∂xξ〉0 − 〈ξ∂tu, ∂xξ〉0 − 〈u∂tξ, ∂xξ〉0 ,

we have

A (u; ξ, ∂tξ) = ν 〈∂xξ, ∂txξ〉 − 〈uξ, ∂txξ〉+ λ 〈ξ, ∂tξ〉

=
ν

2

d

dt
‖∂xξ(t)‖20 −

d

dt
〈uξ, ∂xξ〉0 + 〈ξ∂tu, ∂xξ〉0 + 〈u∂tξ, ∂xξ〉0 +

λ

2

d

dt
‖ξ(t)‖20 .

Moreover, it is easy to see that

〈Vheh, ∂txξ〉0 =
d

dt
〈Vheh, ∂xξ〉0 − 〈(∂tVh)eh, ∂xξ〉0 − 〈Vh∂teh, ∂xξ〉0 .

Hence, it follows from (5.2.39) after rearranging the terms that

ν

2

d

dt
‖∂xξ(t)‖20 +

λ

2

d

dt
‖ξ(t)‖20 + ‖∂tξ(t)‖20

=
d

dt
〈uξ, ∂xξ〉0 +

d

dt
〈Vheh, ∂xξ〉0 − 〈∂tρ, ∂tξ〉0 + λ 〈fh, ∂tξ〉0 − 〈ξ ∂tu, ∂xξ〉0

− 〈u ∂tξ, ∂xξ〉0 − 〈(∂tVh)eh, ∂xξ〉0 − 〈Vh∂teh, ∂xξ〉0 .
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By integrating from 0 to t and using ξ = ∂xξ = 0 at t = 0, we deduce

ν

2
‖∂xξ(t)‖20 +

λ

2
‖ξ(t)‖20 +

∫ t

0
‖∂tξ(s)‖20 ds

= 〈u(t)ξ(t), ∂xξ(t)〉0 + 〈Vh(t)eh(t), ∂xξ(t)〉0 −
∫ t

0
〈∂tρ(s), ∂tξ(s)〉0 ds

+ λ

∫ t

0
〈fh(s), ∂tξ(s)〉0 ds−

∫ t

0
〈ξ(s)∂tu(s), ∂xξ(s)〉0 ds−

∫ t

0
〈u(s)∂tξ(s), ∂xξ(s)〉0 ds

−
∫ t

0
〈(∂tVh(s))eh(s), ∂xξ〉0 −

∫ t

0
〈Vh(s)∂teh(s), ∂xξ〉0 =: T1 + · · ·+ T8. (5.2.40)

Recalling (4.2.2) and using the Hölder inequality, we estimate T1, T5 and T6 as

|T1| ≤ ‖u‖L∞(L∞) ‖ξ(t)‖0 ‖∂xξ(t)‖0 ≤ C ‖ξ‖
2
L∞(H0) + Cε ‖∂xξ(t)‖20 ,

|T5| ≤ ‖∂tu‖L∞(L∞)

(∫ t

0
‖ξ(s)‖0 ‖∂xξ(s)‖0 ds

)
≤ C

(
‖ξ‖2L∞(H0) + ‖ξ‖2L2(H1)

)
,

|T6| ≤ ‖u‖L∞(L∞)

∫ t

0
‖∂tξ(s)‖0 ‖∂xξ(s)‖0 ds ≤ Cε

∫ t

0
‖∂tξ(s)‖20 ds+ C ‖ξ‖2L2(H1) .

Similarly, by using Lemma 5.2.1 and (5.2.29) we estimate T2, T7 and T8 as

|T2| ≤ ‖Vh‖L∞(L∞) ‖eh(t)‖L2(Ω) ‖∂xξ(t)‖L2(Ω) ≤ C
(
‖η(t)‖20 + ‖ζ(t)‖20

)
+ Cε ‖∂xξ(t)‖20

≤ C
(
‖η‖2L∞(H0) + ‖ρ‖2L∞(H0) + ‖ξ‖2L∞(H0)

)
+ Cε ‖∂xξ(t)‖20 ,

|T7| ≤
∫ t

0
‖∂tVh(s)‖L∞(Ω) ‖eh(s)‖0 ‖∂xξ(s)‖0 ds

≤ ‖eh‖L∞(H0) ‖∂tVh‖L2(L∞) ‖∂xξ‖L2(H0)

≤ C
(
‖eh‖2L∞(H0) + ‖∂xξ‖2L2(H0)

)
≤ C

(
‖η‖2L∞(H0) + ‖ζ‖2L∞(H0) + ‖∂xξ‖2L2(H0)

)
≤ C

(
‖η‖2L∞(H0) + ‖ρ‖2L∞(H0) + ‖ξ‖2L∞(H0) + ‖ξ‖2L2(H1)

)
,

and

|T8| ≤ ‖Vh‖L∞(L∞)

∫ t

0
‖∂teh(s)‖0 ‖∂xξ(s)‖0 ds

≤ Cε
∫ t

0
‖∂teh(s)‖20 ds+ C ‖∂xξ‖2L2(H0)

≤ C
∫ t

0
‖∂tη(s)‖20 ds+ Cε

∫ t

0
‖∂tζ(s)‖20 ds+ C ‖ξ‖2L2(H1)

≤ C
(
‖∂tη‖2L2(H0) + ‖∂tρ‖2L2(H0) + ‖ξ‖2L2(H1)

)
+ Cε

∫ t

0
‖∂tξ(s)‖20 ds,
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where in the last inequality we used (5.2.31). Finally,

|T3| ≤ C ‖∂tρ‖2L2(H0) + Cε

∫ t

0
‖∂tξ(s)‖20 ds,

and

|T4| ≤ C ‖ρ‖2L∞(H0) + ‖ξ‖2L∞(H0) + Cε

∫ t

0
‖∂tξ(s)‖20 ds.

Hence, (5.2.40) becomes

ν

2
‖∂xξ(t)‖20 +

λ

2
‖ξ(t)‖20 +

∫ t

0
‖∂tξ(s)‖20 ds

≤ C
(
‖ξ‖2L∞(H0) + ‖ξ‖2L2(H1) + ‖η‖2L∞(H0) + ‖ρ‖2L∞(H0) + ‖∂tη‖2L2(H0) + ‖∂tρ‖2L2(H0)

)
+ Cε ‖∂xξ(t)‖20 + Cε

∫ t

0
‖∂tξ(s)‖20 ds.

By choosing ε > 0 sufficiently small so that

ν

2
− Cε > 0 and 1− Cε > 0,

we deduce

‖∂xξ(t)‖20 +

∫ t

0
‖∂tξ(s)‖20 ds ≤ C

(
‖ξ‖2L∞(H0) + ‖ξ‖2L2(H1) + ‖η‖2L∞(H0) + ‖ρ‖2L∞(H0)

+ ‖∂tη‖2L2(H0) + ‖∂tρ‖2L2(H0)

)
.

Thus, (5.2.38) follows from (5.2.32) and Lemma 5.2.2.

Step 3: Finally we prove

‖∂tξ‖L∞(H0) + ‖∂tξ‖L2(H1) ≤ Ch
γ
(
‖u‖L∞(Hp+1) + ‖∂tu‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

+ ‖∂tv‖L∞(Hq+1)

)
. (5.2.41)

By differentiating (5.2.35) with respect to t, noting

A (u; ∂tξ, wh) = 〈ξ∂tu, ∂xwh〉0

and rearranging the terms, we have

〈∂ttξ, wh〉0 + A (u; ∂tξ, wh) = 〈ξ∂tu, ∂xwh〉0 − 〈∂ttρ, ∂xwh〉0 + 〈(∂tVh)eh, ∂xwh〉0

+ 〈Vh∂teh, ∂xwh〉0 + λ 〈∂tfh, wh〉0 ∀wh ∈ Vqh.
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Setting wh = ∂tξ, integrating from 0 to t, and using the coercivity of A (u; ·, ·) and

∂tξ = 0 at t = 0, we obtain

‖∂tξ(t)‖20 +

∫ t

0
‖∂tξ(s)‖21

≤ C
(∫ t

0

∣∣∣ 〈ξ(s)∂tu(s), ∂txξ(s)〉0
∣∣∣ ds+

∫ t

0

∣∣∣ 〈∂ttρ(s), ∂txξ(s)〉0
∣∣∣ ds

+

∫ t

0

∣∣∣ 〈(∂tVh(s))eh(s), ∂txξ(s)〉0
∣∣∣ ds+

∫ t

0

∣∣∣ 〈Vh(s)∂teh(s), ∂txξ(s)〉0
∣∣∣ ds

+

∫ t

0

∣∣∣ 〈∂tfh(s), ∂tξ(s)〉0
∣∣∣ ds) =: T1 + · · ·+ T5.

The right-hand side can be estimated in the same manner as in the proof of Step 2, such

that

|T1| ≤ ‖∂tu‖L∞(L∞)

∫ t

0
‖ξ(s)‖0 ‖∂txξ(s)‖0 ds ≤ C ‖ξ‖L∞(H0) + Cε ‖∂tξ(t)‖21 ,

|T2| ≤ C ‖∂ttρ‖2L2(H0) + Cε

∫ t

0
‖∂tξ(s)‖21 ds,

|T5| ≤ C ‖∂tρ‖2L∞(H0) + ‖∂tξ‖2L∞(H0) + Cε

∫ t

0
‖∂tξ(s)‖21 ds,

and finally we estimate T3 and T4 as

|T3| ≤
∫ t

0
‖∂tVh(s)‖L∞(Ω) ‖eh(s)‖0 ‖∂txξ(s)‖0 ds

≤ ‖eh‖L∞(H0) ‖∂tVh‖L2(L∞) ‖∂txξ‖L2(H0) ≤ C
(
‖eh‖2L∞(H0) + ‖∂txξ‖2L2(H0)

)
≤ C

(
‖η‖2L∞(H0) + ‖ζ‖2L∞(H0) + ‖∂txξ‖2L2(H0)

)
≤ C

(
‖η‖2L∞(H0) + ‖ρ‖2L∞(H0) + ‖ξ‖2L∞(H0) + ‖∂tξ‖2L2(H1)

)
,

and

|T4| ≤ ‖Vh‖L∞(L∞)

∫ t

0
‖∂teh(s)‖0 ‖∂txξ(s)‖0 ds ≤ Cε

∫ t

0
‖∂teh(s)‖20 ds+ C ‖∂txξ‖2L2(H0)

≤ C
∫ t

0
‖∂tη(s)‖20 ds+ Cε

∫ t

0
‖∂tζ(s)‖20 ds+ C ‖∂tξ‖2L2(H1)

≤ C
(
‖∂tη‖2L2(H0) + ‖∂tρ‖2L2(H0) + ‖∂tξ‖2L2(H0)

)
+ Cε

∫ t

0
‖∂tξ(s)‖21 ds,
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where in the last inequality we used (5.2.31). Thus, we have

‖∂tξ(t)‖20 + (1− Cε)
∫ t

0
‖∂tξ(s)‖21 ≤ C

(
‖ξ‖2L∞(H0) + ‖∂ttρ‖2L2(H0) + ‖η‖2L∞(H0)

+ ‖ρ‖2L∞(H0) + ‖∂tη‖2L2(H0) + ‖∂tρ‖2L2(H0)

+ ‖∂tξ‖2L2(H0) + ‖∂tρ‖2L∞(H0)

)
.

Choosing 1−Cε > 0, noting (5.2.32), (5.2.38) and Lemma 5.2.2, thus complete the proof

of the lemma.

Combining the results in Lemmas 5.2.2 and 5.2.3 we are now ready to state the

a priori error estimates in the approximation of (5.1.7)–(5.1.8) by (5.1.12)–(5.1.13).

