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Abstract— The Job-Shop Scheduling Problem (JSSP) is 
considered as one of the difficult combinatorial optimization 
problems and treated as a member of NP-complete problem 
class. In this paper, we consider JSSPs with an objective of 
minimizing makespan while satisfying a number of hard 
constraints. First, we develop a genetic algorithm (GA) based 
approach for solving JSSPs. We then introduce a number of 
priority rules such as partial reordering, gap reduction and 
restricted swapping to improve the performance of the GA. We 
run the GA incorporating these rules in a number of different 
ways. We solve 40 benchmark problems and compared their 
results with that of a number of well-known algorithms. We 
obtain optimal solutions for 27 problems, and the overall 
performance of our algorithms is quite encouraging. 

 
 Index Terms— Job-Shop Scheduling, Makespan, Genetic 
Algorithm, Heuristics. 

I. INTRODUCTION 
HE job-shop scheduling problem (JSSP) is a common 
problem in the manufacturing industry. A classical JSSP 

is a combination of N jobs and M machines. Each job 
consists of a set of operations that has to be processed on a 
set of known machines, and has a known processing time. A 
schedule is a complete set of operations, required by a job, 
to be performed on different machines, in a given order. In 
addition, the process may need to satisfy other constraints. 
The total time between the starting of the first operation and 
the ending of the last operation is termed as the makespan. 
Makespan minimisation is widely used as an objective in 
solving JSSPs [1-7]. A feasible schedule contains no 
conflicts such as (i) no more than one operation of any job 
can be executed simultaneously and (ii) no machine can 
process more than one operation at the same time. The 
schedules are generated on the basis of predefined sequence 
of machines and the given order of job operations.  

The JSSP is widely acknowledged as one of the most 
difficult NP-complete problems [8-10] which is also well-
known for its practical applications in many manufacturing 
industry. Over the last few decades, a good number of 
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algorithms have been developed for solving JSSPs. 
However, no single algorithm is capable of solving all kinds 
of JSSPs optimally (or near optimally) within a reasonable 
time limit. Thus, there is scope to analyze the difficulties of 
JSSPs as well as to design algorithms that may be able to 
solve most of the standard problems.  

In early stages, Akers and Friedman [11] and Giffler and 
Thompson [12] explored only a subset of the alternative 
solutions to suggest acceptable schedules. Although such an 
approach was computationally expensive but it could solve 
the problems much quicker than a human can do at that 
time. Later, the Branch-and-Bound (B&B) was widely 
popular for solving JSSPs which uses the concept of 
omitting a subset of solutions those are out of the bounds 
[13-15]. Among them, Carlier and Pinson [15] solved a 
10×10 JSSP optimally for the first time which was proposed 
in 1963 by [16]. They considered the N×M JSSP as M one-
machine problem and evaluated the best preemptive solution 
for each machine. The algorithm relaxes the constraints in 
all other machines except the one under consideration. The 
concept of converting M machines problem to one-machine 
problem is also used by Emmons [17] and Carlier [18]. As 
the complexity of this algorithm is directly dependent on the 
number of machines, it is not computationally cheaper for 
large scale problems. 

Although the above algorithms can achieve optimality or 
near optimality, they are computationally expensive, even 
out of reach for large problems with the current computation 
power. For this reason, numerous heuristic and meta-
heuristic approaches are proposed in last few decades. These 
approaches do not guarantee optimality, but provide good 
quality solutions within a reasonable period of time. 
Examples for such approaches applied to JSSPs are GA [3, 
4, 6, 19-21], Tabu Search (TS) [22-24], Shifting Bottleneck 
(SB) [1, 25], and Greedy Randomized Adaptive Search 
Procedure (GRASP) [2], simulated annealing (SA) [26, 27]. 

In this research, we examine the performance of a 
traditional genetic algorithm (TGA) for solving JSSPs. Each 
individual represents a particular complete schedule and is 
specified with a binary chromosome. After reproduction, the 
genotype to phenotype mapping employed may result in an 
infeasible individual, which is then repaired to be feasible. 
The phenotype representation of the problem is a matrix of 
M×N integer numbers where each row represents the 
sequence of operations in a given machine. A binary 
genotype facilitates simple crossover and mutation 
techniques. Moreover, the representation makes the 
repairing process easier [4-6].  
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After analyzing the traditional GA solutions, we realize 
that solutions can be further improved by applying simple 
rules or local search. Here, we introduce several priority 
rules such as partial reordering (PR), gap reduction (GR) 
and restricted swapping (RS) to improve the performance of 
the traditional GA. These rules can be considered as local 
search as well in addition to genetic operators applied. The 
result of a rule will be accepted if and only if it improves the 
solution. The details of the priority rules are discussed in a 
later section. This work implements a GA incorporating 
different combinations of these priority rules. For ease of 
explanation, in this paper, we identify the combinations PR 
with GA, GR with GA, GR with RS and GA as PR-GA, 
GR-GA and GR-RS-GA respectively. To test the 
performance of our proposed algorithms, we solve 40 
benchmark problems as reported in Lawrence [28]. The 
priority rules that we propose improve the performance of 
traditional a GA for solving JSSPs. Among the priority 
rules, GR-RS-GA is the best performing algorithm. It 
obtained the optimal solution for 27 out of 40 test problems. 
The overall performance of GR-RS-GA is better than many 
key JSSP algorithms appearing in the literature. The current 
version of our algorithms is much refined from our earlier 
version. The earlier version of the algorithms with 
experimental results of fewer test problems can be found in 
Hasan et al. [29, 30]. 

