
Quasi-Monte Carlo methods with applications to partial
differential equations with random coefficients

Author:
Nichols, James

Publication Date:
2014

DOI:
https://doi.org/10.26190/unsworks/16796

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/53480 in https://
unsworks.unsw.edu.au on 2024-04-20

http://dx.doi.org/https://doi.org/10.26190/unsworks/16796
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/53480
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

QUASI-MONTE CARLO METHODS WITH APPLICATIONS TO
PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM

COEFFICIENTS

A thesis submitted for the degree of

Doctor of Philosophy

By

James Nichols

B.Sci.(Hons)

School of Mathematics,

The University of New South Wales.

May 2014

Abstract

This thesis provides the theoretical foundation for the component-by-component (CBC)

construction of randomly shifted lattice rules that are tailored to integrals over Rs aris-

ing from Darcy-flow PDE problems where the permeability coefficient is given by a log-

normal random field. We focus on the problem of computing the expected value of

linear functionals of the solution of the PDE, which gives rise to integrals of the form∫
Rs f(y)

∏s
j=1 φ(yj) dy with a univariate probability density φ. Our general strategy is

to first map the integral into the unit cube [0, 1]s using the inverse of the cumulative

distribution function of φ, and then apply quasi-Monte Carlo (QMC) methods. How-

ever, the transformed integrand in the unit cube does not fall within the standard QMC

settings from the literature. Therefore, a non-standard function space setting for inte-

grands over Rs is required for the analysis. Such spaces were previously considered in

[39], however due to the needs of the PDE problem, we must extend the theory of the

aforementioned paper in several nontrivial directions, including a new error analysis for

the CBC construction of lattice rules with general non-product weights, the introduction

of an unanchored weighted space for the setting, the use of coordinate-dependent weight

functions in the norm, and the strategy for fast CBC construction with POD (“product

and order dependent”) weights.

Our method of numerical approximation of this problem includes piecewise linear finite

element approximation in physical space, the truncation of the parameterised expansion of

the random field, and QMC quadrature rules for computing integrals over parameterised

probability space which define the expected values. We give a rigorous error analysis for

the effect of all three of these types of approximation. We show, using the non-standard

function space setting developed in the thesis, that the quadrature error decays with

O(n−1+δ) with respect to the number of quadrature points n, where δ > 0 is arbitrarily

small and where the implied constant in the asymptotic error bound is independent of

the dimension of the domain of integration.

i

I hereby declare that this submission is my own work and to the

best of my knowledge it contains no materials previously published

or written by another person, nor material which to a substantial

extent has been accepted for the award of any other degree or

diploma at UNSW or any other educational institution, except

where due acknowledgement is made in the thesis. Any contribu-

tion made to the research by others, with whom I have worked at

UNSW or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the

product of my own work, except to the extent that assistance

from others in the project’s design and conception or in style,

presentation and linguistic expression is acknowledged.

James Nichols

ii

Acknowledgements

I can not thank my supervisors Ian and Frances enough. Your kindness and humour has

made the PhD entertaining and invigorating. There is no gratitude that can repay the

opportunities you gave me in allowing me to join you in your endeavours. I must thank

Ivan Graham, Rob Schiechl, and Christoph Schwab for being great teachers, even over

great distances, for the chance to work with you on these projects, and for accommodating

me on my visits abroad.

I’d hope I’ve shown the gratitude my friends and family deserve. The privilege of

undertaking this degree would not be possible without the support that you all have

given whether knowingly or not, and should not be underestimated. Particular thanks to

my family Jennifer, John and Alex, and to Pia, thank you for the inspiration you give me

daily. To my housemates past and present at The Barn, thank you for a great chapter

of my life. And to the UNSW Maths and Stats family, which has proven to be such a

cohesive, driven, exciting and unpredictable bunch, thank you for to opportunity to join

your ranks as a friend and peer. And one last thanks to the coffee gang.

iii

Contents

Chapter 1 Introduction and motivation 1

1.1 The subject of this thesis . 1

1.2 The main achievements of this thesis . 2

1.3 The outline of this thesis . 3

Chapter 2 QMC methods and shifted lattice rules 5

2.1 Tractibility . 8

2.2 Lattice rules and classical theory . 9

2.3 Reproducing kernel Hilbert spaces . 11

2.3.1 QMC in reproducing kernel Hilbert spaces 13

2.3.2 Korobov spaces . 15

2.3.3 Sobolev spaces . 15

2.4 Weighted spaces . 16

2.5 Weighted Korobov spaces . 18

2.6 Weighted Sobolev spaces . 20

2.6.1 Relationships with discrepancy . 23

2.7 Component-by-component construction 24

Chapter 3 Unbounded functions with general weights 27

3.1 Motivating applications . 29

3.1.1 Application to option pricing problems 30

3.1.2 Application to maximum likelihood problems 30

3.2 Function space setting . 31

3.2.1 General framework of reproducing kernel Hilbert spaces 31

3.2.2 Anchored spaces . 33

3.2.3 Unanchored spaces . 36

3.3 Main results . 41

3.3.1 Reformulating the shift-averaged worst-case error for lattice rules . 41

3.3.2 Error bound for the CBC construction 42

3.3.3 Examples of ψj and φ . 49

Chapter 4 The porous flow problem 53

4.1 Preliminaries . 58

4.2 Discretisation and truncation . 59

v

4.2.1 Spatial regularity . 61

4.2.2 Discretisation error . 64

4.2.3 Dimension Truncation Error . 64

4.3 Quadrature error . 67

4.3.1 Regularity with respect to the parametric variables 67

4.3.2 Analysis of the QMC integration error for G(ush) 70

4.3.3 Choosing the weight parameters γu 74

4.3.4 Choosing the weight functions ψj 78

4.4 Final result . 81

Chapter 5 Implementation and numerical results 83

5.1 Implementing the CBC algorithm . 83

5.1.1 Fast CBC construction for POD weights in the unanchored space . 84

5.1.2 Fast CBC construction for POD weights in the anchored space . . 89

5.1.3 Computing θj . 89

5.2 Results of the CBC algorithm . 90

5.2.1 Scaling the weights . 93

5.3 Numerical results of the porous flow problem 96

5.3.1 Exponential ψj . 99

5.3.2 Issues with setting αj . 101

5.3.3 Gaussian ψj . 104

5.4 Conclusion . 105

References 109

vi

Chapter 1

Introduction and motivation

1.1 The subject of this thesis

Quasi-Monte Carlo (QMC) methods have proven to be very effective at tackling high

dimensional integration and approximation problems. QMC methods involve n-point

quadrature to approximate an integral over the unit cube [0, 1]s, where the quadrature

points are chosen deterministically from the [0, 1]s. There are countless examples of

problems to which QMC provides an invaluable tool, including, but not limited to, math-

ematical finance, ray-tracing in computer graphics, agent-based modelling and statistical

maximum-likelihood problems. In this thesis we explore the application of QMC methods

of PDEs with random coefficients.

We are concerned with a particular problem of single phase fluid flow in a saturated

porous medium. We call this the porous-flow problem. Such a model can be used to simu-

late the flow of fluids through ground-rock or soils, for the purpose of aquifer management

or the study of pollutant spread. To model this we consider the following second-order

elliptic PDE

−∇ · (a(x)∇u(x)) = f(x) ,

which we solve in some bounded domain D ⊂ Rd for d = 1, 2 or 3. We wish to solve

for u, the residual pressure field. The coefficient a is provided as the permeability of the

underlying medium. We are interested in generalising this to let the coefficient a be a

random field. This step reflects the roughness of the permeability field for rock formations,

as well as the fact that, to some degree, it is impossible to have complete knowledge of

the permeability of a given region in the earth’s crust, especially at small scales. Thus

we write a(x,y), for y ∈ RN, where RN is a (parameterised) probability space equipped

with a probability measure ρ. The solution u(x,y) must now also depend on y.

We are thus interested in finding statistical answers to our questions, for example

“what is the expected time for a pollutant particle to cross the domain?”. In asking

for an expected value of a quantity, the answer must involve an integration over the

probability space RN. More specifically, if for example the functional G(u) provides us

with the crossing time for a particle, where u is a solution of the PDE with a particular

realisation of the field a, then we seek the expectation Ey[G(u)] =
∫
RN G(u) dρ(y).

There are many techniques in the literature to solve this problem, including variants

of stochastic collocation and stochastic Galerkin methods. Here however, we take the

following approach of three approximations. The first approximation is to be able to solve

1

the PDE for a given field realisation. This we do with piecewise continuous finite element

methods (FEM). The second is to truncate y, that is, reduce out parameterised probability

space to a finite dimensional space Rs, making the integral above finite (but possibly

quite high) dimensional. And finally we apply QMC methods to perform the numerical

integration on the truncated probability space. Here we analyse the contribution towards

the approximation error of all three elements.

We pay particular attention to the analysis of the QMC error. We apply shifted lattice

rules, a type of QMC point sets. Shifted lattice rules may be constructed for integrands

belonging to certain weighted high-dimensional functions spaces, using the component-

by-component (CBC) algorithm, a greedy algorithm. We can prove that the error of

the lattice rule converges fast in these function spaces. Unfortunately however, because

of the unbounded nature of the domain of integration Rs, the integrand for the PDE

problem does not belong to to the usual Sobolev type function spaces used throughout

the literature of lattice rules. Thus we open up a new problem in the realm of shifted

lattice rules, where we must consider a function space suitable for our PDE problem, then

prove that lattice rules obtain good convergence in these spaces.

The success of this technique relies on the ability of the QMC method to perform

better than the alternatives, particularly Monte Carlo (MC) methods, while being easy

to use, and readily accessible to practitioners. Throughout the paper we tackle many

technical results, eventually proving the results we desired, which is certainly beyond the

scope of a practitioner. However the outcome is beautiful in its simplicity – the generating

vector is no more than a vector of integers, and use of lattice rules is simple. We conclude

the thesis with numerical experiments whereby we construct these lattice rules for our

custom weighted function space that is tailored fit to the PDE, and demonstrate that

they perform well over a wide variety of parameters.

1.2 The main achievements of this thesis

Some key achievements in this thesis can be summarised as follows.

1. A novel weighted, unanchored, and unbounded space has been derived, and the

corresponding reproducing kernel derived.

2. A proof that lattice rules built using the CBC construction, for the unanchored

space with general weights and coordinate dependent weight functions, can achieve

good or even optimal O(n−1+δ) theoretical convergence.

3. We have described the details of implementing the fast CBC algorithm for the unan-

chored space with POD weights, including the necessary procedures to use matrix

storage and FFT methods to speed up calculation, and have outlined techniques to

avoid numerical issues to do with POD weights with factorial order dependence.

4. We present results for the analysis of the truncation and finite element approxima-

tion error of the PDE with parameterised random coefficients has been provided.

2

5. It has been demonstrated that the linear functionals of the solution u of the PDE,

under the right conditions, exists in the weighted unanchored space derived earlier,

thus the QMC results of good lattice rules apply to this problem.

6. The CBC algorithm for these novel weight unbounded spaces as well as a QMC-

finite element solver have been implemented, and tested, and have been shown to

perform very well against MC approximation.

Many of these achievements arose from work with Ian Sloan, Frances Kuo, Ivan Gra-

ham, Rob Scheichl, and Christoph Schwab, with the results of our collaborations in [46]

and [24] submitted for publication.

1.3 The outline of this thesis

In Chapter 2 we begin with a survey of QMC methods and lattice rules. We review the

notions of discrepancy and worst-case error and other measurements of “good” lattice

rules. Following this is a survey of reproducing kernel Hilbert spaces, with their appli-

cations to QMC. We then review weighted spaces, including the weighted Korobov and

weighted Sobolev spaces. We describe the CBC algorithm, and provide results from the

literature that demonstrates that the algorithm provides good lattice rules.

In Chapter 3 we make the necessary generalisations of the theory from the preceding

chapter to be able to apply our QMC methods to the porous-flow problem. This includes

the derivation of the weighted unanchored and unbounded function space. We also review

the anchored space that is covered in earlier publications. We prove here that lattice rules

constructed with the CBC algorithm in the weighted unanchored space, with general

weights, can show optimal convergence.

In Chapter 4 we take a turn towards the Darcy-flow PDE problem. We carefully

specify the PDE and the random field, and make our assumptions on the smoothness of

the random field and hence the regularity of the problem. Then we specify the integral

problem that we wish to approximate as the expectation of the functional of the pressure

field over the underlying probability space. We then start by providing results for the

finite element as well as truncation errors. Following this we analyse the behaviour of the

partial derivatives of the integrand with respect to the stochastic variables (rather than

the spatial variables), bounding the partial derivatives, such that we can show that the

integrand belongs to our unanchored weighted space. Finally we state our convergence

results for this QMC-FE method.

In Chapter 5 we examine the implementation and numerical results of our theoretical

work in this thesis. We outline the details of the fast CBC algorithm for the unanchored

space, including a method to cope with POD weights with strong order-dependent growth.

We also propose a method to use the CBC algorithm on the anchored space, which is

otherwise difficult for technical reasons. Also involved in the CBC algorithm is the ability

to calculate the shift-average kernel, this must be done with one-dimensional numerical

integration, which we discuss. Then present some worst-case error results for a few model

problems. Finally we tackle the PDE problem, defining a model problem to apply our

3

QMC quadrature. We define a range of parameters and perform the CBC algorithm,

tailored to the PDE. We present the worst-case error results, as well as the quadrature

error results. Included in this is a discussion of unstable parameters, and difficulties we

had in setting various parameters of the weighted unanchored space parameters to fit the

PDE problem.

4

Chapter 2

QMC methods and shifted lattice rules

We are concerned here with the standard problem of numerical integration on the s-

dimensional hypercube [0, 1]s,

Is(f) :=

∫
[0,1]s

f(y) dy,

using an n-point approximation, or quadrature rule,

Qn(P; f) :=
1

n

n∑
k=1

f(t(k)),

where the quadrature points P = {t(k)}nk=1 are a set of well-distributed points in [0, 1]s.

While many practical settings for numerical integration may be on domains other than

[0, 1]s, our theory here easily applies to any compact domain in Rs that can readily be

mapped back to [0, 1]s with no singularities in the mapping.

There are many techniques of choosing quadrature points t(i) available to us. Perhaps

the most commonly used technique is Monte Carlo quadrature, where the points are

chosen randomly within [0, 1]s, usually with a uniform distribution. In addition to this

there are quasi-Monte Carlo (QMC) methods, where the quadrature points are chosen

deterministically but to perform better than their random counterparts. Some QMC

point sets include Sobol′, Halton and Faure sequences, and lattice points. A review of

these QMC methods and more can be found in [49].

An essential part of estimating Is(f) with numerical quadrature is the ability to esti-

mate the error of our approximation, that is to be able to estimate the difference between

the our target integral and the approximation, |Is(f)−Qn(P; f)|. Ideally we would like to

find bound of the error with respect to the number of quadrature points n, for example a

bound of the form Cn−p for some p > 0, where the constant C may or may not depend on

s. For example, we know that for Monte Carlo point sets, the root-mean-square error is

O(n−1/2), while for certain shifted lattice rules, optimal bounds are of the form O(n−1+δ)

for some small δ > 0.

In particular we are interested in the worst-case error for a given rule P for a given

function space F which we take to be a Banach space, but often will be a Hilbert space.

5

We define the worst-case error as follows.

es,n(P,F) := sup
f∈F , ‖f‖F≤1

|Is(f)−Qn(P; f)|. (2.1)

Clearly we have that for any f ∈ F

|Is(f)−Qn(P; f)| ≤ es,n(F ,P) ‖f‖F , (2.2)

meaning we can take the worst-case error to be a measure of the “quality” of point sets

that is independent of any specific function. Choosing the function space F of integrands

allows us to specify what properties we wish the integrands f ∈ F have, for example we

may wish them to have square integrable first-order derivatives or Fourier series with a

certain polynomial decay. This choice, and in particular what functions it then includes

in the unit ball, affects the size of the worst-case error. Later in this chapter we shall

encounter settings in which it is possible to derive closed-form expressions of this quantity.

Another notion of “quality” of the point set P is the discrepancy. For y ∈ [0, 1]s, we

define the local discrepancy function as

discrP(y) =
#{t(i) : t(i) ∈ [0,y)}

n
−

s∏
k=1

yk,

where #A is the counting-measure, or the number of points in a discrete set, and as a

shorthand we have used the notation [0,y), where [0,y) = [0, y1)× . . .× [0, ys). The local

discrepancy function discrP represents the difference between the proportion of quadrature

points in the hypercube [0,y) and the volume of [0,y), which intuitively is an indicator

of the quality of the spread of P. In absolute value it is smaller (closer to 0) when the

points t(i) are evenly spread, such that the proportion of points in any given hypercube

is reasonably close to its volume, and larger in absolute value in areas where there are

holes or clusters in P.

It is instructive to derive the following results in one dimension, i.e., the unit-interval,

[0, 1]. In one dimension we see that

discrP(y) =
1

n

n∑
k=1

1[0,y)(t
(k)− y =

1

n

n∑
k=1

1(t(k),1](y)− y

6

where 1A(y) is the indicator function of a set A. We can now demonstrate the following,

∫ 1

0
f ′(y) discrP(y) dy =

∫ 1

0
f ′(y)

(
1

n

n∑
k=1

1(t(k),1)(y)− y

)
dy

=
1

n

n∑
k=1

∫ 1

t(k)
f ′(y) dy −

∫ 1

0
yf ′(y) dy

=
1

n

n∑
k=1

(
f(1)− f(t(k))

)
−
(

[yf(y)]10 −
∫ 1

0
f(y) dy

)

=

∫ 1

0
f(y) dy − 1

n

n∑
k=1

f(t(k)) = Is(f)−Qn(P; f),

which gives us the simplified 1-dimensional Zaremba identity,

Is(f)−Qn(P; f) =

∫ 1

0
f ′(y) discrP(y) dy. (2.3)

Now take the absolute value of (2.3) and apply Hölder’s innequality to obtain

|Is(f)−Qn(P; f)| ≤
∫ 1

0
|f ′(y) discrP(y)|dy

≤
(∫ 1

0
|f ′(y)|p

)1/p(∫ 1

0
|discrP(y)|q

)1/q

, (2.4)

where 1/p+ 1/q = 1. There are two special cases, (p, q) = (1,∞) and (2, 2), from which

we obtain

|Is(f)−Qn(P; f)| ≤ |f |1D∞(P), (2.5)

and

|Is(f)−Qn(P; f)| ≤ |f |2D2(P),

where the semi-norms |·|1 and |·|2 are |f |1 =
∫ 1

0 |f
′(x)| dx and |f |2 = (

∫ 1
0 |f

′(x)|2 dx)1/2,

and we have labelled the two notions of discrepancy, the star discrepancy

D∞(P) = sup
y∈[0,1]

|discrP(y)|,

and the L2-discrepancy

D2(P) =

(∫
[0,1]
|discrP(y)|2 dy

)1/2

. (2.6)

Evidently both these quantities are small when the points are evenly distributed over the

unit cube. The inequality in (2.5) is a simplified form of the original Koksma-Hlawka

inequality (see e.g. [32]), which, similar to (2.2), neatly bounds the error by a property of

7

the integrand (the semi-norm, |·|1) and the quality of the point set P (the star discrepancy,

D∞(P)).

Before proceeding further, we look briefly at the extension to higher dimensions s ≥ 1,

i.e. [0, 1]s. The Zaremba identity then becomes

Is(f)−Qn(P; f) =
∑

∅6=u⊆{1:s}

(−1)|u|+1

∫
[0,1]|u|

∂|u|f

∂yu
(yu; 1) discrP(yu; 1) dyu, (2.7)

where u ⊂ {1, 2, ..., s} is a sub-collection of the indices of the dimensions, evidently there

are 2s such collections (note that we use the Fraktur font for u, which is reserved for

this set notation), ∂|u|f
∂yu

denotes the mixed partial derivative of f in the coordinates xi

provided i ∈ u (note that it is a mixed partial first derivative), and (yu; 1) ∈ [0, 1]s is the

vector whose i-th components are xi if i ∈ u, and 1 if i /∈ u. Also note that u can contain

any dimension coordinate at most once (this will be important when we later examine

multi-index notation). A corresponding generalisation of (2.4), where once again we use

the Hölder’s inequality, is

|Is(f)−Qn(P; f)| ≤

 ∑
∅6=u⊆{1:s}

∥∥∥∥∥∂|u|f∂yu
(yu; 1)

∥∥∥∥∥
p

Lp

1/p ∑
∅6=u⊆{1:s}

‖discrP(yu; 1)‖qLq

1/q

.

(2.8)

2.1 Tractibility

As well as providing useful upper bounds for quadrature error for a given n, it is natural

to ask a related question - given some ε > 0 and s ≥ 1, what is the minimum number of

quadrature points n that is required to achieve an error less than ε? The result ideally

is some function n(s, ε), a direct relationship between the number of dimensions and

desired error and the number of points needed, for a given class of integrands. This

concept applies to the much wider class of approximation problems, which includes the n

point quadrature that we investigate in this thesis. The books [51, 52] contain a detailed

account of the field of tractability.

There are settings for which we may want to consider integration on an infinite di-

mensional domain, e.g. [0, 1]N. In practice we consider finite dimensional integrals that

are approximations, by virtue of being truncated, of infinite dimensional integrals. To be

precise

lim
s→∞

∫
[0,1]s

f(y; 0) dy =

∫
[0,1]N

f(y) dy

where we have written (y; 0) to indicate the sequence (y1, . . . , ys, 0, 0, . . .). Such is the

case in the porous-flow problem that we shall discuss later. In this setting we need to

know how our error bounds behave as we let s→∞, and whether it will be necessary to

consider more quadrature points as we increase the number of dimensions.

Hence we say that a problem is tractable if the function n(s, ε) of a given class of

integrands can be, roughly speaking, bounded by polynomial expressions of ε and s. If

8

Figure 2.1: Two examples of lattice rules, to the left, 127 points in [0, 1]2 with generator
(1, 27) and shift (0.15, 0.67), to the right, 257 points in [0, 1]3 with generator (1, 76, 113).

we can drop the dependence on s, that is we get a function n(s, ε) that is independent of

the dimensionality, then we say that the problem is strongly tractable.

2.2 Lattice rules and classical theory

In much of the theory that follows shortly, we shall be considering QMC algorithms that

are shifted rank-1 lattice rules. We start by defining the following set

Zn := {1 ≤ z ≤ n : gcd(z, n) = 1}. (2.9)

Then for any z ∈ Zn we can see that, for k = 1, . . . , n, we can generate the entire set of

integers 1 . . . n with kz(modn). Also note that if n is prime, then Zn = {1, . . . , n − 1}.
Now, we can define the shifted rank-1 lattice rule,

Qn(z,∆; f) =
1

n

n∑
k=1

f

({
k

n
z + ∆

})
, (2.10)

where z ∈ Zsn is said to be the generating vector, and ∆ ∈ [0, 1]s is the shift, and we have

written {·} to represent taking only the fractional part of the components of a number

or vector, i.e. {x} = x− bxc. The shift is usually taken to be a random vector in [0, 1]s,

and as we shall see, our error bounds will be in terms of an expectation over this shift.

If there is no shift, i.e., if ∆ = 0, then we write Qn(z; f) = Qn(z,0; f) for the regular

rank-1 lattice rule. As each zj ∈ Zn, we have that each 1-dimensional projection of the

lattice rule covers [0, 1] at n equally spaced points. Higher dimensional projections are

not guaranteed to cover their respective subspaces though.

The theory of “good lattice points” originates from the works of Korobov, see [31], as

well as Hlawka, see [30]. A good summary of the field can be found in [64]. Throughout

the rest of this chapter and the next, we present results on the existence and methods of

construction of z that produce “good” lattice rules. That is, lattice rules that provide

9

fast-converging upper bounds on the quadrature error |Is(f)−Qn(z,∆; f)|, which we

demonstrate via bounding worst-case errors, (2.1).

Classical theory centres around measurement of goodness of lattice rules for functions

from the Korobov class, Eα(c). A periodic function f is in Eα(c) if∣∣∣f̂(h)
∣∣∣ ≤ c

(h̄1h̄2 · · · h̄s)α
, (2.11)

where f̂(h) is the h-th Fourier-series component, and h̄ = max(1, |h|). This is essentially

a requirement of the smoothness of functions f in Eα(c), and indeed the larger α is the

faster the Fourier components must decay, and hence the smoother the function is.

Let us write a ≡n b if a = b (modn). If L is our set of rank-1 lattice points t(k) ={
k
nz
}

, then we define the dual lattice

L⊥ = {h ∈ Zs : z · h ≡n 0}

The dual lattice has the following important property.

Identity 1

Qn(z; exp(2πih · x)) =
1

n

n∑
k=1

exp(2πikh · z/n) =

1 if h ∈ L⊥,

0 otherwise.
(2.12)

This result is trivial, however we note that it also applies to general lattices, a full dis-

cussion of which can be found in [64]. This property allows us to represent the error for

functions in the class Eα(c).

Theorem 2 If f has an absolutely convergent Fourier series, then

Qn(z; f)− Is(f) =
∑
h∈L⊥
h 6=0

f̂(h) (2.13)

Proof. Applying to the Fourier series representation

Qn(z; f) = Qn

(
z;
∑
h∈Zs

f̂(h)

)
=
∑
h∈Zs

Qn(z; f̂(h)),

noting that Is(f) = f̂(0), and using Identity 1 gives us the result. 2

Hence by combining (2.13) and the definition of Eα(c), (2.11), we get the following bound

that applies to all f ∈ Eα(c),

|Is(f)−Qn(z; f)| ≤ c
∑′

h∈L⊥

1

(h̄1h̄2 · · · h̄s)α

= cPα(z, n) (2.14)

10

Where we have re-labelled the sum in the second half of the above equation as Pα(z, n).

This quantity Pα(z, n) is independent of the function f which we are trying to integrate,

and entirely dependent on the choice of generating vector z and smoothness α of the

Korobov class. Hence we have another way of bounding our quadrature with a quantity

that is independent of f , in similar vein to (2.8). In some of the classic literature of

lattice rules, such as [21, 47, 48, 50], work is undertaken to find good bounds on Pα(z, n)

and other related quantities. However, from here we will base our work on Hilbert space

techniques rather than these classes, though we note that they rely on similar notions

such as dual lattices, and measurements of goodness that are akin to Pα(z, n).

2.3 Reproducing kernel Hilbert spaces

We consider here a Hilbert space H of functions defined on a domain D (which typically

will be [0, 1]s) that is equipped with a reproducing kernel, which we define shortly. The

use of these spaces has been important in the theory of QMC, as it facilitates analysis of

worst-case error. In fact, as we shall see shortly, there are useful Hilbert space settings

where closed-form expressions exist for the worst-case error.

In the following subsections we look at some examples of spaces that are useful to

study, and corresponding kernels for those spaces. Typically spaces that are used are of

Korobov type, where successive Fourier components are bounded, or Sobolev type, where

the integral of mixed derivatives are bounded. Later we shall continue on to consider the

weighted spaces, and examine the challenges the weighted setting allow us to overcome.

Here we present a brief introduction to the topic in the abstract setting, presenting

necessary results for the work that follows in later chapters, and in some cases presenting

a sketch of the relevant proof. For a survey of the topic of reproducing kernel Hilbert

spaces in an abstract setting, we refer the reader to [3].

Definition 3 (Reproducing kernel Hilbert space) We say that a Hilbert space H of

functions f : D → R, with inner product 〈·, ·〉H, is a reproducing kernel Hilbert space if

it is equipped with a function K : D ×D → R such that

1. for any fixed y ∈ D, K(·,y) ∈ H, and

2. K(x,y) obeys the reproducing property, 〈f,K(·,y)〉H = f(y), for all f ∈ H and

y ∈ D.

Some important properties of reproducing kernels follow.

Proposition 4 A reproducing kernel K in a Hilbert space H that satisfies the properties

in Definition 3 is

1. Symmetric: K(x,y) = K(y,x) for all x, y ∈ D.

2. Positive semi-definite:
∑n

i,j=1 aiajK(yi,yj) ≥ 0 for all finite collections {ai}ni=1 ⊂ R
and {yi}ni=1 ⊂ D.

3. Unique: For any other function K̃(x,y), K̃(x,y) = K(x,y)

4. And in particular K(x,x) ≥ 0 for all x ∈ D.

11

Proof. Details of the proofs can be found in [3]. 2

The following result outlines the conditions for which a Hilbert space can be equipped

with such kernels

Proposition 5 For a reproducing kernel K(x,y) to exist in a Hilbert space H of real-

valued functions on D, it is a necessary and sufficient condition that function evaluations

be a continuous linear functional in H. That is for any y ∈ D, the functional Ey(f) =

f(y) is continuous in f .

Proof. The proof follows as a consequence of the Riesz representation theorem. See [3]

for details. 2

We note that the conditions in Proposition 5, for the existence of a reproducing kernel,

are reasonably straightforward, and that for some of these Hilbert spaces a corresponding

reproducing kernel can notionally be found. In [67] the reproducing kernel is derived

for various examples of Hilbert spaces for which Proposition 5 applies. In the following

sections we shall present well known spaces and provide their kernels as a given, however

in Chapter 3 we shall be considering a new space for which we must derive the kernel.

Conversely, any given function K(x,y) that is symmetric and positive semi-definite

defines a unique Hilbert space, equipped with an inner product 〈·, ·〉K , where K(x,y) has

the reproducing property. We state this in the following.

Proposition 6 Suppose K : D × D → R is a symmetric, positive semi-definite func-

tion, then there is a unique Hilbert space of real-valued functions on D such that K is a

reproducing kernel.

Proof. Consider functions of the form
∑n

k=1 akK(xk, ·) where {ak}nk=1 ⊂ R and {xk}nk=1 ⊂
D. The inner product defined by〈

m∑
k=1

bkK(yk, ·),
n∑
k=1

akK(xk, ·)

〉
:=

n∑
j=1

m∑
k=1

ajbkK(yk,xj),

can be shown to satisfy the criteria in Definition 3. The proof then involves defining a

Hilbert space in terms of the completion this subspace of functions. A detailed proof can

be found in [3]. 2

We note from the uniqueness property of Proposition 4, as well as Proposition 5,

that most useful Hilbert spaces will have a reproducing kernel that is unique for that

space. Thus there is a “one-to-one” correspondence between the norm of the space and

the reproducing kernel. This means that characteristics of the norm must be reflected in

the kernel, if any parameter appears in the norm, for example weights, must necessarily

appear in the reproducing kernel.

The following lemma shows us in fact that we can express any bounded linear func-

tional in an alternative form in terms of the reproducing kernel. This is an important

12

aspect of the theory, as this means both integration and numerical quadrature can be

expressed in this form, leading to a representation of quadrature error in terms of the

kernel.

Lemma 7 For any bounded linear functional on a reproducing kernel Hilbert space T :

H → R, we have for every f ∈ H

T (f) = 〈f, g〉 ,

where g(x) = T (K(·,x)). We call T (K(·,x)) the representer of T .

Proof. From the Riesz representation theorem we know that there exists a unique t ∈ H
such that T (f) = 〈f, t〉 for all f ∈ H. Using this and the reproducing property we also

have

t(y) = 〈t,K(·,y)〉 = 〈K(·,y), t〉 = T (K(·,y)) = T (K(y, ·)) .

So we see that we have

T (〈f,K(·,y)〉) = T (f) = 〈f, t〉 = 〈f, T (K(·,y))〉 .

2

2.3.1 QMC in reproducing kernel Hilbert spaces

We now investigate the integration and n-point quadrature operators and apply Lemma 7

to find a representer for them in terms of the reproducing kernel in our Hilbert space H.

We shall see that this enables us to express es,n(P,H), defined (2.1), in closed form in

terms of the kernel K.

First we investigate integration, which we assume to be a bounded linear operator,

that is, we assumeH to be embedded in L1. From the reproducing property and Lemma 7,

we have that

Is(f) =

∫
[0,1]s

f(y) dy =

〈
f,

∫
[0,1]s

K(·,y) dy

〉
H

.

Furthermore, we can define the initial error of integration and use the above to derive

the following,

es,0(0,H) = ‖I‖H = sup
‖f‖≤1

〈
f,

∫
[0,1]s

K(·,y) dy

〉
H

.

We can derive a similar expression for the n-point quadrature,

Qn(P; f) =
1

n

n∑
i=1

f(t(i)) =
1

n

n∑
i=1

〈
f,K(·, t(i))

〉
H

=

〈
f,

1

n

n∑
i=1

K(·, t(i))

〉
H

.

