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Abstract

This thesis investigates the problem of how information contained in multiple, short ex-
posure images of the same scene taken through (and distorted by) a turbulent medium
(turbulent atmosphere or moving water surface) may be extracted and combined to pro-
duce a single image with superior quality and higher resolution. This problem is generally
termed image restoration. It has many applications in fields as diverse as remote sensing,
military intelligence, surveillance and recognition at a long distance, and other imaging
problems which suffer from turbulent media, including e.g. the atmosphere and moving
water surface. Wide-area/near-to-ground imaging (through atmosphere) and water imag-
ing are the two main focuses of this thesis.
The central technique used to solve these problems is speckle imaging, which is used to
process a large number of images of the object with short exposure times such that the tur-
bulent effect is frozen in each frame. A robust and efficient method using the bispectrum
is developed to recover an almost diffraction-limited sharp image using the information
contained in the captured short exposure images. Both the accuracy and the potential of
these new algorithms have been investigated.
Motivated by the lucky imaging technique which was used to select superior frames for
astronomical imaging application, a new and more efficient technique is proposed. This
technique is called lucky region, and it is aimed at selecting image regions with high quality
as opposed to selecting a whole image as a lucky image. A new algorithm using bicoherence
is proposed for lucky region selection. Its performance, as well as practical factors that may
affect the performance, are investigated both theoretically and empirically.
To further improve the quality of the recovered clean image after the speckle bispectrum
processing, we also investigate blind deconvolution. One of the original contributions is
to use natural image sparsity as a prior knowledge for the turbulence image restoration
problem. A new algorithm is proposed and its performance is validated experimentally.
The new methods are extended to the case of water imaging: restoration of images dis-
torted by moving water waves. It is shown that this problem can be effectively solved by
techniques developed in this thesis. Possible practical applications include various forms of
ocean observation.
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Chapter 1

Introduction

This thesis studies a special type of image restoration problem, where the input is an image

sequence of a scene taken through some turbulent media (e.g., turbulent atmosphere, or

moving water surface), and the task is to recover a single clear image by unscrambling

information contained (but hidden) in the turbulence-distorted image sequence. Our aim

is to develop efficient, robust and automated image restoration techniques and algorithms

which can be applied to real turbulent image sequences.

Different from other generic image restoration techniques (which have been researched

extensively in the digital image processing field), the techniques to be studied in this thesis

make special use of the knowledge of the turbulent medium and the imaging process.

Thanks to this, we shall see it is not only possible to overcome the effect of turbulence, to

reduce noise, to restore high-frequency content, but also increase the spatial resolution and

dynamic range as well.

The optical media, which are of central interest to this thesis, include turbulent atmo-

sphere (e.g., convective air currants), and similar media such as moving water waves. In

the literature, these two problems (known as wide-area/near-to-ground imaging and water



2 Chapter 1. Introduction

imaging respectively) have been studied mostly separately in their distinct fields with quite

different techniques. However, in this thesis we will provide a unified approach that solves

both problems in a similar way with almost the same techniques.

To make all the above goals possible, a central technique that has been adopted and

further developed in this thesis is the so-called speckle imaging technique. Specifically,

in using this technique, a sequence of short-exposure images of the scene is taken, the

exposure time for each of the frames is so short that the effect of turbulence has been

effectively “frozen”, and information about the scene can be effectively reconstructed using

this short-exposure sequence, as we shall see later.

Two typical forms of speckle imaging methods will be studied in this thesis: the bispec-

trum method and the lucky region method. The bispectrum method is essentially a phase

recovery technique which uses higher order analysis and “temporal averaging” operation to

remove the phase distortion caused by the turbulent medium. The lucky region method is

based on selecting and extracting superior image subregions which retain more useful in-

formation than the rest for recovering a clear image. In practice, often the result obtained

by these two methods may still have some residual blur due to the averaging operation

explicitly or implicitly used by both methods, so that a blind deconvolution technique is

sometimes applied to further improve the final image quality.

Traditionally, the speckle imaging technique is largely studied in the astronomical ob-

servation/imaging field where the targets are often a very small pinpoint or delta function

(e.g. a star). In contrast to this, a unique feature of this thesis is that, we are concerned

with wide-area, near-to-ground, extended targets (e.g., natural or man-made scenes, street

views, buildings, trees, vehicles, pedestrians, etc.). In wide-area/near-to-ground imaging,

the object is in wide-field-of view and suffers more severe turbulence than astronomical

imagery. Another element is that no prior knowledge of the turbulence, its motion, or
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its characteristics is assumed. To take advantage of these specialities of our problems

to improve the result is another main theme of the thesis. We propose a new method,

whose power is demonstrated with both simulated and real image sequences taken through

different types of turbulent media (viz., atmospheric turbulence and moving water waves).

1.1 Problem Statement

A simple model for image capture in an optical device, such as a telescope and camera,

considers an ideal image to be convolved with a point spread function, or PSF, according

to

i = o ∗ h + n, (1.1)

where i is the recorded image, o is the true image, h is the PSF, ∗ is the convolution

operator, and n is a term used to account for various forms of additive noise.

In Eq.1.1, it is assumed that the PSF is position invariant across the image field of

view. For imaging through atmospheric turbulence, this requirement is called isoplanatic

imaging. In practice, the PSF may well vary across the field of view, which is then known as

anisoplanatic imaging. This is because the PSF includes both the inherent behaviour of the

telescope, and atmospheric effects. In this case, Eq.1.1 can be considered to approximate

conditions over small regions within an image, with a PSF, h, being a function of position

within the captured view.

In a typical time sequence of images affected by atmospheric turbulence, the resulting

PSF may not only be position dependent, but also rapidly time varying. This makes the

restoration problem difficult. However, as each image retains different information of the

object and the turbulence, it allows the possibility that an inverse operation may be able

to unscramble the intervening effects of turbulence from the necessarily static scene.
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The problem of wide-area/near-to-ground imaging, where the objects are near to the

Earth’s surface and captured over horizontal paths (near-to-ground imaging), is similar to

those of ground-based astronomical telescopes. The presence and motion of turbulent eddies

between an observing device and the object of interest can introduce severe information loss

in imaging by telescope. In this case, a telescope-camera system is usually used. Fig.1.1

is a simple illustration of a common scenario of wide-area/near-to-ground imaging, and

Fig.1.2 is a typical observing device.

Figure 1.1: Simple illustration of wide-area/near-to-ground imaging.

Figure 1.2: The equipment for wide-area/near-to-ground imaging of turbulence affected
scenes at long range. A portable 0.14m dia f14 Cassegrain telescope used in our experiments.

For several decades, researchers have tackled this problem, both with post-processing

algorithms, as discussed in this thesis, and by real-time correction techniques employing

Adaptive Optics (AO). The AO system senses the wave front deformations and compensates

in real time for the deformation. It has been proven to successfully tackle the atmospheric
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problem experienced over a wide field of view. This technique is not within the scope of

this thesis.

A prominent class of post-processing techniques are known as speckle imaging, which

is also the central technique for this thesis. The name of speckle imaging stems from

the fact that, within a narrow optical wavelength band, very short exposure images of

an object such as a star, exhibit a speckle pattern resulting from the optical interference

due to atmospheric turbulence. (This is true for isoplanatic imaging, while the idea can be

generalized to anisplanatic imaging by considering the behaviour within small regions.) The

image of an unresolvable star is the PSF of the system, at that position in the image and

at that instant of image capture. Each point in a general scene is modified by such a PSF,

either varying by region in anisoplanatic imaging, or by direct convolution in isoplanatic

imaging. In the simplest case, tip and tilt effects cause the PSF to change location between

images, and between regions. However, higher order abberations also detract from image

quality.

Fig.1.3 shows a sample sequence of short exposure image. It also provide a long exposure

image for comparison. Short exposure images have different characteristics to those of

the long exposure image. Short exposure images look ’speckled’ in appearance, and have

a wider range of spatial frequencies, thus containing finer detail, being less blurred but

possibly more noisy. Speckle imaging is a technique to perform image restoration using a

number of such short exposure images.

This technique was originally (and largely) studied in the astronomical imagery field.

This thesis proposes new methods of using this technique and applies them to our problem.

However, the imaging conditions for our wide-area/near-to-ground application are different

to most in astronomy, due to its different characteristics.

First of all, wide-area/near-to-ground imaging suffers from much more severe atmo-
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(a) A sample sequence of short exposure image

(b) A long exposure image

Figure 1.3: Illustration of short exposure images and a long exposure image.

spheric turbulence than most astronomical imaging, which makes the problem more diffi-

cult. This can be explained by the cause and effect of atmospheric turbulence.

The changing temperature of the Earth’s surface between night and day is the main

driving force of atmospheric turbulence. The Earth’s surface heats in the daytime and

cools during the night along with the sun as it rises and sets, which leads to changes of

air temperature. Temperature fluctuation drives the air to move and so to produce atmo-

spheric turbulence. Moreover, the closer to the Earth’s surface, the higher the temperature

fluctuation, and the more severe the atmospheric turbulence, which may exist throughout

the volume between the observer and the scene.

Images captured by ground-based telescope suffer from atmospheric turbulence. Such

effects happen when light propagates through the atmosphere, when it does not have a

uniform index of refraction. A moving and turbulent atmosphere can be thought of as

consisting of many turbulent eddies of varying size. Eddies can be thought of as regions

with different indices of refraction, varying from eddy to eddy. The refractive index of air is

particularly sensitive to its temperature, so that eddies resulting from mixing air at varying
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temperature have varying refractive index. This results in random light wave abberation,

which is particularly bad in the wide-area/near-to-ground imaging case. The resulting PSF

is also likely to be strongly position-dependent in addition to its time-varying nature.

Secondly, another difference from astronomical imaging is that wide-area imaging deals

with near-to-ground, and extended targets. The images of these possess natural image

characteristics which can be used as a constraint in image restoration. While in astronom-

ical imaging, the objects of interest are often stars or the Moon or Galaxies, which are far

from the Earth and the images may have few natural characteristics (e.g., the stars are

usually considered as point source).

The research in this thesis is not limited to atmospheric turbulence. It extends to other

turbulent media having similar characteristics to atmospheric turbulence such as a moving

water surface. We call the problem of restoration of images distorted by moving water

waves as water imaging.

A sample scenario of water imaging is: In a swimming pool lies a static object, a camera

is hung still over the water surface and records the object. The water surface is moving

(driven by a fan or natural wind), which introduces spatial distortion to images of the

object.

As in wide-area/near-to-ground imaging, the effect of moving water surface can be

captured with short exposure images (as in Fig.1.4). Each image retains some information

of the moving water waves. The mixed information from an image frame stream is then

used to remove the distortion.

In both cases, wide-area/near-to-ground imaging and water imaging, besides turbulence,

short exposure images suffer another effect: information loss introduced by the instrument.

Bandwidth reduction, quantization, frequency aliasing and noise are common degradations

found in imaging systems. This effect is fixed compared with the degradation introduced
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Figure 1.4: A sample image sequence of water imaging.

by atmospheric turbulence. As a result, an image does not completely record the fine detail

of a scene, in the absence of atmospheric turbulence, and is said to have diffraction limited

resolution.

The scope of this thesis is to study new and efficient speckle imaging techniques to

remove the distortion introduced by a turbulent medium, thus produce a single image that

approachs a diffraction limited, or even a high resolution estimate of a scene.

1.2 Thesis Contribution

This thesis studies how to remove the image distortion caused by viewing through turbulent

media. It develops several new and efficient techniques to solve the problem. We propose

two speckle methods of overcoming the effect of atmospheric turbulence, and one blind

deconvolution method for gaining a higher resolution estimate from the result by the speckle

methods.

• The bispectrum method for phase recovery is studied and applied to wide-area/near-

to-ground imaging.
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• A novel technique, the lucky region, is proposed. It favours the condition of wide-

area/near-to-ground imaging and has a higher probability of obtaining lucky regions

than the classical lucky imaging technique. A new and efficient method, the bicoher-

ence method, is then developed for lucky region selection.

• A blind deconvolution method using a natural image prior is developed to boost high

frequency content of an image.

• An original algorithm is proposed for water imaging. For the first time, we apply

astronomical techniques (the bispectrum technique and the lucky region) for the

restoration of images distorted by moving water waves.

1.3 Constraints and Assumptions

Our work is based on some constraints and assumptions of the imaging system and condi-

tions. This helps better to regularize the problem, leading to improved image restoration

results.

Atmospheric turbulence results in a point spread function that varies rapidly, both

temporally and spatially, thereby causing each point in a scene to appear to move about

randomly when observed over a long period. This thesis assumes that the movement of

each point in an image oscillates around a zero-mean displacement from its true position

when the observing period is long enough. Similar assumptions are inherent for higher

order corrections by the bispectrum.

For the purpose of image restoration for near-to-ground and long range imaging systems

affected by atmospheric turbulence, and for imaging through and off water surfaces, this

thesis is concerned only with images that are captured under the following conditions:
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• The distance between the telescope and the scene is large (typically > 0.1km through

to many kilometers), so wide-area effects of the turbulence are present in the imaging.

In the same way, rippled water creates similar effects.

• All parts of the scene are within the system’s depth of focus.

• The evolution of the media is frozen in each exposure.

• The scene may contain movement but not within the bracket of exposures being used.

1.4 Applications

The research covered in this thesis contributes to wide-area imaging or long-range surveil-

lance, which carries a lot interest in many fields such as remote sensing, military intelligence,

and text recognition over a long range, where the observations are degraded and limited

by the atmospheric turbulence.

To our knowledge, so far only a few organizations/laboratories in the world have been

working in this area. Carrano built up an imaging restoration system to reconstruct a

diffraction limited image of an object from a number of short exposure images using the

bispectrum technique[1, 2, 3]. The same technique is applied to obtain high-resolution of

moving targets[4, 5]. Fienup used phase retrieval methods for the reconstruction of an image

taken through atmospheric turbulence[6]. The image restoration problem of atmospheric

turbulent video containing real motion has been studied by Fishbain[7, 8, 9, 10]. Fraser and

Lambert et al have contributed to long range surveillance and wide-field imaging[11, 12, 13],

they proposed an effective method based on locally-nonrigid image registration that has

been successfully used for turbulent image restoration. Moreover, Tahtali et al presented

an improved Kalman filter for restoration of atmospheric warped images.
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Even though a few methods have been proposed, the research in this area remains

relatively new: more applications are emerging and few effective techniques are available. In

this thesis, we contribute further research of the bispectrum technique and its application to

wide-area imaging. Moreover, an original technique and strategy, the lucky region method

is proposed. This technique can also be applied to super resolution for turbulent imagery.

An offshoot of the bispectrum approach led to a novel form of image quality measure,

namely the mean bicoherence used as a method for determining lucky images or lucky

regions of an image. In addition to bispectral phase restoration, selection of superior

images or image regions by this approach leads to even better image restoration. The

system is useful in long range surveillance, for example in reading text or tracking people

at a considerable distance.

The methods developed for restoration of atmospheric turbulence affected images pro-

vide an interesting, alternative medium for its application. Light passing through, or

reflected from, waves on the surface of a water body, results in distortion and degradation

of images in a similar way to atmospheric turbulence. It is shown that image restoration

in these cases can be achieved by the techniques developed in this thesis, contributing to

various forms of ocean observation.

1.5 Thesis Structure

The remaining chapters and their principal contributions are as follows.

Chapter 2: Survey of Related Work

• A detailed survey is made of the literature pertaining to speckle imaging for optical

imaging, and traditional blind deconvolution techniques.
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Chapter 3: Bispectral Analysis

• The bispectrum technique is analyzed theoretically. The foundation of the utilization

of the averaged bispectrum for the Fourier phase recovery of an object using of interest

multiple observations is developed.

This chapter also describes several available algorithms in detail. Moreover, the phase

ambiguity when recovering the Fourier phase from the averaged bispectrum, and the

difficulty of data storage and computation when computing the four-dimensional bis-

pectrum of a two-dimensional image are discussed. Finally, the bispectrum technique

is tested and results are shown to be impressive.

Chapter 4: Lucky Region and Bicoherence

• An original technique, lucky region, is developed in this chapter. The lucky region

technique is based on the idea of the lucky imaging method in astronomical imagery,

but improves conditions that fit in our problem. With this technique, the image

sequence is divided into a number of smaller subregion sequences. Then superior

subregions are selected as lucky regions instead of choosing an entire lucky image. It

ensures that lucky region selection and further image processing in subsequent steps

are performed in isoplanatic image patches.

Moreover, a new algorithm using bicoherence, the normalization of the magnitude of

the bispectrum, is proposed to be an indicator for predicting the quality of an image

region. Lucky regions are selected according to the rank of the bicoherence of each

region in the sequence.

In experiments, we applied the lucky region technique to two cases: image restoration

and super resolution for atmospheric turbulence. Both simulated and real-world
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results are impressive, demonstrating the superior performance of this method in

wide-area imaging.

Chapter 5: Imaging Through Turbulent Water Surface

• The methods developed for restoration of atmospheric turbulence affected images

provide an interesting, alternative medium for its application: water imaging, im-

age restoration of a still object from a number of images degraded and limited by

the moving water surface. Two cases, looking through the water surface and water

reflection, are studied and solved in this chapter.

To our knowledge, this is the first successful attempt at applying higher order statis-

tics, in particular, the bispectrum, for water observation/surveillence. It shows that

post processing techniques of astronomical imagery like AO (Adaptive Optics) can

also be applied to remove water surface turbulence.

Chapter 6: Image Restoration Using Sparsity

• A new blind deconvolution method is described. This method is applied to remove

any remaining blur in the estimate image obtained by the current methods such as

the bispectrum technique, which has spatial invariant PSF but may be still low-pass

filtered.

The sparsity in natural image gradient is of importance, and the compressed sensing

theory is applied. In particular, the `1-norm minimization is used in our algorithm.

The performance is tested and compared with simulated and real-world data.

Chapter 7: Closing Remarks

• Conclusions of the thesis and several possible avenues of future research are drawn.
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Chapter 2

Survey of Related Work

In this chapter, we will give a brief overview of published work for image restoration for

images viewed through a turbulent medium, as well as generic image deconvolution. Our

focus is given to some relevant techniques developed in the past that are akin to our methods

to be researched in this thesis. These relevant techniques are grouped into two categories:

speckle imaging techniques and blind deconvolution.

2.1 Speckle Imaging

Since the first short exposure images were measured in the late 1950’s in the domain of

astronomical observation, remarkable advances have been made in the theoretical under-

standing of atmospheric turbulence effects in imaging science and the related post process-

ing techniques. The post processing techniques, which are used to overcome the effects of

atmospheric turbulence and to reconstruct a clear image of the observed objects from a

set of short exposure image frames, are generally termed as “speckle imaging” techniques.

The goal of speckle imaging is, in essence, to analyze the information hidden in those cap-
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tured short exposure images and to recover an estimate of the object (mostly) through the

Fourier domain.

Short exposure images refer to images “measured using exposure times short enough

to effectively freeze the turbulence, typically on the order of a few milliseconds”[14]. It

has been demonstrated that short exposure images contain more high spatial frequency

information than long exposure images.

There is also a technique termed as speckle interferometry which is closely related to

speckle imaging, but these two are somewhat different, as they produce different results.

Speckle interferometry aims at estimating the modulus spectrum of an object, often through

optical means. In contrast, speckle imaging extends this to estimating a true reconstructed

image of an object using both modulus and phase information contained in the short

exposure images. A more detailed (yet necessarily brief) explanation is given below.

2.1.1 Speckle Interferometry

Speckle interferometry was first proposed by Labeyrie in 1970 to obtain information about

binary stars in astronomical imaging. To perform speckle interferometry, two image data

sets are required, one is the sequence of short exposure images of the object, and the other

is a short exposure image set of a reference star which is bright and nearby to the object

[15, 16, 17, 18, 19, 20, 21, 22].

This technique permits the Fourier modulus of an object to be recovered up to the

telescope cut-off frequency[23, 24, 14]. In this context, the computation of the averaged

power spectrum of the short exposure images is required:

< I(2)(u) >=< |I(u)|2 >= |O(u)|2 < |H(u)|2 > (2.1)



2.1. Speckle Imaging 19

Recall that in Eq.1.1, o(x) is the true image, h(x) is the point spread function (PSF). O(u)

and H(u) are the Fourier transforms of these , respectively. I(2)(u) is the power spectrum,

and I(u) is the Fourier transform of the detected image i(x). < · · · > denotes an ensemble

average, and | · | the absolute value.

< I(2)(u) > is the averaged power spectrum of an image set. Assuming additive noise

having zero mean, the averaging process will improve the signal-to-noise ratio of the result.

If the observed object o(x) is an unresolved source point, e.g., a reference star, then Eq.2.1

yields an estimate of < |H(u)|2 >. Such that |O(u)|2 can be achieved by dividing |I(u)|2

by |H(u)|2.

H(u) is also called the optical transfer function (OTF). The second moment of the OTF,

< |H(u)|2 >, is finite out to the telescope cut-off frequency[24, 25]. Thus, < |I(u)|2 >

contains diffraction-limited information about the object if < |H(u)|2 > is larger than zero

for frequencies approaching the telescope cut-off frequency.

Theoretically, < |O(u)|2 > has a maximum at zero frequency and generally diminishes

with the increase of the frequency[23]. The effect of the OTF further attenuates the high

frequency content. This can be overcome by using a reference star which is an unresolved

source. The reference star should have an irradiance distribution such that it can be

considered as a delta function and its Fourier transform is a constant. Using Eq.2.1,

< |H(u)|2 > is estimated. Roggemann has shown that < |H(u)|2 > is greater than zero up

to the telescope cut-off frequency[14].

One may note that dividing by < |H(u)|2 > boosts the mid and high frequency com-

ponents of < I(2)(u) >, thereby obtaining a better value of < O(2)(u) >. This is also the

purpose of collecting and processing the short exposure images of the reference data. The

absence of zeros in < |H(u)|2 > maintains the conditioning of the problem.

This method is straightforward and can be extended for general objects, so long as they
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are not too visually complex. It requires the imaging device having the ability to take short

exposure images due to the rapidly changing atmosphere. Also, it requires that one should

collect the reference data close to the time and direction of the collection of the object of

interest for the purpose of maximizing the coherence of the atmospheric turbulence. The

disadvantage is that the “image” is the autocorrelation of the true image, restricting its

application to very simple images.

2.1.2 Fourier Phase Estimation Techniques

The speckle interferometry technique only estimates the Fourier modulus of an object.

To reconstruct an object faithfully, both the Fourier phase and modulus information are

required. In the past decades, various instances of speckle imaging techniques have been

proposed to perform the phase recovery task (see e.g. [26] and references therein). Among

them, two most promising techniques are the cross spectrum technique [27, 28] and the

bispectrum technique [29, 30, 31]. It has been shown that both preserve (in some scrambled

way) the original phase information and high frequency content of the object being imaged,

and the key task is to how to recover this[14, 32, 33, 24].

2.1.2.1 Cross Spectrum Technique

The cross spectrum is a special kind of moment of the Fourier transform of the images.

The cross spectrum of the image of an object provides information of the phase spectrum

of the object in the form of point-to-point phase differences[14]. Methods based on the

cross spectrum is therefore concerned with how to recover the phase spectrum from the

phase differences.
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By definition, the cross spectrum of a signal, C(u,4u) is given as

C(u,4u) = I(u)I∗(u +4u)

= O(u)H(u)O∗(u +4u)H∗(u +4u)
(2.2)

where4u is a small, constant offset spatial frequency. Taking the average over the ensemble

images on both sides of Eq.2.2, one then obtains

< C(u,4u) > = |O(u)||O(u +4u)|ej(φo(u)−φo(u+4u)) < H(u)H∗(u +4u) > (2.3)

Here the object spectrum is deterministic, and is taken outside the expectation. In

Eq.2.3, < H(u)H∗(u + 4u) > is the cross spectrum transfer function. It is shown to be

real valued for usual seeing conditions, and non-zero at spatial frequencies approaching the

diffraction-limited cutoff frequency[14, 24]. This is an enabling factor for the phase recovery

in mid and high frequencies.

Hence, the phase of the averaged cross spectrum is only related with the phase and

the phase difference of the object, and clearly encodes the object phase spectrum. To

reconstruct the phase spectrum of the object using the cross spectrum, two offset vectors

in orthogonal directions are needed[14]. Generally, the ux and uy directions are used, and

the phase difference is formed by the partial derivative approximations. The offset vectors

are often chosen to be equal to a single sample spacing. In practical applications, the phase

spectrum can be obtained by recursively calculating the values at higher frequencies based

on values at lower frequencies.

