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Abstract

The structured arrangement of sounds in musical pieces, results in the unique creation

of complex acoustic mixtures. The analysis of these mixtures, with the objective

of estimating the individual sounds which constitute them, is known as musical

instrument sound source separation, and has applications in audio coding, audio

restoration, music production, music information retrieval and music education.

This thesis principally addresses the issues related to the separation of harmonic

musical instrument sound sources in single-channel mixtures. The contributions pre-

sented in this work include novel separation methods which exploit the characteristic

structure and inherent correlations of pitched sound sources; as well as an exploration

of the musical timbre space, for the development of an objective distortion metric to

evaluate the perceptual quality of separated sources.

The separation methods presented in this work address the concordant nature of

musical mixtures using a model-based paradigm. Model parameters are estimated

for each source, beginning with a novel, computationally efficient algorithm for the

refinement of frequency estimates of the detected harmonics. Harmonic tracks are

formed, and overlapping components are resolved by exploiting spectro-temporal

intra-instrument dependencies, integrating the spectral and temporal approaches

which are currently employed in a mutually exclusive manner in existing systems.

Subsequent to the harmonic magnitude extraction using this method, a unique,

closed-loop approach to source synthesis is presented, separating sources by iter-

atively minimizing the aggregate error of the sources, constraining the minimization

to a set of estimated parameters. The proposed methods are evaluated indepen-

dently, and then are placed within the context of a source separation system, which
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is evaluated using objective and subjective measures.

The evaluation of music source separation systems is presently limited by the sim-

plicity of objective measures, and the extensive effort required to conduct subjective

evaluations. To contribute to the development of perceptually relevant evaluations,

three psychoacoustic experiments are also presented, exploring the perceptual sensi-

tivity of timbre for the development of an objective distortion metric for timbre. The

experiments investigate spectral envelope sensitivity, spectral envelope morphing and

noise sensitivity.

Keywords : source separation, music, sinusoidal estimation, instrument mod-

elling, phase estimation, timbre, spectral envelope
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Chapter 1

Introduction

Scholars have long been intrigued by the enigmatic nature of music. Since ancient

times, the mathematical relationships of music signals have been studied, and have

been instrumental in fashioning music to be what it is today. The foundations

of Western music theory in particular, are accredited to Pythagoras (ca. 570-497

B.C.) [29], who investigated the numerical relationships regarding the consonance of

musical intervals and the relationships between pitch and the physics of strings.

In modern times, interest in the relationship between mathematics and music

have escalated to new heights particularly with the advent of computer systems.

The digitisation of music has led to a rapid change in the manner in which people

create, listen and interact with music. With music stored in digital formats, music

is now remarkably portable and accessible. People have the flexibility to manage

the music they listen to and with the interconnections made possible through the

Internet, instantaneous music choice is more extensive than ever.

The music production process has also become largely digital, with many record-

ings being created using a predominantly digital signal processing chain. Sounds

are recorded and converted into the digital domain, where a plethora of hardware

and software processors are available for signal modification. Processors are used

for adding creative effects such as modulation and distortion, spatialisation effects

such as reverb, and removing undesired noises such as clicks and pops. Much of this

processing operates on the entire signal and if the signal contains multiple sources,

then all the signal components are affected.
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For this reason, a number of modern music recordings employ a multi-track ap-

proach, where each instrument is recorded to a separate channel, allowing each source

to be individually modified, before being artificially summed together with other

sources. However, for recordings involving a large number of instruments (such as

orchestral recordings), recording each individual instrument to a separate channel is

simply not practical, and a single channel usually contains a combination of a num-

ber of sources. In these cases, individual instruments cannot be modified without

first separating the sources contained within the mixture.

This thesis investigates the source separation of music signals from single-channel

mixtures, focussing on the development of a separation system that is applicable to

a general class of music signals (i.e. not trained for a specific source). The system

is built upon a generalised parametric model that facilitates separation. Separating

musical sources is a non-trivial task, primarily due to its highly structured nature.

The organisation of sounds in music is highly concordant, both spectrally and tem-

porally, resulting in large statistical dependencies between sources. Employing a

deterministic separation strategy based on a sinusoidal model framework, these is-

sues are systematically addressed using refined parameter estimation, exploitation of

temporal correlations, and iterative magnitude-constrained phase estimation. The

separation system is then evaluated using objective and subjective measures.

The optimisation of separation systems requires an extensive understanding of

the perceptual sensitivity to modifications made to the tone quality or timbre of a

sound. In an ideal separation system, sources separated from a mixture should retain

all the attributes belonging to the particular source, thereby retaining the timbrel

integrity of each sound. While the reality of an ideal source separation system seems

quite distant (particularly for mixtures containing many sources), recent systems

are beginning to achieve perceptually acceptable separation for a limited number of

sources. This has necessitated the development of a perceptually-relevant objective

distortion metric, to evaluate the separation quality of separation systems. Through

the results of a series of psychoacoustic experiments, insight into the salient parame-

ters of such a distortion metric are discussed. The experiments investigate perceptual

sensitivity to the spectral envelope, spectral envelope morphing strategies, and sen-
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1.1. APPROACHES TO SOURCE SEPARATION

sitivity to modifications made to the non-harmonic component of pitched sounds.

1.1 Approaches to Source Separation

As humans, we have an amazing ability to perceptually organise the sounds that we

hear. When we listen to a piece of music, the acoustic pressure waves are analysed

by our auditory system and we perceive the sensation of sound. Of greater intrigue

however, is the ability to segregate the sound into separate components. It is not

unusual for a listener to hear a piece of music played with numerous instruments, and

within an instant, sift through the sounds to focus their attention on the melody of

the song. Amongst the diverse sounds of percussive drum hits, distorted guitars, low-

frequency bass and rich vocal harmonies, we as listeners are able to not only identify

melodies, but we can then go on to make inferences about the nature of source

generating the melody. We are able to identify if it is a singer or an instrument and

if it is a singer, we think it to be a trivial exercise to identify the singer’s gender.

Musically trained listeners can even go so far as to identify the instruments being

played simultaneously, and their corresponding pitches within a musical mixture.

This section is an exploration of the various approaches that have been employed

for source separation. Much of the research in this area was initially motivated by

the work in experimental psychoacoustics, and for this reason, we begin with an

overview of some of the psychoacoustically motivated approaches in Section 1.1.1.

This is followed by an overview of the information theoretic approaches adopted by

unsupervised learning methods in Section 1.1.2, and in Section 1.1.3 we review some

of the signal modelling approaches. Finally in Section 1.1.4, we look briefly at the

related area of automatic music transcription.

1.1.1 Psychoacoustically Motivated Approaches

This perceptual organisation of sounds has been studied in the psychoacoustics litera-

ture under the title auditory scene analysis and the work of experimental psychologist

Albert S. Bregman [14], has played a particularly influential role. Studies in auditory

scene analysis involve conducting experiments that measure the perceptual responses
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1.1. APPROACHES TO SOURCE SEPARATION

to combinations of simple stimuli such as sine-tones and bursts of white noise. The

results of these experiments have resulted in Gestalt-like principles, which describe

the salient cues related to the organisation and grouping of elementary components.

The principles particularly relevant to source separation involve the definition

of the salient grouping cues for organising simultaneous spectral features. These

important cues include:

1. Synchronicity cues -

(a) Common amplitude and frequency modulation - Components whose am-

plitudes and frequencies exhibit similar variations are generally perceived

as one object. These cues are primarily associated with the nature of the

physical production systems affecting all the components. For example,

when a violinist plays a note with vibrato, the frequency and amplitude

modulations due to the variations in string length, manifest themselves in

all of the harmonics.

(b) Common onsets and offsets - Components that have similar onsets and

offsets also tend to be grouped as a perceptual object. These can also be

viewed as a specific case of amplitude modulation, where the amplitudes

of the components are characterised by a sharp rise (for onsets) or fall (in

the case of offsets).

2. Spectral cues -

(a) Harmonicity - Components that are related in integer relationships of a

fundamental frequency are also found to be fused together as a perceptual

object.

(b) Spectral proximity - Components are found to fuse with other components

closer in spectral proximity. For example, combining the fundamental

frequency with the first harmonic resulted in a stronger perceptual unit

than the combination of the first harmonic and the 10th harmonic.

3. Spatial cues - With the human auditory system observing two channels - one
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from each ear, localisation of sources is made possible through the timing dis-

parities between the signals from each ear. Components originating from sim-

ilar spatial locations are more readily fused as a perceptual object.

Many systems were developed based on these experimental findings of audition.

These included systems by Duda et. al. [30], Mellinger [83], Cooke [22], Brown [15],

Kashino [60, 59], Ellis [32], and Virtanen [125].

While the performance of these systems were adequate for the limited applications

they were designed for, there are concerns regarding the underlying principles of the

psychoacoustically motivated approach. The systems adopt the grouping principles

as the foundational elements of their computational infrastructure, however their

validity as the governing principles of audition has been questioned [108]. The psy-

choacoustic experiments from which the principles were derived, targeted isolated

principles and used simplistic, highly constrained stimuli. This provides informa-

tion about the low-level groupings of synthetic stimuli such as sine-tones and gated

white noise, but the information cannot be extrapolated to make definitive inferences

about the nature of complex sounds. The descriptions of these principles also lacks

the mathematical rigour required for accurate computational implementation. The

principles are described using verbal descriptors such as “parallel” and “similar”, and

their ambiguous nature makes it difficult to construct robust formulations.

1.1.2 Unsupervised learning

In stark contrast to the psychoacoustically motivated approaches, unsupervised learn-

ing methods make little inference about the nature of the sources a priori, opting

to learn the characteristics of the sources from the data. Separation is achieved by

applying information-theoretic principles to the mixtures, exploiting principles such

as statistical independence. Unsupervised learning methods can be divided into 3

different classes of algorithms: independent component analysis (ICA), non-negative

matrix factorisation (NMF) and sparse coding.

ICA has been used successfully in several blind source separation applications in-

cluding biomedical signal processing [77], image processing [12] and speech and audio
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processing [116, 108, 127]. Using a linear signal model, ICA attempts to separate

mixtures by identifying sources that are maximally independent. Mathematically,

the objective of ICA is expressed as

y = Ax (1.1)

where y are the observed mixed signals, A is the mixing matrix and x contains the

vectors that are maximally independent. ICA algorithms must estimate both A and

x, given the observations y, and they achieve this objective by finding solutions that

approach a certain definition of statistical independence such as mutual informa-

tion minimisation [20], info-max [11] and non-Gaussianity maximisation [54]. In the

context of single-channel source separation, ICA cannot be directly applied to time-

domain signals, as the number of sources extracted must be equal to the number

of mixtures observed. For single-channel mixtures, the application of information-

theoretic principles has been applied to the magnitude spectrogram in non-negative

matrix factorisation [71, 109] and sparse coding has been used for polyphonic music

transcription [3] and source separation [123].

While those pursuing source separation using unsupervised learning methods and

psychoacoustically motivated methods have generally pursued common objectives

from very different approaches, Smaragdis [108] has proposed a unification of both

approaches by drawing upon the Barlowian theory1 of redundancy reduction as a

sensory processing mechanism. In his dissertation, he argues that the foundations

of audition are better modelled by redundancy reduction, highlighting through a

series of simple experiments how perceptual grouping principles relate to information

theory.

1.1.3 Signal Models

Source separation systems that are based on signal models, exploit prior information

about the sources to extract them from a mixture. Parametric models are derived

for the sources and parameters are estimated either, deterministically with heuristics
1A good review is presented in [10].
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[87, 125, 34], or using a Bayesian framework [25, 39, 128].

The predominant signal model employed in music processing is the sinusoidal

model. Initially proposed by McAulay and Quatieri [81] as a parametric represen-

tation of speech, sinusoidal modelling soon found applications within music signal

processing after its introduction by Serra and Smith [101, 111]. The signal model is

particularly suited to the harmonic structure of pitched instruments and this will be

discussed in greater detail in Chapter 2.

1.1.4 Automatic Music Transcription

Automatic music transcription (AMT) is closely related to music source separation.

It is primarily concerned with music signal analysis, with the objective of finding

symbolic representations of music signals, in a format commonly used as a perfor-

mance instruction for musicians. AMT is much like the music analog of automatic

speech recognition, and rather than transcribing speech signals into words and sen-

tences, music signals are transcribed into notes of specified durations. Once the

music has been transcribed, the information stored within the transcription is not

only beneficial to musicians for performances, but can be also used for reproduc-

tion using synthesised sounds. AMT involves the estimation of several parameters,

some of which pertain directly to source separation. These include the estimation of

fundamental frequencies, and the estimation of note onsets and offsets.

The intent of fundamental frequency (F0) estimation is to adequately approxi-

mate the F0s within a musical mixture. Once the F0s have been estimated, they

are then quantised to note values on the musical scale. While robust F0 estimation

methods exist for monophonic signals2, the estimation of F0s for polyphonic signals 3

(multiple F0 estimation) is still a major topic of investigation. State-of-the-art mul-

tiple F0 estimators [115, 64, 66] are capable of estimating up to 6 six simultaneous

sources with quickly diminishing performance with increasing polyphony.

The estimation of note onsets and offsets provides valuable information regarding

musical note durations. While early systems tried to find signal onsets using the
2A good review can be found in [65]
3Signals consisting of two or more sounds.
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amplitude envelope of the entire signal [19], filtering the signal into various bands

and integrating the results, was later found to be more robust [98]. Psychoacoustic

knowledge was later applied by Klapuri [63] to improve performance.

Recent AMT systems have achieved good performance, particularly with musical

mixtures with limited polyphony [65, 25, 115, 78]. However transcribing mixtures

involving numerous sources, like that of an orchestra, are still somewhat a fantasy.

1.2 Applications

Single channel source separation of musical mixtures has a vast array of potential

applications which are described in the following subsections.

Audio coding

If individual sources can be isolated into separate music streams, then efficient,

source-optimised compression algorithms can then be applied to achieve high com-

pression gains. This is evident in speech compression algorithms, which have utilised

models of the speech production system to achieve very low bit rates.