Theorem 5.2.4. Assume that u ∈W 1
∞(0, T ;H1

0 (Ω) ∩Hp+1(Ω)), and

v ∈W 1
∞(0, T ;Hq+1(Ω)). Assume further that V and V̄h satisfy V − V̄h = ∂tV −∂tV̄h = 0

at t = 0. Then, there exist positive constants C > 0 independent of h such that

‖eh(t)‖j ≤ Ch
min(p+1−j,q+1)

(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1) + ‖∂tv‖L∞(Hq+1)

)
,

‖∂teh(t)‖0 + ‖∂tfh(t)‖0 ≤ Ch
min(p+1,q+1)

(
‖u‖L∞(Hp+1) + ‖∂tu‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

+ ‖∂tv‖L∞(Hq+1)

)
,

‖∂teh(t)‖1 ≤ Ch
min(p,q+1)

(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1) + ‖∂tv‖L∞(Hq+1)

)
,

‖fh(t)‖j ≤ Ch
min(p+1,q+1−j)

(
‖u‖L∞(Hp+1) + ‖v‖L∞(Hq+1) + ‖∂tv‖L∞(Hq+1)

)
and ∫ t

0
‖∂tfh(s)‖1 ds ≤ Ch

min(p+1,q)
(
‖u‖L∞(Hp+1) + ‖∂tu‖L∞(Hp+1) + ‖v‖L∞(Hq+1)

+ ‖∂tv‖L∞(Hq+1)

)
for j = 0, 1.

5.3 A posteriori error estimation

In this section, we design strategies to compute a posteriori error estimates from the

finite element solutions Uh and Vh computed by using (5.1.12)–(5.1.13).
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We approximate the true errors eh and fh, see (5.2.16), by E ∈ Sp+1
h and F ∈ Sq+1

h ,

respectively. From (5.1.12)–(5.1.13) and (5.1.7)–(5.1.8), we infer that the true errors

satisfy

〈∂xeh(t), ∂xχh〉0 = 〈fh(t), ∂xχh〉0 ∀χh ∈ V̊ph, (5.3.1)

and

〈∂tfh(t), wh〉0 + ν 〈∂xfh(t), ∂xwh〉0 − 〈eh(t)fh(t), ∂xwh〉0 − 〈Uh(t)fh(t), ∂xwh〉0

− 〈Vh(t)eh(t), ∂xwh〉0 = −ν 〈∂xVh(t), ∂xwh〉0 + 〈Uh(t)Vh(t), ∂xwh〉0

− 〈∂tVh(t), wh〉0 ∀wh ∈ Vqh. (5.3.2)

At t = 0, noting (5.1.9) and (5.1.14), we have

〈fh(0), wh〉0 = 0 ∀wh ∈ Vqh. (5.3.3)

Due to (5.1.13), the right hand side of (5.3.2) vanishes. However, for the purpose of

developing a posteriori error estimates, we keep these terms in the equation as indication

of how the a posteriori error estimation should be.

By using the local inner product (2.2.1), we propose to approximate the exact errors

eh and fh, respectively, by E ∈ Sp+1
h and F ∈ Sq+1

h , where E and F are computed locally

on Ωl, l = 1, . . . , N , by one of the following four methods.

Method (i): Nonlinear parabolic error estimate

Let E ∈ Sp+1
h and F ∈ Sq+1

h be defined on Ωl by

〈∂xE(t), ∂xχ̂h〉0,Ωl
= 〈F (t), ∂xχ̂h〉0,Ωl

+ 〈Vh(t), ∂xχ̂〉0,Ωl
(5.3.4)

for any χ̂h ∈ Sp+1
h and

〈∂tF (t), ŵh〉0,Ωl
+ ν 〈∂xF (t), ∂xŵh〉0,Ωl

− 〈E(t)F (t), ∂xŵh〉0,Ωl
− 〈Uh(t)F (t), ∂xŵh〉0,Ωl

− 〈Vh(t)E(t), ∂xŵh〉0,Ωl
= 〈Uh(t)Vh(t), ∂xŵh〉0,Ωl

− 〈∂tVh(t), ŵh〉0,Ωl
(5.3.5)

for any ŵh ∈ Sq+1
h at t ∈ (0, T ]. An initial condition at t = 0 is defined by

〈F (0), ŵh〉0,Ωl
= 〈∂xu0, ŵh〉0,Ωl

− 〈Vh(0), ŵh〉0,Ωl
(5.3.6)
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for any ŵh ∈ Sq+1
h .

Method (ii): Nonlinear elliptic error estimate

Let E ∈ Sp+1
h and F ∈ Sq+1

h be defined on Ωl by

〈∂xE(t), ∂xχ̂h〉0,Ωl
= 〈F (t), ∂xχ̂h〉0,Ωl

+ 〈Vh(t), ∂xχ̂〉0,Ωl
(5.3.7)

for any χ̂h ∈ Sp+1
h and

ν 〈∂xF (t), ∂xŵh〉0,Ωl
− 〈E(t)F (t), ∂xŵh〉0,Ωl

− 〈Uh(t)F (t), ∂xŵh〉0,Ωl

− 〈Vh(t)E(t), ∂xŵh〉0,Ωl
= 〈Uh(t)Vh(t), ∂xŵh〉0,Ωl

− 〈∂tVh(t), ŵh〉0,Ωl
(5.3.8)

for any ŵh ∈ Sq+1
h at t ∈ (0, T ]. An initial condition at t = 0 is defined by

〈F (0), ŵh〉0,Ωl
= 〈∂xu0, ŵh〉0,Ωl

− 〈Vh(0), ŵh〉0,Ωl
(5.3.9)

for any ŵh ∈ Sq+1
h .

Method (iii): Linear parabolic error estimate

Let E ∈ Sp+1
h and F ∈ Sq+1

h be defined on Ωl by

〈∂xE(t), ∂xχ̂h〉0,Ωl
= 〈F (t), ∂xχ̂h〉0,Ωl

+ 〈Vh(t), ∂xχ̂〉0,Ωl
(5.3.10)

for any χ̂h ∈ Sp+1
h and

〈∂tF (t), ŵh〉0,Ωl
+ ν 〈∂xF (t), ∂xŵh〉0,Ωl

− 〈Uh(t)F (t), ∂xŵh〉0,Ωl

− 〈Vh(t)E(t), ∂xŵh〉0,Ωl
= 〈Uh(t)Vh(t), ∂xŵh〉0,Ωl

− 〈∂tVh(t), ŵh〉0,Ωl
(5.3.11)

for any ŵh ∈ Sq+1
h at t ∈ (0, T ]. An initial condition at t = 0 is defined by

〈F (0), ŵh〉0,Ωl
= 〈∂xu0, ŵh〉0,Ωl

− 〈Vh(0), ŵh〉0,Ωl
(5.3.12)

for any ŵh ∈ Sq+1
h .

Method (iv): Linear elliptic error estimate

Let E ∈ Sp+1
h and F ∈ Sq+1

h be defined on Ωl by

〈∂xE(t), ∂xχ̂h〉0,Ωl
= 〈F (t), ∂xχ̂h〉0,Ωl

+ 〈Vh(t), ∂xχ̂〉0,Ωl



5.3 A posteriori error estimation 81

for any χ̂h ∈ Sp+1
h and

ν 〈∂xF (t), ∂xŵh〉0,Ωl
− 〈Uh(t)F (t), ∂xŵh〉0,Ωl

− 〈Vh(t)E(t), ∂xŵh〉0,Ωl

= 〈Uh(t)Vh(t), ∂xŵh〉0,Ωl
− 〈∂tVh(t), ŵh〉0,Ωl

(5.3.13)

for any ŵh ∈ Sq+1
h at t ∈ (0, T ]. An initial condition at t = 0 is defined by

〈F (0), ŵh〉0,Ωl
= 〈∂xu0, ŵh〉0,Ωl

− 〈Vh(0), ŵh〉0,Ωl
(5.3.14)

for any ŵh ∈ Sq+1
h .

We note that, in the computation of a posteriori error estimator F , an additional sav-

ing on the computation cost is obtained by neglecting the time rate of change in (5.3.5),

thus reducing the nonlinear parabolic equation of Method (i) by the nonlinear elliptic

equation (5.3.8) of Method (ii). Lastly, for Method (iii) and Method (iv), we neglect the

term 〈E(t)F (t), ∂xŵh〉0,Ωl
respectively in (5.3.5) of Method (i) and in (5.3.8) of Method

(ii) to have linear parabolic equation (5.3.11) and linear elliptic equation (5.3.13).

Since suppφl,k = Ω̄l, if ψ ∈ H0(Ω) then the statement

〈ψ, χ̂h〉0 = 0 ∀χ̂h ∈ Sp+1
h

is equivalent to

〈ψ, χ̂h〉0,Ωl
= 0 ∀χ̂h ∈ Sp+1

h , l = 1, . . . , N.

Hence, in fact (5.3.4)–(5.3.14) hold for the inner product on the whole domain Ω.

In order to emphasize on the polynomial degrees p and q, as in the remaining part

we will need different projection onto spaces of different polynomial degree, we rewrite

Ūh,p := Ūh ∈W 1
∞(0, T ; V̊ph) and V̄h,q := V̄h ∈W 1

∞(0, T ;Vqh), where Ūh and V̄h are defined

by (5.2.11)–(5.2.12).

Letting ê such that

ê(t) := ‖eh(t)‖1 + ‖fh(t)‖1

where ‖eh(t)‖1 and ‖fh(t)‖1 are defined in Theorem 5.2.4 and letting Ê such that

Ê(t) := ‖E(t)‖1 + ‖F (t)‖1 ,
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we then define the effectivity index Θ as follows

Θ(t) =
Ê(t)

ê(t)
.

We now state the main result of this section.

Theorem 5.3.1. Let V̄h,q be defined by (5.2.12) and V̌h,q ∈ Vqh be defined by

〈
v − V̌h,q, wh

〉
1

= 0 ∀wh ∈ Vqh. (5.3.15)

Assume that the Conjecture 4.3.1 holds and assume that

ê(t) ≥ Chmin(p,q). (5.3.16)

Then the approximate errors E ∈ Sp+1
h and F ∈ Sq+1

h defined by Method (i)–Method (iv)

satisfy for almost all t ∈ [0, T ]

lim
h→0

Θ(t) = 1.

We now provide the proof of Theorem 5.3.1, which is based on the following lemmas.

For the analysis, we define ē ∈ Sp+1
h and f̄ ∈ Sq+1

h such that for l = 1, . . . , N

〈∂xē(t), ∂xχ̂h〉0,Ωl
=
〈
∂xu(t)− ∂xŪh,p(t), ∂xχ̂h

〉
0,Ωl

∀χ̂h ∈ Sp+1
h (5.3.17)

and

Al(u(t); f̄h(t), ŵh) = Al(u(t); v(t)− V̄h,q(t), ŵh) ∀ŵh ∈ Sq+1
h , (5.3.18)

where Al(u; ·, ·) is defined as A (u; ·, ·) but on Ωl.