It should be pointed out that the cross spectrum is a function of the tilt component

of the turbulence-induced aberration. That is, turbulence-induced random tilt causes the

recorded image to move randomly about the image plane, but does not affect the image in
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any other way [14]. This results in attenuation of the averaged cross spectrum. To avoid

this, the image sequences are shifted to a centroid before the cross spectrum is computed.

The cross spectrum is often noisy because of poor seeing condition. A treatment of the

noise effect is to use multiple offset vectors, but this inevitably leads to the creation of a

four-dimensional cross spectrum. More recently, some researchers have recognized that the

cross spectrum technique is only a subset (or a special case) of the more general bispectrum

technique. People have shown that using the general bispectrum technique usually yields

better results [34, 27, 35].

2.1.2.2 Bispectrum Technique

The bispectrum provides another means to preserve the phase information of an object

from a sequence of short exposure images of it [14, 36, 37, 34]. Moreover, unlike the cross

spectrum, the bispectrum of an image is insensitive to random translation of the image

centroid. This makes it particularly suited to removing random translational distortions of

an image.

The bispectrum is defined as the Fourier transform of the triple correlation of a signal,

i.e.,

I(3)(u1, u2) = I(u1)I(u2)I
∗(u1 + u2). (2.4)

Temporally averaging the bispectrum over the ensemble images, we have

< I(3)(u1, u2) > = |O(u1)||O(u2)||O(u1 + u2)|ej(φo(u1)+φo(u2)−φo(u1+u2))

× < H(u1)H(u2)H
∗(u1 + u2) >

(2.5)

where < H(u1)H(u2)H
∗(u1 + u2) > is called the bispectrum transfer function.

Similarly to the case of averaging cross spectra, the averaged bispectrum is also real-
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valued and non-zero up to the cut-off frequency [14, 29, 38, 39]. The phase of the object

φI(3) is only related to the phase of the temporally averaged bispectrum φo.

From the above definition, we can make use of some useful properties for recovering

phase information. For example, if the phase at a lower spatial frequency is given, then the

phase φo at a higher frequency can be estimated recursively using values at lower frequen-

cies. Detailed method descriptions can be found in [40, 32, 41]. The recursive method is

direct but it can introduce large errors at higher frequencies due to error accumulation at

lower frequencies[42, 43].

An alternative method is to use the least-squares (LS) method, see e.g., [44, 40]. The

LS method ensures that the errors of the obtained bispectral phases are not accumulated

for the calculation of each new object phase. This method takes advantage of the linear

property of the phase relationship and solves by minimizing a cost function, and will be

discussed in detail in chapter 3. The following papers also reported results using the LS

method [45, 46, 43, 47, 48, 49].

The LS method has, however, a serious drawback, in the sense that it is not immune to

2π phase ambiguities. The obtained phase spectrum may be subject to unknown 2π phase

shifts. Glindemann reviewed several methods that may overcome this phase ambiguity

problem [50], for instance, by adding multiples of ±π to Eq.4.16[47, 46], or by recovering

phase factors exp(jφo) instead of the original phases φo. However, often nonlinear optimiza-

tion is required for solving for exp(jφo) in these methods, because no linear relationship

between exp(jφo) and exp(jφI(3))[41, 45, 49]. Researchers have also tried to compute the

phase difference modulo 2π, see e.g. [51].

A practical issue associated with the bispectrum computation (for a two-dimensional

image signal) is that it is very computationally demanding, in the sense that both its

memory complexity and time complexity are relatively very high. This has made the
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bispectrum speckle imaging technique not popular for general PC users. To accelerate the

computation, some researchers investigated methods either through algorithm optimization

see e.g.[52, 53], or through dedicated parallel hardware see e.g.[54, 55]. In this thesis, we

will present a new method based on image. In addition, we will give some analysis of

possible parallel computing implementations.

As the bispectrum theory and technique play a central role in our work to be presented

in this thesis, Chapter 3 will be fully devoted to this subject. The bispectrum technique

has been commonly adopted in the astronomical imaging domain for astronomical image

restoration. In contrast, little activity was witnessed in other fields outside the domain. In

this sense, this thesis makes a valuable contribution to applying the bispectrum technique

to the wide-area/near-to-ground imaging, and to the water imaging application. During

the course of this thesis, we also make other important or useful contributions, such as the

application of the lucky region method and bicoherence based image quality measure, etc.,

which are introduced below.

2.1.3 Shift-and-Add Method

There is yet another very popular (and well-known) technique, known as shift-and-add

method in optical astronomy for removing atmosphere turbulence effect. It is particularly

useful for better observation of binary stars in the sky[56].

As its name suggested, this method is very straightforward, and it consists of (1) firstly

find the brightest pixel in one image (termed brightest point) as a reference pin-point, and

then (2) the ensemble of a set of short exposure images are shifted with respect to the

reference point and then added without any other processing. The averaged centralized

version of the images is the so-called shift-and-add resultant image[56].

Various variants of this shift-and-add method were proposed in the literature e.g.[57, 56,
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58, 59], and a recent work was done by Bagnuolo [60, 61]. Hunt gave a rigorous theoretical

study to the shift-and-add method[62]. It is shown that such a simple method may lead to

diffraction-limited restoration[63].

A downside of this method is that the result depends crucially on the seeing conditions.

It requires that the observed object should be within an isoplanatic angle of the optical

system, therefore the point spread function is position invariant which ensures all the points

in an image are distorted in the same way.

However, the effect of atmospheric turbulence on near-ground imaging is often aniso-

planatic, and the object of interest is often a natural scene rather than bright stars in the

dark sky. In our case, we have found that the shift-and-add method failed to produce a

sensible restoration.

Fraser et al[11] proposed an effective method based on locally-nonrigid image registra-

tion that has been successfully used for turbulent image restoration for wide-field observa-

tions. This method is similar in spirit to the shift-and-add method, but with substantial

improvement and practical modifications. It works as follows: randomly select one image

from the ensemble images or use the temporal average of the image set as a prototype, then

apply region-to-region registration to each pixel in each short exposure image; repeat this

process at reducing region size and including more spatial frequency components until the

difference of successive images is less than a threshold and finally average the registered

images to produce a relatively sharp and geometrically correct image of the object.

This method works well for natural scene images. Moreover, after registration and

averaging, the geometrically correct version can be considered as an object imaging through

an isoplanatic PSF, therefore a conventional blind deconvolution method may be applied

to the geometrically correct version to reconstruct a sharper image. This technique shows

quite good results. The main disadvantage is that a large computation time is required for
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the region-to-region registration, which is computationally expensive.

2.1.4 Lucky Imaging Technique

Lucky imaging, also known as lucky exposures, is another popular technique developed

for astronomical imaging through turbulence. With the lucky imaging technique, short

exposure images which are less affected by the atmosphere and therefore having superior

quality are chosen; then a single image is computed by using the typical shift-and-add

method. In other words, it is simply applying a pre-selection step to determine which

frames come into the shift-and-add process. This technique yields a much higher resolution

image than otherwise if pre-selection is not employed.

Fried first mentioned a numerical method for computing the probability of obtaining a

lucky image in 1978 [64]. He showed that the probability increases with the data set size

(i.e., number of frames). From then on, several ideas based on the lucky imaging technique

have been studied. In early applications, the astronomical images were assumed to be

blurred by the atmosphere turbulence [65], and the FWHM (Full-Width Half-Maximum)

of the images was estimated and used for lucky image selection. More recently, some

researchers have taken advantage of the fact that the atmosphere does not “blur” astro-

nomical images, but generally produces multiple sharp but shifted copies of the image

[66, 67, 68, 69, 70].

A very successful method in astronomy is to use the Strehl ratio of an image of an

unresolved reference or guide star in the field of view to determine lucky images [68, 67].

Because a reference star is needed in this method, it is not applicable to the case of general

near-ground imaging, such as in this thesis.

A lucky image based method was presented by Weddell and Webb [69] in connection

with an adaptive optics system. A machine learning algorithm/classification model was
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used to predict when lucky images are expected to occur.

Recently, a synthetic imaging technique used to find lucky patches instead of entire

lucky images has been proposed by Vorontsov et al, to achieve the object image with

quality superior to the diffraction limited image obtained in the absence of turbulence [70].

A local-area image quality metric based on optoelectronic edge detection is used to locate

the image regions having good quality. The lucky patches are then fused together to form

a final image using a non-linear evolution partial differential equation (PDE) in the image

domain.

In this thesis, we use this idea of partitioning an image into lucky regions, termed

the lucky region technique. It improves the conditions of algorithms, and improves the

probability of obtaining a lucky region rather than an entire lucky image.

2.2 Blind Image Restoration and Sparsity

In this section, we will give a short overview of blind deconvolution techniques for image

restoration, and the use of sparsity as a natural image prior to improve the restoration.

2.2.1 Overview of Blind Deconvolution

In mathematics, deconvolution is an algorithm-based process used to reverse the effects of

convolution on recorded data. The concept of deconvolution is widely used in the techniques

of signal processing and image processing. In optical imaging, the term “deconvolution” is

specifically used to refer to the process of reversing the optical distortion that takes place in

an optical microscope, telescope, or other imaging instrument, thus creating clearer images.

It is usually done in the digital domain by a software algorithm, as part of a suite of image

processing techniques. Early Hubble Space Telescope images were distorted by a flawed
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mirror and could be sharpened by deconvolution.

The usual method is to assume that the optical path through the instrument is optically

perfect, convolved with a point spread function (PSF), that is, a mathematical function

that describes the distortion in terms of the pathway a theoretical point source of light (or

other waves) takes through the instrument.

In practice, finding the true PSF is impossible, and usually an approximation of it is

used, theoretically calculated or based on some experimental estimation by using known

probes. When the PSF is unknown, it may still be possible to recover a most probable

clear image. This procedure is called blind deconvolution.

Blind deconvolution is an established image restoration technique in astronomy, where

the point nature of the objects of interest (i.e, the stars) photographed exposes the PSF,

thus making it more feasible.

To put it more formally, the goal of blind deconvolution is to recover a clear version of

an object given a single (or a set of) blurred image(s), with little knowledge about the true

image and the blur kernel (i.e., the PSF)[71]. Mathematically, it is to solve the o in the

following problem:

i = o ∗ h + n, (2.6)

where o is the true image we are seeking, h is the PSF which acts as a low-pass filter

and linear degradation on the true image. n is additive noise, it is usually considered

as independent of the signal and identically distributed (iid, independent and identically

distributed). h may in fact be a non-linear effect in which case Eq.2.6 becomes more

complicated.

The study of the feasibility of blind deconvolution dates back to 1970s when Oppenheim

et al.[72] and Stockham et al.[73] proposed to estimate a single image by superimposing a
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set of images in combination with homomorphic filtering. In the 1980s, Lane and Bates

theoretically demonstrated blind deconvolution can be performed using only one image.

From then on, many methods have been published[74]. Ayers and Dainty first gave a

general deconvolution scheme of iterative algorithms estimating both the image and the

PSF in their paper of 1988[75]. Their method exploits the Fourier phase of the convolution

and uses some general a priori information concerning the object image and the PSF such

as there being no negative pixel value allowed in the image domain. More recent algorithms

such as maximum likelihood (ML) and maximum a posteriori (MAP) can be considered as

an extension of such iterative techniques.

In its most general formulation, image blind deconvolution is an ill-posed (under-

constrained) problem: there are more unknowns than measurements, i.e., the original image

o and the PSF h are unknown while the observed blurred image i is known. There exist

infinitely many solutions to Eq.2.6. Hence, to obtain a reasonable result, algorithms make

strong prior assumptions about the blur kernel and the original image.

Image blind deconvolution also suffers from reconstruction artifacts such as “ringing”

effects or color speckles which are a result of high frequency content being lost in the

degraded image. This phenomenon is commonly found in almost all algorithms, even in

the standard non-blind deconvolution algorithms. For example, more iterations in the

famous Richardson-Lucy algorithm will result in more “ringing” artifacts. This is because

most non-blind deconvolution methods assume the PSF contains no errors, however, even

small errors in the PSF or noise in image can lead to significant artifacts[76].

In the past three decades, two kinds of methods have been commonly studied and used

in the various approaches to the problem: the maximum likelihood (ML) technique and

the maximum a posteriori (MAP) technique.
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2.2.1.1 ML Method

In general, the maximum likelihood (ML) technique is to find the estimate o′(x, y) that

is most likely to produce the detected image i(x, y). In the literature, this method has

been widely used in non-blind deconvolution. Given the detected image and the PSF, and

some simple prior knowledge such as the true image f being positive may be imposed when

seeking[77]

arg max
o

P (i|o) (2.7)

where P (·) denotes the probability. Assume there exists image dependent Poisson noise,

such that the likelihood of i(x, y) is expressed as[77]

o′ = arg max
o′

∑
x,y

i× log(h ∗ o′)− h ∗ o′ (2.8)

A number of approaches have been proposed for solving this problem, for example the

famous Richardson-Lucy algorithm[78, 79]. These methods are all essentially iterative.

Some researchers utilize the expectation maximization (EM) technique for maximizing the

log likelihood[80, 81]. The E and M steps are updated in each iteration based on the

estimate of the previous step[82].

One shortcoming of the iterative method is its slow convergence to the maximum of

the likelihood function. To speed up the convergence, one solution is to use more efficient

techniques such as steepest ascent search or the conjugate gradient method. Also, in order

to ensure the image is positive, another constraint (the true image o is expressed as the

square of another function) should be added [83]. More recently, new ML methods have

been presented for blind deconvolution, for example, Holmes has derived a ML algorithm

to solve for both the unblurred image and the PSF in the presence of Poisson statistics[84].
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2.2.1.2 MAP Method

Given a detected image i, maximum a posteriori (MAP) technique or Bayesian estimation

is to use Bayes’ rule and maximize the probability of the true image o and the PSF h given

a detected image i

P (o, h|i) =
P (i|o, h)P (o)P (h)

P (i)
(2.9)

Taking the logarithm of both sides in Eq.2.9 and discard the term log(p(i)) for the reason

that it is determined, then the problem now becomes one of minimizing the sum of negative

log likelihood:

o = arg mino[L(i|o, h) + L(o) + L(h)] (2.10)

where L(i|o, h)+L(o)+L(h) is the cost function or penalizing function, L(i|o, h) is the data

term or likelihood penalty, and L(o) and L(h) are the priori knowledge about the object

and the PSF respectively, also called the regularization penalty.

Methods based on the above model have been published [85, 86, 87, 88, 76], and they

have led to great progress in blind deconvolution. But the results are still far from perfect

due to the limitation of existing algorithms[89]. An alternative strategy has been proposed

in [89]: that is, apply MAP to estimate the PSF using the knowledge at hand, then solve for

the estimate of the true image using general doconvolution techniques with the computed

PSF. In estimation theory, the MAP method will approach the true solution given enough

measurements. Therefore, if the image size is large enough (compared to the PSF support),

it has increasing probability to solve for a correct PSF using all the information the detected

image provides.

In fact, some recent algorithms make use of this specific strategy. For example, Fergus

et.al. proposed an algorithm with two steps which are exactly mentioned by Levin to remove

camera shake from a single photograph [85]. Another example is the use by Yuan et.al.
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[90] of the same strategy for motion blur removal. Results are impressive, moreover, the

algorithm proposed by Yuan et.al. greatly reduces the “ringing” artifacts that commonly

result from image deconvolution.

2.2.2 Exploit Sparsity in Natural Image Restoration

Due to the ill-posed nature of the blind image restoration problem, the more prior knowledge

about the original image and/or the blur kernel, the better we can constrain the problem,

and the better restoration result we can obtain. Using natural image prior in the blind

deconvolution computation is exactly based on such an idea. In this thesis, we will examine

the sparsity prior, which is enjoyed by most natural scenes, and has received increasing

attention from recent researchers in the image restoration area.

The image gradient distribution information has long been used in solving image restora-

tion problems. Often, a regularization term L(o) on the image gradients is introduced in

Eq.2.10:

L(o) = ||∇o||q (2.11)

when q = 1, it is a Laplacian prior, and when q = 2 it means a Gaussian prior. These

two priors are used in several methods. However, recent research pointed out that real

world natural image gradients are always non-Gaussian, but favours a sparse or heavy-

tailed distribution. Moreover, when q falls in the range of [0.5, 0.8] the algorithm gives a

more “natural” result [86, 91, 92].

In recent years, such sparsity prior has been applied successfully in various topics of

imaging processing [76, 85, 86, 90, 93, 94, 95, 96, 97, 98, 99, 100]. Yuan et al. used

the sparse prior to search the best alignment for a blurred/non-blurred image pair, which

produces a sparse kernel[90, 97]; methods proposed in [96, 76, 86] employed the sparse
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statistics for motion deblurring from a single image or an image pair; Tappen et al. and

Yang et al. extended the application of sparsity to image super-resolution and image

demosaicing[93, 99]. Other applications using sparseness include image inpainting and

zooming[94], and camera shake removal[85].

Motivated by the success of these methods in the literature, we study and exploit the

use of such sparsity in wide-area turbulent imaging.

However, we cannot directly apply the classic blind deconvolution technique to tur-

bulence distorted images, because the effective PSF varys both spatially and temporally.

To overcome this, one could segment an image into a number of smaller subregions where

the PSF for each small region can be roughly considered as position-invariant, then per-

form multiple image blind deconvolution methods to the subregion sequence to obtain a

single potential image. Alternatively, one could perform the deconvolution on a single

geometrically-correct image of the object, obtained after using the speckle imaging (phase-

recovery) techniques. Our method to be presented in Chapter 6 of this thesis follows from

the second approach.
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Chapter 3

Bispectral Analysis

3.1 Introduction

Due to the nature of atmospheric turbulence, the effective PSF for each image of a short

exposure sequence almost always varies from time to time, and the PSF itself of each im-

age is also spatially non-uniform (i.e., inhomogeneous). Classical image deblur techniques

(e.g., Wiener filter) cannot be directly applied here, as they often assume a spatially in-

variant PSF. To overcome the disruption caused by atmospheric turbulence and recover an

distortion-free estimation of the true image, novel techniques are needed.

Motivated by the success of applying higher order statistics (HOS) to various signal

processing and system theory problems, and inspired by the particular application of speckle

imaging technique to astronomical imagery field, we investigate the bispectrum in its ability

to correct the effects of atmospheric turbulence in wide-area/near-to-ground imaging.

Literature study shows that higher order statistics is very powerful particularly when

Gaussian or zero-mean noise exists, or phase distortion occurs, and when nonlinearities are

relevant [101]. We shall see that this is exactly so in the case of imaging through turbulent
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media.

In this thesis, we make extensive use of third-order statistics, i.e., the 3rd-order moment

(a.k.a. triple correlation), for which the counterpart in the frequency domain is called

bispectrum.

Compared with the conventional (thus lower-order) power spectrum, which encodes only

the magnitude but not the phase part of the Fourier transform of the object (signal), the

bispectrum retains both the magnitude and the phase information [101]. For a turbulence

affected image, the geometrical distortion caused by the turbulence is in fact some unknown

and random phase aberrations. Through a standard single frame image recording process,

the phase information of the original target image may be lost. However, taking a large

number of short exposure images of the same target can somehow compensate for the

effect of random phase aberrations, assuming the aberrations are zero-mean or Gaussian

distributed. As we will see, using the averaged bispectrum of multiple short exposure

images can successfully recover the phase spectrum. Then, in conjunction with the averaged

power spectrum, one can improve the overall image quality, and signal-to-noise ratio, of

the reconstructed target object substantially.

This chapter will revisit the bispectrum technique, and theoretically demonstrate how it

removes the effect of atmospheric turbulence and suppresses additive noise, show the means

of reconstruction of the phase spectrum from the averaged bispectrum of the recorded

images, and discuss the phase ambiguity and computation problems when that occurs in

this case.
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3.2 Introduction to Fourier Theory

Before introducing the concept and definition of bispectrum, it is necessary and beneficial to

first briefly review the classical Fourier theory. Fourier transform is of significant importance

in signal processing, as well as in image processing. Both concepts of bispectrum and

bicoherence that are relevant to this thesis, are defined in the Fourier space.

3.2.1 Fourier Transform and Discrete Fourier Transform

Given a continuous function f(x) defined on a domain variable x, its Fourier transform

F (u) is defined as

F (u) =

∫ ∞

−∞
f(x)e−j2πuxdx (3.1)

where j =
√
−1. Inversely, given F (u), one can obtain f(x) via the inverse Fourier trans-

form, which is defined as

f(x) =

∫ ∞

−∞
F (u)ej2πuxdu (3.2)

The functions f(x) and F (u) comprise a Fourier transform pair, and the variables x

and u are called conjugate in this context. These definitions are easily extended to a

two-dimensional Fourier transform pair f(x, y) and F (u, v):

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dxdy (3.3)

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)ej2π(ux+vy)dudv (3.4)

When f is a discrete and finite function of variable(s) x = {0, 1, 2, ...,M − 1}, (y =
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{0, 1, 2, ..., N−1} for a two-dimensional function), the one-dimensional and two-dimensional

Fourier transforms are defined by

F (u) =
1

M

M−1∑
x=0

f(x)e−j2πux/M (3.5)

f(x) =
M−1∑
u=0

F (u)ej2πux/M (3.6)

F (u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π(ux/M+vy/N) (3.7)

f(x, y) =
M−1∑
u=0

N−1∑
v=0

F (u, v)ej2π(ux/M+vy/N) (3.8)

where u = {0, 1, 2, ...,M − 1}, and v = {0, 1, 2, ..., N − 1} are discrete samples of F (u, v),

and Eqs.3.5-3.8 describe the DFT (Discrete Fourier Transform). We consider the values

of u (and v) to be in the frequency domain or Fourier space, and each term of F (u) (and

F (u, v)) is a frequency component.

In practice, it is convenient to express F (u) in complex polar form:

F (u) = |F (u)|ejφ(u) (3.9)

where |F (u)| is called the magnitude of the Fourier transform, and φ(u) is the phase or

phase spectrum.

For a real signal, f(x), one has F ∗(u) = F (−u), where F ∗ represents the complex

conjugate of F . Similarly, we can write F (u, v) = |F (u, v)|ejφ(u,v), and, again, for a real

signal, f(x, y), F ∗(u, v) = F (−u,−v).
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3.2.2 Convolution and Correlation

Convolution and correlation are very important concepts in Fourier theory. For example,

the auto-correlation (in space domain) and power spectrum (in Fourier domain) are a pair

of conjugate operations. Similar analogy regarding higher-order statistics can frequently

be found in this thesis. Let us first review the standard definition of the conventional

convolution and correlation operators.

Let ∗ and ⊗ denote convolution and correlation, respectively. For two one-dimensional

functions f = f(x) and g = g(x), these two operations are defined by

f ∗ g =

∫ ∞

−∞
f(x)g(ξ − x)dx (3.10)

f ⊗ g =

∫ ∞

−∞
f(x)g(x + ξ)dx (3.11)

Note that f ∗ g and f ⊗ g are functions of ξ, and f ∗ g is commutative, i.e., taking either f

or g first will not affect the output. Writing the Fourier transform of f and g as G = G(u)

and F = F (u) respectively, the convolution theorem and the correlation theorem are then

expressed as ∫ ∞

−∞
(f ∗ g)e−j2πuxdx = F (u)G(u) (3.12)

∫ ∞

−∞
(f ⊗ g)e−j2πuxdx = F (−u)G(u) (3.13)

In two dimensions, the convolution and correlation operations can be defined in the

same way as

f ∗ g =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)g(ξ − x, η − y)dxdy (3.14)

f ⊗ g =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)g(x + ξ, y + η)dxdy (3.15)
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here, f and g denotes two-dimensional functions, i.e., f = f(x, y) and g = g(x, y).

3.3 Higher Order Statistics (HOS)

We now give the definitions of higher order statistics (e.g., moments and cumulants) used

in this thesis. In particular, bispectrum and triple-correlation will be explained next, which

play central roles in our work.

A well-known result in signal processing is that the Power spectrum and the auto-

correlation of a signal form a Fourier transform pair. Similarly, the bispectrum and the

(auto) triple correlation of a signal also constitute a Fourier transform pair. More detailed

development is given below.

