
An Open Source GNSS Reference Server

Author:
Yan, Thomas; Mumford, Peter; Dempster, Andrew; Rizos, Chris; Fernando,
Manosh; Hoang, Nam

Publication details:
Proc ION-GNSS 2007

Event details:
20th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation
Fort Worth, USA

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/714

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/44331 in https://
unsworks.unsw.edu.au on 2024-04-17

http://dx.doi.org/https://doi.org/10.26190/unsworks/714
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/44331
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

An Open Source GNSS Reference Server

Thomas Yan, University of NSW
Peter Mumford, University of NSW

Andrew Dempster, University of NSW
Chris Rizos, University of NSW

Manosh Fernando, University of Technology, Sydney
Nam Hoang, University of Technology, Sydney

BIOGRAPHY

Thomas Yan is a graduate of the School of Electrical
Engineering & Telecommunications, The University of
New South Wales (UNSW), Sydney, Australia. He joined
the research group at the School of Surveying & SIS in
2003 and has been involved in setting up the state CORS
network in New South Wales since. His research areas are
in CORS network and GNSS data communications.

Peter Mumford is a Research Assistant in the Satellite
Navigation and Positioning laboratory, within the School
of Surveying & Spatial Information Systems, UNSW.
Currently he is working on GNSS receiver design and
INS/GNSS integration. Peter has an Engineering degree
in Surveying, and a Science degree in Mathematics. His
interests are in FPGA design, software, RF and electronic
design.

Andrew Dempster is Director of Research in the School
of Surveying and Spatial Information Systems at UNSW.
He led the team that developed Australia's first GPS
receiver in the late 80s and has been involved with
satellite navigation ever since. His current research
interests are GNSS receiver design, GNSS signal
processing, and new location technologies.

Chris Rizos is a graduate of the School of Surveying,
UNSW; obtaining a Bachelor of Surveying in 1975, and a
Doctor of Philosophy in 1980. Chris is currently Professor
and Head of School. Chris has been researching the
technology and high precision applications of GPS since
1985, and has published over 200 journal and conference
papers. He is a Fellow of the Australian Institute of
Navigation and a Fellow of the International Association
of Geodesy (IAG). He is currently the Vice President of
the IAG and a member of the Governing Board of the
International GNSS Service.

Manosh Fernando is an undergraduate student at the
University of Technology, Sydney. He is doing a
Bachelor of Engineering course, majoring in Electrical
Engineering.

Nam Hoang is an undergraduate student at the University
of Technology, Sydney. He is doing a Bachelor of
Engineering course, majoring in Computer Systems
Engineering.

ABSTRACT

Assisted-GNSS (A-GNSS) devices (clients) require a
source for providing the assistance data that enable
positioning in a wide variety of environments, particularly
areas of weak signal strength. This paper introduces an
Open Source GNSS Reference Server (OSGRS) and the
“GRIP” interface protocol (GNSS Reference Interface
Protocol). The OSGRS is an Open Source Java
application that provides data for Assisted-GNSS clients
[1].

The OSGRS and GRIP will support researchers in
developing A-GNSS algorithms with minimal investment
and it will facilitate commercial operators in getting a
reference server up and running quickly to test their A-
GNSS client before investing heavily in a commercial
service. In this paper, the design and implementation of
the OSGRS and GRIP is discussed along with how it is
being used at the University of New South Wales.

INTRODUCTION

The OSGRS provides an alternative to commercial A-
GPS reference data solutions. The commercial offerings
typically employ proprietary protocols, making the task of
a developing a client that supports a range of reference
servers more complex. In addition, these protocols and
commercial server solutions may not be readily available,
particularly to non-commercial research organisations
such as universities. This may make research in this area
more difficult, and an organisation may need to develop
their own reference server and protocol.

The OSGRS is an Open Source Java application that
provides data for Assisted-GNSS clients. The OSGRS is
cross-platform and provides client applications with
current, relevant and specific assistance data. The client
may be an Assisted-GNSS handset or an application that
serves a network of A-GNSS handsets.

The OSGRS can be configured to connect to one or more
sources of GNSS data (data sources) in order to cache it
and serve it up to clients on request. The data is provided
to the client in a format that is useful for A-GNSS satellite
acquisition and calculating the location of handsets. The
data source may be a local GNSS receiver or any other
type of data streams such as an internet-based GNSS data
server. In the OSGRS, the data sources are Java classes
that implement a specific Java interface and receive data
from a physical source. The OSGRS has support for a
NovAtel OEM2/3 data source and a NovAtel OEM4 data
source and it is expected that support for more data
sources will be developed as the OSGRS is installed and
used.

The OSGRS provides its packaged assistance data to A-
GNSS clients using the GRIP protocol. The GRIP
protocol is an XML schema based protocol that uses
HTTP transport. The client can request a list of A-GNSS
data types that it requires and the OSGRS will return the
appropriate data.