13

Finally we can use these representations to derive the following for the quadrature error,

|Is(f)−Qn(P; f)| =

∣∣∣∣∣
〈
f,

∫
D
K(·,y) dy

〉
H
−

〈
f,

1

n

n∑
i=1

K(·, t(i))

〉
H

∣∣∣∣∣
=

∣∣∣∣∣
〈
f,

∫
D
K(·,y) dy − 1

n

n∑
i=1

K(·, t(i))

〉
H

∣∣∣∣∣
= |〈f, h〉H| , (2.15)

where we have introduced the representer of the quadrature error

h(y) :=

∫
D
K(y,x) dx− 1

n

n∑
i=1

K(y, t(i)). (2.16)

We can also write g(y) :=
∫
DK(y,x) dx for the representer of integration. From the

Cauchy-Schwarz inequality we get a bound on the error

|Is(f)−Qn(P; f)| = |〈f, h〉H| ≤ ‖f‖H ‖h‖H. (2.17)

We can now revisit the worst-case error, (2.1). From (2.17) we have

es,n(P,H) := sup
f∈H, ‖f‖H≤1

|Is(f)−Qn(P; f)| = sup
f∈H, ‖f‖H≤1

|〈f, h〉H| = ‖h‖H,

as clearly the supremum is obtained when f = h/‖h‖H (ensuring ‖f‖H = 1). If we take

the square of es,n(P,H) and then expand using the definition of h,

e2
s,n(P,H) = 〈h, h〉H =

〈∫
D
K(·,x) dx− 1

n

n∑
i=1

K(·, t(i)),
∫
D
K(·,y) dy − 1

n

n∑
j=1

K(·, t(j))

〉
H

=

∫
D

∫
D
K(x,y) dx dy − 2

n

n∑
i=1

∫
D
K(x, t(i)) dx+

1

n2

n∑
i=1

n∑
j=1

K(t(i), t(j)).

(2.18)

The last line of the above equation is derived from the linearity of the inner product,

along with Lemma 7 and the reproducing property. Similar steps can be used to show

that we have the following expression for the initial error,

e2
s,0(0,H) = ‖I‖2H =

〈∫
D
K(·,x) dx,

∫
D
K(·,y) dy

〉
H

=

∫
D

∫
D
K(x,y) dx dy (2.19)

Note that the results in this section, particularly (2.18), are independent of the type of

quadrature points used in the QMC quadrature, and applies to any deterministic point set.

For some cases of point sets P, most notably lattice rules, and for particular kernels, (2.18)

14

simplifies considerably and can be dealt with in closed form, whereas notions from previous

sections such as discrepancy Dq(P), for evaluating Koksma-Hlawka style inequalities, have

no simple closed form simplifications.

2.3.2 Korobov spaces

Our first example of a useful Hilbert space is the Korobov space Kα of functions on the

unit interval with absolutely convergent Fourier series. Here we present the details of

the space, but we will not examine the reproducing kernel, which we save later for the

discussion of weighted spaces. For α ≥ 0 we define the inner product

〈f, g〉Kα = f̂(0) ĝ(0) +
∑

h∈Z\{0}

f̂(h) ĝ(h)hα,

where again f̂(h) represents the h-th Fourier component of f . As usual the norm is given

by ‖f‖Kα = 〈f, f〉1/2Kα .

Heuristically speaking, this norm measures the smoothness of f as functions with

small Fourier components for high h will tend to be smoother. Furthermore, for the norm

of f to remain finite, we evidently require greater than O(h−α) convergence of f̂(h). Also

note that for some α ≤ β, if we have f ∈ Kβ, then ‖f‖Kα ≤ ‖f‖Kβ .

Now for the higher dimensional generalisation. We define the Korobov space of s-

dimensional functions with the inner product

〈f, g〉Kα,s = f̂(0) ĝ(0) +
∑

∅6=u⊆{1:s}

∑
hu∈(Z\{0})|u|

f̂(hu; 0) ĝ(hu; 0)
∏
j∈u
|hj |α . (2.20)

where we have used notation similar to (2.7), that is, (yu; 0) ∈ [0, 1]s is the vector whose

i-th components are xi if i ∈ u, and 0 if i /∈ u.

2.3.3 Sobolev spaces

We explore Sobolev space of functions on [0, 1] with square-integrable mixed first deriva-

tives. In the literature of QMC we consider two main flavours of Sobolev space, anchored

and unanchored, which are well known to be Hilbert spaces. Consider first the anchored

Sobolev space Hc of absolutely continuous functions with square-integrable first deriva-

tives, with inner product

〈f, g〉Hc = f(c) g(c) +

∫ 1

0
f ′(y) g′(y) dy ,

where c ∈ [0, 1] is our anchor. We require the evaluation at the anchor to make the

quantity 〈f, f〉1/2Hc a norm, rather than a mere semi-norm. For the unanchored space H of

absolutely continuous functions, we define the inner product as follows.

〈f, g〉H =

∫ 1

0
f(y) dy

∫ 1

0
g(y) dy +

∫ 1

0
f ′(y) g′(y) dy .

15

We can generalise the anchored space to s-dimensions as follows.

〈f, g〉Hc,s =
∑

u⊆{1:s}

∫
[0,1]s

∂|u|f

∂yu
(yu; c−u)

∂|u|g

∂yu
(yu; c−u) dyu , (2.21)

where the vector c ∈ [0, 1]s is again called the anchor, and similarly to the Korobov space

we have written (yu; c−u) to represent the vector in [0, 1]s with components equal to yj if

j ∈ u and the remaining components set to cj if j /∈ u, that is, we write −u to represent

the complement of u, i.e. −u = {1 : s} \ u. Common choices for c include (0, . . . , 0),

(1/2, . . . , 1/2) and (1, . . . , 1). We do not present the s-dimensional generalisation of the

unanchored space as for the rest of this chapter we only present results in the anchored

space.

2.4 Weighted spaces

It can be observed in many practical high-dimensional problems that some coordinates

make the more important contribution towards a function in some way. In terms of

the integration problem, we may say that these coordinates are more “important” or

“difficult” than others. Weights were introduced in [62] to address exactly this.

We make this more precise. Consider the s-dimensional generalisations of the Korobov

and Sobolev spaces, (2.20) and (2.21) respectively. We found their norms both to be of

the form

‖f‖2 =
∑

u⊆{1:s}

‖f‖2u ,

where, as an example, in the Sobolev space we have

‖f‖2u =

∫
[0,1]s

(
∂|u|f

∂yu
(yu; c−u)

)2

dyu .

Some sets u may make most of the contribution to this sum. In practical applications this

is often observed to be the case for u that include earlier rather than later coordinates,

as well as the u with smaller rather than larger cardinalities.

Now we consider a collection positive numbers γ = {γs,u : u ∈ {1 : s}} which we call

the weights. Now we can make a weighted norm

‖f‖2γ =
∑

u⊆{1:s}

γ−1
s,u ‖f‖2u ,

We observe that the weighted norm modifies the unit ball in the sense that if γs,u is small,

then ‖f‖u is forced to be small if f is to remain in the unit ball. Thus the weights are in

proportion to the measurement of “difficulty” that we allow in each coordinate collection.

In this setting we adopt the following convention: if γs,u = 0, then also if ‖f‖u = 0 we

say that γ−1
s,u‖f‖u = 0. That is, we adopt the convention that 0/0 = 0 in the case of

the weighted norm. For the Sobolev space example, in the extreme case where γs,u = 0,

16

quadrature in the u coordinates requires at most one point as f will have to be constant

in these coordinates.

These weights may come in many different flavours. We present a few examples here.

• Weights were originally introduced in product form, that is for a sequence γ1, γ2, . . . , γs

of positive numbers, then for u ⊆ {1 : s} the weights can be written as

γs,u = γu =
∏
j∈u

γj . (2.22)

In writing γs,u = γu, we have emphasised that there is no inherent dependence on

the dimension of the problem s.

• The weights are said to be order-dependent if we have

γs,u = Γs,|u|

where Γs,0,Γs,1, . . . ,Γs,s are a set of non-negative numbers, i.e. there is a dependency

on cardinality of u, but not to what u may contain.

• We say the weights are finite-order if for some integer q we have

γs,u = 0 for all s and u with |u| > q.

We say the finite-order weights are of order q∗, if q∗ is the smallest possible integer

that satisfies the property above.

• If we have two sets of non-negative γ1, . . . , γs and Γ1, . . . ,Γs, then we say the weights

are of product and order dependent (POD) type if we can write

γs,u = γu = Γ|u|
∏
j∈u

γj (2.23)

This “hybrid” weight, relatively new in the literature, will be important in chapters

to follow.

When the weights are assumed to have no specific form, we say that they are general

weights, a term that is usually used to distance ourselves from the product weights set-

ting, which is the most common setting in the literature. While weights were originally

introduced in product form, general weights were introduced in [70].

Weighted spaces were originally introduced in [62] to demonstrate the conditions un-

der which multivariate integration is strongly tractable. That is, to demonstrate the

conditions under which there exists a QMC rule for which the error bound can be found

to be independent of the dimensionality s of the integrand. These results were consid-

ered in the setting of tensor product Hilbert spaces, that is spaces where the weights will

necessarily have to take the product form (2.22). In this setting it was shown in [62] that

17

the multivariate integration is strongly tractable in weighted Korobov or Sobolev spaces

if and only if
∞∑
j=1

γj < ∞ .

Weights will prove to be useful not just in infinite dimensional integration or tractabil-

ity results. As the weights are in the norm, they must also make an appearance in the

reproducing kernel. Thus we find that the weights appear in the worst-case error, as a con-

sequence of (2.18). Hence we find that the weights to be a useful parameter in minimising

the upper bound on quadrature error as expressed in (2.17), as both the worst-case error

and the norm depend on the weights. We note that this is a relatively new approach to the

use of weighted spaces, it was first discussed in [41] and [19]. Classical literature tended

to take the point of view that the weights were given, rather than being parameters that

can be chosen to best fit a specific problem.

2.5 Weighted Korobov spaces

Here we consider the weighted Korobov spaces, that is we make a weighted generalisation

of (2.20). We shall present formulae for the kernel K in this space, and with lattice

rules as our points sets, we will be able to develop (2.18) and (2.17) further to present

convergence results. In this approach we skip the usual tensor-product construction of

the space Ks,α,γ , as is often done in the literature (e.g. [63]), and define our s-dimensional

function spaces directly. This approach follows the presentation in [20] and [18].

First we introduce the following useful identity.

Identity 8 For a sequence of numbers aj,

s∏
j=1

(1 + aj) =
∑

u⊆{1:s}

∏
j∈u

aj = 1 +
∑

∅6=u⊆{1:s}

∏
j∈u

aj ,

noting the implicit assumption that we take the summand for u = ∅ to be
∏
j∈∅ aj = 1.

Now for the higher dimensional generalisation we consider a set of weights γs,u ≥ 0.

We define the weighted Korobov space of functions on [0, 1]s with absolutely convergent

Fourier series, with the inner product

〈f, g〉Ks,α,γ = f̂(0) ĝ(0) +
∑

∅6=u⊆{1:s}

γ−1
s,u

∑
hu∈(Z\{0})|u|

f̂(hu; 0) ĝ(hu; 0)
∏
j∈u
|hj |α ,

where we have written (hu; 0) to express the vector in Zs for which the components are

hj if j ∈ u and the remaining components are set to 0.

In this setting the kernel is given by

Ks,α,γ =
∑

u⊆{1:s}

γs,uKu,α(xu,yu) , (2.24)

18

where

Ku,α(xu,yu) =
∏
j∈u

∑
h∈Z\{0}

exp(2πih(xj − yj))
|h|α

.

Note that, in line with conventions taken thus far, the summand for u = ∅ is equal to 1,

that is we take γ∅,sK∅,α = 1.

Now we can proceed with directly applying our formula for the worst-case error in a

reproducing kernel Hilbert space for a rule P, (2.18), to this example,

e2
s,n(P,Ks,α,γ) =

1

n2

n∑
k=1

n∑
`=1

∑
∅6=u⊆{1:s}

γs,u
∏
j∈u

∑
h∈Z\{0}

exp(2πih(t
(k)
j − t

(`)
j))

|h|α
.

If we take our point set to be a lattice rule, as defined in (2.10), we note that the shift

makes no difference in the expression above, and that this expression simplifies to

e2
s,n(z,Ks,α,γ) =

1

n

n∑
k=1

∑
∅6=u⊆{1:s}

γs,u
∏
j∈u

∑
h∈Z\{0}

exp(2πihkzj/n)

|h|α
. (2.25)

We would like to find convenient bounds of es,n(z,Ks,α,γ) the form O(n−r) for some r > 0

for a “good” lattice rule, which we can then substitute in to (2.2).

We will show the existence of a good lattice rule using an averaging argument. Assume

for the rest of this section that n is a prime number. We write the mean of the squared

worst-case error for all possible generating vectors z ∈ Zsn,

Ms,n(α) :=
1

(n− 1)s

∑
z∈Zsn

e2
s,n(z). (2.26)

Now, let ζ(x) :=
∑∞

h=1 h
−x for x > 1 denote the Riemann zeta function. Note that if n

is prime, the set Zn contains all numbers from 1 to n − 1 inclusive, thus contains n − 1

elements. As it turns out, it is possible to obtain an explicit formula for this quantity.

We present this in the following.

Theorem 9 If n is prime and α > 1, with Ms,n(α) defined as in (2.26), we have

Ms,n(α) ≤ 1

n

∑
∅6=u⊆{1:s}

γs,u (2ζ(α))|u|, (2.27)

thus there exists a generating vector z∗ ∈ Zsn such that

es,n(z∗,Ks,α,γ) ≤ 1√
n

 ∑
∅6=u⊆{1:s}

γs,u(2ζ(α))|u|

1/2

(2.28)

Proof. The proof of (2.27) follows similarly to [63, Theorem 3] upon setting βj = 1 and

using Identity 8. Also we refer the reader to the proof of [20, Theorem 1], which takes

19

in to consideration the same proof for general weights. For the second part we use the

principle that there is always at least one choice that is as good as or better than average.

Thus there must be a generating vector z that beats the mean, and thus also beat the

estimate (2.27). 2

Theorem 9 presents an upper bound for the worst-case error of a lattice rule only in

terms of the number of points n and the weights γs,u. As it turns out we can demonstrate

much better convergence, but first we recall a variant of Jensen’s inequality. If we have

some non-negative sequence aj then

∑
j

aj ≤

∑
j

arj

1/r

for any 0 < r ≤ 1. (2.29)

Theorem 10 If n is prime and α > 1 then there exists a generating vector z∗ ∈ Zsn such

that for all λ ∈ (1/α, 1] we have

es,n(z∗,Ks,α,γ) ≤ 1

n1/(2λ)

 ∑
∅6=u⊆{1:s}

γλs,u (2ζ(αλ))|u|

1/(2λ)

(2.30)

Proof. We refer the reader to [33] for the proof. 2

Thus we have a result that bounds the error for arbitrarily large s. It is not surprising

that the rate of convergence of es,n, with respect to n, is directly linked to the parameter

α, the larger α, the smaller we can take λ, and hence the faster our convergence rate.

Recall that α characterises the “smoothness” of the integrands f that are allowable in

the space Ks,α,γ , it seems to makes sense that quadrature error might converge faster for

a smooth function.

One problem of this result is that we have not provided a proof that is constructive.

There is no insight in how to find the generating vector, we have merely stated that there

is some vector, out of all the possibilities in Zsn, that satisfies the bound. Shortly we shall

be investigating a method of construction of good generating vectors z∗, and then prove

that vectors constructed this way satisfy similar bounds.

2.6 Weighted Sobolev spaces

Now we turn our attention to weighted Sobolev spaces. We define the weighted anchored

Sobolev space Hs,c,γ to be the s-dimensional tensor product space of the 1-dimensional

spaces Hc, but we define the inner product as

〈f, g〉Hs,c,γ =
∑

u⊆{1:s}

γ−1
s,u

∫
[0,1]s

∂|u|f

∂yu
(yu; c−u)

∂|u|g

∂yu
(yu; c−u) dyu , (2.31)

where we have used the same notation in §2.3.3. These weighted Sobolev spaces have

been considered in [28], [29] and [59].

20

In this setting the reproducing kernel is

Kc,γ(x,y) =
∑

u⊆{1:s}

γs,u
∏
j∈u

µcj (xj , yj) ,

where

µc(x, y) =

min(|x− c|, |y − c|) if x, y ≥ c or x, y < c

0 otherwise.

A quantity that will come up shortly in this setting is the initial error, es,0(0,Hc,γ),

which from (2.19) is given by

e2
s,0(0,Hs,c,γ) =

∑
u⊆{1:s}

γs,u
∏
j∈u

∫
[0,1]2

µcj (xj , yj) dxj dyj

=
∑

u⊆{1:s}

γs,u
∏
j∈u

(c2
j − cj + 1/3) . (2.32)

From here we could proceed as in §2.5, and derive an expression for the worst-case error

from (2.18) for this setting, however this does not prove to be fruitful. As it turns out,

the way to proceed lies in the random shift, ∆. First let us define the shift invariant

kernel Ksh, associated with any kernel K by

Ksh(x,y) =

∫
[0,1]s

K({x+ ∆}, {y + ∆}) d∆ . (2.33)

Now let us express, for a moment, the worst case error as a function of associated kernel,

that is we write es,n(z,K) for the quantity given in (2.18). We consider mean-square over

all possible random shifts of the worst-case error for a shifted lattice rule, given that the

∆ is uniformly distributed on [0, 1]s. It is shown in [29] that the shift averaged worst-case

error is equal to the worst-case error with the shift invariant kernel, that is,

[esh
s,n(z,K)]2 := E∆[e2

s,n(z,∆,K)] =

∫
[0,1]s

e2
s,n(z,∆,K) d∆ = e2

s,n(z,Ksh),

For the Sobolev space we also write esh
s,n(z,Hs,c,γ) = esh

s,n(z,Kc,γ), where K is assumed to

be the appropriate kernel. We consider the shift invariant kernel for the weighted Sobolev

space, which we can compute to be

Ksh
c,γ(x,y) =

∑
u⊆{1:s}

γs,u
∏
j∈u

(B2(|xj − yj |) +mj)

where B2(x) = x2−x+1/6 is the Bernoulli polynomial of degree 2 and mj = c2
j−cj+1/3.

We can also compute an expression for the shift averaged worst-case error,

[esh
s,n(z,Hs,c,γ)]2 =

∑
∅6=u⊆{1:s}

γs,u

 1

n

n−1∑
k=0

∏
j∈u

(
B2

({
kzj
n

})
+mj

)
−
∏
j∈u

mj

 . (2.34)

21

Now, for simplicity of further exposition, we assume that our weights are of product

type, that is γs,u =
∏
j∈u γj . Under this assumption, and using Identity 8, we can re-write

the shift invariant kernel as

Ksh
c,γ(x,y) =

s∏
j=1

(1 + γj (B2(|xj − yj |) +mj))

= e2
s,0(0,Hs,c,γ)

s∏
j=1

1 + γ̂j
∑

h∈Z\{0}

exp(2πi(xj − yj))
h2

= e2

s,0(0,Hs,c,γ)
∑

u⊆{1:s}

∏
j∈u

γ̂j
∑

h∈Z\{0}

exp(2πi(xj − yj))
h2

,

where we have used the well known Fourier series expansion of B2,

B2(x) =
1

2π2

∑
h∈Z\{0}

exp(2πix)

h2
.

as well as (2.32) and the substitution

γ̂j =
γj

2π2(1 + γjmj)
.

Thus we see thatKsh
c,γ is same (ignoring the ‖I‖Hc,γ factor in front) as the kernelKα,γ from

the Korobov space in (2.24) with α = 2, thus we can apply Theorem 10 to es,n(z,Ksh
c,γ).

Thus in the weighted anchored Sobolev space we obtain the following,

Theorem 11 Let n be prime and assume the weights γs,u are of product form, then there

exists a generating vector z0 ∈ Zsn such that for any 1/2 > δ > 0 we have

esh
s,n(z0,Hc,γ) ≤

‖I‖Hc,γ
n1−δ

 s∏
j=1

(
1 + 2γ̂

1/(2−2δ)
j ζ

(
1

1− δ

))1−δ

. (2.35)

Proof. We apply Theorem 10, noting that as α = 2, we can take λ to be arbitrarily close

to 1/2, hence the result follows from the choice λ = 1
2(1−δ) for some small δ > 0. 2

Once again the result is not constructive, it is merely an existence result. Also note

that the result applies to the shift averaged worst-case error, not the original worst-case

error of (2.1). This means two things: Firstly this implies the existence of some shift ∆∗

for which the bound holds, again using the principle that there is always a choice that

is at least as good as the average. Secondly, in using shifted lattice rules on integrands

in Hc,γ , we need to average the quadrature we obtain over a number of shifts (usually

a reasonably small number can be used, of the order of 10) to be able to confidently

apply this result. Often random shifts are employed with QMC rules anyhow, as the

random shifts make Qn(P; f) an unbiased estimator of Is(f), and furthermore allows us

to calculate the standard error of our estimator. Hence, the fact that the theory depends

22

on the random shifts is not an inconvenience. We refer the reader to [58, Theorem 2.2]

for a proof that the shifted lattice rule is an unbiased estimator.

We mention briefly that it is possible to allow the weights to be of general non-product

type and still yield a result akin to that of Theorem 11, however we have not done so here

for two reasons. Firstly, to do so is non-trivial and not particularly instructive. Secondly,

we shall be presenting the results that allow for general weights in the unbounded setting,

which involves use of these auxiliary weights, in Chapter 3. The general weights case in

this Sobolev setting is examined in [37].

Finally we consider the implications of allowing the number of coordinates to grow,

that is, letting s→∞. We see that, for λ ∈ (1/2, 1], if we have

∞∑
j=1

γ̂λj < ∞,

then, as shown in [63], we can deduce that
∏∞
j=1 (1 + 2γ̂λj ζ(2λ)) <∞, and hence we can

bound esh
s,n(z0,Hc,γ) independently of s. This implies strong tractability.

A variant of the Sobolev setting introduced in this section is the weighted unanchored

Sobolev space, which is an s-dimensional generalisation of the unanchored space intro-

duced in §2.3.3. For simplicity, and also as we will be introducing unanchored spaces in

the unbounded setting in great detail for the next chapter, we opt not to consider the

unanchored space here.

2.6.1 Relationships with discrepancy

We have seen in these last few sections a common thread with the material introduced

at the start of the chapter, of discrepancies, and the associated Koksma-Hlawka type

inequalities. Here we show a direct relationship in the Sobolev space with anchor 1. For

simplicity we look only at the one-dimensional unweighted space, H1,1. In this setting we

can write the kernel as

K1,1(x, y) = 1 + min(1− x, 1− y) = 1 + (1− x)1x(y) + (1− y)1y(x) . (2.36)

Now, recalling (2.17), we have that

Is(f)−Qn(P; f) = 〈f, h〉H1,1

= f(1)h(1) +

∫ 1

0
f ′(y)h′(y) dy . (2.37)

23

From (2.36) we can show that ∂K1,1(x, y)/∂y = 1[0,y)(x), hence we can derive the follow-

ing,

dh(y)

dy
=

∫ 1

0

∂

∂y
K1,1(x, y)dx− 1

n

n∑
i=1

∂

∂y
K1,1(t(i), y)

= −
∫ 1

0
1[0,y)(x)dx+

1

n

n∑
i=1

1[0,y)(t
(i))

= −y +
#{t(i) : t(i) ∈ [0, y)}

n
= discrP(y).

Evidently we can also have that K1,1(x, 1) = K1,1(1, x) = 1, hence h(1) = 0. Thus from

(2.37) we find that

Is(f)−Qn(P; f) =

∫ 1

0
f ′(y) discrP(y) dy ,

which is precisely the Zaremba identity of (2.3). Furthermore we see that the worst-case

error is in fact equal to the L2-discrepancy of (2.6), which we can show as follows.

e2
1,n(P,H1) = 〈h, h〉H1,1

=

∫ 1

0
|discrP(y)|2 dy = [D2(P)]2,

In fact this generalises to s dimensions, that is, es,n(P,Hs,1) = D2(P).

2.7 Component-by-component construction

Sections 2.5 and 2.6 explore optimal bounds on worst-case errors for (shifted) lattice

rules. As discussed, however, these results are not constructive, they present no scheme

for finding good generating vectors that satisfy our bounds. A method of construction

known as the component-by-component algorithm that dates back to the work of Korobov,

see e.g. [31], was also further developed in [35, 58, 59, 60]. This method proposes a

simple “greedy” approach where the values for each component of the generating vector

are chosen separately to minimise the worst-case error.

Algorithm 12 (CBC Algorithm) For any prime n and s ∈ N
1. Set z1 = 1

2. For each d = 2, 3, . . . , s with z1, . . . , zd−1 fixed, choose zd ∈ Zn such that esh
n,d({z1, . . . , zd},Hc,γ)

is minimised.

The advantage of using the CBC algorithm is that it reduces the search space for

a good vector quite considerably. A brute force approach to finding z that minimises

(2.34) might consider all (n− 1)s possibilities and evaluate the worst-case error at each.

Evidently this is exponentially expensive to compute, even when considering a few possible

reductions that different symmetries might afford us. However, the CBC method enables

24

us to consider n possibilities for each component, thus we only have to evaluate the

worst-case error sn times.

It is not immegiately obvious that the vector z constructed in the CBC algorithm

would satisfy the sorts of bounds in Theorems 10 or 11. However it was shown in [60]

that lattice rules constructed this way have worst-case errors that converge as O(n−1/2)

for the Korobov class of functions, and a similar result was subsequently shown in [59, 58]

for weighted Sobolev spaces. In [59] the principle of the CBC algorithm is also applied to

∆, that is, ∆d is chosen after zd, with ∆1, . . . ,∆d−1 and z1, . . . , zd fixed. It can be shown

that this construction for ∆ and z leads to a good shifted lattice rule with O(n−1/2) error

convergence.

However, these results do not match the optimal rates of convergence we have in

Theorems 10 and 11, where, under the right conditions, O(n−1+δ) convergence can be

observed. While numerical experiments in [58] suggest that generating vectors do exhibit

these improved orders of convergence, it was not until [33] and [16] that optimal conver-

gence was proven for generating vectors produced by the CBC algorithm. We state the

result here.

Theorem 13 Let n be prime and assume the weights γs,u are of product form, and let

z∗ be constructed using the component-by-component algorithm, then for any 1/2 > δ > 0

we have

esh
s,n(z∗,Hc,γ) ≤

‖I‖Hc,γ
n1−δ

 s∏
j=1

(
1 + 2γ̂

1/(2−2δ)
j ζ

(
1

1− δ

))1−δ

. (2.38)

Proof. The proof uses an inductive argument, assuming that (2.38) holds for some z ∈
Zsn, then it can be shown that the natural extension of (2.38) holds for (z, zs+1) as well,

where z is fixed and zs+1 is chosen by the minimisation criteria in step 2 of the algorithm.

For details we refer to [33, Theorem 5 and 8], noting that the proof technique again makes

use of the connection between Korobov and Sobolev spaces. We do not present the details

here as a full proof of a similar result will be shown in the next chapter, where we will

allow for further generality including unbounded integrands. 2

25

Chapter 3

Unbounded functions with general weights

In this chapter we now consider integrals of functions that are defined on unbounded

regions, for example Rs, that is, integrals of the form∫
Rs
f(y)

s∏
j=1

φ(yj) dy ,

where φ is a univariate probability density function on R, frequently a Gaussian density.

These integrals arise, most prominently, in Darcy-flow fluid modeling in porous media

problems, which is our main motivation for the extensions of theory in this chapter,

and the main focus of Chapter 4. Other examples of problems for which unbounded

integration arises include, but by no means are limited to, integrals arising from option

pricing problems in finance, see for example [6, 1, 42, 23, 26, 27], and maximum likelihood

problems in statistics, see for example [14, 15, 72, 34, 57]. The aim of this chapter is to

provide the theoretical foundation for the fast CBC construction of randomly shifted

lattice rules that are tailored to these practical integrals, and demonstrate that these

lattice rules obtain “good” error convergence rates.

The natural first step in applying QMC methods to an integral formulated over Rs is

to transform the integral into the unit cube [0, 1]s, such that we may use the point sets

explored in the previous chapter. After some appropriate manipulations, an integral over

Rs can be rewritten in the form∫
Rs
f(y)

s∏
j=1

φ(yj) dy =

∫
[0,1]s

f(Φ−1(u)) du, (3.1)

where Φ−1 denotes the inverse of the cumulative distribution function, corresponding to

φ, which, when applied to vectors, is done component-wise. A QMC method with points

t(1), . . . , t(n) ∈ [0, 1]s then approximates the last integral in (3.1) by

1

n

n∑
k=1

f(Φ−1(t(k))). (3.2)

However, the transformation in (3.1) often results in an integrand f(Φ−1(·)) that is either

unbounded at the boundary of the unit cube, or has unbounded derivatives near the

boundary. In those cases, the standard QMC theory that we have seen thus far cannot be

27

applied, as the transformed integrand will not have a finite norm in any of the appropriate

functions spaces examined thus far.

Various methods have been proposed in the literature of tackling this issue. To this

end an anchored function space over Rs was considered in [39], see also [68, 69, 40].

It was proposed that, in the norm or inner product, the integrand be multiplied by a

weight function ψ that decays quickly at infinity, as a way of controlling the behaviour

of the integrand at the edges. It was shown that randomly shifted lattice rules can be

obtained using a CBC construction to achieve close to the optimal convergence rate in

this non-standard setting.

Here we make use of this weight function in a space reminiscent of the weighted

Sobolev spaces of Chapter 2. To understand the setting it is instructive to examine the

details of the norm of the space of functions in one dimension, F1, which we define as

‖f‖2F1
= [f(0)]2 +

1

γ

∫
R

[f ′(y)ψ(y)]2 dy. (3.3)

The weight function ψ allows us to control the limiting behaviour of functions in F1, and

either make it very “small” or very “big”. For example, if we took ψ(y) = exp(−α|y|),
then we can see that F1 would contain any polynomial, as the norm would be finite.

Even the function exp(β|y|) would have a finite norm, provided β < α. Clearly in this

example the weight γ does little to the space except scale the norm, however we include

it here as we shall be considering weighted spaces later in the chapter, in the spirit of

the weighted Sobolev and Korobov spaces from the last chapter. Although φ does not

make an explicit difference to the space F1, as it is not present in the inner product, our

integration operator Is,φ is defined in terms of it, hence φ is central to the results that

follow.

This chapter provides a number of important extensions to the theory in [39], all mo-

tivated by the needs of the application to porous flow problems. This work is original

research, and has been submitted for publication in [46]. Firstly, we remove the assump-

tion that the weight parameters γu take the product form γu =
∏
j∈u γj . In the previous

chapter we allowed weights to be of general form in the standard setting on the unit cube,

except in some results relevant to the weighted Sobolev spaces. Similarly, in the literature

general weights were introduced in [70] and have been considered in [20, 61]. However,

allowing for general weights is novel territory for the this unbounded setting.

This generalisation was prompted by, and is essential to, the porous-flow problem

that this thesis is concerned with. In the following chapter, as well as [36, 38], it is

demonstrated that the overall error bound of our QMC method is minimised when the

weight parameters take the form of POD weights of (2.23), which we recall to be of the

form

γu = Γ|u|
∏
j∈u

γj ,

28

The weight parameters are determined by the choice of two sequences Γ0 = Γ1 = 1,Γ2, . . .

and γ1, γ2, Allowing for these weights, or any other general forms of weights, means

that the theoretical basis for the CBC construction of randomly shifted lattice rules in

this non-standard setting needs to be proved anew, and this non-trivial result is the main

theorem of this chapter.

As highlighted in [17] for the standard setting, the CBC construction with general

non-product weights in the anchored setting has an issue with the computational cost

due to the need to work with some “auxiliary weights”. The same issue holds for the non-

standard setting considered here. Our second major advance in this chapter is to introduce

an “unanchored” version of the function space over Rs. We provide the complete theory

for the CBC construction in this unanchored variant, and discuss the computational

strategies for implementing fast CBC construction with POD weights.

In addition to the two major extensions, we also make other generalisations. We allow

the weight parameters γu to depend on the dimension s: later we write, more explicitly,

γs,u. This is natural for the maximum likelihood problems [57] since all model parameters

depend on the dimension s. This is also useful from the point of view of linking the

theory between anchored and unanchored settings. We allow the weight function ψ to be

coordinate dependent, that is, we have a weight function ψj for each coordinate. This

turns out to be a crucial step in modelling the PDE applications in the next chapter. In

our analysis we also allow the integration domain to be more general, to cater for other

potential future applications.

The outline of this chapter is as follows. In §3.1 we discuss two additional practical

applications that motivate the theoretical developments of this chapter, and outline how

the theory can be applied in each case. In §3.2 we introduce the function space settings of

this chapter, briefly discussing relevant extensions to reproducing kernel Hilbert spaces,

and introduce the expression for the shift-averaged worst-case errors for randomly lattice

rules in this setting. In §3.2.2 we review known results in the anchored setting, and then

in §3.2.3 we derive various results in the new unanchored setting. In §3.3 we present

the CBC algorithm for constructing a good generating vector of randomly shifted lattice

rules, and then prove the main convergence results of the shift-averaged worst-case error

for both the anchored and unanchored spaces with general non-product weights. We save

the discussion of implementation and numerical results for Chapter 5.

3.1 Motivating applications

Integrals over Rs often arise from practical applications in the form of multivariate ex-

pected values

Eρ[q] =

∫
Rs
q(y) ρ(y) dy, (3.4)

where q is some quantity of interest which depends on a vector y = (y1, . . . , ys) of param-

eters or variables in s dimensions, and ρ is some multivariate probability density function,

not necessarily a product of univariate functions, describing the distribution of y. We

29

have discussed briefly our major application, explored further in Chapter 4, of the porous

flow problem. Below we discuss two additional motivating applications.