Similar to the previous chapter, letting

η̄ = u−
(
Ūh,p + ē

)
, ζ̄ = ē− E, ρ̄ = v −

(
V̄h,q + f̄

)
, ξ̄ = f̄ − F, (5.3.19)

we rewrite:

eh − E = η̄ + ζ̄ + ζ and fh − F = ρ̄+ ξ̄ + ξ. (5.3.20)

In the remaining part, we focus on estimating ζ̄, ρ̄ and ξ̄ of (5.3.20). We note that

the estimates of ‖ζ(t)‖1 and ‖ξ(t)‖1 are presented in Lemma 5.2.3. We also note that

from Lemma 4.3.3 we have

‖η̄(t)‖1 ≤ Ch
p+1 ‖u(t)‖p+2 . (5.3.21)
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We now focus the estimation of ‖ρ̄(t)‖1. In general, we have

A (u; f̄ , wh) 6= 0 ∀wh ∈ Vqh,

where V̄h,q + f̄ is not the elliptic projection V̄h,q+1 of v into Vq+1
h ; see (5.2.12). However,

V̄h,q + f̄ approximates v with same order of convergence as V̄h,q+1. In order to show

this we first attempt to obtain two superconvergence results (Lemma 5.3.2 and Lemma

5.3.3).

Lemma 5.3.2. Assume that v ∈ W 1
∞(0, T ;Hq+2(Ω)). Let V̄h,q be defined by (5.2.12)

and V̌h,q ∈ Vqh be defined by (5.3.15). Then∥∥V̄h,q(t)− V̌h,q(t)∥∥1
≤ Chq+1 ‖v(t)‖q+1 , (5.3.22)

and ∥∥∂tV̄h,q(t)− ∂tV̌h,q(t)∥∥1
≤ Chq+1

(
‖v(t)‖q+1 + ‖∂tv(t)‖q+1

)
. (5.3.23)

Proof. Firstly, we prove (5.3.22). From (5.3.15) we have,∥∥V̄h,q(t)− V̌h,q(t)∥∥2

1
=
〈
(V̄h,q − v) + (v − V̌h,q), V̄h,q − V̌h,q

〉
1

=
〈
V̄h,q − v, V̄h,q − V̌h,q

〉
1
.

Noting that〈
∂xV̄h,q − ∂xv, ∂xV̄h,q − ∂xV̌h,q

〉
0

=
1

ν
A (u; V̄h,q − v, V̄h,q − V̌h,q)

+
1

ν

〈
u(V̄h,q − v), ∂xV̄h,q − ∂xV̌h,q

〉
0

− λ

ν

〈
V̄h,q − v, V̄h,q − V̌h,q

〉
0

and A (u; V̄h,q − v, V̄h,q − V̌h,q) = 0 due to (5.2.12), we deduce∥∥V̄h,q(t)− V̌h,q(t)∥∥2

1
=
〈
V̄h,q − v, V̄h,q − V̌h,q

〉
0

+
1

ν

〈
u(V̄h,q − v), ∂xV̄h,q − ∂xV̌h,q

〉
0

− λ

ν

〈
V̄h,q − v, V̄h,q − V̌h,q

〉
0

≤
∥∥V̄h,q(t)− v(t)

∥∥
0

∥∥V̄h,q(t)− V̌h,q(t)∥∥0

+
C

ν

∥∥V̄h,q(t)− v(t)
∥∥

0

∥∥∂xV̄h,q(t)− ∂xV̌h,q(t)∥∥0

+
λ

ν

∥∥V̄h,q(t)− v(t)
∥∥

0

∥∥V̄h,q(t)− V̌h,q(t)∥∥0

≤ C
∥∥V̄h,q(t)− v(t)

∥∥
0

∥∥V̄h,q(t)− V̌h,q(t)∥∥1
.
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This implies ∥∥V̄h,q(t)− V̌h,q(t)∥∥1
≤ C

∥∥V̄h,q(t)− v(t)
∥∥

0

and the desired estimate (5.3.22) followed from (5.2.20).

It remains to prove (5.3.23). By differentiating (5.3.15) with respect to t, we have

〈
∂tv − ∂tV̌h,q, wh

〉
1

= 0 ∀wh ∈ Vqh.

This together with (5.2.23) gives

∥∥∂tV̄h,q(t)− ∂tV̌h,q(t)∥∥2

1
=
〈
∂tV̄h,q − ∂tv, ∂tV̄h,q − ∂tV̌h,q

〉
1

=
〈
∂tV̄h,q − ∂tv, ∂tV̄h,q − ∂tV̌h,q

〉
0

+
1

ν
A (u; ∂tV̄h,q − ∂tv, ∂tV̄h,q − ∂tV̌h,q)

+
1

ν

〈
u(∂tV̄h,q − ∂tv), ∂txV̄h,q − ∂txV̌h,q

〉
0
− λ

ν

〈
∂tV̄h,q − ∂tv, ∂tV̄h,q − ∂tV̌h,q

〉
0

=
〈
∂tV̄h,q − ∂tv, ∂tV̄h,q − ∂tV̌h,q

〉
0

+
1

ν

〈
(∂tu)(V̄h,q − v), ∂txV̄h,q − ∂txV̌h,q

〉
0

+
1

ν

〈
u(∂tV̄h,q − ∂tv), ∂txV̄h,q − ∂txV̌h,q

〉
0
− λ

ν

〈
∂tV̄h,q − ∂tv, ∂tV̄h,q − ∂tV̌h,q

〉
0

≤ C
(∥∥∂tV̄h,q(t)− ∂tv(t)

∥∥
0

+
∥∥V̄h,q(t)− v(t)

∥∥
0

)∥∥∂tV̄h,q(t)− ∂tV̌h,q(t)∥∥1
,

implying

∥∥∂tV̄h,q(t)− ∂tV̌h,q(t)∥∥1
≤ C

(∥∥∂tV̄h,q(t)− ∂tv(t)
∥∥

0
+
∥∥V̄h,q(t)− v(t)

∥∥
0

)
.

Thus, by noting that v − V̄h = ρ, (5.3.23) follows from (5.2.21) and (5.2.20).

Lemma 5.3.3. Let f̌ ∈ Sq+1
h be defined by

〈
f̌ , ŵh

〉
1

=
〈
v − V̌h,q, ŵh

〉
1
∀ŵh ∈ Sq+1

h , (5.3.24)

where V̌h,q is defined by (5.3.15). Assume that v ∈ W 1
∞(0, T ;Hq+2(Ω)) and the Conjec-

ture 4.3.1 is satisfied. Then there holds

∥∥∂itv(t)− ∂itV̌h,q(t)− ∂it f̌(t)
∥∥

1
≤ Chq+1

(
‖v(t)‖q+2 +

∥∥∂itv(t)
∥∥
q+2

)
, i = 0, 1,

where ∂it = ∂i/∂ti, i = 0, 1.
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Proof. Let V̌h,q+1 ∈ Vq+1
h be defined by the same equation (5.3.15) with polynomial

degree q + 1 instead of q. Then, by using standard finite element arguments we have

∥∥∂itv(t)− ∂itV̌h,q+1(t)
∥∥

1
≤ Chq+1

(
‖v(t)‖q+2 +

∥∥∂itv(t)
∥∥
q+2

)
.

Therefore, by using the triangle inequality we obtain

∥∥∂itv(t)− ∂itV̌h,q(t)− ∂it f̌(t)
∥∥

1

≤
∥∥∂itv(t)− ∂itV̌h,q+1(t)

∥∥
1

+
∥∥∂itV̌h,q+1(t)− ∂itV̌h,q(t)− f̌(t)

∥∥
1

≤ Chq+1 +
∥∥∂itV̌h,q+1(t)− ∂itV̌h,q(t)− ∂it f̌(t)

∥∥
1
. (5.3.25)

The lemma will be proved if we can prove
∥∥∂itV̌h,q+1(t)− ∂itV̌h,q(t)− ∂it f̌(t)

∥∥
1
≤ Chq+1.

By noting that Vq+1
h = Vqh ⊕ S

q+1
h , we can write V̌h,q+1 as

V̌h,q+1 = Ṽh,q + f̃ where Ṽh,q ∈ Vqh and f̃ ∈ Sq+1
h . (5.3.26)

We also note that

〈
∂tf̌ , ŵh

〉
1

=
〈
∂tv − ∂tV̌h,q, ŵh

〉
1
∀ŵh ∈ Sq+1

h .

This together with (5.3.24) and the definition of V̌h,q+1 gives∥∥∥∂(i)
t V̌h,q+1(t)− ∂(i)

t V̌h,q(t)− ∂it f̌(t)
∥∥∥2

1

=
〈
∂

(i)
t v − ∂(i)

t V̌h,q − ∂
(i)
t f̌), ∂itV̌h,q+1 − ∂itV̌h,q − ∂it f̌

〉
1

=
〈
∂

(i)
t v − ∂(i)

t V̌h,q − ∂it f̌ , ∂itṼh,q − ∂itV̌h,q
〉

1
+
〈
∂

(i)
t v − ∂(i)

t V̌h,q − ∂it f̌ , ∂it f̃ − ∂it f̌
〉

1

=
〈
∂

(i)
t V̌h,q+1 − ∂

(i)
t V̌h,q − ∂it f̌ , ∂itṼh,q − ∂itV̌h,q

〉
1

≤
∥∥∥∂(i)

t V̌h,q+1(t)− ∂(i)
t V̌h,q(t)− ∂it f̌(t)

∥∥∥
1

∥∥∥∂(i)
t Ṽh,q(t)− ∂

(i)
t V̌h,q(t)

∥∥∥
1
.

This implies∥∥∥∂(i)
t V̌h,q+1(t)− ∂(i)

t V̌h,q(t)− ∂it f̌(t)
∥∥∥

1
≤
∥∥∥∂(i)

t Ṽh,q(t)− ∂
(i)
t V̌h,q(t)

∥∥∥
1
.

With Conjecture 4.3.1, we obtain the required result.

We are now able to estimate ‖ρ̄(t)‖1 and ‖∂tρ̄(t)‖1.
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Lemma 5.3.4. If v ∈W 1
∞(0, T ;Hq+2(Ω)), then

‖ρ̄(t)‖1 ≤ Ch
q+1 ‖v(t)‖q+2 , (5.3.27)

‖∂tρ̄(t)‖1 ≤ Ch
q+1
(
‖v(t)‖q+2 + ‖∂tv(t)‖q+2

)
. (5.3.28)

Proof. By using the coercivity of the bilinear form A (u; ·, ·), noting A (u; ρ̄, f̄) = 0 and

Hölder’s inequality, we have

‖ρ̄(t)‖21 ≤ CA (u; ρ̄, v − V̄h,q − f̄) = CA (u; ρ̄, v − V̄h,q) = CA (u; ρ̄, v − V̄h,q − f̌)

≤ C ‖ρ̄(t)‖1
∥∥v(t)− V̄h,q(t)− f̌(t)

∥∥
1
,

implying

‖ρ̄(t)‖1 ≤ C
∥∥v(t)− V̄h,q(t)− f̌(t)

∥∥
1
≤ C

∥∥V̌h,q(t)− V̄h,q(t)∥∥1
+C

∥∥v(t)− V̌h,q(t)− f̌(t)
∥∥

1
.

The desired estimate (5.3.27) now follows from (5.3.22) and Lemma 5.3.3 (at j = 0).