3.3.1 Moments and Cumulants

Given a set of n real random variables {x1, x2, · · · , xn}, their joint moments are defined by

[101]

Mom[x1, x2, · · · , xn] , E{x1x2 · · ·xn}

= (−j)n ∂nΦ(w1,w2,··· ,wn)
∂w1∂w2···∂wn

|w1=w2=···=wn=0

(3.16)

where E{·} is the mathematical expectation operation, and Φ(w1, w2, · · · , wn) the joint

characteristic function given by

Φ(w1, w2, · · · , wn) , E{ej(w1x1+w2x2+···+wnxn)} (3.17)

The joint cumulants are defined as

Cum[x1, x2, · · · , xn] = (−j)n ∂nΨ(w1,w2,··· ,wn)
∂w1∂w2···∂wn

|w1=w2=···=wn=0 (3.18)
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where Ψ(w1, w2, · · · , wn) is the natural logarithm of Φ(w1, w2, · · · , wn)

Ψ(w1, w2, · · · , wn) , ln[Φ(w1, w2, · · · , wn)] (3.19)

If X(k), k = 0,±1,±2,±3, · · · is a real stationary random process, then its moments

will depend only on the time difference (ti = 0,±1,±2, · · · ):

mX
n (t1, t2, · · · , tn−1) , E(X(k)X(k + t1) · · ·X(k + tn−1)) (3.20)

Similarly, the cumulants of X(k) can be defined as:

cX
n (t1, t2, · · · , tn−1) , Cum(X(k), X(k + t1), · · · , X(k + tn−1)) (3.21)

The cumulants and the moments relate to each other in some way, for example,

c2 = Cum[x1, x1] = Mom[x1, x1]−Mom2[x1]

c3 = Cum[x1, x1, x1] = Mom[x1, x1, x1]− 3Mom[x1, x1]Mom[x1] + Mom3[x1]
(3.22)

The Fourier transforms of cumulants are termed cumulant spectra, also known as polyspec-

tra (see [101]). The Fourier transforms of c2 and c3 in Eq.3.22 are

C2(w) =
∑∞

t=−∞ c2(t)e
−j(wx)

−π < w ≤ π
(3.23)

C3(w1, w2) =
∑∞

t1=−∞
∑∞

t2=−∞ c3(t1, t2)e
−j(w1x1+w2x2)

−π < w1 ≤ π,−π < w2 ≤ π,−π < w1 + w2 ≤ π
(3.24)

C2(w), is the familiar power spectrum, and Eq.3.24 is the definition of the bispectrum.
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3.3.2 Power Spectrum and Bispectrum

The development of cumulants and polyspectra has paralleled the development of tra-

ditional correlation. Some techniques and operations may have very different terms in

different areas, such as autocorrelation refers to c2 in HOS (higher order statistics), and

triple correlation means c3. These two terms are of significant importance in our research,

so that the alternative definitions are given here. Denote f (2) as the common autocorrela-

tion of a signal f(x), and f (3) for the triple correlation (these notations will be used in the

remainder of this chapter and this thesis).

The autocorrelation of a real signal and its Fourier transform F (2) are given by

f (2)(ξ) = f ∗ f =

∫ ∞

−∞
f(x)f(x + ξ)dx (3.25)

F (2)(u) =
∫ ∞
−∞ f (2)(ξ)e−2πuξdξ

= F (u)F ∗(−u)

= |F (u)|2

(3.26)

where F ∗(u) is the conjugate of F (u) . In Eq.3.26, for a real signal, we have F (u) = F ∗(−u)

and finally have F (2)(u) = |F (u)|2. Note that, in this thesis, we only discuss real signals.

In the same way, the auto triple correlation is defined

f (3)(ξ1, ξ2) =

∫ ∞

−∞
f(x)f(x + ξ1)f(x + ξ2)dx (3.27)
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and the Bispectrum, the Fourier transform of the triple correlation is written as

F (3)(u1, u2) =
∫ ∞
−∞

∫ ∞
−∞ f (3)(ξ1, ξ2)e

−2jπ(u1ξ1+u2ξ2)dξ1dξ2

= F (u1)F (u2)F
∗(u1 + u2)

= F (u1)F (u2)F (−u1 − u2)

−π < u1 ≤ π,−π < u2 ≤ π,−π < u1 + u2 ≤ π.

(3.28)

This definition can be expanded to a two-dimensional real signal, for example, an image,

i(x, y)

I(3)(u1, u2; v1, v2) = I(u1, u2)I(v1, v2)I
∗(u1 + v1, u2 + v2)

= I(u1, u2)I(v1, v2)I(−u1 − v1,−u2 − v2)
(3.29)

where I is the Fourier transform of i, and I(3) denotes the bispectrum.

For signals which fluctuate heavily in the process of observation, the signal spectrum

provides useful energy information. In speckle image processing, for example, many short

exposure images of an object of interest are taken forming a time sequence of images. When

atmospheric turbulence exists, the long time average < F (u) > may be heavily low-pass

filtered. On the other hand, the long time average < |F (u)|2 > of the image sequence

includes more high frequency information[14]. However, the double spectrum completely

suppresses phase information.

In sharp contrast to the power spectrum, phase information of an object is retained in

the bispectrum, which allows possible phase retrieval in speckle image processing. In the

next section, we will discuss this process.
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3.3.3 Why Bispectrum in Signal Processing

The bispectrum has of great importance in the analysis of deterministic and stochastic

signals in various areas such as: sonar, radar, plasma physics, biomonic retrieval, array

processing, etc. One naturally might ask why it is so useful.

In general, there are three major motivations in the use of the bispectrum in signal

processing[101, 102]. The bispectrum:

• Suppresses Gaussian noise, and suppresses non-Gaussian noise with symmetric prob-

ability density function;

• Retains the phase information of signals;

• Detects nonlinearities in signals.

In theory, as we shall see later, all higher order polyspectra (≥ 3) of a Gaussian noise are

identically zero. The bispectrum of a non-Gaussian signal therefore can remove any additive

Gaussian noise over the ensemble of measurements to recover a high SNR signal[101, 29].

If non-Gaussian noise exists, the averaged bispectrum also eliminates the noise. A special

case (zero-mean noise) will be discussed in the following section.

The bispectrum preserves the true phase character of signals. Rewrite Eq.3.28 as (for

real signals)

F (3)(u1, u2) = |F (u1)F (u2)F (−u1 − u2)|ej(φ(u1)+φ(u2)−φ(u1+u2))

= |F (3)(u1, u2)|ejβ(u1,u2)
(3.30)

where φ is the Fourier phase of the signal, and β is the bispectrum phase. From Eq.3.30,

β can be expressed by the simple addition/subtraction on φ at any two indices, u1, u2 and
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their sum u1 + u2

φ(u1) + φ(u2)− φ(u1 + u2) = β(u1, u2) (3.31)

Eq.3.31 implies that, φ can be inversely computed if the value of φ at direct component

(φ(0)) and the first order components (φ(1) and φ(−1)) are given, since β is deterministic

and can be obtained from the recorded data.

HOS can play a key role in nonlinearity detection in a system or signals[101]. In practical

applications, the normalization of the bispectrum, called the bicoherence, is usually used.

This will be the focus of Chapter 4.

In this thesis, the bispectrum is applied to wide-area turbulent image reconstruction;

Its normalized version, i.e., the bicoherence, is used to detect the image phase distortion

caused by turbulence.

3.3.4 Properties of the Bispectrum

Four dimensional. One may have noticed that the bispectrum of a two-dimensional

signal will be four dimensional, which will need large memory for data storage in a computer.

For example, the bispectrum of an image of size of 256×256 pixels is 256×256×256×256,

which equals 4G pixels just to store the bispectrum. This large memory usage makes

currently available personal computers unsuitable for the task. If virtual memory is used,

it significantly limits computation speed due to page-swapping. This is the main reason

that the bispectrum technique is not widely applied in many practical situations, especially

for real-time systems.

In general application, this difficulty can be reduced by the basic properties of the

bispectrum itself. In fact, the bispectrum is 11/12 redundant[29].
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Figure 3.1: The bispectrum of a real signal is 1/12 non-redundant. Instead, to compute
the whole section of the bispectrum in (a), it is only necessary to compute one twelfth
subsection of it, as in (b).

Symmetry. The bispectrum is symmetric:

F (3)(u1, u2) = F (3)(u2, u1)

= F (3)(−u1 − u2, u1)
(3.32)

this results in a bispectrum that is 3/4 redundant. If the signal f(x) is real, the bispectrum

is Hermitian

F (3)(u1, u2) = (F (3)(−u1,−u2))
∗ (3.33)

in this case, only 1/12 of F (3)(u1, u2) is non-redundant. This property enable to save large

computation time and data storage in a computer when we compute the bispectrum of a

real signal, especially for two-dimensional signals. Fig.3.1 displays the magnitude pattern

in the bispectrum of a one-dimensional signal. One only needs to compute a one twelfth
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subsection of the whole bispectrum as shown in Fig.3.1 (b).

3.4 Bispectra for Speckle Imaging

This section will provide a theoretical explanation of the use of the bispectrum in speckle

imaging. The theory will be demonstrated both in the spatial domain and the Fourier

domain (, using the triple correlation and the bispectrum, respectively).

3.4.1 Speckle Masking

Speckle masking is a traditional method to obtain a diffraction-limited image of the object

used in astronomy imagery. It is mainly performed in the Fourier domain using the averaged

bispectra of speckle interferograms [29, 30, 31, 103]. This subsection develops the theory

of speckle masking which also inspires the bispectrum method that we will discuss in the

next subsection.

In speckle masking, the images are evaluated in such a way that the phase of the object

can be preserved: Let s and s′ = s + ∆s replace ξ1 and ξ2 in Eq.3.27, we have

f (3)(s, s′) = f(s, s + ∆s)

=
∫

f(x)f(x + s)f(x + s + ∆s)dx

= [f(s) · f(s + ∆s)] ∗ f(s)

= [f(s) · f(s′)] ∗ f(s)

(3.34)

where f(s) · f(s + ∆s) is called the mask, and ∆s is known as the masking vector.

The theory of speckle masking is illustrated by a simple example in Fig.3.2. Usually,

masking vector is well selected to ensure that the mask approximates a δ function. There-
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fore, one reaches the following results:

f(s) · f(s + ∆s) ≈ δ(s) (3.35)

f(s) · f(s + ∆s) ∗ f(s) ≈ f(s) (3.36)

Figure 3.2: Illustration of the speckle masking method. A function is able to be recovered
from its triple correlation if an appropriate masking vector ∆s is carefully selected.

Equivalently, in the Fourier domain we have F 3(u, ∆u) ≈ F (u). Such that the true

image is recovered from its bispectrum, if the masking vector is suitably selected[103].

However, in practical applications, ∆s is difficult to determine in such a way that the

mask approximates a δ function. Often, it is advisable to test a set of many different
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masking vectors. This is essentially what the key idea of the speckle imaging technique is.

The following subsection will give a detailed discussion about this.

3.4.2 Speckle Imaging

Speckle imaging takes a large number of short exposure images of an object, where the

exposure time of each frame is short enough to “freeze” the motion and the change of the

atmospheric turbulence, such that the PSF for each frame only retains information of the

atmospheric turbulence at that very instant, even though it changes from image to image.

This gives a short-exposure image sequence, any frame in the sequence is a “snapshot” of

the object.

For any one short exposure image, classical imaging model can be applied. Here, for

convenience, rewrite the model in the following

i(x) = o(x) ∗ h(x) (3.37)

where i(x) is a detected image, o(x) is the true object, and h(x) is the PSF. In speckle

imaging, i(x) is one of the short exposure frames, and h(x) is the PSF at this frame. This

PSF varies from time to time when atmospheric turbulence exists (i.e., time varying). In

other words, Eq.3.37 only expresses one i(x) and h(x) pair in a time sequence of short

exposure images, but not the whole process.

For a single image, the Fourier transform of Eq.3.37 is I(u) = O(u)H(u), where I(u),

O(u), and H(u) denote the Fourier transform of i(x), o(x), and h(x), respectively. From
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the definition, we have the bispectrum I(3)(u) of the image i(x)

I(3)(u1, u2) = I(u1)I(u2)I
∗(u1 + u2)

= O(u1)O(u2)O
∗(u1 + u2)H(u1)H(u2)H

∗(u1 + u2)

= O(3)(u1, u2)H
(3)(u1, u2)

(3.38)

where O(3)(u1, u2) is the bispectrum of the object and H(3)(u1, u2) is termed the bispec-

trum transfer function[14]. Consider a sequence of short exposure images, and take the

expectation of the bispectrum of the ensemble, we have the time averaged bispectrum as

follows

〈I(3)(u1, u2)〉 = 〈O(u1)O(u2)O
∗(u1 + u2)H(u1)H(u2)H

∗(u1 + u2)〉 (3.39)

.

Here the object spectrum O(·) is deterministic, hence can be taken outside the expec-

tation, and this gives

〈I(3)(u1, u2)〉 = O(u1)O(u2)O
∗(u1 + u2)〈H(u1)H(u2)H

∗(u1 + u2)〉

= O(3)(u1, u2)〈H(3)(u1, u2)〉
(3.40)

Another expression of Eq.3.40 is

|〈I(3)(u1, u2)〉|eφ
I(3) (u1,u2)

= |O(u1)O(u2)O
∗(u1 + u2)|eφ

O(3) (u1,u2)|〈H(u1)H(u2)H
∗(u1 + u2)〉|eφ

H(3) (u1,u2)

(3.41)

In the following, we will show that, in the usual condition of atmospheric turbulence,

the phase of the average bispectrum φI(3) is approximately only related to the object phase
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φO. To prove this, we must prove that

〈H(u1)H(u2)H
∗(u1 +u2)〉 = 〈|H(u1)||H(u2)||H(u1 +u2)|ej[φH(u1)+φH(u2)−φH(u1+u2)]〉 (3.42)

is real and non zero up to the diffraction-limit of the telescope.

3.4.3 Bispectrum Transfer Function

To prove that 〈H(u1)H(u2)H
∗(u1 + u2)〉 does not contribute to the phase of the averaged

bispectrum, we begin with the definition of H(u) of an optical instrument. The mathe-

matical expression of H(u) of a space-invariant incoherent image forming system, which is

known to be the autocorrelation of the generalized pupil function, P (·), is given by[14]

H(u) =

∫
P (ξ

′
)P ∗(ξ

′
+ ξ)dξ

′
(3.43)

where ξ denotes the coordinate in the telescope pupil, it is related to the spatial frequency

by ξ = λfu. λ is the wave length and f is the distance from the pupil plane to the image

plane. Eq.3.43 is then expressed as

H(u) =
∫

P (λfu′)P ∗(λfu′ + λfu)fλdu′

=
∫

P (u′)P ∗(u′ + u)du′
(3.44)

Since the light of an object propagates through the atmosphere before it reaches to

the pupil, the pupil function P (u) may be split into a product of two functions: P (u) =

P0(u)A(u), where P0(u) represents the pupil function, and A(u) represents the effect of the

random turbulence and can be assumed to be a time stationary random variable[14, 29].

Note that A(u) will be different for different isoplanatic patches. In this context, we
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assume the real and the imaginary parts of A(u) are zero-mean Gaussian distributed, such

that we have

〈H(3)(u1, u2)〉 = 〈H(u1)H(u2)H(−u1 − u2)〉

=
∫ ∫ ∫

P0(u
′
1)P0(u

′
1 + u1)P0(u

′
2)P0(u

′
2 + u2)P0(w)P0(w − u1 − u2)

〈A(u′1)A(u′1 + u1)A(u′2)A(u′2 + u2)A(w)A(w − u1 − u2)〉du′1du′2dw

(3.45)

where w = (−u1 − u2)
′. This is the sixth-order moment. To calculate Eq.3.45, the as-

sumption of A(u) (i.e., the real and the imaginary parts of A(u) are zero-mean Gaussian

distributed) is used and remove items with zero value, then we have

〈A1A2A3A4A5A6〉 = 〈A1A2〉〈A3A4A5A6〉+

〈A1A2A3A4〉〈A5A6〉+

〈A1A2A5A6〉〈A3A4〉−

2〈A1A2〉〈A3A4〉〈A5A6〉+

〈A1A4〉〈A3A6〉〈A5A2〉+

〈A1A6〉〈A3A2〉〈A5A4〉,

(3.46)

where

A1 = A(u′1)

A2 = A(u′1 + u1)

A3 = A(u′2)

A4 = A(u′2 + u2)

A5 = A(w)

A6 = A(w − u1 − u2)

(3.47)

Since A(u) is assumed to be a stationary random variable, its autocorrelation CA(u)

may be defined as CA(u) = 〈A(u′)A∗(u′ + u)〉. In practice, for usual seeing conditions,

A(u) is very fine structured compared to the pupil function, and can be considered as a δ
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function[29]:

CA(u) = K · δ(u), (3.48)

where K is a constant.

Substitute Eq.3.46 and Eq.3.48 into Eq.3.45, we have

〈H(3)(u1, u2)〉 = 〈H(u1)〉〈H(u2)H(−u1 − u2)〉+

〈H(u1)H(u2)〉〈H(−u1 − u2)〉+

〈H(u2)〉〈H(u1)H(−u1 − u2)〉−

2〈H(u1)〉〈H(u2)〉〈H(−u1 − u2)〉+

K · T (u1, u2)

(3.49)

where T (u1, u2) is associated with the modulus squares of the pupil function

T (u1, u2) =

∫
|P0(w)|2|P0(w + u1 + u2)|2[|P0(w + u1)|2 + |P0(w + u2)|2]2dw (3.50)

From Eq.3.50, one would note that T (u1, u2) is real and nonzero for all frequency compo-

nents up to the diffraction limit of the telescope.

The other four terms in Eq.3.49 are also real. This can be proved in the same way as

calculating Eq.3.45 and by using a fourth-order moment. Finally, Eq.3.49 can be expressed

only in terms of |P0(u)|2, and has zero phase.

Thus far, we have proved that the phase of the averaged bispectrum of the short expo-

sure images, φI(3)(u1, u2) is only related to the phase of the object image, φO, with relation:

φI(3)(u1, u2) = φO(u1) + φO(u2)− φO(u1 + u2) (3.51)

Note that the above discussion is based on astronomical imaging, where the observa-
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tion angle is isoplanatic (for the definition of isoplanatic, please refer to Chapter 4.2). In

wide-area imaging, the result is likely to be anisoplanatic. In this case, A(u) may be the

composite of several components each of which is the different turbulence in each isopla-

natic patch. Each component of A(u) would also disappear from Eqs.3.46-3.49. But each

component is not statistically independent from each other so we need to break one image

into isoplanatic regions.

3.4.4 Compensation of the Additive Noise

Additive noise in a true image can be compensated by the averaged bispectrum of the image

stream if the noise is signal-independent and zero-mean. Note that it is not necessary for

it to be Gaussian. In fact, most real signals contain non-Gaussian additive noise.

Suppose the detected image is

i(x) = o(x) + n(x) (3.52)

where o(x) is the true image, and n(x) is a signal-independent and zero-mean noise.

To verify this, we put down the ensemble averaged triple correlation of i(x)

〈i(3)(x, x′)〉 = o(3)(x, x′)+

〈n3(x, x′)〉+

〈n(x)〉[o2(x) + i2(x′) + o2(x′ − x)]+

[
∫

o(x)dx][n2(x) + n2(x′) + n2(x′ − x)]

(3.53)

where

o2(x) =
∫

o(x)o(x + x′)dx′

n2(x) = 〈n(x)n(x + x′)〉
(3.54)
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The second to fourth terms in Eq.3.53 are undesired, and they will vanish if the noise

has zero mean. The ensemble averaged triple correlation of the noise contaminated signal

therefore is theoretically shown to be identical to the triple correlation of the true signal,

successfully compensating the signal-independent and zero-mean noise.

3.5 Image Reconstruction Using Bispectrum

Figure 3.3: Block diagram for image reconstruction from the bispectrum.

Using the bispectrum technique, image reconstruction for images taken through atmo-
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spheric turbulence will make use of the Fourier transform. Fig.3.3 is a simple illustration

of the process. Input a sequence of short exposure images, compute the Fourier phase and

modulus of the potential image, and then output a single diffraction limited estimation of

the object. This section will exploit how to estimate the Fourier phase of the object from

Eq.3.51.

3.5.1 Recursive Phase Calculation

For simplicity, our discussion below assumes one-dimensional signal only. This discussion,

however, can be easily extended to two-dimensional image signals.

Moreover, we only discuss the case of φO(u) when (u > 0). This is because, for a real

signal (say, o(x)), its Fourier transform is Hermitian, i.e., O(u) = O∗(−u), hence we have

φO(u) = −φO(−u).

Here, rewrite Eq.3.51 as

φO(u1 + u2) = φO(u1) + φO(u2)− φI(3)(u1, u2) (3.55)

φO(u)(u ≥ 2) will be computed recursively based on Eq.3.55, if φO(0) and φO(1) are known.

Because φO(0) and φO(1) only affect the restored signal by spatial shift, it can be arbitrarily

set to nil. In this context, we set values at frequencies 0 and 1 identical to the phase of the

temporally averaged image of the image frame stream.

Table 3.1 illustrates one recursive method for phase computation[40]. Note that every

φO has several different independent representations, the number of which increases as the

frequency increases. All these representations contribute to the estimation of the phase

at a common frequency. Averaging the different results helps to suppress the noise by

improving the SNR (signal-to-noise ratio) of the recovered signals[40].
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Actually, there are many different options to compute and average the Fourier phase φ

based on Eq.(3.55). Fig.3.4 shows three possible paths (Remember that the bispectrum of

a one-dimensional signal is two-dimensional). The computing area is limited to one 1/12

slice (for one-dimensional signal) due to the symmetry property.

The way presented in Tab.3.1 favors the path in Fig.3.4 (a). A simplier explanation

is described in Tab.3.2. A few of different unions in 〈u1, u2〉 determine the value of φO

at specified frequency, for example, φO(4), two pairs (i.e., 〈u1, u2〉 = 〈2, 2〉, 〈3, 1〉) both

contribute to its estimation. The estimated φO(4) is then used to compute φO at higher

spatial frequencies.

Using this path, two options exist for computing the average value of the Fourier phase.

One is to calculate all the independent representations based on some specific values of

phases at lower frequencies, and then take the average as the final output of the phase.

The other is: in one recursive step, average all the calculated representations first, and then

use the averaged value to compute the phases at higher frequencies. This method applies

in the entire recursion process. The advantage is that the averaging suppresses noise at

each step, therefore minimizing the influence of noise and enhancing the accuracy of the

estimate of the phases[45].

Another potential path, Fig.3.4 (b), is shown in Tab.3.3.

In this case, all estimates of all phase values are computed first (Note that no averaging

in the course of recursion). These initial values are then used for further calculation in the

following recursive steps. Subsequently take the average to obtain the Fourier phase.

The third path uses all the bispectrum components, as exhibited in Fig.3.4 (c). The

advantage is that all the independent phase estimates and the influence of the noise at each

point can be taken into account, so that some weighted factors may be applied to obtain a

more accurate average. This is at the cost of computation because the recursion covers all



58 Chapter 3. Bispectral Analysis

Table 3.1: Recursive method of phase calculation from bispectrum

〈u1, u2〉 φO(u1 + u2) = φO(u1) + φO(u2)− φI(3)(u1, u2) φO(·)
〈1, 0〉 φO(1) = φO(1) + φO(0)− φI(3)(1, 0) \
〈1, 1〉 φO(2) = φO(1) + φO(1)− φI(3)(1, 1) φO(2)
〈2, 0〉 φO(2) = φO(2) + φO(0)− φI(3)(2, 0) \
〈2, 1〉 φO(3) = φO(2) + φO(1)− φI(3)(2, 1) φO(3)
〈2, 2〉 φO(4) = φO(2) + φO(2)− φI(3)(2, 2) φO(4)
〈3, 0〉 φO(3) = φO(3) + φO(0)− φI(3)(3, 0) \
〈3, 1〉 φO(4) = φO(3) + φO(1)− φI(3)(3, 1) φO(4)
〈3, 2〉 φO(5) = φO(3) + φO(2)− φI(3)(3, 2) φO(5)
〈3, 3〉 φO(6) = φO(3) + φO(3)− φI(3)(3, 3) φO(6)
〈4, 0〉 φO(4) = φO(4) + φO(0)− φI(3)(4, 0) \
〈4, 1〉 φO(5) = φO(4) + φO(1)− φI(3)(4, 1) φO(5)
〈4, 2〉 φO(6) = φO(4) + φO(2)− φI(3)(4, 2) φO(6)
...

...
...

...
...

...
〈n, 0〉 φO(n) = φO(n) + φO(0)− φI(3)(n, 0) \
〈n, 1〉 φO(n + 1) = φO(n) + φO(1)− φI(3)(n, 1) φO(n + 1)
〈n, 2〉 φO(n + 2) = φO(n) + φO(2)− φI(3)(n, 2) φO(n + 2)
...

...
...