3.1.1 Application to option pricing problems

Following the Black-Scholes model, integrals arising from option pricing problems take

the general form of (3.4), with

q(y) = max(µ(y), 0) and ρ(y) =
exp(−1

2y
TΣ−1y)√

(2π)s det(Σ)
,

where the variables y = (y1, . . . , ys)
T correspond to a discretization of the underlying

Brownian motion over a time interval [0, T], and the covariance matrix has entries Σij =

(T/s) min(i, j). Here q(·) is called the payoff function, and typically is of the form q(y) =

max(µ(y), 0), where µ(y) is a smooth function of the asset price St(y).

Typically one takes a factorization Σ = AAT and applies a change of variables y = Ay′,

leading us to an integral of the form (3.1), with f(y′) = q(Ay′), and φ being the standard

normal density. The choice of factorization therefore determines the function f . If A

is obtained via the Cholesky factorization, then it is called the “standard construction”.

The “Brownian bridge construction” [1] yields a different matrix A, while the matrix A

obtained from the eigenvalue decomposition of Σ is known by the QMC community as

the “principal components construction” [6].

The success of QMC for option pricing cannot be explained by the standard theory,

however analysis of the integrand, as seen in [27], suggests that all ANOVA terms of f are

smooth, with the exception of the highest order term, f{1:s}. This suggests, noting that

ANOVA terms are orthogonal in the new unanchored function space setting of this paper,

that the analysis on [26] can potentially be adapted to show that the function f − f{1:s}

belongs to the unanchored setting of this chapter.

3.1.2 Application to maximum likelihood problems

Another source of inspiration towards the non-standard setting in this paper is a class of

generalized response models in statistics, as examined in [34, 39, 57]. A specific example

of the time series Poisson likelihood model considered in these papers involves an integral

of the form (3.4), with

q(y) =
s∏
j=1

exp(τj(β + yj)− eβ+yj)

τj !
and ρ(y) =

exp(−1
2y

TΣ−1y)√
(2π)s det(Σ)

.

Here β ∈ R is a model parameter, τ1, . . . , τs ∈ {0, 1, . . .} are the count data, and Σ is

a Toeplitz covariance matrix with Σij = σ2κ|i−j|/(1 − κ2), where σ2 is the variance and

κ ∈ (−1, 1) is the autoregression coefficient. An obvious way to rewrite this integral in

the form (3.1) is to factorize Σ as discussed above for the option pricing applications, but

this yields unacceptable integrands f . Instead the strategy developed in [34] recentres

and rescales the exponent of the integrand q(y)ρ(y) = exp(F (y)). Using the results from

30

this current paper and following the strategy for choosing weight parameters in [36, 38],

the recent paper [57] provides careful estimates of the norm of the resulting integrand f

corresponding to three different choices of density φ, with the weight function taken as

ψ ≡ 1, and gives the formula for the weight parameters γu that minimise the overall error

bound.

3.2 Function space setting

3.2.1 General framework of reproducing kernel Hilbert spaces

The previous chapter surveyed the literature of numerical integration on [0, 1]s. We wish

to extend this theory to unbounded domains. First we define our problem somewhat more

precisely.

Suppose that our domain is D := (a, b), allowing unbounded intervals such as R. Let

φ be a univariate probability density function on D, that is, φ(y) > 0 for all y ∈ D and∫ b
a φ(y) dy = 1. For s ≥ 1, we define the cumulative distribution function Φ : D → [0, 1]

as

Φ(y) :=

∫ y

a
φ(t) dt,

and denote its inverse by Φ−1 : [0, 1] → D. Given a vector v ∈ [0, 1]s we apply Φ−1

component-wise, that is we write Φ−1(v) = (Φ−1(v1), . . . ,Φ−1(vs)). We are interested in

the integral of a function f : Ds → R with respect to the product probability density,

that is

Is,φ(f) :=

∫
Ds
f(y)

s∏
j=1

φ(yj) dy.

Ultimately, our approximation of this integral amounts to using the n-point randomly

shifted rank-1 lattice rule on the transformed integrand f ◦ Φ−1, that is

Qs,n(∆; f) :=
1

n

n∑
i=1

f

(
Φ−1

({
i z

n
+ ∆

}))
. (3.5)

We assume that the integrand f belongs to a weighted reproducing kernel Hilbert space

(RKHS) F of real valued functions on Ds, which are (at least) integrable with respect

to the s-fold tensor product of the density φ. In this setting we can continue to use the

machinery of §2.3, except that here we are concerned with the unbounded integration

operator Is,φ, and that to use QMC methods, we need to transform the integrand to the

unit cube. We derive results similar to those found in §2.3.1 for this specific setting.

To be able to apply QMC methods, we must map the integrand from the Hilbert

space F of functions on Ds to a Hilbert space G of functions on [0, 1]s, where we use the

isometry

f ∈ F ⇐⇒ g = f(Φ−1(·)) ∈ G, with ‖f‖F = ‖g‖G .

31

It is important to note that the integral remains the same under this isometry,

Is,φ(f) = Is(g) :=

∫
[0,1]s

g(u) du.

Conveniently, it can be shown that the space G is also a RKHS, where the kernel is

KG(u,v) = KF (Φ−1(u),Φ−1(v)), u, v ∈ [0, 1]s. (3.6)

Once again we will make use of the shift-invariant kernel, as defined in (2.33),

Ksh
G (u,v) :=

∫
[0,1]s

KG({u+ ∆}, {v + ∆}) d∆

=

∫
[0,1]s

KF (Φ−1({u+ ∆}),Φ−1({v + ∆})) d∆, (3.7)

Note that the shift-invariant kernel is only dependent on the difference of the two points

u and v. With a slight abuse of notation we write

Ksh
G (u,v) = Ksh

G ({u− v},0) = Ksh
G ({u− v}).

Hence we approximate the integral Is(g) = Is,φ(f) by a QMC rule

Qs,n(P; g) =
1

n

n∑
k=1

g(t(k)),

with points t(1), . . . , t(n) ∈ [0, 1]s, and it is in this space G that we can study the worst-case

error, defined as

es,n(P,G) = sup
‖g‖G≤1

|Is(g)−Qs,n(P; g)|.

Then it is straightforward to relate this to the original integration problem for f ∈ F ,

|Is,φ(f)−Qs,n(P; f ◦ Φ−1)| = |Is(g)−Qs,n(P; g)|

≤ es,n(P,G) ‖g‖G = es,n(P,G) ‖f‖F . (3.8)

The last expression illustrates the fact that while we study the worst-case error in G,

for which we have explicit expressions, we can keep the analysis of the norm of f in the

original space F , which is more convenient.

Once again both integration and QMC quadrature are linear functionals on both F
and G, so we can write

|Is(g)−Qn(P; g)| =
∣∣〈g, h〉G∣∣ ,

32

and we see that our representer of quadrature error, h ∈ G, should be defined here as

h(u) :=

∫
[0,1]s

KG(u,v) dv − 1

n

n∑
i=1

KG(u, t(i))

=

∫
Ds
KF (Φ−1(u),y)

s∏
j=1

φ(yj) dy − 1

n

n∑
i=1

KG(u, t(i)) .

which can be derived using the same steps as in (2.15).

The initial error of integration in G is the same as in the original space F ,

es(0,G) = sup
‖g‖G≤1

|Is(g)| = sup
‖f‖F≤1

|Is,φ(f)| = es(0,F).

which we require to be finite, and can be calculated to be

[es(0,F)]2 =

∫
Ds

∫
Ds
KF (x,y)

s∏
j=1

(φ(xj)φ(yj)) dx dy <∞. (3.9)

To ensure the embedding of F in L2,φ(Ds), which is required in our later analysis, we

further assume that ∫
Ds
KF (y,y)

s∏
j=1

φ(yj) dy <∞. (3.10)

Once again we are interested in evaluating the worst-case errors for shifted lattice

rules. Since the set of points that make up the shifted lattice rule Qs,n are dependent

only on the vectors z and ∆, for short hand notation we write the worst-case error as

es,n(P;G) = es,n(z,∆).

As we consider randomly shifted lattice rules, we are interested in the shift-average

worst-case error, which now only depends on z and is well-known (see e.g., [58]) to reduce

to

[esh
s,n(z)]2 :=

∫
[0,1]s

[es,n(P;G)]2 d∆ =

∫
[0,1]s

[es,n(z,∆)]2 d∆

= −
∫

[0,1]s

∫
[0,1]s

KG(u,v) dudv +
1

n

n∑
k=1

Ksh
G

({
kz

n

})
.

(3.11)

3.2.2 Anchored spaces

Here we review the weighted anchored spaces as studied in [40, 39], but with some new

developments. Given an anchor c ∈ D, a set of weight parameters γs,u > 0 (or “weights”

for short) and a set of weight functions ψj : D → R, the space F is the Hilbert space of

functions from Ds to R, for which Is,φ(f) is bounded, with the inner product

〈f, g〉F =
∑

u⊆{1:s}

1

γs,u

∫
D|u|

∂|u|f

∂yu
(yu; c−u)

∂|u|g

∂yu
(yu; c−u)

∏
j∈u

ψ2
j (yj) dyu, (3.12)

33

where the same notation is used as in (2.31). We take γs,∅ = 1. As usual the corresponding

norm is ‖f‖F = 〈f, f〉1/2F . The generalisations in (3.12), as compared to similar work in

[39, 40, 68, 69], include the allowance for general (non-product) weights γs,u, which may

depend on the dimension s, as well as for coordinate-dependent weight functions ψj . This

function space setting has three key ingredients:

• The univariate probability density φ : R → R \ R− in (3.1) controls the mapping

from Rs to the unit cube [0, 1]s. Although φ does not affect the norm (3.3), it

determines the transformed integrand f(Φ−1(·)) over the unit cube. Hence it will

affect the integration, and in particular the worst-case and initial errors.

• The weight function ψ : R→ R+ in the norm (3.3) controls the boundary behaviour

of the functions f that are included in the space. If ψ(yj) decays very quickly to

0 for large |yj | then the space can contain functions with very fast diverging mixed

derivatives.

• The collection of weight parameters γu associated with subsets u ⊂ N with finite

cardinality |u| <∞ controls the relative importance of various groups of variables,

as discussed previously.

The reproducing kernel corresponding to the inner product (3.12) is given by

KF (x,y) =
∑

u⊆{1:s}

γs,u
∏
j∈u

ηj(xj , yj), (3.13)

where for x, y ∈ D,

ηj(x, y) =

∫ min(x,y)

c

1

ψ2
j (t)

dt if x, y > c,∫ c

max(x,y)

1

ψ2
j (t)

dt if x, y < c,

0 otherwise.

For this to be well-defined we must assume that for all j, ψj satisfies∫ y

x

1

ψ2
j (t)

dt <∞ for all finite x and y, (3.14)

which is satisfied if ψj is strictly positive and continuous on (−∞,∞).

The kernel must satisfy the two conditions (3.9) and (3.10). Substituting (3.13) into

(3.9), we find that∫
Ds

∫
Ds
KF (x,y)

s∏
j=1

(φ(xj)φ(yj)) dxdy =
∑

u⊆{1:s}

γs,u
∏
j∈u

C0,j < ∞, (3.15)

34

where we define

C0,j :=

∫ b

a

∫ b

a
ηj(xj , yj)φ(xj)φ(yj) dxjdyj (3.16)

=

∫ c

a

Φ2(t)

ψ2
j (t)

dt+

∫ b

c

(1− Φ(t))2

ψ2
j (t)

dt,

with the last equality demonstrated in [39]. Similarly, we see that (3.10) reduces to∫
Ds
KF (y,y)

s∏
j=1

φ(yj) dy =
∑

u⊆{1:s}

γs,u
∏
j∈u

C1,j < ∞ (3.17)

where we define

C1,j :=

∫ b

a
ηj(yj , yj)φ(yj) dyj (3.18)

=

∫ c

a

Φ(t)

ψ2
j (t)

dt+

∫ b

c

1− Φ(t)

ψ2
j (t)

dt,

with the last equality again shown in [39]. Evidently, to satisfy (3.9) and (3.10) we require

that C0,j <∞ and C1,j <∞ for all j.

Now we turn to the corresponding function space G. The kernel KG(u,v) can be

calculated as in (3.6), while the associated shift-invariant kernel is

Ksh
G ({u− v}) =

∑
u⊆{1:s}

γs,u
∏
j∈u

θj({uj − vj}), (3.19)

where

θj(u) :=

∫ 1

0
ηj(Φ

−1({u+ ∆}),Φ−1(∆)) d∆ (3.20)

=

∫ c

Φ−1(u)

Φ(t)− u
ψ2
j (t)

dt +

∫ c

Φ−1(1−u)

Φ(t)− 1 + u

ψ2
j (t)

dt, u ∈ [0, 1],

which was derived in [40]. It is important to note that

C0,j =

∫ 1

0
θj(u) du and C1,j = θj(0),

which applies regardless of the choice of kernel and ηj , hence this applies in the unanchored

space, examined in the next section.

Now we are in a position to express the shift-averaged worst-case error for lattice rules

in the anchored space. Substituting (3.15) and (3.19) into (3.11), we obtain the expression

[esh
s,n(z)]2 =

∑
u⊆{1:s}

γs,u

−∏
j∈u

C0,j +
1

n

n∑
k=1

∏
j∈u

θj

({
kzj
n

}) . (3.21)

35

3.2.3 Unanchored spaces

Here we introduce the weighted unanchored spaces. We commence by deriving the repro-

ducing kernel in one dimension, in a fashion inspired by the derivation in [67], and then

proceed to higher dimensions where we also derive results for the shift-averaged worst-case

errors for lattice rules.

Lemma 14 (Unanchored space – reproducing kernel) We take F to be the space

of functions from D to R, where we define the inner product of f, g ∈ F as

〈f, g〉F :=

(∫ b

a
f(y)φ(y) dy

)(∫ b

a
g(y)φ(y) dy

)
+

1

γ

∫ b

a
f ′(y) g′(y)ψ2

j (y) dy,

with γ > 0 and a weight function ψj : D → R+ satisfying (3.14). Then the reproducing

kernel in F is given by KF (x, y) = 1 + γηj(x, y), where

ηj(x, y) =

∫ min(x,y)

a

Φ(t)

ψ2
j (t)

dt+

∫ b

max(x,y)

1− Φ(t)

ψ2
j (t)

dt−
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt. (3.22)

Proof. Since this reproducing kernel does not appear to exist in the literature, rather

than simply verifying the reproducing property, we provide a derivation.

Suppose that KF (x, y) = 1 + γηj(x, y), with

ηj(x, y) =

Lx(y) for y ≤ x,

Rx(y) for y ≥ x.

The reproducing property in Definition 3 yields

f(x) =

(∫ b

a
f(y)φ(y) dy

)(
1 + γ

[∫ x

a
Lx(y)φ(y) dy +

∫ b

x
Rx(y)φ(y) dy

])
+

∫ x

a
f ′(y)L′x(y)ψ2

j (y) dy +

∫ b

x
f ′(y)R′x(y)ψ2

j (y) dy,

which means that the following two properties must hold:
∫ x

a
Lx(y)φ(y) dy +

∫ b

x
Rx(y)φ(y) dy = 0,∫ x

a
f ′(y)L′x(y)ψ2

j (y) dy +

∫ b

x
f ′(y)R′x(y)ψ2

j (y) dy = f(x)−
∫ b

a
f(y)φ(y) dy.

(3.23)

As an initial guess, we assume that

L′x(y) =
`x(y)

ψ2
j (y)

and R′x(y) =
rx(y)

ψ2
j (y)

.

36

Since Lx(x) = Rx(x) =: M(x), we can write

Lx(y) = M(x)−
∫ x

y

`x(t)

ψ2
j (t)

dt and Rx(y) = M(x) +

∫ y

x

rx(t)

ψ2
j (t)

dt. (3.24)

Then the two required properties in (3.23) simplify to (assuming that all integrals are finite

and therefore, by Fubini’s theorem, interchanging the order of integration is allowed)
∫ x

a

Φ(t) `x(t)

ψ2
j (t)

dt −
∫ b

x

(1− Φ(t)) rx(t)

ψ2
j (t)

dt = M(x)∫ x

a
f ′(y) `x(y) dy +

∫ b

x
f ′(y) rx(y) dy = f(x)−

∫ b

a
f(y)φ(y) dy.

(3.25)

If we take

`x(y) = Φ(y) and rx(y) = Φ(y)− 1, (3.26)

and use integration by parts, we can verify that the second equation in (3.25) holds,∫ x

a
f ′(y) `x(y) dy +

∫ b

x
f ′(y) rx(y) dy

=

∫ x

a
f ′(y) Φ(y) dy +

∫ b

x
f ′(y) (Φ(y)− 1) dy

=
[
f(y) Φ(y)

]x
a
−
∫ x

a
f(y)φ(y) dy +

[
f(y) (Φ(y)− 1)

]b
x
−
∫ b

x
f(y)φ(y) dy

= f(x)−
∫ b

a
f(y)φ(y) dy,

which is as required. Substituting (3.26) into the first equation in (3.25) determines M(x).

Finally we show that ηj(x, y) is as in (3.22). Consider first the case y ≤ x. Then from

(3.24), (3.25), and (3.26) we have for y ≤ x that

ηj(x, y) = Lx(y) =

∫ x

a

Φ2(t)

ψ2
j (t)

dt +

∫ b

x

(1− Φ(t))2

ψ2
j (t)

dt −
∫ x

y

Φ(t)

ψ2
j (t)

dt

=

∫ y

a

Φ2(t)

ψ2
j (t)

dt +

∫ b

x

(1− Φ(t))2

ψ2
j (t)

dt −
∫ x

y

Φ(t)(1− Φ(t))

ψ2
j (t)

dt

=

∫ y

a

Φ2(t)

ψ2
j (t)

dt +

∫ b

x

(1− Φ(t))2

ψ2
j (t)

dt −
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt

+

∫ y

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt +

∫ b

x

Φ(t)(1− Φ(t))

ψ2
j (t)

dt

=

∫ y

a

Φ(t)

ψ2
j (t)

dt +

∫ b

x

1− Φ(t)

ψ2
j (t)

dt −
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt.

We easily obtain a similar expression for x ≤ y, hence obtaining (3.22). 2

37

We can now generalize the unanchored setting to s dimensions. The unanchored inner

product is

〈f, g〉F :=
∑

u⊆{1:s}

1

γs,u

∫
D|u|

(∫
Ds−|u|

∂|u|f

∂yu
(yu;y-u)

∏
j /∈u

φ(yj) dy-u

)
(3.27)

×

(∫
Ds−|u|

∂|u|g

∂yu
(yu;y-u)

∏
j /∈u

φ(yj) dy-u

)∏
j∈u

ψ2
j (yj) dyu,

where the notation is as in (2.31). The reproducing kernel takes the same form as (3.13),

but now with the function ηj defined by (3.22). As before we require the two conditions

(3.15) and (3.17), but now with different constants C0,j and C1,j .

Lemma 15 (Unanchored space – constants) For the function ηj given by (3.22), the

quantities C0,j and C1,j defined in (3.16) and (3.18), respectively, are

C0,j = 0 and C1,j =

∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt.

Proof. Substituting (3.22) into (3.16), we have that

C0,j =

∫ b

a

∫ b

a

∫ min(x,y)

a

Φ(t)

ψ2
j (t)

dt φ(x)φ(y) dx dy

+

∫ b

a

∫ b

a

∫ b

max(x,y)

1− Φ(t)

ψ2
j (t)

dt φ(x)φ(y) dx dy −
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt

=

∫ b

a

Φ(t)

ψ2
j (t)

∫ b

t

∫ b

t
φ(x)φ(y) dx dy dt

+

∫ b

a

1− Φ(t)

ψ2
j (t)

∫ t

a

∫ t

a
φ(x)φ(y) dx dy dt−

∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt

=

∫ b

a

Φ(t)(1− Φ(t))2

ψ2
j (t)

dt+

∫ b

a

(1− Φ(t))Φ2(t)

ψj2(t)
dt−

∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt,

which equals 0. Similarly, substituting (3.22) into (3.18), we obtain

C1,j

=

∫ b

a

∫ x

a

Φ(t)

ψ2
j (t)

dt φ(x) dx+

∫ b

a

∫ b

x

1− Φ(t)

ψ2
j (t)

dt φ(x) dx−
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt

=

∫ b

a

Φ(t)

ψ2
j (t)

∫ b

t
φ(x) dx dt+

∫ b

a

1− Φ(t)

ψ2
j (t)

∫ t

a
φ(x) dx dt−

∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt,

=

∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt.

which is the required expression. 2

38

Now we consider the space G of functions on the unit cube. The kernel KG(u,v) is

given by (3.6), and the associated shift invariant kernel Ksh
G ({u−v}) is of the same form

as (3.19), but the function θj takes a different form.

Lemma 16 (Unanchored space – shift-invariant kernel) For the function ηj given

by (3.22), the function θj defined in (3.20) is

θj(u) =

∫ b

Φ−1(u)

Φ(t)− u
ψ2
j (t)

dt+

∫ b

Φ−1(1−u)

Φ(t)− 1 + u

ψ2
j (t)

dt−
∫ b

a

Φ2(t)

ψ2
j (t)

dt. (3.28)

Alternatively, given any arbitrary point c ∈ D, we can express θj as

θj(u) =

∫ c

Φ−1(u)

Φ(t)− u
ψ2
j (t)

dt+

∫ c

Φ−1(1−u)

Φ(t)− 1 + u

ψ2
j (t)

dt

−
∫ c

a

Φ2(t)

ψ2
j (t)

dt−
∫ b

c

(1− Φ(t))2

ψ2
j (t)

dt. (3.29)

Note that the alternative expression (3.29) enables us to directly compare the unan-

chored space to the anchored space. If we use the superscripts ‘anch’ and ‘unanch’ to

distinguish relevant quantities from the anchored and unanchored spaces, then

θunanch
j = θanch

j − Canch
0,j . (3.30)

Proof. Substituting (3.22) into (3.20), we have

θj(u) =

∫ 1

0

∫ min(Φ−1({u+∆}),Φ−1(∆))

a

Φ(t)

ψ2
j (t)

dt d∆

+

∫ 1

0

∫ b

max(Φ−1({u+∆}),Φ−1(∆))

1− Φ(t)

ψ2
j (t)

dt d∆−
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt

=

∫ 1−u

0

∫ Φ−1(∆)

a

Φ(t)

ψ2
j (t)

dt d∆︸ ︷︷ ︸
A

+

∫ 1

1−u

∫ Φ−1(u+∆−1)

a

Φ(t)

ψ2
j (t)

dt d∆

+

∫ 1−u

0

∫ b

Φ−1(u+∆)

1− Φ(t)

ψ2
j (t)

dt d∆ +

∫ 1

1−u

∫ b

Φ−1(∆)

1− Φ(t)

ψ2
j (t)

dt d∆

−
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt. (3.31)

For the expression labelled A, we substitute w = Φ−1(∆) to obtain

A =

∫ Φ−1(1−u)

a

∫ w

a

Φ(t)

ψ2
j (t)

dt φ(w) dw =

∫ Φ−1(1−u)

a

Φ(t)

ψ2
j (t)

∫ Φ−1(1−u)

t
φ(w) dw dt

=

∫ Φ−1(1−u)

a

Φ(t)

ψ2
j (t)

[(1− u)− Φ(t)] dt.

39

Applying a similar procedure to the rest of (3.31), we obtain

θj(u) =

∫ Φ−1(1−u)

a

Φ(t)

ψ2
j (t)

[(1− u)− Φ(t)] dt+

∫ Φ−1(u)

a

Φ(t)

ψ2
j (t)

[u− Φ(t)] dt

+

∫ b

Φ−1(u)

1− Φ(t)

ψ2
j (t)

[Φ(t)− u] dt+

∫ b

Φ−1(1−u)

1− Φ(t)

ψ2
j (t)

[Φ(t)− (1− u)] dt

−
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt,

=

∫ b

a

Φ(t)

ψ2
j (t)

[(1− u)− Φ(t)] dt+

∫ b

a

Φ(t)

ψ2
j (t)

[u− Φ(t)] dt

+

∫ b

Φ−1(u)

Φ(t)− u
ψ2
j (t)

dt+

∫ b

Φ−1(1−u)

Φ(t)− (1− u)

ψ2
j (t)

dt−
∫ b

a

Φ(t)(1− Φ(t))

ψ2
j (t)

dt

=

∫ b

Φ−1(u)

Φ(t)− u
ψ2
j (t)

dt+

∫ b

Φ−1(1−u)

Φ(t)− (1− u)

ψ2
j (t)

dt−
∫ b

a

Φ2(t)

ψ2
j (t)

dt

which gives us (3.28). Now, given some c ∈ D, we can rewrite (3.28) as

θj(u) =

∫ c

Φ−1(u)

Φ(t)− u
ψ2
j (t)

dt+

∫ c

Φ−1(1−u)

Φ(t)− 1 + u

ψ2
j (t)

dt

+

∫ b

c

Φ(t)− u
ψ2
j (t)

dt+

∫ b

c

Φ(t)− 1 + u

ψ2
j (t)

dt−
∫ c

a

Φ2(t)

ψ2
j (t)

dt−
∫ b

c

Φ2(t)

ψ2
j (t)

dt,

=

∫ c

Φ−1(u)

Φ(t)− u
ψ2
j (t)

dt +

∫ c

Φ−1(1−u)

Φ(t)− (1− u)

ψ2
j (t)

dt

−
∫ c

a

Φ2(t)

ψ2
j (t)

dt −
∫ b

c

Φ2(t)− 2Φ(t) + 1

ψ2
j (t)

dt

=

∫ c

Φ−1(u)

Φ(t)− u
ψ2
j (t)

dt +

∫ c

Φ−1(1−u)

Φ(t)− (1− u)

ψ2
j (t)

dt

−
∫ c

a

Φ2(t)

ψ2
j (t)

dt −
∫ b

c

(1− Φ(t))2

ψ2
j (t)

dt

which yields (3.29). 2

Now we can express the shift-averaged worst-case error for lattice rules in the unan-

chored setting. It is also important to note that, as C0,j = 0 in this space, we have

es,0 = 1. Substituting (3.15), (3.19), and C0,j = 0 into (3.11), we obtain

[esh
s,n(z)]2 =

∑
∅6=u⊆{1:s}

γs,u
n

n∑
k=1

∏
j∈u

θj

({
kzj
n

})
, (3.32)

where θj is given by (3.28).

40

3.3 Main results

3.3.1 Reformulating the shift-averaged worst-case error for lattice rules

In Sections 3.2.2 and 3.2.3 we derived expressions for the shift-averaged worst-case error

for lattice rules in the anchored and unanchored spaces. Here we reformulate the worst-

case error in terms of the Fourier series coefficients of θj . As θj is continuous on the

unit interval, the Fourier series converges uniformly. We denote the Fourier coefficients

by θ̂j(h), where h ∈ Z. We also write θ̂v(h) =
∏
j∈v θ̂j(hj) for h ∈ Z|v|. Note that for

both the anchored and unanchored spaces we have C0,j = θ̂j(0), while C1,j = θj(0). In

the following we use the notation i ≡n j to mean i ≡ j (mod n). First we consider the

anchored case.

Lemma 17 If we define a set of auxiliary weights

γ̃s,v :=
∑

v⊆u⊆{1:s}

γs,u
∏
j∈u\v

C0,j , v ⊆ {1 : s}, (3.33)

then we can rewrite the worst-case error (3.21) for the anchored space as

[esh
s,n(z)]2 =

∑
∅6=v⊆{1:s}

γ̃s,v
∑

h∈(Z\{0})|v|
h·zv≡n0

θ̂v(h),

where zv ∈ Z |v|n denotes the vector containing the components of the lattice generating

vector z ∈ Zsn whose indices are in v.

Proof. We rearrange the following sum over u using the auxiliary weights such that the

h = 0 term is removed from the Fourier representation:∑
u⊆{1:s}

γs,u
∏
j∈u

θj(xj) =
∑

u⊆{1:s}

γs,u
∏
j∈u

(
(θj(xj)− θ̂j(0)) + θ̂j(0)

)
=

∑
u⊆{1:s}

γs,u
∑
v⊆u

(∏
j∈u\v

θ̂j(0)

) ∏
j∈v

(
θj(xj)− θ̂j(0)

)
=

∑
v⊆{1:s}

∑
v⊆u⊆{1:s}

γs,u

(∏
j∈u\v

C0,j

)∏
j∈v

(
θj(xj)− θ̂j(0)

)
=

∑
v⊆{1:s}

γ̃s,v
∏
j∈v

(
θj(xj)− θ̂j(0)

)
,

41

where xj = {kzj/n}. Thus (3.21) becomes

[esh
s,n(z)]2 = −

∑
u⊆{1:s}

γs,u
∏
j∈u

C0,j +
1

n

n∑
k=1

∑
u⊆{1:s}

γs,u
∏
j∈u

θj

({
kzj
n

})

= −γ̃s,∅ +
1

n

n∑
k=1

∑
v⊆{1:s}

γ̃s,v
∏
j∈v

[
θj

({
kzj
n

})
− θ̂j(0)

]
(3.34)

=
∑

∅6=v⊆{1:s}

γ̃s,v
1

n

n∑
k=1

∏
j∈v

[
θj

({
kzj
n

})
− θ̂j(0)

]
(3.35)

=
∑

∅6=v⊆{1:s}

γ̃s,v
n

n∑
k=1

∏
j∈v

∑
h∈Z\{0}

θ̂j(h) e2πikhzj/n

=
∑

∅6=v⊆{1:s}

γ̃s,v
n

n∑
k=1

∑
h∈(Z\{0})|v|

θ̂v(h) e2πikh·zv/n.

=
∑

∅6=v⊆{1:s}

γ̃s,v
∑

h∈(Z\{0})|v|
h·zv≡n0

θ̂(h). (3.36)

Here, in the last step, we applied the following special case of Identity 1,

1

n

n∑
k=1

e2πikh·zv/n =

1 if h · zv ≡n 0,

0 otherwise.

We then obtain the formula (3.36). 2

In the unanchored case, the use of the auxiliary weights γ̃s,v is unnecessary due to

θ̂j(0) = C0,j = 0 and γ̃s,v = γs,v. Hence we have the following lemma.

Lemma 18 The worst-case error (3.32) for the unanchored space can be written as

[esh
s,n(z)]2 =

∑
∅6=u⊆{1:s}

γs,u
∑

h∈(Z\{0})|u|
h·zu≡n0

θ̂u(h).

3.3.2 Error bound for the CBC construction

In the previous subsection we showed that the worst-case errors for the anchored and

unanchored spaces can be written in the same form in terms of the Fourier coefficients

of θj . In this subsection we provide the error analysis for randomly-shifted lattice rules

constructed using the CBC algorithm. For each d = 1, 2, . . . , s and z ∈ Zdn, we consider

the quantity

E2
d,s(z) :=

∑
∅6=v⊆{1:d}

γ̃s,v
∑

h∈(Z\{0})|v|
h·zv≡n0

θ̂v(h), (3.37)

noting that the weights γ̃s,v depend on s and not on d. Evidently E2
s,s(z) = [esh

s,n(z)]2, but

in general E2
d,s(z) 6= [esh

d,n(z)]2 for d < s. A notable exception occurs in the unanchored

42

space: if the weights are independent of s, then γ̃s,v = γs,v = γv and hence E2
d,s(z) =

[esh
d,n(z)]2 for all d ≤ s.

Algorithm 19 (CBC Algorithm for unbounded spaces) For any n ∈ N and s ∈ N

1. Set z1 = 1.

2. For each d = 2, 3, . . . , s with z1, . . . , zd−1 fixed, choose zd ∈ Zn such that E2
d,s(z1, . . . , zd−1, zd)

is minimised.

We note briefly that the CBC algorithm presented here differs from Algorithm 12 in

the search criteria. Here we must minimise Ed,s(z), which allows for unbounded spaces

as well as general weights. We have also generalised for lattices with any n ∈ N, that is,

we no longer restrict ourselves to only prime n, as we did in Chapter 2.

Let ϕ(n) denote Euler’s totient function, the size of the set Zn. We have the following

result.

Theorem 20 (CBC error bound) Consider either the anchored or unanchored space.

Let r2 > 1/2 be such that for each j ∈ {1 : s} we have some C2,j > 0 and r2,j ≥ r2 such

that

θ̂j(h) ≤ C2,j

|h|2r2,j
for all h 6= 0. (3.38)

Then a generating vector z∗ ∈ Zsn can be constructed by Algorithm 19 so that for any

λ ∈ (1/(2r2), 1] and for every d ∈ {1 : s} we have

E2
d,s(z

∗
1 , . . . , z

∗
d) ≤

 1

ϕ(n)

∑
∅6=v⊆{1:d}

γ̃λs,v
∏
j∈v

(
2Cλ2,jζ(2r2,jλ)

)1/λ

. (3.39)

Proof. First we demonstrate the bound in (3.39) for d = 1. We have

E2
1,s(1) = γ̃s,{1}

∑
h∈Z\{0}
h≡n0

θ̂1(h) ≤ γ̃s,{1}

(∑
h∈Z\{0}
h≡n0

Cλ2,1
|h|2r2,1λ

)1/λ

= γ̃s,{1}

(
2Cλ2,1ζ(2r2,1λ)

n2r2,1λ

)1/λ

≤ γ̃s,{1}

(
2Cλ2,1ζ(2r2,1λ)

ϕ(n)

)1/λ

,

where we used (3.38) and Jensen’s inequality
∑

k ak ≤ (
∑

k a
λ
k)1/λ for all nonnegative ak

and λ ∈ (1/(2r2), 1], as well as 2r2,1λ ≥ 2r2λ > 1 and ϕ(n) < n.