Denoising and restoration

A plethora of denoising methods are available for the removal of unwanted noises such

as hissing, clicks and pops, in musical mixtures. However most of these methods are

applied to the entire signal, often adversely affecting other sources in the vicinity

of the unwanted noise. Source separation would facilitate the isolation of unwanted

noises producing denoising results with fewer artifacts.

Music production

In the music production process, there are many instances in which single micro-

phones are used to record multiple instruments. In these cases, if modifications to

a particular source are required, there is no way to rectify the situation except to

re-record the piece. The ability to separate sources would provide a flexibility that

would fuel a number of creative applications. Instrumentation would be more read-
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ily interchangeable, effects could be applied to specific instruments, automatic music

transcription would be greatly simplified and the possibilities for resampling would

reach new heights. With separated sources, music remixing would be able to exper-

iment with various spatialisations, taking music from monophonic or stereophonic

sound fields, into 3-dimensional sound fields.

Music information retrieval

In recent times there has been a large shift in the manner in which people manage

and listen to their music. With vast selections of music available, there has been a

need for music management systems that have superior interactivity and automated

organisation. Music information retrieval has been a growing area of research for

this reason, automating the process of acquiring information about music recordings

and samples directly from the music signals. Melodic information has been used

for novel search methods such as ’query-by-humming’ systems [37], the analysis of

structural attributes of music have led to genre classification systems [117], and

rhythmic analysis has led to the development of automatic tempo and beat tracking

systems [98]. These systems will improve the way in which people browse their music

and reduce the manual data entry currently required for the organisation of music

databases.

The implications of musically meaningful source separation are diverse in this

regard, providing improved reliability for information retrieval systems. Systems that

search for instrument-specific information will obviously benefit significantly, and a

greater flexibility will be offered to systems searching for more general information.

Music education

The separation of sources from music recordings would provide considerable flexibility

in the manner in which music is taught and practised. In recent times, there has been

a growing number recordings released in ’split-tracks’, primarily for providing musical

accompaniment for singers. If the same idea could be applied to all instruments

from commercially-released recordings, the ability to isolate different sounds would

provide great versatility for music teachers. Students would also benefit by being
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able to play along with a large selection of recordings, having the option to attenuate

certain sounds as necessary.

1.3 Scope and Outline of the Thesis

This thesis is concerned with the separation of sounds in musical mixtures. In the

signal processing literature, this is referred to as source separation. One of the pri-

mary objectives of this research is the separation of the harmonic components of

pitched sounds in polyphonic mixtures. It does not address the separation of per-

cussive sounds (e.g. drums, tambourines,...etc.), but interested readers are referred

to [40, 35].

The separation system is concerned with the perceptual quality of the separated

sounds, with the aim of preserving the timbrel integrity of each sound, with respect

the original sounds. To facilitate the exploration of the perceptual sensitivity to

changes in musical timbre, experiments are conducted to aid in the development of

a suitable objective distortion metric for timbre.

Chapter 2. Music Signal Modelling for Source Separation

This chapter describes some of the theoretical foundations concerning musical source

separation. It explores the nature of music signals and the inherent problems associ-

ated with the separation of pitched sounds. This is followed by an overview of several

representations and models for music signals with respect to source separation.

Chapter 3. Harmonic Signal Modelling for Musical Mixtures and Sepa-

ration

This chapter presents novel methods for the analysis and separation of harmonic

sources in polyphonic mixtures, beginning with a novel algorithm proposed for si-

nusoidal parameter estimation based on phase derivatives. The spectro-temporal

nature of instrument harmonics are then analysed, and models are presented for the

estimation of harmonics using linear combinations of adjacent harmonics. These

models are then used to identify ambiguous harmonics in mixtures.
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Chapter 4. Synthesis of Separated Sources

This chapter explores methods of re-synthesising sounds from their parametric formu-

lation. After estimating the magnitude spectra of each source, an iterative algorithm

is proposed for the estimation of the phase of each of the sources. The algorithm

adapts spectrogram inversion to be applied concurrently to multiple sources, recur-

sively estimating the phase of each source by minimising the error between the sum

of the source estimates and the original mixture.

Chapter 5. Perceptual sensitivity of Timbre: Towards an objective dis-

tortion metric

Three psychoacoustic experiments are presented in this chapter, providing insights

into the perceptual sensitivity of timbre. The first experiment explores the sensitiv-

ity of the spectral envelope by attenuating frequency bands of musical instrument

spectra. The second experiment investigates the timbre space using permutations

of linear-logarithmic morphing between the spectral envelopes of instruments. The

final experiment explores the sensitivity of the noise component of pitched instru-

ments as a function of frequency and bandwidth. The results of each experiment

contribute to the understanding of the timbre space with the aim of developing an

objective distortion metric for timbre.

Chapter 7. Separation of Harmonic Musical Instrument Notes using

Spectro-Temporal Modelling of Harmonic Magnitudes and Multiple Input

Spectrogram Inversion

Novel methods for the resolution of overlapping harmonics and source synthesis are

presented in this chapter. Drawing on the insights discussed in Chapters 2 to 4, the

proposed methods are evaluated individually as well as in the context of a source

separation system. The system is described and evaluated using both objective and

subjective methods, and this is followed by a discussion regarding the implications

of the results.
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Chapter 7. Conclusions

In the final chapter, the results of the thesis are summarised, and an outline of the

potential areas of future research are presented.

1.4 Major Contributions

The original contributions of this thesis relate to the source separation of musical

mixtures. The main contributions are summarised below:

• A computationally efficient algorithm for estimating the frequency of a sinu-

soid from the Short Time Fourier Transform (STFT) is proposed. Upon ob-

taining initial coarse estimates from the FFT of a given frame, the Phase

Derivitave Fast Fourier Transform (PDFFT) makes further refinement to the

frequency estimate using only the time derivative of the phase response. The

algorithm is derived and is shown to require only 4 multiplications per peak.

Single frequencies in the presence of noise are resolved well, outperforming the

commonly used Quadratically Interpolated FFT (QIFFT) method even with

zero-padding. The algorithm is then used to separate two sinusoids of close

frequency proximity that appear as a single peak in the magnitude spectrum.

• In musical instrument sound source separation, the temporal envelopes of the

harmonics are correlated due to the nature of the instruments. A quantitative

investigation of the correlation between the temporal envelopes of harmonics

is conducted on a large database of instrument samples and intra-instrument

weighting functions are developed to model the similarities. A harmonic iden-

tification algorithm based on these models is then proposed and evaluated in

polyphonic mixtures. The algorithm is shown to successfully discriminate be-

tween the harmonics of different sources.

• A novel algorithm is presented that concurrently synthesises multiple sources

given the magnitude spectra of the sources. The multiple input spectrogram

inversion (MISI) algorithm is evaluated for mixtures of up to 6 instruments,

and given accurate estimates of the magnitude spectra, is shown to converge
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to the true phase spectra of each source. The iterative estimation procedure

minimises the error between the sum of the estimated sources and the original

mixture, and is shown to be capable of significantly reducing phase errors after

a limited number of iterations.

• Using the intra-instrument correlation weighting functions derived in [48], a

harmonic magnitude track prediction method is proposed for the resolution of

overlapping harmonics. Using linear combinations of adjacent harmonic tracks,

harmonics corrupted by interfering harmonics are successfully resolved. The

spectro-temporal model is evaluated against existing spectral and temporal

methods and is shown to provide superior estimates over a variety of musical

instruments.

• The spectral envelope is well known to be a perceptually salient attribute in mu-

sical instrument timbre perception. A two-alternative forced choice (2AFC) ex-

periment is presented, to observe perceptual sensitivity to modifications made

on trumpet, clarinet and viola sounds. The experiment involves the atten-

uation of 14 frequency bands for each instrument in order to determine dis-

crimination thresholds as a function of centre frequency and bandwidth. The

results indicate that perceptual sensitivity is governed by the first few harmon-

ics and sensitivity does not improve when extending the bandwidth any higher.

However, sensitivity is found to decrease if changes are made only to the higher

frequencies, continuing to decrease as the distorted bandwidth is widened. The

analysis of the results is discussed with respect to two other spectral envelope

discrimination studies in the literature as well as what is predicted from a

psychoacoustic model.

• An experiment exploring the timbre space through novel morphing strategies

is presented. The experiment is conducted using a 2AFC paradigm, using

various linear-logarithmic permutations of the spectral envelopes of trumpet

and clarinet sounds. Psychometric functions are approximated from the results

and compared to Mel-Frequency Cepstral Coefficients (MFCC) and spectral

centroid spectrum parametrisation as well as psychoacoustic masking models.
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The results highlight the need for timbre space models to incorporate human-

auditory related frequency resolution and masking models.

• An experiment investigating the perceptual sensitivity of the noise component

of pitched instrument sounds is presented. A 2AFC paradigm is employed

to explore the sensitivity to the noise component, by attenuating 7 frequency

bands with different centre frequencies and bandwidths. The results show that

the maximum sensitivity is around 6-11 kHz for sounds with F0 = 311.1 Hz,

highlighting that low frequency harmonics are good maskers of low frequency

noise. Sensitivity is also shown to vary for different instruments, and the

sensitivity to noise is governed by broadband sensitivity.

• The PDFFT, harmonic magnitude track estimation method and the MISI al-

gorithm are placed within a source separation architecture, and are evaluated

using a variety of objective measures, as well as subjectively in a MUSHRA

experiment. The results of the objective and subjective evaluations revealed

that in conjunction with each other, the methods provided substantial im-

provements over existing approaches, over a wide variety of instruments and

polyphonies.
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Chapter 2

Music Signal Modelling for Source

Separation

The quality of source separation that is achieved by a system, is largely dependent

on the knowledge of the sources. Once a source can be modelled and parametrised,

locating it in a mixture becomes a less arduous task. There are a number of ways

to parametrise musical instruments, but it is necessary to select a model that fa-

cilitates source separation. This chapter explores the different representations and

parametrisations that are appropriate for music signal source separation.

2.1 On the Nature of Musical Mixtures

In order to select an appropriate representation and model for source separation,

it is important to understand the nature of music mixtures. Musical sounds can

be broadly classified as being either pitched or non-pitched, and the nature and

characteristics of such sounds are explored in Section 2.1.1. With an understanding

of the general model of musical sounds, an investigation into the combination of

these sounds is then discussed in Section 2.1.2.

2.1.1 Musical sounds

Pitch has been defined as “that attribute of auditory sensation in terms of which

sounds may be ordered on a scale extending from low to high” [9]. This definition,
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2.1. ON THE NATURE OF MUSICAL MIXTURES

while vague, highlights that pitch is not a physical attribute, but a perceptual at-

tribute. The fundamental frequency (F0) on the other hand, is a physical attribute

defined for signals that exhibit periodicity, and the F0 is defined as the inverse of

the period. Pitch is thus a psychophysical function of physical variables, primarily

dependent on the F0, but also on intensity and duration. This relationship has been

explored extensively through psychoacoustic experimentation [96].

A pitched musical note refers to a sound that has a pitch, onset time and finite

duration. In Western music, notes are arranged in a 12 tone equal-tempered scale

where the fundamental frequency in Hz, of a note m is given by

F (m) = 440× 2m/12 (2.1)

where m is an integer in the range −48 ≤ m ≤ 39, for the notes of a standard piano.

Each interval in the scale is known as a semitone, and a list of the fundamental

frequencies corresponding to a musical octave ranging from C41 to C5 is given in

Table 2.1.

Note m F0 (Hz)
C4 -9 261.63

C#4 -8 277.18
D4 -7 293.66

D#4 -6 311.13
E4 -5 329.63
F4 -4 349.23

F#4 -3 369.99
G4 -2 392.00

G#4 -1 415.30
A4 0 440.00

A#4 1 466.16
B4 2 493.88
C5 3 523.25

Table 2.1: Corresponding fundamental frequencies of the notes of the equal temper-
ament scale from C4 to C5

Pitched musical instrument sounds are produced by a variety of physical systems,

but their common denominator is that they all produce vibrations which are approx-
1In Western music, notes are denoted by letters and the number suffix denotes the octave, where

C0 is the lowest note discernable to the trained ear.
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2.1. ON THE NATURE OF MUSICAL MIXTURES

imately periodic. First discovered by Helmholtz [51], these sounds are generally

modelled as a harmonic series of sinusoids and knowledge of this has been instru-

mental to the development of music analysis and synthesis systems. The magnitude

response of a flute playing a B4 note, clearly illustrating the harmonic properties of

pitched instruments is illustrated in Figure 2.1.
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Figure 2.1: Magnitude response of a flute.

The temporal nature of musical notes is also relatively predictable even amongst

the vast array of musical instruments that produce them. Since musical sounds are

produced by physical systems, they have a time-onset and a time-offset and their

duration is finite. In the music signal processing literature, the temporal evolution

of the energy of a note is commonly segmented into the attack, sustain and release

(Figure 2.2). During the attack, the energy of the signal rises to its maximum level.

The energy is then sustained for a duration, after which the note is ’released’, which

is characterised by a sharp fall in energy.

Non-pitched sounds are another class of musical sounds that exhibit similar tem-

poral structure to pitched notes, but have very different spectral structure. Non-

pitched notes, as the name implies, refers to notes whose pitch is absent or ambigu-

ous. The spectral content of such sounds are usually devoid of structure, and are

typically produced by percussive instruments such as the drums.
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2.1. ON THE NATURE OF MUSICAL MIXTURES

Figure 2.2: Temporal evolution of the energy of a note

2.1.2 Music mixtures

A music mixture will typically consist of a variety of musical instruments playing

a series of musical notes organised sequentially and simultaneously. Notes are fre-

quently played simultaneously by one or more instruments, and the combination of

2 or more notes is known as a chord. Chords can be consonant or dissonant [91]

depending on the relationships between the pitches of the individual notes and the

study of this is known as harmony.