The paper is organized as follows. After the introduction, 
a brief outline of a standard job-shop scheduling problem is 
given. A short review on the traditional genetic algorithm to 
solve JSSPs is provided in Section III. Section IV introduces 
new priority rules for improving the performance of 
traditional GA. Section V presents the proposed algorithms 
and implementation aspects. Section VI shows the 
experimental results and necessary statistical analysis to 
measure the performance of the algorithms. Finally, the 
conclusions and future research direction are presented. 

II. PROBLEM DEFINITION 
The standard job-shop scheduling problem makes the 

following assumptions: 
• Each job consists of a finite number of operations. 
• The processing time for each operation in a 

particular machine is defined. 
• There is a pre-defined sequence of operations that 

has to be maintained to complete each job. 
• Delivery times of the products are undefined. 
• There is no setup cost or tardy cost. 
• A machine can process only one job at a time. 
• Each job visits each machine only once. 
• No machine can deal with more than one type of 

task. 
• The system cannot be interrupted until each 

operation of each job is finished. 
• No machine can halt a job and start another job 

before finishing the previous one. 
• Each and every machine has full efficiency. 

The objective of the problem is the minimization of the 
maximum time taken to complete each and every operation 
while satisfying the machining constraints and required 
operational sequence of each job. 

III. JOB-SHOP SCHEDULING WITH GENETIC ALGORITHM 
In this paper, we consider the minimization of makespan 

as the objective of JSSPs. According to the problem 
definition, the sequence of machine used (those are also 
sequence of operations) by each job is given. In this case, if 
we know either the starting or finishing time of each 
operation, we can calculate the makespan for each job and 
generate the whole schedule. In JSSPs, the main problem is 
to find the sequence of jobs to be operated on each machine 
that minimizes the overall makespan. 

Chromosome Representation 
In solving JSSPs using GAs, the chromosome of each 

individual usually comprises the schedule. Chromosomes 
can be represented by binary, integer or real numbers. Some 
popular representations for solving JSSP are: operation 
based, job based, preference-list based, priority-rule based, 
and job pair-relation based representations [31]. We select 
the job pair-relation based genotype representation due to 
the flexibility of applying genetic operators. The same 
representation is also used by some other authors [4-6, 32, 
33]. In this representation, a chromosome is symbolized by a 
binary string, where each bit stands for the order of a job 
pair (u,v) for a particular machine m. For a chromosome Cp; 

 
A value of 1 means that for the individual p, the job u 

must lead the job v in machine m. The job having the 
maximum number of 1s is the highest priority job for that 
machine. The length of each chromosome is; 

 
where N is the number of jobs, M is the number of 

machines and the length l is the number of pairs formed by 
considering any two jobs. This binary string acts as the 
genotype of individuals. It is possible to construct a 
phenotype which is the job sequence for each machine. The 
construction is described in Table I. This representation is 
helpful if the conventional crossover and mutation 
techniques are used. The heuristic operators or priority rules 
discussed in later sections are applied to the constructed 
phenotype. 

Reproduction operators used are the simple two-point 
crossover and mutation. The crossover points are selected 
randomly. After applying the operators, we perform 
repairing techniques (i.e. local and global harmonization 
operations) to make the solution feasible, as these operators 
may produce an infeasible solution [4-6]. 
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Local Harmonization 
This is the technique of constructing the phenotype 

(sequence of operations for each machine) from the binary 
genotype. M tables are formed from a chromosome of length 
l as of Equation (2). Table I shows the way to construct the 
phenotype from the genotype by applying local 
harmonization. 

Table I.A represents the binary chromosome (for a 3 jobs 
and 3 machines problem) where each bit represents the 
preference of one job with respect to another job in the 
corresponding machine. The first block on the left shows the 
relationship between job 1 and job 2. The machines are 
listed as m1 m3 m2, because that is the order of machines for 
job 1, as given in Table 1.C. Table I.B.1, I.B.2 and I.B.3 
represent the job pair based relationship in machine m1, m2 
and m3 respectively which are mapped from the 
chromosome, mentioned in Equation (1). In Table I.B.1, the 
‘1’ in cell j1-j2 indicates that job j1 will appear before job j2 
in machine m1. Similarly, the ‘0’ in cell j1-j3 indicates that 
job j1 will not appear before job j3 in machine m1. In the 
same Table I.B, the column of S represents the priority of 
each job which is the row sum of all 1s for the job presented 
in each row. A higher number represents a higher priority 
because it is leading all other jobs. So for machine m1, job j3 
has the highest priority. If more than one job has an equal 
priority in a given machine, a repairing technique modifies 
the order of these jobs to introduce different priorities.  

Consider a situation where the order of jobs for a given 
machine is j1-j2, j2-j3 and j3-j1. This will provide S=1 for all 
jobs in that machine. By swapping the content of cells j1-j3 
and j3-j1, it provides S=2, 1 and 0 for jobs j1, j2 and j3 
respectively. 