Suppose now that (3.39) holds for some d < s, and we proceed to prove that the

choice of z∗d+1 obtained from Algorithm 19 satisfies the same error bound (3.39), but with

43

d replaced by d+1. We split the worst-case error in d+1 dimensions according to whether

d+ 1 ∈ v or not,

E2
d+1,s(z1, . . . , zd, zd+1) =

∑
∅6=v⊆{1:d+1}

γ̃s,v
∑

h∈(Z\{0})|v|
h·zv≡n0

θ̂v(h)

=
∑

v⊆{1:d}

γ̃s,v
∑

h∈(Z\{0})|v|
h·zv≡n0

θ̂v(h) +
∑

d+1∈v⊆{1:d+1}

γ̃s,v
∑

h∈(Z\{0})|v|
h·zv≡n0

θ̂(h)

= E2
d,s(z1, . . . , zd) + Td+1,s(zd+1), (3.40)

where

Td+1,s(zd+1) :=
∑

d+1∈v⊆{1:d+1}

γ̃s,v
∑

h∈(Z\{0})|v|
h·zv≡n0

θ̂v(h).

The choice of z∗d+1 ∈ Zn that minimises E2
d+1(z, zd+1) is also the choice that minimises

the Td+1,s(zd+1) term, hence we have Td+1,s(z
∗
d+1) ≤ Td+1,s(zd+1) for all zd+1 ∈ Zn. It

then also holds that T λd+1,s(z
∗
d+1) ≤ T λd+1,s(zd+1) for all λ ∈ (1/(2r2, 1], and thus as z∗d+1

minimises the T λd+1,s(zd+1), it also beats the average

T λd+1,s(z
∗
d+1) ≤ 1

ϕ(n)

∑
zd+1∈Zn

T λd+1,s(zd+1).

=
1

ϕ(n)

∑
zd+1∈Zn

 ∑
d+1∈v⊆{1:d+1}

γ̃s,v
∑

h∈(Z\{0})|v|
h·zv≡n0

θ̂(h)

λ

.

We now apply Jensen’s inequality to obtain

T λd+1,s(z
∗
d+1) ≤ 1

ϕ(n)

∑
zd+1∈Zn

∑
d+1∈v⊆{1:d+1}

γ̃λs,v
∑

h∈(Z\{0})|v|
h·zv≡n0

[θ̂v(h)]λ.

44

Next we split the sum over h depending on whether or not hd+1 is a multiple of n, and

use (3.38),

T λd+1,s(z
∗
d+1)

≤ 1

ϕ(n)

∑
zd+1∈Zn

∑
d+1∈v⊆{1:d+1}

γ̃λs,v

 ∑
hd+1∈Z\{0}
hd+1≡n0

[θ̂d+1(hd+1)]λ
∑

h∈(Z\{0})|v|−1

h·zv\{d+1}≡n0

[θ̂v(h)]λ

+
∑

hd+1∈Z\{0}
hd+1 6≡n0

[θ̂d+1(hd+1)]λ
∑

h∈(Z\{0})|v|−1

h·zv\{d+1}≡n−hd+1zd+1

[θ̂v(h)]λ

≤
∑

d+1∈v⊆{1:d+1}

γ̃λs,v

 ∑
hd+1∈Z\{0}
hd+1≡n0

Cλ2,d+1

|hd+1|2r2,d+1λ

∑
h∈(Z\{0})|v|−1

h·zv\{d+1}≡n0

∏
j∈v\{d+1}

Cλ2,j

|hj |2r2,jλ

+
1

ϕ(n)

∑
zd+1∈Zn

∑
hd+1∈Z\{0}
hd+1 6≡n0

Cλ2,d+1

|hd+1|2r2,d+1λ

∑
h∈(Z\{0})|v|−1

h·zv\{d+1}≡n−hd+1zd+1

∏
j∈v\{d+1}

Cλ2,j

|hj |2r2,jλ

 . (3.41)

For the first term inside the brackets in (3.41), we have

∑
hd+1∈Z\{0}
hd+1≡n0

Cλ2,d+1

|hd+1|2r2,d+1λ
=

2Cλ2,d+1ζ(2r2,d+1λ)

n2r2,d+1λ
,

and we write

B :=
∑

h∈(Z\{0})|v|−1

h·zv\{d+1}≡n0

∏
j∈v\{d+1}

Cλ2,j

|hj |2r2,jλ
.

The second term inside the brackets in (3.41) can be rewritten as

1

ϕ(n)

n−1∑
c=1

∑
zd+1∈Zn

∑
hd+1∈Z\{0}

hd+1≡n−cz−1
d+1

Cλ2,d+1

|hd+1|2r2,d+1λ

∑
h∈(Z\{0})|v|−1

h·zv\{d+1}≡nc

∏
j∈v\{d+1}

Cλ2,j

|hj |2r2,jλ
. (3.42)

Now note that for any c ∈ {1, . . . , n−1}, we have equality of the two sets {cz−1
d+1 (mod n) :

zd+1 ∈ Zn} = {cz (mod n) : z ∈ Zn}. Furthermore if we let p = gcd(c, n), then

45

gcd(c/p, n/p) = 1 and we have

∑
zd+1∈Zn

∑
hd+1∈Z\{0}

hd+1≡n−cz−1
d+1

Cλ2,d+1

|hd+1|2r2,d+1λ
=
∑
z∈Zn

∑
m∈Z

Cλ2,d+1

|mn− cz|2r2,d+1λ

= p−2r2,d+1λ
∑
z∈Zn

∑
m∈Z

Cλ2,d+1

|m(n/p)− (c/p)z|2r2,d+1λ

= p−2r2,d+1λ
∑
z∈Zn

∑
h∈Z{0}

h≡n/p−(c/p)z

Cλ2,d+1

|h|2r2,d+1λ

≤ p−2r2,d+1λ p

n/p−1∑
z=1

∑
h∈Z{0}
h≡n/pz

Cλ2,d+1

|h|2r2,d+1λ

= Cλ2,d+1p
1−2r2,d+1λ

(
2ζ(2r2,d+1λ)−

2ζ(2r2,d+1λ)

(n/p)2r2,d+1λ

)
≤ 2Cλ2,d+1ζ(2r2,d+1λ)

(
1− 1

n2r2,d+1λ

)
. (3.43)

Note that as λ ∈ (1/(2r2), 1] and r2,d+1 ≥ r2, we know that ζ(2r2,d+1λ) < ∞ and

p1−2r2,d+1λ ≤ 1. Since the estimate (3.43) is independent of c, we can express the remaining

factor in (3.42) as

n−1∑
c=1

∑
h∈(Z\{0})|v|−1

h·zv\{d+1}≡nc

∏
j∈v\{d+1}

Cλ2,j

|hj |2r2,jλ
=

∑
h∈(Z\{0})|v|−1

h·zv\{d+1} 6≡n0

∏
j∈v\{d+1}

Cλ2,j

|hj |2r2,jλ

=
∏

j∈v\{d+1}

(
2Cλ2,jζ(2r2,jλ)

)
−B.

Combining these elements back into (3.41), we obtain

T λd+1,s(z
∗
d+1) ≤

∑
d+1∈v⊆{1:d+1}

γ̃λs,v

2Cλ2,d+1ζ(2r2,d+1λ)

n2r2,d+1λ
B

+
2Cλ2,d+1ζ(2r2,d+1λ)

ϕ(n)

(
1− 1

n2r2,d+1λ

)(∏
j∈v\{d+1}

(
2Cλ2,jζ(2r2,jλ)

)
−B

)
≤ 1

ϕ(n)

∑
d+1∈v⊆{1:d+1}

γ̃λs,v
∏
j∈v

(
2Cλ2,jζ(2r2,jλ)

)
. (3.44)

We assume by the inductive hypothesis that there is a particular z∗ ∈ Zs for which

(3.39) holds. We know that there is a particular z∗d+1 for which (3.44) holds, and combining

46

this with (3.39) and (3.40), we obtain

E2
d+1(z∗, z∗d+1) = E2

s (z∗) + Td+1,s(z
∗
d+1)

≤ 1

[ϕ(n)]1/λ

 ∑
∅6=v⊆{1:d}

γ̃λs,v
∏
j∈v

2Cλ2,jζ(2r2,jλ)

1/λ

+
1

[ϕ(n)]1/λ

 ∑
d+1∈v⊆{1:d+1}

γ̃λs,v
∏
j∈v

2Cλ2,jζ(2r2,jλ)

1/λ

≤ 1

[ϕ(n)]1/λ

 ∑
∅6=v⊆{1:d+1}

γ̃λs,v
∏
j∈v

2Cλ2,jζ(2r2,jλ)

1/λ

,

for any λ ∈ (1/(2r2), 1]. Again we have made use of Jensen’s inequality. Thus by induction

(3.39) holds for any d ∈ {1 : s}. This completes the proof. 2

Theorem 21 Suppose that f belongs to the anchored or unanchored space for some weight

parameters γs,u and weight functions ψj, and suppose that (3.38) holds for constants

C2,j > 0 and r2,j ≥ r2 > 1/2. Then a generating vector z∗ ∈ Zsn for a randomly-shifted

lattice rule can be constructed by a CBC algorithm such that, for all λ ∈ (1/(2r2), 1],√
E∆ |Is,φ(f)−Qs,n(f ◦ Φ−1)|2

≤

 1

ϕ(n)

∑
∅6=u⊆{1:s}

γλs,u
∏
j∈u

(
Cλ0,j + 2Cλ2,jζ(2r2,jλ)

)1/(2λ)

‖f‖F , (3.45)

where the expectation is taken with respect to the random shift which is uniformly dis-

tributed on [0, 1]s, and C0,j is given by (3.16) for the anchored variant and C0,j = 0 for

the unanchored variant.

Proof. From (3.8) and (3.11) we see that

E∆ |Is,φ(f)−Qs,n(f ◦ Φ−1)|2 ≤
∫

[0,1]s
[es,n(Qs,n;F)]2 ‖f‖2F d∆

= [esh
s,n(z)]2 ‖f‖2F .

47

Substituting (3.33) into (3.39) and applying Jensen’s inequality, we obtain

[esh
s,n(z∗)]2 = E2

s,s(z
∗)

≤

 1

ϕ(n)

∑
∅6=v⊆{1:s}

∑
v⊆u⊆{1:s}

γλs,u

(∏
j∈v\u

Cλ0,j

)∏
j∈v

(
2Cλ2,jζ(2r2,jλ)

)1/λ

=

 1

ϕ(n)

∑
∅6=u⊆{1:s}

γλs,u
∑
v⊆u

(∏
j∈v\u

Cλ0,j

)∏
j∈v

(
2Cλ2,jζ(2r2,jλ)

)1/λ

,

=

 1

ϕ(n)

∑
∅6=u⊆{1:s}

γλs,u
∏
j∈u

(
Cλ0,j + 2Cλ2,jζ(2r2,jλ)

)1/λ

,

which equals the square of the first factor in (3.45). 2

The CBC construction and error bound we have presented thus far depend on the

final dimension s. If the weights are independent of s, i.e., γs,u = γu, and if∑
|u|<∞

γλu
∏
j∈u

(
Cλ0,j + 2Cλ2,jζ(2r2,jλ)

)
< ∞, (3.46)

then for every s the CBC algorithm yields a generating vector z∗ for which esh
s,n(z∗) =

O(n−1/(2λ)), with the implied constant independent of s. If the weights are of a product

form, i.e., γu =
∏
j∈u γj , then the condition (3.46) simplifies to

∑∞
j=1 γ

λ
j < ∞, as seen in

earlier papers.

In the unanchored space with weights γu independent of s, since there is no need for

auxiliary weights (we have C0,j = 0 and γ̃s,v = γv), the CBC algorithm actually works

directly with [esh
d,n(z)]2, and the resulting generating vector is extensible in dimension.

That is, if a fixed z ∈ Zdn minimizes [esh
d,n(z)]2, then there is some zd+1 ∈ Zn such that

(z, zd+1) will minimize [esh
d+1,n(z, zd+1)]2. For general non-product weights γu, the cost of

the CBC algorithm can be prohibitively expensive. In §5.1 we will discuss the fast CBC

implementation for POD weights (2.23).

In the anchored space, however, for Theorem 20 to be valid the CBC algorithm must

work with the auxiliary quantity E2
d,s(z) which involves the auxiliary weights γ̃s,v. Even

if the original weights γu are independent of s, the auxiliary weights γ̃s,v needed in the

CBC construction still depend on s by definition, see (3.33). Thus the resulting generating

vector is not extensible in dimension, even though the error bound can be independent of s

when (3.46) holds. This means that unique generating vectors z ∈ Zsn must be built from

the bottom up for each s, using the CBC construction. We stress that an implementation

based on minimizing [esh
d,n(z)]2 in each step, although intuitively sound, cannot be justified

by Theorem 20. Unfortunately, even if the original weights have some nice structure such

as POD weights, this structure is not preserved by the auxiliary weights. A method of

tackling this issue for the anchored space with POD weights will be discussed §5.1.2.

48

3.3.3 Examples of ψj and φ

In [39] a study is undertaken for various combinations of the weight function ψj and

probability density φ. In particular it is examined whether conditions (3.9) and (3.10)

are satisfied, and then rates of decay of θ̂j(h) are calculated. For the anchored space it

was shown in [39] that

θ̂j(h) =
1

π2h2

∫ b

a

1

ψ2
j (t)

sin2(πhΦ(t)) dt for h 6= 0. (3.47)

We see from (3.30) that the function θj for the unanchored space only differs from the

anchored case by a constant. Hence the formula (3.47) also applies in the unanchored

space.

We present in Table 3.1 summary of a number useful probability densities φ. Some

of these choices have been used in applications of the QMC theory. We leave a free

parameter ν to be able to adjust the distributions.

Table 3.1: Various possible choices for φ(y)

Distribution Formula

Normal φnor,ν(y) = e−y
2/2ν

√
2πν

Logistic φlogit,ν(y) = ey/ν

ν(1+ey/ν)2

Exponential φexp,ν(y) = e−|y|/ν

2ν

Student φstu,ν(y) = 1√
νπ

Γ(ν+1
2

)

Γ(ν
2

)

(
1 + y2

ν

)−(ν+1)/2

Rational φrat,ν(y) = ν
2 (1 + |y|)−(|ν|+1)

In Table 3.2 present a summary of the conditions (3.9) and (3.10) as well as estimates of

r2,j for selected combinations of φ from Table 3.1 and ψj . Full details of these calculations

can be found in [39], with the exception that the cases with ψj(y) = 1 are given in [57].

The asterisks in r∗2,j in Table 3.2 mark those cases where matching lower bounds on θ̂j(h)

have been obtained (up to δ > 0), indicating that those estimates on r2,j are sharp.

Full details of the calculations of bounds of θ̂j(h) and hence the constants C2,j , C3,j ,

r2,j , and r3,j for most of the choices in Table 3.2 can be found in [39]. These calculations

were not, however, performed for the cases where ψj(y) = 1. We present these calculations

here in the Examples 23-25.

First, we can see that due to symmetry of all our choices of φ, we can write

θ̂j(h) =
2

π2h2

∫ 1/2

0

sin2(πhu)

ψj(Φ−1(u))φ(Φ−1(u))
du.

In the examples below we make use of the following lemma

49

Table 3.2: Selected combinations of the probability density φ and weight function ψj. Do
conditions (3.9) and (3.10) hold? What are the estimates for r2,j? The asterisk in r∗2,j below
indicates a sharp estimate of r2,j.

φnor,ν(y)
φlogit,ν(y) φstu,ν(y)

or φexp,ν(y) or φrat,ν(y)

ψj(y) = e−y
2/(2α) Yes if α > 2ν - -

r2,j = 1− ν
α

ψj(y) = e−|y|/α Yes Yes if α > 2ν -

r2,j = 1− δ, ∀δ ∈ (0, 1
2

) r∗2,j = 1− ν
α

ψj(y) = (1 + |y|)−α Yes Yes Yes if 2α+ 1 < ν

r2,j = 1− δ, r∗2,j = 1− δ, r∗2,j = 1− 2α+1
2ν

∀δ ∈ (0,min(1
2
, 9
8
αν)) ∀δ ∈ (0,min(1

2
, αν))

ψj(y) = 1 Yes Yes Yes if ν > 1

r2,j = 1− δ, ∀δ ∈ (0, 1
2

) r∗2,j = 1− δ, ∀δ ∈ (0, 1
2

) r∗2,j = 1− 1
2ν

Lemma 22 For any h ≥ 1, we have∫ 1/2

0

sin2(πhu)

u
du ≤ 1

2
+ ln

(
πh

2

)
and for any 0 < b ≤ 1,

∫ b/2

0

sin2(πhu)

u
du ≥ b2

2

Proof. The first inequality we use sin2(πhu) ≤ (πhu)2 for u ∈ [0, 1/(πh)] and sin2(πhu) ≤
1 for u ∈ [1/(πh), 1],∫ 1/2

0

sin2(πhu)

u
du ≤

∫ 1/(πh)

0
π2h2udu +

∫ 1/2

1/(πh)
u−1 du

=
1

2
+ ln

(
πh

2

)
For the lower bound, we use Lemma 3 in [39] and take a = 0. 2

Example 23 We take the combination

φ(y) = φnor,ν(y), ψj = 1.

50

We see that

θ̂j(h) =
2
√

2πν

π2h2

∫ 1/2

0
exp

(
(Φ−1

nor,ν(u))2

2ν

)
sin2(πhu) du

≤ 2
√

2πν

π2h2

∫ 1/2

0

sin2(πhu)

u
du ≤ 2

√
2πν

π2h2

(
1

2
+ ln

(
πh

2

))
,

where we used exp
(

(Φ−1
nor,ν(u))2

2ν

)
< 1

u for u ∈ (0, 1/2), as demonstrated in Example 4 of

[39]. Thus for any δ ∈ (0, 1/2), using lnx ≤ xδ/δ, we can take

C2,j =
23/2−δ ν1/2

δ π3/2−δ h2−δ e1−2δ
r2,j = 1− δ.

A useful lower bound proved elusive.

Example 24 Now consider the pair

φ(y) = φlogit,ν(y), ψj = 1.

From the definition in Table 3.1 we see that for u ∈ (0, 1/2]

φlogit,ν(Φ−1
logit,ν(u)) =

u(1− u)

ν
.

Thus, using 1/2 ≤ 1− u ≤ 1 for u ∈ (0, 1/2),

2

π2h2

∫ 1/2

0
u−1 sin2(πhu) du ≤ θ̂j(h) ≤ 4

π2h2

∫ 1/2

0
u−1 sin2(πhu) du,

and using b = 1 in Lemma 22 we obtain, for any δ > 0

C3,j =
1

2π2
and r3,j = 1.

and we see that C2,j and r2,j can be derived in exactly the same way as Example 23. The

same results can be obtained for r2,j and r3,j if we consider φ(y) = φexp,ν(y).

Example 25 Finally, consider the pair

φ(y) = φrat,ν(y), ψj = 1.

Again, using explicit formulas in Table 3.1, we find, assuming ν > 1

φrat,ν(Φ−1
rat,ν(u)) =

2

ν
(2u)1+1/ν ,

hence we have that

θ̂j(h) =
21−1/ν

π2h2ν

∫ 1/2

0
u−(1+1/ν) sin2(πhu) du,

51

Using Lemma 3 from [39], we can derive

C2,j =
1

2− 1/ν

(
2

π

)2−1/ν

, C3,j =
2

(2/ν − 1)π2
, and r2,j = r3,j = 1− 1

2ν

Relationships between φstu,ν(y) and φrat,ν(y), derived in [39], shows that we obtain the

same values for r2,j and r3,j , but different C2,j and C3,j , when we consider φ(y) = φstu,ν(y).

52

Chapter 4

The porous flow problem

In this chapter we analyse the porous-flow problem first presented in the introduction.

We are concerned with modelling the behaviour of single-phase fluid flow in saturated

media, where the permeability underlying medium is allowed to be a random field.

This model is primarily intended to simulate the flow of fluids through porous rock or

soils in the earth’s crust. We are motivated to understand the dynamics of fluids in these

media for various endeavours, particularly for understanding the spread of pollutants

within groundwater deposits, or for management of water resources.

The model is based on Darcy’s law

q(x) = −a(x)(∇u(x))

coupled with the incompressibility constraint,

∇ · q(x) = 0

Here q represents the Darcy flux, u is the residual pressure field, and a the permeability

of the underlying medium. In our model we are interested in letting the field a be a ho-

mogeneous random field, reflecting the complex nature of rock or soil formations. Rather

than having constant permeability, these formations are known to have strong spatial

variation in permeability, a property we call heterogeneity. This property is also known

to apply on a variety of scales of measurement. In practice it is impossible to measure

exactly the permeability of a given medium with heterogeneity. Further, it is known that

taking sparsely spaced measurements and performing some sort of interpolation yields

poor results that do not reflect the reality of the medium being simulated. Thus we use

random fields, and assume that a single realisation of the field bears some similarity to

the permeability field of our rock formation. We then ensure that statistically our random

field model bears a resemblance to the permeability field, and our simulation consists of

studying statistical properties of the solutions to the Darcy flow equations.

This leads us to the following PDE, which is the focus of interest in this chapter,

−∇ · (a(x,y)∇u(x,y)) = f(x) , for y ∈ RN and x ∈ D (4.1)

where D is a bounded spatial domain in Rd, d = 1, 2, or 3, and (RN,B(RN), ρG) is our

parameterised probability space of sequences y, to be discussed shortly. Here we take the

53

boundary conditions to be homogeneous Dirichlet conditions. The field here is taken to

be of the form

a(x,y) := a∗(x) + a0(x) exp(Z(x,y)), (4.2)

where and a∗, a0 are given functions that are continuous on D with a∗ non-negative and

a0 strictly positive on D, and

Z(x,y) :=
∞∑
j=1

√
µj ξj(x) yj , (4.3)

where µj are real, positive and non-increasing in j, and we assume the ξj are orthonor-

mal in L2(D). We discuss the conditions for point-wise convergence of this expression

later in Lemma 26. The ξj , in some sense, can be considered to be “basis” functions

for construction of the random field. The yj are i.i.d. zero-mean Gaussian normal (i.e.

N (0, 1)) variables, and our probability space is (RN,B(RN), ρG), where B(RN) is the Borel

sigma-algebra on RN, taken here to be the sigma-algebra generated by countable products

of intervals I ∈ B(R). The measure ρG is the product Gaussian measure

ρG =

∞⊗
j=1

N (0, 1). (4.4)

We see that ρG is a Gaussian measure on an infinite dimensional space, in the sense that

for any bounded linear functional ` : RN → R, the push-forward measure defined on

B(R) by (`∗ρG)(A) = ρG(`−1(A)), where A ∈ B(R), is a Gaussian measure on R with

zero mean. We note also that Z(x, ·) is a Gaussian random variable for any x ∈ D

with zero mean, and indeed (Z(x1, ·), . . . , Z(xk, ·)) is a Gaussian random vector for any

collection of points x1, . . . ,xk ∈ D. Thus, in accordance with the standard definition, we

call Z : D × RN → R a Gaussian field, see e.g. [2, §1.6]. Thus the field a is said to be a

lognormal random field.

We note briefly that, in contrast to our “parametrically defined” field, as presented

in (4.2) and (4.3), most of the literature presents random fields where Z is specified as

a Gaussian field and given covariance structure. The covariance of a Gaussian field is

represented by a function, c(x0,x1) = E[Z(x0, ·)Z(x1, ·)]. We assume c to be continuous

on D × D and note that c(x0,x1) = c(x1,x0). The Karhunen–Loève expansion then

allows us to find the parameters µj and ξj which can be said to be the eigenvalues and

eigenvectors, respectively, of the covariance integral operator for which c(x0,x1) is the

kernel, in fact we have

µjξj(x0) =

∫
D
c(x0,x1) ξj(x1) dx1

We assume that the covariance functions are stationary and isotropic, meaning that we

can write c(x0,x1) = ρ(|x0 − x1|). For further information on this subject we refer the

reader to [2].

54

Figure 4.1: Grey-scale plots of example ξj in 2-dimensions

In Figure 4.1 we present some examples of ξj for a given set, where the value of

the function is given in grey-scale. In fact these examples here were derived using the

Karhunen–Loève expansion for an exponential covariance. We see that they are periodic

functions increasing in frequency for higher j, the sort of behaviour we might expect. Let

us define the partial sums

Zs(x,y) :=
s∑
j=1

√
µj ξj(x) yj for y ∈ RN (4.5)

and define as(x,y) as in (4.2) but with Zs(x,y). In Figure 4.2 we have a sequence Zs for

increasing s for a fixed y ∈ RN. As s increases we clearly see more “resolution” towards

some final random field, although even for small s we see some key features of the field

emerge already, such as impermeable clusters.

We study problem (4.1) in its weak form. Thus we seek u(·,y) ∈ H1
0 (D) (these spaces

will be defined shortly, in §4.1) such that

A (y;u, v) = 〈f, v〉 , for all v ∈ H1
0 (D) and for almost all y ∈ RN, (4.6)

55

Figure 4.2: Grey-scale plots of example partial sums Zs(x,y) =
∑s

j=1
√
µjξj(x)yj for

various s

where 〈·, ·〉 denotes the duality pairing between Hs(D) and (Hs(D))′, which can simply

be taken to be the L2(D) inner product, and we have the bilinear-form

A (y;w, v) :=

∫
D
a(x,y)∇w(x) · ∇v(x) dx , w, v ∈ H1(D) ,

and we assume that f ∈ (H1
0 (D))′.

For any ε > 0 we have ρG({y : a(x, ·) > ε−1}) > 0 so that problem (4.6) is not

uniformly bounded over all possible realisations of a. If a∗(x) = 0, then we also have

ρG({y : a(x, ·) < ε}) > 0 so that (4.6) is not uniformly elliptic either. This loss of

ellipticity and boundedness is one of the main difficulties in the (numerical) analysis of

(4.6).

We are interested in expected values of functionals of the solution of (4.6). That

is, if G ∈ (H1
0 (D))′, we will be interested in the expected value E[G(u)] of the random

variable G(u(·,y)). The choices of functionals are generally inspired by the literature in

groundwater flow modelling, and include but are not limited to effective permeability of

a medium, the pressure at a point (point evaluation), and positions or travel times of

a suspended particle in the fluid. We shall use sampling methods for the computation

of E[G(u)]. That is, we will compute realisations of a(x,y), which yield realisations of

u(x,y), via the solution of the elliptic problem (4.6), and from these we shall compute

56

an approximation of E[G(u)] by an appropriate averaging over y. However, in contrast

to standard Monte Carlo (MC) methods, we will sample a(x,y) using quasi-Monte Carlo

(QMC) methods. We demonstrate here that under suitable assumptions, QMC methods

are faster than MC methods for this class of problems. For simplicity in the theory, we

must assume the functionals G to be linear.

We summarise here the approach to approximating the problem. First we approximate

(4.6) for a fixed y using the finite element method. Following conventional notation, a

solution is found in a finite-dimensional subspace Vh ⊂ H1
0 (D) of piecewise-linear functions

on a triangulation of D, where h is a parameter for the the maximum diameter of all the

triangles, and the finite dimensional solution is labelled uh. Next we we sample the

random field by truncating the sum in (4.2) to s terms. The resulting approximation of

the field, which we denote as, is substituted in to (4.6), and the resulting finite element

solution is then denoted ush(x,y). The corresponding approximation of E[G(u)] is then

taken to be the expected value of the random variable G(ush(·,y)), written E[G(ush)]. In

fact, since ush is a random field derived from the s i.i.d. N (0, 1) random variables {Yj}j≥1,

we have the formula

E[G(ush)] =

∫
Rs
G(ush(·,y))

s∏
j=1

φ(yj) dy , (4.7)

where φ(y) = exp(−y2/2)/
√

2π is the Gaussian normal probability density.

The computation of this (possibly high dimensional) integral, leads us to the use of the

QMC methods outlined through this thesis, in particular randomly shifted lattice rules.

Our aim in this chapter is to bound the root mean square error of this QMC evaluation,√
E∆
[(
E[G(u)]−Qs,n(z,∆; G(ush))

)2]
, (4.8)

where E∆ denotes expectation with respect to the random shift ∆, and where Qs,n(z,∆; ·)
a lattice rule, as defined in (2.10). Thus Qs,n(z,∆; G(ush)) represents our proposed QMC-

FE method in full.

The starting point for our analysis is the observation that we can break up our analysis

in to error terms due to the various approximations. We have that

E[G(u)]−Qs,n(z,∆; G(ush)) = E[G(u)− G(ush)] + (E[G(ush)] − Qs,n(z,∆; G(ush)))

Since the random diffusion coefficient a(x,y) in (4.1) and the random shift ∆ in the QMC

rule are statistically independent, we can write

E[G(u)]−Qs,n(z,∆; G(ush)) =
(
E[G(u)−G(ush)]

)2
+ E∆ |E[G(ush)]−Qs,n(z, ·; G(ush))|2 .

(4.9)

57

Related publications

This problem has attracted great interest recently. The results in this thesis draw directly

from a collaboration that resulted in [24]. In this thesis we undertake the analysis of the

problem, in particular analytic results for error analysis of QMC quadrature applied to

the PDE problem in (4.1) with lognormal random fields. Many results in [24] are more

general than the somewhat more simplified results presented in this chapter.

Early papers [44, 45, 13] provide the foundations of the problem, and explore the use

of Monte Carlo methods when applied to the problem. Extensive analysis of the FEM

problem that arises from the solution of the PDE for a single instance of a permeability

field, that is, without the statistical analysis involving the random field, can be found in

[10] and [55]. In [25] the same approach to the spatial problem is taken, but then using

QMC methods for the statistical simulation of the random field, but did not include error

analysis. A full analysis of QMC methods when applied to this problem, but without

the allowance of lognormal fields (that is, uniformly bounded fields are considered) is

considered in [36]. Further analysis of the problem, including extensive results on the

regularity of the problem in its spatial domain, with applications towards using multilevel

Monte Carlo methods for the quadrature on the probability space can be found in [66]

and [9].

4.1 Preliminaries

Here we introduce some standard notations and concepts, particularly the relevant func-

tion spaces and norms to be used throughout this chapter.

First we introduce multi-index notation. Let ν = (νj)j∈N denote a multi-index of

non-negative integers, with finitely many nonzero elements, i.e. |ν| :=
∑

j≥1 νj <∞. As

usual, the value of νj will determine the number of derivatives to be taken with respect

to yj , for any function u : RN → R, we use the shorthand notation

∂νu := (∂ν1∂ν2 . . .)u where ∂νiu :=
∂νiu

∂yνii

If u is a function on a finite dimensional space Rs, we evidently consider ν = (νj)
s
j=1.

We write m � ν to mean that the multi-index m satisfies mj ≤ νj for all j. Let ν −m
denote a multi-index with the elements νj −mj , and

(
ν
m

)
:=
∏
j≥1

(
νj
mj

)
. Now, given any

multi-index ν with |ν| = n, we have the Leibniz product rule

∂ν(AB) =
∑
m�ν

(
ν

m

)
(∂ν−mA)(∂mB) .

Note that this multi-index notation is quite different to the set notation u used in earlier

chapters.

Let C0(D) denote the space of continuous functions on D, and let Ck(D) represent

the space of k-times continuously differentiable functions on D. We say that a function

58

v : D → R is Hölder continuous with exponent t in D if we have

|v|C0,t(D) := sup
x0,x1∈D:x0 6=x1

|v(x0)− v(x1)|
|x0 − x1|t

< ∞, (4.10)

where |x| is the usual Euclidean distance in Rd. The quantity |v|C0,t(D) serves as a

seminorm on C0(D). We can define the related norm as

‖v‖Ck,t(D) := ‖v‖Ck(D) + max
|ν|=k

|∂νv|C0,t(D),

where we take

‖v‖Ck(D) := max
|ν|≤k

sup
x∈D
|∂νv(x)|.

We write Hs(D), where s ≥ 0, for the Sobolev space of functions where, for every

ν such that |ν| ≤ s, we have that ∂νv ∈ L2(D) (note that we can allow ∂ν to include

differentiation in the weak sense here). We take the usual norm as follows,

‖v‖Hs(D) :=
∑
|ν|≤s

‖∂νv‖L2(D). (4.11)

Let us also write H1
0 (D) for the subspace of functions in H1(D) with vanishing trace on

the boundary ∂D. We define the norm on H1
0 (D) as

‖v‖H1
0 (D) :=

(∫
D
|∇v|2 dx

)1/2

, (4.12)

and remark that it is well known (see e.g. [22, Theorem 7.10]) that in H1
0 (D) this norm

is equivalent to the norm defined in (4.11). As H1
0 (D) is the natural setting for much of

the theory to come, for brevity we adopt the notation V = H1
0 (D) and let V ′ indicate its

dual space from now on.