In Western music where the fundamental frequencies of the notes are given by

Equation 2.1, the logarithmic organisation of the F0s results in the F0s being approx-

imately related in small whole number ratios [62]. Major thirds2 for example, have

fundamental frequencies that are related in a 5:4 ratio. This relationship combined

with the harmonic nature of pitched instruments, implies that every 5th harmonic

of the root note will overlap with every 4th harmonic of the other. Octaves have a

2:1 ratio, while fifths have a 3:2 ratio. Figure 2.3 illustrates the numerous overlaps

which occur when 3 notes (C4, E4, G4) are combined. Music mixtures therefore con-

tain many overlapping harmonics - an issue that presents a significant challenge in

building music source separation systems. The frequency of overlapping harmonics

is not as prominent in speech source separation systems, as the likelihood of multiple
2Major thirds are a common musical interval comprising of a note and a second note 4 semitones

higher.
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2.1. ON THE NATURE OF MUSICAL MIXTURES

speakers having related fundamental frequencies is lower. Speech mixtures also tend

to have less temporal synchronicity.
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Figure 2.3: Magnitude response of a C major chord trumpet mixture. The regions
of harmonic overlap are circled.

In music, the sounds are often intentionally arranged to be rhythmically concor-

dant. The performance of musical pieces typically requires musicians to synchronise

their playing with other musicians. This results in a large proportion of simultaneous

note onsets and offsets and quite often musical expression such as loudness, vibrato

and accents are also synchronised.

There is a high level of statistical dependency between the source sounds that

combine to create musical mixtures. The harmonic concordance and temporal syn-

chronicity of the notes, makes music source separation a non trivial task, and the

design of a quality music source separation system requires the selection of an ap-

propriate representation and signal model that addresses the issues presented in this

section.
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2.2. MUSIC SIGNAL REPRESENTATION

2.2 Music Signal Representation

Before a music mixture can be separated, it is necessary to transform the time-

domain representation of the mixture into a representation that will facilitate source

separation. There are a vast array of representations that are used in audio analysis

systems including the Short-Time Fourier Transform [34, 64, 126, 127, 58], multi-

resolution transforms such as the constant-Q transform [16] and the discrete wavelet

transform [118], and physiologically motivated representations such as the correlo-

gram [106, 30] and the weft [31]. There are many representations employed for audio

content analysis, but not all are appropriate for music source separation. So what

qualities should a representation for music source separation have?

• Firstly, the representation should be invertible. Ultimately, the aim is to re-

synthesise the individual sources, so it is necessary to adopt a representation

that not only facilitates the analysis of musical sounds, but also the reconstruc-

tion of them. An invertible representation should not add additional artifacts

to the reconstructed sound, but should ideally offer perfect reconstruction so

that for a transform F applied to a signal x, there exists an inverse transform

F−1 such that

F−1 {F {x}} = x (2.2)

• If the representation is viewed as a decomposition into components from which

sources are created, then component exclusivity is also important. If the res-

olution of the components is insufficient to discriminate between the sources,

then complete separation will not be attained. Thus the representation should

decompose the mixture into components that are sufficiently fine for source

reconstruction.

• Finally, it is also desirable that the representation be linear. Consider a mixture

containing two sounds x1[n] and x2[n]. If their transformed representations are

denoted by F {x1[n]} and F {x2[n]}, and the representation is linear, then

F {α1x1[n] + α2x2[n]} = α1F {x1[n]}+ α2F {x2[n]} (2.3)
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2.2. MUSIC SIGNAL REPRESENTATION

where α1 and α2 are scalar constants. Being closed under addition and scalar

multiplication implies that iterative subtraction is then made possible with-

out any introduction of artifacts. For example, if α1F {x1[n]} is found, then

α2F {x2[n]} can be obtained without any residual artifacts arising from the

transformation itself, where

α2F {x2[n]} = F {α1x1[n] + α2x2[n]} − α1F {x1[n]} (2.4)

The following sections review the short-time Fourier transform, multi-resolution

transforms and physiologically motivated transforms, with respect to the desirable

attributes of a music source separation representation.

2.2.1 The Short-Time Fourier Transform (STFT)

Audio signals can be described as ’quasi-stationary’, meaning that over sufficiently

short periods of time, the statistical properties of the signals change negligibly. The

Short-Time Fourier Transform (STFT) [6] provides a time-localised representation of

the frequency domain behaviour of a signal, making it particularly suited to the anal-

ysis of audio signals. This coupled with computationally efficient implementations

of the STFT has resulted in its extensive use in audio processing.

Mathematically, the continuous STFT of a signal x(t) is given by

STFT (τ, ω) =
∫ ∞

−∞
x(t)h

′
(t− τ)e−jωtdt (2.5)

where h
′
(t) is the analysis window function, such as the Hanning window.

In the discrete case, where x[n] is a sampled version of x(t), the discrete STFT of

a one dimensional signal x[n] is found by segmenting the time axis into frames (see

Figure 2.4), which can be overlapping, and applying the DFT to each time frame.

The result is a two-dimensional representation of the signal which provides time and

frequency information. This is expressed mathematically as

X[k, r] =
∞∑

n=−∞
x[n]h[n− rNhop]e−jωkn (2.6)
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2.2. MUSIC SIGNAL REPRESENTATION

where h[n] is the discrete analysis window function, k is the frequency index, r is

the frame index, Nhop is the frame hop size in samples and ωk = 2πk
N where N is the

size of the discrete Fourier transform (DFT).
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Figure 2.4: Segmentation of x[n] into frames, where x∗r [n] = x[n]h[n− rNhop]

The STFT can be efficiently calculated by using the fast Fourier transform (FFT)

to obtain the DFT. Using the FFT to compute a N -point DFT where N is a power

of 2, the FFT has complexity of order Nlog2N , which is significantly less than the

direct calculation of the DFT which has order N2.

In addition to its computational efficiency, the STFT is also linear and invertible,

and perfect reconstruction is obtained by using the weighted overlap-add method [23].

The inverse STFT is simply found by overlap-adding the inverse DFT of each frame,

multiplying each frame with the appropriate synthesis window.
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2.2. MUSIC SIGNAL REPRESENTATION

2.2.2 Multi-resolution Transforms

For the analysis of quasi-stationary signals such as music, it is desirable to maximise

the time resolution Δt and the frequency resolution Δf . Governed by the uncer-

tainty principle, the product of the time resolution and frequency resolution has a

lower bound, where the time bandwidth product [95] is given by

ΔtΔf ≤ 1
4π

(2.7)

Thus, the time and frequency resolution cannot be arbitrarily small and one

can only trade time resolution for frequency resolution or vice versa. The time and

frequency resolutions are dependent on the analysis window and in the case of the

STFT, the time and frequency resolutions are fixed because it has a fixed analysis

window. Multi-resolution transforms on the other hand, have time and frequency

resolutions that change throughout the representation.

The continuous wavelet transform (WT) is a multi-resolution transform given by

WT (α, β) =
∫

x(t)ψα,β(t)dt (2.8)

where x(t) is the signal and ψα,β(t) is the basis function given by

ψα,β(t) =
1√
α

ψ

(
t− β

α

)
(2.9)

While the basis functions of the STFT are derived by varying the frequency of a

sinusoid, the basis functions of the WT are time translated and scaled versions of

a primary wavelet, which are translated and scaled by α and β respectively. There

is also an additional normalisation factor 1√
α

to ensure that the wavelet has unit

energy.

The wavelet packet transform (WPT) is another multi-resolution transform which

like the WT, uses basis functions that are time translated and scaled versions of a

primary wavelet. However the WPT offers greater flexibility in the way the time-

frequency tiling occurs.
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Figure 2.5: Time-frequency tiling of the Fourier transform, the short-time Fourier
transform, the wavelet transform and the wavelet packet transform

Figure 2.5 compares the time-frequency tilings of the Fourier transform (FT), the

STFT with the WT and WPT which are multi-resolution transforms that have been

adopted for applications in audio and image processing. While the STFT improves

on the FT by offering time-localised frequency information, the WT and WPT offer

flexibility over the STFT by varying the time-frequency tiling. The WT apportions

the time and frequency axes to have resolutions that vary logarithmically, so that in

the lower frequencies, there is higher frequency resolution but less time resolution,

while in the higher frequencies there is higher time resolution but less frequency

resolution. The WPT offers even greater flexibility, allowing the time-frequency

tiling to be designed according to the signal statistics.

The flexibility of the WT and WPT requires that an investigation be made into
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2.2. MUSIC SIGNAL REPRESENTATION

the appropriate time-frequency tiling for music source separation. In a typical music

mixture, the harmonics of pitched musical instruments are approximately linearly

spread across the frequency axis determined by the the fundamental frequencies.

While the spectral energy of pitched musical instruments are known to decrease at

higher frequencies, the presence of these high frequency harmonics are still evident

(see Figure 2.6) and perceptually relevant [50]. Thus, the representation of a mu-

sic source separation system must not only have good frequency resolution at low

frequencies, but also at high frequencies in order to separate harmonics across the en-

tire spectrum. This obviously requires a trade-off in temporal resolution, but there

are other methods of analysing the aspects of musical sounds which require high

temporal resolution such as note attack transients. This will be discussed Section

2.3.
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Figure 2.6: Magnitude response of a music mixture containing a flute, clarinet and
piano playing the notes B5, E6 and G3 respectively. The mixture illustrates the
linear distribution of harmonics and prominent high frequency components well past
10 kHz.

2.2.3 Physiologically Motivated Representations

The human auditory system is one of the most extensive and complex systems of

audition and there has been extensive research invested into understanding it and

modelling it. Given the capabilities of the human auditory system, it seems logical
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2.2. MUSIC SIGNAL REPRESENTATION

to explore the representation of sound that it uses, as a potential representation for

a music source separation system.

The human auditory system can be divided into the peripheral (comprising of

the outer, middle and inner ear) and the central auditory nervous system. The

outer ear channels the acoustic pressure waves into the middle ear, which performs

an impedance matching to the inner ear. The vibrations from the middle ear are

then sent through the oval window where the basilar membrane performs a spectral

analysis of the sound. Each point along the basilar membrane resonates at a differ-

ent characteristic frequency, with the amplitude of the resonance corresponding to

the intensity of the frequency. This spectral information is then set to the central

auditory nervous system for higher level processing.

Central to the human auditory system’s representation of sound is the cochlea.

While the precise mechanics of the cochlea are still being investigated, there have

been a few models which have been proposed. One such model that has been used

extensively in audio analysis, views the primary function of the cochlea as an array of

band-pass filters. The development of these filters was initiated by the experimental

work of Fletcher [36] who, through a noise-bandwidth experiment, proposed the

concept of the critical band - the auditory filter bandwidths. The Bark scale was

later introduced [97, 132, 133], named after Heinrich Barkhausen, corresponding to

the first 24 critical bands of hearing, where the critical band rate (CBR) is given by

the analytical expression

CBR = 13arctan

(
0.76

f

1000

)
+ 3.5arctan

(
f

7500

)2

(2.10)

and the critical bandwidth Δf is related to the band centre frequency fc by

Δf = 25 + 75

[
1 + 1.4

(
fc

1000

)2
]0.69

(2.11)

Moore and Glasberg [85] later revised Zwicker’s model and proposed the equiv-

alent rectangular bandwidth (ERB) which, while related to the critical bandwidth,

better accounted for loudness. At moderate sound levels, the ERB in Hz is defined
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2.2. MUSIC SIGNAL REPRESENTATION

by [85]

ERB = 24.7 (4.37fc + 1) (2.12)

A very approximate but efficient implementation of the auditory filterbank as

a 4th order gammatone filterbank, was presented by [88, 107] and the magnitude

responses of these filters are illustrated in Figure 2.7.
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Figure 2.7: Gammatone filterbank

Other models such as Lyon’s model [105] offer more accurate transmission-line

modelling with automatic-gain control, to account for the large range of intensities

that can be handled by the auditory system. However, while accurate modelling of

the human auditory system offers benefits in many areas of audio processing such as

compression, using such a representation for music separation does not seem to be

particularly advantageous. Firstly, the approximately logarithmically spaced centre

frequencies of the filters are similar to the WT, and for the same reasons as men-

tioned in Section 2.2.2, such filters do not offer the frequency resolution required

at higher frequencies to ensure component exclusivity. In addition to this, filter-

bank models of the cochlear have heavily overlapping band-pass filters, degrading

component exclusivity even further. Finally, while the human auditory system is

able to efficiently perform auditory scene analysis, there is no indication that it is
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2.3. MUSIC SIGNAL MODELLING

in fact performing a separation of sound mixtures. Recent studies also seem to infer

that due to the limitation of neural resources, mechanisms exist to bias attention

towards salient events rather than actually performing source separation [61]. This

implies that perceptual segregation of an auditory scene is a weighted representation

of our environment, which is also consistent with visual saliency models [28, 68].

Such a model also seems more consistent with the type of representation delivered

by the cochlear - one from which objects and events can be identified without truly

separating sources and wasting unnecessary neural resources.

2.3 Music Signal Modelling

As there is a high level of statistical dependency between source sounds in music

mixtures (refer to Section 2.1.2), signal models of the sources can be used to facil-

itate separation. If sources can be adequately modelled, the models can aid in the

identification of sources in mixtures. Models can also be used to infer information

when attributes of a source are obstructed by another source.

The difficulty with modelling musical instrument sounds for source separation is

that there are a vast number of instruments, which each produce sounds in different

ways. For example, the flutist produces a musical note by blowing a rapid jet of

air across the embouchure hole. This in cooperation with the resonances of the

air in the flute, produces oscillations, which is radiated as sound. A guitar on the

other hand, produces a musical note by an entirely different physical mechanism.

The guitar string is displaced by the player’s finger and when it is released, the

string is set into motion, resulting in a vibration that is radiated as sound. There

are numerous instruments whose sounds are generated by different means. In fact

most instruments can be excited in a number of different ways which increases the

complexity of parametrising the generation of sounds from musical instruments.