 

 
Table I.C shows the pre-defined operational sequence of 

each job. In this table, jo1, jo2 and jo3 represent the first, 
second and third operation for a given job. According to the 
priorities found from I.B, the Table I.D is generated which is 

the phenotype or schedule. For example, the sequence of m1 
is j3 j1 j2, because in I.B.1, j3 is the highest priority and j2 is 
the lowest priority job. In Table I.D, the top row (mt1, mt2 
and mt3) represents the first, second and third task on a given 
machine. For example, as of Table I.D, the first task in 
machine m1 is to process the first task of job j3. 

Global Harmonization 
For an N×M static job-shop scheduling problem, there 

will be (N!)M possible solutions. Only a small percentage of 
these solutions are feasible. Global harmonization is a 
repairing technique for changing infeasible solutions to 
feasible. Suppose job j3 requires its first, second and third 
operation to be processed on machine m3, m2 and m1 
respectively, and job j1 requires machine m1, m3 and m2 
respectively. Further assume that an individual solution 
(chromosome) indicates that j3 is scheduled on machine m1 
first to process its first operation and then job j1. Such a 
schedule is infeasible as it violates the defined sequence of 
operations for job j3. In this case, the swap of places 
between job j1 with job j3 on machine m1 would allow job j1 
to have its first operation on m1 as required and it may 
provide an opportunity for job j3 to visit m3 and m2 before 
visiting m1 as per its order. Usually, the process identifies 
the violations sequentially and performs the swap one by 
one until the entire schedule is feasible. In this case, there is 
a possibility that some swaps performed earlier in the 
process are required to swap back to its original position to 
make the entire schedule feasible.  

The technique is useful not only for the binary 
representations, but also for the job-based or operation 
based representation. Further details on the use of global 
harmonization with GAs for solving JSSPs can be found in 
[4-6]. In our proposed algorithm, we consider multiple 
repairing to narrow down the deadlock frequency. As soon 
as the deadlock occurs, the algorithm identifies at most one 
operation from each job that can be scheduled immediately. 
Starting from the first operation, the algorithm identifies the 
corresponding machine of the operation and swaps the tasks 
in that machine so that at least the selected task disallows 
deadlock for the next time. For N jobs, the risk of getting 
into deadlock will be removed for at least N operations.  

After performing global harmonization, we get a 
population of feasible solutions. We calculate the makespan 
of all the feasible individuals and rank them based on their 
fitness values. We then apply genetic operators to generate 
the next population. We continue this process until 
satisfying the stopping criteria. 

IV. PRIORITY RULES AND JSSPS 
As reported in the literature, different priority rules are 

imposed in conjunction with GAs to improve the JSSP 
solution. Dorndorf and Pesch proposed twelve different 
priority rules for achieving better solutions for JSSPs [21]. 
However they suggested choosing only one of these rules 

TABLE I 
DERIVATION PHENOTYPE FROM THE BINARY GENOTYPE AND PRE-DEFINED 

SEQUENCES 
1 0 1  0 0 1  1 0 0 

m1 m3 m2  m1 m3 m2  m2 m1 m3 
j1–j2  j1–j3  j2–j3 

I.A 
 

 j1 j2 j3 S   j1 j2 j3 S   j1 j2 j3 S 
j1 * 1 0 1  j1 * 1 1 2  j1 * 0 0 0 
j2 0 * 0 0  j2 0 * 1 1  j2 1 * 0 1 
j3 1 1 * 2  j3 0 0 * 0  j3 1 1 * 2 

I.B.1 – m1  I.B.2 – m2  I.B.3 – m3 
 

 jo1 jo2 jo3   mt1 mt2 mt3 
j1 m1 m3 m2  m1 j3 j1 j2 
j2 m2 m1 m3  m2 j1 j2 j3 
j3 m1 m3 m2  m3 j3 j2 j1 

I.C  I.D 



 
 

 

while evaluating the chromosome. They also applied the 
popular shifting bottleneck heuristic proposed by [1] for 
solving JSSP. This heuristic ingeniously divides the 
scheduling problem into a set of single machine 
optimization and re-optimization problems. It selects a 
machine identified as a bottleneck one by one. After the 
addition of a new machine, all previously established 
sequences are re-optimized. However these algorithms were 
implemented while evaluating the individuals in GA and 
generating the complete schedule. 

In this section, we introduce three new priority rules. We 
propose to use these rules after the fitness evaluation as the 
process requires analyzing the individual solutions from the 
preceding generation. The rules are briefly discussed below. 

Partial Reordering (PR) 
In the first rule, we identify the machine mk which is the 

deciding factor for makespan in phenotype p and the last job 
jk that is to be processed by the machine mk. The Machine mk 
can be termed as the bottleneck machine in the chromosome 
under consideration.  

 
Then we find the machine (say m′ ) required by the first 

operation of job jk. The re-ordering rule then suggests that 
the first operation of job jk must be the first task on machine 
m′ if it is not the case as scheduled. If we move the job jk 
from its current lth position to the 1st position, we may need 
to push some other jobs currently scheduled on machine m′ 
to the right. In addition, it may provide an opportunity to 
shift some jobs to the left on other machines. The overall 
process helps to reduce the makespan for some 
chromosomes.  

