
GA with Priority Rules for Solving Job-Shop Scheduling
Problems

Author:
Hasan, S. M. Kamrul; Sarker, Ruhul; Cornforth, David

Publication details:
IEEE World Congress on Evolutionary Computation, 2008
pp. 1913-1920
978-1-4244-1822-0 (ISBN)

Event details:
IEEE World Congress on Evolutionary Computation
Hong Kong

Publication Date:
2008

Publisher DOI:
http://dx.doi.org/10.1109/CEC.2008.4631050

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39964 in https://
unsworks.unsw.edu.au on 2024-04-20

http://dx.doi.org/http://dx.doi.org/10.1109/CEC.2008.4631050
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39964
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Abstract— The Job-Shop Scheduling Problem (JSSP) is
considered as one of the difficult combinatorial optimization
problems and treated as a member of NP-complete problem
class. In this paper, we consider JSSPs with an objective of
minimizing makespan while satisfying a number of hard
constraints. First, we develop a genetic algorithm (GA) based
approach for solving JSSPs. We then introduce a number of
priority rules such as partial reordering, gap reduction and
restricted swapping to improve the performance of the GA. We
run the GA incorporating these rules in a number of different
ways. We solve 40 benchmark problems and compared their
results with that of a number of well-known algorithms. We
obtain optimal solutions for 27 problems, and the overall
performance of our algorithms is quite encouraging.

 Index Terms— Job-Shop Scheduling, Makespan, Genetic
Algorithm, Heuristics.

I. INTRODUCTION
HE job-shop scheduling problem (JSSP) is a common
problem in the manufacturing industry. A classical JSSP

is a combination of N jobs and M machines. Each job
consists of a set of operations that has to be processed on a
set of known machines, and has a known processing time. A
schedule is a complete set of operations, required by a job,
to be performed on different machines, in a given order. In
addition, the process may need to satisfy other constraints.
The total time between the starting of the first operation and
the ending of the last operation is termed as the makespan.
Makespan minimisation is widely used as an objective in
solving JSSPs [1-7]. A feasible schedule contains no
conflicts such as (i) no more than one operation of any job
can be executed simultaneously and (ii) no machine can
process more than one operation at the same time. The
schedules are generated on the basis of predefined sequence
of machines and the given order of job operations.

The JSSP is widely acknowledged as one of the most
difficult NP-complete problems [8-10] which is also well-
known for its practical applications in many manufacturing
industry. Over the last few decades, a good number of

Manuscript received December 13, 2007. This work was supported by
the University of New South Wales at the Australian Defence Force
Academy in the form of a Postgraduate Research Scholarship.

S. M. Kamrul Hasan is with the University of New South Wales at the
Australian Defence Force Academy, Canberra, ACT 2600 Australia (phone:
+61 2 62688180; fax: +61 2 62688581; e-mail: kamrul@adfa.edu.au).

Dr. Ruhul Sarker, Senior Lecturer with the School of ITEE, University
of New South Wales at the Australian Defence Force Academy, Canberra,
ACT 2600 Australia (e-mail: r.sarker@adfa.edu.au).

Dr. David Cornforth, Senior Lecturer with the School of ITEE,
University of New South Wales at the Australian Defence Force Academy,
Canberra, ACT 2600 Australia (e-mail: d.cornforth@adfa.edu.au).

algorithms have been developed for solving JSSPs.
However, no single algorithm is capable of solving all kinds
of JSSPs optimally (or near optimally) within a reasonable
time limit. Thus, there is scope to analyze the difficulties of
JSSPs as well as to design algorithms that may be able to
solve most of the standard problems.

In early stages, Akers and Friedman [11] and Giffler and
Thompson [12] explored only a subset of the alternative
solutions to suggest acceptable schedules. Although such an
approach was computationally expensive but it could solve
the problems much quicker than a human can do at that
time. Later, the Branch-and-Bound (B&B) was widely
popular for solving JSSPs which uses the concept of
omitting a subset of solutions those are out of the bounds
[13-15]. Among them, Carlier and Pinson [15] solved a
10×10 JSSP optimally for the first time which was proposed
in 1963 by [16]. They considered the N×M JSSP as M one-
machine problem and evaluated the best preemptive solution
for each machine. The algorithm relaxes the constraints in
all other machines except the one under consideration. The
concept of converting M machines problem to one-machine
problem is also used by Emmons [17] and Carlier [18]. As
the complexity of this algorithm is directly dependent on the
number of machines, it is not computationally cheaper for
large scale problems.

Although the above algorithms can achieve optimality or
near optimality, they are computationally expensive, even
out of reach for large problems with the current computation
power. For this reason, numerous heuristic and meta-
heuristic approaches are proposed in last few decades. These
approaches do not guarantee optimality, but provide good
quality solutions within a reasonable period of time.
Examples for such approaches applied to JSSPs are GA [3,
4, 6, 19-21], Tabu Search (TS) [22-24], Shifting Bottleneck
(SB) [1, 25], and Greedy Randomized Adaptive Search
Procedure (GRASP) [2], simulated annealing (SA) [26, 27].

In this research, we examine the performance of a
traditional genetic algorithm (TGA) for solving JSSPs. Each
individual represents a particular complete schedule and is
specified with a binary chromosome. After reproduction, the
genotype to phenotype mapping employed may result in an
infeasible individual, which is then repaired to be feasible.
The phenotype representation of the problem is a matrix of
M×N integer numbers where each row represents the
sequence of operations in a given machine. A binary
genotype facilitates simple crossover and mutation
techniques. Moreover, the representation makes the
repairing process easier [4-6].