The modelling of musical instruments has been extensively researched. Helmholtz’s

[51] early investigations in music acoustics have laid the foundations for much of the

research we know today. His discovery of the harmonic structure of pitched sounds

and his work on sound perception were pivotal, and have formed the basis of many
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of the modern, complex music analysis and synthesis systems. In this section, we

discuss two different modelling approaches: the instrument specific approach of phys-

ical modelling synthesis (Section 2.3.1), and the more general modelling approach of

sinusoidal modelling (Section 2.3.2).

2.3.1 Physical Modelling Synthesis

Physical modelling synthesis [112] is an instrument modelling approach that models

individual instruments using digital signal processing formulations of physical mod-

els from musical acoustics. The models are instrument specific and the intricacies of

each instrument are modelled using digital waveguides, digital filters and memory-

less non-linearities. Models have been calculated for a vast number of instruments

including slap bass [93], brass instruments [21], string and wind instruments [57]

and even traditional Finnish instruments such as the kantele [56]. Models of the

speech production mechanism also have been used extensively in speech processing

applications, particularly in speech coding where they have played a pivotal role in

achieving very low bit rates.

A separation system that could leverage the efficient parametrisations of physical

modelling synthesis would provide numerous benefits, such as excellent coding gain

and good individual sound reproduction. However, such a system would require the

non-trivial intermediate step of determining what instruments are in the mixture.

While there are a plethora of techniques available for monophonic musical instru-

ment classification3 with very high rates of correct identification, polyphonic music

instrument classification systems are still in their infancy [79] and have yet to achieve

identification scores comparable to polyphonic fundamental frequency estimation sys-

tems [66]. With this in mind, we explore a more generic model of parametrising the

sounds of musical instruments.

2.3.2 Sinusoidal Modelling

An efficient parametrisation for pitched musical instruments is the sinusoidal model.

First applied to speech signals by McAulay and Quatieri for speech coding [81],
3A comprehensive review of classification techniques can be found in [52]
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the sinusoidal model is based on the observation that signals (particularly pitched

sounds) can be decomposed into a sum of sinusoids. The efficient parametrisation

only requires the sinusoid frequencies, amplitudes and the phases to be estimated.

Sinusoidal modelling was later applied to music signal processing by Serra and Smith

[101, 111], who extended the model to include a stochastic component to capture

the non-periodic components of musical sounds such as the noise transients at the

beginning of a sound. Since then, the sinusoidal model has been a powerful tool for

estimating musical instrument parameters in order to ascertain higher-level informa-

tion such as the notes played by each source [76]. Aspects of sinusoidal modelling

such as the estimation of harmonic amplitudes, have also been used to estimate pa-

rameters for the synthesis of instrument models [119] and also for parametric coding

[72, 120].

The sinusoidal model for a pitched note x[n], is mathematically expressed as

x[n] = s[n] + r[n] (2.13)

where

s[n] =
H∑

h=1

ah[n]cos (2πfh[n]n/fs + θh[n]) (2.14)

where s[n] is the deterministic sinusoidal component at time n, r[n] is the stochastic

residual component, {fh, ah, θh} are the time-varying parameters of the sinusoid’s

frequency, amplitude and phase respectively, fs is the sampling frequency, h is the

harmonic index and H is the number of harmonics. The majority of the analysis is

typically devoted to precise estimation of the sinusoidal parameters and once these

are found, the residual signal is found by subtracting out the sinusoidal signals.

Figure 2.8 illustrates the sinusoidal modelling paradigm. The time-domain signal

x[n] is first transformed into the time-frequency domain. The STFT is the represen-

tation of choice for most sinusoidal modelling systems such as the McAulay-Quatieri

(MQ) system [81] and PARSHL [111], as it is a linear, invertible representation that

provides the time-localised frequency domain behaviour of the signal. The param-

eters of the STFT that are selected are dependent on the source properties. For
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musical instrument sources, the parameters chosen should be able to account for

the frequency and amplitude modulation effects from vibrato and glissando, and

there should be sufficient time-resolution to model the amplitude changes such as

the attack and decay of the notes.

Once the signal is transformed into the time-frequency domain, sinusoidal com-

ponents are then identified. As sinusoids appear as peaks in the magnitude of a

DFT, the sinusoidal components are typically estimated by picking the peaks of the

magnitude response at each time frame [81, 111, 34]. Other methods of estimating si-

nusoidal components have also included the F-test [114, 125] and the cross-correlation

method [45].

Sinusoid trajectories are then formed over time from the estimated peaks. At

each time frame, decisions are made as to when to ’birth’ a trajectory, add peaks to

a trajectory and when to mark the ’death’ of a trajectory [81]. A robust method of

defining these trajectories normally includes a set of heuristics [81, 111, 34], however

hidden Markov models (HMM) [26] and recursive least-squares [69] have also been

used for the formation of trajectories. The frequencies of the trajectories are then

estimated using either phase derivative methods [46], interpolation methods [111, 4],

maximum likelihood estimation [94, 75] or least-squares optimisation [27]. This will

be explored in more detail in Section 3.2.

The phase of each sinusoid is then estimated and in the MQ algorithm [81], this

is accomplished by using a cubic interpolation function

φh[n] = ζ + γn + αn2 + βn3 (2.15)

where the coefficients are found by matching sinusoidal frequencies at consecutive

time frames with the additional constraint that the phase interpolation function be

’maximally smooth’. Phase estimation of the sinusoids is paramount for time-domain

re-synthesis, for while the auditory system is known to be insensitive to the phase of

non-periodic signals, it is sensitive to the phase of periodic signals.

Given the frequency, amplitude and phase estimates of the sinusoids, it is then

possible to construct the complete deterministic component of the sinusoidal model.
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This deterministic component is then subtracted from the original signal to obtain

the stochastic residual component of the signal. This subtraction is performed either

in the time-domain or the frequency-domain and the residual component is typically

modelled as noise that is shaped by a magnitude spectral envelope [103, 38].

2.4 Conclusions

This chapter has explored the various representations and models of sound that

are appropriate for music sound source separation. Music mixtures are unique to

many other types of sound mixtures as they are arranged to be harmonically and

temporally concordant. This produces a significant challenge for music separation

systems.

As a representation of music source separation, the STFT is not a sophisticated

representation, but it does fulfil many of the requirements outlined in Section 2.2. It

is a linear, invertible, computationally efficient representation that offers a compa-

rably significant amount of component separability, particularly for pitched sounds.

Other multi-resolution transforms and physiologically motivated representations may

better approximate the representation of the auditory system, but ultimately they

fall short of the STFTs level of component separability, particularly in the higher

frequencies.

The STFT also provides a good foundation on which to perform sinusoidal mod-

elling. The sinusoidal model adequately parametrises the salient aspects of periodic

signals, making it a good candidate for modelling the pitched notes found in music

mixtures. While physical modelling synthesis provides efficient and accurate mod-

elling of musical instruments, the sinusoidal model provides an instrument generality

that is necessary for the separation of music mixtures that encompass a broad range

of musical instruments.
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Figure 2.8: Sinusoidal modelling paradigm
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Chapter 3

Harmonic Signal Modelling for

Musical Mixtures and Separation

A music mixture typically contains a combination of pitched notes and non-pitched

sounds. The pitched notes play an important role in music, as they combine in

series to form the melodies of songs, and their simultaneous combination forms har-

monies. While pitched notes can be decomposed into a deterministic component and

a stochastic component, it is the deterministic component that greatly influences the

perception of pitch [113, 82]. The deterministic component, being quasi-periodic,

manifests itself in the spectral domain as a series of harmonically spaced sinusoids

that are known as harmonics, which are adequately modelled using a sinusoidal

model (Section 2.3.2).

In this chapter, various aspects of signal modelling for mixtures of pitched notes

are explored, with the aim of producing parametric representations to facilitate

source separation. Section 3.1 begins with an overview of methods for detecting

harmonics in a STFT representation, and this is followed by the introduction of a

novel, computationally efficient algorithm to refine the frequency estimates of the

detected harmonics in Section 3.2. In a model-based source separation architecture,

the estimated harmonic frequencies and magnitudes are then grouped to form si-

nusoidal trajectories, or harmonic tracks, which are then grouped to form sources.

An assumption often exploited in this process, whether for track formation or track
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grouping, is the postulation that the harmonic tracks of a given source are highly

correlated. While this assumption is frequently employed in separation systems,

there are a lack of formal investigations into the nature of these correlations over

a variety of instruments. In Section 3.3, a large set of musical instrument samples

are analysed and a novel generalised model to predict harmonic magnitude tracks

from neighbouring harmonic tracks is presented. The model is then evaluated in the

context of harmonic mixtures and is shown to provide improvements compared to

existing methods.

3.1 Spectral Peak Picking

The initial objective for modelling harmonic sources as a sum of sinusoids is the

detection of the harmonics. Once the harmonics have been identified, their sinusoidal

parameters (frequency, amplitude and phase) can then be refined and the harmonics

can be grouped into their relevant sources (Section 2.3.2).

There have been various approaches to identifying harmonics within a mixture,

including simple peak picking methods [81, 111], sinusoidal likeness measures using

the F-test [114, 125] and the cross-correlation method [45], and peak picking methods

with spectrum dependant thresholds [34]. In the peak picking methods of [81, 111],

the detection of harmonics is based on the observation that sinusoids appear as

peaks in a magnitude spectrum. However, there are other peaks which arise from

non-sinusoidal, noise-like components particularly at lower levels, and a simple peak

picking algorithm usually results in the identification of many false positives.

Sinusoidal likeness measures [114, 125, 45] are an alternative to peak picking,

and aim to identify sinusoids by searching the magnitude spectrum for shapes that

resemble the magnitude response of sinusoids. In [45], the cross-correlation between

the short-time spectrum of the signal and the spectrum resulting from an ideal sinu-

soid is obtained, and the result is scaled by the overall spectral shape. This produces

a sinusoidal likeness measure where regions of the spectrum resembling a sinusoid

result in a higher values, and regions of the spectrum that do not resemble a sinusoid

result in a lower values. Since cross-correlation is the same as convolution with one
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signal having an inverted time-scale, this method can be efficiently implemented in

the time domain by observing that convolution in the frequency domain is equiva-

lent to multiplication in the time domain. The F-test [114, 125], uses discrete prolate

spheroidal sequences to provide a sinusoidal likeness measure for each frequency, and

it performs well under ideal conditions, discriminating between sinusoids and noise

peaks. The computational cost however is high, due to the calculation of several

FFTs.

All of the sinusoidal likeness measures perform well when sinusoids appear in

isolation in the spectrum, but in the case of music mixtures where harmonics are

frequently overlapping, these methods fail to consistently identify the necessary har-

monics. When harmonics overlap, the resulting shape in the spectrum can be far

from ideal, producing a considerable number of false negatives.

The method described in [34] addresses these issues by obtaining the spectral

peaks of each frame which lie above a spectrum-dependant threshold E(k). This peak

picking method provides robust identification of harmonic sinusoid-like components

in music mixtures while eliminating undesirable peaks due to windowing effects of

the STFT and other noise.

Consider a discrete short-time Fourier transform (STFT) computed on a mixture

of harmonic musical instrument notes y[n], where the FFT length is N samples,

sampling rate fs , using a Hanning analysis window and hop size H samples. Yr(k)

denotes the complex STFT coefficient at frequency k, at the rth frame and at fre-

quency bin k ∈ [0, N − 1], which corresponds to the frequency fk(r) = kfs

N Hz.

The threshold E(k) is calculated by convolving the magnitude spectrum |Yr(k)|
with a normalised Hamming window G(k) of length 1 + N/64 samples, and raising

the result to the power of a compression constant c as given by Equation 3.1 [34].

E(k) =

(∑
l

|Yr(l)|G(k − l)

)c

(3.1)

where l are the samples over which the convultion is performed. Thus E(k) is a

smoothed amplitude envelope threshold where the flatness of the curve is determined

by the compression constant c. Suitable values of c lie in the range [0.5, 1]. Figure
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3.1 illustrates the effect of varying the compression constant c. Smaller values of c

result in a flatter threshold E(k) thereby increasing the number of peaks detected

particularly at lower frequencies. Conversely, larger values of c result in a smaller

number of peaks detected, reducing the probability of detecting a noise peak, but

also increasing the probability of missing low frequency harmonics. Once E(k) has

been calculated, the peaks which lie above the threshold E(k) are classified as the

harmonic candidates of the short-time spectrum.
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Figure 3.1: Threshold E(k) for various compression constants c, calculated for a
mixture of an alto saxophone and a piano playing the notes C4 and G3 respectively.

3.2 Frequency Estimation

The estimation of sinusoidal parameters is a widely studied area and has been ex-

tensively employed in many audio applications. Sinusoidal modelling in particular

[81, 111, 38, 103] has been widely used to represent the dominant harmonic compo-
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nents found in musical signals and a major component of such modelling requires

the accurate estimation of sinusoidal parameters.

Most sinusoidal parameter estimation algorithms obtain their estimates of si-

nusoid parameters by analysing the magnitude spectrum obtained typically from

a Fast Fourier Transform (FFT). Frequency bins corresponding to a potential fre-

quency component are then interpolated according to a predefined model or curve

[111], and further refinement can take place in the form of optimisation by New-

ton’s method [2], or by other maximum likelihood estimation methods [94, 75, 92].

Other estimation methods such as least-squares optimisation [27] and the Hilbert

Transform [5] have also been used.

Most of the latter methods are quite computationally expensive and it is the

simplicity of methods such as the Quadratically Interpolated FFT (QIFFT) [111]

that make them popular in audio processing [64].

In this section, we propose the Phase Derivative FFT (PDFFT) [46] - a compu-

tationally efficient method for estimating the frequency of a sinusoid using the time

derivative of the phase response obtained from the Short Time Fourier Transform

(STFT). We show that the algorithm’s accuracy outperforms the QIFFT zero-padded

2.5 times and computationally only requires 4 multiplies per peak. Estimation of mul-

tiple closely spaced frequencies is then attempted and shown to be successful even

from a single peak in the magnitude spectrum.