It remains to prove (5.3.28). The same argument as in the proof of Lemma 5.2.2

is used here. First we note that ∂tf̄ is not the projection of ∂tρ by the bilinear form

A (u; ·, ·). In fact, we have

A (u; ∂tρ̄, ŵh) = A (u; ∂tρ− ∂tf̄ , ŵh) = 〈(∂tu)ρ̄, ∂xŵh〉0 ∀ŵh ∈ Sq+1
h . (5.3.29)

Let f∗ ∈ Sq+1
h be defined by

A (u; ∂tρ− f∗, ŵh) = 0 ∀ŵh ∈ Sq+1
h . (5.3.30)

By using the triangle inequality, we have

‖∂tρ̄(t)‖1 ≤ ‖∂tρ(t)− f∗(t)‖1 +
∥∥f∗(t)− ∂tf̄(t)

∥∥
1

=: T1 + T2. (5.3.31)

Noting (5.3.30) we have

T 2
1 ≤ CA (u; ∂tρ− f∗, ∂tρ− f∗) = CA (u; ∂tρ− f∗, ∂tρ) = CA (u; ∂tρ− f∗, ∂tρ− ∂tf̌)

≤ C ‖∂tρ(t)− f∗(t)‖1
∥∥∂tρ(t)− ∂tf̌(t)

∥∥
1
,

implying

T1 ≤ C
∥∥∂tρ(t)− ∂tf̌(t)

∥∥
1

= C
∥∥∂tv(t)− ∂tV̄h,q(t)− ∂tf̌(t)

∥∥
1

≤ C
∥∥∂tV̌h,q(t)− ∂tV̄h,q(t)∥∥1

+ C
∥∥∂tv(t)− ∂tV̌h,q(t)− ∂tf̌(t)

∥∥
1

≤ Chq+1
(
‖v(t)‖q+2 + ‖∂tv(t)‖q+2

)
(5.3.32)



5.3 A posteriori error estimation 87

due to (5.3.23) and Lemma 5.3.3 (at j = 1). To estimate T2, by referring to (5.3.30) and

using (5.3.29), we have

T 2
2 ≤ CA (u; f∗ − ∂tf̄ , f∗ − ∂tf̄) = CA (u; ∂tρ̄, f

∗ − ∂tf̄) = C
〈
(∂tu)ρ̄, ∂x(f∗ − ∂tf̄)

〉
0

≤ C ‖ρ̄(t)‖0
∥∥f∗(t)− ∂tf̄(t)

∥∥
1
,

implying

T2 ≤ C ‖ρ̄(t)‖0 ≤ Ch
q+1 ‖v(t)‖q+2 . (5.3.33)

Inequality (5.3.28) now follows from (5.3.32) and (5.3.33).

The following lemmas give the estimate of ξ̄ and ζ̄ in the H1(Ω)-norm.

Lemma 5.3.5. Assume that u ∈W 1
∞(0, T ;H1

0 (Ω)∩Hp+2(Ω)), and v ∈W 1
∞(0, T ;Hq+2(Ω)).

Then the following estimates hold:

∥∥ζ̄∥∥
W 1
∞(H1)

≤ Chγ
(
‖u‖L∞(Hp+2) + ‖∂tu‖L∞(Hp+2) + ‖v‖L∞(Hq+2)

+ ‖∂tv‖L∞(Hp+2)

)
(5.3.34)

and

∥∥ξ̄∥∥
L∞(H0)

+
∥∥ξ̄∥∥

L2(H1)
≤ Chγ

(
‖u‖L∞(Hp+2) + ‖∂tu‖L∞(Hp+2) + ‖v‖L∞(Hq+2)

+ ‖∂tv‖L∞(Hq+2)

)
, (5.3.35)

where C = C(λ, ν, T ) and γ = min(p+ 1, q + 1).

Proof. We present the proof only for the case that E and F are defined by (5.3.10) and

(5.3.11). It follows from (5.3.20) and (5.3.17) that for any χ̂h ∈ Sq+1
h we have

〈
∂xζ̄, ∂xχ̂h

〉
0

= 〈∂xeh, ∂xχ̂h〉0 − 〈∂xE, ∂xχ̂h〉0 − 〈∂xζ, ∂xχ̂h〉0 ∀χ̂h ∈ Sp+1
h .

By orthogonality of the Legendre polynomials we have 〈∂xUh, ∂xχ̂h〉0 = 0. Therefore,

rewriting eh = u− Uh, using (5.1.7) and (5.3.10) we obtain

〈
∂xζ̄, ∂xχ̂h

〉
0

= 〈v, ∂xχ̂h〉0 − 〈F, ∂xχ̂h〉0 − 〈Vh, ∂xχ̂h〉0 − 〈∂xζ, ∂xχ̂h〉0 ∀χ̂h ∈ Sp+1
h .
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Recalling that v − Vh − F = ρ̄+ ξ̄ + ξ we have

〈
∂xζ̄, ∂xχ̂h

〉
0

= 〈ρ̄, ∂xχ̂h〉0 +
〈
ξ̄, ∂xχ̂h

〉
0

+ 〈ξ, ∂xχ̂h〉0 − 〈∂xζ, ∂xχ̂h〉0 ∀χ̂h ∈ Sp+1
h .

Substituting χ̂h = ζ̄ ∈ Sp+1
h , using Hölder’s inequality and simplifying we deduce

∥∥∂xζ̄(t)
∥∥

0
≤ ‖ρ̄(t)‖0 +

∥∥ξ̄(t)∥∥
0

+ ‖ξ(t)‖0 + ‖∂xζ(t)‖0 .

The Poincaré inequality yields

∥∥ζ̄(t)
∥∥

1
≤ C

(
‖ρ̄(t)‖0 +

∥∥ξ̄(t)∥∥
0

+ ‖ξ(t)‖0 + ‖ζ(t)‖1
)
. (5.3.36)

By noting Lemma 5.3.4 and Lemma 5.2.3 we have

∥∥ζ̄∥∥
L∞(H1)

≤ Chγ
(
‖u‖L∞(Hp+1) + ‖∂tu‖L∞(Hp+1) + ‖v‖L∞(Hq+2) + ‖∂tv‖L2(Hq+1)

)
+
∥∥ξ̄∥∥

L∞(H0)
.

Therefore, (5.3.34) is proved if we prove (5.3.35).

Noting the definition of ξ̄ in (5.3.19) and using (5.3.11), for any ŵh ∈ Sq+1
h we have

〈
∂tξ̄, ŵh

〉
0

=
〈
∂tf̄ , ŵh

〉
0
− 〈∂tF , ŵh〉0

= 〈∂tρ, ŵh〉0 − 〈∂tρ̄, ŵh〉0 + ν 〈∂xF , ∂xŵh〉0 − 〈UhF , ∂xŵh〉0 − 〈VhE, ∂xŵh〉0

− 〈UhVh, ∂xŵh〉0 + 〈∂tVh, ŵh〉0 .

Recalling that ∂tVh = ∂tv − ∂tfh and using (5.1.8) we have

〈
∂tξ̄, ŵh

〉
0

= 〈∂tρ, ŵh〉0 − 〈∂tρ̄, ŵh〉0 + ν 〈∂xF , ∂xŵh〉0 − 〈UhF , ∂xŵh〉0 − 〈VhE, ∂xŵh〉0

− 〈UhVh, ∂xŵh〉0 − ν 〈∂xv, ∂xŵh〉0 + 〈uv, ∂xŵh〉0 − 〈∂tfh, ŵh〉0

for any ŵh ∈ Sq+1
h . By rearranging the terms, rewriting E = η− η̄− ζ̄ and F = ρ− ρ̄− ξ̄

we deduce

〈
∂tξ̄, ŵh

〉
0

= 〈∂tρ, ŵh〉0 − 〈∂tρ̄, ŵh〉0 − 〈UhF , ∂xŵh〉0 − 〈VhE, ∂xŵh〉0 − 〈UhVh, ∂xŵh〉0

+ 〈uv, ∂xŵh〉0 − 〈∂tfh, ŵh〉0 − ν 〈∂xv − ∂xF , ∂xŵh〉0

= 〈∂tρ, ŵh〉0 − 〈∂tρ̄, ŵh〉0 −
〈
Uh(ρ− ρ̄− ξ̄), ∂xŵh

〉
0
−
〈
Vh(η − η̄ − ζ̄), ∂xŵh

〉
0

+ 〈uv − UhVh, ∂xŵh〉0 − 〈∂tfh, ŵh〉0 − ν 〈∂xv − ∂xF , ∂xŵh〉0 . (5.3.37)
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Since 〈∂xVh, ∂xŵh〉0 = 0 due to the orthogonality of the Legendre polynomials there

holds by using (5.3.20), the definition of the bilinear form A (u; ·, ·) and (5.3.18)

ν 〈∂xv − ∂xF , ∂xŵh〉0 = ν 〈∂x(v − Vh − F ), ∂xŵh〉0 = ν
〈
∂xξ + ∂x(ρ̄+ ξ̄), ∂xŵh

〉
0

= ν 〈∂xξ, ∂xŵh〉0 + A (u; ρ̄+ ξ̄, ŵh) +
〈
u(ρ̄+ ξ̄), ∂xŵh

〉
0

− λ
〈
ρ̄+ ξ̄, ŵh

〉
0

= ν 〈∂xξ, ∂xŵh〉0 + A (u; ξ̄, ŵh) +
〈
u(ρ̄+ ξ̄), ∂xŵh

〉
0

− λ
〈
ρ̄+ ξ̄, ŵh

〉
0
. (5.3.38)

Noting that uv − UhVh = u(fh + Vh)− UhVh = ehv + fhUh, it follows from (5.3.37) and

(5.3.38) that

〈
∂tξ̄, ŵh

〉
0

+ A (u; ξ̄, ŵh) = 〈∂tρ, ŵh〉0 − 〈∂tρ̄, ŵh〉0 −
〈
Uh(ρ− ρ̄− ξ̄), ∂xŵh

〉
0

−
〈
Vh(η − η̄ − ζ̄), ∂xŵh

〉
0

+ 〈ehv, ∂xŵh〉0 + 〈fhUh, ∂xŵh〉0

− 〈∂tfh, ŵh〉0 − ν 〈∂xξ, ∂xŵh〉0 −
〈
u(ρ̄+ ξ̄), ∂xŵh

〉
0

+ λ
〈
ρ̄+ ξ̄, ŵh

〉
0
∀ŵh ∈ Sq+1

h . (5.3.39)

Substituting ŵh = ξ̄ ∈ Sq+1
h and using Hölder’s inequality we obtain

1

2

d

dt

∥∥ξ̄(t)∥∥2

0
+ α

∥∥ξ̄(t)∥∥2

1
≤ C

(
‖∂tρ(t)‖0 + ‖∂tρ̄(t)‖0 + ‖ρ(t)‖0 + ‖ρ̄(t)‖0 + ‖η(t)‖0

+ ‖η̄(t)‖0 +
∥∥ζ̄(t)

∥∥
0

+ ‖eh(t)‖0 + ‖fh(t)‖0 + ‖∂tfh(t)‖0

+ ‖ξ(t)‖1
)∥∥ξ̄(t)∥∥

1

≤ C
(
‖∂tρ(t)‖20 + ‖∂tρ̄(t)‖20 + ‖ρ(t)‖20 + ‖ρ̄(t)‖20 + ‖η(t)‖20

+ ‖η̄(t)‖20 + ‖ξ(t)‖20 + ‖ζ(t)‖21 + ‖eh(t)‖20 + ‖fh(t)‖20

+ ‖∂tfh(t)‖20 + ‖ξ(t)‖21
)

+ Cε
∥∥ξ̄(t)∥∥

1
, (5.3.40)

where in the last inequality we used (5.3.36) for the term
∥∥ζ̄(t)

∥∥
1
. Thus, rearranging the

terms in (5.3.40), choosing ε > 0 sufficiently small such that α−Cε > 0 and integrating
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from 0 to t we have

∥∥ξ̄(t)∥∥2

0
+

∫ t

0

∥∥ξ̄(s)∥∥2

1
ds ≤ C

∫ t

0

(
‖∂tρ(s)‖20 + ‖∂tρ̄(s)‖20 + ‖ρ(s)‖20 + ‖ρ̄(s)‖20 + ‖η(s)‖20

+ ‖η̄(s)‖20 + ‖ξ(s)‖20 + ‖ζ(s)‖21 + ‖eh(s)‖20 + ‖fh(s)‖20

+ ‖∂tfh(s)‖20 + ‖ξ(s)‖21
)
ds.