A simple example of the re-ordering process is shown in 
Fig. 1.A, where the makespan is the completion time of job 
j3 on machine m1, so m1 is the bottleneck machine. Here, job 
j3 requires machine m3 for its first operation. If we move j3 
from its current position to the first operation of machine m3, 
it is necessary to shift job j2 to the right for a feasible 
schedule on machine m3. These changes create an 
opportunity to move job j1 on m3, j3 on m2 and j3 on m1 to the 
left without violating the operational sequences. As shown 
in Fig. 1(B), the resulting chromosome is able to improve its 
makespan. The change of makespan is indicated by the 
dotted line.  

Gap Reduction (GR) 
After each generation, the generated phenotype usually 

leaves some gaps between the jobs. Sometimes, these gaps 
are necessary to satisfy the precedence constraints. 
However, in some cases, a gap could be removed or reduced 
by placing a job from the right side of the gap. For a given 
machine, this is like swapping between a gap from left and a 
job from right of a schedule. In addition, a gap may be 
removed or reduced by simply moving a job to its adjacent 
gap at the left. The process would help to develop a compact 
schedule from the left and continue up to the last job for 
each machine. Of course, it must ensure no conflict or 
infeasibility before accepting the move. 

The rule is to identify the gaps in each machine and 
candidate jobs which can be placed in those gaps without 
violating the constraints and not increasing the makespan. 
The same process is carried out for any possible shift of jobs 
to the left of the schedule. The gap reduction rule, with 
swapping between gap and job, is explained using a simple 
example. 

A simple instance of a schedule is shown in Fig. 2(A). In 
the phenotype p, j1 follows j2 in machine m2, however, job j1 
can be placed before j2, as shown in Fig. 2(B), due to the 
presence of an unused gap before j2. A swap between this 
gap and job j1 would allow the processing of j1 on m2 earlier 
than the time shown in Fig. 2(A). This swapping of j1 on m2 
creates an opportunity to move this job to the left on 
machine m1 (see Fig. 2(C)). Finally, j3 on m2 can also be 
moved to the left which ultimately reduces the makespan as 
shown in Fig. 2(D). 

Restricted Swapping (RS) 
For a given machine, the restricted swapping rule allows a 

swap between the adjacent jobs if and only if the resulting 
schedule is feasible. The process is carried out only for the 
job which takes the longest time for completion. 

Suppose job j′ takes the longest time for completion as the 
phenotype p. The algorithm starts from the last operation of 
j′ in p and checks with the immediate predecessor operation 
whether these two are swappable or not. The necessary 
conditions for swapping are; none of the operations can start 
before finishing time of the immediate predecessor operation 
of that corresponding job. 

 

Fig. 1. Gantt chart of the solution (A) before applying the partial 
reordering (B) after applying partial reordering and reevaluation. 
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And both operations have to be finished before starting 
the immediate successive operations of the corresponding 
jobs. Interestingly, the algorithm does not collapse the 
feasibility of the solution. It may change the makespan if 
any of the operations are the last operation of the 
corresponding machine. But it will give an alternate solution 
which may improve the fitness of the solution in successive 
generations, when the phenotype will be rescheduled. The 
process also allows swapping between two randomly 
selected individuals. This is done for few individuals only. 
As the complexity of the algorithm is simply an order of N, 
it does not affect the overall computational complexity that 
much. 

V. IMPLEMENTATION 
As we initially implement the TGA, we generate a set of 

random individuals. Each individual is mainly represented 
by a binary chromosome. We use the job-pair relation based 
representation and report the effectiveness of the 
representation. We use simple one point crossover and bit 
flip mutation as reproduction operators. We carry out a set 
of experiments with different crossover and mutation rates 
to analyze the robustness of the algorithm. 

We set the population size to 2500 and the number of 
generations to 1000. In JSSP, the feasible space is small 
compared to the solution space, so a large population gives a 
higher probability of generating feasible solutions. 

As we use the GR technique as a part of evaluation, this is 
applied to every individual. On the other hand, we apply PR 
and RS to only 5% of individuals randomly selected from 
the population in every generation. 

After successful implementation of TGA, we introduce 
the priority rules, as discussed in the last section, to TGA as 
follows: 

• Partial reordering rule with TGA (PR-GA) 
• Gap reduction rule with TGA (GR-GA) and 
• Gap reduction and restricted swapping rule with 

TGA (GR-RS-GA) 
For ease of explanation, we describe the steps of GR-RS-

GA below. 
Let Rc and Rm be the two-point crossover and bit-mutation 

probability respectively. P(t) is the set of current individuals 
at time t and P′(t) is the evaluated set of individuals at time t.  
1. Initialize P(t) as a random population P(t=0) of size 

|P(t)|, where each random individual is a bit string of 
length l. 

2. Repeat 
A. Set t:=t+1 
B. Evaluate P′(t) from P(t-1) by the following steps; 

i. Decode each individual p by using the job-based 
decoding with the local harmonization and global 
harmonization methods to repair illegal bit strings. 

ii. Generate the complete schedule with starting and 
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Fig. 2. Two steps of a partial Gantt chart while building the schedule from the phenotype for a 3×3 job-shop scheduling problem. The x axis represents 
the execution time and the y axis represents the machines. 
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ending time of each operation by applying the gap 
reduction (GR) rule and calculate the objective 
function f of p. 

iii. Rank the individuals according to the fitness values 
from higher to lower fitness value. 

iv. Apply elitism; i.e. preserve the solution having the 
best fitness value in the current generation so that it 
can survive at least up to the next generation. 