The client can include an approximate location in the
request and it will receive the A-GNSS assistance data for
satellites in view of that location. Otherwise it will receive
the requested assistance data for all satellites that the
OSGRS has information for.

The OSGRS complies with HTTP 1.1 which allows the
client to maintain a persistent connection to the server. On
request, the OSGRS provides all of the data types
specified and/or appropriate errors for unavailable data.
The protocol of the messages on the HTTP connection is
request-response based with an XML payload as defined
by GRIP.

OPEN SOURCE

This software has been implemented as Open Source in
order to harness the collective wisdom of diverse users of
Assisted-GNSS applications. This will enable developers
to modify and improve the OSGRS offering to ensure that
it is both functionally correct and users with different
models of GNSS receiver will be supported. It will also
enable GRIP to be enhanced and become a standard
interface for providing A-GNSS data.

GRIP PROTOCOL

GRIP is the protocol used to make requests and receive
responses from the OSGRS. GRIP defines the structure of
the HTTP POST request as well as the structure of the
XML document in the body of the request. The MIME
type of the request and response body is
‘application/xml’[8].

GRIP differs greatly from proprietary formats in that its
messages are in XML format. Requests and responses of
most proprietary protocols are in binary format. A key
advantage to using XML is that it is easy to read. There
are also many libraries which can be used parse XML
data.

An XML schema describes the structure and content of an
XML document. The type of XML schema language used
in the GRIP protocol is XML Schema. XML Schema has
been specified by the World Wide Web Consortium
(W3C) [9].

Having a schema define an XML document is
advantageous for a number of reasons. It clearly shows a
user the format a GRIP request or response must follow.
Sanity checking for various attributes can also be
incorporated into the schemas. With the availability of
schema validation systems, requests and response can be
easily verified against schemas.

GRIP requests and responses are defined by a set of XML
Schema files. The main files are GNSSRequest,
GNSSResponse and GNSSErrorResponse. Each new
version of the protocol is accompanied by a set of XML
Schemas. XML Schemas are extensible so GRIP can
therefore be extended to support other GNSS’s such as
Galileo, GLONASS, etc.

Versioning of the protocol is controlled by the namespace
of the schemas. Each version of the protocol is assigned
its own namespace i.e. the namespace of version 1.5 is
http://www.gmat.unsw.edu.au/snap/grip/1.5. This lets the
server know which version of the protocol a client is
using.

GRIP has been fully specified for GPS reference data.
The assistance data types are the navigation model or
ephemeris, almanac, ionosphere model, UTC model,
reference time, real time integrity, acquisition assistance
and DGNSS corrections (RTCM type 1)[5]. The
navigation model, almanac, ionosphere model and UTC
model are specified as hex strings in the GRIP document
which are similar to their raw formats in the GPS ICD. It
may be desirable to specify new elements or extend
present ones to represent these assistance types as a list of
integers representing individual parameters.

There are two categories for assistance data in GRIP, all
satellites and satellites in view. Table 1 shows which

assistance types are part of each category. Any assistance
data types that are requested as ‘satellites in view’, will
list the satellites that are in view of the latitude and
longitude specified in the request or be data that is
relevant to a position such as acquisition assistance or
DGNSS data. Assistance data that is requested as ‘all
satellites’ lists the entire collection of data stored for a
particular data type in the OSGRS or other reference
server implementing the GRIP protocol. Ideally the
reference server should list data which covers the entire
GNSS fleet.

Assistance data Request for All

Satellites
supported

Request for
satellites in
View
supported

Navigation
Model

Yes Yes

UTC Yes No
RTI Yes Yes
Ionosphere
Model

Yes No

Acquisition
Assistance

No Yes

Almanac Yes Yes
Reference Time Yes Yes
DGNSS No Yes
Table 1 GRIP assistance data categories

At the time of writing, the OSGRS supports all of
assistance types specified in GRIP with the exception of
acquisition assistance and DGNSS.

In the case of an error occurring during an attempt to
process a client request, a response called the
‘GNSSErrorResponse’ is sent to the client. This response
indicates that processing of the request was unsuccessful
and provides information about why an error has
occurred. In most cases the cause of an error is an XML
request that has failed to validate against the XML
Schemas. An internal error in the reference server may
also cause an error response.

OSGRS DESIGN

The OSGRS has been designed using object oriented
analysis and design (OOAD) techniques and is fully
documented in UML. The design documentation is
available on the web site [1].

The OSGRS design document documents the internal
design of the OSGRS. UML diagrams are used in the
document to illustrate key classes and processes. Any
changes made to the design, such as in implementation,
must be reflected in the design document. A new version

of the document should accompany every new release of
the OSGRS.