GA with Priority Rules for Solving Job-Shop Scheduling Problems
S. M. Kamrul Hasan, Student Member, IEEE, Ruhul Sarker, Member, IEEE, and David Cornforth

T

After analyzing the traditional GA solutions, we realize
that solutions can be further improved by applying simple
rules or local search. Here, we introduce several priority
rules such as partial reordering (PR), gap reduction (GR)
and restricted swapping (RS) to improve the performance of
the traditional GA. These rules can be considered as local
search as well in addition to genetic operators applied. The
result of a rule will be accepted if and only if it improves the
solution. The details of the priority rules are discussed in a
later section. This work implements a GA incorporating
different combinations of these priority rules. For ease of
explanation, in this paper, we identify the combinations PR
with GA, GR with GA, GR with RS and GA as PR-GA,
GR-GA and GR-RS-GA respectively. To test the
performance of our proposed algorithms, we solve 40
benchmark problems as reported in Lawrence [28]. The
priority rules that we propose improve the performance of
traditional a GA for solving JSSPs. Among the priority
rules, GR-RS-GA is the best performing algorithm. It
obtained the optimal solution for 27 out of 40 test problems.
The overall performance of GR-RS-GA is better than many
key JSSP algorithms appearing in the literature. The current
version of our algorithms is much refined from our earlier
version. The earlier version of the algorithms with
experimental results of fewer test problems can be found in
Hasan et al. [29, 30].

The paper is organized as follows. After the introduction,
a brief outline of a standard job-shop scheduling problem is
given. A short review on the traditional genetic algorithm to
solve JSSPs is provided in Section III. Section IV introduces
new priority rules for improving the performance of
traditional GA. Section V presents the proposed algorithms
and implementation aspects. Section VI shows the
experimental results and necessary statistical analysis to
measure the performance of the algorithms. Finally, the
conclusions and future research direction are presented.

II. PROBLEM DEFINITION
The standard job-shop scheduling problem makes the

following assumptions:
• Each job consists of a finite number of operations.
• The processing time for each operation in a

particular machine is defined.
• There is a pre-defined sequence of operations that

has to be maintained to complete each job.
• Delivery times of the products are undefined.
• There is no setup cost or tardy cost.
• A machine can process only one job at a time.
• Each job visits each machine only once.
• No machine can deal with more than one type of

task.
• The system cannot be interrupted until each

operation of each job is finished.
• No machine can halt a job and start another job

before finishing the previous one.
• Each and every machine has full efficiency.

The objective of the problem is the minimization of the
maximum time taken to complete each and every operation
while satisfying the machining constraints and required
operational sequence of each job.

III. JOB-SHOP SCHEDULING WITH GENETIC ALGORITHM
In this paper, we consider the minimization of makespan

as the objective of JSSPs. According to the problem
definition, the sequence of machine used (those are also
sequence of operations) by each job is given. In this case, if
we know either the starting or finishing time of each
operation, we can calculate the makespan for each job and
generate the whole schedule. In JSSPs, the main problem is
to find the sequence of jobs to be operated on each machine
that minimizes the overall makespan.

Chromosome Representation
In solving JSSPs using GAs, the chromosome of each

individual usually comprises the schedule. Chromosomes
can be represented by binary, integer or real numbers. Some
popular representations for solving JSSP are: operation
based, job based, preference-list based, priority-rule based,
and job pair-relation based representations [31]. We select
the job pair-relation based genotype representation due to
the flexibility of applying genetic operators. The same
representation is also used by some other authors [4-6, 32,
33]. In this representation, a chromosome is symbolized by a
binary string, where each bit stands for the order of a job
pair (u,v) for a particular machine m. For a chromosome Cp;

A value of 1 means that for the individual p, the job u

must lead the job v in machine m. The job having the
maximum number of 1s is the highest priority job for that
machine. The length of each chromosome is;

where N is the number of jobs, M is the number of

machines and the length l is the number of pairs formed by
considering any two jobs. This binary string acts as the
genotype of individuals. It is possible to construct a
phenotype which is the job sequence for each machine. The
construction is described in Table I. This representation is
helpful if the conventional crossover and mutation
techniques are used. The heuristic operators or priority rules
discussed in later sections are applied to the constructed
phenotype.

Reproduction operators used are the simple two-point
crossover and mutation. The crossover points are selected
randomly. After applying the operators, we perform
repairing techniques (i.e. local and global harmonization
operations) to make the solution feasible, as these operators
may produce an infeasible solution [4-6].

2)1(NNMl ×−×= (2)

⎩
⎨
⎧

=
Otherwise

jjobtheleadsjjobtheif
C vu

vump 0
1

,,,
 (1)

Local Harmonization
This is the technique of constructing the phenotype

(sequence of operations for each machine) from the binary
genotype. M tables are formed from a chromosome of length
l as of Equation (2). Table I shows the way to construct the
phenotype from the genotype by applying local
harmonization.