C. Apply restricted swapping rule (RS) on the randomly 
selected 5% of the individuals. 

D. Go to Step 3 if the stopping criteria are met. 
E. Modify P′(t) using the following steps; 

i. Select the current individual p from P′(t) and select 
a random number R between 0 and 1. 

ii. If R≤Rc then 
a. Select randomly one individual p1 from the top 

15% of the population and two individuals from 
the rest. Play a tournament between the last two 
and choose the winner individual w. Apply two-
point crossover between p1 and w; generate p1′ 
and w′. 

b. Else if R>Rc and R≤(Rc+Rm) then randomly select 
one individual from P(t) and apply bit-flip 
mutation. 

c. Else continue. 
[End of Step ii If] 
iii. Reassign the P(t) by P′(t) to initialize the new 

generation preserving the best solution as elite. 
[End of Step 2 Loop] 

3. Save the best solutions among all of the feasible 
solutions. 

[End of Algorithm] 
Sometimes the action of genetic operators may take the 

good individuals away from the optimal. In this case, the 
elitism ensures the survival of the best individuals [34, 35]. 
We apply elitism in each generation to preserve the best 
solution found so far and also to inherit the elite individuals 
more than the rest. 

During the crossover operation, we use the tournament 
selection that chooses one individual from the elite class of 
the individual (i.e. the top 15%) and two individuals from 
the rest. This selection then plays a tournament between the 
last two and performs crossover between the winner and 
elite one. We use two-point crossover and a bit-flip mutation 
technique. We rank the individuals on the basis of the fitness 
value. A high selection pressure on the better individuals 
may contribute to premature convergence. If the elite class 
or most of them have the same solution, then their offspring 
will be quite similar after some generations. In such case, a 
higher mutation rate would help to diversify the population. 

To test the performance of the our proposed algorithms, 
we solve 40 benchmark problems designed by Lawrence 
[28] and compare with several existing algorithms. The 
problems range from 10×5 to 30×10 and 15×15 where N×M 
represents N jobs and M machines. 

VI. EXPERIMENTAL RESULTS 
The results for the benchmark problems are obtained by 

executing the algorithms on a personal computer. Results 
are tabulated in Tables II, III and IV. Table II compares the 
performance of our four algorithms (TGA, PR-GA, GR-GA, 
and GR-RS-GA) in terms of the % average relative 
deviation (ARD) from the best result published in the 
literature, the standard of % relative deviation (SDRD), and 
the fitness evaluation which is the average number of 
generations to achieve the best solution multiplied by the 
population size. It also includes the number of problems 
where the algorithms found optimal solution.  

 
TABLE II 

COMPARING OUR FOUR ALGORITHMS 
No. of 

Problems Algorithm Optimal 
Found 

ARD 
(%) 

SDRD 
(%) 

Fitness Eval.
(103) 

      

TGA 15 3.591 4.165 664.90
PR-GA 16 3.503 4.192 660.86
GR-GA 23 1.360 2.250 356.41

40 
(la01–la40)

GR-RS-GA 27 0.968 1.656 388.58
   

 
From Table II, it is clear that the performance of GR-GA 

is better than both PR-GA and TGA. The addition of RS to 
GR-GA, which is known as GR-RS-GA, has clearly 
enhanced the performance of the algorithm in terms of both 
ARD and SDRD. Though GR-RS-GA takes few more 
fitness evaluation but gives better fitness value. It is due to 
the fact that RS changes some properties in the solutions 
which help to generate a new solution. As more new 
solutions are generated, the algorithm needs more fitness 
evaluation. 

Out of 40 test problems, GR-RS-GA obtained the best 
known solution for 27 problems, whereas GR-GA obtained 
the best known solution for 23 problems. GR-RS-GA 
produced better solutions (although non-optimal) for 10 
problems, and both algorithms obtained a non-optimal equal 
solution for 3 problems. Details of the results are found in 
Table III. The rate of improvement made by PR and RS in 
each generation is usually lower than that of GR. PR 
considers only the bottleneck job. However, GR is applied 
to all individuals. PR makes good improvement at the initial 
generations and has insignificant effect at later stages. The 
process of GR eventually makes most changes performed by 
PR over some (or many) generations. As a result, the 
inclusion of PR with GR does not help to improve the 
performance of the algorithm. Both PR and RS are applied 
to only 5% of the individuals. Here, the role of RS is to 
increase the diversity like mutation. The increase in the rate 
of PR and RS does not provide any benefit either in term of 
quality of solution or computational time. For this reason, 
we have not presented other possible variants such as PR-
RS-GA and GR-RS-PR-GA. 



 
 

 

TABLE III 
COMPARISON OF THE % RELATIVE DEVIATIONS WITH THE RESULTS FOUND 

IN LITERATURE 
Aarts 
et al. 