〈n, n〉 φO(n + n) = φO(n) + φO(n)− φI(3)(n, n) φO(2n)
...

...
...

(a) (b) (c)

Figure 3.4: Different potential paths of computing the Fourier phase.
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Table 3.2: Illustration of the first path

〈u1, u2〉 〈1, 1〉 〈2, 1〉 〈2, 2〉 〈3, 1〉 〈3, 2〉 〈3, 3〉 〈4, 1〉 〈4, 2〉 · · ·
φO(·) φO(2) φO(3) φO(4) φO(4) φO(5) φO(6) φO(5) φO(6) · · ·

Table 3.3: Illustration of the second path

〈u1, u2〉 〈1, 1〉 〈2, 1〉 〈3, 1〉 · · · 〈n− 1, 1〉 〈2, 2〉 〈3, 2〉 · · ·
φO(·) φO(2) φO(3) φO(4) · · · φO(n) φO(4) φO(5) · · ·

the redundant slices, so needs a larger data set or a complex algorithm. In this thesis, the

third method is employed.

3.5.2 Least-Squares Phase Recovery

Usually, a recursive method has recovered all the object phases. However, the error in the

bispectral phase at low frequencies affects the phase estimation at high frequencies. This is

because the phase at high frequency is a cumulated sum of the preceding bispectral phases,

the higher the frequency, the larger the possible error [43, 47].

To avoid the error accumulation, a least-squares method can be used. Rewriting

Eq.3.51, and for convenience, denote φI(3) as βI(3)

βI(3)(u1, u2) = φO(u1) + φO(u2)− φO(u1 + u2) (3.56)

in matrix form as

AΦ = β, (3.57)
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where Φ is the vector of the Fourier phase of the object,

Φ = (φ1, φ2, · · · , φN)T (3.58)

with T denoting the transpose operation and N being the total number of object phases.

β is the vector of the averaged bispectrum phases. In accordance with the properties of

the bispectrum and the frequency range, and to avoid redundancy, β is restricted to

β = (β1,1, β1,2, · · · , β1,N−1, β2,1, β2,2, · · · , β2,N−2, · · · , βN/2,N/2)
T (3.59)

A is a sparse matrix with N2

4
×N components. As each bispectral phase at (u1, u2) is built

up of three object phases at u1,u2,and (u1 + u2), matrix A contains only three nonzero

elements in each row.

A =



2 −1

1 1 −1

...
...

...

...
...

...
...

· · · · · · · · · 2 · · · −1


The classical weighted-least-squares solution to Eq.3.57 is the unique vector among all

vectors that minimizes the cost function[45, 43, 50, 46]:

E = (β −AΦ)TW(β −AΦ), (3.60)

where W is an N2

4
× N2

4
diagonal weighted matrix. The minimum can be found by dif-

ferentiating the above function and setting it to zero. The initial estimate of the object

phase can be zero or any random value, but a more correct estimate such as results from

recursive method may speed the convergence.
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3.5.3 Phase Ambiguity

Solving Eq.3.60 will introduce 2π ambiguities (or phase wrapping) to the object phase.

The bispectrum phases are known only up to a modulo of 2π; when multiple estimates of

a single object phase are used, the bispectrum phases will not be equal to their principal

arguments [45]. As a result, several local minima can occur before a global minimum is

found.

Fortunately, by the recursive method such 2π ambiguities can be easily avoided. In-

stead of directly summing up all the different values of φ and then taking the average as

the recovered phase value, the exponential factors eiφ should be computed, summed and

averaged, followed by computing the angle of the average exponent to obtain principal

phases. In this case, the exponent of a phase is a phasor, and the method is called the

phasor approach[104].

To avoid phase ambiguity in solving Eq.3.57, three methods including the phasor tech-

nique are proposed in the literature. A brief review of them is in order.

1. Adding multiples of ±π: This method uses bispectrum phases to calculate phase

unwrapping, but adds multiples of 2π to the principal bispectrum phase[46, 105, 106].

Let β0 be the modulo 2π bispectrum phase vector, k be an integer vector that unwraps

the bispectrum phase, then β is

β = β0 + k2π, (3.61)

and Eq.3.57 is written as

AΦ = β0 + k2π, (3.62)

To calculate an unwrapping vector k, suppose that a full rank matrix c exists, which
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satisfies

cA = 0, (3.63)

Combining Eq.3.62 and 3.63, we have

ck = −cβ0/2π, (3.64)

such that, the object phase can be solved using k which satisfies the above equation.

The disadvantage of this approach is that k computed from the noisy bispectrum

may be incorrect, the solution calculated by the least-squares method then may not

be necessarily optimal.

2. The phasor method: This method takes the exponent on both sides of Eq.3.56 and

solves for the optimal value by minimizing the error between the two phasors[104, 48,

49]:

ejβ
I(3) (u1,u2) = ej(φO(u1)+φO(u2)−φO(u1+u2)), (3.65)

The weighted least squares solution to the above equation is given by

Φ = (ATWA)−1ATWβ (3.66)

Solving Eq.3.66, a final solution can be found following [45]

ejφ(v) =
∑

u6=v W(u, v)[ B(u,v)
O(u)O∗(u+v)

] + 4
∑

u=v W(u, v)[ B(u,v)
O∗(u+v)

]1/2+∑
W(u, v − u)[ B(u,v−u)

O(u)O(v−u)
]∗,

(3.67)

where W is given by,

W(u, v) = {
SNR[B(u)]2 u = v

0 u 6= v
(3.68)
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where SNR[B(u)] is the estimate of the bispectrum phasor divided by the standard

deviation of the estimate. W can also be calculated by taking the square of the

modulus of the bispectrum over the variance of the modulus, which is exactly the

method proposed by Meng et.al.[41].

3. Direct modulo 2π: An alternative is to take Eq.3.60 modulo 2π, the cost function

is then expressed as [49]

E = (mod2π)[(β −AΦ)T ]W(mod2π)[(β −AΦ)], (3.69)

the weighting function W is now redefined as the reciprocal of the variance of the

bispectrum phase.

For interested readers, other existing approaches to unwrapping the modulo 2π bispec-

trum phases can be found in [45, 41].

In this thesis, we mainly implement and study the performances of the recursive method

and the weighted-least-squares method. For both algorithms, the phasor method is adopted

to solve the phase problem. The final solution found is very similar to Matson’s [45], which

is shown in Eq.3.67.

3.5.4 Storage and Computational Complexity

To actually compute a bispectrum of a two-dimensional image of reasonable size on a typical

desktop PC may prove to be a practically challenging task.

This is because, for a straightforward implementation of the computation of the bispec-

trum (based on its definition), the required storage and computational complexity is often

higher than the capacity of a typical desktop PC. To show this , let us just give a simple
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example. For a rather small and monochromatic image of 256× 256 pixels, its bispectrum

will contain 232 ≈ 4G complex values, each complex value for example contains 8 bytes. As

a result, the bispectrum of an image with size of 256× 256 pixels needs 32G bytes for data

storage, and for computational efficiency sake, this has better to be the main memory (as

opposed to hard-disk) of the PC. Remembering further that, all our computations must be

repeated for every frame of the input short exposure sequence, which may possibly contain

over one thousand frames.

To overcome these difficulties and improve the speed of a practical turbulence-removal

image reconstruction system, we propose to take advantage of the following factors.

First of all, the symmetry property of bispectrum will help save much data storage. As

we discussed before, the bispectrum has only 1/12 non-redundancy. Therefore, one only

needs to compute one twelfth of the entire spectrum. This storage space may be acceptable

for current (very) high-end personal computers.

Secondly, partitioning the image into a number of (overlapping) subregions may improve

the condition without much harming the bispectrum and the reconstruction processing.

Instead of performing on the orignal full image, the restoration is applied to each subregions

separately: compute the bispectrum of each subregion, and perform phase recovery of the

subregion using the calculated bispectrum. When all the segmented parts of an image are

estimated, put them together (in some systematic way, as we shall see later) to fuse a single,

restored estimate of the true image.

Segmentation in this way effectively avoids the difficulties with the storage capability

and successfully speeds up the computations. Suppose an image with size of 256 × 256

pixels is broken into subregions of size of 64× 64 pixels, each partial bispectrum contains

only 224 ≈ 16M complex values, and needs 128MB for data storage (again, each complex

value containing 8 Bytes). This modest memory requirements are easily available in current
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computers.

Moreover, in the case of wide field of view imaging, the isoplanatic angle may be much

smaller than the field of view, so that the subdivision increases the possibility that the

distortion in an image region is uniform or isoplanatic (this will be discussed further in

Chapter 4), therefore significantly improving the reconstructed image quality. To cover all

the isoplanatic regions and recover a better estimate, the original images are broken into

regions with 50% overlapping (both horizontal and vertical). This process is illustrated in

Fig.3.5.

Fig.3.6 shows how an image is divided into smaller tiles. The image is broken into 4

regions, each region contains four blocks, i.e, < 1, 2, 4, 5 >, < 2, 3, 5, 6 >, < 4, 5, 7, 8 >, and

< 5, 6, 8, 9 >. Some blocks are overlapped, for example, block < 2 > and < 5 > are shared

by the red and green region, and block < 4 > and < 5 > are both in the red and purple

tiles.

To overcome the artifacts from overlapping and adding of the regions, a two-dimensional

Hanning window is used, which is shown in Fig.3.7. The four quarter slices of the two-

dimensional Hanning window add to one.

This method was implemented in MATLAB without code optimization. We tested it

on a PC of 3.20GHz with 1GB of RAM. The computation time is about 150 minutes for

a sequence containing 100 frames of image sized at 256 × 256, and the processes were on

subregions of 64× 64 pixels each.

3.6 Experiments

One of the premises of employing the bispectrum is that it suppresses additive zero mean

noise. In our experiment, we first test this first property using a simulated one-dimensional



66 Chapter 3. Bispectral Analysis

Figure 3.5: The original series of short exposure images are broken into N series of subre-
gions, each data set is used to estimate the phase domain of a particular image tile using
bispectrum. The phase spectrum of the entire image estimate is produced by stitching each
phase estimate to its correct position.
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Figure 3.6: Simple illustration of the segmentation of an image, regions are 50% overlapped
in both horizontal and vertical directions.

(a) The 2-D hanning window (b) Lineout through the window.

Figure 3.7: The 2-D Hanning window: The four quarter slices add to one, which ensures
the combined image is smooth and has no artifacts.
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signal with 50 observations. Its length is 256 with values set the following ranges as:

[32 : 36] = 4, [80 : 90] = 7, [140 : 150] = 10, zero otherwise, and contaminated with zero-

mean Gaussian noise of variance being 1. Fig.3.8 shows the true signal in (a), contaminated

observations in (b) and the results by the bispectrum technique using different amount of

observations, i.e., 10 frames in (c) and 50 frames in (e). For the sake of comparison, we

provide the results by averaging the same observations, i.e., 10 frames in Fig.3.8 (d) and

50 frames in Fig.3.8 (f).

This experiment shows the ability of the bispectrum in removing the additive noise.

One would notice that the additive noise is almost compensated for by the average of the

bispectrum, even with a small amount of observations (e.g., 10 frames). As expected, the

average of the ensemble of the observation (i.e., 50 frames) obtains the best result. This

is because the additive noise is zero mean, the simple average of the additive noise on a

particular point reaches to zero when the number of observation is large enough. However,

this simple average operation cannot produce reasonable results while applied in practice for

the reason that real world data suffers more complex degradation beyond the additive noise.

This drawback of simple averaging is remedied by the other properties of the bispectrum

as we discussed in previous sections, even though a residual of the additive noise exists.

The three-dimensional shape of the triple correlation of the clean and the average triple

correlation of 50 observations are also given in Fig.3.9. Both shapes are very similar, which

implies that both contain very similar phase information of a signal. Such ensures that

the phase of an signal can be estimated correctly. The magnitude of the signal is also

computed based on its bispectrum. But, in general, researchers prefer to use the average

power spectrum of the observations for its simple computation and reasonable results.

The second experiment is carried out using real world data. The data is obtained with

a portable 0.14 m dia f14 Cassegrain telescope and progressive scan CCD camera. A test
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(a) The original signal (b) The contaminated signal

(c) Result using the bispectrum (d) The average of 10 frames

(e) Result using the bispectrum (f) The average of 50 frames

Figure 3.8: Experiment of simulated data. Results show that the additive noise can be
suppressed by averaging the bispectrum of the detected data set.
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(a) (b)

Figure 3.9: The three-dimensional surface of the triple correlation of one-dimensional signal.
(a) The value of the original signal in Fig.3.8 (a); (b) The averaged value of the triple
correlation of 100 zero-mean Gaussian noise contaminated detections.

scene (hill and house) to be observed is 10km distant and the exposure time is on order of

5ms. The number of image frames is 75. The image size is 512× 512 pixels.

The result is obtained by performing calculation on smaller image blocks. This is

because that the data storage of the four-dimensional bispectrum is very demanding and is

out of the ability of current available personal computers. The image is divided into several

regions small enough to favour the computation ability of a personal computer, estimates

of different regions are then put together to form the result. In this context, we ignore the

anisoplanatism and isoplanatism in each region and its size is designed to be 32×32 pixels.

Fig.3.10 (a) and (b) show two samples of the short exposure images taken through

atmospheric turbulence. One can see that the edges of the house and the windows warp

nonuniformly in different regions and that the distortion is different from one image to one

image. Fig.3.10(c) is the result produced by recursive bispectrum phase recovery method

using 75 frames. The images are divided into subregions with 50% overlap, and the size of
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(a) One sample of input. (b) Another sample of input.

(c) Result by bispectrum using 75 frames. (d) Temporal average of 75 frames.

Figure 3.10: Experiment with real data. The data is obtained with a portable 0.14 m dia
f14 Cassegrain telescope and progressive scan CCD camera. A test scene (hill and house)
to be observed is 10km distant and the exposure time is on order of 5ms. The number of
image frames is 75. The result image is comprised by the estimates of smaller regions in
the entire image due to the difficulty of locating large memory needs and data storage of
the bispectrum of the entire image.
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subregion is 32×32 pixels. It gives a more geometrically correct estimate than the result by

temporally averaging the ensemble images. Note that the edges of the house are in correct

position and are sharper than in Fig.3.10(d), and more detail in the scene is visible.

Fig.3.11 provides two results produced by 32× 32 pixels and 64× 64 pixels subregions,

respectively. This experiment verifies that the performance and speed of the algorithm is

associated with segmentation of the original images. In this case, the computer we use is

3.20GHz and 1GB of RAM, about 50 minutes are needed for the process with region size

being 32× 32 pixels, and 120 minutes for 64× 64 pixels.

Moreover, the image quality of the reconstructed result depends on the segmentation

size, to some degree. In fact, when choosing the region size, two factors should be consid-

ered: the effect of isoplanatic angle, and PSF extent[2]. If the size of each subregion is well

chosen so that each region is within the isoplanatic angle, the effect of the turbulence is

uniform across the subregion, i.e. the PSF is position independent. Thus, the bispectrum

is operated in an isoplanatic region, and produce better result. Further, as the turbulence

does not lie outside the isoplanatic angle, the information of the turbulence retained in the

subregion and its bispectrum can be fully exploited.

If the region size is too small, the region is clipping the PSF, so that only partial

information captured is used for image restoration, the result will be worse than the case

that the region size fits the isoplanatic angle well. In other case, when the region size is

too large, the region suffers from anisoplanatism which leads to a spatially variant PSF,

rendering a worse result.

Fig.3.11 better illustrates this. Fig.3.11 (a) has sharper edges, which indicates that the

region is within the isoplanatic patch. However, the region size may have been chosen to

be a little too small. As a result, the information of the PSF in an isoplanatic patch is not

fully used, which causes the vertical pillar is not as straight as the result in Fig.3.11 (b).
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(a) Region size is 32× 32. Computation time is 50 minutes.

(b) Region size is 64× 64. Computation time is 120 minutes.

Figure 3.11: Comparison of results produced by regions of different sizes. The number of
image frames is 75, and the processing image size is 256×256. The computation time used
in (a) is much smaller than that used in (b).
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3.7 Summary

This chapter has analysed the definition and properties of the Fourier pair of bispectrum

and triple correlation. The feasibility of applying averaged bispectrum to overcome the

effect of atmospheric turbulence on an imaging system was theoretically discussed, and

empirically validated.

It also provides methods for phase recovery by solving the averaged bispectrum of the

data set. Moreover, the 2π problem and the storage and computation problem are discussed

in detail, and solutions are discussed.

Finally, experiments have been carried out using one-dimensional simulated data and

two-dimensional real image data. The former experiment shows that bispectrum has the

ability of removing the additive noise of a signal, the latter demonstrates that phase spec-

trum can be well reconstructed by the averaged bispectrum of the observations.



Chapter 4

Lucky Region and Bicoherence

4.1 Introduction

In speckle imaging, there is some possibility, in a sequence of short exposure images, that

one particular image called a lucky image will approach diffraction-limited resolution at

the moment that the instantaneous effect of atmospheric turbulence is negligible. As the

probability of obtaining a lucky image is low in practical application, an alternative is

proposed to find smaller well resolved image patches instead of the entire image. We name

this technique as the lucky region method [107, 108].

The motion of the atmospheric turbulence causes arbitrary nonlinear distortion to the

recorded image frames. Further, when a non-linear system alters signals, quadratic phase

coupling (QPC) occurs, which is a specific type of nonlinearity [109, 110]. Quadratic phase

coupling relates to the image quality, such that nonlinear detection tools can be used as an

image quality metric for lucky region selection. The bispectrum, and its normalization is

able to detect and characterize this type of distortion. This is a numerical measure, which

will give a numerical scale for the ranking of image quality.
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The lucky region method can be extended to different applications. Section 4.7 presents

two cases: image recovery for atmospheric turbulence and super resolution reconstruction

for atmospheric turbulence. Experiments with both simulated and actual turbulence af-

fected images demonstrate that lucky region selection in the preprocessing step can signif-

icantly improve the performance of an image reconstruction system.

4.2 Isoplanatism

Before discussing lucky regions in more depth, we first introduce a common measurement

called isoplanantism. In the literature, the isoplanatic angle is defined as the largest an-

gle separation between two point sources where the effect of atmospheric turbulence is

effectively uniform.

An image region which subtends the isoplanatic angle is termed an isoplanatic patch.

An isoplanatic patch is a spatial region where the PSF is constant within the measure-

ment accuracy[111]. According to this definition, within an isoplanatic region, the imaging

system can be modeled by the convolution operation as in Eq.1.1 .

The isoplanatic angle is very small for astronomical observations. Under usual seeing

conditions, its value lies within tens of µrad (≈ 2arcsec). The mathematical expression for

the isoplanatic angle is given by[111]

θ0 = 58.1× 10−3λ6/5[

∫ L

0

dzC2
n(z)z5/3]−3/5 (4.1)

where C2
n(z) is the structure constant of the turbulence induced index of refraction fluctu-

ations over the path length, Z, L is the path length through the atmospheric turbulence,

and λ is the optical wave length.
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The isoplanatic angle defined in Eq.4.1 is a property of the turbulence distribution, and

it is often convenient to use another expression in terms of r0, the Fried parameter of the

most dominant phase screen, and L̃, the mean turbulence height[111].

θ0 =
0.314r0

L̃
(4.2)

where L̃ is defined as

L̃ = [

∫ L

0
dzC2

n(z)z5/3∫ L

0
dzC2

n(z)z
]3/5 (4.3)

and

r0 ∝ [
4π2

C2
n(z)z

]3/5 (4.4)

When there is a single dominant layer of turbulence, L̃ is the height of that layer. In

general application, L̃ can also be considered to be the screen to pupil distance[2].

4.3 Lucky Imaging

Imaging that there is an idealized astrophysical point source of monochromatic radiation.

When it reaches the aperture in the absence of atmospheric turbulence, it would be a plane

wave. The aperture function therefore should be uniform across the telescope aperture.

When atmosphere turbulence exists, it develops inhomogeneities in the refractive index and

therefore changes the characteristics of the aperture function in each observing direction[23].

As a result, the PSF is spatially variant. When observing for a long period, the PSF is also

time dependent.

The motion caused by atmospheric turbulence can be frozen if we record an image with

a short enough exposure time. Often, the instantaneous distortion of the wave front caused

by turbulence may be very severe. However, at other moments, the distortion may be
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Figure 4.1: Simple illustration of Lucky Imaging.

slight or even negligible, and short exposure images taken at these instants are considered

to approach diffraction limited resolution[64]. These images are lucky frames and related

techniques are called lucky imaging. The lucky imaging technique first selects observations

which are least distorted and have more high frequency information, based on analysis of

some image characteristics or statistics. A post processing step is then applied to lucky

images to produce a single estimate of the potential image. Fig.4.1 illustrates the process

of lucky imaging under atmospheric turbulence.

The chance of obtaining a lucky image, under usual seeing conditions and within the

range of the isoplanatic angle, depends on the instrument and the statistics of the turbu-

lence. Fried demonstrated that the occurrence decreases exponentially with the increase

in the ratio of the dimension of the telescope aperture D, and the Fried parameter or

turbulence-limited coherence diameter r0, (D/r0)
2 [64]
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Problucky image ≈ 5.6e[−0.1557(D/r0)2] (4.5)

Fig.4.2 is a plot of the probability against D/r0. As demonstrated, the chance of

obtaining a lucky image drops significantly with increasing D/r0, meaning that a very

large number of short exposure image must be captured to obtain one near diffraction

limited lucky image. For example, to obtain one lucky image with D/r0 = 10, one million

short exposure images are needed.

Figure 4.2: Probability of obtaining a lucky image.

One would obtain higher rate of lucky images by sacrificing the resolution of the in-

strument. For example, replace a larger telescope with a smaller one with only half of the

original aperture. Let us imagine that we have D/r0 = 10 using a larger instrument, then

drop D/r0 to 5 using a smaller one. Based on Fried’s probability, the chance increases sig-

nificantly. However, D determines the resolution of the instrument (the larger the aperture

the higher the resolution). Therefore an alternative is needed.
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4.4 Lucky Region

We notice that in any one short exposure image, rather than being entirely of good quality

or entirely poor, and distorted, there will be some superior smaller regions over the image

field of view. These regions have better resolution, while the rest of the image area has

much poorer resolution. Fried has pointed out in [64] that the probability of obtaining a

lucky image can be applied independently to separate isoplanatic patches on the image.

We name the technique of predicting and selecting high resolution image regions from a

sequence of image frames as the lucky region technique, and the image patches with superior

quality as lucky regions.

Figure 4.3: Simple illustration of Lucky region.
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In practical applications, one would like to segment the raw sequence of frames into a

number of sequences of smaller regions. Following this one would determine and rank the

distortion within regions in each subsequence using some measures or statistical methods.

There are some advantages of image segmentation.

One of the advantages is to have a greater probability of obtaining lucky regions than

that of obtaining an entire lucky image under same conditions (i.e., the same distance

between the observer and the object, the same observing time, the same atmospheric

turbulence and the same D/r0, etc.). Subdivision implies that there are several smaller

components, each of which is the image of a particular part of the scene. These image

patches are isolated from each other, and are processed separately.

We demonstrate that the probability of obtaining lucky regions is greater than gaining

an entire lucky image in the anisoplanatic case. The probability developed by Fried can be

applied independently to separate isoplanatic tiles (or patches)[64]. Denote the probability

of lucky region in each image patch is pi, (i = 1, 2, 3, · · · , s). If we assume that each image

patch is independent from each other, therefore the probability of obtaining an entire lucky

image is expressed:

Problucky image =
∏

i

pi (4.6)

as pi ≤ 1, such that we have Problucky image ≤ pi. Fig.4.3 is a simple illustration of the

lucky region technique.

The assumption of taking short exposure images implies that the random wavefront

distortion is assumed to remain constant during the exposure. Therefore the exposure

needs to be short enough to freeze the wavefront distortion to produce a speckled image,

otherwise a blurred, and poorly resolved image (long exposure image) may be captured.

Another assumption is that, in the period of observation, there is no change in the strength
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of turbulence over the propagation path [64], i.e., r0 is constant. This leads to the fact that

the data set should be captured over a reasonable short period of time, but not over a very

long period such as over several hours.

Image segmentation can help to reduce the difficulties in post processing for atmospheric

turbulence affected images. It especially works under severe turbulent conditions, when the

PSF is anisoplanatic. Dividing an image into a number of smaller regions means that the

turbulent eddies are also partitioned, each of which only has effects on limited area. Their

instantaneous effects on separate image regions can be considered as isoplanatic. Thus a

traditional model of image processing like Eq.1.1 can apply to this problem. All discussion

throughout this thesis is based on this technique.