3.2.1 Phase-Derivative FFT

Consider the sinusoid x(t) = cos(2πf0t + φ0), where f0 is the frequency in hertz and

φ0 is the phase in radians. Let H = αT0, where T0 = 1
f0

and α is a constant, and

define

p = H −mT0 (3.2)

where m =
⌊

H
T0

⌋
is an integer denoting the number of whole periods of T0 there are

in H as illustrated in figure 3.2.

The instantaneous phase φ(r) of the sinusoid at a given point t = rH is given by,
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Figure 3.2: Segmentation of a sinusoid where p = H −mT0

φ(r) = 2π
p

T0
r + K (3.3)

where r is an integer and K is the arbitrary phase of the sinusoid at r = 0. Taking

the derivative with respect to r, we obtain,

dφ

dr
= 2π

p

T0
(3.4)

where dφ
dr ∈ [0, 2π). Substituting equation (3.2) and m =

⌊
H
T0

⌋
into (3.4) we obtain

dφ

dr
= 2π

(
H

T0
−

⌊
H

T0

⌋)
(3.5)

Now if the signal x(t) is then sampled at fs (Hz), then equation (3.5) becomes,

dφ

dr
= 2π

(
Hf0

fs
−

⌊
Hf0

fs

⌋)
(3.6)

Observe that equation (3.6) can be related to the STFT by defining H as the

hop size between frames and r as the rth frame. If a N point DFT is used, a peak

in the magnitude response will be observed at bin b and the true frequency will be

found at b0 = b + Δb, where Δb is the deviation from bin b. Writing equation (3.6)

in terms of b0 such that f0 = b0fs
N , gives
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dφb

dr
= 2π

(
Hb0

N
−

⌊
Hb0

N

⌋)
(3.7)

and rearranging for b0 produces

b0 = b + Δb =
N

H

(
dφb

dr

1
2π

+
⌊

Hb0

N

⌋)
Finally, due to the non-linearities of the floor function we can assume that

⌊
Hb0

N

⌋
≈

⌊
Hb

N

⌋
(3.8)

and hence obtain an expression to approximate the true frequency of a sinusoid in

terms of the DFT bins:

b0 =
N

H

(
dφb

dr

1
2π

+
⌊

Hb

N

⌋)
(3.9)

Thus equation (3.9) shows that simply using parameters obtained from the STFT

and 4 multiplies, we can obtain an accurate estimate of the true frequency f0.

3.2.1.1 Frequency Estimation Errors

Analytically, the frequency estimation error, can be found by analysing:

b0 + δb =
N

H

{(
dφb

dr
+ δφb

)
1
2π

+
⌊

Hb

N

⌋
+ δfloor

}
(3.10)

Thus the error component can be denoted by:

δb =
N

H

(
δφb

2π
+ δfloor

)
(3.11)

where δb is the frequency estimation error in bins, δφb
is the estimation error of

dφb
dr and δfloor is the error incurred by the assumptions made in the floor function.

Equation (3.11) indicates that there are two possible sources of error within the

algorithm. The first is due to errors from the floor function
⌊

Hb
N

⌋
while the second

arises from erroneous estimation of dφb
dr .

To observe the errors in the floor function, we recall the assumption made in
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equation (3.8) and see that

⌊
Hb0

N

⌋
=

⌊
Hb

N
+

HΔb

N

⌋
= Ib +

⌊
Fb +

HΔb

N

⌋
(3.12)

where Ib =
⌊

Hb
N

⌋
and Fb = Hb

N − ⌊
Hb
N

⌋
.

It is easy to see from equation (3.12) that the floor function error δb is an integer

that is purely dependent on Fb + HΔb
N . Eradicating δfloor therefore simply involves

testing values of δfloor in equation (3.10) choosing Δb such that

Δb = min{|Δb−1| , |Δb| , |Δb+1|} (3.13)

where Δb = N
H

(
dφb
dr

1
2π +

⌊
bH
N

⌋)− b; Δb−1 = Δb − N
H ; Δb+1 = Δb + N

H .

The entire frequency estimation error is thus purely attributed to δφb
and its

severity is dependent on the inverse proportion of the hop size used as seen in equation

(3.14).

δb =
Nδφb

H2π
(3.14)

Estimation of dφb
dr can be made by differencing between frames dφb

dr = φb(r) −
φb(r − 1), and this has been used for the duration of this thesis.

3.2.1.2 The PDFFT Method

The estimation of a sinusoid’s frequency can be therefore summarised as follows:

1. Calculate the STFT of a signal with windowed overlapping frames with hop

size H, using an N point FFT. Note that windowing has negligible effects on

the phase response if we use a symmetric window.

2. For a given STFT frame r, locate the bin number b corresponding to a peak

in the magnitude spectrum.

3. Compute the time derivative of the phase dφb
dr .

4. Solve equation (3.9) choosing appropriate Δb.

5. Iterate steps 2 to 4 for all peaks in the magnitude spectrum.
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3.2.2 PDFFT Performance

3.2.2.1 Sinusoidal Frequency Estimation

The PDFFT estimation is based on an initial coarse estimate from the peaks of the

magnitude response of an N point FFT (where N is a power of 2). The initial

FFT estimation error of bin b is simply the deviation Δb where the true frequency is

f0 = (b+Δb)fs
N . The deviation Δb thus reduces for increasing N , having a maximum

deviation of Δb = fs
2N . Figure 3.3 illustrates the performance of the PDFFT for

various sized N point FFT where H = N
4 and fs = 44100 Hz, with an N = 2048

FFT provided for reference. Additive White Gaussian Noise (AWGN) is added to a

pure sinusoids to obtain the various SNR levels. At SNR = 50 dB, a N = 2048 point

PDFFT provides almost 1000 orders of magnitude greater accuracy than a standard

FFT. This accuracy comes only at the computational expense of 4 multiplications

per peak as opposed to the N̂ log2N̂ − Nlog2N extra multiplications required to

achieve the same frequency resolution from zero-padding to a N̂ point FFT.
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Figure 3.3: Comparison of PDFFT algorithm performance using various N point
FFTs for coarse estimates. N = 2048 FFT provided for reference.
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Figure 3.3 also illustrates the asymptotic nature of the RMS errors with respect

to a given SNR for different values of N = 256, 512, 2048, 8192. As Additive White

Gaussian Noise (AWGN) is added to a pure sinusoid, the algorithm reaches a certain

threshold of minimum error for a given value of N . This minimum error decreases

as the values of N increase and the asymptotic characteristic commences at higher

SNR for higher values of N . Thus an application specific compromise must be made

by balancing computational efficiency (choice of N) with estimation accuracy for a

given SNR.

As seen in Equation 3.14 the PDFFT is highly dependent on the estimation of
dφb
dr . Figure 3.4 shows the reliability of the unwrapped phase response φb subject to

different SNR. For SNR > −10dB, the phase response is quite reliable; while for

lower SNR, the phase response is corrupted by noise, thereby producing erroneous

estimates of dφb
dr .
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Figure 3.4: Unwrapped phase response of an FFT bin b subject to noise.
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3.2.2.2 Comparison of the PDFFT to the QIFFT

The QIFFT method is widely used in audio applications for its simplicity and ac-

curacy [64]. The bias errors incurred however require that for a hamming window,

zero-padding factors of 2.4 or greater [4] need to be used, thereby adding to the

computational costs of the method. The PDFFT on the other hand does not require

any zero-padding and as figure 3.5 illustrates, the performance of a N = 2048 point

FFT provides more than 10 orders of magnitude better frequency estimation than

a N = 2048 ∗ 2.5 = 5120 point QIFFT at higher SNR. At lower SNR, the PDFFT

only provides marginally better frequency estimation than the QIFFT but at a far

less computational cost since the QIFFT is zero-padded by a factor of 2.5.
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Figure 3.5: Comparison of PDFFT and QIFFT with FFT as reference.

3.2.3 Multiple Sinusoid Frequency Estimation

The limitations of interpolation methods such as the QIFFT are obviously their in-

ability to resolve multiple sinusoidal frequencies that are in close frequency proximity.

Typically, frequencies separated by less than 3 FFT bins result in a single peak in
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the magnitude spectrum and thus interpolation methods estimate erroneous peaks

which are actually the superposition of two sinusoids.

Simple modification of the PDFFT however, allows it to resolve two frequency

components even if they are presented as a single peak in the magnitude spectrum.

Two sinusoids of differing frequencies will each have different phase time derivatives

and thus by carefully choosing the bin from which to obtain the phase time derivative,

it is possible to obtain reasonable estimates of both frequencies.

3.2.3.1 Two Tone Detection

Given a peak in the magnitude spectrum, a distinction between a single prominent

sinusoid and multiple sinusoids in close proximity must be made. This detection task

can be performed by analysing the variance of dφ
dr over adjacent bins, i.e.

vΦ = var (Φ) (3.15)

where Φ is the set

Φ ∈
{

dφb−1

dr
,
dφb

dr
,
dφb+1

dr

}
(3.16)

For a sinusoid at frequency f and a second sinusoid of equal amplitude at f +Δf ,

a single peak in the magnitude spectrum will be observed if |Δf | � 3 bins. Within

this range however, the phase information is sufficiently dissimilar to be able to

determine if there is a single frequency or multiple frequencies. If there is only a

single frequency present in the peak, the adjacent bins will have similar phase time

derivatives (i.e. vΦ is small); on the other hand, if there are multiple frequencies

which have superimposed to form a single peak in the magnitude spectrum, then the

phase time derivatives of adjacent bins will be very different (i.e. vΦ is large - see

also Figure 3.6). Figure 3.6 illustrates this by plotting vΦ over various Δf . Results

were obtained by averaging the results of 500 randomly selected frequencies where

fs = 44100 Hz, N = 2048, H = N
4 .
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Figure 3.6: vΦ vs Δf

3.2.3.2 Two Tone Frequency Estimation

Having verified that two sinusoids are present forming a single peak at bin b, good

phase time derivative estimates for two frequencies of equal amplitude can be ob-

tained at bins b− 1 and b + 1. At these bins, informal experiments have shown that

the phase responses over time are usually sufficiently unique, providing the required

phase information to resolve the two frequencies.

Figure 3.7 illustrates the unwrapped phase of bins b − 1, b and b + 1; where a

peak exists in the magnitude spectrum at bin b. The phase responses over time are

clearly linear for bins b − 1 and b + 1 resulting in constants for dφb−1

dr and dφb+1

dr .

In this particular case, this yields frequency estimates of f̂ = 1999.0176 Hz and

f̂ + Δ̂f = 2026.9696 Hz which are comparable to the true frequencies f = 2000 Hz

and f + Δf = 2026.9709 Hz.

Figure 3.8 illustrates the PDFFT sinusoidal estimation capabilities when pre-

sented with two sinusoids of equal amplitude separated by Δf , where Δf is swept

from 0 to 6 bin spacings, with fs = 44100Hz, N = 2048, H = N
4 . Without in-
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Figure 3.7: Unwrapped phase responses at bins b− 1, b and b+1. f0 = 2000 Hz and
Δf = 26.97 Hz.

creasing the number of computations per peak, the PDFFT is able to provide good

frequency estimation even when the frequency separation is small.

3.2.4 Conclusions

The PDFFT - a novel sinusoidal frequency estimation algorithm is presented. The

algorithm builds upon the coarse frequency estimate provided by the FFT and util-

ising only parameters found from the STFT, computes a highly accurate estimation

of the frequency of a sinusoid using the time derivative of the phase response. For

single sinusoid frequency estimation, the accuracy of the PDFFT outperforms the

frequently employed QIFFT even with zero-padding, at the expense of only 4 mul-

tiplies per peak. Unlike other interpolation methods, the PDFFT is shown to also

perform well at resolving multiple frequencies from a single peak in the magnitude

spectrum.
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Figure 3.8: PDFFT estimation errors when a tone (f = 777Hz) is subject to a
second tone of equal amplitude Δf apart.

3.3 Harmonic Track Analysis

3.3.1 Harmonic Tracks

In sinusoidal modelling, once the magnitudes and the frequencies of the harmonics

within a mixture have been determined, the harmonic peaks are formed into sinu-

soidal trajectories or tracks. These tracks form the fundamental parametrisation of

the sinusoidal model, and summarise a vast proportion of the deterministic compo-

nent of harmonic sources. Figure 3.9 illustrates the tracking of the harmonics of an

alto saxophone over 3 adjacent frames.

The formation of harmonic tracks in a music source separation system, is often not

a straightforward task of tracking the trajectory of an isolated harmonic over time.

Due to the vast number of overlapping components, as well as source-specific nuances

such as inharmonicities, estimating harmonic trajectories for musical mixtures is not

trivial. This has resulted in a number of approaches to harmonic track formation,

many of which have been heuristic in their approach [81, 125, 34]. McAulay and
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Figure 3.9: Harmonic track formation for an alto saxophone over 3 successive frames.
The dots indicate the harmonic peaks whose frequencies correspond to F h

j , and
whose amplitudes correspond to Mh

j . The straight lines joining the dots represent
the formation of tracks from the harmonic peaks.

Quatieri [81] first presented a heuristic method for defining sinusoidal trajectories,

prescribing a systematic method for determining the birth and death of sinusoidal

tracks. Similar methods were later employed in separation systems, such as those by

Virtanen [125] and Every [34]. Other methods of harmonic tracking include the linear

prediction approach presented by Lagrange [70], which is based on the assumption

that harmonic tracks should be slow time-varying and predictable. Nunes [69] opted

for a recursive least-squares approach to harmonic tracking, while Depalle employed

the use of hidden Markov models [26].

As different as each of these methods are, fundamentally, they all estimate har-

monic tracks independent of the surrounding tracks. In case of real instruments, the

sound production mechanics are often non-linear, giving rise to the natural assump-

tion that there are substantial correlations between the harmonic tracks originating

from the same source. These correlations could be used to develop better harmonic

track estimates, however there have been no formal studies investigating and mod-

elling the track dependencies for musical instruments. In the following sections,

we explore the intra-instrument correlations which exist between harmonic musi-

cal sources, and we develop a generalised musical instrument model to characterise
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these correlations. The model is then evaluated in the context of harmonic track

identification in harmonic musical mixtures.