Dorndorf & 
Pesch 

Adams 
et al. 
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la01 0.15 0.15 0.00 0.00 0.00 0.00 – 0.00 0.00 – 0.00 0.00 0.00 – 
la02 0.00 0.00 0.00 0.00 1.98 0.61 – 3.97 1.68 – 1.68 0.00 9.92 2.14
la03 3.35 3.35 0.00 0.00 2.68 2.01 – 3.85 1.17 – 11.56 1.17 4.36 1.34
la04 2.71 2.71 0.00 0.00 1.53 0.68 – 5.08 0.00 – – 0.00 1.19 0.51
la05 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 – 
la06 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – 0.00 0.00 0.00 – 
la07 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 – 
la08 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.58 0.00
la09 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 – 
la10 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.10 – 
la11 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – 0.00 0.00 0.00 – 
la12 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 – 
la13 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 – 
la14 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – – 0.00 0.00 – 
la15 0.00 0.00 0.00 0.00 0.00 0.00 – 2.49 0.00 – – 0.00 0.00 – 
la16 5.19 5.19 0.11 0.00 3.39 3.39 1.48 6.67 1.69 1.69 3.60 0.11 8.04 3.49
la17 1.28 0.13 0.00 0.00 0.89 0.89 1.02 3.19 0.38 0.00 – 0.00 1.53 0.38
la18 1.53 1.53 1.53 0.00 0.94 1.18 1.06 8.02 0.00 0.00 – 0.00 5.07 1.30
la19 5.70 6.41 0.95 0.00 2.49 2.02 2.14 4.51 2.49 0.71 – 0.00 3.92 2.14
la20 7.21 7.21 0.55 0.55 1.22 1.55 0.55 2.88 1.00 0.89 – 0.55 2.44 1.33
la21 4.97 4.21 4.11 3.15 3.63 3.73 6.50 8.89 2.68 2.68 4.88 4.3012.05 3.63
la22 6.36 6.26 3.88 3.56 2.91 1.83 6.69 7.66 0.86 0.97 – 3.5612.19 1.83
la23 1.07 1.07 0.00 0.00 0.00 0.00 0.29 3.88 0.00 0.00 – 0.00 2.81 0.00
la24 5.24 5.45 4.71 2.57 3.74 4.9210.37 8.45 2.67 2.35 – 4.60 6.95 4.39
la25 10.2410.24 1.43 1.43 3.99 3.38 7.16 3.79 3.17 3.07 – 5.22 7.27 4.09
la26 6.32 6.98 0.16 0.00 1.81 1.48 7.31 4.93 0.08 0.00 1.07 4.35 7.06 0.49
la27 7.53 7.53 5.10 4.13 5.91 5.26 9.3111.58 3.00 2.75 – 6.88 7.29 4.53
la28 6.66 6.25 2.22 1.64 5.35 4.03 7.89 9.13 1.97 2.06 – 6.33 3.29 2.80
la29 9.33 9.51 6.91 5.5311.50 8.9013.3115.47 4.06 4.58 – 11.7511.84 7.09
la30 1.62 0.59 0.00 0.00 3.47 2.29 7.08 4.13 0.00 0.00 – 0.96 3.54 0.00
la31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – 
la32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 – 
la33 0.00 0.00 0.00 0.00 0.00 0.00 1.51 0.00 0.00 0.00 – 0.00 0.00 – 
la34 1.57 1.10 0.00 0.00 0.93 0.52 3.66 0.00 0.00 0.00 – 1.86 0.00 – 
la35 0.53 0.00 0.00 0.00 0.32 0.11 3.71 0.00 0.00 0.00 – 0.00 0.00 – 
la36 9.46 9.54 3.86 3.08 4.42 3.39 7.10 8.28 3.86 3.86 2.92 5.21 6.55 2.92
la37 11.7410.52 4.94 3.22 3.72 3.79 8.59 7.23 6.23 3.51 – 4.29 6.30 1.86
la38 14.3014.30 9.03 5.85 7.44 7.2713.88 8.36 4.60 3.76 – 5.94 7.02 4.93
la39 8.52 8.84 2.43 1.54 3.73 3.7312.81 9.57 3.97 3.57 – 4.62 7.14 3.24
la40 11.0511.05 2.45 2.45 4.17 3.11 8.27 8.10 4.26 2.45 – 3.03 8.51 3.85

 
Table III compares the best results published in literature 

with that found by our four algorithms (TGA, PR-GA, GR-
GA, and GR-RS-GA) and some other key results as 
published in literature. Table III starts with the column of 
problem instances. The following columns show the ARD of 
other algorithms found in literature. Each pair of columns 
next to the best known fitness represents the best fitness and 
relative deviation in % from the best. We consider our four 
algorithms (TGA, PR-GA, GR-GA, and GR-RS-GA), local 

search GA [20, 36], shifting-bottleneck GA [21], simple GA 
[3], GRASP [2] and shifting bottleneck heuristic [1].  

In most of the test problems, our proposed GR-RS-GA 
performs better than other algorithms. In terms of average 
relative deviation (ARD) and standard deviation of the 
relative deviations (SDRD), our algorithm outperforms all 
other algorithms reported in this paper. 