Hence, the desired estimate (5.3.35) followed by noting Lemma 5.2.2, Theorem 5.2.4,

Lemma 5.2.3, (5.2.32) and Lemma 5.3.4.

In the remaining part of this section, we estimate
∥∥ξ̄(t)∥∥

1
.

Lemma 5.3.6. Let the assumption in Lemma 5.3.5 be satisfied. Then for any t > 0,

there holds

∥∥ξ̄∥∥
L∞(H1)

+
∥∥∂tξ̄∥∥L2(H0)

≤ Chγ
(
‖u‖L∞(Hp+2) + ‖∂tu‖L∞(Hp+2) + ‖v‖L∞(Hq+2)

+ ‖∂tv‖L∞(Hq+2)

)
,

where C = C(λ, ν, T ) and γ = min(p+ 1, q + 1).

Proof. Substituting ŵh = ∂tξ̄ ∈ Sq+1
h in (5.3.39) gives

∥∥∂tξ̄(t)∥∥2

0
+ A (u; ξ̄, ∂tξ̄) =

〈
∂tρ, ∂tξ̄

〉
0
−
〈
∂tρ̄, ∂tξ̄

〉
0
−
〈
Uh(ρ− ρ̄− ξ̄), ∂txξ̄

〉
0

−
〈
Vh(η − η̄ − ζ̄), ∂txξ̄

〉
0

+
〈
ehv, ∂txξ̄

〉
0

+
〈
fhUh, ∂txξ̄

〉
0

−
〈
∂tfh, ∂tξ̄

〉
0
− ν

〈
∂xξ, ∂txξ̄

〉
0
−
〈
u(ρ̄+ ξ̄), ∂txξ̄

〉
0

+ λ
〈
ρ̄+ ξ̄, ∂tξ̄

〉
0
.

Integrating from 0 to t, noting

A (u; ξ̄, ∂tξ̄) =
ν

2

d

dt

∥∥∂xξ̄(t)∥∥2

0
+
λ

2

d

dt

∥∥ξ̄(t)∥∥2

0
− d

dt

〈
uξ̄, ∂xξ̄

〉
0

+
〈
ξ̄∂tu, ∂xξ̄

〉
0

+
〈
u∂tξ̄, ∂xξ̄

〉
0
,

and rearranging the terms give

ν

2

∥∥∂xξ̄(t)∥∥2

0
+
λ

2

∥∥ξ̄(t)∥∥2

0
+

∫ t

0

∥∥∂tξ̄(s)∥∥2

0
ds =: T1 + T2 + · · ·+ T13 (5.3.41)
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where

T1 =
〈
u(t)ξ̄(t), ∂xξ̄(t)

〉
, T2 = −

∫ t

0

〈
ξ̄(s)∂tu(s), ∂xξ̄(s)

〉
0
ds,

T3 = −
∫ t

0

〈
u∂tξ̄(s), ∂xξ̄(s)

〉
0
ds, T4 =

∫ t

0

〈
∂tρ(s), ∂tξ̄(s)

〉
0
ds,

T5 = −
∫ t

0

〈
∂tρ̄(s), ∂tξ̄(s)

〉
0
ds, T6 = −

∫ t

0

〈
Uh(s)(ρ(s)− ρ̄(s)− ξ̄(s)), ∂txξ̄(s)

〉
0
ds,

T7 = −
∫ t

0

〈
Vh(s)(η(s)− η̄(s)− ζ̄(s)), ∂txξ̄(s)

〉
0
ds, T8 =

∫ t

0

〈
eh(s)v(s), ∂txξ̄(s)

〉
0
ds,

T9 =

∫ t

0

〈
fh(s)Uh(s), ∂txξ̄(s)

〉
0
ds, T10 = −

∫ t

0

〈
∂tfh(s), ∂tξ̄(s)

〉
0
ds,

T11 = −
∫ t

0
ν
〈
∂xξ(s), ∂txξ̄(s)

〉
0
ds, T12 = −

∫ t

0

〈
u(s)(ρ̄(s) + ξ̄(s)), ∂txξ̄(s)

〉
0
ds

and

T13 = λ

∫ t

0

〈
ρ̄(s) + ξ̄(s), ∂tξ̄(s)

〉
0
ds.

It suffices to estimate those terms on the right hand side containing ∂txξ̄. These terms

can be estimated by

T6 =
〈
Uh(t)

(
ρ(t)− ρ̄(t)− ξ̄(t)

)
, ∂xξ̄(t)

〉
0
−
∫ t

0

〈
(∂tUh(s))

(
ρ− ρ̄− ξ̄

)
(s), ∂xξ̄(s)

〉
0
ds

−
∫ t

0

〈
Uh(s)∂t

(
ρ− ρ̄− ξ̄

)
(s), ∂xξ̄(s)

〉
0
ds,

T7 =
〈
Vh(t)

(
η(t)− η̄(t)− ζ̄(t)

)
, ∂xξ̄(t)

〉
0
−
∫ t

0

〈
(∂tVh(s))

(
η − η̄ − ζ̄

)
(s), ∂xξ̄(s)

〉
0
ds

−
∫ t

0

〈
Vh(s)∂t

(
η − η̄ − ζ̄

)
(s), ∂xξ̄(s)

〉
0
ds,

T8 =
〈
eh(t)v(t), ∂xξ̄(t)

〉
0
−
∫ t

0

〈
∂teh(s)v(s), ∂xξ̄(s)

〉
0
ds−

∫ t

0

〈
eh(s)∂tv(s), ∂xξ̄(s)

〉
0
ds,

T9 =
〈
fh(t)Uh(t), ∂xξ̄(t)

〉
0
−
∫ t

0

〈
∂tfh(s)Uh(s), ∂xξ̄(s)

〉
0
ds

−
∫ t

0

〈
fh(s)∂tUh(s), ∂xξ̄(s)

〉
0
ds,

T11 = ν
〈
∂xξ(t), ∂xξ̄(t)

〉
0
− ν

∫ t

0

〈
∂txξ(s), ∂xξ̄(s)

〉
0
ds,

T12 =
〈
u(t)

(
ρ̄(t) + ξ̄(t)

)
, ∂xξ̄(t)

〉
0
−
∫ t

0

〈
(∂tu(s))

(
ρ̄+ ξ̄

)
(s), ∂xξ̄(s)

〉
0
ds

−
∫ t

0

〈
u(s)∂t

(
ρ̄+ ξ̄

)
(s), ∂xξ̄(s)

〉
0
ds.
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By using Hölder’s inequality on these terms, we have

|T6|+ · · ·+ |T9|+ |T11|+ |T12| ≤ Ch2γ
(
‖u‖2L∞(Hp+2) + ‖∂tu‖2L∞(Hp+2) + ‖v‖2L∞(Hq+2)

+ ‖∂tv‖2L∞(Hq+2)

)
+ Cε

∥∥∂xξ̄(t)∥∥2

0
.

The remaining terms are estimated in a simpler. Thus, (5.3.41) yields

(
ν

2
− Cε)

∥∥∂xξ̄∥∥2

L∞(H0)
+
λ

2

∥∥ξ̄∥∥2

L∞(H0)
+ (1− Cε)

∥∥∂tξ̄∥∥2

L2(H0)

≤ Ch2γ
(
‖u‖2L∞(Hp+2) + ‖∂tu‖2L∞(Hp+2) + ‖v‖2L∞(Hq+2) + ‖∂tv‖2L∞(Hq+2)

)
+ C

(
‖∂tρ‖2L2(H0) + ‖∂tρ̄‖2L2(H0) + ‖∂tfh‖2L2(H0) + ‖ρ̄‖2L2(H0) +

∥∥ξ̄∥∥2

L2(H0)

)
.

Letting ε > 0 sufficiently small such that

ν

2
− Cε > 0 and 1− Cε > 0,

noting Lemma 5.2.2, Lemma 5.3.4, Theorem 5.2.4, and Lemma 5.3.5 thus the proof is

completed.

Proof of Theorem 5.3.1

We are now ready to prove the main result stated in the Theorem 5.3.1.

Proof. By referring to (5.3.20) and using the triangle inequality, we deduce

|Θ(t)− 1| =

∣∣∣∣∣Ê(t)

ê(t)
− 1

∣∣∣∣∣ =

∣∣∣( ‖E(t)‖1 + ‖F (t)‖1
)
−
(
‖eh(t)‖1 + ‖fh(t)‖1

)∣∣∣∣∣ê(t)∣∣
≤

∣∣∣ ‖E(t)‖1 − ‖eh(t)‖1
∣∣∣+
∣∣∣ ‖F (t)‖1 − ‖fh(t)‖1

∣∣∣∣∣ê(t)∣∣
≤
‖η̄(t)‖1 +

∥∥ζ̄(t)
∥∥

1
+ ‖ζ(t)‖1 + ‖ρ̄(t)‖1 +

∥∥ξ̄(t)∥∥
1

+ ‖ξ(t)‖1∣∣ê(t)∣∣ .

By using (5.3.21), Lemma 5.3.4, Lemma 5.3.6, Lemma 5.3.5, and Lemma 5.2.3 we

infer

|Θ(t)− 1| ≤ Ch,

thus proving the theorem.
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5.4 Implementation issues

In this section, we show the computation of (Uh, Vh) by using (5.1.12)–(5.1.14) and

(E,F ) by using the linear parabolic (Method (iii)) and linear elliptic (Method (iv)) error

estimates introduced in Section 5.3. The results in this section have been reported in [52].

With φl,k , l = 1, . . . , N and k = 1, 2, . . . , defined by (2.4.2)– (2.4.4), the approximate

solutions (Uh, Vh) can be represented as

Uh(x, t) =
N∑
l=2

Ul,1(t)φl,1(x) +
N∑
l=1

p∑
k=2

Ul,k(t)φl,k(x),

Vh(x, t) =

N+1∑
l=1

Vl,1(t)φl,1(x) +

N∑
l=1

q∑
k=2

Vl,k(t)φl,k(x).

Recalling the L2- inner products αl,l
′

k,k′ , ᾱ
l,l′

k,k′ and βl,l
′

k,k′ which are defined by (4.4.1)–

(4.4.3), matrices M l
r, S

l
r, B

l
r,r′ , and vectors U l and V l introduced in Section 4.4, then

the matrix representation of (5.1.12)–(5.1.13) is of the form

SpU(t) = Bp,qV (t), (5.4.1)

M q∂tV (t) + νSqV (t) = G (U(t),V (t)) . (5.4.2)

Here, the vector G(U ,V ) is an (Nq + 1)× 1 vector defined by

G(U ,V ) = [G(0),G(1), . . . ,G(N)]>,

where

G(0) = [〈UV , φ1,1〉0 , 〈UV , φ2,1〉0 , . . . , 〈UV , φN+1,1〉0]>

and

G(l) = [〈UV , φl,2〉0 , 〈UV , φl,3〉0 , . . . , 〈UV , φl,q〉0]>

for l = 1, . . . , N . We use the Matlab ODE solver to solve (5.4.1)–(5.4.2). Therefore the

right hand side of (5.4.2) is computed by first solving (5.4.1) for a given V (t).