Table I.A represents the binary chromosome (for a 3 jobs
and 3 machines problem) where each bit represents the
preference of one job with respect to another job in the
corresponding machine. The first block on the left shows the
relationship between job 1 and job 2. The machines are
listed as m1 m3 m2, because that is the order of machines for
job 1, as given in Table 1.C. Table I.B.1, I.B.2 and I.B.3
represent the job pair based relationship in machine m1, m2
and m3 respectively which are mapped from the
chromosome, mentioned in Equation (1). In Table I.B.1, the
‘1’ in cell j1-j2 indicates that job j1 will appear before job j2
in machine m1. Similarly, the ‘0’ in cell j1-j3 indicates that
job j1 will not appear before job j3 in machine m1. In the
same Table I.B, the column of S represents the priority of
each job which is the row sum of all 1s for the job presented
in each row. A higher number represents a higher priority
because it is leading all other jobs. So for machine m1, job j3
has the highest priority. If more than one job has an equal
priority in a given machine, a repairing technique modifies
the order of these jobs to introduce different priorities.

Consider a situation where the order of jobs for a given
machine is j1-j2, j2-j3 and j3-j1. This will provide S=1 for all
jobs in that machine. By swapping the content of cells j1-j3
and j3-j1, it provides S=2, 1 and 0 for jobs j1, j2 and j3
respectively.

Table I.C shows the pre-defined operational sequence of

each job. In this table, jo1, jo2 and jo3 represent the first,
second and third operation for a given job. According to the
priorities found from I.B, the Table I.D is generated which is

the phenotype or schedule. For example, the sequence of m1
is j3 j1 j2, because in I.B.1, j3 is the highest priority and j2 is
the lowest priority job. In Table I.D, the top row (mt1, mt2
and mt3) represents the first, second and third task on a given
machine. For example, as of Table I.D, the first task in
machine m1 is to process the first task of job j3.

Global Harmonization
For an N×M static job-shop scheduling problem, there

will be (N!)M possible solutions. Only a small percentage of
these solutions are feasible. Global harmonization is a
repairing technique for changing infeasible solutions to
feasible. Suppose job j3 requires its first, second and third
operation to be processed on machine m3, m2 and m1
respectively, and job j1 requires machine m1, m3 and m2
respectively. Further assume that an individual solution
(chromosome) indicates that j3 is scheduled on machine m1
first to process its first operation and then job j1. Such a
schedule is infeasible as it violates the defined sequence of
operations for job j3. In this case, the swap of places
between job j1 with job j3 on machine m1 would allow job j1
to have its first operation on m1 as required and it may
provide an opportunity for job j3 to visit m3 and m2 before
visiting m1 as per its order. Usually, the process identifies
the violations sequentially and performs the swap one by
one until the entire schedule is feasible. In this case, there is
a possibility that some swaps performed earlier in the
process are required to swap back to its original position to
make the entire schedule feasible.

The technique is useful not only for the binary
representations, but also for the job-based or operation
based representation. Further details on the use of global
harmonization with GAs for solving JSSPs can be found in
[4-6]. In our proposed algorithm, we consider multiple
repairing to narrow down the deadlock frequency. As soon
as the deadlock occurs, the algorithm identifies at most one
operation from each job that can be scheduled immediately.
Starting from the first operation, the algorithm identifies the
corresponding machine of the operation and swaps the tasks
in that machine so that at least the selected task disallows
deadlock for the next time. For N jobs, the risk of getting
into deadlock will be removed for at least N operations.

After performing global harmonization, we get a
population of feasible solutions. We calculate the makespan
of all the feasible individuals and rank them based on their
fitness values. We then apply genetic operators to generate
the next population. We continue this process until
satisfying the stopping criteria.

IV. PRIORITY RULES AND JSSPS
As reported in the literature, different priority rules are

imposed in conjunction with GAs to improve the JSSP
solution. Dorndorf and Pesch proposed twelve different
priority rules for achieving better solutions for JSSPs [21].
However they suggested choosing only one of these rules

TABLE I
DERIVATION PHENOTYPE FROM THE BINARY GENOTYPE AND PRE-DEFINED

SEQUENCES
1 0 1 0 0 1 1 0 0

m1 m3 m2 m1 m3 m2 m2 m1 m3
j1–j2 j1–j3 j2–j3

I.A

 j1 j2 j3 S j1 j2 j3 S j1 j2 j3 S
j1 * 1 0 1 j1 * 1 1 2 j1 * 0 0 0
j2 0 * 0 0 j2 0 * 1 1 j2 1 * 0 1
j3 1 1 * 2 j3 0 0 * 0 j3 1 1 * 2

I.B.1 – m1 I.B.2 – m2 I.B.3 – m3

 jo1 jo2 jo3 mt1 mt2 mt3
j1 m1 m3 m2 m1 j3 j1 j2
j2 m2 m1 m3 m2 j1 j2 j3
j3 m1 m3 m2 m3 j3 j2 j1

I.C I.D

while evaluating the chromosome. They also applied the
popular shifting bottleneck heuristic proposed by [1] for
solving JSSP. This heuristic ingeniously divides the
scheduling problem into a set of single machine
optimization and re-optimization problems. It selects a
machine identified as a bottleneck one by one. After the
addition of a new machine, all previously established
sequences are re-optimized. However these algorithms were
implemented while evaluating the individuals in GA and
generating the complete schedule.

In this section, we introduce three new priority rules. We
propose to use these rules after the fitness evaluation as the
process requires analyzing the individual solutions from the
preceding generation. The rules are briefly discussed below.