As different authors used different number of problems, 
we make a comparison based on only those problems the 
authors considered. For example, as Ombuki and Ventresca 
[20] used 25 problems out of 40, we calculate ARD and 
SDRD based on only those particular problems to perform a 
close measurement. The result is tabulated in Table IV. 

 
TABLE IV 

COMPARISON OF THE % DEVIATIONS FOR THE DIFFERENT NUMBER OF 
PROBLEMS AUTHORS CONSIDERED 

N
o.

 o
f 

Pr
ob

le
m

s 

Te
st

 
Pr

ob
le

m
s 

A
ut

ho
rs

 

A
lg

or
ith

m
 

A
R

D
 

(%
) 

SD
R

D
 

(%
) 

      

Our Proposed GR-RS-GA 0.9680 1.6559
Aarts et al. GLS1 2.0540 2.5279
 GLS2 1.7518 2.1974
Dorndorf & Pesch PGA 4.0028 4.0947
 SBGA (40) 1.2455 1.7216
Binato et al. - 1.8683 2.7817

40 la01 – la40 

Adams et al. SB I 3.6740 3.9804
Our Proposed GR-RS-GA 1.5488 1.8759
Ombuki and Ventresca - 5.6676 4.380425 la16 – la40 
Dorndorf & Pesch SBGA (60) 1.5560 1.5756

Selected  Our Proposed GR-RS-GA 1.6810 1.8562
24 

(see Table III) Adams et al.  SB II 2.4283 1.8472
Selected Our Proposed GR-RS-GA 0.6231 1.3137

9 
(see Table III) Croce et al. - 2.5710 3.6025

    

 
Result in the Table IV shows that GA-GR-RS performing 

better than any other algorithms considered even if we 
consider only a subset of the problems other authors 
considered. Though in some cases, SDRD is not as good as 
other authors, but it is competitive and better in terms of 
ARD. 

Finally, we can summarize from the experimental result 
that PR-GA performs better than traditional GA. GR-GA 
makes a big change in the quality of solutions and fitness 
evaluation. The RS rule helps to improve the solution 
quality of GR-GA which is outperforming. 

VII. CONCLUSION 
The JSSP is a very well known member of the 

combinatorial optimization problem class. A considerable 
amount of work has already been done to improve 
algorithms to give a steady and optimal output. Some 
algorithms are eminent for special case problems. But still 
no algorithm guarantees optimality. We observe from 
numerous experiments that GA is able to produce good 
quality solutions for smaller problems within a reasonable 



 
 

 

period of time. Integration of some other techniques 
significantly improves the solution quality. Still our 
algorithms do not ensure optimality. But it gives a 
competitive result within a reasonable period of time. In 
future work we plan to work on the diversity of the solutions 
in solution space and apply the ideas to the flexible job-shop 
scheduling problems. Moreover, we would like to consider 
large scale problems and real world problems to justify the 
performance of our algorithms. 

REFERENCES 
[1] J. Adams, E. Balas, and D. Zawack, "The shifting bottleneck 

procedure for job shop scheduling," Management Science, vol. 34, pp. 
391-401, 1988. 

[2] S. Binato, W. Hery, D. Loewenstern, and M. Resende, A GRASP for 
Job Shop Scheduling: Kluwer Academic Publishers, 2000. 

[3] F. D. Croce, R. Tadei, and G. Volta, "A genetic algorithm for the job 
shop problem," Computers & Operations Research, vol. 22, pp. 15-24, 
1995. 

[4] R. Nakano and T. Yamada, "Conventional genetic algorithm for job 
shop problems," in Fourth Int. Conf. on Genetic Algorithms, Morgan 
Kaufmann, San Mateo, California, 1991, pp. 474-479. 

[5] T. Yamada, "Studies on Metaheuristics for Jobshop and Flowshop 
Scheduling Problems," in Department of Applied Mathematics and 
Physics. Doctor of Informatics Kyoto, Japan: Kyoto University, 2003, 
p. 120. 

[6] T. Yamada and R. Nakano, "Genetic algorithms for job-shop 
scheduling problems," in Modern Heuristic for Decision Support, 
UNICOM seminar, London, 1997, pp. 67-81. 

[7] W. Wang and P. Brunn, "An Effective Genetic Algorithm for Job 
Shop Scheduling," Proceedings of the Institution of Mechanical 
Engineers -- Part B -- Engineering Manufacture, vol. 214, pp. 293-
300, 2000. 

[8] M. R. Garey, D. S. Johnson, and R. Sethi, "The Complexity of 
Flowshop and Jobshop Scheduling," Mathematics of Operations 
Research, vol. 1, pp. 117-129, 1976. 

[9] J. K. Lenstra and A. H. G. Rinnooy Kan, "Computational complexity 
of discrete optimization problems." vol. 4 Rotterdam: Annals of 
Discrete Mathematics, 1979, pp. 121-140. 

[10] M. R. Garey and D. S. Johnson, Computers and intractability : a guide 
to the theory of NP-completeness. San Francisco: W. H. Freeman, 
1979. 

[11] S. B. J. Akers and J. Friedman, "A Non-Numerical Approach to 
Production Scheduling Problems," Journal of the Operations Research 
Society of America, vol. 3, pp. 429-442, Novmber 1955 1955. 