Finally, for some regularity results we will also require spaces of Bochner integrable

functions. For any Banach space X with norm ‖ · ‖X and for 1 ≤ q < ∞, we denote by

Lq(Ω,P;X) the space of all strongly P–measurable mappings v from (Ω,A) to (X,B(X))

(where B(X) denotes the Borel sigma algebra over X), for which the Bochner integral

‖v‖Lq(Ω,P;X) =

(∫

Ω ‖v‖
q
XdP

)1/q
, for 1 ≤ q <∞,

esssupω∈Ω‖v‖X , for q =∞,

is finite. When there is no ambiguity about the measure, we shall denote this space by

Lq(Ω;X). In the particular case X = R, we shall simply write Lq(Ω) in place of Lq(Ω;R).

4.2 Discretisation and truncation

In this section we are concerned with finding an upper bound for the first term in (4.9). We

do so by separating the contribution towards the error of the finite element approximation,

59

followed by the truncation, that is we write

G(u)− G(ush) = (G(u)− G(uh)) + (G(uh)− G(ush)) (4.13)

and estimate the expectation for each of these two terms separately. Other publications,

for example [36, 7], take the approach of estimating G(u) − G(us) and G(u) − G(uh)

separately.

For ease of notation we define

βj(x) :=
√
µj ξj(x). (4.14)

We now make some suitable assumptions on the regularity of the field parameters µj and

ξj . These assumptions are inspired by what is commonly seen in the literature, but are

simplified here for the sake of exposition in this thesis. These assumptions are somewhat

less general than, for example, those found in [7] or [24].

Assumption A1 (a) The functions ξj are continuously differentiable, i.e. {ξj}j≥1 ⊂
C1(D).

(b)
∑∞

j=1 ‖βj‖
p

C0(D)
<∞ for some p ∈ (0, 1], and

∑∞
j=1 ‖∇βj‖C0(D) <∞.

We can now define the admissible parameter set. This will be a set of “good” reali-

sations of the field a, in the sense that a(·,y) is bounded away from 0 and ∞, and has

appropriate smoothness properties. We define

Uβ :=

{
y ∈ RN :

∞∑
j=1

(
‖βj‖C0(D) + ‖∇β‖C0(D)

)
|yj | <∞

}
⊂ RN . (4.15)

This set Uβ ⊂ RN is not a simple set, in the sense of being able to be constructed

through a countable product of intervals in R, but as is shown in the following lemma,

Uβ is measurable and contains ρG-almost all realisations y. This enables to consider all

results going forward to be for realisations in Uβ, and can employ our regularity results

“pointwise” for y ∈ Uβ.

Lemma 26 If Assumption A1 holds, then Uβ ∈ B(RN) and ρG(Uβ) = 1.

Proof. This proof is based on the proof of [56, Lemma 2.28]. We define

Uβ,M,N :=

y ∈ RN :

M∑
j=1

(
‖βj‖C0(D) + ‖∇β‖C0(D)

)
|yj | ≤ N

 ,

which is clearly measurable, and measurability of Uβ then follows from the fact that we

can express it as a countable intersection and union,

Uβ =
∞⋃
N=1

∞⋂
M=1

Uβ,M,N .

60

We have that

EρG |yj | =

∫
RN
|yj | dρG(y) =

2√
2π

∫ ∞
0

y exp(−y2/2)dy =

√
2

π
.

Now, considering the partial sums we can apply the monotone convergence theorem to

swap the sum and the integral,∫
RN

∞∑
j=1

(
‖βj‖C0(D) + ‖∇β‖C0(D)

)
|yj | dρG(y)

=
∞∑
j=1

(
‖βj‖C0(D) + ‖∇β‖C0(D)

)∫
RN
|yj |dρG(y)

=

√
2

π

∞∑
j=1

(
‖βj‖C0(D) + ‖∇β‖C0(D)

)
<∞.

This implies that the sum must be finite for ρG-almost all y, thus ρG(Uβ) = 1. 2

We have the following important consequence,

Lemma 27 Let Assumption 1 hold, then the partial sums Zs converge uniformly (in x)

to Z, for ρG-almost all y.

Proof. We have that |Z(x,y) − Zs(x,y)| ≤
∑∞

j=s+1 ‖βj‖C0(D) |yj | which necessarily

must converge to 0 by Assumption A1, irrespective of x, for any y ∈ Uβ. 2

4.2.1 Spatial regularity

The regularity of the random field a(x,y), in the spatial variable x, depends on the

properties of the parameters µj and ξj . As we shall see, Assumption A1 enables us to

demonstrate a degree of spatial regularity. Similar results with more generality can be

found in [24, 9]. Our approach here is more akin to [36] in terms of our assumptions of

spatial regularity. It should be noted that Proposition 28 is demonstrated in [2, Theorem

8.3.2], however this result assumes the statistics of the random field are given by a covari-

ance kernel with a certain smoothness, rather than our approach of building our random

field directly from the parametric representation (4.3).

Proposition 28 Under Assumption A1 the realisations of Z(·,y), as defined in (4.3),

are in C1(D), ρG-almost surely. If, in addition, a∗, a0 ∈ C1, then a(·,y), as defined in

(4.2), are also in C1(D), ρG-almost surely.

Proof. To show that Z(·,y) ∈ C1(D), it suffices to show that ‖Z(·,y)‖C0(D) < ∞ and

that ‖∇xZ(·,y)‖C0(D) <∞, for ρG-almost all y. Using (4.3) we have that

‖Z(·,y)‖C0(D) ≤
∞∑
j=1

‖βj‖C0(D)|yj | < ∞

61

for all y ∈ Uβ. By Lemma 27 we have uniform convergence of the sum for y ∈ Uβ, hence

we can exchange differentiation with summation, thus we have

‖∇xZ(·,y)‖C0(D) =

∥∥∥∥∥∥
∞∑
j=1

∇xβj(x) yj

∥∥∥∥∥∥
C0(D)

≤
∞∑
j=1

‖∇βj‖C0(D) |yj | <∞

for all y ∈ Uβ, i.e. ρG-almost all y. The regularity of a(·,y) follows from the regularity

of a∗, a0 and exp(·). 2

Note that as D is compact we also have that a(·,y) ∈ C0,t(D) for any 0 ≤ t ≤ 1.

Consider the weak form of (4.1) as defined in (4.6). To prove well-posedness of this

variational problem, we define, for ρG-almost every y,

ǎ(y) := min
x∈D

a(x,y) and â(y) := max
x∈D

a(x,y). (4.16)

Under the assumptions of Proposition 28, for almost all y ∈ RN, Z(·,y) is a continuous

function on D and hence attains its finite maximum and minimum on D. Thus the

quantities ǎ and â defined in (4.16) are ρG-measurable and, hence, random variables

which satisfy ǎ(y) > 0 and â(y) < ∞ ρG-almost surely. Furthermore for all x ∈ D and

ρG-almost all y we have

0 < ǎ(y) ≤ a(x,y) ≤ â(y) <∞, for all x ∈ D and y ∈ Uβ . (4.17)

Therefore for each y the Lax-Milgram Lemma holds, and we can infer the existence of a

unique solution u(·,y) of (4.1).

Theorem 29 Let Assumption 1 hold, then for every y ∈ Ub, s ∈ N and h > 0, the

weak-form problem (4.6) admits unique solutions u(·,y) ∈ V . Moreover,

‖u(·,y)‖V ≤
1

ǎ(y)
‖f‖V ′ , ∀y ∈ Uβ , (4.18)

We have, however, no uniform bound of ǎ and â for all y, as discussed earlier in this

chapter. Hence we can not provide uniform bounds for the solution u of (4.1). However,

we can see that the mapping given by (4.1), between a ∈ C0,t(D) and u ∈ V , is Lipschitz

continuous. This guarantees ρG-measurability and hence u is a random field on the

probability space (Uβ,B(Uβ), ρG) which takes values in the space V .

In the next theorem we take this further and use an application of Fernique’s Theorem,

see [12, Theorem 2.6], which allows us to extend ρG-almost sure bounds on u(·,y) to infer

boundedness of ‖u‖Lq(Uβ,V) for any 0 < q <∞. We refer to [7, §2] for details, from which

the following theorem originated.

62

Proposition 30 Let Assumption 1 hold and assume that a∗, a0 ∈ C0(D) in (4.2). Then,

for all q in the range 1 ≤ q < ∞, 1/ǎ ∈ Lq(Uβ) and â ∈ Lq(Uβ), and for every f ∈ V ′

the problem (4.6) admits a unique solution u ∈ Lq(Uβ, V) that satisfies

‖u‖Lq(Uβ,V) ≤ ‖1/ǎ‖Lq(Uβ)‖f‖V ′ .

Proof. Recall that Z is a Gaussian field, and sinceD is a bounded domain, by Proposition

28 Z(·,y) ∈ C0(D), ρG-almost surely. Hence we can apply [7, Prop. 2.3 & 2.4] to obtain

the result. 2

To quantify the rate of convergence of finite element solutions of (4.6) with respect to the

triangulation parameter h, additional regularity of the solution u is required. For this we

use a simplified form of a result from [66] and [9] that extends the ρG-almost sure Hölder

regularity of a. First we require the following lemma, based on [9, Lemma 2.3], which we

then use to demonstrate the following result.

Lemma 31 If Assumption 1 holds then for any t ∈ (0, 1]

‖a(·,y)‖C0,t ≤ (1 + 2‖Z(·,y)‖C0,t) amax(y)

Proof. The proof follows as in the proof of [9, Lemma 2.3], noting that we have a(·,y) ∈
C0,t(D) for any t ≤ 1 from Proposition 28. Thus we have, for y ∈ Uβ and x0,x1 ∈ D

| exp(Z(x0,y))− exp(Z(x1,y))| ≤ |Z(x0,y)− Z(x1,y)| (exp(Z(x0,y))− exp(Z(x1,y)))

≤ 2 â(y) ‖Z(·,y)‖C0,t(D) |x0 − x1|

Since we know that â‖Z(·,y)‖C0,t(D) <∞ for all y ∈ Uβ, we can retrieve the result when

we take the supremum over x0, x1 ∈ D. 2

The next two results have certain requirements of the spatial domain D, which we state

in the following assumption

Assumption A2 D ⊂ Rd for d = 1, 2 or 3, is a bounded convex polyhedral domain with

plane faces.

Note that the results also follow if the boundary of D is continuously twice-differentiable

everywhere. This assumption on the domain is the primary focus of [9], while [66] extends

many of the same results to the polyhedral domains.

Proposition 32 Let Assumptions A1 and A2 hold, then a ∈ Lp(Uβ,C0,t(D)) and u ∈
Lp(Uβ, H

2(D)).

Proof. We see that [66, Assumption A1] (that 1/ǎ(y) ∈ Lp(Uβ)) is satisfied by (4.17)

and Proposition 30. As we assume here that f is smooth over x and has no dependence

on y, we see also that [66, Assumption A3] is also satisfied (that f ∈ Lp(Uβ, V ′)).

63

We have that Z ∈ Lp(Uβ,C0,t(D)) from [7, Proposition 3.8], and that amax ∈ Lp(Uβ)

from Proposition 30, thus using Lemma 31 and an application of Hölder’s inequality, we

have that ‖a‖Lp(Uβ,C0,t(D)) < ∞. Thus [66, Assumption A2] is also satisfied. Thus the

assumptions for a in [66, Theorem 2.2] are satisfied, and further noting that the convexity

of D means we have λ∆(D) = 1 (as defined in [66, Definition 2.1]), which gives us the

final result. 2

4.2.2 Discretisation error

To discretise (4.6) in the physical domainD we consider now finite element approximations

with standard, continuous, piecewise linear finite elements. We denote by {Th}h>0 a

shape-regular family of simplicial triangulations of the domain D, parametrised by the

mesh width h := maxT∈Th diam(T). Associated with each triangulation Th we define the

space Vh ⊂ V of piecewise linear, continuous functions on this mesh, which vanish on ∂D.

For any y ∈ Uβ, we denote by uh(y, ·) ∈ Vh the solution of

A (y;uh(·,y), vh) = 〈f, vh〉, for all vh ∈ Vh . (4.19)

As in Proposition 30, for every h and for ρG-almost every realization a(·,y), the FE

solution uh(y, ·) ∈ Vh exists, is unique and (like the exact solution u(y, ·)) satisfies the a

priori bound

‖uh‖Lq(Uβ;V) ≤ ‖1/ǎ‖Lq(Uβ)‖f‖V ′ , for all 1 ≤ q <∞ , (4.20)

First we have the following result, a simplification of [66, Theorem 2.3].

Proposition 33 Let Assumptions A1 and A2 hold, then for any q > 0 there is a constant

C such that

‖u− uh‖Lq(Uβ,V) ≤ Ch.

We are now in a position to bound the first term in the overall error bound (4.13) for

our method. A proof can be found in [66], and uses an Aubin-Nitsche duality argument

to boost the order of convergence.

Theorem 34 Let Assumption A1 hold. Suppose G(·) is a continuous linear functional on

H1−τ (D) for some τ ≤ 1, i.e. there exists a constant CG such that |G(v)| ≤ CG‖v‖H1−τ (D)

for all v ∈ H1−τ (D). Then

∣∣E[G(u)− G(uh)]
∣∣ ≤ Ch2 . (4.21)

4.2.3 Dimension Truncation Error

To perform any numerical experiments it is of course necessary to truncate the infinite

series expansion (4.3), creating a finite dimensional expression upon which we can perform

our QMC quadrature. Here we examine the resulting truncation error.

64

Recalling (4.2) and (4.3), the approximation of a obtained by the dimensionally trun-

cated expansion of Z is

as(x,y) := a∗(x) + a0(x) exp (Zs(x,y)) , for some s ∈ N . (4.22)

The number of terms s is the dimension of the parameter domain for QMC integration

in (4.7).

Note that as(x,y) can be considered as the exact coefficient a(x,y) evaluated at the

particular vector y = (y1, ..., ys, 0, 0, ...). More generally, denoting by u ⊂ N any set of

“active” coordinates, as in Chapter 2, we denote by (yu; 0) the vectors y ∈ Ub with the

constraint that yj = 0 if j 6∈ u. This is in line with notation used in the previous chapters.

For any y ∈ Uβ, we can now define ush(·,y) ∈ Vh to be the solution of the dimensionally

truncated, discretised boundary value problem

A s(y;ush, vh) = 〈f, vh〉, for all vh ∈ Vh , (4.23)

where

A s(y;w, v) :=

∫
D
as(x,y)∇w(x) · ∇v(x) dx, for any v, w ∈ V.

For simplicity, we work here under the assumption that, for any vh, wh ∈ Vh, we evaluate

the integrals in A s(y;wh, vh) exactly. It is possible to also include quadrature errors in

the analysis (see [9, §3.3] for details). Existence and uniqueness for ush(·,y) ρG-almost

everywhere follows again by the Lax-Milgram Lemma, in fact, Theorem 29 applies to the

truncated problem, with the bound (4.18) also holding for ‖ush(·,y)‖V .

To obtain a bound on |E[G(uh)− G(ush)]| we apply the truncation error analysis in

[7, 9].

Theorem 35 Let Assumption A1 hold. Then ‖1/ǎs‖Lq(Uβ) is bounded independently of

s, for all 1 ≤ q <∞ . Suppose further that G ∈ V ′. Then

|E[G(uh)− G(ush)]| ≤ Cχ s
−χ, for all 0 < χ <

1

p
− 1

2
. (4.24)

Proof. We define

Rs,α :=
∑
j>s

‖βj‖2(1−α)

C0(D)
‖∇βj‖2αC0(D)

Note that Assumption A1 implies that

Rs,0 =
∑
j≥1

‖βj‖2C0(D)
< ∞,

and further, since clearly ‖∇βj‖C0(D) is bounded,

Rs,α =
∑
j>s

‖βj‖2(1−α)

C0(D)
‖∇βj‖2αC0(D)

≤ C
∑
j≥1

‖βj‖2(1−α)

C0(D)
< ∞, (4.25)

65

for any α ∈ (0, 1 − p
2]. Thus Assumption 3.1 of [7] holds. The required result that

‖1/ǎs‖Lq(Uβ) is bounded for 0 < q <∞, independently of s, then follows from [7, Propo-

sition 3.10]. Moreover (4.25) implies that for s large enough

Rs,α ≤
∑
j>s

‖βj‖2(1−α)

C0(D)

≤ ‖βs‖2(1−α)−p
C0(D)

∑
j>s

‖βj‖pC0(D)

≤ s−2(1−α)/p+1

∑
j>s

‖βj‖pC0(D)

2(1−α)/p−1∑
j>s

‖βj‖pC0(D)

≤ Cs−2(1−α)/p+1,

where we used the fact that ‖βs‖pC0(D)
≤ 1

s

∑s
j=1 ‖βj‖

p

C0(D)
, which we infer from the

summability of ‖βj‖pC0(D)
. Hence we have that

∑
s>0

(max(Rs,0, Rs,α))p0 <∞

for arbitrary p0 > (2(1−α)/p−1)−1, which is precisely Assumption 3.5 of [7]. This allows

us to use [7, Theorem 4.2] to obtain

‖u− us‖Lq(Uβ;V) ≤ Cq,χs
−χ, (4.26)

where χ = (1−α)/p− 1/2, and us is the solution of the dimensionally truncated problem

A s(y;us(·,y), v) = 〈f, v〉, for all v ∈ V.

Finally, since the finite element solution uh satisfies the same a priori bound (4.20)

as the exact solution u (in Proposition 30) and since the right hand sides in (4.19) and

in (4.23) are identical, the bound (4.26) holds also for the finite dimensional solution,

that is ‖uh − ush‖Lq(Uβ;V) with constant Cq,χ > 0 being independent of s and h. This

follows immediately from the proofs of [7, Theorems 4.1 and 4.2], since all the identities

and bounds involving u− us there, hold equally for uh − ush. The final result (4.24) then

follows upon taking q = 1 (note that E[·] = ‖ · ‖L1(Uβ)) and from the fact that G ∈ V ′. 2

Combining Theorems 34 and 35, we obtain the following estimate of the first term in

(4.9).

Corollary 36 Under Assumption A1 and with χ > 0 as defined in Theorems 34 and 35

we have

|E[G(u)− G(ush)]| ≤ C
(
h2 + s−χ

)
.

66

4.3 Quadrature error

In this section, we perform the analysis of the second term in (4.9), which is the error in

approximating the expectation E[G(ush)] by a suitable randomly shifted QMC quadrature

approximation. We make extensive use of the analysis introduced in Chapters 2 and 3.

First we must prepare for this analysis by proving certain regularity results, which follow

in the next section.

4.3.1 Regularity with respect to the parametric variables

To estimate the second term in (4.9), it is crucial to bound the mixed first derivatives

of ush(·,y) with respect to y. Here we state and prove a more general result which gives

bounds also for higher order mixed derivatives. We prove the result for u(·,y) and explain

subsequently why the argument also applies (with constants that are independent of h

and of s) to ush(·,y).

Recalling the multi-index notation, defined in §4.1, We will make use of the following

identity.

Identity 37 ∑
m�ν
|m|=i

(
ν

m

)
=

(
|ν|
i

)
.

Proof. This result can be demonstrated using a counting argument. For each m in the

sum on the left hand,
(
ν
m

)
side counts all possible combinations of mj elements that can

be drawn from νj distinct elements, totaling to i elements from a collection of size |ν|.
The sum over all possible m gives us every possible combination of i elements that can

be drawn from a set of size |ν|, which is the same as the right hand side. 2

From (4.2) and (4.3) we see that

(∂νa)(x,y) = a0(x)

∏
j≥1

(
√
µjξj(x))νj

 exp(Z(x,y))

= (a(x,y)− a∗(x))
∏
j≥1

(
√
µj ξj(x))νj .

Since from (4.2) we have 0 ≤ a∗(x) ≤ a(x,y) for all x ∈ D and y ∈ Ub, it follows that∥∥∥∥∂νa(·,y)

a(·,y)

∥∥∥∥
L∞(D)

≤
∏
j≥1

b
νj
j ∀y ∈ Ub , (4.27)

where, for our convenience, we have written

bj := ‖βj‖C0(D) (4.28)

The bound in (4.27) also holds with a(·,y) replaced by the truncated parametric coefficient

as(·,y), uniformly with respect to s ∈ N. In the case of as(·,y), clearly there is no

67

dependence on coordinates j > s, hence if νj > 0 for any j > s then the left-hand side of

(4.27) vanishes and the bound holds trivially. This leads to the following regularity result

with respect to the parameters.

Theorem 38 For any y ∈ Ub, any f ∈ V ′, and for any multi-index ν with |ν| :=∑
j≥1 νj < ∞, the solution u(·,y) of the parametric weak problem (4.6) satisfies the a-

priori estimate

‖∂νu(·,y)‖V ≤
|ν|!

(ln 2)|ν|

(∏
j≥1

b
νj
j

)
‖f‖V ′
ǎ(y)

. (4.29)

Moreover, the estimate (4.29) also holds with u replaced by ush.

Proof. We only establish in detail the result for u as an identical argument will apply

to ush with all constants appearing in the bounds being independent of s and of h. Note

that below the gradient operator ∇ will relate exclusively to the spatial variable x, while

∂ν will relate only to the probability parameters y. We first prove by induction on |ν|
that, for any fixed y ∈ Ub,(∫

D
a(x,y)|∇(∂νu)(x,y)|2 dx

)1/2

≤ Λ|ν|

(∏
j≥1

b
νj
j

)
‖f‖V ′√
ǎ(y)

, (4.30)

where the sequence (Λn)n≥0 is defined recursively by

Λ0 := 1 and Λn :=
n−1∑
i=0

(
n

i

)
Λi for all n ≥ 1 . (4.31)

To obtain (4.30) for the base case |ν| = 0, we set v = u(·,y) in the variational form

(4.6): ∫
D
a(x,y) |∇u(x,y)|2 dx = 〈f, u(·,y)〉 ≤ ‖f‖V ′ ‖u(·,y)‖V ,

Remembering that 〈·, ·〉 denotes the duality-pairing between V and V ′. Noting that

a(x,y)/ǎ(y) ≥ 1, we now see from (4.12) that

‖u‖V =

(∫
D
|∇u(x,y)|2 dx

)2

≤
(∫

D

a(x,y)

ǎ(y)
|∇u(x,y)|2 dx

)1/2

,

hence we obtain∫
D
a(x,y) |∇u(x,y)|2 dx ≤ ‖f‖V ′√

ǎ(y)

(∫
D
a |∇u(x,y)|2 dx

)1/2

.

Cancelling the common factor from both sides yields (4.30) for |ν| = 0.

For the following results we do not explicitly write the dependence on the variables,

that is we write u for u(x,y), unless the dependence is not understood from the context.

68

Now, applying ∂ν to the variational formulation (4.6), and recalling that f is independent

of y, we obtain the identity

∫
D

∑
m�ν

(
ν

m

)
(∂ν−ma)∇(∂mu) · ∇v(x)

dx = 0 for all v ∈ V .

Taking v = ∂νu(·,y), separating out the m = ν term, dividing and multiplying by a, and

using the Cauchy-Schwarz inequality, we obtain∫
D
a |∇(∂νu)|2 dx = −

∑
m�ν
m 6=ν

(
ν

m

)∫
D

(∂ν−ma)∇(∂mu) · ∇(∂νu) dx

≤
∑
m�ν
m6=ν

(
ν

m

)∥∥∥∥(∂ν−ma)(·,y)

a(·,y)

∥∥∥∥
L∞(D)

(∫
D
a|∇(∂mu)|2 dx

)1/2(∫
D
a|∇(∂νu)|2 dx

)1/2

.

Canceling the common factor on both sides and using (4.27), we arrive at(∫
D
a|∇(∂νu)|2 dx

)1/2

≤
∑
m�ν
m 6=ν

(
ν

m

)(∏
j≥1

b
νj−mj
j

)(∫
D
a|∇(∂mu)|2 dx

)1/2

.

We now use the inductive hypothesis (that (4.30) holds when |ν| ≤ n− 1) in each of the

terms on the right-hand side and use Identity 37 to obtain

(∫
D
a|∇(∂νu)|2 dx

)1/2

≤
n−1∑
i=0

∑
m�ν
|m|=i

(
ν

m

)(∏
j≥1

b
νj−mj
j

)
Λi

(∏
j≥1

b
mj
j

)
‖f‖V ′√
ǎ(y)

=

n−1∑
i=0

(
n

i

)
Λi

(∏
j≥1

b
νj
j

)
‖f‖V ′√
ǎ(y)

= Λn

(∏
j≥1

b
νj
j

)
‖f‖V ′√
ǎ(y)

.

This completes the proof of (4.30).

Next we prove by induction that

Λn ≤
n!

(ln 2)n
for all n ≥ 0 . (4.32)

Clearly the result holds for Λ0. Suppose the result holds for all Λi with i ≤ n− 1. Then

we have

Λn ≤
n−1∑
i=0

(
n

i

)
i!

(ln 2)i
=

n!

(ln 2)n

n−1∑
i=0

(ln 2)n−i

(n− i)!
=

n!

(ln 2)n

n∑
k=1

(ln 2)k

k!
≤ n!

(ln 2)n

(
eln 2 − 1

)
,

and so (4.32) holds for all n.

69

The final result (4.29) can be obtained by noting that

‖∂νu(·,y)‖V ≤
1√
ǎ(y)

(∫
D
a(x,y)|∂νu(x,y)|2 dx

)1/2

then inserting (4.32) into the right-hand side of (4.30).

Our proof argument is based entirely on the weak form (4.6) which is satisfied also by

ush(·,y) if V is replaced by Vh, y ∈ Ub is such that yj = 0 for j > s, and a is replaced by

as. Thus the result holds also for the finite element solution ush(·,y) of the dimensionally

truncated problem, with all constants independent of s and of h. 2

4.3.2 Analysis of the QMC integration error for G(ush)

In this section we use the regularity results of §4.3.1 to bound the QMC integration error,

which is the second term on the right-hand side of (4.9). Recalling (4.7), we address the

efficient numerical evaluation, for large s, of integrals

Is,φ(F) :=

∫
y∈Rs

F (y)

s∏
j=1

φ(yj) dy , with F (y) := G(ush(·,y)) , (4.33)

where φ(y) = e−y
2/2/
√

2π is the standard normal probability density function,

Φ(y) =

∫ y

−∞

e−t
2

√
2π

dt

denotes the cumulative normal distribution function and let Φ−1 denote its inverse. The

integral Is(F) is transformed to the unit cube by applying Φ−1
s component-wise. This is

precisely the problem presented in Chapter 3, accordingly we approximate this truncated

integration problem using randomly shifted lattice rules Qs,n(z,∆;F).

As explored throughout this thesis, analysis of QMC quadrature relies on a suitable

function space for which worst-case error analysis can be performed. We see quite clearly

here that the “standard” weighted Sobolev spaces, as introduced in Chapter 2, are unlikely

to be suitable for this problem. In an integral of the form (4.33) over the unbounded do-

main Rs, the transformation to the unit cube yields the transformed integrand F (Φ−1
s (·))

that may be unbounded near the boundary of the unit cube, and thus does not belong

to the weighted Sobolev space. We also see that the spaces presented in [39] turn out to

be sub-optimal, as they only allow for product weights. Here we will see, particularly in

Theorem 43, that to be able to best minimise (4.8), we require the use of more general

non-product weights.

A suitable function space setting for the integral (4.33) is the triple weighted unan-

chored space of functions on Rs, introduced in Chapter 3. We recall the norm for this

70

space from (3.27),

‖F‖2Ws
:=

∑
u⊆{1:s}

1

γu

∫
R|u|

∫
Rs−|u|

∂|u|F

∂yu
(yu;y−u)

∏
j∈−u

φ(yj) dy−u

2∏
j∈u

ψ2
j (yj) dyu ,

(4.34)

where for each j ≥ 1, the function ψj : R → R+ is the positive and continuous weight

function, and for each u ⊆ {1 : s} , γu > 0 is our set of weight parameters. We shall go

on to specify how to best set these parameters throughout this section.

Now recalling the shift averaged worst-case error (2.2) and Theorem 21, we have the

following for the second term of (4.9):

E∆|E[G(ush)]−Qs,n(z,∆; G(ush))|2 = E∆|Is(F)−Qs,n(z, ·; F)|2 ≤ [esh
s,n(z)]2 ‖F‖2Ws

,

where the expectation is taken over the random shift ∆ which is uniformly distributed

over [0, 1]s,

First we show that, under a suitable assumption on the weight functions ψj , we have

‖F‖Ws < ∞, regardless of our choice of weight parameters γu. This result is stated in

Theorem 39 and makes use of the regularity results in §4.3.1, particularly Theorem 38. We

can then use Theorem 39 with Thorem 21 of Chapter 3 to lead to Theorem 40, which gives

an estimate for the root-mean-square error and shows that this attains a rate of conver-

gence arbitrarily close to O(n−1), but with a possibly s-dependent asymptotic constant.

Then in the following subsection we show that a careful choice of the weight parameters

γu can be made so that the asymptotic constant in the convergence estimate is bounded

uniformly with respect to s, leading to the main result, Theorem 43. Throughout this

work we allow for arbitrary ψj , as long as some conditions are maintained. Furthermore,

we have some parameters, defined shortly, that depend entirely on the choice of ψj . We

will assert some conditions on these parameters, and allow them to be unspecified through

the following results.

We assume throughout the remainder of this chapter that Assumption A1 holds for

some p ≤ 1. We also require exponential decay of the ψj , hence we define

Ψj :=

∫ ∞
−∞

exp(2bj |y|)ψ2
j (y) dy < ∞, (4.35)

and further, let Ψmax = supj≥1 Ψj and Ψmin = infj≥1 Ψj . We require the following,

Assumption A3 For all j ≥ 1 we have 0 < Ψmin ≤ Ψj ≤ Ψmax <∞.

Later in this section we shall make specific choices for ψj , with a corresponding family of

parameters αj , for which we shall prove that this assumption holds.

71

In Theorem 21, the bound (3.45) contains the values C2,j and r2,j , which are parame-

ters that depend on the specific choices of ψj and φ. For simplicity of notation, from here

on we write

%j(λ) = 2Cλ2,jζ(2r2,jλ), (4.36)

where once again ζ denotes the Riemann Zeta function. The parameter %j(λ) is not

necessarily finite for all λ ∈ (1/2, 1], see [40, 39], as well as examples 23–25 in this thesis.

In fact we always require, at the very least, that λ ∈ (1/(2r2), 1], where r2 is defined in

Theorem 20

With this notation we see that (3.45) of Theorem 21 becomes

√
E∆|Is(F)−Qs,n(z, ·;F)|2 ≤

(∑
∅6=u⊆{1:s}

γλu
∏
j∈u

%j(λ)

)1/(2λ)

[ϕtot(n)]−1/(2λ) ‖F‖Ws ,

(4.37)

where again ϕ(n) denotes the Euler totient function. Evidently we see that the smaller

λ, the faster our best convergence rate of the quadrature error becomes. Ideally we want

λ = 1/(2− 2δ) for some small δ > 0, as this allows for optimal O(n−1+δ) convergence. In

§4.3.4 we will examine the values of r2 and hence possible values of λ for various choices

of ψj .

Now we show that under the appropriate assumptions, the norm of F is finite, inde-

pendently of the choice of the weights γu.

Theorem 39 For each j ≥ 1, let bj be defined by (4.14) and let Assumption 3 hold. Then

the norm (4.34) of the integrand F in (4.33) satisfies the bound

‖F‖2Ws
≤ (C∗)2

∑
u⊆{1:s}

(|u|!)2

γu (ln 2)2|u|

∏
j∈u

b̃2j Ψj (4.38)

where

b̃2j :=
b2j

2 exp(b2j/2)Φ(bj)
, (4.39)

with Φ(·) denoting the cumulative standard normal distribution function, and with

C∗ :=
‖f‖V ′ ‖G(·)‖V ′
minx∈Da0(x)

exp

1

2

∑
j≥1

b2j +
2√
2π

∑
j≥1

bj

 . (4.40)

Proof. Now, for the integrand F from (4.33) and for any y ∈ Rs (which we identify

throughout this proof, with slight abuse of notation, with the sequence y ∈ RN with

yj = 0 for j > s), we have from Theorem 38 with νj ∈ {0, 1} and the linearity of G, that

∣∣∣∣∂|u|F∂yu
(y)

∣∣∣∣ ≤ ‖G‖V ′∥∥∥∥∂|u|ush∂yu
(·,y)

∥∥∥∥
V

≤ ‖f‖V ′ ‖G‖V ′
|u|!

(ln 2)|u|

(∏
j∈u

bj

)
1

ǎ(y)
.

72

Since a∗ in (4.2) was assumed to be non-negative and since minx∈D
√
µj ξj(x) ≥ −bj , we

have

ǎ(y) ≥ min
x∈D

a0(x)
∏
j≥1

exp(−bjyj).

Using this, introducing the notation K∗ := ‖f‖V ′ ‖G(·)‖V ′/minx∈Da0(x) for the sake of

readability, we now have∣∣∣∣∂|u|F∂yu
(y)

∣∣∣∣ ≤ K∗
|u|!