In this section, we discuss the computation of (E,F ) which have the forms

E(x, t) =
N∑
l=1

El(t)φl,p+1(x) and F (x, t) =
N∑
l=1

Fl(t)φl,q+1(x).
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Equations (5.3.11) and (5.3.10) are rewritten as

〈∂tF (t), φl,q+1〉0,Ωl
+ ν 〈∂xF (t), ∂xφl,q+1〉0,Ωl

− 〈Uh(t)F (t), ∂xφl,q+1〉0,Ωl

− 〈Vh(t)E(t), ∂xφl,q+1〉0,Ωl
= 〈Uh(t)Vh(t), ∂xφl,q+1〉0,Ωl

− 〈∂tVh(t), φl,q+1〉0,Ωl
(5.4.3)

and

〈∂xE(t), ∂xφl,p+1〉0,Ωl
= 〈F (t), ∂xφl,p+1〉0,Ωl

+ 〈Vh(t), ∂xφl,p+1〉0,Ωl
. (5.4.4)

By using the notations (4.4.11)–(4.4.18) introduced in Section 4.4 and letting

〈∂tVh(t), φl,q+1〉0,Ωl
= ∂tVl+1,1(t)αl+1,l

1,q+1 +

q∑
k′=1

∂tVl,k′(t)α
l,l
k′,q+1 := T7,

equation (5.4.3) is rewritten as

hl
(2q + 3)(2q − 1)

∂tFl(t) +

(
2ν

hl
− T4

)
Fl(t)− T5El(t) = T6 − T7.

Moreover, (5.4.4) can be rewritten as

2

hl
El(t) = βl,lp+1,q+1Fl(t) + T3.

Then, by using the Backward Euler Formulation, we compute Fl(tj) recursively by(
m+

2ν

hl
− T4 −

hl
2
βl,lp+1,q+1T5

)
Fl(tj) = T6 − T7 +mFl(tj−1)

where

m =
hl

(2q + 3)(2q − 1)(tj − tj−1)

and tj = j4t for j = 1, 2, 3, . . .. The time step 4t is chosen to be not less than h.

By using Method (iv), a similar way is used to computed the error estimator E.

However, error estimator F is computed differently. By using (5.3.13) and the above

notations, we compute Fl(tj) of Method (iv) for l = 1, . . . , N as follows.(
2ν

hl
− T4 −

hl
2
βl,lp+1,q+1T5

)
Fl(tj) = T6 − T7.
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5.5 Numerical experiment

In this section, we present numerical results obtained when solving (5.1.1) - (5.1.3) whose

exact solution (u, v) is

u(x, t) =
2νπa sin(πx)

2 + a cos(πx)

and

v(x, t) =
2νπ2a cos(πx)

2 + a cos(πx)
+

2ν(πa)2 sin(πx)2

(2 + a cos(πx))2
,

where a = exp(−π2νt) and initial value u0 is given by

u0(x) =
2νπ sin(πx)

2 + cos(πx)
.

In the following, we choose p = q + 1. We obtain satisfactory numerical results for

a range of ν = [0.01, 1]. We compute for large and small values of ν, for example for

ν = 1.0, 0.5, 0.05 and ν = 0.01.

In the numerical experiments, we compute the approximate solution (Uh, Vh) by

solving (5.1.12)–(5.1.14). After that, we compute the error eh and fh to check on the

order of convergence given by Theorem 5.2.4. Finally, we compute the error estimation

E and F by using the linear parabolic (Method (iii)) and linear elliptic (Method (iv))

a posteriori error estimates introduced in Section 5.3.

In Table 5.1, Table 5.3, Table 5.5 and Table 5.7, we present the exact errors ‖eh(t)‖1
and ‖fh(t)‖1 at t = 0.8 for ν = 1.0, 0.5, 0.05 and 0.01 respectively. As predicted by

Theorem 5.2.4, the convergence rates are ‖eh(t)‖1 = O(hp) and ‖fh(t)‖1 = O(hp−1).

In Table 5.2, Table 5.4, Table 5.6, and Table 5.8 we present the computed exact error

ê and a posteriori error estimate Ê at t = 0.8 for ν = 1.0, 0.5, 0.05 and 0.01 respectively.

We note that for Method (iii) we choose 4t = 0.4.

Figure 5.1, Figure 5.3, Figure 5.5 and Figure 5.7 represent the effectivity indices Θ at

t = 0.8 respectively for ν = 1.0, 0.5, 0.05 and 0.01, where Method (iii) is implemented to

compute the error estimate (E,F ). On the other hand, Figure 5.2, Figure 5.4, Figure 5.6

and Figure 5.8 represent the effectivity indices computed by using Method (iv).
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dofu dofv p q N ‖eh(t)‖1 κu ‖fh(t)‖1 κv

39 21

2 1

20 2.2651E-04 2.7298E-03

79 41 40 5.6836E-05 1.995 1.3407E-03 1.026

159 81 80 1.4221E-05 1.999 6.6726E-04 1.007

199 101 100 9.1023E-06 1.999 5.3351E-04 1.002

319 161 160 3.5554E-06 2.000 3.3324E-04 1.001

59 41

3 2

20 4.2389E-07 5.4027E-05

119 81 40 5.2246E-08 3.020 1.3510E-05 1.999

179 121 60 1.5442E-08 3.006 6.0046E-06 2.000

239 161 80 6.5658E-09 2.973 3.3777E-06 2.000

299 201 100 3.4812E-09 2.844 2.1617E-06 2.000

19 16

4 3

5 9.6823E-07 4.5721E-05

39 31 10 6.0520E-08 3.999 5.7343E-06 2.995

59 46 15 1.2031E-08 3.984 1.7001E-06 2.998

79 61 20 3.9962E-09 3.831 7.1740E-07 2.999

Table 5.1: The orders of convergence κu and κv at ν = 1.0 and t = 0.8.

Figure 5.1: Effectivity indices Θ by Method (iii) (refer to Page 80), at ν = 1 and t = 0.8

with different values of h.
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p q h ê(t)
Method (iii) Method (iv)

Ê(t) Ê(t)

2 1

1/20 2.9563E-03 2.6751E-03 2.6543E-03

1/40 1.3975E-03 1.3359E-03 1.3333E-03

1/80 6.8148E-04 6.6719E-04 6.6687E-04

1/100 5.4261E-04 5.3361E-04 5.3345E-04

1/160 3.3680E-04 3.3337E-04 3.3333E-04

3 2

1/20 5.4450E-05 5.4318E-05 5.4218E-05

1/40 1.3562E-05 1.3542E-05 1.3536E-05

1/60 6.0201E-06 6.0139E-06 6.0126E-06

1/80 3.3842E-06 3.3815E-06 3.3811E-06

1/160 2.1652E-06 2.1636E-06 2.1635E-06

4 3

1/5 4.6689E-05 4.6701E-05 4.6056E-05

1/10 5.7948E-06 5.7829E-06 5.7629E-06

1/15 1.7121E-06 1.7089E-06 1.7063E-06

1/20 7.2139E-07 7.2004E-07 7.1941E-07

Table 5.2: Values of Ê by Method (iii) and Method (iv) at ν = 1.0 and t = 0.8.

Figure 5.2: Effectivity indices Θ by Method (iv) (refer to Page 80), at ν = 1 and t = 0.8

with different values of h.
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dofu dofv p q N ‖eh(t)‖1 κu ‖fh(t)‖1 κv

39 21

2 1

20 1.0569E-03 2.5964E-02

79 41 40 2.6461E-04 1.998 1.2950E-02 1.004

159 81 80 6.6178E-05 1.999 6.4709E-03 1.001

319 161 160 1.6546E-05 2.000 3.2349E-03 1.000

639 321 320 4.1362E-06 2.000 1.6174E-03 1.000

1279 641 640 1.0337E-06 2.000 8.0869E-04 1.000

59 41

3 2

20 4.1212E-06 5.3291E-04

119 81 40 5.1435E-07 3.002 1.3327E-04 1.999

179 121 60 1.5235E-07 3.000 5.9232E-05 2.000

239 161 80 6.4264E-08 3.000 3.3319E-05 2.000

479 321 160 8.0457E-09 2.998 8.3298E-06 2.000

39 31

4 3

10 6.3273E-07 5.9950E-05

59 46 15 1.2501E-07 3.999 1.7779E-05 2.998

79 61 20 3.9573E-08 3.998 7.5030E-06 2.999

99 76 25 1.6230E-08 3.994 3.8421E-06 2.999

119 91 30 7.8736E-09 3.967 2.2236E-06 3.000

Table 5.3: The orders of convergence κu and κv at ν = 0.5 and t = 0.8.

Figure 5.3: Effectivity indices Θ by Method (iii) (refer to Page 80), at ν = 0.5 and

t = 0.8 with different values of h.
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p q h ê(t)
Method (iii) Method (iv)

Ê(t) Ê(t)

2 1

1/20 2.7021E-02 2.6042E-02 2.5928E-02

1/40 1.3214E-02 1.2980E-02 1.2966E-02

1/80 6.5371E-03 6.4799E-03 6.4782E-03

1/160 3.2515E-03 3.2374E-03 3.2372E-03

1/320 1.6215E-03 1.6180E-03 1.6180E-03

1/640 8.0973E-04 8.0886E-04 8.0885E-04

3 2

1/20 5.3704E-04 5.3538E-04 5.3478E-04

1/40 1.3378E-04 1.3356E-04 1.3352E-04

1/60 5.9384E-05 5.9318E-05 5.9311E-05

1/80 3.3383E-05 3.3355E-05 3.3352E-05

1/160 8.3378E-06 8.3342E-06 8.3341E-06

4 3

1/10 6.0582E-05 6.0393E-05 6.0233E-05

1/15 1.7904E-05 1.7862E-05 1.7841E-05

1/20 7.5425E-06 7.5286E-06 7.5237E-06

1/25 3.8583E-06 3.8524E-06 3.8508E-06

1/30 2.2315E-06 2.2285E-06 2.2279E-06

Table 5.4: Values of Ê by Method (iii) and Method (iv) at ν = 0.5 and t = 0.8.
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Figure 5.4: Effectivity indices Θ by Method (iv) (refer to Page 80), at ν = 0.5 and

t = 0.8 with different values of h.

dofu dofv p q N ‖eh(t)‖1 κu ‖fh(t)‖1 κv

39 21

2 1

20 1.1338E-03 6.6472E-02

79 41 40 2.8487E-04 1.993 3.3245E-02 0.999

159 81 80 7.1305E-05 1.998 1.6624E-02 1.000

319 161 160 1.7831E-05 2.000 8.3120E-03 1.000

639 321 320 4.4577E-06 2.000 4.1560E-03 1.000

1279 641 640 1.1140E-06 2.000 2.0780E-03 1.000

59 41

3 2

20 2.2153E-05 2.8620E-03

119 81 40 2.7675E-06 3.001 7.1684E-04 1.997

179 121 60 8.1990E-07 3.000 3.1871E-04 1.999

239 161 80 3.4587E-07 3.000 1.7929E-04 2.000

479 321 160 4.3230E-08 3.000 4.4829E-05 2.000

79 61

4 3

20 5.4335E-07 1.0302E-04

159 121 40 3.4027E-08 3.997 1.2908E-05 2.997

239 181 60 6.7575E-09 3.988 3.8262E-06 2.999

319 241 80 2.2446E-09 3.831 1.6144E-06 3.000

399 301 100 1.0171E-09 3.547 8.2665E-07 3.000

Table 5.5: The orders of convergence κu and κv at ν = 0.05 and t = 0.8.
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p q h ê(t)
Method (iii) Method (iv)

Ê(t) Ê(t)

2 1

1/20 6.7606E-02 6.6942E-02 6.6543E-02

1/40 3.3530E-02 3.3357E-02 3.3308E-02

1/80 1.6695E-02 1.6651E-02 1.6645E-02

1/160 8.3298E-03 8.3187E-03 8.3180E-03

1/320 4.1604E-03 4.1577E-03 4.1576E-03

1/640 2.0791E-03 2.0784E-03 2.0784E-03

3 2

1/20 2.8841E-03 2.8725E-03 2.8671E-03

1/40 7.1961E-04 7.1826E-04 7.1792E-04

1/60 3.1953E-04 3.1914E-04 3.1907E-04

1/80 1.7964E-04 1.7948E-04 1.7946E-04

1/160 4.4872E-05 4.4852E-05 4.4851E-05

4 3

1/20 1.0356E-04 1.0330E-04 1.0319E-04

1/40 1.2942E-05 1.2927E-05 1.2923E-05

1/60 3.8329E-06 3.8300E-06 3.8295E-06

1/80 1.6167E-06 1.6156E-06 1.6155E-06

1/100 8.2767E-07 8.2714E-07 8.2710E-07

Table 5.6: Values of Ê by Method (iii) and Method (iv) at ν = 0.05 and t = 0.8.
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Figure 5.5: Effectivity indices Θ by Method (iii) (refer to Page 80), at ν = 0.05 and

t = 0.8 with different values of h.