Partial Reordering (PR)
In the first rule, we identify the machine mk which is the

deciding factor for makespan in phenotype p and the last job
jk that is to be processed by the machine mk. The Machine mk
can be termed as the bottleneck machine in the chromosome
under consideration.

Then we find the machine (say m′) required by the first

operation of job jk. The re-ordering rule then suggests that
the first operation of job jk must be the first task on machine
m′ if it is not the case as scheduled. If we move the job jk
from its current lth position to the 1st position, we may need
to push some other jobs currently scheduled on machine m′
to the right. In addition, it may provide an opportunity to
shift some jobs to the left on other machines. The overall
process helps to reduce the makespan for some
chromosomes.

A simple example of the re-ordering process is shown in
Fig. 1.A, where the makespan is the completion time of job
j3 on machine m1, so m1 is the bottleneck machine. Here, job
j3 requires machine m3 for its first operation. If we move j3
from its current position to the first operation of machine m3,
it is necessary to shift job j2 to the right for a feasible
schedule on machine m3. These changes create an
opportunity to move job j1 on m3, j3 on m2 and j3 on m1 to the
left without violating the operational sequences. As shown
in Fig. 1(B), the resulting chromosome is able to improve its
makespan. The change of makespan is indicated by the
dotted line.

Gap Reduction (GR)
After each generation, the generated phenotype usually

leaves some gaps between the jobs. Sometimes, these gaps
are necessary to satisfy the precedence constraints.
However, in some cases, a gap could be removed or reduced
by placing a job from the right side of the gap. For a given
machine, this is like swapping between a gap from left and a
job from right of a schedule. In addition, a gap may be
removed or reduced by simply moving a job to its adjacent
gap at the left. The process would help to develop a compact
schedule from the left and continue up to the last job for
each machine. Of course, it must ensure no conflict or
infeasibility before accepting the move.

The rule is to identify the gaps in each machine and
candidate jobs which can be placed in those gaps without
violating the constraints and not increasing the makespan.
The same process is carried out for any possible shift of jobs
to the left of the schedule. The gap reduction rule, with
swapping between gap and job, is explained using a simple
example.

A simple instance of a schedule is shown in Fig. 2(A). In
the phenotype p, j1 follows j2 in machine m2, however, job j1
can be placed before j2, as shown in Fig. 2(B), due to the
presence of an unused gap before j2. A swap between this
gap and job j1 would allow the processing of j1 on m2 earlier
than the time shown in Fig. 2(A). This swapping of j1 on m2
creates an opportunity to move this job to the left on
machine m1 (see Fig. 2(C)). Finally, j3 on m2 can also be
moved to the left which ultimately reduces the makespan as
shown in Fig. 2(D).

Restricted Swapping (RS)
For a given machine, the restricted swapping rule allows a

swap between the adjacent jobs if and only if the resulting
schedule is feasible. The process is carried out only for the
job which takes the longest time for completion.

Suppose job j′ takes the longest time for completion as the
phenotype p. The algorithm starts from the last operation of
j′ in p and checks with the immediate predecessor operation
whether these two are swappable or not. The necessary
conditions for swapping are; none of the operations can start
before finishing time of the immediate predecessor operation
of that corresponding job.

Fig. 1. Gantt chart of the solution (A) before applying the partial
reordering (B) after applying partial reordering and reevaluation.

(A)

m1

m2

m3

M
ac

hi
ne

Time

j2 j1 j3

j2 j1 j3

(B)

m1

m2

m3

M
ac

hi
ne

Time

j1 j3 j2

j2 j1 j3

j2 j1 j3

Improve-
ment

j1j3 j2

And both operations have to be finished before starting
the immediate successive operations of the corresponding
jobs. Interestingly, the algorithm does not collapse the
feasibility of the solution. It may change the makespan if
any of the operations are the last operation of the
corresponding machine. But it will give an alternate solution
which may improve the fitness of the solution in successive
generations, when the phenotype will be rescheduled. The
process also allows swapping between two randomly
selected individuals. This is done for few individuals only.
As the complexity of the algorithm is simply an order of N,
it does not affect the overall computational complexity that
much.

V. IMPLEMENTATION
As we initially implement the TGA, we generate a set of

random individuals. Each individual is mainly represented
by a binary chromosome. We use the job-pair relation based
representation and report the effectiveness of the
representation. We use simple one point crossover and bit
flip mutation as reproduction operators. We carry out a set
of experiments with different crossover and mutation rates
to analyze the robustness of the algorithm.

We set the population size to 2500 and the number of
generations to 1000. In JSSP, the feasible space is small
compared to the solution space, so a large population gives a
higher probability of generating feasible solutions.

As we use the GR technique as a part of evaluation, this is
applied to every individual. On the other hand, we apply PR
and RS to only 5% of individuals randomly selected from
the population in every generation.

After successful implementation of TGA, we introduce
the priority rules, as discussed in the last section, to TGA as
follows:

• Partial reordering rule with TGA (PR-GA)
• Gap reduction rule with TGA (GR-GA) and
• Gap reduction and restricted swapping rule with

TGA (GR-RS-GA)
For ease of explanation, we describe the steps of GR-RS-

GA below.
Let Rc and Rm be the two-point crossover and bit-mutation

probability respectively. P(t) is the set of current individuals
at time t and P′(t) is the evaluated set of individuals at time t.
1. Initialize P(t) as a random population P(t=0) of size

|P(t)|, where each random individual is a bit string of
length l.