The initial high level design was created after the
requirements were initially specified. The high level
design changed to accommodate the addition of new
requirements and features. The design also changed
slightly throughout the implementation stage. This
section of the paper will discuss the final high level
design.

OSGRS

NovatelOEM4XMLProcessing

HTTPServer

DataType

DataManagement

Util

PositionCalculation

Figure 1 Package diagram of the OSGRS

A brief description of the classes in packages:

OSGRS: The main class of OSGRS. Contains the ‘main’
function of OSGRS.

HTTPServer: The classes associated with the HTTP
server aspect of OSGRS.

DataManagement: The classes responsible for the
management of data sources and the caching of assistance
data.

XMLProcessing: The classes associated with processing
XML data. This includes request validation, request
parsing and response generation.

PositionCalculation: The classes associated with
calculating user and satellite position.

DataType: Contains the data models for each of the
assistance data types handled by OSGRS.

Util: Utility classes.

Upon start-up the main classes which exist for the lifetime
of the execution are initialised. These include the
HTTPServer class and DataSourceManager. The HTTP
server class handles client connections, client requests and
sends responses to clients. The DataSourceManager class
is responsible for initialising data sources and holding the
data cache.

+OSGRS()
-init()

+run()

+main()

OSGRS

-init()

-start()

+getNavModel()

+getIonUTCModel()
+getAlmanac()

NovatelDataSource

-init()

-start()

-cacheNavModel()

-cacheIonUTCModel()

+cacheAlmanac()

DataSourceManager

+getCachedNavModel()

+getCachedIonUTCModel()

+getCachedAlmanac()
+setNavModel()

+setIonUTCModel()

+setAlmanac()

GNSSDataCache

11

1

1..*

1

1

-init()
-run()

HTTPServer

1 1

Figure 2 Class diagram of classes loaded at start up

The DataSoureManager was designed to communicate
with all data sources in a generic fashion. For this purpose
an interface class known as ‘DataSource’ was designed.
This allows any data source that implements the
‘DataSource’ interface correctly, to be compatible with
the DataSourceManager.

Figure 3 Data source implementing the DataSource
interface

A ‘DataSource’ acts as an interface between the OSGRS
and a source of GNSS data. A class that implements the
DataSource interface shall provide assistance data upon
request. Recievers like the NovAtel provide GNSS
reference data in the form of a log feed. To be able to
provide instantaneous GNSS reference data to the data
cache, it is necessary to cache this data.

The GNSSDataCache is used to store all the assistance
data that is received from the data sources . The periods at
which each data source is polled for assistance data can be
set up via a configuration file. Any data that is added to
the data cache, is checked to be acceptable in terms of its
‘age’. A series of threads monitor the assistance data
stored in the cache on their staleness. Any stale data is
discarded.

The first step is the validation of a client’s request. For
this task the Xerces XML parser’s validation feature is
used [7]. If any errors encountered while validating the
request against the XML schema, a GNSSErrorResponse
listing the errors is generated and sent to the client.

 If the request is acceptable, it is parsed. The required
assistance data types are then retrieved from the data
cache. If ‘satellites in view’ data is requested, the
satellites in view are generated from the clients supplied
position. The assistance data types are then sent to
GNSSResponse writer and the response is sent to the
client. The request handling is shown in Figure 4.

Validate Request Parse Request

Generate Error Response

Retrieve Assistance Data

Generate GNSS Response

successful

unsuccessful

Figure 4 Activity diagram for handling requests

OSGRS IMPLEMENTATION

The OSGRS has been written in the Java programming
language. The OSGRS was developed and tested on
Microsoft Windows XP using Java 2 Platform Standard
Edition 5.0 (J2SE 5.0). The Eclipse IDE was used to
write, compile and build the code.

Java is a structured object oriented language, developed
by Sun Microsystems. Java is platform independent, with
runtime environments being available for most platforms.
Java syntax is similar to that of the C programming
language. Most Java applications run in an interpreted
fashion although it can also be compiled directly into
machine code.

The main reason for choosing Java as the programming
language was portability. Java applications can be run on
various other platforms with little to no modification.
Memory management is almost autonomous and requires
little management from the developer. This makes Java
programs much less prone to memory leaks in comparison
to languages such as C++. The standard classes included
with Java are quite powerful which minimises linking to
external libraries.

The OSGRS is a multi-threaded program. Some of the
main threads which run for the entire execution include
the listener threads of the NovAtel receivers
(implemented inside the NovAtel data source), the threads

responsible for retrieving assistance data from data
sources, the cache monitoring threads and the threads
related with the Jetty web server component [6]. The
program has been designed to accept connections from
multiple clients. A thread is generated for each request
the OSGRS receives.

The OSGRS links to external libraries on two occasions.
The Jetty web server library provides handling of HTTP
connections, accepting requests, sending responses etc.
The Xerces XML parser library is used in the validation
of XML requests against an XML schema.