(ln 2)|u|

(∏
j∈u

bj

)(∏
j∈{1:s}

exp(bj |yj |)

)
. (4.41)

Since the final term on the right-hand side of (4.41) is separable, we can group the

factors corresponding to j ∈ u and j ∈ −u separately, allowing us to estimate the norm

(4.34) as

‖F‖2Ws
≤ (K∗)2

∑
u⊆{1:s}

1

γu

|u|!2

(ln 2)2|u|

(∏
j∈u

bj

)2(∫
Rs−|u|

∏
j∈−u

exp(bj |yj |)φ(yj) dy−u

)2

×
∫
R|u|

∏
j∈u

exp(2bj |yj |)ψ2
j (yj) dyu. (4.42)

The integrals on the right hand side of (4.42) can be readily estimated. Firstly,∫
Rs−|u|

∏
j∈−u

exp(bj |yj |)φ(yj) dy−u =
∏
j∈−u

(∫ ∞
−∞

exp(bj |y|)
exp(−y2/2)√

2π
dy

)

=
∏
j∈−u

(
2 exp(b2j/2)

∫ ∞
0

exp(−(y − bj)2/2)√
2π

dy

)
=
∏
j∈−u

(
2 exp(b2j/2) Φ(bj)

)
. (4.43)

Secondly,∫
R|u|

∏
j∈u

exp(2bj |yj |)ψ2
j (yj) dyu =

∏
j∈u

(∫ ∞
−∞

exp(2bj |y|)ψ2
j (y) dy

)
=
∏
j∈u

Ψj , (4.44)

Combining (4.42) with (4.43) and (4.44), we obtain

‖F‖2Ws
≤ (K∗)2

∏
j∈{1:s}

(
2 exp(b2j/2)Φ(bj)

) ∑
u⊆{1:s}

(
1

γu

|u|!2

(ln 2)2|u|

∏
j∈u

b̃2j Ψj

)
. (4.45)

Now, to obtain the bound (4.38), it remains to bound the product in (4.45) indepen-

dently of s. To do this we note that 2 exp(b2j/2)Φ(bj) ≥ 1 and

Φ(bj) ≤
1

2

(
1 +

2 bj√
2π

)
≤ 1

2
exp

(
2 bj√

2π

)
since bj ≥ 0 .

73

Thus we have
∏
j∈{1:s}(2 exp(b2j/2)Φ(bj)) ≤

∏
j≥1 exp(b2j/2 + 2 bj/

√
2π) and the bound

(4.38) then follows. 2

The root-mean-square error can now be estimated by combining our results thus far.

Theorem 40 Let F be the integrand in (4.33) and let Assumption 3 hold. Given s, n ∈ N
with n ≤ 1030, weights γ = (γu)u⊂N, and standard normal density function φ, a randomly

shifted lattice rule with n points in s dimensions can be constructed by the CBC algorithm

such that, for all λ ∈ (1/(2r2), 1],√
E∆|Is(F)−Qs,n(·;F)|2 ≤ 9C∗Cγ,s(λ)n−1/(2λ), (4.46)

with

Cγ,s(λ) :=

(∑
∅6=u⊆{1:s}

γλu
∏
j∈u

%j(λ)

)1/(2λ)(∑
u⊆{1:s}

(|u|!)2

γu (ln 2)2|u|

∏
j∈u

b̃2j Ψj

)1/2

,

where bj is defined in (4.14), b̃j is defined in (4.39), C∗ is defined in (4.40), and %j(λ) is

defined in (4.36).

Proof. The result follows immediately from Theorem 39 and (4.37) with the main result

of Chapter 3, Theorem 21, also noting that for all n ≤ 1030 we have that 1/ϕ(n) ≤ 9/n.

2

Without a careful choice of the weight parameters γu, the quantity Cγ,s(λ) might grow

(even exponentially) with increasing s. To ensure that Cγ,s(λ) is bounded independently

of s, we choose the weight parameters to ensure that

Cγ(λ) :=

(∑
|u|<∞

γλu
∏
j∈u

%j(λ)

)1/(2λ)(∑
|u|<∞

(|u|!)2

γu (ln 2)2|u|

∏
j∈u

(
b̃2j Ψj

))1/2

<∞. (4.47)

(Note that b̃j ≤ bj and that it tends to bj rapidly as j → ∞.) Provided (4.47) holds

then it follows immediately that Cγ,s(λ) ≤ Cγ(λ) < ∞ for all s, and so the asymptotic

constant in the convergence estimate (4.46) is independent of the truncation dimension s.

4.3.3 Choosing the weight parameters γu

For any given λ ∈ (1/(2r2), 1], we now follow the strategy in [36] and choose the weight

parameters γu to minimise the constant Cγ(λ) given in (4.47). We shall see that the

resulting minimal value of Cλ is finite. To do this we will use the following two lemmas,

both of which can be found in [24, 36].

74

Lemma 41 Let m ∈ N, λ > 0, and Ai, Bi > 0 for all i. Then the function

p(x1, . . . , xm) =

(
m∑
i=1

xi
λAi

)1/λ(m∑
i=1

Bi
xi

)
(4.48)

is minimised over all sequences (xi)1≤i≤m when

xi = c

(
Bi
Ai

)1/(1+λ)

for any c > 0 . (4.49)

The function obtained by letting m→∞ in (4.48) is minimised when xi is given by (4.49)

for all i and has a finite value if and only if the series
∑∞

i=1(AiB
λ
i)1/(1+λ) converges.

Proof. We show that the choice in (4.49) is by first differentiating (4.48) by xj for

1 ≤ j ≤ m to obtain

∂

∂xj
p(x1, . . . , xm) = λxλ−1

j Aj
1

λ

(
m∑
i=1

xλi Ai

)1/λ−1

− Bj
x2
j

(
m∑
i=1

xλi Ai

)1/λ

,

and observing that we have minima when this is set to zero, which we find happens

uniquely at

x1+λ
j =

Bj
∑m

i=1 x
λ
i Ai

Aj
∑m

i=1Bi/xi
.

However, we note that for any constant c > 0, we have that p(cx1, . . . , cxm) = p(x1, . . . , xm),

thus p is minimised regardless of the scaling of the xi, thus we can simply chose xi =

c(Bi/Ai)
1/(1+λ) for any c > 0. 2

Lemma 42 For all Aj > 0 with
∑

j≥1Aj < 1 we have

∑
|u|<∞

|u|!
∏
j∈u

Aj ≤
∞∑
k=0

(∑
j≥1

Aj

)k
=

1

1−
∑

j≥1Aj
,

and for all Bj > 0 with
∑

j≥1Bj <∞ we have

∑
|u|<∞

∏
j∈u

Bj =
∏
j≥1

(1 +Bj) = exp

(∑
j≥1

log(1 +Bj)

)
≤ exp

(∑
j≥1

Bj

)

Proof. Note that for every set u ⊂ N, there are |u|! permuted equivalents in Nk. In

addition to this, there are u ∈ Nk that have repeated elements, thus we see that∑
j≥0

Aj

k

=
∑
u∈Nk

∏
j∈u

Aj ≥ k!
∑
u⊂N
|u|=k

∏
j∈u

Aj .

75

Hence, we can conclude that

∑
|u|<∞

|u|!
∏
j∈u

Aj ≤
∞∑
k=0

k!

(∑
u⊂N
|u|=k

∏
j∈u

Aj

)
≤

∞∑
k=0

(∑
j≥1

Aj

)k
.

The final equality comes from the standard result for geometric series, provided that∑
j≥1Aj < 1. The second estimate follows from the observation that log(1 + x) ≤ x for

x ≥ 1. 2

Since Cγ(λ) in Theorem 40 is of the same general form as the function in Lemma 41,

we obtain the weights (4.51) below.

Theorem 43 Suppose that Assumption A1 holds for some p ≤ 1 and that Assumption

A3 holds. If p = 1 assume additionally that

∑
j≥1

bj < ln 2

√
1

Ψmax %max(1)
, (4.50)

where Ψmax = supj≥1 Ψj and %max(λ) = supj≥1 %j(λ). Then, for any given λ ∈ (1/(2r2), 1],

the choice of weights

γu = γ∗u(λ) :=

 (|u|!)2

(ln 2)2|u|

∏
j∈u

b̃2j Ψj

%j(λ)

1/(1+λ)

(4.51)

minimises Cγ(λ) given in (4.47), if a finite minimum exists. If we furthermore choose

λ∗ :=

1

2−2δ for arbitrary δ ∈ (0, 1/2] when p ∈ (0, 2/3] ,

p
2−p when p ∈ (2/3, 1) ,

1 when p = 1 ,

(4.52)

and set λ = max{λ∗, 1/(2r2)} and γu = γ∗u(λ), then Cγ(λ) <∞.

Proof. The fact that the choice of weights (4.51) minimises Cγ(λ) follows from Lemma 41,

as in [36, Theorem 6.4], on observing that the finite subsets of N in (4.47) can be ordered

(i.e. are countable), and that the particular ordering is immaterial, as the convergence is

absolute and hence unconditional.

Let us define

Sλ :=
∑
|u|<∞

(γ∗u)λ
∏
j∈u

%j(λ) =
∑
|u|<∞

 (|u|!)2

(ln 2)2|u|

∏
j∈u

(
[%j(λ)]1/λ b̃2j Ψj

)λ/(1+λ)

. (4.53)

Then S
1/(2λ)
λ is the first factor of Cγ(λ) in (4.47) with the choice of weight parameters

(4.51). Moreover, the second factor in Cγ(λ) can also be shown to reduce to S
1/2
λ . Thus

76

we have Cγ(λ) = S
1/(2λ)+1/2
λ . So, to prove Cγ(λ) is finite it suffices to prove that Sλ is

finite.

By definition we have Ψj ≤ Ψmax and %j(λ) ≤ %max(λ) for all 1 ≤ j ≤ s, and further

we see that b̃j ≤ bj for all j ≤ s. Applying these estimates to Sλ in (4.53) yields

Sλ ≤
∑
|u|<∞

(|u|!)2λ/(1+λ)
∏
j∈u

(
Ψmax [%max(λ)]1/λ

(ln 2)2
b2j

)λ/(1+λ)

. (4.54)

In the following we consider the cases λ 6= 1 and λ = 1 separately.

For λ ∈ (1/(2r2), 1), we have 2λ/(1 + λ) < 1 and we further estimate Sλ as follows:

we multiply and divide the terms on the right-hand side of (4.54) by
∏
j∈uA

2λ/(1+λ)
j ,

where Aj > 0 will be specified later, and then apply Hölder’s inequality with conjugate

exponents (1 + λ)/(2λ) and (1 + λ)/(1− λ), to obtain

Sλ ≤
∑
|u|<∞

(|u|!)2λ/(1+λ)
∏
j∈u

A
2λ/(1+λ)
j

∏
j∈u

(
Ψmax [%max(λ)]1/λ

(ln 2)2

b2j
A2
j

)λ/(1+λ)

≤

(∑
|u|<∞

|u|!
∏
j∈u

Aj

)2λ/(1+λ)(∑
|u|<∞

∏
j∈u

(
Ψmax [%max(λ)]1/λ

(ln 2)2

b2j
A2
j

)λ/(1−λ))(1−λ)/(1+λ)

≤

(
1

1−
∑

j≥1Aj

)2λ/(1+λ)

exp

(
1− λ
1 + λ

(
Ψmax [%max(λ)]1/λ

(ln 2)2

)λ/(1−λ)∑
j≥1

(
bj
Aj

)2λ/(1−λ)
)
.

In the last step we applied Lemma 42 which holds and guarantees that Sλ is finite,

provided that ∑
j≥1

Aj < 1 and
∑
j≥1

(
bj
Aj

)2λ/(1−λ)

< ∞ . (4.55)

We now choose

Aj :=
bpj
$

for some $ >
∑
j≥1

bpj . (4.56)

Then we have
∑

j≥1Aj < 1 due to Assumption A1. Noting that Assumption A1 also

implies that
∑

j≥1 b
p′

j < ∞ for all p′ ≥ p, we conclude that the second sum in (4.55)

converges for

2λ

1− λ
(1− p) ≥ p ⇐⇒ p ≤ 2λ

1 + λ
⇐⇒ λ ≥ p

2− p
. (4.57)

Recall that λ must be strictly between 1/(2r2) and 1 for the argument above. Thus

when p ∈ (0, 2/3], we choose λ = max{1/(2 − 2δ), 1/(2r2)} for some δ ∈ (0, 1/2). When

p ∈ (2/3, 1), we set λ = max{p/(2− p), 1/(2r2)}.

77

In the case p = 1 we take λ = 1. Then, using Lemma 42, we obtain from (4.54) that

S1 ≤
∑
|u|<∞

|u|!
∏
j∈u

(
Ψmax %max(1)

(ln 2)2
b2j

)1/2

≤

(
1−

∑
j≥1

√
Ψmax %max(1)

bj
ln 2

)−1

,

which is finite due to the assumption (4.50). This completes the proof. 2

Following the argument in the proof of [36, Theorem 6.5], we can prove that the

alternative choice of weights

γu = γ∗∗u :=

(
|u|!
∏
j∈u

(κ bj)

)2−p

for arbitrary κ > 0 ,

while not minimizing Cγ(λ), still ensures that Cγ(λ) <∞ and yields the same convergence

rates under the same conditions on bj . The form of these weights makes them much more

simple to implement than the optimised weights of (4.51). This result might also seem to

indicate that the approximation is somewhat robust with respect to the scaling parameters

κ. However, numerical experiments indicate that arbitrary choices of κ can lead to very

poor lattice rules, due to numerical instability of the worst-case error. Therefore, we

recommend the choice of weight parameters (4.51) that minimises the bound. This will

be discussed further in Chapter 5

4.3.4 Choosing the weight functions ψj

In this section we make two specific choices for the weight functions ψj and analyse the

quantity Ψj and examine when Assumption A3 is satisfied and hence when ‖F‖Ws <∞
from Theorem 39. We also derive the values for %j(λ) and the associated parameter r2

that arise from from these choices. We see from (4.51) that our weights γu depend directly

on Ψj and %j(λ), and the parameter r2 can affect the convergence rate we attain for the

error estimate.

Exponential ψj

Informed by the condition in Assumption A3, we chose

ψ2
j (y) = exp(−2αj |y|) for some αj > 0 . (4.58)

It is a simple calculation to verify that

Ψj =
1

αj − bj
,

and evidently to satisfy Assumption A3 we require that αj satisfy, for some constants

0 < αmin < αmax <∞,

max(bj , αmin) < αj ≤ αmax , j ∈ N . (4.59)

78

In this case have from [39, Example 5] that Theorem 21 holds for any λ ∈ (1/2, 1]

C2,j =

√
2π exp(α2

j/η)

π2−2η(1− η)η
and r2 = 1− η for any η ∈ (0, 1− 1/(2λ)) ,

For simplicity we choose η to be at the mid-point of its allowable range, that is η = η∗ =

1/2− 1/(4λ). Thus, we have

%j(λ) = 2

(√
2π exp(α2

j/η
∗)

π2−2η∗(1− η∗)η∗

)λ
ζ(2 (1− η∗)λ). (4.60)

There is a trade-off implicit in these constants - the closer we choose λ to 1/2, the smaller

η, and hence the larger %j(λ) grows.

The biggest difficulty, however, is in specifying αj . Here we specify the choice of

parameters αj which minimises the constant Cγ(λ).

Corollary 44 Following Theorem 43, the constant Cγ(λ), with λ = λ∗ given by (4.52)

and γu = γ∗u(λ∗) given by (4.51), is minimised by choosing

αj =
1

2

(
bj +

√
b2j + 1− 1

2λ∗

)
. (4.61)

Proof. We have Cγ(λ) = S
1/(2λ)+1/2
λ with Sλ given by (4.53), which is minimised if each

factor [%j(λ)]1/λΨj = [%j(λ)]1/λ/(αj − bj) is minimised with respect to αj . Thus from

(4.36) we see that αj should be chosen to minimise eα
2
j/η∗/(αj − bj). This yields the

choice (4.61). 2

Before discovering the scheme outlined in Corollary 44 many attempts were made to

find a scheme for setting αj that would produce decent results. Although Theorem 43

holds for any choice of αj that satisfy (4.59), in practice and for concrete values of n,

we should of course strive to minimise the constants to obtain the best performance.

Furthermore, the strong sensitivity of %j(λ), and hence Cγ(λ), to αj meant that the

CBC algorithm could succumb to floating-point overflow errors under an arbitrary or

poor scheme for αj . Choices in past experiments, such as setting αj = 2bj , have lead to

suboptimal results in our numerics. These issues are discussed in depth in Chapter 5.

For convenience we can summarise the following final result.

Theorem 45 Under the assumptions of Theorem 43, with the exponential ψj (4.58), a

randomly shifted lattice rule can be constructed for the approximation of the integral (4.33)

such that

√
E∆|Is(F)−Qs,n(·;F)|2 =

O(n−(1−δ)) when p ∈ (0, 2/3] ,

O(n−(1/p−1/2)) when p ∈ (2/3, 1) ,

O(n−1/2) when p = 1 ,

79

with the implied constant independent of s, but depending on p and, when relevant, δ.

Proof. Using the value given for λ and the weights γu defined in Theorem 43, we have

that Cγ(λ) is finite and minimised, thus the result clearly follows from Theorem 40, noting

in particular the relationship between λ and p in (4.57). 2

Gaussian ψj

Here we explore the alternative of setting

ψ2
j (y) = exp(−αjy2) for some 0 < αj < 1/2 . (4.62)

It is a somewhat more involved calculation, but we see that

Ψj =

∫ ∞
−∞

exp(−(αjy
2 − 2bj |y|) dy = 2 exp

(
b2j
αj

)∫ ∞
0

exp(−αj(y − bj/αj)2) dy

= 2 exp

(
b2j
αj

)√
π

αj

∫ ∞
−bj
√

2/αj

exp(−u2/2)√
2π

dy

= 2 exp

(
b2j
αj

)√
π

αj
Φ

(
bj

√
2

αj

)
.

To satisfy Assumption A3, we merely require 0 < αmin ≤ αj ≤ αmax < ∞ for all n ∈ N.

However we have from [39, Example 4] that with this choice of ψj

C2,j =

√
2π

π2−2αj (1− αj)αj
and r2,j = 1− αj ,

and further, we have the following

%j(λ) = 2

(√
2π

π2−2αj (1− αj)αj

)λ
ζ(2 (1− αj)λ). (4.63)

For our chosen λ, we require that %j(λ) be bounded, from which we see that we require

that 2(1−αj)λ > 1. Thus from this relationship we see that we have αmax < 1− 1/(2λ),

thus we require

0 < αmin ≤ αj ≤ αmax < 1− 1/(2λ) , j ∈ N . (4.64)

That is, we take λ to be the “free” parameter and accordingly restrict αj as above. Under

these conditions, C2,j will also remain positive as they ensure αmax < 1/2.

To produce a result as in Corollary 44, where we find a choice of αj that minimises

Sλ, we must minimise the expression [%j(λ)]1/λΨj for each αj . We quickly see that this

minimising choice can not be calculated analytically with Gaussian weight functions ψj ,

we have no closed form for the choice of αj based on the bj and λ. It is not hard, however,

to implement a numerical minimisation routine to find an appropriate αj for each j. This

step is discussed further in the next chapter, and results of this minimisation are discussed

and compared with the results from the exponential setting.

80

Regardless, we summarise our final result in the following theorem.

Theorem 46 Under the assumptions of Theorem 43, with the Gaussian ψj (4.62), a

randomly shifted lattice rule can be constructed for the approximation of the integral (4.33)

such that

√
E∆|Is(F)−Qs,n(·;F)|2 =

O(n−1−δ) when p ∈ (0, 2/3] ,

O(n−(1/p−1/2)) when p ∈ (2/3, 1) ,

O(n−1/2) when p = 1 ,

where αmax < 1− 1/(2λ), and again the implied constant independent of s, but depending

on p and, when relevant, δ.

Proof. The result follows in the same fashion as Theorem 45. 2

If p ∈ (0, 2/3] then we can choose any λ ∈ (1/2, 1], so we set λ = 1/2 + q, with q > 0

and not too small, as we can see from (4.64) that αmax < 1 − 1/(1 + 2q), hence small q

means αmax approaches 0. We see however that Ψj blows up exponentially with small αj ,

hence for the numerical implementation we will want q to be of some “reasonable” size.

This will be discussed further in Chapter 5.

4.4 Final result

We now summarise our theoretical results and state our combined bound for the root-

mean-square error, which includes the finite element error, the dimension truncation error

and the QMC quadrature error, estimated in Theorems 34, 35, 43, 45 and 46, respectively.

Theorem 47 We consider approximations of the expected value of G(u) via quasi-Monte

Carlo finite element methods. In particular, we apply a randomly shifted lattice rule Qs,n

to G(ush). Then, under the same assumptions and definitions as in Theorems 34, 35,

43, 45 and 46, the root-mean-square error with respect to the uniformly distributed shift

∆ ∈ [0, 1]s can be bounded by√
E∆
[(
E[G(u)]−Qs,n(·;G(ush))

)2] ≤ C
(
h2 + s−χ + n−r

)
,

for some 0 < χ < 1/p − 1/2, and with r = 1/p − 1/2 for p ∈ (2/3, 1] and r = 1 − δ for

p < 2/3, with δ arbitrarily small. The rates χ and r depend on the parameter p which

in turn depend on the asymptotics of the parameters (µj , ξj) in Assumption A1. The

constant C is independent of h, s, and n.

Note that the rate r is capped at 1 even for p < 2/3 because we are using only

QMC methods of order one. With higher order QMC methods we might expect to have

r = 1/p − 1/2 also for p < 2/3. Finally, a recent result in [8] shows that under slightly

stronger conditions on the data, the rate χ in the truncation error can also be increased

to 2χ.

81

Chapter 5

Implementation and numerical results

In this section we present details of implementations of various algorithms presented

through this thesis, including the CBC algorithm for the unbounded spaces with POD

weights and the application of lattice rules to the porous flow problem. We shall also

discuss numerous hurdles and issues with numerical stability encountered throughout the

development and testing of these algorithms.

The bulk of this chapter presents original and novel work. The implementation of

these algorithms, particularly the CBC algorithm as presented in Chapter 3, is original

work by the author, and the numerical stability issues involved in this work presented

new and exciting challenges for the field. In addition to this, the premise tuning process

for the weights, as outlined in Chapter 4, is relatively new territory in the field of QMC

quadrature.

We note that all the code for these numerical experiments was written in Python 2.7,

using the Scipy and Numpy packages, and the MatPlotLib library for plotting our results.

Other than standard library function calls in the Scipy and Numpy libraries, all code is

original and written by the author.

The outline of the chapter is as follows. In §5.1 we discuss the implementation of

the CBC algorithm for the settings introduced in Chapter 3. We present well known

optimisations of the algorithm, including the use of FFT techniques. In §5.1.1 we present

details of the CBC when using POD weights in unanchored space, while in §5.1.2 we

discuss the difficulties inherent in the anchored setting, but present possible techniques

to proceed nonetheless. We present the results of some of the numerical experiments in

§5.2, examining the impact of worst-case errors for different choices of φ, ψj , and weights

γu. In §5.3 we specify a model problem to highlight the theory studied in Chapter 4.

In §5.3.1 we present the results for the choice of exponential weight functions, both the

worst-case error results from the CBC algorithm, and the standard error results from

the QMC algorithm. In §5.3.2 we discuss the regimes for setting the parameters of the

weights functions. Next we present similar results for the Gaussian weight functions, in

§5.3.3. Finally we summarise our discoveries in §5.4.

5.1 Implementing the CBC algorithm

Here we specify further technical details relevant to the implementation of the CBC

algorithm. This includes a full description of the fast CBC algorithm for the unanchored

space, including the matrix permutations necessary to use FFT methods to speed up

83

the matrix-vector multiplications implicit in Algorithm 19. We discuss some numerical

challenges that we had and propose their remedies, including overflow problem in the

weights. We then discuss a regime for the numerical quadrature to calculate the shift-

invariant kernel, a non-trivial matter in the unbounded spaces. Finally we present worst-

case errors for a set of model problems.

5.1.1 Fast CBC construction for POD weights in the unanchored space

Implementation of the CBC construction as described in Algorithm 19 is infeasible unless

some structure is assumed for the weights γu. For product weights γu =
∏
j∈u γj , a

fast CBC implementation based on FFT is known from [53, 54], which requires only

O(s n log n) operations and O(n) memory. For order-dependent weights γu = Γ|u|, a

similar fast CBC implementation is discussed in [11], which requires O(s n log n + s2 n)

operations and O(s n) memory. The CBC implementation for POD weights (2.23) is

presented in [37] and has the same cost as order-dependent weights.

Here we present a refinement of the strategy from [37] to avoid numerical overflow

when the order-dependent parts of POD weights grow very quickly. This consideration

is motivated by the form of POD weights which arise from the application to PDEs with

random coefficients, see [36],

γu = (|u|!)a
∏
j∈u

γj , a > 0. (5.1)

That is, we have POD weights (2.23) where Γ|u| = (|u|!)a. In general, rather than working

directly with the sequence {Γ`}`≥0 in the CBC construction, we shall work with their

ratios

τ` :=
Γ`

Γ`−1
, so that Γ` =

∏̀
i=1

τi. (5.2)

Thus in the particular case (5.1) we have τ` = `a.

For the unanchored space there are no auxiliary weights, and we have from (3.37)

E2
d,s(z) = [esh

d,n(z)]2 . At each step of the CBC algorithm we consider the squared worst-

case error esh
d+1,n(z, zd+1) to be a function of zd+1, with z fixed, and for simplicity we

write e2
d+1(zd+1) = [esh

d+1,n(z, zd+1)]2. Substituting POD weights (2.23) into (3.32) and

84

using (5.2), we have

e2
d+1(zd+1) =

1

n

n∑
k=1

d+1∑
`=1

∑
u⊆{1:d+1}
|u|=`

(∏̀
i=1

τi

)(∏
j∈u

γj θj

({
kzj
n

}))

=
1

n

n∑
k=1

d+1∑
`=1

 ∑
u⊆{1:d}
|u|=`

(∏̀
i=1

τi

)(∏
j∈u

γj θj

({
kzj
n

}))
︸ ︷︷ ︸

qd,`(k)

+ γd+1τ` θd+1

({
kzd+1

n

}) ∑
u⊆{1:d}
|u|=`−1

(`−1∏
i=1

τi

)(∏
j∈u

γj θj

({
kzj
n

}))
︸ ︷︷ ︸

qd,`−1(k)

= [esh
d,n(z)]2 +

γd+1

n

n∑
k=1

θd+1

({
kzd+1

n

}) d+1∑
`=1

τ` qd,`−1(k).

We deduce the following recursions to compute qd,`(k)

qd,0(k) := 1,

qd+1,`(k) := qd,`(k) + γd+1 τ` θd+1

({
kzd+1

n

})
qd,`−1(k), (5.3)

with qd,`(k) := 0 if ` > d or ` < 0. We need to evaluate e2
d+1(zd+1) for all zd+1 ∈ Zn. This

suggests a matrix-vector operation, where we have the vectors

e2
d+1 := [e2

d+1(z)]z∈Zn , qd,` := [qd,`(k)]1≤k≤n,

and the matrix

Ωn,d+1 :=

[
θd+1

({
kz

n

})]
z∈Zn

1≤k≤n

=

[
θd+1

(
kzmodn

n

)]
z∈Zn

1≤k≤n

.

We can now write the calculation of e2
d+1 as follows

e2
d+1 = [esh

d,n(z)]2 1ϕ(n) +
γd+1

n
Ωn,d+1

(d+1∑
`=1

τ` qd,`−1

)
, (5.4)

where 1ϕ(n) is a vector of ones of length ϕ(n) (i.e., with as many elements as there are

rows in Ωn,d+1). Now we choose the value of zd+1 ∈ Zn that corresponds to the the

smallest entry in e2
d+1. For this crucial step, we can reduce the cost of the matrix-vector

multiplication by using FFT methods. This reduces the cost of the multiplication from

O(n2) to O(n log n). The key is to permute the rows and columns of the matrix Ωn,d+1

85

so that it becomes a circulant matrix (except for the column of zeros corresponding to

k = n); this method was discovered and outlined in [53, 54, 11]. Here we summarise the

permutation procedure. For the sake of simplicity, we restrict ourselves again to the case

where n is prime, again noting then that we have Zn = {1, . . . , n − 1}. We also ignore,

for the time being, the dimensional subscript d on Ω and θ, that is we simply write Ωn

and θ(u).

We note that we can write Ωn in the form

Ωn =

ω1,1 ω1,2 · · · ω1,n

ω2,1 ω2,2 ω2,n

...
. . .

...

ωn−1,1 ωn−1,2 · · · ωn−1,n

 =

ω1 ω2 · · · ωn−1 ωn

ω2 ω4 · · · ωn−2 ωn

ω3 ω6 · · · ωn−3 ωn
...

. . .
...

...

ωn−1 ωn−2 · · · ω1 ω0

=
[

Ω′n ωn1n−1

]
,

(5.5)

where we have used the notation

ωi,j = θ

(
ij mod n

n

)
and ωj = θ

(
j

n

)
,

and further we have written Ω′n to indicate Ωn with the last column removed, and 1n−1

denotes the vector of ones of length n − 1. Also note from the definition that ωn = ω0.

Later we also use the notation ωn := [ω1, ω2, . . . , ωn]T .

For prime n the set Zn has a generator g, that is, an integer g ∈ Zn such that

gk mod n covers all of Zn, or {gk mod n : 0 ≤ k < n − 1} = Zn. Using this generator

we can create a permutation matrix that performs the Rader factorisation. This is best

illustrated with an example. If we take n = 7, then we have the set of possible components

of the generating vector Z7 = {1, 2, 3, 4, 5, 6}. We take the generator to be g = 5, and we

have the ordered vector

[gk mod 7 : 0 ≤ k < 7] = [1, 5, 4, 6, 2, 3] := g ,

and we see that taking the negative powers simply reverses part of the vector,

[g−k mod 7 : 0 ≤ k < 7] = [1, 3, 2, 6, 4, 5] := ginv .

We write Π′g and Π′g−1 for the matrix that permutes the ordered vector [1, 2, 3, 4, 5, 6] to

g and ginv respectively, that is,

Π′7,g · [1, 2, 3, 4, 5, 6]T = g and Π′7,g−1 · [1, 2, 3, 4, 5, 6]T = ginv .

86

It can be checked that

Π′7,g−1 Ω′7 Π′T7,g =

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

ω1 ω2 ω3 ω4 ω5 ω6

ω2 ω4 ω6 ω1 ω3 ω5

ω3 ω6 ω2 ω5 ω1 ω4

ω4 ω1 ω5 ω2 ω6 ω3

ω5 ω3 ω1 ω6 ω4 ω2

ω6 ω5 ω4 ω3 ω2 ω1

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

=

ω1 ω5 ω4 ω6 ω2 ω3

ω3 ω1 ω5 ω4 ω6 ω2

ω2 ω3 ω1 ω5 ω4 ω6

ω6 ω2 ω3 ω1 ω5 ω4

ω4 ω6 ω2 ω3 ω1 ω5

ω5 ω4 ω6 ω2 ω3 ω1

=: C7 .

Note that C7 is a matrix of circulant form, it is uniquely determined by its top row,

c7 = [ω1, ω5, ω4, ω6, ω2, ω3]. The remaining rows of their matrix are made up of successive

right-translates of c7.

The ability to permute the matrix Ωn into circulant form applies in this form for any

prime n. Given prime n, and its generator g, we write Πn,g for the permutation such that

if z = Πn,gx then zi = xk(i) where k(i) =

gi−1 mod n if 1 ≤ i ≤ n− 1,

n if i = n.

Note the use of the prime notation, that is Π′n,g to indicate Πn,g with the last row and

column omitted.

Theorem 48 (Rader factorisation) Given prime n and a matrix Ωn with structure

as in (5.5) there is a generator g of Zn and a permutations Πn,g and Πn,g−1 such that

Π′n,g−1 Ωn ΠT
n,g =

[
Cn ωn1n−1

]
:= Cext

n ,

and furthermore Π′n,g ωn = cn.

It is well known that multiplication by a circulant matrix Cn can in fact be performed

by Fast Fourier Transform (FFT). We see that

Cnx = F nΛ(cn)F nx

where we have written F n for the discrete Fourier transform matrix, and Λ(cn) for the

matrix with the Fourier components of cn along the diagonal, that is Λ(cn) = diag(F ncn).

All matrix-vector multiplications involving F n can be performed using FFT, which is well

87

known to be O(n log n) in computational cost, thus the overall matrix-vector multiplica-

tion is O(n log n) as well. Note that multiplication by Cext
n does not cost significantly more

as the extra column only adds O(n) operations to the overall matrix-vector multiplication.

Note that permutation matrices are orthogonal, hence we have that

Π′Tn,g−1 Cext
n Πn,g = Ωn

Thus, noting also that as n is prime we have ϕ(n) = n− 1, we can write (5.4) as follows,

e2
d+1 = [esh

d,n(z)]2 1n−1 + Ωn,d+1q where q :=
γd+1

n

(
d+1∑
`=1

τ`qd,`−1

)
.

The matrix-vector multiplication can be performed as follows,

Ωn,d+1q = Π′Tn,g−1 Cext
n Πn,g q .

If we use the permuted vectors qP = Πn,gq and [ePd]2 = Π′n,g−1 e2
d, then if we multiply

(5.4) by Π′n,g−1 , we find

[ePd+1]2 = [esh
d,n(z)]2 1n−1 + Cext

n qP ,

noting that the permutation makes no difference to the vector 1n−1. Thus the operation

can be made to take O(n log n) time. To find the next component of the generating

vector, zd+1, we find the smallest value of ePd+1, which say is at index zPd+1, then simply

take zd+1 = g−(zPd+1−1) mod n.