Figure 5.6: Effectivity indices Θ by Method (iv) (refer to Page 80), at ν = 0.05 and

t = 0.8 with different values of h.
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dofu dofv p q N ‖eh(t)‖1 κu ‖fh(t)‖1 κv

39 21

2 1

20 2.7155E-04 3.0153E-02

79 41 40 6.7352E-05 2.011 1.5085E-02 0.999

159 81 80 1.6804E-05 2.003 7.5435E-03 1.000

199 101 100 1.0752E-05 2.001 6.0349E-03 1.000

319 161 160 4.1988E-06 2.000 3.7719E-03 1.000

59 41

3 2

20 1.2647E-05 1.6474E-03

119 81 40 1.5915E-06 2.990 4.1308E-04 1.996

179 121 60 4.7214E-07 2.997 1.8369E-04 1.999

239 161 80 1.9927E-07 2.999 1.0335E-04 1.999

299 201 100 1.0205E-07 3.000 6.6148E-05 2.000

39 31

4 3

10 6.2309E-06 5.8969E-04

59 46 15 1.2437E-06 3.974 1.7675E-04 2.972

79 61 20 3.9485E-07 3.988 7.4857E-05 2.986

99 76 25 1.6198E-07 3.993 3.8396E-05 2.992

119 91 30 7.8178E-08 3.996 2.2242E-05 2.995

Table 5.7: The orders of convergence κu and κv at ν = 0.01 and t = 0.8.

Figure 5.7: Effectivity indices Θ by Method (iii) (refer to Page 80), at ν = 0.01 and

t = 0.8 with different values of h.
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p q h ê(t)
Method (iii) Method (iv)

Ê(t) Ê(t)

2 1

1/20 3.0424E-02 3.0648E-02 3.0455E-02

1/40 1.5152E-02 1.5175E-02 1.5148E-02

1/80 7.5603E-03 7.5610E-03 7.5575E-03

1/100 6.0457E-03 6.0454E-03 6.0436E-03

1/160 3.7761E-03 3.7756E-03 3.7752E-03

3 2

1/20 1.6600E-03 1.6524E-03 1.6487E-03

1/40 4.1467E-04 4.1382E-04 4.1359E-04

1/60 1.8416E-04 1.8393E-04 1.8388E-04

1/80 1.0355E-04 1.0345E-04 1.0343E-04

1/100 6.6250E-05 6.6200E-05 6.6194E-05

4 3

1/10 5.9592E-04 5.9118E-04 5.8819E-04

1/15 1.7800E-04 1.7720E-04 1.7680E-04

1/20 7.5252E-05 7.5024E-05 7.4927E-05

1/25 3.8558E-05 3.8470E-05 3.8438E-05

1/30 2.2320E-05 2.2279E-05 2.2266E-05

Table 5.8: Values of Ê by Method (iii) and Method (iv) at ν = 0.01 and t = 0.8.

Figure 5.8: Effectivity indices Θ by Method (iv) (refer to Page 80), at ν = 0.01 and

t = 0.8 with different values of h.



Chapter 6

Adaptive schemes: numerical

studies

In this chapter, we focus on the numerical studies of adaptive schemes for the BBM and

Burgers equations. The chapter begins with an introduction on adaptive schemes for

finite element methods. Then, we explain the adaptive procedures implement in this

study in Section 6.2. The chapter ends with numerical experiments of adaptive schemes

for the BBM and Burgers equations.

6.1 Introduction

Adaptive schemes of finite element methods for numerical solutions of partial differential

equations are considered as a standard tool in science and engineering to achieve better

accuracy with minimum degrees of freedom. The adaptive scheme for one dimensional

boundary value problems is studied in 1984 by Babuška et. al [9]. Details on the theory

of adaptive finite element methods can be found in [42]. Studies about adaptive schemes

with mixed finite element methods have been carried out in [15, 22, 24, 26, 51]; see also

the references therein.

When solving a BVP by any approximation technique, a scheme is required to guide

us on the accuracy of our approximate solutions. By using adaptive schemes of finite

element methods, we try to automatically refine a mesh to achieve approximate solutions
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having a specified accuracy in an optimal way. In general, the computation typically

begins with a trial set of approximate solutions generated on a coarse initial mesh. The

error estimate of these solutions is appraised. If the error estimate fails to satisfy the

prescribed accuracy, refinements are made with a goal to obtain the desired approximate

solutions with minimal effort.

In this study, we use (h-type) adaptive mesh refinement schemes for the BBM and

Burgers equations. We refer to Chapter 4 and Chapter 5 for a posteriori error estimations

of H1MFEM for the BBM and Burgers equations, respectively.

The aim of the adaptive scheme is to generate better approximations of the exact

solutions. The basic idea of the adaptive schemes is, given the approximate solution,

to create a refined partition (mesh) by subdividing elements where the error estimators

indicate that the errors are large. Then, on this refined partition, the next approximate

solution is computed. The process is repeated until the desired accuracy of approxi-

mate solution is obtained. The final outcomes of the adaptive scheme are the refined

mesh and accurate approximate solutions. A principal tool for this adaptive scheme is

the availability of local (elementwise) error estimates, namely local a posteriori error

estimators.

An adaptive scheme of a finite element method consists of successive loops of the

following form:

Solve Estimate Mark Refine

Figure 6.1: Four steps of an adaptive scheme.

The step Solve involves the computation of the approximate solution. Given the

number of elements, the H1MFEM is applied to compute the approximate solution.

The a posteriori error estimation is an essential part of the second step, namely

Estimate . By using the approximate solution generated in step Solve , we compute

a posteriori error estimators locally on each element. These a posteriori error estimators

will be used in the Mark step. The a posteriori error estimates are then used to appraise

the accuracy of the approximate solution and to control the adaptive enrichment through
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the refinement process.

In the third step, Mark , we perform an evaluation process on a posteriori error

estimators of step Solve . Given a tolerance δ, we check the global a posteriori error

estimator. If the global a posteriori error estimator is larger than the tolerance δ, then

we appraise Φ largest local a posteriori error estimators, Φ = 1, 2, 3, . . ., where Φ is

decided by the user. The elements of these respective local a posteriori error estimators

are identified for a mesh refinement process in step Refine .

The adaptive strategy in Refine is based on halving the Φ intervals where the local

a posteriori error estimators are the largest. After the refinement process, a new mesh

is generated. By using this finer mesh, the process is repeated and is terminated when

the global error estimator is smaller than the assigned tolerance δ.

6.2 Adaptive procedure

In this section, we are now more specific on the adaptive procedure used in this study.

We consider examples for the BBM and Burgers equations. For the BBM equation, we

refer to the numerical example in Section 4.5. For the Burgers equation, the numerical

example in Section 5.5 with ν = 0.5 is considered.

Figure 6.2 shows the general adaptive process applied to the following numerical

results. The inputs are the number of elements N for initial mesh τ0, the polynomial

degrees p and q respectively for Uh and Vh and the number of elements Φ of the refinement

process. The polynomial degrees are fixed throughout this adaptive scheme.

For the readers convenience, we recall the equations which are used in both numerical

examples. Firstly, under the step Solve , we compute the values of (Uh, Vh) by using the

Galerkin equations of the problem. Recalling the notations defined in Section 4.4, the

approximate solution (Uh, Vh) of the BBM equation is computed by solving

SpU(t) = Bp,qV (t),

and (
M q +

µ

d2
Sq

)
∂tV (t) = H

(
U(t),V (t)

)
.
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Start

Inputs: N , p, q and Φ

Solve : Com-

pute Uh and Vh

Estimates: Compute E

and F as sums of local

error estimators El and Fl

E and F satisfy the

tolerance condition:

‖E(t)‖1 ≤ δu?

and ‖F (t)‖1 ≤ δv?

Refine the marked

elements and pro-

duce a refined mesh

Mark the Φ elements

where local error es-

timators are largest

Outputs: Uh and Vh

Stop

YES

NO

Figure 6.2: Adaptive process applied for the BBM and Burgers equations.
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Here, the vector H(U ,V ) is an (Nq + 1)× 1 vector defined by

H(U ,V ) =
[
H(0),H(1), . . . ,H(N)

]>
where

H(0) =
[〈1

d
UV + g, φ1,1

〉
0

,

〈
1

d
UV + g, φ2,1

〉
0

, . . . ,

〈
1

d
UV + g, φN+1,1

〉
0

]>
and

H(l) =
[〈1

d
UV + g, φl,2

〉
0

,

〈
1

d
UV + g, φl,3

〉
0

, . . . ,

〈
1

d
UV + g, φl,q

〉
0

]>
for l = 1, . . . , N . Similarly, for the Burgers equation, (Uh, Vh) is computed by solving

SpU(t) = Bp,qV (t)

and

M q∂tV (t) +
1

2
SqV (t) = G

(
U(t),V (t)

)
.

Here, the vector G(U ,V ) is an (Nq + 1)× 1 vector defined by

G(U ,V ) = [G(0),G(1), . . . ,G(N)]>,

where

G(0) = [〈UV , φ1,1〉0 , 〈UV , φ2,1〉0 , . . . , 〈UV , φN+1,1〉0]>

and

G(l) = [〈UV , φl,2〉0 , 〈UV , φl,3〉0 , . . . , 〈UV , φl,q〉0]>.

Secondly, under the step Estimate , we compute the local a posteriori error estima-

tors (El, Fl) for l = 1, . . . , N . Noting the notations (4.4.11)–(4.4.18), letting

〈∂txVh(t), ∂xφl,q+1〉1,Ωl
= ∂tVl+1,1(t)ᾱl+1,l

1,q+1 +

q∑
k′=1

∂tVl,k′(t)ᾱ
l,l
k′,q+1 := T9

and

〈g(t), ∂xφl,q+1〉0,Ωl
= gl+1,1(t)βl+1,l

1,q+1 +

q∑
k′=1

gl,k′(t)β
l,l
k′,q+1 := T10,

the a posteriori error estimators of the BBM equation are computed by using

2

hl
El(t) = βl,lp+1,q+1Fl(t) + T3 (6.2.1)
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and(
hl

(2q + 3)(2q − 1)
+

2µ

d2hl

)
∂tFl(t)−

1

d
T4Fl(t)−T5El(t) = T10 +T6−T7−

µ

d2
T9. (6.2.2)

Similarly, for the Burgers equation, (El, Fl) is computed by using

2

hl
El(t) = βl,lp+1,q+1Fl(t) + T3

and

hl
(2q + 3)(2q − 1)

∂tFl(t) +

(
2ν

hl
− T4

)
Fl(t)− T5El(t) = T6 − T7. (6.2.3)

After that, the global a posteriori error estimator (E,F ) which is the summation of

the local a posteriori error estimators (El, Fl), for l = 1, . . . , N is appraised with the

assigned tolerances δu and δv by checking

‖E(t)‖1 ≤ δu (6.2.4)

and

‖F (t)‖1 ≤ δv. (6.2.5)

The process is terminated if (6.2.4) and (6.2.5) are satisfied. Otherwise, the process is

continue with Mark and Refine .