Developing a deeper understanding of the nature of these correlations provides

useful insights into the temporal similarities which exist between harmonic tracks.

This knowledge is potentially useful for the development of robust tracking algo-

rithms, and as Chapter 6 will show, modelling these intra-instrument correlations

can be used to facilitate the separation of harmonic sources.

3.3.2 Intra-Instrument Correlation of Harmonic Magnitude Tracks

The temporal evolution of the harmonic track magnitudes of a source are often

assumed to be correlated and in this section, we quantify this assumption. 3000

musical instrument samples from the University of Iowa instrument database [1]

were used to investigate the similarity of the temporal envelopes of each sample’s

harmonic magnitude tracks. For each sample, the STFT was calculated and the

harmonic peaks of the magnitude response for each frame were identified (see Section

3.1). The temporal envelopes for each harmonic magnitude track were then defined

as:

M i
s(r) =

∑
k∈κ

20log10 |Xr(k)| (3.17)

where M i
s(r) is the temporal envelope for the ith harmonic magnitude track of source

s, at frame r, Xr(k) is the short-time Fourier transform of the sample and κ ∈
[ρir−b, ρir +b] where ρir is the ith harmonic’s FFT bin corresponding to the peak at

frame r and b = 1. The parameters of the STFT are: N = 4096, hop size H = 1024,

Hanning window and sampling frequency fs = 44.1 kHz.

The temporal envelope contains information about the note onset, offset and

amplitude modulation. These attributes are illustrated in Figure 3.10, showing the

first 6 harmonic magnitude tracks of an alto saxophone playing an E3 with vibrato.

The envelopes are clearly correlated, having distinctly similar onset times, offset

times and amplitude modulation. The similarity between the temporal envelope

harmonics can be described as the normalised dot product [127]:
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S
(
M i

s, M
j
s

)
=

∑
r M i

s(r)M
j
s (r)√∑
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s(r)2
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r M j

s (r)2
(3.18)
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Figure 3.10: First 6 harmonic magnitude tracks of an alto saxophone sample playing
an ’E3’ with vibrato.

Similarity matrices were calculated for each of the samples limiting the number of

partials to the first 50. The samples included notes recorded at a variety of pitches,

intensities and styles (e.g. vibrato, pizzicato, ...), from a large range of instruments

including the alto flute, alto saxophone, bass clarinet, bass flute, bassoon, bass trom-
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bone, Bb clarinet, cello, Eb clarinet, flute, horn, oboe, piano, soprano saxophone,

tenor trombone, trumpet, tuba, viola and violin. To investigate the general similar-

ities over the large number of instruments, the 3000 matrices were then averaged to

obtain the results shown in Figure 3.11. The temporal envelopes of the harmonic

magnitude tracks are clearly similar, particularly between adjacent harmonics. The

first few harmonics also have very strong similarity with each other.

Figure 3.11: Similarity matrix of temporal envelopes over 3000 samples. Lighter
regions indicate high similarity.

3.3.3 Modelling the Correlation of Magnitude Tracks

Knowing that neighbouring harmonics are highly correlated with one another is

useful for identifying ambiguous harmonics in polyphonic mixtures and estimating

corrupted, overlapped harmonics. If harmonics can be predicted by a linear combina-

tion of neighbouring harmonics with high accuracy, then harmonics can be identified

by simply measuring the distance between ambiguous harmonics and the predicted
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harmonics. Furthermore, the estimates can be used to predict corrupted harmonics.

We call these predicted harmonic temporal envelopes model magnitude tracks and

we aim to find a general set of weighting functions w that will optimally predict a

harmonic magnitude track M q
s (r) for the qth harmonic:

M̂ q
s (r) =

∑
i wq,iM

i
s(r)∑

i wq,i
, i �= q (3.19)

An optimal solution for these weights in a least squares sense can be found by

regularised least squares, which has the solution:

wq =
(
ΥT Υ + δI

)−1
ΥT M q

s (3.20)

where Υ is a matrix with columns containing the harmonic temporal envelopes but

excluding the harmonic envelope to be predicted M̂ q
s (k), δ is the regularisation pa-

rameter, I is the identity matrix and T denotes the conjugate transpose. The weights

were calculated for each harmonic of the 3000 instrument samples and then general

weighting functions were found by averaging them. The shapes of these weight-

ing functions are shown in Figure 3.12 and emphasise the similarity findings found

earlier. Model magnitude tracks are best predicted as a linear combination of the

neighbouring harmonic magnitude tracks and the first few harmonics exhibit very

high similarity between each other. The shapes of these weighting functions are quite

distinctive and were then found to be adequately modelled by:

wq,i =

⎧⎪⎪⎨⎪⎪⎩
−c
i−q , i < q

c
i−q , i > q

(3.21)

for the weight of the qth harmonic to model the ith harmonic, where c = 1
q+5 + 0.1.

The error resulting from modelling the average weights, was a root mean squared

error of less than -36 dB.

Figure 3.13 shows the prediction performance of each method. When the weights

directly from the regularised least squares calculation for each instrument are used

as the model magnitude tracks, they obviously yield the lowest error. The Noise
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Figure 3.12: Weighting functions (dotted lines) and the modelled weighting functions
(solid lines with dots). For clarity, only every 6th weighting function is illustrated.

to Signal Ratios lie around −35 dB, indicating that using linear combinations of

neighbouring harmonics is a good predictor of harmonic magnitude tracks. When

the weighting functions are generalised, the errors increase the Noise to Signal Ratio

to approximately −17 dB. This is still a reasonable figure, considering that the

weights are now generalised over all the musical instruments. Note that these Noise

to Signal Ratios are indicative only of the prediction errors and should not be related

to perceptual Noise to Signal Ratios. The performance of the modelled weighting

functions given by Equation 3.21 are very similar in performance with only a very

slight increase in errors in the first few harmonics. This slight increase is probably

due to the fact that the similarity between the first few harmonics is more variable

for different instruments. This leads to the weighting functions for the first few

harmonics to be not as smooth as the latter harmonics, which therefore contribute

to the modelling error increase. Finally the errors of a reference model using only a
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single adjacent harmonic as the model magnitude track are shown. This approach

as employed in [125] and [127] does not perform as accurately as the other methods.
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Figure 3.13: Noise to Signal Ratio comparing the prediction error of regularised
least squares, general weighting functions, modelled weighting functions and adjacent
harmonics.

3.3.4 Harmonic Track Identification

The effectiveness of the model magnitude tracks for harmonic track identification

were then tested in simulated polyphonic mixtures. 2000 sound mixtures for poly-

phonies of 2, 3, 4, 5 and 6, were created by randomly summing together instrument

samples from the Iowa instrument database [1]. Prior to the summation, the sam-

ples were individually analysed to determine the true harmonic magnitude tracks as

described in Section 3.3.2. After the sources were summated, the short-time Fourier

transform of the mixture was then analysed to determine the harmonic magnitude

tracks found in the mixture. Harmonics that were in the frequency range [δc1, δc2]

Hz of each other were considered ambiguous and were selected for the experiment.
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Harmonics less than δc1 from another harmonic were considered overlapping, and

harmonics further than δc2 were assumed to be far enough to be adequately resolved

by harmonicity constraints in a source separation system. Based on the STFT pa-

rameters, δc1 = 30 Hz, and δc2 = 100 Hz were used for the evaluation. Model

magnitude tracks were then calculated for each ambiguous harmonic in the mixture

using only unambiguous harmonics weighted by the appropriate weighting function

as described in Equation 3.21. Each ambiguous harmonic was then tested against

model harmonic tracks using the similarity measure of Equation 3.18. The ambigu-

ous harmonic was then classified to belong to the source whose model magnitude

tracks achieved the highest similarity score. This result was then compared to the

ground truth found in the pre-summation analysis and thereby classified as correctly

identified or incorrectly identified.

2000 mixtures were calculated for each polyphony and the results are shown in

Figure 3.14. This is compared to a reference using the closest unambiguous adjacent

harmonic as the model magnitude track [127]. The harmonic identification scores

using the weighting functions were all higher than the reference adjacent harmonic

scores. Using the model magnitude tracks built from the weighting functions re-

sults in consistently better performance even as the polyphony increases because

the estimate is based on a number of neighbouring harmonics. As the polyphony

increases, the identification scores decrease, and this is due to the fact that there are

a fewer number of unambiguous harmonics from which to build reliable estimates.

The more instruments there are, the more harmonics there are in the mixture, so the

more likely a harmonic will have another close by. The results found in Section 3.3.2

highlight that harmonic magnitude track similarity is highest around the directly

neighbouring harmonics, with similarity decreasing quite rapidly thereafter. Thus if

there are more ambiguous harmonics, forming reliable harmonic estimates becomes

more difficult. The results of Figure 3.14 clearly show that forming estimates from

a number of neighbouring harmonics using the modelled weights provides consis-

tently better performance than using a single unambiguous neighbouring harmonic,

regardless of the polyphony.
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Figure 3.14: Partial identification scores averaged over 2000 samples using model
magnitude tracks and the reference adjacent harmonics.

3.3.5 Conclusion

The harmonic magnitude tracks of sources are highly correlated, and in our investi-

gation of 3000 musical instrument samples, it was found that the highest similarity

occurs consistently between adjacent harmonics. Using this information, the relation-

ships between harmonics tracks were used to predict model magnitude tracks using

a linear combination of neighbouring harmonics. Least squares optimised weighting

functions were found for each of the 3000 samples and were averaged to give a gen-

eral set of weighting functions. These functions were then modelled and shown to

perform comparably. The modelled weighting functions were then used to construct

model magnitude tracks that improved the identification of ambiguous partials in

polyphonic mixtures compared to using adjacent partials.
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Chapter 4

Synthesis of Separated Sources

In a sinusoidal model based source separation architecture, various data parameters

relating to each source are estimated. Magnitude tracks describe the amplitudes

of the temporal envelopes of the source harmonics, while frequency tracks model

the frequency location of each of the harmonics over time. However while these

parametric representations are a summary of the separated sources, a complete source

separation requires each source to be synthesised from the sinusoidal parametrisation.

Synthesis from the sinusoidal parametrisation is typically accomplished using ei-

ther sinusoidal synthesis (Section 4.1.1), or binary masking of the short-time Fourier

transform (Section 4.1.2). However, both of these methods employ an open-loop

architecture where sources are typically synthesised independently. In Section 4.2,

a multiple source synthesis method is presented, engaging the strengths of both si-

nusoidal synthesis and binary masking for the estimation of the magnitude spectra,

while the phase spectra of the sources is iteratively estimated using a novel algo-

rithm which aims to minimise the difference between the superposition of the source

estimates and the mixture.

4.1 Source Synthesis

4.1.1 Sinusoidal Synthesis

One of the most intuitive ways of synthesising sources from a sinusoidal parametrisa-

tion, is to reconstruct each of the sinusoid tracks from the frequency F̂ h
s , magnitude
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M̂h
s and phase P̂ h

s information (where h is the harmonic index and s is the source in-

dex). In most sinusoidal synthesis algorithms, each of the parameters
(
F̂ h

s , M̂h
s , P̂ h

s

)
is interpolated over time to ensure that there are no discontinuities at the frame

boundaries. The instantaneous amplitudes of the sinusoids at each frame are typi-

cally linearly interpolated, so that the amplitude of a sinusoid at time sample n into

the rth frame is given by

âh
s (n) = M̂h

s (r) +

(
M̂h

s (r)− M̂h
s (r − 1)

)
H

n (4.1)

where H is the hop size of the STFT, n = 0, 1, 2, ...,H − 1, for the hth harmonic of

source s.

The phases are also interpolated, but as frequency and phase are related (fre-

quency is the phase derivative, see Section 3.2.1), there are four variables involved in

the interpolation: F̂ h
s (r), M̂h

s (r), F̂ h
s (r + 1), M̂h

s (r + 1). This requires at least three

degrees of freedom, which is obtained using a cubic polynomial as the interpolation

function:

φ̂h
s [n] = ζ + γn + αn2 + βn3 (4.2)

whose solution is described extensively in [81, 100].

Once the parameters have been interpolated, a bank of oscillators are then used

to re-synthesise the sound:

x̂s[n] =
H∑

h=1

âh
s [n]cos

(
φ̂h

s [n]
)

(4.3)

where H is the total number of harmonics for source s.

A computationally efficient alternative to the bank of oscillators is presented in

[102]. The synthesis method begins by using the estimated parameters
(
F̂ h

s , M̂h
s , P̂ h

s

)
to represent each frame r in the complex frequency domain. Given the estimated

frequency F̂ h
s (r) and magnitude M̂h

s (r) track information, the estimated magnitude

spectrum
∣∣∣X̂s,r(k)

∣∣∣ is obtained by translating the magnitude spectrum of the analysis

window to be centred at frequency F̂ h
s (r) and scaled to have a magnitude of M̂h

s (r).
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The phase spectrum ∠X̂s,r(k) is obtained using the phase estimates P̂ h
s and the

complete spectrum estimate X̂s,r for the rth frame is given by

X̂s,r =
∣∣∣X̂s,r

∣∣∣ exp
(
j∠X̂s,r

)
(4.4)

The inverse FFT is then calculated for each frame of the spectrum and the

frames are then combined using the overlap-add method. Any number of sinusoids

can therefore be synthesised in a computationally efficient manner by simply placing

the magnitude spectrum of the analysis window at the appropriate locations and

computing an inverse FFT.