The next step is to generate the vectors qd+1,` for each ` = 1, . . . , d+ 1, which, under

the recursion (5.3), would normally be of the form

qd+1,` = qd,` + γd+1 τ` Ωn,d+1(zd+1) .∗ qd,`−1,

where Ωn,d+1(zd+1) is the row of the matrix ΩP
n,d+1 that corresponds to the chosen zd+1,

and the operator .∗ denotes element-wise vector-vector multiplication. However it is

better maintain the permuted ordering of elements, to save on computational cost and

storage. Thus, using the notation qPd,` = Πn,gqd,` we have the following recursion

qPd+1,` = qPd,` + γd+1 τ` Cext
n,d+1(zPd+1) .∗ qPd,`−1,

where now we multiply element-wise by the row of Cn,d+1 that corresponds to the index

of the minimum of ePd+1.

We see that we must maintain storage of the vectors qPd+1,` for ` = 1, . . . , d at each

iteration d+ 1, however we can overwrite qPd,` with qPd+1,` at each step, hence we require

O(s n) storage for the algorithm. Note that there is no need to permute the vectors qPd+1,`

since in the first dimension all components are initialised to the same value 1.

88

Therefore this procedure has a “search” cost of O(n log n) operations which corre-

sponds to the use of FFT for the matrix-vector multiplication, and there is an “update”

cost of O(dn) operations at step d which is needed for calculating the vectors qPd,`. The

overall construction cost is therefore

s∑
d=1

O(n log n+ dn) = O(s n log n+ s2n) operations.

5.1.2 Fast CBC construction for POD weights in the anchored space

For the anchored space, POD weights are not preserved by the auxiliary weights which

are used for the implementation of the CBC algorithm, making the computational cost

prohibitive.

A remedy has been proposed in [17] for POD weights of the special form (5.1) which

arise from PDE applications. The corresponding auxiliary weights (3.33) can be bounded

as follows

γ̃s,v =
∑

v⊆u⊆{1:s}

(|u|!)a
(∏
j∈u

γj

)(∏
j∈u\v

C0,j

)

= (|v|!)a
(∏
j∈v

γj

) ∑
w⊆{1:s}\v

(
(|v|+ |w|)!
|v|!

)a∏
j∈w

(C0,j γj)

≤ (|v|!)a
(∏
j∈v

γj

) ∑
w⊆{1:s}\v

(
|w|! 2|v|+|w|

)a∏
j∈w

(C0,j γj) ≤ ˜̃γv cs,γ ,
where ˜̃γv := (|v|!)a

∏
j∈v

(2a γj) and cs,γ :=
∑

w⊆{1:s}

(|w|!)a
∏
j∈w

(2aC0,j γj).

Using this we can see, from (3.35), that

[esh
s,n(z)]2 ≤ cs,γ

∑
∅6=v⊆{1:s}

˜̃γv
n

n∑
k=1

∏
j∈v

(
θj

({
kzj
n

})
− C0,j

)
.

The expression on the right-hand side, without the cs,γ factor, can be used as the search

criterion in the CBC algorithm and we can obtain a similar error bound to that in The-

orem 20. Since the new weights ˜̃γv are of POD form, the algorithm can be implemented

as in the case of the unanchored space.

5.1.3 Computing θj

In order to be able to compute the shift-averaged worst-case error given by (3.21) or

(3.32), we must be able to compute θj(i/n) as defined in (3.20), (3.28) or (3.29) for

i = 0, . . . , n − 1. For simplicity we consider here the domain D = R and anchor c = 0.

We also assume that φ and ψj are symmetric about 0. Thus, for the unanchored space

89

we see that for i ≤ bn/2c, (3.29) becomes

θj
(
i
n

)
= 2

∫ 0

Φ−1(i/n)

Φ(t)− i/n
ψ2
j (t)

dt− 2

∫ 0

−∞

Φ2(t)

ψ2
j (t)

dt

= 2

∫ 1/2

i/n

x− i/n
ψ2
j (Φ

−1(x))φ(Φ−1(x))
dx− 2

∫ 1/2

0

x2

ψ2
j (Φ

−1(x))φ(Φ−1(x))
dx, (5.6)

where we used the substitution x = Φ(t). We also have C0,j = 0 and C1,j = θj(0). For

i > bn/2c, we use θj(i/n) = θj((n− i)/n) due to symmetry.

The integrals in (5.6) may now be computed using a one-dimensional quadrature.

However, there is a singularity at x = 0 for both integrands, thus we make use of the

tanh-sinh transform first proposed in [65], see also [5, 4]. For the first integral in (5.6) we

use the substitution

x = v(t) =

(
1

2
− i

n

)
tanh

(π
2

sinh(t)
)

+
1

2
.

which maps the interval (−∞, 0] to (i/n, 1/2]. A similar substitution can be used for the

second integral. We then approximate the integrals by the sum h
∑0

k=−m Υ(v(kh))v′(kh),

where Υ(t) is our integrand, m is the number of quadrature points, and h is the mesh-size

which is chosen here to be h = 2
m log(πm) to balance the truncation and discretization

errors (see [43] for details). Note that v(−t) = −v(t), so indeed the sum approximates

the transformed integral on the half real line (−∞, 0].

This quadrature for calculating θj , C0,j and C1,j evidently requires O(mn) operations.

We must choose m to balance the the quadrature error with other sources of error. In

general, we may also need to approximate Φ−1 numerically.

5.2 Results of the CBC algorithm

Here we implement the CBC algorithm in the unanchored space. We explore this setting

in the abstract, with parameters that are specified without a connection to a practical

problem. We take the weights to be of POD type, given by

γs,u = γu =

(
(|u|!)2

∏
j∈u

κ

jη

)1/(1+λ)

,

for some κ > 0, η > 2, and 1/2 < λ ≤ 1. We consider three combinations of probability

densities φ and weight functions ψj = ψ:

Combination 1 φ(y) = e−x
2/2/
√

2π and ψ(y) = e−|x|/α.

Combination 2 φ(y) = e−x
2/2/
√

2π and ψ(y) = e−x
2/(2α).

Combination 3 φ(y) = e−|x|/2 and ψ(y) = 1.

In particular, we take a selection of parameters

η = 3.1, 5.0, κ = 0.01, 0.1, λ = 0.51, 0.75 and α = 4, 16,

90

and implement the CBC algorithm for n = 1009, 2003, 4001, 8009, 16001, 32003, up to s =

100 dimensions. The corresponding shift-averaged worst-case errors esh
s,n(z) are presented

in Tables 5.1–5.5, together with an estimate on the observed rate of convergence O(n−r),

found by performing a linear-least squares fit on the log-log plot of the results.

91

Table 5.1: eshs,n for Combination 1, λ = 0.51

η = 3.1 η = 5
α = 4 α = 16 α = 4 α = 16

n κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1

1009 5.73e-04 2.71e-03 4.59e-04 2.12e-03 3.76e-04 1.06e-03 3.05e-04 8.44e-04
2003 3.14e-04 1.63e-03 2.48e-04 1.26e-03 1.97e-04 5.72e-04 1.58e-04 4.49e-04
4001 1.71e-04 9.63e-04 1.33e-04 7.31e-04 1.03e-04 3.11e-04 8.21e-05 2.41e-04
8009 9.36e-05 5.74e-04 7.21e-05 4.31e-04 5.40e-05 1.68e-04 4.25e-05 1.29e-04
16001 5.12e-05 3.43e-04 3.89e-05 2.52e-04 2.82e-05 9.08e-05 2.19e-05 6.84e-05
32003 2.83e-05 2.04e-04 2.12e-05 1.49e-04 1.47e-05 4.91e-05 1.14e-05 3.66e-05

r 0.869 0.749 0.888 0.766 0.937 0.887 0.950 0.906

Table 5.2: eshs,n for Combination 1, λ = 0.75

η = 3.1 η = 5
α = 4 α = 16 α = 4 α = 16

n κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1

1009 1.05e-03 5.03e-03 8.33e-04 3.93e-03 5.25e-04 1.48e-03 4.23e-04 1.17e-03
2003 6.00e-04 3.14e-03 4.71e-04 2.42e-03 2.79e-04 8.20e-04 2.22e-04 6.38e-04
4001 3.38e-04 1.92e-03 2.62e-04 1.46e-03 1.48e-04 4.57e-04 1.17e-04 3.48e-04
8009 1.93e-04 1.18e-03 1.48e-04 8.87e-04 7.86e-05 2.53e-04 6.11e-05 1.92e-04
16001 1.10e-04 7.33e-04 8.31e-05 5.42e-04 4.16e-05 1.40e-04 3.20e-05 1.04e-04
32003 6.33e-05 4.53e-04 4.72e-05 3.31e-04 2.19e-05 7.72e-05 1.67e-05 5.70e-05

r 0.808 0.697 0.827 0.715 0.917 0.853 0.933 0.872

Table 5.3: eshs,n for Combination 2, λ = 0.55

η = 3.1 η = 5
α = 16 α = 16

n κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1

1009 6.14e-04 2.63e-03 4.24e-04 1.14e-03
2003 3.40e-04 1.57e-03 2.29e-04 6.24e-04
4001 1.87e-04 9.29e-04 1.23e-04 3.44e-04
8009 1.04e-04 5.56e-04 6.63e-05 1.90e-04
16001 5.75e-05 3.30e-04 3.57e-05 1.04e-04
32003 3.21e-05 1.98e-04 1.92e-05 5.75e-05

r 0.853 0.748 0.894 0.862

Table 5.4: eshs,n for Combination 2, λ = 0.75

η = 3.1 η = 5
α = 4 α = 16 α = 4 α = 16

n κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1

1009 1.70e-03 6.79e-03 1.07e-03 4.72e-03 1.03e-03 2.56e-03 5.82e-04 1.55e-03
2003 1.01e-03 4.30e-03 6.11e-04 2.93e-03 5.96e-04 1.50e-03 3.16e-04 8.62e-04
4001 5.99e-04 2.70e-03 3.46e-04 1.79e-03 3.46e-04 8.88e-04 1.71e-04 4.85e-04
8009 3.58e-04 1.70e-03 1.99e-04 1.10e-03 2.01e-04 5.26e-04 9.33e-05 2.71e-04
16001 2.14e-04 1.08e-03 1.14e-04 6.79e-04 1.17e-04 3.10e-04 5.06e-05 1.52e-04
32003 1.28e-04 6.81e-04 6.57e-05 4.20e-04 6.79e-05 1.83e-04 2.74e-05 8.52e-05

r 0.747 0.665 0.805 0.699 0.785 0.761 0.882 0.837

92

Table 5.5: eshs,n for Combination 3

λ = 0.51 λ = 0.75
η = 3.1 η = 5 η = 3.1 η = 5

n κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1 κ = 0.01 κ = 0.1

1009 6.91e-04 3.30e-03 4.49e-04 1.29e-03 1.26e-03 6.08e-03 6.31e-04 1.81e-03
2003 3.82e-04 2.01e-03 2.37e-04 7.02e-04 7.29e-04 3.83e-03 3.38e-04 1.01e-03
4001 2.12e-04 1.20e-03 1.25e-04 3.86e-04 4.17e-04 2.37e-03 1.81e-04 5.66e-04
8009 1.16e-04 7.21e-04 6.57e-05 2.11e-04 2.40e-04 1.48e-03 9.66e-05 3.19e-04
16001 6.42e-05 4.34e-04 3.44e-05 1.15e-04 1.39e-04 9.20e-04 5.14e-05 1.78e-04
32003 3.59e-05 2.63e-04 1.82e-05 6.27e-05 8.05e-05 5.79e-04 2.75e-05 9.96e-05

r 0.855 0.733 0.925 0.872 0.793 0.681 0.904 0.837

The numbers presented demonstrate that our theory holds reasonably well, however,

there is a strong dependency on certain parameters of the weights. We focus our attention

primarily on the rate of convergence.

The parameter κ does not affect the theoretical convergence rate, however we see that

κ makes an impact on the observed numerical convergence rates. This is most probably

due to the strong effect of κ on the scaling of esh
s,n. Larger κ make esh

s,n quite a lot larger,

and likely make the problem harder, as we are probably not at the asymptotic regime for

the worst-case error for the range of n considered.

In some cases for ψj and φ the parameter α may have an effect on the theoretical

convergence rate, as summarised Table 3.2. Combination 3 has no parameter α, and for

Combination 1 there is no theoretical dependence of the convergence rate on α. In both

cases we have O(n−1+δ) convergence in the theory, regardless of the choice of α. This is

reflected in the numerics, where we see the convergence rates have a weaker dependence

on α than on η or κ. Examining Table 3.2 however we see that Combination 2 expects

a theoretical convergence rate of 1 − 1/α, thus we are limited for the smaller case of

λ = 0.55 to α = 16. While we do not observe this rate of convergence precisely, there is

a noticeable dependence of the observed rate on α.

Finally, we observe that the parameter η does not have an explicit impact on the rates

of convergence for a fixed s. However it does have an impact on the condition (3.46), and

hence affects implicitly what range of λ are possible if we want our bound of esh
s,n to be

independent of s. In any case, we see that η affects the scaling of esh
s,n.

5.2.1 Scaling the weights

Consider weights of the generic POD form (2.23). Let us normalise the product part of

the weights, that is, we write τj = γj/γ1 such that τ1 = 1, and if we let γ1 = c, then we

can write γj = cτj . We find that

γu = c|u| Γ|u|
∏
j∈u

τj , (5.7)

Evidently, poor choices of c can potentially lead to extreme scaling of the weights for u

of larger cardinality.

93

Table 5.6: γu for first 10 complete sets u.

κ = 0.01 κ = 1 κ = 4

γ{1} 0.01 1 4
γ{1,2} 5.0× 10−5 0.5 8
γ{1:3} 1.67× 10−7 0.16 10.67
γ{1:4} 4.17× 10−10 4.17× 10−2 10.67
γ{1:5} 8.33× 10−13 8.33× 10−3 8.53
γ{1:6} 1.39× 10−15 1.39× 10−4 5.69
γ{1:7} 1.98× 10−18 1.98× 10−4 3.25
γ{1:8} 2.48× 10−21 2.48× 10−5 1.63
γ{1:9} 2.76× 10−24 2.76× 10−6 0.72
γ{1:10} 2.76× 10−27 2.76× 10−7 0.29

Initially in the literature it was assumed that the weights are scaled such that γ{1} = 1.

In [19] it was argued that this may not be appropriate, in fact that scaling the weights

may come to our advantage in minimising the overall error bound. Indeed the weights,

in (4.51), chosen for the porous-flow problem, certainly do not obey γ{1} = 1, and in fact

we had some problems with adjusting the scale of the weights. We discuss the issue here

in an abstract setting.

It is instructive to further refine our example above and inspect some numerical out-

comes. Take the weights to be of a similar form to that in the previous section, that

is

γs,u = γu = (|u|!)a
∏
j∈u

κ

jη
. (5.8)

If say we let a = 2 and η = 3 (likely choices in our application problems), then consider

the sequence of weights γ{1:d}, that is the weight for the set of all components up to d, for

d = 1, . . . , 10. In Table 5.6 we present the weights for three choices of κ = 0.01, 1, 4.

Numerically our problem lies with the worst-case error. Take the unbounded unan-

chored space with φ and ψj as in Combination 1 of the previous section. We set the

weights exactly the same as above, with α = 1, and the parameters a = 2 and η = 3. In

Table 5.7 we present the resulting worst-case errors obtained from the CBC algorithm.

In the first 3 columns are the results for the unanchored and unbounded space for various

choices of κ in the weights. We see quite clearly that there is a strong sensitivity of the

worst-case error at s = 100 to κ. It is not hard to reach numerical overflow if one makes

κ a little larger.

In the last three columns of Table 5.7 we present worst-case errors from the CBC

algorithm applied in the unanchored Sobolev space, with exactly the same weights as the

unbounded space (and the corresponding choices of κ). This dependency on κ is not so

pronounced for the unanchored weighted Sobolev spaces of §2.6, and in general we see that

the results are much smaller. We conclude that allowing for unbounded integrands really

makes things quite a lot more difficult. This is primarily because the one-dimensional

shift-averaged kernel is far steeper in the unbounded space than the Sobolev space, as we

94

Table 5.7: eshs,n(z) for s = 1, . . . , 10 and 100.

Unbounded Space Sobolev Space
s κ = 0.01 κ = 1 κ = 4 κ = 0.01 κ = 1 κ = 4

1 9.27× 10−5 0.01 3.71× 10−2 1.03× 10−7 1.03× 10−5 4.13× 10−5

2 1.15× 10−4 0.12 1.78× 100 1.17× 10−7 2.38× 10−5 2.41× 10−4

3 1.23× 10−4 0.43 1.89× 101 1.22× 10−7 3.24× 10−5 5.15× 10−4

4 1.26× 10−4 1.01 1.33× 102 1.24× 10−7 3.75× 10−5 7.48× 10−4

5 1.27× 10−4 1.94 7.41× 102 1.24× 10−7 4.04× 10−5 8.96× 10−4

6 1.28× 10−4 3.27 3.45× 103 1.25× 10−7 4.23× 10−5 9.99× 10−4

7 1.29× 10−4 5.01 1.39× 104 1.25× 10−7 4.37× 10−5 1.07× 10−3

8 1.29× 10−4 7.14 5.01× 104 1.26× 10−7 4.45× 10−5 1.12× 10−3

9 1.30× 10−4 9.61 1.63× 105 1.26× 10−7 4.52× 10−5 1.16× 10−3

10 1.30× 10−4 12.35 4.86× 105 1.26× 10−7 4.57× 10−5 1.18× 10−3

...
100 1.31× 10−4 88.92 4.90× 1014 1.26× 10−7 4.80× 10−5 1.31× 10−3

Figure 5.1: One-dimensional shift-averaged kernels in the unanchored unbounded space
and unanchored Sobolev space.

can see quite clearly in the plot of θ and B2 in Figure 5.1. One way of quantifying the

difference between the two is comparing the following quantities

1

n

n∑
k=1

θ

(
k

n

)
= 1.177 and

1

n

n∑
k=1

B2

(
k

n

)
= 1.312× 10−3 .

The quantities above represent the worst-case error in one dimension, see (2.34) and (3.32).

Note that we have dropped the j subscript on θ as there is no coordinate dependency in

this model example. Although this does not rigorously explain why the higher-dimensional

worst-case errors are quite different between the spaces, inspecting the equations (2.34)

and (3.32) shows that these quantities make a good guideline for what we may expect

of the worst-case errors in their respective spaces. As the first sum above is quite a bit

larger, it is no surprise that we get the much larger worst-case errors for the unbounded

space.

95

Figure 5.2: A lattice rule with a bad projection in coordinates {2, 3, 4}, caused by the
weight γ{2,3,4} being too small.

This issue is also exacerbated when the product part of the weights γj does not

immediately follow the polynomial decay: as seen in applications, γj may have a “plateau”

for the first few coordinates. In this case the weights can be extremely large. For example,

if our weights are given by γu = |u|!
∏
j∈u γj , and we have say γj ∼ 1 for j ≤ 10, before

the γj exhibit some polynomial decay, then γ{1:10} ∼ 10!, and hence it may be quite easy

for to stumble on numerical overflow in the CBC algorithm, giving us nonsensical results

and unusable generating vectors.

Problems also occur if κ is too small, though this is not just to do with numerical

underflow. Rather, we observed in practice is that γu may be too small for u of larger

cardinality. In these cases the CBC will choose lattices that do not properly take into ac-

count these projections, that is, the lattice will make a very poor covering of the subspace

spanned by the coordinates u. This is best shown visually, and in Figure 5.2 we show an

example of a lattice rule with n = 16001 points, with a bad projection in coordinates 2,

3 and 4, caused by γ{2,3,4} ∼ 10−14 being too small. This lattice rule was constructed

for the porous-flow problem. We see that the lattice points makes distinct planes, and

do not “fill” the space well. Compare this to Figure 2.1 where the cube is covered more

consistently, even with only n = 127 points.

5.3 Numerical results of the porous flow problem

We present here a numerical study of the algorithm described above over a range of

parameters. Theorem 47 provides us with a theoretical bound for the error in the method,

and we examine here whether we see, in the numerics, the behaviour predicted by the

theory.

96

We solve (4.6) with spatial dimension d = 1 on D = [0, 1], with a forcing term

f(x) = 1. We take the truncated expansion of the field as of (4.5) with s = 400, so that

y ∈ R400. The strong form of the problem we are solving is the parametrised ODE

− d

dx

(
as(x,y)

dus(x,y)

dx

)
= 1, (5.9)

with homogeneous Dirichlet boundary conditions, u(0,y) = u(1,y) = 0. We solve (5.9)

using the piecewise-linear finite element method with uniform meshes of diameter h =

1/M to get the approximate solution ush(·,y). The tridiagonal systems which arise are

solved in O(M) time by the Thomas algorithm. In the numerical experiments that follow,

we set M = 1024 and compute the entries of the tridiagonal system using the composite

mid-point rule applied element-wise.

The quantity of interest is here taken to be E[G(ush)], where the functional G is taken

to be point evaluation at 1/3, i.e.

F (y) = G(ush(·,y)) = ush(1/3,y).

To specify as we take a∗ ≡ 0 and a0 ≡ 1 in (4.2). To specify Z we need to choose

a set of basis functions ξj and parameters µj as in equation (4.3). Although this choice

can be arbitrary, in many applications one would take µj and ξj as the Karhunen–Loève

decomposition of a given covariance kernel, as discussed briefly in Chapter 4. Here our

choice of {(µj , ξj)}j≥1 come from the Karhunen–Loève expansion of the Matérn class of

covariance functions, as this offers a real-world scenario of interest to practitioners in the

field. The family of Matérn covariance functions are given by

ρ(r) = ρν(r) := σ2 21−ν

Γ(ν)
(r/λ̃)ν Kν(r/λ̃) , (5.10)

with λ̃ = λC/(2
√
ν). Here Γ is the gamma function and Kν is the modified Bessel function

of the second kind. The parameter ν > 1/2 is a smoothness parameter, σ2 is the variance

and λC is a length scale parameter. We do not expand on the theory of the Karhunen–

Loève expansion and the Matérn class of covariance here, as it is somewhat beyond the

scope of this thesis. However, further details of this theory, as well as the description how

we find (µj , ξj) numerically, can be found in our paper [24].

To define the weighted space Ws in (4.34) and to perform the CBC algorithm for

calculating the generating vector z, we must choose the weight parameters γu and weight

functions ψj . First we specify the various parameters of the weights, then we go on to

specify the parameters for two separate choices of ψj .

We define the weight parameters γu as in (4.51), after first setting the parameter λ∗.

By (4.52), this parameter λ∗ is related to p, which in turn was introduced in Assumption

A1, and depends on the parameters (µj , ξj), in particular the rate of convergence of

bj =
√
µj‖ξj‖C0(D). We see that if bj = O(j−ϑ), for some ϑ > 1, then we will require

p > 1/ϑ to satisfy Assumption A1. Recall that in these experiments the (µj , ξj) come

97

Figure 5.3: Log-log plot of bj for the various choices of ϑ, σ2 and λC .

from the Karhunen–Loève expansion of the Matérn covariance. It so happens that there

is a direct link between the choice of smoothness parameter ν and ϑ. This link is explored

further in [24, Corollary 5], however here we state our choice of parameters in terms of ϑ,

for ease of the exposition.

We find from (4.52) that for any small q > 0 we have the following relationship between

ϑ and λ∗,

λ∗ =

 1
2ϑ−1 + q, if 1 < ϑ < 3/2

1
2 + q, if ϑ ≥ 3/2.

(5.11)

This choice of λ∗ implies, see Theorem 40, that we obtain theoretical QMC convergence

close to O(n−min(ϑ−1/2,1)). Note that the choice of q involves a trade-off. Smaller values

of q lead to a faster convergence, but also to a larger value for Cγ(λ∗) in (4.47). In fact,

for ϑ ≥ 3/2, we see that q → 0 is equivalent to δ → 0 in (4.52). This in turn implies

Cγ(λ∗)→∞, by way of (4.47) and (4.60) or (4.63). For ϑ ∈ (1, 3/2), we see that q → 0 is

equivalent to p→ 1/ϑ, so that the sum in Assumption A1 grows without bound, leading,

as in the proof of Theorem 43, again to Cγ(λ∗)→∞. Here we choose q = 0.05.

Recalling (3.5), we write Qi = Qs,n(∆i;F), where ∆i is the i-th independent random

shift, uniformly distributed on [0, 1]s. Denoting by Q̄ the mean of the Qi, we have the

following unbiased estimator with R random shifts of the mean-square error (with respect

to the shifts):

1

R

1

R− 1

R∑
i=1

(Qi − Q̄)2 ≈ E∆|Is(F)−Qs,n(·;F)|2 . (5.12)

The square-root of the left-hand side of (5.12) is an estimate of the “standard error”.

In the following experiments we estimate this standard error for the problem where

the set {(µj , ξj)}j≥1 is obtained from the Karhunen–Loève expansion of the Matérn co-

variance, as described earlier. We obtain the Karhunen–Loève expansion for the following

98

selection of parameters,

ϑ = 2, 1.25 (equivalent to ν = 1.5, 0.75) σ2 = 0.25, 1.0, 4.0 λC = 1.0, 0.1,

where σ2 and λC refer to the variance and length-scale parameters for the Matérn co-

variance in (5.10). These parameters affect the behaviour of the expansion (µj , ξj), and

consequently the behaviour of bj which much of our theory depends on. The parameter ϑ

determines the asymptotic regime of bj , and in fact, we have that bj = O(j−ϑ), meaning

that we for ϑ = 2 and 1.25, we take λ∗ = 0.5 + q and 0.8 + q respectively.

The effects of the other two parameters σ2 and λC in the Matérn kernel are not

immediately obvious. The parameter λC , which we may refer to as the correlation length,

determines the pre-asymptotic regime of bj . For λC = 0.1 we have a “plateau” effect, that

is, the first few values remain constant before the asymptotic regime sets in, while for

λC = 1.0, the asymptotic regime is reached quickly, for small j. Indeed if we considered

even smaller λC , we would see even more of a plateau effect on bj . Finally, σ2, which is

often called the variance, only has an effect on the scale of bj , in direct proportion to σ.

These behaviours can be observed in Figure 5.3 where we plot bj for all combinations of

choices of ϑ, σ2, and λC .

Finally, remember that we have fixed the truncation dimension at s = 400 and the

spatial resolution at h = 1/1024. We use R = 32 random shifts.

5.3.1 Exponential ψj

Here we examine the details of the numerical implementation with the exponential weight

functions (4.58). First we need to specify the parameters αj in (4.58), then we go on to

examine numerical results for the worst-case errors from the CBC algorithm, followed by

standard errors of the approximation of the ODE problem.

In principle, our weighted function space framework in Section 4.3.2 allows us to

adjust the QMC rule to the integrand behaviour with respect to every coordinate via

the j-dependent parameters αj However, as discussed in §5.1.3, allowing a different value

of αj for each j would cause a substantial increase in the cost of the CBC algorithm.

To maintain the full efficiency of the CBC construction, the αj should be coordinate-

independent, at least for large blocks of coordinates. In our numerical experiments we

found that the use of a single value of αj for all j led to unsatisfactory results in the

exponential case, but that two values (chosen according to the prescription below) led to

acceptable results. The reasoning for this is presented further in §5.3.2

Guided by (4.61) and the general condition (4.59), noting that bj → 0 as j → ∞ as

a consequence of Assumption A1, and writing b∗ := maxj≥1 bj , we choose j0 to be the

smallest positive integer such that bj < b∗/2 for all j ≥ j0, and define

αj =

1
2

(
b∗ +

√
b2∗ + 1− 1/(2λ∗)

)
for j < j0

1
2

(
bj0 +

√
b2j0 + 1− 1/(2λ∗)

)
for j ≥ j0

, (5.13)

99

with λ∗ to be specified below.

CBC Results

Tables 5.8 and 5.9 present the results of the CBC algorithm, that is, the shift-averaged

worst-case error esh
s,n(z∗), at s = 400. These results are presented for the various pa-

rameters choices, along with estimated values of the rate of convergence r in the error

representation cn−r, estimated by linear regression of the negative log of the standard

error against log n.

These results are interesting, as we witness large fluctuations in the scale of the worst-

case error for the various choices of parameters. This is most probably because both esh
s,n

and ‖F‖Ws have a strong sensitivity to ϑ, σ2 and λC .

In particular, we see that for the smaller choice of ϑ = 1.25, we get a huge change in

esh
s,n with λC . This is due largely to the plateau effect of the weights. From Figure 5.3 we

see that for λC = 0.1, the bj remain constant for the first few j, meaning we get exactly

the problem with plateau weights discussed in §5.2.1.

There is an additional aspect to consider. Notionally, in setting γu as in Theorem 43

and αj as prescribed in Corollary 44, we are minimising Sλ by balancing the bound of esh
s,n

with the bound of ‖F‖Ws , thus minimising our error bound. However it may well be that

our bounds are not sharp, and hence there is no guarantee that our choice of weights and

αj , chosen to minimise the error bound, actually minimise the product of the true values

of esh
s,n and ‖F‖Ws . As we actually calculate the true value of esh

s,n in the CBC algorithm,

we may indeed be observing fluctuations from weights that may be over-compensating

one way or another.

QMC quadrature results

Tables 5.10 and 5.11 present results using the QMC quadrature analysed in Chapter 4,

again with estimated values of the rate of convergence r together with its 90% confidence

interval. We include the confidence interval in these results as the data points do not

converge as smoothly as the worst-case error results from earlier tables. Here we see a

strong dependence on the variance σ2, but a weaker dependence on the choices of λC and

ϑ. While Theorem 43 suggests that the asymptotic behaviour of the root-mean-square

error depends on p (and hence ϑ), in practice the observed rates of convergence bear little

relation with the prediction. One explanation may be that with the range of n presented

we are in a pre-asymptotic regime. This seems especially true for larger values of σ2, and

hence may explain why we see our QMC quadrature performing similarly to standard MC

quadrature for σ2 = 4.0.

Recall from the theory that we expect a convergence rate close to O(n−min(ϑ−1/2,1)).

We see, however, that the results converge almost as well for ϑ = 1.25 as for ϑ = 2.

This seems to indicate that our theory is not sharp, and that optimal (close to O(n−1))

convergence could potentially be demonstrated for ϑ lower than our current cross-over

point of ϑ = 1.5 in (5.11). This is also indicated by the fact that our method some-

times converges faster than predicted by the theory, for example for ϑ = 1.25, σ2 = 0.25

100

Table 5.8: Worst-case errors eshs,n, for ϑ = 2 using exponential ψj and POD weights γu as in (4.51)

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 2.46e-04 2.49e-03 1.98e-04 3.86e-03 1.71e-04 8.92e-04
16,001 1.40e-04 1.63e-03 1.14e-04 2.59e-03 9.58e-05 5.62e-04
32,003 8.00e-05 1.07e-03 6.55e-05 1.74e-03 5.37e-05 3.54e-04
64,007 4.59e-05 7.07e-04 3.80e-05 1.16e-03 3.01e-05 2.23e-04
120,011 2.75e-05 4.84e-04 2.31e-05 8.11e-04 1.78e-05 1.47e-04
240,007 1.59e-05 3.20e-04 1.34e-05 5.43e-04 9.96e-06 9.34e-05
480,013 9.16e-06 2.11e-04 7.81e-06 3.65e-04 5.60e-06 5.97e-05

Rate 0.81 0.61 0.80 0.58 0.83 0.67

Table 5.9: Worst-case errors eshs,n, for ϑ = 1.25 using exponential ψj and POD weights γu as in (4.51)

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 6.39e-03 2.80e+02 2.75e-02 5.07e+16 5.00e-02 6.32e+34
16,001 4.27e-03 1.98e+02 1.91e-02 3.59e+16 3.52e-02 4.46e+34
32,003 2.85e-03 1.40e+02 1.33e-02 2.54e+16 2.47e-02 3.15e+34
64,007 1.90e-03 9.89e+01 9.22e-03 1.79e+16 1.74e-02 2.23e+34
120,011 1.31e-03 7.22e+01 6.62e-03 1.31e+16 1.26e-02 1.63e+34
240,007 8.80e-04 5.11e+01 4.59e-03 9.26e+15 8.89e-03 1.15e+34
480,013 5.87e-04 3.61e+01 3.19e-03 6.55e+15 6.25e-03 8.14e+33

Rate 0.60 0.50 0.54 0.50 0.53 0.50

and λC = 1.0, where the observed rate of convergence of approximately 0.89 is signifi-

cantly larger than the predicted rate of 0.75 from Theorem 43, and also higher than the

corresponding convergence of worst-case error, as seen in Table 5.9.

Tables 5.12 and 5.13 present the same experiments as Tables 5.10 and 5.11 respectively,

but for MC quadrature. The results agree with the usual behavior of MC methods where

standard errors converge with approximately O(n−1/2). Figure 5.4 charts all the findings

in Tables 5.10 to 5.13. They demonstrate that in all our test cases QMC always does

better than MC, especially for small σ2, where QMC outperforms MC by up to two

orders of magnitude.