4.5 Image Quality Measurement

How can we predict the effect of atmospheric turbulence on wide-area/near-to-ground imag-

ing systems? As we only have a video record of the target, image quality analysis seems to

be the only means. In fact, many methods in the literature concentrate on image quality

measurement. This section will describes some common (linear) methods.

In general photography, several factors may be associated with image quality, for exam-

ple, optical artifacts like lens flare and lens distortion, additive noise, exposure accuracy,

total response and contrast, etc. Methods predicting image quality in image processing

must depend on some sort of image properties.

The simplest method is to use some statistical features on the numerical errors between

the distorted image and a reference image such as MSE (mean square error), maximum

difference, absolute error, correlation quality, etc[112]. The advantage of these metrics is

their simplicity in numerically determining the quality of an image, therefore they can be
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conveniently adapted by different imaging systems.

MSE is the average of the square of the difference between the true image and the

estimate[113]. Let i and ie denote the ground truth image and the tested image, respec-

tively, then the MSE is given by

MSE(ie) = E[(ie − i)2] (4.7)

Another method, the correlation quality, calculates the correlation between the tested

image and the reference image[114].

CQ(ie) = (
∑

k

∑
l

ie(k, l)i(k, l))/
∑

k

∑
l

i(k, l) (4.8)

There is a method which considers the noise in an image: PSNR (pseudo signal-noise-

ratio). In this context, “noise” is the RMS (root mean square) difference between a simu-

lated or resultant image and the original image. The PSNR is given by:

PSNR = 20 log(

√
i2√

i2 − i2e
) (4.9)

Image contrast is another common method. Various definitions are used in different

situations, but the luminance is commonly applied in the literature:

CON =
Luminance difference

Average luminance
(4.10)

If the luminance difference is defined by the difference of the luminance of the features and

the background luminance, and the average luminance is performed on the background,
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then it is a Weber contrast. Another definition is called Michelson contrast, which is

CONMichelson =
imax − imin

imax + imin

(4.11)

where imax and imin represent the highest and lowest luminance, respectively[115].

Sharpness, as an important property of an image, is an useful measurement of an image

quality. There are a number of definitions of sharpness, some needs a reference true image

and others do not[116]. The following are two commonly used sharpness metrics

S =

∫ ∫
[i− ia]

2dxdy (4.12)

and

S =

∫ ∫
∂i

∂x
+

∂i

∂y
dxdy (4.13)

where x and y are the image coordinates, and ia in Eq.4.12 is the mean of gray level of the

image i. These formulae have no true image involved, which is more suitable for real-world

application such as in wide-area imaging.

An alternative generic measurement of image quality has been proposed by Wang and

Bovik to predict image quality using three factors: loss of correlation, luminance distortion,

and contrast distortion[117].

M =
4σieiie i

(σ2
ieie

+ σ2
ii)[(ie)

2 + (i)2]
(4.14)

where ie and σ2
ieie , and i and σ2

ii are the expectation and the variance of ie and i, respectively,

σiei is the covariance of ie and i. The value of M lies on [−1, 1], when ie = i or ie is close

to i, M gains the best value 1. M tends to −1 when ie is very different from i.

Note that the methods developed above produce a single scale value to rank the image
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quality and therefore can be widely used. However, these conventional methods are designed

for linearly produced images so that they cannot be simply applied in our problem due to

the nature of atmospheric turbulence. A new, nonlinear algorithm must be proposed. In

this thesis, we consider the distortion caused by atmospheric turbulence as a nonlinear

process (in particular, a quadratic phase coupling problem). Taking advantage of higher

order statistics, we use bicoherence to be a quality indicator.

4.6 Bicoherence

In the past decades, general relations for signals passing through linear systems and methods

for the distortion removal have been extensively studied and exploited[101]. However, not

much work has been done for the nonlinear case. Instead, each type of nonlinearity has

been investigated as a special case[110, 118].

Quadratic phase coupling, one type of nonlinearity, is a strong indicator of a nonlinear

process[119]. When a signal passes through a system, two harmonic components interact

with each other and cause contribution to the power at their sum and/or difference fre-

quencies. This phenomenon gives rise to certain phase relations, and is called quadratic

phase coupling[101, 120, 121].

Such phase relations can be detected and characterized by the bispectrum and its

normalization, the bicoherence. The complex-valued bispectrum is often recast into the

bicoherence (its normalized magnitude) and the biphase (its phase). Here we redefine

the triple correlation and the bispectrum of a signal f(t), which has the form f(t) =∑∞
k=−∞ h(k)e(t − k), where h(t) is the impulse response which is square summable, and

e(t) is a sequence of independent and identically distributed (i.i.d.) random variables with
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zero means[122]. The triple correlation is then

f (3)(τ1, τ2) = E{f(t)f(t + τ1)f(t + τ2)}

= µ3e

∑∞
k=−∞ h(k)h(k + τ1)h(k + τ2)

(4.15)

and the bispectrum is

F (3)(u1, u2) =
∑∞

τ1=−∞
∑∞

τ2=−∞ f (3)(τ1, τ2)e
−j2π(u1τ1+u2τ2)

= µ3eH(u1)H(u2)H(−u1 − u2)
(4.16)

where E is the expected value, µ3e = E{e3(t)}, and H(·) is the Fourier transform of h(t).

The biphase is often used for phase retrieval, and is defined as the phase of the bispec-

trum

ϕF (3)(u1,u2) = arctan
Im{F (3)(u1, u2)}
Re{F (3)(u1, u2)}

(4.17)

The bicoherence, which is a normalized version of the bispectrum, indicates the phase

relationship among sets of frequency components at u1, u2, and u1 + u2. If there is no

correlation or coupling in a phase set (u1, u2, u1 + u2), the bicoherence value will be equal

or close to zero. This property enables the bicoherence to be adopted to detect the degree

of phase coupling in an image, and therefore predict the quality of an image. In this thesis,

the bicoherence as an image measurement is studied and exploited.

4.6.1 Definition and Properties of the Bicoherence

Based on Eq.4.16, the standard normalization of bispectrum is defined as

s(u1, u2) = F (3)(u1,u2)√
F (u1)F (u2)F (u1+u2)

= γee
j(φ(u1)+φ(u2)+φ(u1+u2))

(4.18)
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where F (·) is the Fourier transform of f(t), φ(·) is the Fourier phase, and γe is the skew-

ness of e(t). The magnitude |s(u1, u2)| is termed a skewness function, and also called the

bicoherence spectrum in signal processing[120, 123].

However, this term may be larger than one. General normalization implies that the

bicoherence is always expected to be bounded by one. To do so, an alternative form is

defined. In particular, Kim and Powers[124] define the bicoherence as

b(u1, u2) =
|F (3)(u1, u2)|

{E[|F (u1)F (u2)|2]E[|F ∗(u1 + u2)|]2}1/2
(4.19)

another form of the bicoherence is given by Haubrich[125]

b(u1, u2) =
|F (3)(u1, u2)|

{E[|F (u1)|2]E[|F (u2)|2]E[|F ∗(u1 + u2)|]2}1/2
(4.20)

For a broad-band system, a particular Fourier component may be involved in many

interacting triads (u1, u2, u1 + u2), and there is no simple interpretation of the bicoherence

value. In practice, for a finite length signal, even a process with truly independent Fourier

components (e.g., a Gaussian process) will have a nonzero bispectrum[126]. Therefore one

would expect that the bicoherence lies between [0,1].

The bicoherence of a single data record can be estimated by using a Welch segment-

averaging approach. Suppose that we have an N -point record, the data is divided into m

segments with length n, where n = N/m, and here the frequency resolution is 4u = 1/n.

Then rewrite Eq.4.19 and 4.20 as

b(u1, u2) =
|
∑m

i=1 Fi(u1)Fi(u2)Fi(u1 + u2)|
{
∑m

i=1 |Fi(u1)Fi(u2)|2
∑m

i=1 |Fi(u1 + u2)|2}1/2
(4.21)

b(u1, u2) =
|
∑m

i=1 Fi(u1)Fi(u2)Fi(u1 + u2)|
{
∑m

i=1 |Fi(u1)|2
∑m

i=1 |Fi(u2)|2
∑m

i=1 |Fi(u1 + u2)|2}1/2
(4.22)
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The bicoherence has the following properties which enable it to estimate the interaction

of a signal with a non-linear disruption such as atmospheric turbulence[101, 127, 128]:

• the bicoherence is two-dimensional for a one-dimensional signal and four-dimensional

for a two-dimensional signal;

• 0 < |b(u1, u2)| < 1;

• |b(u1, u2)| can measure the degree of nonlinearity in a process under certain assumptions[119].

Such properties highlight the feasibility of the bicoherence as an estimator for nonlinear

disruption. Actually, the usage of the bicoherence for nonlinearity detection has been

studied in various areas, such as computer vision [129], speech signal processing [130],

analysis of plasma turbulence[127] and nonlinear aeroelastic phenomena [128].

Motivated by these successful applications, we studied and developed a method for

using the bicoherence to detect and characterize quadratic phase coupling in images taken

through atmospheric turbulence. In other words, the bicoherence, in this thesis, acts as an

image quality measurement for lucky region selection.

4.6.2 Nonlinearity Detection

How does bicoherence predict a nonlinear process? Let us consider a nonlinear system case

in the following [127]

∂u(x, t)

∂x
= f(u(x, t)), (4.23)

where u(x, t) and f(u) are continuous nonlinear functions. Analyzing f with a Taylor series

we then have

f = f1 + f2 + f3 + · · · (4.24)
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where (f1, f2, f3, · · · , ) are the linear, quadratic, cubic and higher order functions. Eqs.4.23

and 4.24 can be written as a Volterra series with some mild assumptions[127]

∂u(x,t)
∂x

=
∫

g(τ1)u(x, t− τ1)dτ1

+
∫ ∫

g(τ1, τ2)u(x, t− τ1)u(x, t− τ2)dτ1τ2

+
∫ ∫ ∫

g(τ1, τ2, τ3)u(x, t− τ1)u(x, t− τ2)u(x, t− τ3)dτ1τ2τ3

+ · · ·

(4.25)

Take the discrete Fourier transform (t → w) of both sides and let up = u(x, ωp)

∂up

∂x
= Γpup +

∑
m,n

Γmnumunδm+n,p +
∑
m,n,k

Γmnkumunukδm+n+k,p + · · · (4.26)

Each term in Eq.4.26 represents a different physical process. The second and the third

terms describe the coupling between different Fourier phases. Γmn describes three wave

interactions (three different Fourier modes are involved, also called quadratic nonlinearity)

and Γmnk describes four wave interactions (termed cubic nonlinearity). The relationship

between the frequencies can be expressed

ωp = ωm + ωn (4.27)

for quadratic nonlinearity, and for cubic nonlinearity it is given by

ωp = ωm + ωn + ωk (4.28)

Multiply both sides of Eq.4.26 by u∗p, and calculate its expectation, we then have the
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expression of higher order spectra:

〈∂up

∂x
u∗p〉 = Γp〈|up|2〉+

∑
m+n=p

Γmn〈umunu
∗
m+n〉+

∑
m+n+k=p

Γmnk〈umunuku
∗
m+n+k〉+ · · · (4.29)

The first term on the right side of Eq.4.29 is the power spectrum

U (2)
ωp

= 〈upu
∗
p〉 = 〈|up|2〉 (4.30)

The second term gives the bispectrum

U (3)
ωp

= 〈umunu
∗
m+n〉 (4.31)

and the cubic term is called trispectrum

U (4)
ωp

= 〈umunuku
∗
m+n+k〉 (4.32)

Eq.4.31 implies that there exists interaction between phase components um,un and um+n,

and this relation is retained in the bispectrum. To detect such phase relation (or quadratic

phase coupling), generally, the normalized bispectrum or the bicoherence is used[122]. A

nonzero bicoherence means that the bifrequency (um, un) is phase coupled to um+n to

some degree. When the phase coupling vanishes the bicoherence reaches its lowest value.

Note that, even for a process with truly independent Fourier phase and zero mean, its

bicoherence will not reach zero in practical calculations[126]. Therefore, in the application

of image processing, we expect that the bicoherence lies in the middle of the range [0,1].

Fig.4.4 shows the bicoherence of a one-dimensional signal which is a scan line of an

image. The light area indicates that the bifrequencies at (um, un) have a higher degree of

phase coupling to um+n, such as (10, 40, 50), (30, 22, 52), and (52, 30, 82).
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(a)

(b)

Figure 4.4: An example signal (a) and its bicoherence. The lighter area indicates a higher
value of the bicoherence, thus having a higher degree of quadratic phase coupling.
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4.7 Lucky Region Selection

This section explains how to use bicoherence as an image quality indicator for lucky region

selection. It is experimentally shown that the bicoherence obtained using one-dimensional

scan lines of an image and using the two-dimensional matrix have similar characteristics,

such that the former method can be used to avoid heavy-computing in practical applica-

tions. Moreover, a discussion about how to set the threshold of lucky regions is given. In

our application, these lucky images are less perturbed by the turbulence.

4.7.1 Methods for Computing Bicoherence

From Eq.4.21 and 4.22, we notice that the bicoherence inherits some properties from the

bispectrum, such as its dimensions are four for a two-dimensional signal. Therefore the

computation of the bicoherence of an image is time consuming and needs a great deal of

computer memory.

To improve the conditions, we consider restricting the computation from a two-dimensional

matrix to the one-dimensional scan-lines or columns of the matrix. This is reasonable be-

cause the phase correlations between spatial frequencies in an image region are similar to

those in the one-dimensional scan-lines or columns[129, 131]. Moreover, the statistics of bi-

coherence shows that the distribution of bicoherence values obtained by a two-dimensional

matrix is very similar to the distribution of bicoherence processed using a one-dimensional

but longer vector [126].

This characteristics of bicoherence can be demonstrated by experiment. Fig.4.5 shows

two curves (the bicoherence value) calculated from the same image by using one-dimensional

scan lines (dotted line) and by using two-dimensional matrix (solid line), separately. Both

lines have very similar shape though they have a little difference in value range, which
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Figure 4.5: The averaged bicoherence (see Eq.4.34 computed using one-dimensional scan
lines in the image domain has similar characteristics with that calculated using the two-
dimensional formula. The values of the averaged bicoherence of 50 distorted frames are
plotted. The red solid line presents the values using two-dimensional image while the blue
’thicker’ dotted line is from one-dimensional scan lines in the image domain. Both curves
have similar shape, which gives similar estimation of the quality of image blockes, but
importantly, the vertical range of both are co-confined.

implies that the bicoherence computed by both means have similar characteristics.

Therefore, in this thesis, the bicoherence calculation is restricted to the scan lines or

columns. Here, we rewrite the equation used in estimation of the bicoherence of an image

region

b(u1, u2) =
| 1
M

[
PM−1

s=0 Is(u1)Is(u2)I∗s (u1+u2)]|√
1
M

[
PM−1

s=0 |Is(u1)Is(u2)|2]· 1
M

[
PM−1

s=0 |I∗s (u1+u2)|2]

=
|[

PM−1
s=0 Is(u1)Is(u2)I∗s (u1+u2)]|√

[
PM−1

s=0 |Is(u1)Is(u2)|2]·[
PM−1

s=0 |I∗s (u1+u2)|2]

(4.33)

where Is(·) is the Fourier transform of the sth scan line/column, u1 and u2 are the frequency

coordinates. Thus, b(u1, u2), is the bispectrum averaged over M scan lines/columns, then
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normalized by the averaged power of the corresponding frequency components.

Finally, an averaged bicoherence over all frequency components is formed to provide

a scalar indicator of the degree of phase coupling. If there is little or no phase coupling

between two frequencies, the value of the bicoherence will be close to zero. If the phase

relationship between different frequency components partially exists, the value of the bico-

herence will lie between zero and one. If the degree of phase coupling is high, then the value

of the bicoherence will be close to unity. For this reason, we can expect that the averaged

bicoherence of a signal will increase as the degree of quadratic phase coupling grows.

There are three means to compute the averaged bicoherence, one is to compute the

average bicoherence over the horizontal lines in an image region

bh =
1

Nh

Nh∑
k=1

[
1

Nu1Nu2

Nu1−1∑
u1=0

Nu2−1∑
u2=0

bhor line
k (u1, u2)], (4.34)

the second way is to restrict the computation to the vertical columns

bv =
1

Nv

Nv∑
k=1

[
1

Nu1Nu2

Nu1−1∑
u1=0

Nu2−1∑
u2=0

bver line
k (u1, u2)], (4.35)

and another alternative is the combination of the former two estimations:

bc =
√

b2
h + b2

v, (4.36)

where Nh and Nv are the number of horizontal and vertical scan lines of an image region,

bhor line
k and bver line

k are the bicoherence of the kth horizontal and vertical lines, and is

calculated by Eq.4.33. Nu1 and Nu2 represent the number of sampled frequencies u1 and

u2. Note that bh, bv, and bc are each a single value which represents the average of the

bicoherence over the frequency domain.
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Figure 4.6: Comparison of the value of the bicoherence of a true image and simulated
atmospheric turbulence affected images. A low value implies less effect by the turbulence
and hence a low level of phase coupling. The original image can be expected to have lowest
bicoherence. The threshold that selects lucky frames or regions over more degraded images
may be chosen based on the data sequence.

The lucky regions are selected according to the order of the value of the averaged

bicoherence of each region in the image region sets. Based on the rate of lucky regions, one

can set a threshold parameter for selecting lucky images. Recall that the interaction caused

by the turbulence in the imaging path will create coupling in the bispectrum of each region,

and hence lower coupling implies lesser effect of the turbulence. Keeping the regions that

have lower averaged bicoherence as lucky regions and discarding the other regions, one can

select a sequence of lucky regions among the given distorted image set. Observations over

many images will populate the missing regions.

Fig.4.6 shows the averaged bicoherence for a sequence of 100 simulated turbulence-

affected images using the Lenna test image. Badly affected images have high values of
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Table 4.1: Lucky images and non-lucky images and their mean bicoherence values. Lucky
images have less averaged bicoherence, are more geometrically correct to the truth image
and have more details, only by visual inspection.

lucky images mean bicoherence non-lucky images mean bicoherence

(true image)0.092

0.105 0.151

0.110 0.158

0.109 0.157

0.105 0.151

0.112 0.151
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averaged bicoherence, while low values indicate lucky images.

For the purpose of detailed comparison, images with smallest and largest values are

listed in Tab.4.1. The corresponding averaged bicoherence value for each image are also

included. Again, one can tell that images having less averaged bicoherence value are supe-

rior, more geometrically correct to the truth image and have more details, only by visual

inspection.

4.7.2 The Threshold

The number of lucky regions should be set before running the algorithm. The threshold

used in this thesis is 20% of the whole set of raw images. This number can be manually

set and could be varied to suit the data.

In our experimentation with simulated atmospheric turbulence, different rates with

isoplanatic simulated data (Lenna) were tested. Fig.4.7 lists the results using 5%, 20%,

40% and 60% of the whole sequence of raw images. For better comparison, only a part of

the image is shown.

As expected, the result becomes better when the number of lucky regions increase

(but the number is still relatively small, i.e., the lucky region ratio is less than 20%), then

reaches a peak before it begins to get worse when the number continues to increase(> 40%).

In Fig.4.7, the result with lucky region ratio of 5% and 60% are more blurred and less

geometrically accurate (for example, the edges), which is due to there being less information

(in 5%) or more ambiguities (in 60%) when using smaller or larger ratios.

The results using 20% and 40% are very similar, which indicates that reasonable opti-

mization may occur between 20% and 40%. By taking the computation time into account,

the former should be a better choice.
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(a)5% (b)20%

(c)40% (d)60%

Figure 4.7: Results from processing lucky regions with different lucky ratios: (a) 5%;
(b)20%; (c)40%, and (d)60%. For the purpose of detail comparison, only a part of the
image is shown. (a) and (d) are more blurred and less geometrical accurate (the edges),
which is the result that less information (in 5%) and more ambiguities (in 60%) using
smaller or larger ratios. (b) and (c) are very similar, which indicates that reasonable
optimization may occur between 20% and 40%.
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So far, new sequences of lucky regions have been produced from old sequences of raw

image subregions. These lucky regions are kept by themselves until further processing by

the bispectrum or other methods are performed.

4.8 Applications

The lucky region technique can be applied in other areas as a preprocessing technique,

when turbulence is involved and the turbulent media has similar statistics to those of

atmospheric turbulence exists. In the research of this thesis, we studied two applications:

image reconstruction and possible super resolution for wide-area imaging. In the following,

effective algorithms are developed, and their performance are tested by both simulated and

real-world data.

4.8.1 Image Reconstruction from Atmospheric Turbulence

Given a number of short exposure images taken through atmospheric turbulence, the task

of image reconstruction of the potential image is challenging due to the PSF being time

varying and position dependent (which is the result of movement of the atmospheric eddies),

as discussed in previous chapters. Common methods use information retained in all the

raw images and produce a version of the potential image based on this information.

It was believed that each short exposure image is helpful because it contains useful

information for the image reconstruction process. The more the short exposure images, the

more the information we have, and the better the reconstructed result may be. However,

our experimental results show a different case. Fig.4.7 is an example. The quality of the

estimation indeed improves with the number of short exposure images when the number is

small. When the number of images used for construction reaches a certain threshold, the
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processing produces a best result. If the number keeps increasing, then the result becomes

worse.

Our explanation is that a short exposure image not only contains useful information

but also brings harmful uncertainty. The useful information helps the estimation approach

the potential image while the uncertainty makes the result worse. When the number of

images used for reconstruction is very large, the ambiguities increase, compromising the

useful information, leading to a worse result. One would expect to improve the result by

using as much helpful information as possible and decreasing harmful ambiguities from the

data source.

Lucky region is such a technique to select superior image subregions retaining relatively

more useful information and less ambiguities than non-lucky regions. Thus subsequent

processing steps on lucky regions will produce a better result.

The simplest method is to temporally average the lucky regions in each sequence, obtain-

ing a single estimation for each image patch, which is followed by combining all the estima-

tions of each image tile to their correct position to form a single sharp image. This method

is similar to the average-based method: temporally average the ensemble images[132, 107].

The result produced by this method may be geometrically correct but low-pass filtered, so

that the restored image is still blurred with some of its high frequency content being lost.

An alternative is to recover the target image using the bispectrum technique discussed

in Chapter 3. Compute the average of the bispectrum of each sequence of lucky regions,

the average bispectrum is then used to reconstruct a single image region. Finally, all the

regions are repositioned to fuse an estimation of the potential image.

Fig.4.8 and Fig.4.9 list the results obtained using lucky regions. The data is simulated

using the lenna image, with 100 successive frames. The data used for experimenting in

Fig.4.8 is isoplanatic patches simulated data, and the data in Fig.4.9 is anisoplanatic. The
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(a) SNR = 11dB (b) SNR = 12dB

(c) SNR = 14dB (d) SNR = 15dB

(e) SNR = 19dB (f) The true image

Figure 4.8: Comparison of results of the isoplanatic simulated data by different methods:
(a) an input image, (b) result using the regions that have minimum MSE, (c) result by
the average-based method, (d) result by averaging the lucky regions, (e) result by our
algorithm, (f) The true image. The result by our algorithm has the best signal-noise-ratio
and exhibits the sharpest and closest match to the truth image visually.
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isoplanatic distortion of the sequence is computed according to the following. If O is the

Fourier transform of an original or true test image, o, then we form a sequence by adding

a simulated Kolmogorov phase screen to its phase:

Ik(u, v) = O(u, v)ejφk(u,v) (4.37)

where Ik is the Fourier transform of the kth simulated image, ik, in (u, v) spatial frequencies

and φk, is the kth randomly generated Kolmogorov phase screen. The phase screen gen-

erator function was kindly provided by the University of Canterbury [133]. The function

allows the user to select the ratio D/r0.

The Lenna sequence used in Fig.4.8 is an isoplanatic sequence formed directly by the

application of Eq.4.37, with D/r0 = 5. A set of 200 randomly phase-distorted images was

produced. A frame from the simulated sequence is shown in Fig.4.8(a).

In the anisoplanatic case, five different Kolmogorov phase screens with D/r0 = 1, 3, 5, 7, 2

have been used to produce each of a set of simulated isoplanatic turbulence affected images.

This method employed the Layered algorithm in [134], using a simulated monochromatic

wavelength of 500 nm, simulated layers at distances 5, 45, 55, 70, 105 m from the telescope

and simulated sensor used to gather the imagery, (D = 0.14m, f14, ∆pixel = 7µm). In this

case, a set of 100 images was produced, using a different randomly generated phase screens

for each layer and each image. The resultant images (for example, see Fig.4.9(a)) exhibit

space variant warping as expected of anisoplanatic distortion. Because of the monochro-

matic simulation they also exhibit variations in amplitude or scintillation caused by the

diffraction between layers. A broadband simulation would make these scintillations less

noticeable.