2. Repeat
A. Set t:=t+1
B. Evaluate P′(t) from P(t-1) by the following steps;

i. Decode each individual p by using the job-based
decoding with the local harmonization and global
harmonization methods to repair illegal bit strings.

ii. Generate the complete schedule with starting and

(A) (B)

m1

m2

m3

M
ac

hi
ne

Time

j2 j1

Time

j2 j3

Fig. 2. Two steps of a partial Gantt chart while building the schedule from the phenotype for a 3×3 job-shop scheduling problem. The x axis represents
the execution time and the y axis represents the machines.

j3 j2 j1

j3

j1

m1

m2

m3

j2 j1

j2 j3

j3 j2 j1

j3

j1

(C)

Time

m1

m2

m3

j2 j1

j2 j3

j3 j2 j1

j3

j1
m1

m2

m3

j2 j1

j2 j3

j3 j2 j1

j3

j1
m

ak
es

pa
n

m
ak

es
pa

n

m
ak

es
pa

n

m
ak

es
pa

n

(D)

Time

M
ac

hi
ne

M

ac
hi

ne

M
ac

hi
ne

ending time of each operation by applying the gap
reduction (GR) rule and calculate the objective
function f of p.

iii. Rank the individuals according to the fitness values
from higher to lower fitness value.

iv. Apply elitism; i.e. preserve the solution having the
best fitness value in the current generation so that it
can survive at least up to the next generation.

C. Apply restricted swapping rule (RS) on the randomly
selected 5% of the individuals.

D. Go to Step 3 if the stopping criteria are met.
E. Modify P′(t) using the following steps;

i. Select the current individual p from P′(t) and select
a random number R between 0 and 1.

ii. If R≤Rc then
a. Select randomly one individual p1 from the top

15% of the population and two individuals from
the rest. Play a tournament between the last two
and choose the winner individual w. Apply two-
point crossover between p1 and w; generate p1′
and w′.

b. Else if R>Rc and R≤(Rc+Rm) then randomly select
one individual from P(t) and apply bit-flip
mutation.

c. Else continue.
[End of Step ii If]
iii. Reassign the P(t) by P′(t) to initialize the new

generation preserving the best solution as elite.
[End of Step 2 Loop]

3. Save the best solutions among all of the feasible
solutions.

[End of Algorithm]
Sometimes the action of genetic operators may take the

good individuals away from the optimal. In this case, the
elitism ensures the survival of the best individuals [34, 35].
We apply elitism in each generation to preserve the best
solution found so far and also to inherit the elite individuals
more than the rest.

During the crossover operation, we use the tournament
selection that chooses one individual from the elite class of
the individual (i.e. the top 15%) and two individuals from
the rest. This selection then plays a tournament between the
last two and performs crossover between the winner and
elite one. We use two-point crossover and a bit-flip mutation
technique. We rank the individuals on the basis of the fitness
value. A high selection pressure on the better individuals
may contribute to premature convergence. If the elite class
or most of them have the same solution, then their offspring
will be quite similar after some generations. In such case, a
higher mutation rate would help to diversify the population.

To test the performance of the our proposed algorithms,
we solve 40 benchmark problems designed by Lawrence
[28] and compare with several existing algorithms. The
problems range from 10×5 to 30×10 and 15×15 where N×M
represents N jobs and M machines.

VI. EXPERIMENTAL RESULTS
The results for the benchmark problems are obtained by

executing the algorithms on a personal computer. Results
are tabulated in Tables II, III and IV. Table II compares the
performance of our four algorithms (TGA, PR-GA, GR-GA,
and GR-RS-GA) in terms of the % average relative
deviation (ARD) from the best result published in the
literature, the standard of % relative deviation (SDRD), and
the fitness evaluation which is the average number of
generations to achieve the best solution multiplied by the
population size. It also includes the number of problems
where the algorithms found optimal solution.

TABLE II

COMPARING OUR FOUR ALGORITHMS
No. of

Problems Algorithm Optimal
Found

ARD
(%)

SDRD
(%)

Fitness Eval.
(103)

TGA 15 3.591 4.165 664.90
PR-GA 16 3.503 4.192 660.86
GR-GA 23 1.360 2.250 356.41

40
(la01–la40)

GR-RS-GA 27 0.968 1.656 388.58

From Table II, it is clear that the performance of GR-GA

is better than both PR-GA and TGA. The addition of RS to
GR-GA, which is known as GR-RS-GA, has clearly
enhanced the performance of the algorithm in terms of both
ARD and SDRD. Though GR-RS-GA takes few more
fitness evaluation but gives better fitness value. It is due to
the fact that RS changes some properties in the solutions
which help to generate a new solution. As more new
solutions are generated, the algorithm needs more fitness
evaluation.

Out of 40 test problems, GR-RS-GA obtained the best
known solution for 27 problems, whereas GR-GA obtained
the best known solution for 23 problems. GR-RS-GA
produced better solutions (although non-optimal) for 10
problems, and both algorithms obtained a non-optimal equal
solution for 3 problems. Details of the results are found in
Table III. The rate of improvement made by PR and RS in
each generation is usually lower than that of GR. PR
considers only the bottleneck job. However, GR is applied
to all individuals. PR makes good improvement at the initial
generations and has insignificant effect at later stages. The
process of GR eventually makes most changes performed by
PR over some (or many) generations. As a result, the
inclusion of PR with GR does not help to improve the
performance of the algorithm. Both PR and RS are applied
to only 5% of the individuals. Here, the role of RS is to
increase the diversity like mutation. The increase in the rate
of PR and RS does not provide any benefit either in term of
quality of solution or computational time. For this reason,
we have not presented other possible variants such as PR-
RS-GA and GR-RS-PR-GA.