[12] B. Giffler and G. L. Thompson, "Algorithms for Solving Production-
Scheduling Problems," Operations Research, vol. 8, pp. 487-503, 
1960. 

[13] S. Ashour and S. R. Hiremath, "A branch-and-bound approach to the 
job-shop scheduling problem," International Journal of Production 
Research, vol. 11, pp. 47-58, 1973. 

[14] P. Brucker, B. Jurisch, and B. Sievers, "A branch and bound algorithm 
for the job-shop scheduling problem," Discrete Applied Mathematics, 
vol. 49, pp. 107-127, 1994. 

[15] J. Carlier and E. Pinson, "An Algorithm for Solving The Job-Shop 
Problem," Management Science, vol. 35, pp. 164-176, Feb 1989 1989. 

[16] J. F. Muth and G. L. Thompson, Industrial scheduling. Englewood 
Cliffs, N.J.,: Prentice-Hall, 1963. 

[17] H. Emmons, "One-Machine Sequencing to Minimize Certain 
Functions of Job Tardiness," Operations Research, vol. 17, pp. 701-
715, 1969. 

[18] J. Carlier, "The one-machine sequencing problem," European Journal 
of Operational Research, vol. 11, pp. 42-47, 1982. 

[19] J. E. Biegel and J. J. Davern, "Genetic algorithms and job shop 
scheduling," Computers & Industrial Engineering, vol. 19, pp. 81-91, 
1990. 

[20] B. M. Ombuki and M. Ventresca, "Local Search Genetic Algorithms 
for the Job Shop Scheduling Problem," Applied Intelligence, vol. 21, 
pp. 99-109, 2004. 

[21] U. Dorndorf and E. Pesch, "Evolution based learning in a job shop 
scheduling environment," Computers & Operations Research, vol. 22, 
pp. 25-40, 1995. 

[22] M. Dell'Amico and M. Trubian, "Applying tabu search to the job-shop 
scheduling problem," Annals of Operations Research, vol. 41, pp. 231-
252, 1993. 

[23] J. W. Barnes and J. B. Chambers, "Solving the job shop scheduling 
problem with tabu search." vol. 27: Taylor & Francis, 1995, pp. 257 - 
263. 

[24] S. G. Ponnambalam, P. Aravindan, and S. V. Rajesh, "A Tabu Search 
Algorithm for Job Shop Scheduling," The International Journal of 
Advanced Manufacturing Technology, vol. 16, pp. 765-771, 2000. 

[25] S. Dauzere-Peres and J. B. Lasserre, "A modified shifting bottleneck 
procedure for job-shop scheduling," International Journal of 
Production Research, vol. 31, pp. 923-932, 1993. 

[26] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, "Job Shop 
Scheduling by Simulated Annealing," Operations Research, vol. 40, 
pp. 113-125, 1992. 

[27] S. G. Ponnambalam, N. Jawahar, and P. Aravindan, "A simulated 
annealing algorithm for job shop scheduling," Production Planning 
and Control, vol. 10, pp. 767-777, 1999. 

[28] S. Lawrence, "Resource Constrained Project Scheduling: An 
Experimental Investigation of Heuristic Scheduling Techniques," 
Graduate School of Industrial Administration, Carnegie-Mellon 
University, Pittsburgh, Pennsylvania 1984. 

[29] S. M. K. Hasan, R. Sarker, and D. Cornforth, "Modified Genetic 
Algorithm for Job-Shop Scheduling: A Gap-Utilization Technique," in 
Evolutionary Computation, IEEE Congress on, Singapore, 2007, pp. 
3804-3811. 

[30] S. M. K. Hasan, R. Sarker, and D. Cornforth, "Hybrid Genetic 
Algorithm for Solving Job-Shop Scheduling Problem," in Computer 
and Information Science, 6th IEEE/ACIS International Conference on, 
Melbourne, Australia, 2007, pp. 519-524. 

[31] S. G. Ponnambalam, P. Aravindan, and P. S. Rao, "Comparative 
Evaluation of Genetic Algorithms for Job-shop Scheduling," 
Production Planning & Control, vol. 12, pp. 560-674, 2001. 

[32] J. Paredis, "Handbook of Evolutionary Computation," in Parallel 
Problem Solving from Nature 2 Brussels, Belgium: Institute of Physics 
Publishing and Oxford University Press, 1992. 

[33] J. Paredis, T. Back, D. Fogel, and Z. Michalewicz, "Exploiting 
constraints as background knowledge for evolutionary algorithms," in 
Handbook of Evolutionary Computation: Institute, 1997, pp. G1.2:1-6. 

[34] H. Ishibuchi and T. Murata, "A multi-objective genetic local search 
algorithm and its application to flowshop scheduling," Systems, Man 
and Cybernetics, Part C, IEEE Transactions on, vol. 28, pp. 392-403, 
1998. 

[35] D. E. Goldberg, Genetic algorithms in search, optimization, and 
machine learning. Reading, Mass: Addison-Wesley Pub. Co, 1989. 

[36] E. H. L. Aarts, P. J. M. Van Laarhoven, J. K. Lenstra, and N. L. J. 
Ulder, "A Computational Study of Local Search Algorithms for Job 
Shop Scheduling," ORSA Journal on Computing, vol. 6, pp. 118-125, 
Spring 1994. 

 