To estimate the isoplanatic patch angle, θ0, Eq.4.3 is used. Let us assume that the

isoplanatic patch size in the simulation is determined mainly by the D/r0 = 7 ratio at
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(a) SNR = 11dB (b) SNR = 12dB

(c) SNR = 14dB (d) SNR = 15dB

(e) SNR = 19dB (f) The true image

Figure 4.9: Comparison of results of anisoplanatic simulated data by different methods:
(a) an input image, (b) result using the regions that have minimum MSE, (c) result by
the average-based method, (d) result by averaging the lucky regions, (e) result by our
algorithm, (f) The true image. Example frames from the simulated sequence also exhibit
coarse variation in amplitude or scintillation as a result of the diffraction between turbulent
layers and the pupil for a quasi-monochromatic illumination. The result by our algorithm
has the best signal-noise-ratio and exhibits the closest match visually to the truth image
and appears unaffected by the frame varying scintillation.



104 Chapter 4. Lucky Region and Bicoherence

Lscr = 70 m. Then, for a pupil size of 0.14 m, giving r0 = 0.14/7 = 0.02 m, we find

θ0 = 8.97 × 10−5 rad, or 18.5 arcsec. With a focal length f = 1.96 m and CCD pixel size

of 7µ m, the isoplanatic patch size is 25× 25. This size is quite close to our working region

size.

The average bicoherence was calculated for each region of 32 × 32 pixels, with 50%

overlap, in each image. A threshold was chosen in our experiments such that the ratio of

lucky regions found to the whole image set was 20%. This ratio is selected based on earlier

experiments and discussion, but can be varied to suit the data.

In both experiments, results by other methods are also listed in Fig.4.8 and Fig.4.9.

(b) is the result using lucky regions selected by minimum MSE method, and (c) is the

temporal average of the total raw images. The comparison demonstrates that bicoherence

as an image quality measurement helps to select images with more high frequency infor-

mation and less distortion, therefore improving the performance of the succeeding image

process. Comparing the results by the method of averaging the lucky regions (d) and by

the bispectrum method (e), one can notice that the bispectrum technique produce more

impressive results which are closer to the true image (f). The PSNR of each result are also

shown in figures, verifying our observation.

4.8.2 Super Resolution from Atmospheric Turbulence

This subsection demonstrates the possibility of super resolved image reconstruction for

images taken through atmospheric turbulence. Moreover, we combine the lucky region

technique and conventional super resolution approaches to solve the problem. Results with

real field data are shown.
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4.8.2.1 Possibility of Super Resolution

Problems in imaging through turbulent atmosphere are common to earth-based astronomy

and to surveillance by telescope. In both cases, the intervening atmospheric turbulence

between an object of interest at a large distance from the observing device may result in

severe distortion of the image. If a sequence of many images is captured, it is possible to

obtain a “diffraction-limited” image of a stationary object or scene by speckle imaging[29,

30].

The diffraction limit is the theoretical image resolution of a telescope, which depends

on the diameter of the telescope’s objective, its optical quality and the wavelength of the

light. Theoretically, the angular resolution of an optical telescope is:

reso = 1.22
λ

D
(4.38)

where λ is the wavelength and D is the aperture. The larger the aperture, the better the

angular resolution. This theoretical resolution works under conditions that no atmospheric

turbulence exists, i.e., there is no medium (e.g., the air) lying between the object and the

telescope.

When atmospheric turbulence exists, the telescope resolution will be worse, and Eq.4.38

will not work. Instead, the resolution depends on the Fried parameter instead of the

aperture,

resreal = 1.22
λ

r0

(4.39)

where r0 is the Fried parameter, representing the diameter of coherent cells in the incident

wave at the telescope pupil.

In this context, super resolution means achieving resolution better than the diffraction

limit, i.e, the resolution is higher than resreal, and in some cases higher than reso. It
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has been shown that in restoring images taken through atmospheric turbulence, it is both

theoretically and practically possible to achieve such super resolution using a number of

short exposure images [135, 136].

It turns out that, in some circumstances, short exposure images can bring a bonus

by improving the resolution of a telescope even beyond the theoretical diffraction limit,

because the turbulence may warp spatial frequency information outside the diffraction

limit into the aperture of a telescope. The warping of higher spatial frequency content

into the aperture has been demonstrated in the laboratory [137], shown experimentally in

the field[135, 134, 138], proven analytically[139], and shown that if successful restoration is

applied, can gain results that would be appropriate for a telescope many times the diameter

of the current telescope [139]. In other words, from the view of a long enough observing

period, we obtain a relatively larger r0. So, if a restoration algorithm can collect this higher

spatial frequency information from a sequence of images captured through a telescope, a

higher resolution result or super resolution may be possible. The observed images are still

no more than diffraction limited but their inherent distortion that we must correct carries

information normally only found outside the pupil, but here warped in as low frequency

content.

4.8.2.2 The Proposed Algorithm

Super resolving atmospheric turbulence affected images is challenging. General super reso-

lution techniques assume that the PSF is position independent, and reasonable result may

be obtained using only one or a small number of images [140, 141]. In imaging through

turbulence, especially in wide-area/near-to-ground imaging, the PSF is likely to be aniso-

planatic (spatially-variant and time-varying) with severe information loss due to the rapid

motion and change of the turbulent eddies as we discussed before. To overcome the effect of
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atmospheric turbulence, and achieve a super resolved result, new techniques using multiple

short exposure images are proposed in this thesis.

As a large number of short exposure images is recorded, some having superior quality

and the others are worse as we discussed in the previous sections, data classification should

be considered before super resolution methods are applied. The algorithm proposed in this

thesis uses the lucky region technique for good quality data selection, and a super resolved

image is then reconstructed using lucky regions[142, 108].

One would notice that data classification and selection may decrease r0 as a result of

the drop in the number of images used for super resolution reconstruction. However, this

is not the fact. Lucky regions are partition of the whole sequence of image frames, and

they are superior and more geometrically correct, retaining more useful information than

others. This leads to the fact that lucky region selection does boost r0.

The proposed algorithm is a two-step super resolution method using multiple images:

bicoherence is used to select image regions with superior quality in the first step, following

which a MAP estimation based on a Universal Hidden Markov Tree (uHMT) model is

employed to produce a single super resolved image [108, 143].

We proposed an effective super resolution algorithm, the MAP-uHMT method, which

can be applied to this problem[143] in collaboration with Li who was a Ph.D student in

our group. Li’s algorithm is to solve the following model:

gi = DHiMiz + ni, i = 1, · · · , K (4.40)

where z is an ideal data with high resolution; gi is the ith observed short exposure image; K

is the number of short exposure images; Mi is the region to region warping presented as an

affine transform,; Hi is the inherent blur to the image caused by the r0 of the turbulence;
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D is a sub-sampling matrix, and ni represents additive noise of Gaussian distribution with

zero mean.

The task is to estimate z using a set of gi, given Eq.4.40. Using uHMT model in

the wavelet domain and the MAP estimator, the problem now is to calculate an optimal

solution by minimizing the cost function:

L(z) =
K∑

i=1

1

2λ2
i

‖ gi −DHiMiz ‖2 + φ(z, θ). (4.41)

λi
2 is the noise variance of ni in the ith image. The function φ(z, θ) is the energy function

which is regarded as the energy attributed to z. This term comes from the prior probability.

The problem now is to construct the energy function (or the prior model) φ(z, θ). We

introduce the wavelet domain uHMT model originally developed for signal denoising and

signal estimation[144] to this application. For simplicity, let us assume the marginal prob-

ability density functions of the wavelet coefficients are conditionally independent, although

the state values between the parent wavelet coefficients and the child wavelet coefficients

are dependent. Then a prior model used in [143] is adopted. L(z) can be rewritten as:

L(z) =
K∑

i=1

1

2λ2
i

‖ g̃i − D̃H̃iM̃iz ‖2

+
N2∑
ξ=1

z̃ξ
2

2(PSξ
(1)σξ(1)2 + PSξ

(2)σξ(2)2)
, (4.42)

where σξ(1) and σξ(2) are denoted as the variances of the ξth wavelet coefficient given the

hidden Markov state [143] as 1 and 2, respectively. PSξ
(y) represents the probability of the

wavelet coefficient z̃ξ belonging to the hidden state y, y = 1 or y = 2 in this paper. The



4.8. Applications 109

minimized formulation can be rewritten further as:

L(z) = α
K∑

i=1

‖ g̃i − D̃H̃iM̃iz ‖2 + zT Qz (4.43)

where Q is a diagonal matrix (N2 ×N2) consisting of q(ξ,ξ):

q(ξ,ξ) =
1

2(PSξ
(1)σξ(1)2 + PSξ

(2)σξ(2)2)
. (4.44)

In Equation (4.43), α is a parameter to describe the variance of the noise as well as the

error caused by the incorrect warping and blur matrices (for simplicity, we assume λi is

the same value for all raw images). α also balances the contribution of the high frequency

information from other raw images and the prior model. The estimation of the wavelet

coefficients of the original image is found by using the SD (steepest descent) method to

minimize Equation (4.43) as

zr+1 = zr + ad, (4.45)

where d is the descent gradient, r is the rth internal iteration seeking to minimize L(z),

and a is the step size. So d is written as:

d = −[α
K∑

i=1

M̃i

T
H̃i

T
D̃T (D̃H̃iM̃iz − g̃i) + Qz], (4.46)

and the step size a is given by:

a =
dT d

dT (α
∑K

i=1 M̃i

T
H̃i

T
D̃T D̃H̃iM̃i)d + dT Qd

. (4.47)

Because the prior model is achieved by using the previous pseudo super resolved result,

Q needs to be updated Ql → Ql+1 using Equation (4.44), where l denotes the lth outer
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iteration, updating the prior.

The algorithm methods are described well in Li’s paper[143]. We adopt this and assign

the parameters below to our use.

4.8.2.3 Results

Experimental data is obtained with a portable 0.14 m dia f14 Cassegrain telescope and

progressive scan CCD camera. A test scene to be observed is 10km distant and the exposure

time is on order of 5ms. The number of image frames is 75. The initial image size is

128 × 128, and 10 lucky region images are selected (regions with the smaller averaged

bicoherence value).

First, some selected superior image regions are listed in Tab.4.2. These lucky regions

are used for in subsequent step. In the table, some non-lucky regions and their bicoherence

value are also listed (on the right-hand side). One could note that the lucky regions are

sharper, have more details even though they might be geometrically warped, and the non-

lucky regions are much more severely distorted.

Then super resolution reconstruction is carried out based on the selected regions. We

choose the expansion factor, c = 2, to achieve an expanded image region with 256x256

pixels. The blur kernel is guessed as Gaussian with size 9× 9, and the standard deviation

is 2. α = 0.1, Daubechies-8 wavelet in the orthogonal wavelet transform is used to fully

decompose the images [143]. Moreover, Q is normalized between [0, 1], and all intensities

of the images are normalized between [0, 1]. Super resolution means that the resulting,

enlarged image, contains detail not present by other means, and has been found to occur

after 3 outer iterations and 10 internal iterations.

For the sake of comparison, we experimented with another set of images of a same object
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Table 4.2: Samples of input and their bicoherence values

lucky regions mean bicoherence non-lucky regions mean bicoherence

0.3187 0.4029

0.3025 0.4134

0.3123 0.3965

0.2957 0.4004

0.3137 0.3876

0.3088 0.3937

0.2932 0.4079
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(a) One sample of input. (b) Result using bilinear interpolation.

(c) Result by randomly selected 10 images. (d) Result based on lucky regions.

Figure 4.10: Experiment of real data. Result using lucky regions is significantly improved
compared to the raw image and the result using randomly selected 10 images. It is more
detailed, less blurred and more geometrically correct.
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(a). (b)

Figure 4.11: Comparison of power spectrum of results obtained using different images. (a)
the power spectrum of the result by randomly selected 10 images, in Fig.4.10 (c); (b) the
power spectrum of the result by lucky regions, in Fig.4.10 (d).

which are randomly selected from raw data using the same parameters. Results are shown

in Fig.4.10. The result using lucky regions (Fig.4.10 (d)) is significantly improved compared

to the raw image and the result by randomly selecting 10 images (Fig.4.10 (c)). The result

using lucky regions is more detailed, less blurred and more geometrically correct (see the

foliage structure and man-made structure in the results). The log of power spectrum of

(c) and (d) are computed and shown in Fig.4.11 (normalised to their DC values). Note

that Fig.4.11 (b) contains more high frequency content than Fig.4.11 (a). By selecting the

center of the power spectrum and rotating the results in Fig.4.11, degree by degree, then

a circular averaged log of power spectrum is computed for each result. A cross section of

the averaged log power spectrum (the middle line in this case) is plotted in Fig.4.12. One

can see that Fig.4.12 (b) has higher values (especially, in higher frequencies), which means

that it includes more high spatial frequency content.



114 Chapter 4. Lucky Region and Bicoherence

Figure 4.12: Plots of the averaged log power spectrum of images in Fig.4.10 (Normalised to
their DC values). The red solid line is calculated with Fig.4.10 (c); and the blur ’*’ line is
with Fig.4.10 (d). Also, the averaged log magnitude of Fig.4.10 (a) is shown, the green ’+’
line, and Fig.4.10. (b) in black ’.’ line. Fig.4.10 (d) has higher values in higher frequencies,
which means that it includes more high spatial frequency content than Fig.4.10 (c), and
both have more high frequency content than the original.

4.9 Summary

In this chapter, a new technique, classed as the lucky region technique is developed. The

bicoherence, as a numerical algorithm for lucky region selection is described, and its ability

for nonlinearity detection in signals is studied.

Two applications of lucky region technique and the bicoherence as an image measure

are given: image restoration and super resolution reconstruction for wide-area/near-to-

ground imaging, which demonstrate the robustness of this algorithm and the possibility

of extended application in different areas. While presence of higher frequency content by

itself cannot indicate good performance, visual inspection of the final results indicates that

the information in these frequencies is physically reasonable.



Chapter 5

Imaging Through Turbulent Water

Surface

5.1 Introduction

In this chapter, we study the problem of water imaging: image recovery from a set of images

distorted by moving water waves. It is common experience that an air-water surface that

is in wavy motion distorts images of objects or scenes, depending on whether the object

is under the water, and viewed through its wavy surface, or above the water, and viewed

by reflection across its wavy surface. In both cases, the object or scene may be distorted

geometrically due to the uneven refraction or reflection of the light. Fig.5.1 and 5.2 show

examples of each effect.

This chapter addresses the problem of how to suppress or remove the distortions caused

by the surface of a body of wavy water, by observing a long sequence of short exposure

distorted images[145, 146, 147]. We aim to develop an effective technique to recover the

original geometrically-correct result, as if the image was captured with a perfectly still water
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Figure 5.1: Samples of water imaging looking down.

Figure 5.2: Samples of water imaging reflection. Note that the images are upside down.
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surface. During this process, a new algorithm based on speckle imaging techniques (which

combining both the bispectrum technique and the lucky region technique) is proposed.

The bispectrum technique is often used in the astro-photography area for removing

atmospheric turbulence effects. We however notice an analogy in the water imaging area.

By carefully analyzing the characteristics of water imaging, we derive the condition in

which the bispectrum technique can be applied properly. We have implemented and tested

the idea on both synthetic and real images, with convincing success. Our approach can

be viewed as a novel extension and successful application of the bispectrum technique to

water imaging, and represents a practical step forward.

A rippled water surface is not stationary, but wavy and dynamic. If the object or

scene to be recovered is pseudo-stationary, and the only dynamics are due to the wavy

water surface, then it can be assumed that a time sequence of images is more likely than

a single image to result in successful recovery. The proposed technique is therefore based

on the analysis of a sequence of the distorted image frames. Moreover, each frame must

be captured with a short enough exposure time, so as to freeze the motion of the wavy

surface and hence the distortion (this is very similar to speckle imaging in wide-area/near-

to-ground imaging). A similar requirement is found in the restoration of atmospherically

distorted images in astronomy.

Experiments in both cases, reflection from a wavy water surface and looking through

a wavy water surface, show very promising results, which demonstrates that bispectral

analysis has great potential in this new application to water image recovery. Some obvious

applications include ocean optics (e.g., through-the-water imaging for modern submarines),

sea-bed surveys (e.g., the Great Barrier Reef on the coast of Australia) and computer vision

(recovering the shape of a distorted deformable object).
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5.2 Problem Analysis

To simplify our analysis, we assume that the water body is sufficiently large, and distribu-

tion of waves on the water surface are statistically stationary. These assumptions are not

restrictive, but rather realistic in practice for relevant applications such as a submarine in

a big lake or in the ocean.

We firstly consider the looking-through-the-water-surface case. Suppose a camera is

placed above the water, looking vertically downward at an object or scene below the water

surface. We will consider a true image to be one that is obtained if the water surface is

quite flat, and normal to the viewing axis.

Consider any point on the object seen through the moving water surface. If the water

surface is flat, even momentarily, the image of this point is in its true position in the camera

plane. When a wave passes through the local view point, the water surface becomes slanted

(oblique), and the imaged point will change its position due to Snell’s law of refraction.

In other words, there is a non-zero displacement vector which causes the imaged point to

deviate from its true position. However, the displacement vector will return repeatedly to

zero as the waves pass through. If the water surface is large, according to the Cox-Munk

Law[148], the distribution of the normal of the water surface is approximately Gaussian.

The distribution is very much a bell-shaped, zero-centred, unimodal and smooth curve.

Secondly, we consider the alternative scenario where the object or scene is above the

water and is viewed obliquely by reflection of optic rays on the rippled surface. In this

scenario, the water surface behaves like a mirror with dynamically changing surface shapes.

In this chapter, we study both cases: looking-through-the-water-surface imaging and

water-reflection imaging, and solve the image reconstruction problem in each case using the

bispectrum technique in much the same way as Chapter 3. In the following subsections,
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we will describe these two cases in a little more detail.

5.2.1 Case-1: Looking Through the Water Surface

Fig.5.3 demonstrates the refraction law applied to a wavy water surface. Assume that light

passes straight up from the planar ground under the water, there will be no refraction for

points immediately below if the water surface is still. Under these conditions, the observer

will see the object in its true position at b. However, when a wave passes through the

imaging path the normal to the water surface N is tilted. This means that the observer

will appear to see the object at a instead of at b. When recording through a wavy water

surface, an object will appear to be distorted and move around its true position over

time. Knowing the surface angles, the refractive index of air and of water, the apparent

displacements within an image can be calculated.

These movements are Gaussian distributed centered around the true position in accor-

dance with the Cox-Munk law [148]. The law points out that, given a large surface area

and stationary waves, the distribution of the normals of the water surface is approximately

Gaussian. Based on the law, Efros et al. have experimentally proved that the image points

are distributed approximately as a Gaussian[149]. Therefore the properties of a Gaussian

random process can be utilized when processing the images.

5.2.2 Case-2: Water Reflection

Fig.5.4 illustrates the image reconstruction of water reflection imaging. Consider a receiver

(for example, a camera) observing a distant source obliquely, where the source is above the

water surface such as the calendar in Fig.5.4 (a). The camera records the observations of

the reflection of the calendar. When the water is still and the water surface is flat, the
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Figure 5.3: Illustration of imaging through the water surface and the refraction law: when
the water surface is flat, and perpendicular to line of sight, an observer sees an object in
its true position b; when a surface wave exists, due to the effect of refraction, an observer
sees the object in position a which can be calculated by Snell’s law.

surface is considered as a mirror. Images obtained under these conditions are of the object

reflection only, and are considered the true image.

When the water surface is moving, the point b appears to move around its true posi-

tion. Again, the distribution of the movements is (approximately) Gaussian. The images

obtained as shown in Fig.5.4 (c) are upside down due to the mirror effect, besides suffering

from distortion due to the effect of the moving water surface.

5.3 Related Works

This section considers some contributions of researchers in various fields and some existed

algorithms for water imaging (most for underwater imaging), readers who have more in-

terest in the application of the bispectrum method to this problem may go forward to the

next section.

As the distortions in the images are due to the distorted wavefront (of light) caused

by the uneven water surface, a natural idea is to use a system to measure and correct the

wavefront, as in adaptive optics, or AO[14]. AO is used extensively in astronomical imaging
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Figure 5.4: The image reconstruction of water reflection. (a) the original object; (b)the
geometry for water wave reflection, the temporal distribution of the normal of the surface
N is Gaussian; (c) a sample sequence of frames from a video stream. The images are upside
down and distorted.

to overcome the effect of the atmospheric turbulence, but has not been widely employed

to wide-field imaging. The anisoplanatism of the water surface effects would have similar

complexity here as they do with atmospheric turbulence.

Holohan and Dainty discuss the possibility of using AO in through-the-water imaging[150].

The problem is different from the surface distortion we are examining because it covers

imaging through water “when it is inhomogeneous due to random temperature and salinity

variations” and “when turbulence may be a major factor in loss of resolution of imag-

ing systems”[150]. Images obtained under these conditions suffer low-frequency, low-order

aberrations and could be corrected by an AO system. It should be possible to adapt such a

system to correct for surface wave distortion, but AO systems are normally very expensive

and, to our knowledge, little success was observed for through-the-water imaging using AO.

Shefer et al. [132] describe a simpler approach to reconstruct a submerged object by

simply taking the time-average of a large number of continuously distorted video frames.

This method, called average based method in this thesis, is based on the assumption that

each point in the object viewed through a dynamic water surface moves around a point

which is its true position when the water surface is flat and still. This implies that the
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integral of the movement is zero or close to zero when time tends to infinity. Therefore,

the average of the captured images is geometrically correct. However, as it does nothing

to recover high frequency information, the reconstructed image is still a low-pass filtered

version of the true image and the fine detail is lost.

Researchers from computer vision field, such as Murase, attempt to reconstruct a three-

dimensional structure of the water waves using physical characteristics such as optical flow

estimation and statistical motion features of the target[151]. This algorithm assumes that

the temporal average slant of the water waves surface is zero or close to zero and the

distance between the water surface and the object is known a priori. Optical flow and the

surface normal of each point are first computed from a sequence of raw images, from which

the three-dimensional shape of the water surface is estimated by the surface normal.

Efros et al. recently proposed a graph-embedding technique (used in the machine

learning area) to recover an underwater image[149]. Their method, though, was motivated

from very different perspectives, in spirit similar to the lucky imaging technique that we are

also going to use in this chapter. Their method points out that when observing for a long

time and considering a particular point in an object, one can find that the point is exactly

in its correct position whenever the water surface imaging that point happens to be locally

flat. A shortest path algorithm is used to select the image having the shortest overall path

to all the other images. The local distance is computed transitively by normalized cross

correlation (NCC).

Donate et al. introduce a similar but more robust approach to form an estimate of the

target by finding local regions that best present a true view of the region being analyzed

[152, 153]. This method attempts to separate image blocks into high and low distortion

groups (corresponding to the movements with high and low energy) using the K-means

algorithm. Then NCC is used to select an image region which is closest to all other regions.
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These two methods produce much sharper and more detailed images of the target than

does the average based method [107].

Some researchers focus on the estimation of the water surface as well as the image

reconstruction of the object. For example, Milder et al. use such a technique to recover

the above-water-surface scene. The radial slope along extinction boundaries is measured

and recursively improved by minimizing the quadratic measurement error to estimate the

water surface [154]. Then inverse-ray-tracing is used to reconstruct the target image from

the water surface estimation based on a refraction law.

This thesis presents a new algorithm to estimate the real image distorted by moving

water waves. It works equally well for both problems of through-the-water-surface imaging

and water-reflection imaging. The reconstruction problem of water imaging is regarded as

a “phase tracking” task, in which a lucky region selection followed by bispectral analysis is

employed to recover an undistorted image.

5.4 The Proposed Algorithm

This section describes step by step our algorithm which inputs a water-distorted video

sequence and outputs a single geometrically-correct, superior image.

Consider observing a particular point imaged through a water surface under wave con-

ditions. Most of the time, the point is scaled or distorted, or moves away from its geomet-

rically correct position as the waves pass through. This results in a randomly distorted and

spread image at that spatial location.

However, at some moments, the effect of the water surface turbulence may be slight

or even negligible, and a snapshot of that region at that instant approaches its ground

truth. If we can recognize when this occurs and select such regions from a sequence of
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video frames, then use these less distorted observations in subsequent post-processing, we

can improve the final image reconstruction. This preprocess step constitutes lucky region

selection, which is discussed in Chapter 4.