TABLE III
COMPARISON OF THE % RELATIVE DEVIATIONS WITH THE RESULTS FOUND

IN LITERATURE
Aarts
et al.

Dorndorf &
Pesch

Adams
et al.

Pr
ob

le
m

TG
A

PR
-G

A

G
R

-G
A

G
R

-R
S-

G
A

G
LS

1

G
LS

2
O

m
bu

ki
 a

nd

V
en

tre
sc

a
PG

A

SB
G

A
1

SB
G

A
2

C
ro

ce
 e

t a
l.

B
in

at
oe

t a
l.

SB
 I

SB
 II

la01 0.15 0.15 0.00 0.00 0.00 0.00 – 0.00 0.00 – 0.00 0.00 0.00 –
la02 0.00 0.00 0.00 0.00 1.98 0.61 – 3.97 1.68 – 1.68 0.00 9.92 2.14
la03 3.35 3.35 0.00 0.00 2.68 2.01 – 3.85 1.17 – 11.56 1.17 4.36 1.34
la04 2.71 2.71 0.00 0.00 1.53 0.68 – 5.08 0.00 – – 0.00 1.19 0.51
la05 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 –
la06 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – 0.00 0.00 0.00 –
la07 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 –
la08 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.58 0.00
la09 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 –
la10 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.10 –
la11 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – 0.00 0.00 0.00 –
la12 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 –
la13 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 –
la14 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 –
la15 0.00 0.00 0.00 0.00 0.00 0.00 – 2.49 0.00 – – 0.00 0.00 –
la16 5.19 5.19 0.11 0.00 3.39 3.39 1.48 6.67 1.69 1.69 3.60 0.11 8.04 3.49
la17 1.28 0.13 0.00 0.00 0.89 0.89 1.02 3.19 0.38 0.00 – 0.00 1.53 0.38
la18 1.53 1.53 1.53 0.00 0.94 1.18 1.06 8.02 0.00 0.00 – 0.00 5.07 1.30
la19 5.70 6.41 0.95 0.00 2.49 2.02 2.14 4.51 2.49 0.71 – 0.00 3.92 2.14
la20 7.21 7.21 0.55 0.55 1.22 1.55 0.55 2.88 1.00 0.89 – 0.55 2.44 1.33
la21 4.97 4.21 4.11 3.15 3.63 3.73 6.50 8.89 2.68 2.68 4.88 4.3012.05 3.63
la22 6.36 6.26 3.88 3.56 2.91 1.83 6.69 7.66 0.86 0.97 – 3.5612.19 1.83
la23 1.07 1.07 0.00 0.00 0.00 0.00 0.29 3.88 0.00 0.00 – 0.00 2.81 0.00
la24 5.24 5.45 4.71 2.57 3.74 4.9210.37 8.45 2.67 2.35 – 4.60 6.95 4.39
la25 10.2410.24 1.43 1.43 3.99 3.38 7.16 3.79 3.17 3.07 – 5.22 7.27 4.09
la26 6.32 6.98 0.16 0.00 1.81 1.48 7.31 4.93 0.08 0.00 1.07 4.35 7.06 0.49
la27 7.53 7.53 5.10 4.13 5.91 5.26 9.3111.58 3.00 2.75 – 6.88 7.29 4.53
la28 6.66 6.25 2.22 1.64 5.35 4.03 7.89 9.13 1.97 2.06 – 6.33 3.29 2.80
la29 9.33 9.51 6.91 5.5311.50 8.9013.3115.47 4.06 4.58 – 11.7511.84 7.09
la30 1.62 0.59 0.00 0.00 3.47 2.29 7.08 4.13 0.00 0.00 – 0.96 3.54 0.00
la31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –
la32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 –
la33 0.00 0.00 0.00 0.00 0.00 0.00 1.51 0.00 0.00 0.00 – 0.00 0.00 –
la34 1.57 1.10 0.00 0.00 0.93 0.52 3.66 0.00 0.00 0.00 – 1.86 0.00 –
la35 0.53 0.00 0.00 0.00 0.32 0.11 3.71 0.00 0.00 0.00 – 0.00 0.00 –
la36 9.46 9.54 3.86 3.08 4.42 3.39 7.10 8.28 3.86 3.86 2.92 5.21 6.55 2.92
la37 11.7410.52 4.94 3.22 3.72 3.79 8.59 7.23 6.23 3.51 – 4.29 6.30 1.86
la38 14.3014.30 9.03 5.85 7.44 7.2713.88 8.36 4.60 3.76 – 5.94 7.02 4.93
la39 8.52 8.84 2.43 1.54 3.73 3.7312.81 9.57 3.97 3.57 – 4.62 7.14 3.24
la40 11.0511.05 2.45 2.45 4.17 3.11 8.27 8.10 4.26 2.45 – 3.03 8.51 3.85

Table III compares the best results published in literature

with that found by our four algorithms (TGA, PR-GA, GR-
GA, and GR-RS-GA) and some other key results as
published in literature. Table III starts with the column of
problem instances. The following columns show the ARD of
other algorithms found in literature. Each pair of columns
next to the best known fitness represents the best fitness and
relative deviation in % from the best. We consider our four
algorithms (TGA, PR-GA, GR-GA, and GR-RS-GA), local

search GA [20, 36], shifting-bottleneck GA [21], simple GA
[3], GRASP [2] and shifting bottleneck heuristic [1].