In step Mark , Φ largest local a posteriori error estimators, Φ = 1, 2, 3, . . ., are

identified and appraised for marking process. In the following numerical experiments,

we perform the marking process only on the local a posteriori error estimators El. For

example, if (6.2.4) and (6.2.5) are not satisfied, we appraise Φ largest El in the marking

process.

For the refinement process in the step Refine , we introduce the Adaptive Method

(AM(Φ)). We test the problems in two different ways, namely AM(1) and AM(3). The

first method is where we have Φ = 1, that is we refine only the largest local a posteriori

error estimator El of the marked element. On the other hand, by using AM(3), we have

Φ = 3, i.e., three largest local a posteriori error estimators El of the marked elements

are refined. Figure 6.3 and Figure 6.4 illustrate examples of three refinement processes

(R1–R3) of both methods, which are applied to an initial mesh τ0, at N = 10. The x∗i,j
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Initial mesh τ0

x∗1,1

Mesh τ1 by refinement R1

x∗1,2

Mesh τ2 by refinement R2

x∗1,3

Mesh τ3 by refinement R3

Figure 6.3: Refinement processes by Adaptive Method AM(1).

Initial mesh τ0

x∗1,1 x∗2,1 x∗3,1

Mesh τ1 by refinement R1

x∗1,2 x∗2,2 x∗3,2

Mesh τ2 by refinement R2

x∗2,3 x∗1,3 x
∗
3,3

Mesh τ3 by refinement R3

Figure 6.4: Refinement processes by Adaptive Method AM(3).

values, for i = 1, 2, . . . represent the new points introduced during the refinement process

Rj , j = 1, 2, 3, . . ..

Then, the new mesh generated from these two steps (Mark and Refine) is used to

generate the new approximate solution in the step Solve . The process is repeated and

terminated when the desired accuracy of the approximate solution is obtained.
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6.3 Numerical experiments

The numerical results are computed by using three methods, namely AM(1), AM(3) and

Non-adaptive Method (NAM). Methods AM(1) and AM(3) are respectively the adaptive

schemes introduced in Section 6.2 (see Figure 6.3 and Figure 6.4). By using AM(1), we

consider an element (Φ = 1) for the refinement process, while using AM(3), we consider

three elements, (Φ = 3).

On the other hand, NAM represents cases with uniform meshes. In the Step Mark

and Step Refine of NAM, all elements are refined during each of the refinement pro-

cesses. For example, by using NAM with an initial mesh τ0, at N = 10, we will have 10

new points {x∗1,1, x∗2,1, x∗3,1, . . . , x∗10,1} during the first refinement process, R1. Similarly

with AM(1) and AM(3), the process is terminated if (6.2.4) and (6.2.5) are satisfied.

We compare the numerical results by AM(1) and AM(3) with the numerical results

by NAM. In the following numerical experiments, the coarse mesh τ0 of these methods

is started at N = 10.

6.3.1 Adaptive scheme for the Benjamin-Bona-Mahony equation

We perform the numerical experiments with different values of tolerances δu and δv.

Figure 6.5 and Figure 6.6 show the graphs of the exact solution (u, v) considered in

these numerical experiments.

Example 1 is computed with tolerances δu = 5×102−p and δv = 5×101−q. Table 6.1

shows the numerical results for p = 2 and q = 1. The number of elements, N represents

the total elements generated by each method after the number of refinements. The

number of refinements also represents the total number of problems required to solve, in

order to get the approximate solution at the assigned tolerances.

Based on the numerical results in Table 6.1, AM(1) and AM(3) produce compara-

ble error values with NAM. Even though NAM provides a slightly better error values,

the CPU time required is 22841s and number of elements N is 640. Meanwhile, only

2089s of CPU time and N = 156 by AM(1), and 296s of CPU time and N = 157 by

AM(3) are required for the error values. Note that, if we use a uniform refinement when
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Figure 6.5: The BBM equation: exact solution u(x, t).

AM(1) AM(3) NAM

N 156 157 640

Degrees of freedom u 311 313 1279

Degrees of freedom v 157 158 641

Number of refinements 146 49 6

CPU time (sec) 2089 296 22841

‖eh(t)‖1 / ‖u(t)‖1 9.5091E-04 7.9001E-04 1.3747E-04

‖fh(t)‖1 / ‖v(t)‖1 2.2375E-02 2.1463E-02 1.4930E-02

Table 6.1: Example 1 for the BBM equation at t = 0.8.

N = 157, we have larger error values, which are ‖eh(t)‖1 / ‖u(t)‖1 = 2.2866E-03 and

‖fh(t)‖1 / ‖v(t)‖1 = 6.0852E-02. In this case, the CPU time is smaller (59s) but the

accuracy is lower. Figure 6.7 and Figure 6.8 respectively show the final refined meshes

at N = 156 by AM(1) and N = 157 by AM(3).

Example 2 is computed with tolerances δu = 103−p and δv = 102−q. Table 6.2 shows

the numerical results of the three methods for p = 3 and q = 2. The error values by

NAM is slightly better than the error values by AM(1) and AM(3). However, 7566s of
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Figure 6.6: The BBM equation: exact solution v(x, t).

CPU time and higher degrees of freedom for u and v are required to obtain the results.

Besides that, if a uniform refinement is used at N = 46, smaller CPU time (25s) is

required and the error values are larger, which are ‖eh(t)‖1 / ‖u(t)‖1 = 1.8845E-03 and

‖fh(t)‖1 / ‖v(t)‖1 = 2.4319E-02. The final refined meshes of Example 2 by AM(1) and

AM(3) are respectively presented in Figure 6.9 and Figure 6.10.

6.3.2 Adaptive scheme for the Burgers equation

Similarly, we perform numerical experiments for the Burgers equation. Figure 6.11 and

Figure 6.12 show the graphs of the exact solution (u, v) considered in these numerical

experiments.

We use tolerances δu = 10−p−1 and δv = 10−q−2. Table 6.3 shows the numerical

results by the three methods for p = 2 and q = 1. Based on the numerical results,

the error values by NAM are obtained at N = 320 and are comparable with the error

values by AM(1) and AM(3), which are respectively obtained at N = 186 and N = 187.

If a uniform refinement at N = 187 is computed, we have ‖eh(t)‖1 = 1.2113E-05 and

‖fh(t)‖1 = 2.7678E-03. The CPU time for this result is 692s. Even though the CPU

time is shorter, the error values are at lower accuracy than the error values by AM(1)
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Figure 6.7: Example 1 for BBM by Adaptive Method AM(1).

Figure 6.8: Example 1 for BBM by Adaptive Method AM(3).

AM(1) AM(3) NAM

N 44 46 160

Degrees of freedom u 131 137 479

Degrees of freedom v 89 93 321

Number of refinements 34 12 4

CPU time (sec) 229 114 7566

‖eh(t)‖1 / ‖u(t)‖1 8.2403E-04 2.8256E-04 4.6186E-05

‖fh(t)‖1 / ‖v(t)‖1 6.4244E-03 4.7040E-03 2.0321E-03

Table 6.2: Example 2 for the BBM equation at t = 0.8.

and AM(3). Figure 6.13 and Figure 6.13 respectively represent the final refined meshes

by AM(1) and AM(3) for this example.

In the following examples, we use δu = 10−2p−2 and δv = 10−2q. Table 6.4 shows the

numerical results for Example 2, where p = 3 and q = 2. Figure 6.15 and Figure 6.16

show the final refined meshes of AM(1) and AM(3) for this example. Note that, if a

uniform refinement at N = 97 is computed, the CPU time is 2093s and the error values

are ‖eh(t)‖1 = 3.6051E-08 and ‖fh(t)‖1 = 2.2663E-05.

In conclusion, from the numerical results of the adaptive schemes for the BBM and

Burgers equations, we can see that desired accuracy of the approximate solution can
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Figure 6.9: Example 2 for BBM by Adaptive Method AM(1).

Figure 6.10: Example 2 for BBM by Adaptive Method AM(3).

Figure 6.11: The Burgers equation: exact solution u(x, t).

be obtained by using the adaptive schemes introduced in this study. Besides that, a

comparable accuracy of approximate solution with lower degrees of freedom is obtained

by using these adaptive schemes.

There are several issues that can be considered for the improvement of the adaptive

schemes. In the step Mark , we performed the marking process on the local a posteriori

error estimators El only. This is due to the equation we used to compute the local a pos-

teriori error estimators El (see (6.2.1)), which involves information about Fl. Different
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Figure 6.12: The Burgers equation: exact solution v(x, t).

marking processes can also be considered. For example, we can perform the marking

process on the local a posteriori error estimators Fl (see (6.2.2) and (6.2.3)) or on both

local a posteriori error estimators El and Fl.

Lastly, in step Refine of these adaptive schemes, we refine a marked element by

halving it into two new elements. We consider two methods for the refinement process,

namely AM(1) and AM(3). Different values of Φ may give better results. Optimal choice

of Φ may be a subject of further study.
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AM(1) AM(3) NAM

N 186 187 320

Degrees of freedom u 371 373 639

Degrees of freedom v 187 188 321

Number of refinements 176 59 5

CPU time (sec) 12780 5575 22592

‖eh(t)‖1 8.1367E-06 8.0651E-06 4.1362E-06

‖fh(t)‖1 2.6714E-03 2.6573E-03 1.6174E-03

Table 6.3: Example 1 for the Burgers equation at t = 0.8.

Figure 6.13: Example 1 for Burgers by Adaptive Method AM(1).

Figure 6.14: Example 1 for Burgers by Adaptive Method AM(3).

AM(1) AM(3) NAM

N 95 97 160

Degrees of freedom u 284 290 479

Degrees of freedom v 191 195 321

Number of refinements 85 29 4

CPU time (sec) 31284 10847 55027

‖eh(t)‖1 1.8250E-08 1.7577E-08 8.0457E-09

‖fh(t)‖1 9.5534E-06 9.2243E-06 8.3298E-06

Table 6.4: Example 2 for the Burgers equation at t = 0.8.
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Figure 6.15: Example 2 for Burgers by Adaptive Method AM(1).

Figure 6.16: Example 2 for Burgers by Adaptive Method AM(3).





Chapter 7

Conclusion

In this thesis, we carried out the study of a priori and a posteriori error estimations

of mixed finite element methods for nonlinear equations. We focused on a priori and

a posteriori error estimations of H1MFEM for two one-spatial dimensional nonlinear

partial differential equations, namely the Benjamin-Bona-Mahony (BBM) and Burgers

equations (Chapter 4 and Chapter 5). We proved that the proposed a posteriori er-

ror estimates are efficient and the numerical results are consistent with our theoretical

results.

In Chapter 6, we conducted numerical studies of adaptive schemes for the BBM and

Burgers equations. We presented the procedure and numerical results of the adaptive

schemes for both equations, where the approximate solutions are computed by H1MFEM

and the a posteriori error estimations are proposed in Chapter 4 and Chapter 5 of this

thesis.

It is noted that the one dimensional time dependent incompressible Navier Stokes

equations which are studied using a sequential regularization method in [34] are almost

similar to the BBM equation considered in this study. Therefore, a posteriori error esti-

mation of H1MFEM for higher-spatial dimension of nonlinear partial differential equa-

tions such as the Navier Stokes equations or other nonlinear partial differential equations

may be a subject of further study.
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