As a final comparison, in Tables 5.14 and 5.15 we look at the standard errors for a

generic lattice rule, which is not specifically designed to fit the problem. We choose here a

lattice rule generated for the Sobolev space of mixed first-order derivatives on [0, 1]s, with

product weight parameters γj = 1/j2. We see that these lattice rules still behave very

well, attaining similar results to the lattice rules constructed for our specific problem.

5.3.2 Issues with setting αj

Some difficulty was encountered in finding a good scheme for setting αj . We required a

scheme that would produce satisfactory results for all our choices of the various parameters

σ, λC and ϑ. This was not easy, and bad choices of αj lead to the sort of numerical

overflow problems highlighted in §5.2.1 due to the sensitivity of Ψj and %j to αj . The

101

Table 5.10: QMC standard errors for ϑ = 2, using exponential ψj and POD weights γu as in (4.51)

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 2.69e-05 1.77e-05 1.90e-04 1.00e-04 1.12e-02 3.22e-03
16,001 1.38e-05 8.12e-06 1.02e-04 7.52e-05 5.47e-03 2.44e-03
32,003 8.85e-06 6.22e-06 6.79e-05 5.11e-05 3.83e-03 1.20e-03
64,007 4.49e-06 3.02e-06 3.33e-05 3.49e-05 2.36e-03 7.02e-04
120,011 2.66e-06 1.79e-06 2.46e-05 1.79e-05 3.18e-03 7.87e-04
240,007 1.43e-06 9.95e-07 1.48e-05 9.80e-06 1.74e-03 4.42e-04
480,013 7.82e-07 6.72e-07 9.17e-06 8.41e-06 7.68e-04 2.91e-04

Rate 0.86 0.80 0.73 0.66 0.55 0.58
90% Interval [0.89, 0.83] [0.87, 0.74] [0.78, 0.69] [0.75, 0.57] [0.71, 0.40] [0.68, 0.48]

Table 5.11: QMC standard errors for ϑ = 1.25, using exponential ψj and POD weights γu as in (4.51)

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 2.80e-05 1.80e-05 1.76e-04 1.12e-04 8.97e-03 2.01e-03
16,001 1.37e-05 7.37e-06 1.25e-04 7.10e-05 7.25e-03 1.69e-03
32,003 8.37e-06 5.78e-06 5.72e-05 3.98e-05 2.42e-03 1.26e-03
64,007 4.36e-06 2.93e-06 3.39e-05 2.70e-05 1.72e-03 8.35e-04
120,011 2.58e-06 1.82e-06 2.00e-05 1.82e-05 1.43e-03 5.63e-04
240,007 1.32e-06 9.56e-07 1.14e-05 1.31e-05 1.57e-03 2.64e-04
480,013 7.06e-07 5.57e-07 6.31e-06 7.52e-06 5.60e-04 2.05e-04

Rate 0.89 0.82 0.83 0.64 0.63 0.60
90% Interval [0.91, 0.86] [0.89, 0.76] [0.88, 0.79] [0.68, 0.61] [0.81, 0.44] [0.70, 0.50]

scheme proposed in Corollary 44 was not obvious to us, and did not come about until

after many other attempts at finding a good scheme for αj .

We also discovered the need for multiple distinct αj through experimentation. Pre-

vious papers such as [71] and [39] considered the unbounded setting but with the weight

functions ψj taken to be the same over all coordinates. In this PDE problem, however,

we found it necessary to offer the ability to at least provide a regime of two distinct ψj

(or rather its parameter αj), one fit to the earlier coordinates, and one fit to the tail

coordinates. We found this necessary as we have the condition (4.59), where we require

αj > bj , to ensure Ψj <∞. The bj can converge quite quickly, if we have one only choice

that is used in all coordinate directions, α∗ say, then it will be too big for later coordi-

nates, which happens to lead to weights that are too small, especially for higher-order

coordinate collections. This gives us precisely the problem discussed in §5.2.1.

To demonstrate this we can examine the weights in a specific case, both with and

without the regime of multiple αj . Consider the case ϑ = 1.25, σ2 = 4.0 and λC = 1.0.

We see from Figure 5.3 that the bj in this case are initially large but converge quickly.

In Table 5.16 we present the weights γu for two cases. In the first column the weights

have one choice of αj , chosen as per (4.61), but only set for the first coordinate, then left

constant. The second column of weights takes in two distinct choices of αj , as per (5.13).

In this example we find the criterion of bj < b∗/2 occurs at j = 3. Thus we have α1 = α2,

but then a new choice is made for α3 and beyond.

102

Table 5.12: MC standard errors for ϑ = 2

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 7.24e-04 4.19e-04 2.21e-03 1.11e-03 2.70e-02 6.62e-03
16,001 3.98e-04 2.58e-04 1.15e-03 7.22e-04 1.42e-02 4.98e-03
32,003 2.97e-04 1.52e-04 9.73e-04 4.45e-04 1.65e-02 3.56e-03
64,007 1.87e-04 1.07e-04 6.21e-04 3.08e-04 1.02e-02 2.43e-03
120,011 1.25e-04 7.59e-05 4.11e-04 2.17e-04 5.78e-03 1.65e-03
240,007 9.40e-05 6.19e-05 2.97e-04 1.50e-04 4.02e-03 8.78e-04
480,013 7.06e-05 4.16e-05 2.12e-04 9.75e-05 2.79e-03 5.06e-04

Rate 0.56 0.55 0.56 0.59 0.55 0.63
90% Interval [0.62, 0.51] [0.61, 0.49] [0.61, 0.50] [0.61, 0.57] [0.65, 0.44] [0.71, 0.55]

Table 5.13: MC standard errors for ϑ = 1.25

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 6.89e-04 4.01e-04 2.05e-03 1.07e-03 2.30e-02 6.54e-03
16,001 3.82e-04 2.47e-04 1.08e-03 6.90e-04 1.21e-02 4.85e-03
32,003 2.81e-04 1.45e-04 9.05e-04 4.23e-04 1.35e-02 3.43e-03
64,007 1.78e-04 1.02e-04 5.76e-04 2.93e-04 8.51e-03 2.36e-03
120,011 1.20e-04 7.20e-05 3.85e-04 2.07e-04 5.00e-03 1.62e-03
240,007 9.91e-05 5.95e-05 3.11e-04 1.52e-04 3.84e-03 1.24e-03
480,013 6.92e-05 4.08e-05 2.11e-04 9.60e-05 3.85e-03 8.15e-04

Rate 0.55 0.55 0.54 0.58 0.45 0.51
90% Interval [0.61, 0.49] [0.61, 0.48] [0.59, 0.48] [0.61, 0.55] [0.56, 0.34] [0.53, 0.49]

In Table 5.16, we clearly see that in the single-αj case, the weights become too small,

whereas for the double-αj case, the higher order weights are many orders of magnitude

larger, and are of reasonably proportion to other weights. The small weights in the

single-αj case, especially for example the weight γ{2,3,4} = 1.83 × 10−14, lead to exactly

the lower-order projection problem highlighted in Figure 5.2. The larger weights in the

double-αj case are due to the change in αj from j = 3 onwards, in fact we see γ{3} jumping

to a larger value. While it may seem strange that γ{1} < γ{3}, particularly as we’d expect

the 3rd coordinate to contribute less than the 1st to the overall variance of the problem,

this is theoretically balanced by the fact that we have changed the dependence on the 3rd

coordinate in the norm ‖F‖Ws .

Having two distinct αj is a compromise. Ideally we would follow the scheme in Corol-

lary 44 and have a unique αj for every coordinate, minimising Sλ. However as discussed

the computational cost in using that scheme is excessive. We did not, however, see the

need for any more than 2 distinct αj , primarily as the results did not improve remarkably

with more choices, both for the worst-case error results and for the standard error of the

QMC quadrature results.

Part of our problems may indeed lie with the quantity C2,j which is used in the bound

of θ̂j , (3.38). We can see from (4.60) that C2,j contains a term of the order of eα
2
j , which

is evidently quite sensitive to αj , and likely to fluctuate with αj more than θ̂j itself. We

103

Figure 5.4: Standard errors from Tables 1 to 4 for QMC and MC plotted against n.

conclude that perhaps sharper bounds of the form of (3.38), if we could find them, would

make the numerical situation much easier to manage.

5.3.3 Gaussian ψj

Here we detail the numerical results with the Gaussian weight function (4.62). Once

again we must specify our scheme for setting αj . Unfortunately however we do not have

a closed form specification for αj as for the exponential case. Instead we minimised the

expression [%j(λ)]1/λΨj numerically for 0 < α < 1− 1/(2λ), by a simple minimum search

on a fine mesh. Unlike in the exponential case, we did not find that multiple αj made

too much of a difference on the results, probably as we did not have the hard constraint

(4.59). Hence we present results here where a single αj was used.

CBC results

We present the results of the CBC algorithm in Table 5.17, again with estimated values

of the rate of convergence r. Unfortunately, in this case of Gaussian ψj , the method only

worked for the combinations of σ2 = 0.25 with λC = 1.0 and 0.1, and the combination

of σ2 = 1.0 with λC = 1.0. For all other cases, e.g. when σ2 = 4.0, nonsense generating

104

Table 5.14: QMC standard errors for ϑ = 2 using generic lattice rules

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 3.38e-05 1.90e-05 2.48e-04 1.24e-04 1.29e-02 2.81e-03
16,001 1.68e-05 9.91e-06 1.23e-04 7.41e-05 7.00e-03 1.78e-03
32,003 8.27e-06 6.48e-06 6.47e-05 5.56e-05 4.05e-03 1.19e-03
64,007 4.32e-06 4.60e-06 3.55e-05 4.05e-05 2.88e-03 9.36e-04
120,011 2.46e-06 2.01e-06 2.59e-05 2.08e-05 4.33e-03 6.41e-04
240,007 1.77e-06 1.41e-06 2.07e-05 1.31e-05 3.54e-03 3.76e-04
480,013 6.84e-07 6.32e-07 7.10e-06 7.26e-06 7.60e-04 2.27e-04

Rate 0.92 0.80 0.80 0.68 0.52 0.59
90% Interval [0.99, 0.84] [0.88, 0.72] [0.91, 0.68] [0.76, 0.61] [0.78, 0.25] [0.65, 0.54]

Table 5.15: QMC standard errors for ϑ = 1.25 using generic lattice rules

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 3.25e-05 1.80e-05 2.27e-04 1.21e-04 1.06e-02 2.82e-03
16,001 1.61e-05 9.42e-06 1.12e-04 6.77e-05 5.52e-03 1.66e-03
32,003 7.87e-06 5.92e-06 5.71e-05 5.13e-05 3.36e-03 1.16e-03
64,007 4.06e-06 4.21e-06 3.11e-05 3.64e-05 2.18e-03 8.49e-04
120,011 2.41e-06 1.81e-06 2.34e-05 1.84e-05 3.13e-03 5.77e-04
240,007 1.69e-06 1.32e-06 1.81e-05 1.25e-05 2.40e-03 3.71e-04
480,013 6.60e-07 5.96e-07 6.69e-06 7.19e-06 6.44e-04 2.40e-04

Rate 0.91 0.81 0.80 0.68 0.54 0.58
90% Interval [0.99, 0.84] [0.88, 0.73] [0.91, 0.69] [0.74, 0.61] [0.76, 0.31] [0.61, 0.55]

vectors were returned as the weights became unstable. To illustrate this Table 5.18

presents the values of some early weights for the different of σ2, with ϑ = 2 and λC = 1.0

fixed. Upon inspecting the weights for σ2 = 4.0 it becomes clear why the CBC does

not work for this case – the weights are excessively large and nonsensical, For example

we see that γ{1,2} = 9.72 × 1014 while γ{3} = 7.81 × 10−3, due mostly to the fact that

Ψ1 = 1.67× 106 while Ψ3 = 36.75.

The poor performance of the Gaussian choice for ψj is likely to be a reflection on its

unsuitability towards this problem. It is the bound on the norm ‖F‖Ws (4.42) that gives

rise to Ψj , specifically the 1/ǎ(y) term that comes from (4.29) from Theorem 38. It seems

that we would be unlikely to improve on this bound.

QMC quadrature results

In Table 5.19 we present the results for the QMC quadrature of the PDE problem with

estimated rate of convergence r. We see for those few cases for which the CBC algo-

rithm has worked, these lattice rules perform similarly to the lattice rules built with the

exponential ψj , as well as the results for the generic lattice rules.

5.4 Conclusion

In Chapter 3 we described weighted spaces for unbounded integrands with general weights,

and proved that the CBC construction yields good lattice rules that allow us to perform

numerical integration with fast convergence for integrands contained in these spaces.

105

Table 5.16: γu for various u and two different regimes for αj , with exponential ψj .

γu for γu for
u 1 choice of αj 2 distinct choices of αj

{1} 2.80e-04 2.80e-04
{2} 2.78e-05 2.78e-05
{1, 2} 1.73e-08 1.73e-08
{3} 1.21e-05 1.50e-01
{1, 3} 7.52e-09 9.34e-05
{2, 3} 7.47e-10 9.29e-06
{1, 2, 3} 7.40e-13 9.19e-09
{4} 6.91e-06 4.93e-02
{1, 4} 4.29e-09 3.06e-05
{2, 4} 4.26e-10 3.05e-06
{1, 2, 4} 4.22e-13 3.02e-09
{3, 4} 1.86e-10 1.65e-02
{1, 3, 4} 1.84e-13 1.63e-05
{2, 3, 4} 1.83e-14 1.62e-06
{1, 2, 3, 4} 2.52e-17 2.23e-09

Table 5.17: Worst-case errors eshs,n, using Gaussian ψj and POD weights γu as in (4.51)

ϑ = 2 ϑ = 1.25
σ2 = 0.25 σ2 = 1.0 σ2 = 0.25 σ2 = 1.0

n λC = 1.0 λC = 0.1 λC = 1.0 λC = 1.0 λC = 0.1 λC = 0.1

8,009 1.07e-03 1.39e-02 5.72e-02 7.64e-03 1.89e+03 8.02e-02
16,001 6.14e-04 9.57e-03 3.35e-02 5.09e-03 1.34e+03 5.76e-02
32,003 3.57e-04 6.58e-03 2.07e-02 3.38e-03 9.44e+02 3.99e-02
64,007 2.03e-04 4.52e-03 1.23e-02 2.25e-03 6.67e+02 2.68e-02
120,011 1.24e-04 3.22e-03 8.05e-03 1.56e-03 4.87e+02 1.93e-02
240,007 7.17e-05 2.21e-03 5.08e-03 1.04e-03 3.45e+02 1.34e-02
480,013 4.17e-05 1.52e-03 2.89e-03 6.89e-04 2.44e+02 9.67e-03

Rate 0.79 0.54 0.73 0.59 0.5 0.52

Subsequently in Chapter 4 we investigated the PDE problem with random coefficients,

known as the porous-flow problem, and showed that integrands arising from this problem

were contained in our new weighted spaces. Thus our theory of good lattice rules applies

for this problem, and hence we have shown that QMC methods applied to the PDE

problem converged quickly, and in some cases optimally, with close toO(n−1) convergence.

Finally, in this chapter we investigated the details of implementation of the techniques

in both the previous chapters, and tested the performance of our tailored lattice rules

for a model problem, leading to interesting numerical challenges in fitting the various

parameters of the space to contain the problem.

We have successfully demonstrated good convergence of our QMC finite element

method for this class of PDE problems numerically. Our results demonstrate that QMC

rules comfortably beat MC rules in most cases, or in the cases of large σ2 perform no

worse. Furthermore we see that this is the case even for arbitrarily chosen lattice rules, as

is demonstrated in Tables 5.14 and 5.15, despite the fact that the theory for these lattice

rules does not apply to this problem.

106

Table 5.18: γu for various u, with λC = 1.0, ϑ = 2, and with Gaussian ψj .

γu for γu for γu for
u σ2 = 0.25 σ2 = 1.0 σ2 = 4.0

{1} 1.38e+00 4.14e+02 2.89e+11
{2} 1.44e-01 1.31e+00 1.37e+03
{1, 2} 4.86e-01 1.33e+03 9.72e+14
{3} 3.35e-02 9.06e-02 7.81e-01
{1, 3} 1.13e-01 9.17e+01 5.53e+11
{2, 3} 1.18e-02 2.90e-01 2.62e+03
{1, 2, 3} 6.71e-02 4.96e+02 3.13e+15
{4} 1.20e-02 2.27e-02 5.35e-02
{1, 4} 4.03e-02 2.30e+01 3.78e+10
{2, 4} 4.21e-03 7.26e-02 1.80e+02
{1, 2, 4} 2.40e-02 1.24e+02 2.15e+14
{3, 4} 9.79e-04 5.02e-03 1.02e-01
{1, 3, 4} 5.57e-03 8.58e+00 1.22e+11
{2, 3, 4} 5.81e-04 2.71e-02 5.79e+02
{1, 2, 3, 4} 4.80e-03 6.72e+01 1.00e+15

Table 5.19: QMC standard errors, using Gaussian ψj and POD weights γu as in (4.51)

ϑ = 2 ϑ = 1.25
σ2 = 0.25 σ2 = 1.0 σ2 = 0.25 σ2 = 1.0

n λC = 1.0 λC = 0.1 λC = 1.0 λC = 1.0 λC = 0.1 λC = 1.0

8,009 2.95e-05 1.87e-05 1.98e-04 3.02e-05 1.83e-05 3.05e-04
16,001 1.42e-05 1.17e-05 1.05e-04 1.47e-05 1.29e-05 1.33e-04
32,003 7.75e-06 6.47e-06 6.55e-05 8.66e-06 7.65e-06 5.80e-05
64,007 4.32e-06 2.99e-06 3.50e-05 4.45e-06 3.76e-06 4.93e-05
120,011 2.50e-06 1.90e-06 2.21e-05 2.50e-06 2.32e-06 3.05e-05
240,007 1.53e-06 1.20e-06 1.91e-05 1.62e-06 9.35e-07 1.74e-05
480,013 7.69e-07 7.22e-07 7.86e-06 7.12e-07 8.65e-07 9.84e-06

Rate 0.86 0.8 0.76 0.86 0.79 0.78

Our numerical results do not quite match up with our theoretical predictions. For

example, our theory predicts convergence rates of our QMC error that is dependent

primarily on the rate of decay of bj , specified here by the ϑ parameter. In the numerics

however we see a much larger dependence on σ2 and λC than on ϑ. If anything, this is

evidence that there is further work that could be done towards making the theory sharper.

It is important to note that in these experiments neither the MC nor the QMC rules are

enhanced using any variance reduction techniques such as the use of antithetic variates.

This way we have a fair comparison between two unflavoured implementations.

Evidently there is scope for further work to sharpen our error bounds, as demonstrated

by our numerics. Nevertheless, the results show that QMC finite element methods pro-

vide an excellent solution to the lognormal porous flow problem, and present a marked

improvement over MC methods. Certainly as an “out-of-the-box” solution, implementing

the machinery of the CBC algorithm for building custom lattice rules, built to fit this

specific problem, may be beyond the scope of the practitioner. However, as has been seen,

regular lattice rules, the generating vectors for which are widely available, work very well

107

for the problem. Our process of proving convergence of the problem in the weighted func-

tion space can be considered a theoretical achievement, with the added bonus of good

numerical results.

The porous flow problem has been an exciting new setting in which to apply QMC

methods. We have managed to analyse the PDE in a new weighted function space setting,

leading to a process of finding tailored weights γu and weight functions ψj , that leads to

proven theoretical convergence. This is a novel discovery in the world of QMC.

108

References

[1] P. A. Acworth, M. Broadie, and P. Glasserman, A comparison of some Monte Carlo

and quasi Monte Carlo techniques for option pricing, Monte Carlo and Quasi-Monte

Carlo Methods 1996 (H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof,

eds.), Lecture Notes in Statistics, vol. 127, Springer New York, 1998, pp. 1–18 (En-

glish).

[2] R.J. Adler, The geometry of random fields, Classics in applied mathematics, Soci-

ety for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,

Philadelphia, PA 19104), 1981.

[3] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950),

no. 3, 337–404.

[4] D. H. Bailey, Tanh-sinh high-precision quadrature, January 2006.

[5] D. H. Bailey and J. M. Borwein, Effective error bounds in euler-maclaurin based

quadrature schemes, June 2005.

[6] R. E. Caflisch, W. Morokoff, and A. B. Owen, Valuation of mortgage-backed securi-

ties using brownian bridges to reduce effective dimension, Journal of Computational

Finance 1 (1997), 27–46.

[7] J. Charrier, Strong and weak error estimates for elliptic partial differential equations

with random coefficients, SIAM J. Numer. Anal. 50 (2012), no. 1, 216–246.

[8] J. Charrier and A. Debussche, Weak truncation error estimates for elliptic pdes with

lognormal coefficients, Stochastic Partial Differential Equations: Analysis and Com-

putations 1 (2013), no. 1, 63–93 (English).

[9] J. Charrier, R. Scheichl, and A. Teckentrup, Finite element error analysis of elliptic

PDEs with random coefficients and its application to multilevel Monte Carlo methods,

Tech. report, University of Bath, January 2013.

[10] K. A. Cliffe, I. G. Graham, R. Scheichl, and L. Stals, Parallel computation of flow

in heterogeneous media modelled by mixed finite elements, Journal of Computational

Physics 164 (2000), no. 2, 258 – 282.

[11] R. Cools, F. Y. Kuo, and D. Nuyens, Constructing embedded lattice rules for multi-

variate integration, SIAM J. Sci. Comp 28 (2006), no. 6, 2162–2188.

[12] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclo-

pedia of Mathematics and its Applications, Cambridge University Press, 2008.

[13] G. Dagan, Solute transport in heterogeneous porous formations, Journal of Fluid

Mechanics 145 (1984), 151–177.

109

[14] R. A. Davis, Y. Wang, and W. T. M. Dunsmuir, Modelling time series of count data,

Asymptotics, Nonparametrics, and Time Series (S. Ghosh, ed.), Statistics: Textbooks

and Monographs, vol. 158, Dekker.

[15] R. A. Davis and G. Yodriguez-Yam, Estimation for state-space models based on a

likelihood approximation, Statistica Sinica 15 (2005), 381–406.

[16] J. Dick, On the convergence rate of the component-by-component construction of good

lattice rules, Journal of Complexity 20 (2004), no. 4, 493 – 522.

[17] J. Dick, F. Y. Kuo, and I. H. Sloan, High-dimensional integration: The quasi-Monte

Carlo way, Acta Numerica 22 (2013), 133–288.

[18] J. Dick and F. Pillichshammer, Discrepancy theory and quasi-Monte Carlo integra-

tion, Cambridge University Press, Cambridge, 2010.

[19] J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski, Liberating the weights, Journal

of Complexity 20 (2004), no. 5, 593 – 623, Dagstuhl 2002 - Festschrift for the 70th

Birthday of Joseph F. Traub.

[20] J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski, Good lattice rules in weighted

korobov spaces with general weights, Numer. Math. 103 (2006), no. 1, 63–97.

[21] S. Disney and I. H. Sloan, Error bounds for the method of good lattice points, Math-

ematics of Computation 56 (1991), no. 193, pp. 257–266 (English).

[22] D.A. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second

order, Classics in mathematics, Springer-Verlag GmbH, 2001.

[23] M. B. Giles, F. Y. Kuo, I. H. Sloan, and B. J. Waterhouse, Quasi-Monte Carlo

for finance applications, Proceedings of the 14th Biennial Computational Techniques

and Applications Conference, CTAC-2008 (G. N. Mercer and A. J. Roberts, eds.),

ANZIAM J., vol. 50, November 2008, pp. C308–C323.

[24] I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, C. Schwab, and I. H. Sloan,

Quasi-Monte Carlo finite element methods for elliptic PDEs with log-normal random

coefficients, Submitted for publication (2013).

[25] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan, Quasi-Monte

Carlo methods for elliptic pdes with random coefficients and applications, Journal of

Computational Physics 230 (2011), no. 10, 3668 – 3694.

[26] M. Griebel, F. Y. Kuo, and I. H. Sloan, The smoothing effect of the ANOVA decom-

position, J. Complex. 26 (2010), no. 5, 523–551.

[27] M. Griebel, F. Y. Kuo, and I. H. Sloan, The smoothing effect of integration in Rd

and the ANOVA decomposition, Math. Comp. 82 (2013), 383–400.

[28] F. J. Hickernell, Lattice rules: How well do they measure up?, Technical report (Hong

Kong Baptist University. Dept. of Mathematics), Department of Mathematics, Hong

Kong Baptist University, 1998.

[29] F.J. Hickernell and H. Woźniakowski, Integration and approximation in arbitrary

dimensions, Advances in Computational Mathematics 12 (2000), no. 1, 25–58.

[30] E. Hlawka, Zur angenäherten berechnung mehrfacher integrale, Monatshefte fr Math-

ematik 66 (1962), no. 2, 140–151 (German).

110

[31] N. M. Korobov, The approximate computation of multiple integrals, Doklady

Akademii Nauk SSSR 124 (1959), 1207–1210 (Russian).

[32] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Dover Books on

Mathematics, Dover Publications, 2006.

[33] F. Y. Kuo, Component-by-component constructions achieve the optimal rate of con-

vergence for multivariate integration in weighted korobov and sobolev spaces, Journal

of Complexity 19 (2003), no. 3, 301 – 320, Oberwolfach Special Issue.

[34] F. Y. Kuo, W. T. M. Dunsmuir, I. H. Sloan, M. P. Wand, and R. S. Womersley,

Quasi-Monte Carlo for highly structured generalised response models, Methodology

and Computing in Applied Probability 10 (2008), 239–275 (English).

[35] F. Y. Kuo and Stephen Joe, Component-by-component construction of good lattice

rules with a composite number of points, Journal of Complexity 18 (2002), no. 4, 943

– 976.

[36] F. Y. Kuo, Ch. Schwab, and I. H. Sloan, Quasi-Monte Carlo finite element methods

for a class of elliptic partial differential equations with random coefficient, 50 (2012),

no. 6, 3351–3374.

[37] F. Y. Kuo, Ch. Schwab, and I. H. Sloan, Quasi-Monte Carlo methods for high-

dimensional integration: the standard (weighted hilbert space) setting and beyond,

ANZIAM Journal 53 (2012), no. 0.

[38] F. Y. Kuo, Ch. Schwab, and I. H. Sloan, Multi-level quasi-Monte Carlo finite element

methods for a class of elliptic partial differential equations with random coefficient,

(submitted).

[39] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and B. J. Waterhouse, Randomly shifted

lattice rules with the optimal rate of convergence for unbounded integrands, J. Com-

plex. 26 (2010), 135–160.

[40] F. Y. Kuo, Grzegorz W. Wasilkowski, and Benjamin J. Waterhouse, Randomly shifted

lattice rules for unbounded integrands, Journal of Complexity 22 (2006), no. 5, 630

– 651, Special Issue: Information-Based Complexity Workshops FoCM Conference

Santander, Spain, July 2005.

[41] G. Larcher, G. Leobacher, and K. Scheicher, On the tractability of the brownian

bridge algorithm, J. Complex. 19 (2003), no. 4, 511–528.

[42] P. LEcuyer, Quasi-Monte Carlo methods with applications infinance, Finance and

Stochastics 13 (2009), no. 3, 307–349 (English).

[43] Masatake M., Discovery of the double exponential transformation and its develop-

ments, Publications of The Research Institute for Mathematical Sciences 41 (2005),

897–935.

[44] R. L. Naff, D. F. Haley, and E. A. Sudicky, High-resolution Monte Carlo simulation

of flow and conservative transport in heterogeneous porous media 1. methodology and

flow results, Water Resour. Res. 34 (1998), 663–677.

111

[45] , High-resolution Monte Carlo simulation of flow and conservative transport

in heterogeneous porous media 2. transport results, Water Resour. Res. 34 (1998),

679–697.

[46] J. A. Nichols and F. Y. Kuo, Fast cbc construction of randomly shifted lattice rules

achieving O(n−1+δ) convergence for unbounded integrands in Rs in weighted spaces

with POD weights, Submitted for publication (2013).

[47] H. Niederreiter, The existence of efficient lattice rules for multidimensional numerical

integration, Mathematics of Computation 58 (1992), no. 197, pp. 305–314 (English).

[48] , Existence theorems for efficient lattice rules, Numerical Integration (T. O.

Espelid and A. Genz, eds.), NATO ASI Series, vol. 357, Springer Netherlands, 1992,

pp. 71–80 (English).

[49] , Random number generation and Quasi-Monte Carlo methods, CBMS-NSF

Regional Conference Series in Applied Mathematics, Society for Industrial and Ap-

plied Mathematics, 1992.

[50] H. Niederreiter, Improved error bounds for lattice rules, Journal of Complexity 9

(1993), no. 1, 60 – 75.

[51] E. Novak and H. Woźniakowski, Tractability of multivariate problems: Linear infor-

mation, EMS Tracts in Mathematics, no. 1, European Mathematical Society, 2008.

[52] , Tractability of multivariate problems: Standard information for functionals,

EMS Tracts in Mathematics, no. 2, European Mathematical Society, 2010.

[53] D. Nuyens and R. Cools, Fast algorithms for component-by-component construction

of rank-1 lattice rules in shift-invariant reproducing kernel hilbert spaces, Mathemat-

ics of Computation 75 (2006), no. 254, pp. 903–920 (English).

[54] D. Nuyens and R. Cools, Fast component-by-component construction of rank-1 lattice

rules with a non-prime number of points, Journal of Complexity 22 (2006), no. 1, 4

– 28.

[55] R. Scheichl, Iterative solution of saddle point problems using divergence-free finite

elements with applications to groundwater flow, Ph.D. thesis, University of Bath,

2000.

[56] Ch. Schwab and C.J. Gittelson, Sparse tensor discretizations of high dimensional and

stochastic pdes, Acta Numerica 20 (2011), 291–467.

[57] V. Sinescu, F. Y. Kuo, and I. H. Sloan, On the choice of weights in a function space

for quasi-Monte Carlo methods for a class of generalised response models in statistics,

Monte Carlo and Quasi-Monte Carlo Methods 2012 (Submitted).

[58] I. H. Sloan, F. Y. Kuo, and S. Joe, Constructing randomly shifted lattice rules in

weighted sobolev spaces, SIAM J. Numer. Anal. 40 (2002), no. 5, 1650–1665.

[59] , On the step-by-step construction of quasi-Monte Carlo integration rules that

achieve strong tractability error bounds in weighted sobolev spaces, Math. Comput.

71 (2002), 1609–1640.

[60] I. H. Sloan and A. V. Reztsov, Component-by-component construction of good lattice

rules, Math. Comp 71 (2002), 263–273.

112

[61] I. H. Sloan, X. Wang, and H. Woniakowski, Finite-order weights imply tractability of

multivariate integration, Journal of Complexity 20 (2004), no. 1, 46 – 74.

[62] I. H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient

for high dimensional integrals?, J. Complex. 14 (1998), 1–33.

[63] I. H. Sloan and H. Wozniakowski, Tractability of multivariate integration for weighted

korobov classes, Journal of Complexity 17 (2001), no. 4, 697 – 721.

[64] I.H. Sloan and S. Joe, Lattice methods for multiple integration, Oxford Science Pub-

lications, Clarendon Press, 1994.

[65] H Takahasi and M. Mori, Double exponential formulas for numerical integration,

Publications of The Research Institute for Mathematical Sciences 9 (1973), no. 3,

721–741.

[66] A. L. Teckentrup, R. Scheichl, M. B. Giles, and E. Ullmann, Further analysis of

multilevel Monte Carlo methods for elliptic pdes with random coefficients, Numer.

Math. (2012).

[67] C. Thomas-Agnan, Computing a family of reproducing kernels for statistical appli-

cations, Numerical Algorithms 13 (1996), 21–32.

[68] G. W. Wasilkowski and H. Woźniakowski, Complexity of weighted approximation over

R1, Journal of Approximation Theory 103 (2000), no. 2, 223 – 251.

[69] G. W. Wasilkowski and H. Woźniakowski, Tractability of approximation and integra-

tion for weighted tensor product problems over unbounded domains, Monte Carlo and

Quasi-Monte Carlo Methods 2000 (K. Fang, H. Niederreiter, and F. J. Hickernell,

eds.), Springer Berlin Heidelberg, 2002, pp. 497–522 (English).

[70] G.W Wasilkowski and H Woźniakowski, Weighted tensor product algorithms for linear

multivariate problems, Journal of Complexity 15 (1999), no. 3, 402 – 447.

[71] B. J. Waterhouse, F. Y. Kuo, and I. H. Sloan, Randomly shifted lattice rules on

the unit cube for unbounded integrands in high dimensions, J. Complex. 22 (2006),

71–101.

[72] Y. Zhao, J. Staudenmayer, B. A. Coull, and M. P. Wand, General design Bayesian

generalized linear mixed models, Statistical Science 21 (2006), 35–51.

113

	Title page: Quasi-Monte Carlo methods with applications to partial differential equations with random coefficients
	Abstract
	Acknowledgements
	Contents

	Chapter 1: Introduction and motivation
	Chapter 2: QMC methods and shifted lattice rules
	Chapter 3: Unbounded functions with general weights
	Chapter 4: The porous flow problem
	Chapter 5: Implementation and numerical results
	References