The OSGRS uses a central configuration file, to set up
logging directories, the listener port, refresh times for data
types, etc. A configuration file is also used for each
NovAtel receiver that will be used by the OSGRS.

OSGRS TESTING

During development, unit testing was performed
manually with a set of test classes.

Due to time constraints no automated test harnesses exists
for the OSGRS at the present time. This is an important
area for future development of the OSGRS. This will
allow developers to have more confidence in their code
thereby giving more reassurance to any party using the
OSGRS. Automated testing should be done on a class and
component level.

At present, the output of the OSGRS is verified manually
by comparing it to the output of the GPS receiver used as
the data source. An automated test suite which performs
this test automatically has been planned for future
development.

There is a test client supplied with the OSGRS which
allows the user to select the assistance data types required.
The XML request and the response are shown in a text
window.

OSGRS PACKAGE

The OSGRS, associated programs and documents will be
available for download from the projects website. The
main files will include the OSGRS source code, the
OSGRSClient source code, the GRIP document, GRIP
XML Schemas and the OSGRS design document.

The OSGRSClient software is a GUI OSGRS client
which allows a user to create GRIP requests and send
them to a server running the OSGRS software. Once the
client receives the GRIP response, the client formats the
XML data and displays it to the user. The OSGRSClient
will serve as a reference implementation of an OSGRS

client. The source code for the OSGRSClient has no
licence associated with it.

If a user is to run the OSGRS, they have to meet a few
requirements. Firstly, there must be a Java compiler and
virtual machine available for their target platform. They
must also have their data sources set up accordingly. If
they intend to use a receiver which is does not have a data
source, they must write their own.

The OSGRS is supplied as set of source files and must be
compiled and built by the user. The user must modify the
supplied configuration file/s according to their set-up and
preferences.

CURRENT USE

At UNSW the OSGRS is currently operating to support
and enhance research in A-GNSS field. The source data
comes from a NovAtel OEM3 that is part of the UNSW
Continuously Operating Reference Station (CORS)
system. A GPS clock demonstrator project is currently
being designed and will be using GRIP to communicate
with the server in synchronising its time precisely to the
GPS constellation.

LICENSING AND SUPPORT MODEL

The OSGRS is licensed using version 2 of the GNU
General Public Licence (GPL) [2]. The GPL is a free
software licence originally written by Richard Stallman of
the Free Software Foundation for use in the GNU project.
The GPL is a popular licence for free and open source
software.

GPL was chosen as the licence for a number of reasons.
The main reason is because while it allows an individual
or organisation to make modifications and enhancements
to the OSGRS, they must apply the conditions of the GPL
to their derived work [2] known as ‘copyleft’ [3]. This
encourages developers to share their enhancements with
OSGRS community. Developers are free charge a fee for
their derived work, but must provide the source code to
their derived work.

Conditions 11 and 12 of the GPL [2] indicate there is no
warranty provided by the owners of the program. This
ensures that nobody is held liable for any issues arising
from the use of OSGRS. An individual or group may wish
to provide a warranty to a derivative of OSGRS for a fee.
An individual or group is also allowed to charge a fee for
the installation and support of an OSGRS.

There are two instances where the OSGRS links to
libraries which are not covered by the GPL. These two
libraries are the Jetty web server and Xerces XML parser,

both of which are covered by the Apache 2.0 licence. This
is also free open source licence but it is incompatible with
the GPL [4]. For this reason, there is a special exception
on the two classes where these libraries are accessed.

The master copy, documentation and releases of OSGRS
and GRIP protocol are controlled by the School of
Surveying & SIS at the University of NSW. Any group or
individual interested in making improvements to the
OSGRS are encouraged to document their changes and
submit these to the School. These changes will be
reviewed and if deemed acceptable will be put into
testing. After testing is completed, the changes will be
available on a future release of OSGRS.

FUTURE

At present, the only GNSS that the OSGRS supports is
GPS. As more GNSSs become operational, the OSGRS
and GRIP will be expanded to accommodate these
systems and their receivers. The GRIP protocol has
already been specified for the Galileo GNSS.

REFERENCES

[1] The OSGRS Web site
http://sourceforge.net/projects/osgrs

[2] GNU General Public License,
 http://www.gnu.org/licenses/gpl.html

[3] Copy Left, http://www.gnu.org/copyleft/copyleft.html

[4] GPL compatibility,
http://www.gnu.org/licenses/license-list.html

[5] RTCM Standard for Differential GNSS (Global
Navigation Satellite Systems) Service, Version 2.3,
RTCM Paper 136-2001/SC104-STD.

[6] Jetty http://www.mortbay.org/

[7] Xerces 2 http://xerces.apache.org/xerces2-j/

[8] RFC 3023 http://www.rfc-editor.org/rfc/rfc3023.txt

[9] W3C