The following sketches our algorithm, which consists of four major steps:

1. Preprocessing. Divide each of the input raw images into M small image patches or

regions of equal size; each patch overlaps its four neighbouring patches. In other

words, the original frame sequence are divided into M subsequences of image regions.

2. Lucky region selection step. Detect the quality of each region in each subsequence

based on an image quality measurement, and discard any severely distorted image

patches from the region series.

3. Image recovery using bispectral analysis. Apply bispectrum-based speckle imaging

technique to the lucky regions and estimate a single region in each image region

subsequence. M single and separate image regions will be obtained in total.

4. Image fusion. Put the recovered image region together to form an overlapping mosaic

to reconstruct and output an undistorted image.

The techniques used above has been explained in previous chapters: Segmentation and

the lucky region technique in Chapter 4 and the bispectral analysis in Chapter 3. Here, in

the step of lucky region selection, we developed another image quality measure besides the

bicoherence method.

This method is derived from the image quality index proposed by Wang[117], which

has been discussed in the previous section. The advantage of this method is its short com-

putation time, which is shorter than the method based on bicoherence. The disadvantage

is that a true image is needed. This is impractical when the true image is always unknown

in real world applications.
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For convenience, we rewrite the metric here[117]:

M =
4σicitic it

(σ2
icic

+ σ2
itit

)[(ic)2 + (it)2]
(5.1)

where ic is the clean image and it is the test image, ic and σ2
icic , and it and σ2

itit are the

expectation and the variance of ic and it, respectively, σicit is the covariance of ic and it.

The value of M lies on [−1, 1], when ic = it or it is close to ic, M gains the best value 1.

M tends to −1 when it is very different with ic.

Figure 5.5: Comparison between the bicoherence method and Wang’s method. The curves
show the consistency between the two methods, while the dashed blue line represents the
value of the bicoherence of 50 images, the red line sketches the value calculated by Wang’s
method. Note that when the red line goes up to a peak the blue line always goes down to
a local minimum.

Note that, in the problem discussed in here, the clean image is unknown and is what

we are trying to find. However, we have a sequence of raw images. In [11], Fraser et al.
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assumed that the temporal mean of a full set of affected images is geometrically correct,

although it may be uniformly blurred. In our algorithm, we substitute the mean image for

ic.

Both the bicoherence method and Wang’s method work well in this context. Fig.5.5

shows the consistency between the two methods, while the dashed blue line representing

the value of the bicoherence of 50 images the red line sketches the value calculated by

Wang’s method. Note that when the red line goes up to a peak the blue line always goes

down to a local minimum.

The difference between the two methods is that the the bicoherence method detects

the degree of nonlinearity of a signal, so that the smaller the value, the better the image

quality; the Wang’s method is to detect the likelihood between the tested image and the

true image, so that the higher the value, the better the image quality. Readers may choose

other methods to suit their cases when applying this technique, if necessary.

5.5 Experiments

The performance of our method is tested against both simulated and natural data, which

will be explained in the following subsections.

5.5.1 Simulated Data

To facilitate our experiments, we first generate some simulated water wave distorted image

sequences. The distortion is made so as to perfectly satisfy the above Gaussian distribution.

This purpose is mainly to validate our algorithm to be described later.

In this section, we briefly introduce the model originally proposed by Murase [151] to
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simulate water waves. This model assumes that the object or scene to be viewed in the

water is static and flat, and that the average slant of the moving water surface at any point

is zero when observed for a very long time. These assumptions fit our problem.

According to Murase’s model, the displacement at each point in the image away from

its true position (due to the moving wave) is given by

 dx = hp(1− 1/n) + N

dy = hq(1− 1/n) + N
(5.2)

where h is the distance between the water surface and the planar object of interest under

the water, n is the refractive index of water which is 1.33, and N is white Gaussian noise.

The variables p and q are the superposed patterns of two water waves having different

speeds and lengths, which can be expressed by the wave number ui and vi, the angular

frequency wi and the amplitude ai as follows:

 p = −
∑

aiuicos(uix + viy − wit)

q = −
∑

aivicos(uix + viy − wit)
(5.3)

By adjusting h, ui and vi, we can obtain different types of waves and therefore simulate

smooth and deep water waves.

Using Eq.5.2 we produced two sequences of short exposure images. In the first sequence,

a text plate is used as the ground truth image and a set of 100 images is generated with

parameters 〈a = 8, h = 5〉 and the number of waves across the image is 5. The size of each

image tile is 32 × 32 with 50% overlap. The threshold of lucky images is 20% using the

bicoherence method. Fig.5.6 shows the result of our algorithm. Also, one sample of the

distorted images, the true image and the result from the average-based method (simply

averaging the set of short exposure images) are shown. The estimate by our algorithm
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(a) one sample image (b) result by average based method

(c) result by our algorithm (d) the ground truth image

Figure 5.6: Simulation results. The result in (c) is produced by our algorithm using the
bicoherence for lucky region selection and the bispectrum for image restoration.

(a) the ground truth image (b) one sample image

(c) result by our algorithm (d) result by average based method

Figure 5.7: Simulation results. The result in (c) is produced by our algorithm using Wang’s
method for lucky region selection and the bispectrum for image restoration.
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(a) the ground truth image (b) one sample image

(c) result by our algorithm (d) result by average based method

Figure 5.8: Simulation results. The result in (c) is produced by our algorithm using the
bicoherence method for lucky region selection and the bispectrum for image restoration.

using the bicoherence for selection of lucky regions and the bispectrum for restoration is

much sharper, and the text on the image is easily recognized.

We also produced two simulated sequences using a clock image and a chair image as

ground truth image, respectively. For the clock image, we have the parameter settings as:

500 short exposure images are generated, the number of waves is 3, and 〈a = 10, h = 4〉.

For the chair case, 300 images are produced with wave number being 4, and 〈a = 12, h = 7〉.

The size of each image tile is 64 × 64 with 50% overlap. The rate of lucky image is 20%.

Results are shown in Fig.5.7 and 5.8 which demonstrate that our algorithm works for

different conditions of water surface.

Note that we apply bicoherence to select lucky regions and then produce the result in

Fig.5.8 (c), and the Wang’s method is used in Fig.5.7 (c). Both methods work well with our

data. The bicoherence tends to choose those regions containing correct phase information
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(a) one sample image (b) by average based method (c ) by our algorithm

Figure 5.9: Results of image reconstruction for through-the-water imaging.

and Wang’s method prefers regions having maximum likelihood with the reference image

region.

5.5.2 Natural Image Data

In experiments with an actual wavy water surface, image sequences are captured by video

camera fixed above the surface. Waves are generated by wind produced by a fan, while

an object is dropped into the water to create additional waves. The water is clear and no

account has been taken of any attenuation by a turbid medium.

Looking-through-the-water-surface imaging: For this experiment, a still object

is laid on the planar ground under the water. The size of each image in the stream is

256 × 192. In total 120 images are used and the size of image tiles is 64 × 64. Fig.5.9

compares our result with one of the raw images and with a result from the average-based

method. Note that the R, G, and B channels in the colour image are processed separately

and are combined to reproduce a colour image.

Water-reflection imaging: An object is viewed by reflection over the water surface.

A video camera faces the water surface to capture upside down images of the object. In

this experiment, we captured two sets of data under different conditions. In one case, the

waves are quite strong, while in the other case, the waves are relatively smooth. We tested
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(a) one sample image (b) by average based method (c) by our algorithm

(d) one sample image (e) by average based method (f) by our algorithm

Figure 5.10: Results of water-reflection image recovery. (a)-(c) under rough conditions;
(d)-(f) under mild conditions.

both cases with our algorithm, and our results are much better than those estimated by

the average based method. Fig.5.10 shows the results. The upper row are the images under

the rough conditions and the lower row are for mild conditions.

5.6 Discussion

The implementation of our algorithm is in MATLAB. The code does not have any particular

optimization. It runs on a personal computer with 3.20GHz and 1GB of RAM. The

computation time is about 25 minutes for a sequence of 100 frames with size of 256× 256,

the size of each image region is 64×64 and the rate of lucky region is 20%. The calculation

of the estimated phases takes the most time of the computation. The computation time

will also increases significantly when the size of the image blocks increases. The speed can

be improved by optimizing the code with C/C + +, or by using hardware such as a GPU.

The size of the image regions should be manually set before running the algorithm.

From our experiment results, we found that the region size is associated with wave length,
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(a) Region size is 32x32 (b ) Region size is 64x64

Figure 5.11: Comparison of different results using different regions size. (a) Region size is
32x32; (b) Region size is 64x64. From vision inspection, result in (b) is better, clearer, and
sharper.

similar in concept to the isoplanatic patch in imaging through the atmosphere; the closer

to wave length the region size, the better the estimate of the object. Both simulation and

real world data demonstrates the fact.

In the first experiment with simulated data, the image size is 128x64 pixels. Different

region sizes (64× 64, 32× 32, and 16× 16) are tested, and the best result is obtained with

32× 32 region size. This data is close to the wave length which is 25.6 pixels (the number

of simulated waves is 5 in x direction).

For the natural case of looking through water surface, 64×64 is the best choice. Fig.5.11

shows two results from regions with 64× 64 and 32× 32 pixels, respectively. From vision

inspection, the result using 64 × 64 is clearer, sharper, and contains finer details of the

object. This is reasonable because the data is taken under very smoothly moving water

surface, therefore the wave length should be relatively large compared to the the size of the

entire image, and 32× 32 may lead to a worse result.

The performance of our algorithm is inspected with numerical measurements, here, we

choose the bicoherence method and Wang’s method. Both methods calculate a numerical

value, which is used to predict the quality of the restored image. When using the bicoher-

ence method, the lower the value, the better the image. On the contrary, in the case of

Wang’s method, the higher the value the better the image.
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Table 5.1: Comparison between our method and Wang’s method with natural data. R
denotes the result by our method, and S represents one of the raw image. The numerical
values show the image quality results for the images in the first column. When using
Wang’s method, the result by the average based method is used as a reference image. No
reference image is needed with the bicoherence method.

Image the bicoherence method Wang’s method
(low values – good) (high values – good)

R 0.0067 0.9696

S 0.0098 0.8936

R 0.0131 0.7843

S 0.0230 0.4401
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Table 5.2: Comparison between our method and Wang’s method with simulated data. T
means the ground truth image, R denotes the result by our method, and A is the result
by the average-based method. The numerical values show the image quality results for
the images in the first column. In this case, when using Wang’s method, the true image
is a reference image. Again, no reference image is needed with the bicoherence method.
As expected, the true image has the lowest bicoherence and the result by our algorithm is
superior than that by the average-based method.

Image the bicoherence method Wang’s method
(low values – good) (high values – good)

T 0.0033 1

R 0.0054 0.8352

A 0.0060 0.8794

T 0.0038 1

R 0.0041 0.9282

A 0.0044 0.9492
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The results are listed in Tab.5.1 and 5.2, respectively. Tab.5.1 is with natural data.

It compares the quality of the result by our algorithm with one of the recorded images

in both cases we have studied, which is to show how our algorithm improves the image

quality. As expected, the results produced by our algorithm have lower value with the

bicoherence method and higher value with Wang’s method. Note that, when applying

Wang’s method with natural data, the result by the average-based method (temporally

averaging a sequence of images) is used as a reference image.

The second comparison is in Tab.5.2, which aims to compare the result by our algorithm

with the result by the average based method and the true image. In this case, the ground

truth image is known, so that it is used as a reference image when using Wang’s method

and has the highest value 1. Wang’s method shows that the result by the average based

method has a higher value while the bicoherence method has a low result.

This comparison has another meaning: it verifies that our method (i.e., the bicoherence

method) for lucky region selection is effective. As expected, the true image has the lowest

value and the result by our algorithm is superior to that by the average based method.

5.7 Summary

This chapter studies two problems of water imaging, both involving a disturbed, time-

varying (wavy) water surface. On the one hand, imaging occurs through the air-water

surface, involving refraction effects at the surface. In the other case, image formation is by

reflection of an object or scene across the water surface.

A novel and original attempt have been taken to recover an image of the target with

a sequence of images in both cases which should also extend to imaging from under-water

to observe objects above the water surface. Taking the similarity of water imaging and
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astronomical imaging into account, two techniques originally introduced in astronomical

imaging, the lucky region technique (the extension of the lucky imaging to lucky region),

and the bispectrum technique (for image recovery), have been combined to form a new

algorithm to solve the water imaging problem.

This technique performs very well in both the simulated and real-world experiments.

It also can be potentially applied to other imaging situations having similar distortions to

those of imaging through atmospheric turbulence[107].
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Image Restoration using Sparsity

6.1 Introduction

In previous chapters we have studied the theory and methods for removing (or reducing)

image degradations and distortion caused by turbulent media. The central method we have

investigated is the one based on bispectrum speckle processing.

Roughly speaking, this bispectrum method basically performs some sort of “temporal

averaging” operation, in the sense that local spatially variant geometric distortions are

corrected by “averaging out” random distortions across time. This essentially amount to

removing the random phase abberations caused by random atmospheric turbulence.

However, phase distortion is only one side of the story. During this course of bispectrum-

based speckle processing, there are also magnitude distortions besides the phase ones. More

specifically, when applying the bispectrum technique (in order to remove phase distortion),

Fourier modulus methods such as the averaged power spectrum are employed (for example,

the method developed in Chapter 3) which inevitably add some “smoothing” (i.e., out-

of-focus type) effect to the resultant image. Such a smoothed image is in fact a low-pass
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filtered (LPF) version of the true clear image. Furthermore, it is not hard to see that, the

LPF is of zero-phase (i.e., no phase distortion) and homogeneous (i.e. spatial invariant),

because the output after the bispectrum processing stage is a single geometrically correct

image[11].

This chapter is concerned with how to further remove the residual blur introduced by

the unknown LPF, and to correctly boost high frequency content to obtain a better version

of the true image. This is a typical “blind deconvolution” problem. It is worth noting

that, the reason that classical blind deconvolution technique can be employed in wide-area

turbulent imaging is that the remaining PSF of the LPF has been made position-invariant

thank to our speckle preprocessing or other turbulence removal techniques [12].

Yet another novelty of the work in this chapter is that, for the first time, we introduce

the use of natural image prior to the problem of image restoration in the context of imaging

through turbulence. This can be viewed as a general principle and strategy to improve the

performance of general turbulent image restoration algorithms (see Fig.6.1).

Most other algorithms often stop after removing the phase distortion caused by tur-

bulent media. In contrast, our strategy is to do one step further, and solves a classical

single-frame image restoration problem, by taking into account the universal and inherent

characteristic (i.e., statistical priors) of real-world natural scenes (and of the unknown blur

kernel–the LPF) [155, 156].

6.2 Priors for the Unknown Blur Kernel

The geometrically correct image after the bispectrum processing has a spatial-invariant

but unknown blur. Magnitude information is lost due to the “temporal averaging” effect of

this blur kernel. One could then recover a non-blurred version by using any “totally-blind”
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Figure 6.1: A simple illustration of our new strategy to improve the quality of images taken
through atmospheric turbulence.

blind-deconvolution algorithms such as the blind - Lucy-Richardson method. However, a

better way is to examine if there is any prior information about the blur kernel that can

be utilized to better regularize the otherwise ill-posed blind deconvolution problem; this is

the main idea of our work.

Fortunately, for our particular problem of “imaging through turbulence” using bipsec-

trum processing, we do have found that there are some available special structures that

can be taken advantage of. Let us now explain this.

After the phase recovery stage by the bispectrum technique, we can assume that the

obtained blurred image suffers from no geometric distortion at all. In other words, the

unknown blur kernel must be spatially homogenous, small in size (relative to the size of

original image) and have zero phase-shift. Moreover, when the sequence is long enough,

we can safely assume that the effective blur kernel is in fact isotropic (i.e., circularly sym-

metric). All these reasonable assumptions will be used to reduce the otherwise huge search

space during the blind deconvolution computation.
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We also have other two trivial priors on the blur kernel, which are: (1) non-negative

and (2) sum to one. These will help the computational procedure as well.

6.3 Priors of Natural Images

Besides these priors for the blur kernel, in this thesis, we also emphasize the use of a

different type of prior, the natural image prior of the target image to be recovered.

One main theme of the thesis is to apply turbulent imaging restoration technique,

traditionally aimed at astronomical image processing, to wide-area/near-go-ground (or un-

derwater) target observation. In contrast to astronomical observation where the target

image is often tiny or possibly multiple point sources, in our case the target is often ex-

tended, and of considerable size. Moreover , it is often a natural scene. For example, in

the long-range surveillance application, the objects of interest are often buildings, trees,

humans or vehicles etc.

This prior knowledge of the target suggests that: if a blind deconvolution algorithm

could somehow expliot/utilize such specialities, then the restored target will have a con-

ceivably better result. This is the main point of this chapter.

There is a vast literature on the topic of blind deconvolution. To give a general treatment

of this long-standing topic is out of the scope of the thesis. Instead, we only give some

basic experimental investigation, and the main purpose is to demonstrate the usefulness

of the concept of applying a natural image prior to the particular application of turbulent

image processing. We show this by some preliminary experiments.
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6.4 Natural Image Prior

Natural images are often sparse. This is one of the most prominent priors that possess by

natural images. To make this point clear, we will begin with some formal definition and

discussion of sparse signal.

6.4.1 Sparse Signal

Suppose a vector v ∈ RN , is said to be sparse if v = {v1, · · · , vn} satisfies

vi 6= 0, for i ∈ M, M � N (6.1)

v is also called an M -sparse vector. This definition can be directly extended to a two-

dimensional discrete signal, for example, an image i(xi, yj) ∈ R2(i = {1, · · · , M}, j =

{1, · · · , N}). i(x, y) is sparse if

i(xi, yj) 6= 0, for i ∈ K,K � M, and j ∈ L, L � N (6.2)

This implies that most pixels of i(x, y) are zero or close to zero such that only a few have

relatively impressive spikes.

6.4.2 Direct Sparse Natural Images

Direct-sparse images (which means most pixels of the image take values of zero) can be

found in some special occasions. For example, the astronomical images which record the

observations of stars and galaxies. The background of such types of images is considered

as black (or set to be zero), and the non-zero pixels (high lights) correspond to the stars or
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galaxies. Fig.6.2 (downloaded from http://www.buytelescopes.com/viewphoto.aspx?

pid=17570\&p=11273) is a galaxies picture captured by a STL-11000M Class 2 CCD cam-

era. It exhibits only a small number of bright stars (impulses) compared to the entire size

of the image.

Figure 6.2: A galaxies picture of which the background is black with a small amount of
impulses compared to the size of the image.

6.4.3 Gradient-sparse Natural Images

Apparently, most natural images (images of real-world scenes and objects) seem to be not

sparse. However, by taking the derivatives (gradient) and studying the statistics of natural

scene images, researchers have found that the gradients of most real world images are sparse

or “heavy tailed”, even though the images are not sparse. This can be understood by that,

except at edges of objects, this type of images has very smooth color changes in most areas

http://www.buytelescopes.com/viewphoto.aspx?
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which leads to zero or close to zero gradient values in these areas. This results in the

sparsity of the image gradients.

Tab.6.1 lists some natural images and the logarithm of the distribution of their deriva-

tives in the x and y directions. The curves drop smoothly from zero gradient forming a

heavy tailed distribution that indicates that the values of the gradients are zero or close to

zero outside a band limit.

In this context, the image gradient favors the definition of sparse signal. Theories of

sparse signal (e.g. compressed sensing theory) and techniques of sparse signal recovery may

be applied to our problem, where the objects are natural, and extended.

6.4.4 Statistical Model

In blind deconvolution, the task of finding the potential image, o, is usually formulated by

researchers to be a minimization problem using a Bayesian framework: Given the observed

blurred image i, find the most likely estimate of the potential sharp image o and the blur

kernel h.

Again, the simple model of the imaging system is employed:

i = o ∗ h + n, (6.3)

where i is the recorded image, o is the true image, h is the PSF, ∗ is the convolution

operator, and n ∼ ℵ(0, σ2) is a term used to account for various forms of additive noise.

A simple approach to this problem is to use MAP (maximum a posteriori) estimation

to seek a pair (o, h) to maximizing

p(o, h|i) =
p(i|o, h)p(o)p(h)

p(i)
(6.4)
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Table 6.1: Sparsity of gradient of natural images.
Natural image Gradients density in x Gradients density in y
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where p(·) is the probability distribution. Take away p(i) from the equation (p(i) is con-

stant) and take the negative log likelihood, the problem is then recast to defining and

minimizing the likelihood terms in the following:

arg max
o,h

p(o, h|i) = arg min
o,h
{L(i|o, h) + L(o) + L(h)} (6.5)

where L(·) = −log(·), is the negative log likelihood term. Based on Eq.6.3, the data fitting

term is

L(i|o, h) = λ|o⊗ h|2 (6.6)

where λ = 1/σ2.

L(o) depends on the image prior, which is to determine a best fitting result from the

infinite resolution pairs (o, h) (to Eq.6.3). A common measure of L(o) is the prior on image

gradients

L(o) = λ|∇o|α (6.7)

where ∇o indicates the spatial gradients of image o, and α is a regularization parameter.

The value of α states the assumption on the sharp image is smooth or not, for example, a

Gaussian prior α = 2 means that the image is smooth or piecewise smooth, and λ controls

the weight of the smoothness penalty. Another choice is a Laplacian prior α = 1.

While most natural image gradients are non-Gaussian, some researchers [76, 85, 86, 90,

93, 94] try a hyper-Laplacian distribution on image gradients with α < 1. This prior favors

natural images with gradients being sparse or heavily-tailed and zero-peaked. Motivated

by their results, we study, in this chapter, the problem of how to obtain a high resolution

result by making special use of the sparsity of natural images.
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6.5 An Overview of Compressed Sensing Theory

Compressed Sensing is a new signal processing topic that exploits the sparsity of coefficients

of natural signals for the solution of under-determined inverse problems. It provides an

alternative to the Nyquist-Shannon sampling theory. The Nyquist theory states that “an

analogue signal that has been sampled can be perfectly reconstructed from the samples if

the sampling rate exceeds 2B samples per second, where B is the highest frequency in the

original signal”[157].

Compressed sensing theory states that a signal can be recovered from highly incomplete

information, in the case that the signal is sparse. It is “a technique for acquiring and

reconstructing a signal utilizing the prior knowledge that it is sparse or compressible”

[158].

If s ∈ RN is a sparse vector (i.e., only some entries of s are nonzero), to recover s

from a small number of measurements, c (for now, assume that no noise is added to the

measurements),

c = As ∈ RM , M � N (6.8)

where A is a matrix representing the sensing mechanism. one would be required to solve

min ||s||`0 subject to As = c (6.9)

where `0 indicates the `0-norm of s, which is the support of s or the number of nonzero

terms in s. This is a combinatorial optimization problem and is known to be NP-complete.

However, it has been shown in [159, 160, 161, 162] that under certain conditions, the

solution to this problem is the same as the solution to the corresponding `1 minimization

problem:
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min ||s||`1 subject to As = c (6.10)

where ||s||`1 =
∑K

1 |si| is the `1-norm of s.

This is a convex optimization problem that can be solved (rather) efficiently by linear

programming (LP). For example, interior point methods can solve an LP in polynomial

time.

In practice, most real-world signals are often corrupted by some sort of noise. According

to the definition of sparse signal, the measurements then become

c = As ∈ RK + n,K � N (6.11)

where n is the noise, for most occasions, it is a white Gaussian noise with variance σ2. A

similar result for this noisy case is given[163]:

min ||s||`1 subject to ||As− c||`2 ≤ η (6.12)

where η is an upper bound of ||n||`2 .

If the signal s is two-dimensional and discrete (for example, an image), an alternative

recovery model is that the gradient is sparse. In this case, the total variation (TV) of the

signal is used for image recovery.

min TV (s) subject to ||As− c||`2 ≤ η (6.13)

Here the TV of s is defined as the sum of the magnitude of the gradient at each point.

In this thesis, we use the results of compressed sensing to develop a novel algorithm for

image blind deconvolution. To solve the optimization problem in Eqs.6.10 and 6.12, a lot
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of optimization techniques have been proposed. Here, the MATLAB code of `1-magic is

used[161].

6.6 Solve for (o, h)

As we discussed in previous sections, the first derivative of a real-world image, ∇o, is

sparse. Based on the compressed sensing theory, in the absence of noise, ∇o can be exactly

recovered from a small number of linear measurements given that the linear transform

matrix is known. This section investigates how to make use of the `1-norm minimization

for the recovery of ∇o with the unknown h. Also, for the completeness of the algorithm,

a Poisson image reconstruction method presented in [164, 165] is described to estimate an

image from its gradient image.