In most of the test problems, our proposed GR-RS-GA
performs better than other algorithms. In terms of average
relative deviation (ARD) and standard deviation of the
relative deviations (SDRD), our algorithm outperforms all
other algorithms reported in this paper.

As different authors used different number of problems,
we make a comparison based on only those problems the
authors considered. For example, as Ombuki and Ventresca
[20] used 25 problems out of 40, we calculate ARD and
SDRD based on only those particular problems to perform a
close measurement. The result is tabulated in Table IV.

TABLE IV

COMPARISON OF THE % DEVIATIONS FOR THE DIFFERENT NUMBER OF
PROBLEMS AUTHORS CONSIDERED

N
o.

 o
f

Pr
ob

le
m

s

Te
st

Pr

ob
le

m
s

A
ut

ho
rs

A
lg

or
ith

m

A
R

D

(%
)

SD
R

D

(%
)

Our Proposed GR-RS-GA 0.9680 1.6559
Aarts et al. GLS1 2.0540 2.5279
 GLS2 1.7518 2.1974
Dorndorf & Pesch PGA 4.0028 4.0947
 SBGA (40) 1.2455 1.7216
Binato et al. - 1.8683 2.7817

40 la01 – la40

Adams et al. SB I 3.6740 3.9804
Our Proposed GR-RS-GA 1.5488 1.8759
Ombuki and Ventresca - 5.6676 4.380425 la16 – la40
Dorndorf & Pesch SBGA (60) 1.5560 1.5756

Selected Our Proposed GR-RS-GA 1.6810 1.8562
24

(see Table III) Adams et al. SB II 2.4283 1.8472
Selected Our Proposed GR-RS-GA 0.6231 1.3137

9
(see Table III) Croce et al. - 2.5710 3.6025

Result in the Table IV shows that GA-GR-RS performing

better than any other algorithms considered even if we
consider only a subset of the problems other authors
considered. Though in some cases, SDRD is not as good as
other authors, but it is competitive and better in terms of
ARD.

Finally, we can summarize from the experimental result
that PR-GA performs better than traditional GA. GR-GA
makes a big change in the quality of solutions and fitness
evaluation. The RS rule helps to improve the solution
quality of GR-GA which is outperforming.

VII. CONCLUSION
The JSSP is a very well known member of the

combinatorial optimization problem class. A considerable
amount of work has already been done to improve
algorithms to give a steady and optimal output. Some
algorithms are eminent for special case problems. But still
no algorithm guarantees optimality. We observe from
numerous experiments that GA is able to produce good
quality solutions for smaller problems within a reasonable

period of time. Integration of some other techniques
significantly improves the solution quality. Still our
algorithms do not ensure optimality. But it gives a
competitive result within a reasonable period of time. In
future work we plan to work on the diversity of the solutions
in solution space and apply the ideas to the flexible job-shop
scheduling problems. Moreover, we would like to consider
large scale problems and real world problems to justify the
performance of our algorithms.

REFERENCES
[1] J. Adams, E. Balas, and D. Zawack, "The shifting bottleneck

procedure for job shop scheduling," Management Science, vol. 34, pp.
391-401, 1988.

[2] S. Binato, W. Hery, D. Loewenstern, and M. Resende, A GRASP for
Job Shop Scheduling: Kluwer Academic Publishers, 2000.

[3] F. D. Croce, R. Tadei, and G. Volta, "A genetic algorithm for the job
shop problem," Computers & Operations Research, vol. 22, pp. 15-24,
1995.

[4] R. Nakano and T. Yamada, "Conventional genetic algorithm for job
shop problems," in Fourth Int. Conf. on Genetic Algorithms, Morgan
Kaufmann, San Mateo, California, 1991, pp. 474-479.

[5] T. Yamada, "Studies on Metaheuristics for Jobshop and Flowshop
Scheduling Problems," in Department of Applied Mathematics and
Physics. Doctor of Informatics Kyoto, Japan: Kyoto University, 2003,
p. 120.

[6] T. Yamada and R. Nakano, "Genetic algorithms for job-shop
scheduling problems," in Modern Heuristic for Decision Support,
UNICOM seminar, London, 1997, pp. 67-81.

[7] W. Wang and P. Brunn, "An Effective Genetic Algorithm for Job
Shop Scheduling," Proceedings of the Institution of Mechanical
Engineers -- Part B -- Engineering Manufacture, vol. 214, pp. 293-
300, 2000.

[8] M. R. Garey, D. S. Johnson, and R. Sethi, "The Complexity of
Flowshop and Jobshop Scheduling," Mathematics of Operations
Research, vol. 1, pp. 117-129, 1976.

[9] J. K. Lenstra and A. H. G. Rinnooy Kan, "Computational complexity
of discrete optimization problems." vol. 4 Rotterdam: Annals of
Discrete Mathematics, 1979, pp. 121-140.