4.1.2 Binary Masking

Another re-synthesis method used particularly in source separation, is binary masking

[129, 34, 127]. Binary masking uses the estimated parameters
(
F̂ h

s , M̂h
s , P̂ h

s

)
to derive

masks of the STFT for each source, based on the assumption that for pitched sounds,

the energy is concentrated around the harmonic locations. The binary masks (with

values of either 0 or 1), define the regions in the STFT that belong to particular source

and the re-synthesis of separated sources is obtained by multiplying the binary mask

for a source with the STFT coefficients, and taking the inverse STFT. Figure 4.1 is

an example of a binary mask for a saxophone playing the note G#3.

Binary masking is essentially spectral filtering. The frequency location of the

harmonics of a source are defined by F̂ h
s , and the binary mask of a source is a

conglomerate of time-varying narrow band filters that are positioned to filter each of

the harmonics (see Figure 4.2). The width of the narrow band filters are dependant

on the STFT parameters and particularly the analysis window, as this defines the

sinusoid’s main lobe width. The width of each filter must be larger than the main

lobe in order to capture all of the harmonic information, but it must also be narrow

enough to exclude other surrounding harmonics.

In [33], the separation quality of the sinusoidal synthesis method and the bi-

nary masking method was compared. The study found that the sinusoidal model

performed better at separating synthesised sinusoids in additive white noise, partic-
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Figure 4.1: Binary mask for a saxophone playing a G#3. Regions belonging to the
source are shaded white.

ularly at lower signal-to-noise ratios (SNR). However when using real monophonic

musical instrument samples, the binary masking method performed consistently bet-

ter, especially when using longer DFT lengths. Sinusoidal synthesis is a more flexible

synthesis method, which is useful for altering the pitch of a sound or time-stretching

sounds because of its compact parametrisation. Binary masking on the other hand,

captures more of the surrounding nuances of the harmonics, resulting in better sep-

aration when there is less interference.

4.2 Multiple Source Synthesis

When sources are mixed together, the overlapping regions contain magnitude and

phase information from multiple sources. Merely setting a binary mask to include or

exclude a particular time-frequency element does not separate the mix of information

in the overlapping regions. This is particularly problematic in musical mixtures and
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Figure 4.2: Binary mask as a spectral filter. The solid line is the magnitude response
of a saxophone playing a G#3, and the dotted line denotes the binary mask.

the mixed information results in audible distortions due to source interference, in

the separated sources.

In this section, we propose a method of synthesising separated sources from a

mixture given their parametric representations. The synthesis problem is approached

with the dual intent of both capturing source information, while minimising extrane-

ous source interference in regions of overlap. First, the magnitude spectrum of each

source is estimated by combining the flexibility of the sinusoidal synthesis method

with the benefits of binary masking as detailed in Section 4.1. The time-domain esti-

mates of each source are then calculated in a closed-loop architecture, using Multiple

Input Spectrogram Inversion (MISI) - a novel algorithm that iteratively estimates

the phase of each source given the individual magnitude spectra (Section 4.2.4). The

performance of the MISI algorithm is evaluated, and is shown to provide significant

improvements in the estimation of time-domain sources, given sufficiently accurate
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source magnitude spectra.

4.2.1 Multiple Source Magnitude Estimation

In the comparison between sinusoidal synthesis and binary masking described in

Section 4.1.2, Every [33] showed that when using real monophonic musical instru-

ment samples, the binary masking method performed consistently better. This is a

reasonable result for monophonic samples, because while harmonic partials of real

instruments are predominantly sinusoidal in nature, they often contain additional

salient spectral information around the sinusoids. However in polyphonic mixtures,

creating source binary masks becomes problematic when harmonics overlap with each

other. Magnitude and phase information is corrupted by overlapping harmonics and

the information becomes unreliable for source estimation. To evade these issues, a

combination of both binary masking [129] and sinusoidal synthesis (using spectral

synthesis [102]) was used to estimate the source magnitude spectra.

Given the parametrised harmonic tracks of the sources, it is necessary to define

the regions where tracks overlap with other tracks. An awareness of this prior to

estimating the magnitude spectra of the sources, facilitates better separation by

allowing different strategies to be employed for both overlapping and non-overlapping

regions. Overlapping harmonics can be classified by observing their proximity to

other source harmonics, and an overlapping vector Oh
j for each frame r, was defined

such that,

Oh
j [r] =

⎧⎪⎪⎨⎪⎪⎩
1, if

∣∣∣F h
j [r]− F g

s [r]
∣∣∣ < δoverlap

0, otherwise

(4.5)

where F h
j is the frequency track corresponding to the hth harmonic of source

j and s �= j, and δoverlap is the overlap distance in Hz dependent on the width of

the primary spectral lobe related to the analysis window. Thus overlapping regions

within a frequency proximity δoverlap were classified as overlapping, while all other

regions were considered as non-overlapping.

For non-overlapping tracks, the magnitude spectrum
∣∣∣X̂s

∣∣∣ of source s was esti-
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mated using binary masking [129]. Fixed-width, time-varying, narrow band masks

centred around the harmonic frequencies were used to create the source binary masks.

The width of the narrow band masks was set to be large enough to capture the har-

monic’s main lobe, but narrow enough to exclude neighbouring harmonics as shown

in Figure 4.3. The binary masks for each source Bs were then used to obtain mag-

nitude estimates for the non-overlapping tracks using element-wise multiplication of

the magnitude spectrum of the mixture |Y [k]|, where

∣∣∣X̂s,r[k]
∣∣∣ = Bs,r[k] |Y [k]|

for each frame r, and every DFT frequency bin k.

Figure 4.3: Binary mask for the non-overlapping harmonics of a bassoon playing a
G4, in a mixture of 3 sources. The solid line is the magnitude response and the grey
shaded regions indicate the binary masked regions.

For overlapping tracks, the spectral synthesis [102] method was used to define

the magnitude spectra. The magnitude spectrum of overlapping harmonics was esti-

mated at each frame by translating the magnitude spectrum of the analysis window

(in this case, the Hanning window) to be centred at the harmonic frequency and
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scaling it to its estimated amplitude. Figure 4.4 illustrates the estimation of an

overlapping harmonic using this method.
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Figure 4.4: Magnitude estimation of an overlapping harmonic (in close proximity to
another harmonic) by translating and scaling the magnitude spectrum of a Hanning
analysis window. Solid line is magnitude response of mixture signal, dotted line is
magnitude response of source and estimated magnitude response is given by the stem
plot.

The combination of both binary masking and sinusoidal synthesis facilitated the

estimation of the magnitude spectra of the sources. In regions where the STFT

described a unique source, binary masking was used to capture the harmonic, and in

regions of overlap where binary masking would be unreliable, sinusoidal synthesis was

used to estimate the magnitude response of the harmonic. The source magnitude

estimates were therefore formed by engaging the most effective method for each

harmonic, resulting in accurate magnitude estimation of the sources, which will be

shown in Chapter 6.
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4.2.2 Multiple Input Spectrogram Inversion

Source synthesis from parametric information is typically achieved using either si-

nusoidal synthesis [81, 102], binary masking [129], spectral filtering [34], or a hybrid

approach [130]. With the exception of [81], the other methods begin by estimating

the magnitude spectra of the sources, followed by the binary masking of the phase

spectra of the mixture in regions where the magnitude spectra is salient. The re-

construction of the sources is then formed by inverting the spectral magnitude and

phase information into the time-domain. Most of the methods primarily focus on

the rigorous estimation of the source magnitude spectra, while merely masking the

mixed phase spectrum to obtain the phase spectra of the sources. While using the

mixed phase spectrum may suffice in applications where the sources in the mixture

are uncorrelated, the concordant nature of musical mixtures limits the effectiveness

of using the mixed phase spectrum.

Each of the methods also employ an open-loop estimation method for generating

time domain source estimates. In the typical scenario where all the sources are to be

estimated in a mixture, we propose that a closed-loop estimation system can improve

the quality of synthesis by successively refining the source estimates. In the following

sections, we describe spectrogram inversion (Section 4.2.3) as a precursor to a novel,

closed-loop approach to source synthesis (Section 4.2.4). The synthesis algorithm

separates sources by iteratively minimising the aggregate error of the sources, con-

straining the minimisation to a set of estimated parameters. The performance of the

algorithm is then evaluated with respect to harmonic music mixtures and is shown to

provide significant improvements over binary masking of the mixed phase spectrum.

4.2.3 Spectrogram Inversion

Spectrogram inversion [44, 131] algorithms are a subset of reconstruction algorithms

which aim to estimate signals by recovering the missing phase information through

an iterative process that converges towards a signal with a magnitude-constrained

spectrum. A comprehensive overview of iterative reconstruction algorithms can be

found in [7].
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Consider the discrete-time signal x[n] whose short-time Fourier transform (STFT)

is given by

Xr(θ) =
∞∑

n=−∞
x[n]w[n− rH]e−jθn (4.6)

where w is the analysis window, H is a positive integer denoting the hop size, θ is

the digital frequency, and r is the frame index of the STFT. From the STFT, the

short-time Fourier transform magnitude (STFTM) is defined as |Xr(θ)|.
The estimation of a signal by spectrogram inversion is obtained by minimising

the mean square error (MSE) function given by

DM [x[n], x′[n]] =
∞∑

r=−∞

1
2π

∫ π

θ=−π

[
|Xr(θ)| −

∣∣∣X ′
r(θ)

∣∣∣]2
dθ (4.7)

with respect to x[n], where |Xr(θ)| is the STFTM of the original signal and
∣∣∣X ′

r(θ)
∣∣∣

is the STFTM of the estimated signal.

The spectrogram inversion algorithm described by Griffin and Lim [44] minimises

Equation 4.7 by iterating between the frequency and time domains. At each iteration

i, the following function is used to update the estimate

xi+1[n] =

∑∞
r=−∞w[n− rS] 1

2π

∫ π
θ=−π X̄i

r(θ)e
jθndθ∑∞

r=−∞w2(n− rS)
(4.8)

where X̄ i
re

jθn is the STFT of xi[n] with the magnitude constraint

X̄ i
r(θ) = |Xr(θ)| Xi

r(θ)
|Xi

r(θ)|
(4.9)

The algorithm obtains the i + 1th estimate xi+1[n] by replacing the magnitude

of Xi
r(θ) with the given magnitude |Xr(θ)|, taking the inverse Fourier transform and

then overlap-adding the frames to generate the time-domain signal. By enforcing the

constraint on the magnitude over time, the time evolution of the spectral phase is

also constrained, resulting in signal estimates that not only decrease the MSE with

each iteration, but which also minimise distracting audible phase artifacts.

Figure 4.5 illustrates the iterative phase estimation process in segments α, β,
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γ. At the ith iteration, the complex frequency estimate at the rth frame is given

by X i
r(θ). In this example, there is a unit magnitude constraint (i.e. |Xr(θ)| = 1),

and this is applied using Equation 4.9, which in turn yields X̄ i
r(θ). In the next

iteration i + 1, the time domain estimate xi+1[n] is calculated using Equation 4.8

and since this equation minimises Equation 4.7, the Fourier transform of xi+1[n]

(denoted by Xi+1
r (θ)), improves on the previous phase estimate. The magnitude is

again constrained and the process iterated until a satisfactory error level is obtained.
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Figure 4.5: A phase estimation iteration. Segment α: Magnitude constraint at ith
iteration. Segment β: Phase refinement. Segment γ: Magnitude constraint at the
i + 1th iteration.

4.2.4 Multiple Input Spectrogram Inversion Algorithm

In a typical source separation scenario, the observed acoustic waveform y[n] is a

superposition of source signals y[n] =
∑J

j=1 xj [n], where xj [n] is the jth source

signal and J is the number of sources. Given the magnitude spectra estimations of

the sources from Section 4.2.1, we present the multiple input spectrogram inversion

(MISI) algorithm, which iteratively estimates the time-domain source signals xj [n]

in a mixture y[n] given the corresponding magnitude spectra of the source signals

(Figure 4.6).

If the STFTM of the source is known, then using Equations 4.8 and 4.9 it is
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Figure 4.6: Overview of the MISI algorithm. Given the magnitude estimates of each
source, the phase responses are estimated and the signal transformed into the time
domain. The source estimates are then subtracted from the original mixture and the
error is used to refine the phase estimates.

possible to calculate an estimate for the i + 1th iteration of the jth source signal,

x̂i+1
j [n] =

∑∞
r=−∞w[n− rH] 1

2π

∫ π
θ=−π X̄i

j,r(θ)e
jθndθ∑∞

r=−∞w2[n− rH]
(4.10)

X̄ i
j,r(θ) = |Xj,r(θ)|

¯̄X i
j,r(θ)∣∣∣ ¯̄Xi
j,r(θ)

∣∣∣ (4.11)

where ¯̄X i
j is obtained by taking the STFT of

¯̄xi
j [n] = x̂i−1

j [n] +
ei[n]
J

(4.12)

ei[n] = y[n]−
J∑

j=1

x̂i
j [n] (4.13)

The algorithm is initialised with each of the initial source estimates set to x̂0
j [n] =

y[n] and the error set to e0[n] = 0. The algorithm then constrains each estimate

with the known STFTM |Xj,r(θ)| and then calculates an inverse Fourier transform,

appropriately overlap-adding each frame. The MISI algorithm then accounts for the
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total error ei[n] between y[n] and the superposition of the estimate source signals

ŷ[n], adding a scaled version of the error to each of the source estimates before the

next iteration. Scaling the error and adding it back to the source estimates, aids in

the minimisation of the total error.

As long as the sum of the scaled errors equals the total error, the energy of the

summed sources will be conserved at each iteration. In the MISI algorithm, this is

achieved by simply dividing the error equally among the sources, so that the scaled

error assigned to each source is given by ei[n]
J , where J is the total number of sources.

At each iteration, the scaled errors that are fed back, combined with the magnitude

constraints, ensure that the phase estimates of each source approach the true phases.

The source magnitude constraints shape the errors so that the phase is re-estimated

in the frequency regions where the error is large, and the phase is retained in the

regions where the error is low.

Thus the MISI algorithm essentially computes a spectrogram inversion for each

source with the additional constraint of minimising the error between the mixture

and the superposition of the estimated sources at each iteration.