6.6.1 Deduction

Our algorithm begins from the definition of an image gradient and its basic property. Given

an image i(x, y), its derivative is defined by

∇i =

 ∇ix

∇iy

 =

 ∂i(x,y)
∂x

∂i(x,y)
∂y

 (6.14)

where ∇i denotes the gradient of image i, ∇ix and ∇iy represent the gradient on x and

y directions, respectively. For a particular pixel in a discrete image, the approximation

of the derivative can be simply calculated by the filters:

[
−1 1

]
for x direction and[

−1 1

]T

for y direction. Let g denote

[
−1 1

]
, we have another expression for the
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derivatives using convolution operator

∇ix = i ∗ g

∇iy = i ∗ gT
(6.15)

According to Eqs.6.3 and 6.15, ∇i then is expressed as

∇ix = i ∗ g

= o ∗ h ∗ g

= o ∗ g ∗ h

= ∇ox ∗ h

(6.16)

and

∇iy = o ∗ gT ∗ h = ∇oy ∗ h (6.17)

In other words, ∇i = ∇o ∗ h. This two-dimensional convolution operation can be trans-

formed to matrix-vector form such as the form c = As (please refer to Section 6.7). As

discussed, natural image gradient is sparse distributed, so that ∇o can be exactly recovered

from its measurements ∇i according to compressed sensing theory, if h is known.

In fact, we know nothing about the PSF, h, except for some simple prior and assump-

tions. Here, we suppose that the kernel h also has sparse density, which means that the

gradient of h, ∇h has zero values in most supporting area and only have massive values in

the rest. In the same way as deducing ∇o, we have ∇i = o∗∇h. Again, ∇h can be exactly

recovered from ∇i if o is known.
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6.6.2 The Algorithm

In this subsection, we sketch out our algorithm for the removal of the remaining blur in the

image. This method includes two important steps which are performed iteratively until a

reasonable result is obtained: given ∇i and an estimate of h, calculate an estimate of ∇o;

given ∇i and an estimate of o, calculate an estimate of ∇h. In the first step, the `1-norm

minimization is used for image recovery, and in the second step, the TV minimization is

applied.

Tab.6.2 is the sketch of our algorithm. Note that an estimate of the true image or

the PSF should be made before running the algorithm. A nil initiation will not hurt the

algorithm, but a useful estimate will speed up the convergence of the minimization. When

the estimate gradient of the true image or the PSF is obtained, a reverse processing should

be applied to the gradients to recover the signals (i.e., o and h), so that they can be used in

the following iteration. This reverse processing is via Poisson image reconstruction method,

which will be described in the next subsection.

6.6.3 From Gradients to Image

In our algorithm, we use the method based on Poisson image reconstruction algorithm

presented in [164, 165] to form the density image after the estimate image gradient is

calculated. For the completeness of this thesis, we give a brief description of this method.

Let g denote the intensity image reconstructed from ∇o, a direct method is to minimize

||∇g−∇o||, so that ∇o ≈ ∇g [166]. By introducing a Laplacian and a divergence operator,

g can be obtained by solving the Poisson differential equation[167, 168].

∇2g = ∇(∇o) (6.20)
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Table 6.2: The sketch of the new algorithm.

1. Compute ∇i; set k = 0, the number of iterations kmax, and the initial esti-
mation of ok=0; set ε and η

2. Repeat while k < kmax

• Estimate ∇hk+1 by optimizing:

min TV (∇hk+1) s.t. ||ok ∗ ∇h−∇i||`2 ≤ η (6.18)

Form hk+1 from ∇hk+1;

• Estimate ∇ok+1 by optimizing:

min ||∇ok+1||`1 s.t. ||hk+1 ∗ ∇ok+1 −∇i||`2 ≤ ε (6.19)

Form ok+1 from ∇ok+1;

• k=k+1
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Since both the Laplacian ∇2 and ∇ are linear operators, approximating them using stan-

dard finite differences yields a large system of linear equations.

Several methods have been proposed to solve Eq.6.20. For example, a full multigrid

method in [169] is presented to solve the Laplacian equation with Gaussian-Seidel smooth-

ing iterations, and a more efficient approach is to use a rapid Poisson solver, which uses

a sine transform based on the method in [167] to invert the Laplacian operator. In our

algorithm, we employ the method proposed by Weiss[164]. The method is based on the

assumption that the derivative filter is sparse. Then a maximum-likelihood estimator is

derived to recover the original image under this assumption.

6.7 Results

We test our algorithm using two different data sources: image frames taken through at-

mospheric turbulence and images taken through moving water surface. In the former case,

both simulated and real-world data are tested.

The first test image sequence is the anisoplanatic distorted Lenna sequence used in

Chapter 4. Here, we reiterate how the sequence is simulated: five different Kolmogorov

phase screens with D/r0 = 1, 3, 5, 7, 2 are used to produce a set of simulated turbulence

affected images. This method employed the Layered algorithm in [134], using a simulated

monochromatic wavelength of 500 nm, simulated layers at distances 5, 45, 55, 70, 105 m

from the telescope and simulated sensor used to gather the imagery, (D = 0.14m, f14,

∆pixel = 7µm). In this case, a set of 100 images was produced, using a different randomly

generated phase screens for each layer and each image.

The input of our blind deconvolution method is the result of the bispectrum technique,

and the output is compared with the input (i.e., the estimate by the bispectrum technique),
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the ground truth image and one of the distorted images in Fig.6.3. Since we have a ground

truth image, a numeric measurement (i.e., SNR) is used to determine the image quality.

Fig.6.3 (c) is a restoration using bispectrum technique, which is the input to our blind

deconvolution. The end result is shown in Fig.6.3 (d), which has the highest SNR with

respect to the true image. Visually, this can be seen to be correct especially in the feathered

region of the hat.

The second experiment is a real-world data, which is also obtained with a portable

0.14 m dia f14 Cassegrain telescope and progressive scan CCD camera. A test scene to be

observed is about 10km distant and the exposure time is on order of 5ms.

Fig.6.4 shows the result (b) obtained only by the bispectrum method and another result

(c) with removal of residual blur by our blind deconvolution method using (b). Also, one

sample of short exposure images has been shown. Visually, (c) gives a much sharper version

of the potential image and has more detail, which indicates that the blind deconvolution

significantly boosts the high frequency content in (b), even though it produces some artifacts

such as the “ringing” effect.

The final experimental data are from the image sequence which is taken in the case of

“looking through-the-water imaging”, which has been discussed in Chapter 5. The results

are shown in Fig.6.5. Again, since we have no true image, we cannot use any numeric

measure for comparison. From visual inspection, one can tell that (c), the result by the

blind deconvolution method. It is sharper, for example, the English letters in the image is

easier to read.

Our experiments seem show the proposed iterative algorithm does converge empirically,

though so far we have no theoretical convergence proof, and this can be an important future

work.
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(a) The true image (b) SNR = 11dB

(c) SNR = 19dB (d) SNR = 23dB

Figure 6.3: Comparison of results. The result by our blind deconvolution method (d) is
compared visually with the estimate by the bispectrum technique (c), the ground truth
image (a) and one of the distorted images (b). Note that (d) has the highest SNR with
respect to the true image, and the result from (c) is the input to (d).
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(a) A sample input frame

(b) Result by the bispectrum technique

(c) Remove the residual blur by the BD method

Figure 6.4: Comparisons of results. (a) A sample of input frame; (b) the result obtained
only by the bispectrum technique; (c) the result which is further processed by blind decon-
volution.
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(a) A sample input frame

(b) Result by the bispectrum technique

(c) Remove the residual blur by the BD method

Figure 6.5: Comparisons of results. (a) A sample of input frame; (b) the result obtained
only by the bispectrum technique; (c) the result which is further processed by blind decon-
volution.
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6.8 Summary

In this chapter, we have investigated some characteristics of the estimated image obtained

by methods developed in previous chapters. We pointed out that this estimated image is

geometrically correct (i.e., has no region to region phase corruption) after the the phase

correction by the bispectrum technique. However, it has remaining blur due to the “tem-

poral averaging” in the computation of the Fourier modulus. In other words, the estimated

image is still blurred by a spatial-invariant LPF.

An improvement is proposed: based on the result of previous methods, a further pro-

cessing step (i.e., a blind deconvolution method) is applied to the result. This step aims

to remove the residual blur remaining in the previous result and boost the high frequency

information in the spatial image.

A novel blind deconvolution method is studied, which makes use of the natural image

prior (i.e., the gradients of a natural image are sparsely distributed). To solve for an

estimated image gradient, compressed sensing theory is employed, in particular, the `1-

norm minimization is used. The performance of the new algorithm is demonstrated by

data recorded in two cases: images taken through atmospheric turbulence and images

taken through moving water waves.
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Chapter 7

Closing Remarks

7.1 Summary

This thesis has investigated methods for recovering a single, superior quality and high

resolution still image from a sequence of short exposure images taken through turbulent

media, by extracting information contained in the sequence. The observation of the object

of interest in wide field-of-view suffers from the rapidly changing turbulence which severely

distorts the image sequences, with the effective PSFs of the recorded images to be both

spatial and time variant. To overcome the distortions, images with short enough exposure

time are taken to freeze the turbulence effect, and the information of the instantaneous

turbulence retained in them are used to reconstruct a single estimate of the true image.

There are three main technique components in this thesis: (1) the bispectrum technique

for image restoration; (2) the lucky region method for reconstruction and super-resolution,

and (3) use of a natural image prior, i.e., sparsity, for blind deconvolution.

In addition, a novel application and adaptation of the above methods to solve imaging

through and across a turbulent water surface has been studied, and very promising results
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are obtained.

The Bispectrum Technique An efficient technique has been investigated for extracting

the Fourier phase information of the object of interest from a turbulent short exposure image

sequence. This technique makes use of the averaged bispectrum of a set of short exposure

images. Its performance has been demonstrated empirically, and the factors affecting the

performance have been analyzed and verified experimentally.

The theoretical foundation of why and how the bispectrum technique works in wide-

area/near-to-ground imaging has been explained. The averaged bispectrum of an image

set contains the full Fourier phase information of the object, though in some scrambled

version. We show how to unscramble it and recover the correct phase information. The

averaging operation also effectively suppresses the inevitable additive zero-mean Gaussian

noise.

The difficulties in using the bispectrum in practice are caused by the phase ambiguity,

and by the large demands in storage and computational time. These issues have been

discussed in detail, and we have provided a few practical solutions.

Partitioning the image into subregions is used to address the huge memory needs for

the computation. Also, the feasibility of using parallel computing has been discussed, in

which by careful coding, realtime implementation is possible.

Our extensive experiments have validated the bispectrum-based phase-recovery algo-

rithm developed in this thesis. However, by carefully examining the remaining (residual)

blur, we explain why the result (after this phase recovery stage) is still subject to high

frequency content loss, leading to a result that is not exactly diffraction-limited resolution

but having perceivable remaining uniform blur.

We have shown in the preceding chapter how this can be remedied by applying a further
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blind deconvolution technique using a natural image prior to the current result (which is

another contribution of this thesis).

The Lucky Region Method In astronomical imagery it has been shown that, one

can find a lucky image with negligible distortion or even approaching diffraction limited

resolution among a large number of short exposure images. The method of finding lucky

images and using them to reconstruct a single superior image is termed the lucky imaging

technique. This method implies making use of possibly useful information and getting rid

of harmful ambiguities retained in short exposure images.

Under typical seeing conditions, the probability of obtaining a lucky image exponentially

decreases quickly as (D/r0)
2 increases. When D/r0 increases to 10, then 1 million short

exposure images are needed to obtain one lucky image. Conditions will be poorer for

anisoplanatic images.

This condition is improved by a simple yet effective modification, called the lucky re-

gion method, proposed in this thesis. This method partitions an image into a number of

subregions (accordingly, for a sequence of images, a number of sequences of subregions are

produced), and selects lucky regions for subsequent processing rather than entire lucky im-

ages. We theoretically show that the probability of obtaining a lucky region is significantly

improved by this method.

Bicoherence as an image quality indicator was introduced and shown to be effective

for lucky region selection, which detects and ranks the degree of quadratic phase coupling

among different Fourier phase components in an image, and lucky regions are chosen ac-

cording to the ranking. It has been shown that the application of this method in the

bispectrum technique helps to produce better results.

This technique has been successfully applied in two applications: image restoration, and
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image super-resolution, for wide-area imaging. Experiments have convincingly indicated

that results are superior to those using the whole set of image data.

Natural Image Prior Used for Blind Deconvolution We have shown that, while the

resultant images obtained after the bispectrum-based speckle processing are geometrically

correct, there is however residual blur caused by the “averaging operation” used in the com-

putation of averaged bi-spectrum. To remove the residual blur and enhance the otherwise

lost high frequency information, a post-processing stage, based on blind deconvolution, is

recommended and investigated.

In order to better regularize the ill-posed image blind deconvolution problem, we have

paid special attention to any available prior knowledge peculiar to our wide-area/near-to-

ground application that may be taken advantage of. In particular, the objects of interest

in our case are often from a natural scene, and often extended, i.e. with considerable size.

To (statistically) specify this (seemingly too generic or weak) knowledge of the object, we

use a general natural image prior that is based on the fact that natural signals often have

sparse gradients.

Recently, sparse signal processing has received considerable attention from several re-

search communities, under a common and newly emerging theoretical framework known as

compressive sensing.

Based on techniques in compressive sensing (in particular, the `1-norm minimization),

this thesis made an initial and preliminary attempt to develop a new blind deconvolution

method. It is basically an iterative method, where the estimation of image gradients and

the estimation of PSF gradients are employed in an iterative fashion.

The performance of this method has been tested empirically and the results compared

with those of the methods introduced in earlier chapters, both with atmospheric turbulence
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affected data and moving water surface affected data. The SNR is improved in simulated

experiments. In real-world experiments, the resultant images are sharper.

Water Imaging This thesis has also studied another important image restoration prob-

lem, i.e., imaging through or across a turbulent water surface.

We notice (through theoretical analysis and experimental observation and validation)

that the condition for water imaging possesses the same or similar statistical characteristics

to atmospheric turbulence.

We have studied two typical scenarios of water imaging. The first scenario is imaging

through a moving water surface (an object lies stationary on the ground under the water,

and a detector hangs stationary above the water surface and records images through the

water surface). The second scenario is imaging by the reflection from the moving water

waves (an object hangs still above the water surface, and a detector hangs stationary on

the other side and records images reflected by water surface). For both scenarios we have

proposed an efficient method for removing the distortion due to the moving water surface.

Similar to the case of imaging through atmospheric turbulence, when the water wave

length is shorter than the object of interest, images taken in this case have an anisoplanatic

PSF. To improve the conditions, segmentation and the lucky region technique have been

applied, followed by the bispectrum for image region reconstruction.

This application has been tested with real data in both cases. Impressive results have

been obtained, which indicates that the research in this thesis can be simply extended to

diverse areas where the statistical characteristics of the distorting medium are similar to

those of atmospheric turbulence.

To our knowledge, this work represents an original contribution of the thesis to this

special water imaging problem.
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7.2 Future Work

This final section discusses some possible avenues for future research in wide-area/near-to-

ground imaging and extended applications of the techniques described in this thesis.

Sparsity used in the bispectrum technique A natural image prior, sparsity, helps to

boost high frequency content in the classical blind deconvolution, which is performed on a

single image. Intuitively, we feel that this prior can be applied to image restoration using

multiple images, and even to be an internal part of the bispectrum technique.

Since the phase of the object relates to the phase of the averaged bispectrum by linear

operations, not by other ways, in the bispectrum based method, it is possible to embed the

prior in the restoration process. But how to involve the prior when computing the Fourier

phase and magnitude of the object from the averaged bispectrum, we do not yet have a

clear idea. This will be a possible next step of our future research.

Application to wide-area moving targets Speckle imaging and techniques described

in this thesis are proposed for image reconstruction for static objects in wide-area imaging.

These methods have been proved successful to obtain diffraction limited resolution or high

resolution images. In other cases, when the object of interest has some sort of relative

motion to background, the frames not only suffer from a position dependent and time

variable PSF due to the effect of atmospheric turbulence, but the position of the object

changes from frame to frame, making image reconstruction of the object more difficult.

The research in this thesis may be able to deal with the task with some modifications

to the algorithms. Indeed, Carrano et al. have presented a simple modification to the

bispectrum technique for the task. Their approach, applies the bispectrum method, tracks

and extracts out the target with maximum background elimination. In this way, the motion
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of the object to background is removed and the object is treated as a static object when

performing the general bispectrum method to the extracted images[5].

Future research may follow this idea: a preprocessing step to produce images with ap-

parently stationary objects, followed by speckle imaging techniques such as the bispectrum

to enhance the imagery. Practical applications might include recognition of motor cars on

a highway, aircraft from high altitude, and animal observations and tracking outdoors.
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Appendix A

Parallel Implementation–Some

Future Thoughts

Parallel computing is another solution for large data processing problems which can be

divided into smaller ones. Smaller instruction sets and data sets are sent to different

computers or processors, the results from them are then sent back to the main memory

for further processing. Here, we give some future thoughts and theoretical analysis on the

feasibility of parallel implementation for large scale image bispectrum computation.

Traditionally, the implementation of the strategy demonstrated in Fig.3.6 on a personal

computer must be serial. This means that the algorithm is constructed and implemented

as a serial stream of instructions, and only one executes at a time. In this context, before

the program start to process the 2nd series of data, it has to wait until the 1st subsequence

of data has been fully processed.

Since the process of the subsequences of data is isolated, i.e., the calculation of one

data set is independent on the others, the computation of the bispectrum and phase re-

covery from the calculated bispectrum can be implemented in parallel. Thus different data
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Figure A.1: The ith (i = {1, 2, · · · , N}) subsequences are sent to different processors to
process, the results are then transferred back to the main memory for further process.
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sets with corresponding instructions can be sent to different computers (or processors) for

processing, as in Fig.3.8.

Suppose there are N processing notes connected to a host computer; the program di-

vides the input data into N subregions, distributes them among the processing notes with

processing instructions, then waits for the results to be returned. Once all subregion results

are returned, the host collates them.

With proper and careful development of the code, parallel computing can significantly

accelerate the speed of the algorithm. Realtime image restoration using the bispectrum

may be realized through parallel computing, proper strategy and code optimization. This

would be of great benefit to the AO techniques, which need realtime reaction to the captured

signals.

The three methods can work with and benefit each other with carefully designing the

algorithms. The first two are able to be completed only using a personal computer. Only

calculating the non-redundant slice of the bispectrum improves the conditions of the algo-

rithm. However, the computing period is still too long for real-time implementation. This

difficulty can be overcome by the third method which divides the task into a number of

smaller tasks and each subtask is solved by a separate processor.

To our knowledge, only a few other methods have been proposed for the problem. Tyler

et al designed a “part-bispectrum” approach to estimate the phase in parts rather then to

estimate an entire phase spectrum[54]. Their methods named “parallel part-bispectrum

algorithm” can be extended to run on parallel machines . Some methods speed up the

computations by designing a fast algorithms by using the selected and useful frequency

components[52, 43]. These methods are different from ours, which recovers a number of

subregions using parallel strategy, but is not about computing the bispectrum part by part.

As there are various available computing architectures for parallel computation, and
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possibly more are emerging, we have deliberately not specified which particular type of

parallel architecture we are referring to. For the near future, we were planning to implement

and test our algorithms on a multi-core machine, and a GPU system—nowadays these two

are the most affordable parallel super-computers for a typical PC user.
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Two-dimensional Discrete

Convolution

When using compressed sensing theory and `1-norm minimization, no convolution oper-

ation is permitted. However, in image processing, and in the imaging model we use,

two-dimensional discrete convolution is a basic operation. Fortunately, convolution is a

linear operation and can be transformed to matrix-vector form, which favours the forms

in Eq.6.10. This section presents two methods to convert classical discrete convolution to

matrix-vector form: one is general and usually mentioned in literature and the other is

new, simple and only proposed in this thesis.

B.1 General Matrix Construction

Let us repeat the definition of convolution of Eq.(3.10),

f ∗ g =

∫ ∞

−∞
f(x)g(ξ − x)dx (B.1)
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If f and g are two-dimensional, and discrete: f = f(m, n), for (0 ≤ m ≤ N1 − 1, 0 ≤

n ≤ N2 − 1) and g = g(m, n), for (0 ≤ m ≤ M1 − 1, 0 ≤ n ≤ M2 − 1), the two-dimensional

convolution is

f ∗ g = f(m, n) ∗ g(m, n)

=
∑N1−1

k=0

∑N2−1
l=0 f(k, l)g(m− k, n− l)

=
∑M1−1

k=0

∑M2−1
l=0 g(k, l)f(m− k, n− l)

(B.2)

for (m = 0, 1, · · · , M1+N1−2; n = 0, 1, · · · , M2+N2−2). In practical application, another

expression for the discrete convolution operation is often used:

f ∗ g = Mg
~f (B.3)

where ~f is a vector built by the rows of f . Denote the ith row in f as fi,

~f = (f0, f1, · · · , fN1)
T (B.4)

Mg is a matrix defined by

Mg =



M(g1,N2)

M(g2,N2) M(g1,N2)

...
...

. . .

...
... M(g1,N2)

M(gM1
,N2)

...
...

M(gM1
,N2)

. . .
...

M(gM1
,N2)


where Mgi,N2 is a matrix constituted for the convolution of f and ~gi, i = 1, 2, ...,M1:

f ∗ ~gi = Mgi
~f (B.5)
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where ~gi = gT
i = (gi,0, gi,1, · · · , gi,M2)

T , M(gi,N2) is given

Mgi
=



gi,0

gi,1 gi,0

...
...

. . .

...
... gi,0

gi,M2−1
...

...

gi,M2−1
. . .

...

gi,M2−1



This type of expression converts the convolution operation to linear algebra operations,

reducing the implementation complexity when considering the inverse problem of convolu-

tion. However, Mg is too large to be stored and computed in Matlab for an image with

common size of, say, 512× 512 pixels.

In fact, Mg constructed in this way has many redundant entries which are zero valued

and will slow down the speed of the computation. In other words, Mg can be made more

tidy and easy to use. To do so, this thesis develops a simple but more efficient method,

which is described in the next subsection.

B.2 New Matrix Construction

This thesis proposes a simple Mg construction method. The created Mg has no redundancy

and is much less demanding in storage and computation. It is an M1M2xN1N2 matrix,
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which is defined as

Mg = (M0,0, M0,1, · · · , M0,M2 , M1,0, M1,1, · · · , M1,M2 ,

· · · , · · · , MM1,0, MM1,1, · · · , MM1,M2)
T

(B.6)

where Mk,l(0 ≤ k ≤ M1 − 1, 0 ≤ l ≤ M2 − 1) are vectors with size 1xN1N2 entries, which

are formed by an area in g. The center of the area is at (k, l) and the size is N1xN2.

~Mk,l = ((g
k−N1

2
,l−N2

2
, g

k−N1
2

,l−N2
2

+1
, · · · , g

k−N1
2

,l+
N2
2

, · · · ,

g
k+

N1
2

,l−N2
2

, g
k+

N1
2

,l−N2
2

+1
, · · · , g

k+
N1
2

,l+
N2
2

)
(B.7)

Here is an example,

g =



1 2 5 7

27 9 2 23

11 3 6 7

6 8 9 12



f =


2 −1 5

1 2 3

−2 7 3


From Eqs.B.4 and B.6, we calculate vector ~f and matrix Mg, where ~f = f ′T

f ′ =

(
2 −1 5 1 2 3 −2 7 3

)
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and

Mg =



0 0 0 0 1 2 0 27 9

0 0 0 1 2 5 27 9 2

0 0 0 2 5 7 9 2 23

0 0 0 5 7 0 2 23 0

0 1 2 0 27 9 0 11 3

1 2 5 27 9 2 11 3 6

2 5 7 9 2 23 3 6 7

5 7 0 2 23 0 6 7 0

0 27 9 0 11 3 0 6 8

27 9 2 11 3 6 6 8 9

9 2 23 3 6 7 8 9 12

2 23 0 6 7 0 9 12 0

0 11 3 0 6 8 0 0 0

11 3 6 6 8 9 0 0 0

3 6 7 8 9 12 0 0 0

6 7 0 9 12 0 0 0 0


This new method produces the same convolution result as when using the “filter2” function

in MATLAB. The construction of Mg is easier to understand and the storage of Mg declines

significantly (no redundant entries). It can be freely used in any MATLAB code.
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