[10] M. R. Garey and D. S. Johnson, Computers and intractability : a guide
to the theory of NP-completeness. San Francisco: W. H. Freeman,
1979.

[11] S. B. J. Akers and J. Friedman, "A Non-Numerical Approach to
Production Scheduling Problems," Journal of the Operations Research
Society of America, vol. 3, pp. 429-442, Novmber 1955 1955.

[12] B. Giffler and G. L. Thompson, "Algorithms for Solving Production-
Scheduling Problems," Operations Research, vol. 8, pp. 487-503,
1960.

[13] S. Ashour and S. R. Hiremath, "A branch-and-bound approach to the
job-shop scheduling problem," International Journal of Production
Research, vol. 11, pp. 47-58, 1973.

[14] P. Brucker, B. Jurisch, and B. Sievers, "A branch and bound algorithm
for the job-shop scheduling problem," Discrete Applied Mathematics,
vol. 49, pp. 107-127, 1994.

[15] J. Carlier and E. Pinson, "An Algorithm for Solving The Job-Shop
Problem," Management Science, vol. 35, pp. 164-176, Feb 1989 1989.

[16] J. F. Muth and G. L. Thompson, Industrial scheduling. Englewood
Cliffs, N.J.,: Prentice-Hall, 1963.

[17] H. Emmons, "One-Machine Sequencing to Minimize Certain
Functions of Job Tardiness," Operations Research, vol. 17, pp. 701-
715, 1969.

[18] J. Carlier, "The one-machine sequencing problem," European Journal
of Operational Research, vol. 11, pp. 42-47, 1982.

[19] J. E. Biegel and J. J. Davern, "Genetic algorithms and job shop
scheduling," Computers & Industrial Engineering, vol. 19, pp. 81-91,
1990.

[20] B. M. Ombuki and M. Ventresca, "Local Search Genetic Algorithms
for the Job Shop Scheduling Problem," Applied Intelligence, vol. 21,
pp. 99-109, 2004.

[21] U. Dorndorf and E. Pesch, "Evolution based learning in a job shop
scheduling environment," Computers & Operations Research, vol. 22,
pp. 25-40, 1995.

[22] M. Dell'Amico and M. Trubian, "Applying tabu search to the job-shop
scheduling problem," Annals of Operations Research, vol. 41, pp. 231-
252, 1993.

[23] J. W. Barnes and J. B. Chambers, "Solving the job shop scheduling
problem with tabu search." vol. 27: Taylor & Francis, 1995, pp. 257 -
263.

[24] S. G. Ponnambalam, P. Aravindan, and S. V. Rajesh, "A Tabu Search
Algorithm for Job Shop Scheduling," The International Journal of
Advanced Manufacturing Technology, vol. 16, pp. 765-771, 2000.

[25] S. Dauzere-Peres and J. B. Lasserre, "A modified shifting bottleneck
procedure for job-shop scheduling," International Journal of
Production Research, vol. 31, pp. 923-932, 1993.

[26] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, "Job Shop
Scheduling by Simulated Annealing," Operations Research, vol. 40,
pp. 113-125, 1992.

[27] S. G. Ponnambalam, N. Jawahar, and P. Aravindan, "A simulated
annealing algorithm for job shop scheduling," Production Planning
and Control, vol. 10, pp. 767-777, 1999.

[28] S. Lawrence, "Resource Constrained Project Scheduling: An
Experimental Investigation of Heuristic Scheduling Techniques,"
Graduate School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh, Pennsylvania 1984.

[29] S. M. K. Hasan, R. Sarker, and D. Cornforth, "Modified Genetic
Algorithm for Job-Shop Scheduling: A Gap-Utilization Technique," in
Evolutionary Computation, IEEE Congress on, Singapore, 2007, pp.
3804-3811.

[30] S. M. K. Hasan, R. Sarker, and D. Cornforth, "Hybrid Genetic
Algorithm for Solving Job-Shop Scheduling Problem," in Computer
and Information Science, 6th IEEE/ACIS International Conference on,
Melbourne, Australia, 2007, pp. 519-524.

[31] S. G. Ponnambalam, P. Aravindan, and P. S. Rao, "Comparative
Evaluation of Genetic Algorithms for Job-shop Scheduling,"
Production Planning & Control, vol. 12, pp. 560-674, 2001.

[32] J. Paredis, "Handbook of Evolutionary Computation," in Parallel
Problem Solving from Nature 2 Brussels, Belgium: Institute of Physics
Publishing and Oxford University Press, 1992.

[33] J. Paredis, T. Back, D. Fogel, and Z. Michalewicz, "Exploiting
constraints as background knowledge for evolutionary algorithms," in
Handbook of Evolutionary Computation: Institute, 1997, pp. G1.2:1-6.

[34] H. Ishibuchi and T. Murata, "A multi-objective genetic local search
algorithm and its application to flowshop scheduling," Systems, Man
and Cybernetics, Part C, IEEE Transactions on, vol. 28, pp. 392-403,
1998.

[35] D. E. Goldberg, Genetic algorithms in search, optimization, and
machine learning. Reading, Mass: Addison-Wesley Pub. Co, 1989.

[36] E. H. L. Aarts, P. J. M. Van Laarhoven, J. K. Lenstra, and N. L. J.
Ulder, "A Computational Study of Local Search Algorithms for Job
Shop Scheduling," ORSA Journal on Computing, vol. 6, pp. 118-125,
Spring 1994.