4.2.5 MISI Performance

In this section, we evaluate the separation performance of the MISI algorithm in a

variety of polyphony and additive noise scenarios.

We evaluated the source separation capabilities of the MISI algorithm using mix-

tures of musical instrument samples from the University of Iowa musical instrument

samples database [1]. Single note mixtures consisting of 2, 3, 4, 5, and 6 instruments,

were randomly created by summing time-domain waveforms of different instruments

The individual STFTMs of each source were then calculated using a Hanning analy-

sis window, with frame size N = 4096, step size H = 1024, and sampling frequency

fs = 44.1 kHz. 50 mixtures were created for each polyphony p. The root mean

square error (RMSE) of the total errors at each iteration were then calculated and

averaged over the 50 mixtures to obtain the results illustrated in Figure 4.7.

It can be observed from Figure 4.7 that the RMSE decreases with every iteration

and this was observed to be true for every mixture tested. Furthermore, the indi-
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Figure 4.7: Average RMSE over 50 iterations for instrument mixtures with polyphony
p = 2, 3, 4, 5, 6. 50 mixtures were used for each polyphony p.

vidual source estimates in each mixture were also found to monotonically decrease.

As the polyphony increases, the RMSE also increases and takes longer to converge.

However, informal observations (under conditions as those described in Section 5.1)

revealed that even after 10 iterations and p = 6, the distortions were found to be

minimal and often imperceptible, with no audibly distracting artifacts. Thus given

the true source STFTMs, the MISI algorithm provides good separation results, with

each of the tested source RMS errors decreasing with every iteration.

In a real separation system where the true STFTMs are unknown, estimates

must be made based on the knowledge of the source signals. To simulate the effect

of estimation errors, various levels of additive white Gaussian noise were added to

each of the source signals such that x̃j [n] = xj [n]+γη[n] where η[n] is white Gaussian

noise and γ is a scaling factor to raise the noise to the desired signal-to-noise ratio

(SNR) level. The STFTMs of x̃j [n] were then calculated and with p = 4, the
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performance of the MISI algorithm was evaluated for SNR values ranging from -30

dB to 30 dB over 50 mixtures. Figure 4.8 illustrates the effect of using erroneous

STFTMs in the MISI algorithm. The introduction of additive noise still results in

the asymptotic behaviour of the RMSE for all mixtures, albeit being quicker and

at a much higher level as the SNR decreases. The quality of the source STFTM

estimates therefore limit the quality of time-domain estimation that can be achieved

with the MISI algorithm.
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Figure 4.8: Average RMSE over 50 iterations with additive white Gaussian noise for
SNRs of -30, -20, -10, 0, 10, 20 and 30 dB.

While the total errors are asymptotic in nature even in the presence of noise, this

does not imply that the individual estimated sources x̂j [n] converge to the original

individual sources xj [n]. At a certain SNR, the individual source estimations would

be sufficiently erroneous that each iteration of MISI would in fact increase the RMSE

with respect to the original individual sources. Figure 4.9 illustrates the individual

source SNRs obtained using phase binary masking1 (PBM) and various iterations
1Note that phase binary masking (PBM) is equivalent to one iteration of the MISI algorithm.
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of MISI for the same set of mixtures. Thus for mixtures of 4 sources, x̂j [n] only

converges to xj [n] when all of the source estimate STFTM SNRs are larger than 15

dB. When the STFTM estimates are below this, PBM provides better estimates.
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Figure 4.9: Comparison of MISI and PBM over various source SNRs.

Figure 4.10 illustrates the performance of the MISI algorithm as a function of note

F0s grouped into musical octaves. The separated source SNRs were averaged over

100 random mixtures containing 4 sources, using the true STFTMs of the sources

over 20 iterations. Notes were partitioned into musical octaves where A2, A3, A4, A5,

A6, A7 are the notes which correspond to the F0’s: 110 Hz, 220 Hz, 440 Hz, 880 Hz,

1760 Hz, 3520 Hz. The results clearly illustrate a consistent improvement in the SNR

of the MISI algorithm over PBM, of approximately 13 dB over all musical octaves.

There is also a clear upward trend in the separation quality of the sources as the F0s

of the notes increase in frequency. This can be attributed to the increased number

of harmonic components of sources that have lower F0s, which in turn increases the

probability of overlap with other sources.
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Figure 4.10: Comparison of MISI and PBM as a function of musical octaves.

4.2.6 Conclusions

The Multiple Input Spectrogram Inversion algorithm highlights the merits of a

closed-loop synthesis algorithm, which contrasts with the predominant use of open-

loop algorithms for synthesising sources in model-based separation systems. The

iterative phase estimation of the MISI algorithm produces significant gains, minimis-

ing the synthesis errors with respect to the time-domain mixture, given sufficiently

accurate source magnitude spectra.
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Chapter 5

Perceptual sensitivity of Timbre:

Towards an objective distortion

metric

In the quest to separate sources from a mixture of sounds, it is necessary to evaluate

systems using a distortion metric that is perceptually relevant. Ultimately the quality

of any sound is subject to human perception, making it appropriate to define the

quality of a separation system with reference to human perception.

When considering the quality of musical sources, it is necessary to consider the

perceptual sensitivity to the attribute known as timbre. Timbre is the perceptual

attribute that enables the ability to distinguish between instruments and has been

defined more formally as “that attribute of auditory sensation in terms of which a

listener can judge that two sounds, similarly presented and having the same loudness

and pitch, are different” [8]. This negative definition of timbre characterises the

development of timbre research over the years as researchers have investigated the

development of an adequate model of timbre.

The classical view of musical timbre proposed by Helmholtz [51], assumed that

timbre was exclusively associated with the spectral energy distribution of a tone.

Through ingenious experimentation, Helmholtz deduced that the tone quality of

musical sounds were largely governed by the relative amplitudes of the harmonics,
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with phase having a minimal effect. His investigations of the timbre space led to

verbal descriptors of variations of the spectrum. Complex tones consisting only of

the odd harmonics were hollow, while the predominance of the fundamental produced

a full tone. Tones with moderately loud lower harmonics up to the 6th were classed

as musical and rich, while tones with loud harmonics beyond the 6th were sharp

and rough. However Helmholtz’s experimentation only considered the steady-state

portion of periodic waveforms, neglecting the temporal variations which exist in

real instrument sounds. In the research that followed on from Helmholtz, there

was an increasing trend towards the view that timbre was multifaceted [13, 99] and

dependent on temporal aspects such as the attack transient [74].

Unlike pitch, which is primarily dependent on a tone’s fundamental frequency,

and loudness, which depends on tone intensity, the consensus is now that timbre is

a multidimensional property of sound [90]. In addition to the verbal scales, like that

used by Helmholtz, the dimensions of timbre have been explored using multidimen-

sional scaling (MDS) techniques [90, 42, 43, 17]. The majority of these studies have

found that the perception of timbre is dominated by spectral energy and temporal

variation.

The experiments presented in the subsequent sections explore various salient

attributes of timbre with the objective of understanding the timbre space and devel-

oping a robust objective timbre distortion measure. In the first experiment (Section

5.1), we investigate the sensitivity to changes made to musical instrument spectral

envelopes [50]. In Section 5.2, the spectral envelope space is explored using novel

linear-logarithmic morphing techniques [47]. In the final experiment (Section 5.3),

stimuli are decomposed into harmonic and noise components, to investigate the dis-

crimination thresholds for changes to the noise component [49].

5.1 Experiment 1: Spectral Envelope Sensitivity

Timbre research has found the spectral envelope to be a salient attribute [80][89][43][17].

In musical acoustics, the spectral envelope can be described in the frequency domain

as an interpolation between the amplitudes of the sinusoidal components of a signal
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[80, 89]. Sufficient modification of the spectral envelope of an instrument produces a

change in perception of that instrument’s timbre, and in some cases significant modi-

fication can lead to the instrument sounding similar to a different instrument. Grey’s

[43] work in developing perceptual spaces of timbre using multidimensional scaling

led to the identification of the spectral energy distribution being one of the impor-

tant dimensions of timbre. More recently, McAdam’s et al. [80] have identified the

spectral envelope shape as being the most salient parameter in timbre discrimination

when performing various simplifications to instrument spectro-temporal parameters.

Caclin et al. [17] also verified the spectrum’s importance in their confirmatory study

using synthetic tones.

A thorough understanding of timbre therefore requires knowledge of how much

spectral deviation is required before there is a perceptible change in timbre. The

primary objectives of this section are to analyse the discrimination thresholds of

spectral change for various instruments and observe the sensitivity to change as a

function of centre frequency and bandwidth. We have chosen to study three instru-

ments (trumpet, clarinet and viola) which represent the brass, woodwind and string

families. While previous studies have analysed sensitivity to musical instrument

spectral envelopes [90, 53, 86], none of them have investigated the sensitivity as a

function of centre frequency and bandwidth. Other studies have studied sensitivity

as a function of frequency but not in the context of musical instruments. Due to the

complex nature of musical instrument signals, the results of such studies are very

difficult to translate into a musical instrument context.

Early studies by Plomp [90] investigated perceptual sensitivity to spectral change

for static musical instrument and vowel spectra and found that spectral differences

were good predictors of differences in timbre. Horner et al. [53] extended this work

by observing instrument discrimination for random alterations to time-varying in-

strument spectra. The spectra of instruments were modified by various error levels

(8%, 16%, 24%, 32% and 48%) by randomly altering the amplitudes of individual

sinusoids. They observed that discrimination was very good for 32% and 48% er-

ror levels, moderate for the 16% and 24% error levels and poor for the 8% error

levels. However the spectral modifications were performed randomly over time and
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frequency and did not account for the varying sensitivities that may be apparent as

a function of frequency.

Similar work has been done in the field of speech processing particularly for

the purposes of speech coding. Paliwal [86] divided speech signals into frames of

approximately 20 ms and observed that the average spectral distortion difference

limen for perceptual indistinguishabilty is 1 dB, ensuring that no frames have average

spectral distortions greater than 4 dB and less than 2% of the frames have average

spectral distortions between 2-4 dB. These results have been used extensively in the

design of vector quantisers for speech coders. However, once again, these observations

are based on the entire spectrum and do not reveal sensitivity as a function of

frequency.

Auditory profile analysis is a field concerned with in observations on the discrim-

ination thresholds of spectrally modified sounds. Green [41] performed an analysis of

discrimination thresholds for 21 component complexes; however, like most auditory

profile analysis experiments, the stimuli considered were sums of sinusoids that were

spectrally flat and with log-spaced frequencies. Thus, the stimuli were very different

from realistic musical instrument spectra which are harmonically spaced and non-

uniform. The results are therefore difficult to extrapolate to a musical instrument

context.

In the present study, we aim to investigate the discrimination thresholds for

changes to musical instrument spectral envelopes. Previous studies have often as-

sumed that spectral envelope sensitivity is unchanged as a function of frequency

[43, 53], however we hypothesise that there will be variations in the discrimination

thresholds for modifications made as a function of centre frequency and bandwidth.

The experimental results are compared to a number of spectral distortion measures

and then are discussed with reference to other experimental findings as well as pre-

dictions from a psychoacoustic model.

5.1.1 Experimental Method

In order to investigate the sensitivity to the spectral envelope, we endeavoured to

keep all other physical parameters constant. These included fundamental frequency,
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level and duration - the details of which are described in the following section. With

the intent of understanding how sensitivity varies as a function of centre frequency

and bandwidth, each stimulus was modified by attenuating a band of frequencies

by various amounts. Subjective tests were conducted to determine discrimination

thresholds for different instruments.

5.1.1.1 Stimuli

Three musical instrument sounds were selected for analysis. Samples of trumpet,

clarinet, and viola taken from a University of Iowa website [1] were used. The

samples were chosen for their representation of three different instrument families -

brass, woodwind and string. The sounds were recorded using 16 bits, and a 44100

Hz sampling rate, and each sound was played at a pitch of Eb4, corresponding to a

fundamental frequency of approximately 311.1 Hz - a frequency within the normal

playing range of these instruments and commonly used in timbre experiments for this

reason [80, 53]. Average spectra of the three sounds are illustrated in Figure 5.1. The

duration of each sound was standardised to 1.5 seconds using a 100 msec half-Hanning

window to taper the offsets. The onsets of each sample were left unmodified. The

level of each sound was adjusted by a gain factor such that five independent subjects

perceived them to be of equal loudness.
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Figure 5.1: Average musical instrument spectra (solid lines). Dashed lines illustrate
the spectral envelope calculated using the SEEVOC method. Averages were taken
over 32 frames, each of 2048 samples.

The three sounds were then each modified such that various bands across the

frequency spectrum were attenuated by various amounts. The stimuli presentation
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was controlled using MATLAB on an Intel PC with an RME Multiface sound card.

Each of the stimuli was presented monaurally at an average level of approximately 65

dB SPL through Beyerdynamic DT770pro headphones in a sound-insulated (Acoustic

Systems) anechoic chamber.

5.1.1.2 Stimuli modification

The system illustrated in Figure 5.2 was employed to make the relevant modifications.

As the stimuli are time-varying in nature, time-invariant filters were employed to

preserve the time resolution. Each stimulus was passed through a zero-phase band-

pass filter and the output of the filter was then attenuated and subtracted from

the original stimulus. Using 14 zero-phase filters of differing centre frequencies and

bandwidths, we compiled a set of stimuli where the output was the original signal

with a certain frequency band attenuated. Note that the modified stimuli were not

equalised for loudness as this would produce more audible changes than not equalising

the loudness.

Figure 5.2: System used for stimuli modification.

The zero-phase filters were designed by taking 256-tap linear-phase band-pass

filters (designed by the window method based on a Hamming window) and advancing

the output signal by the group delays of the filters. Since the human auditory

system has an non-linear frequency resolution [84] which can be approximated by

a logarithmic-like function, 14 logarithmically-spaced filters were used as illustrated

in Figure 5.3. More low frequency filters with narrower bandwidths were selected to

analyse the lower frequencies with higher resolution in similar fashion to the auditory

system. The filters are labelled 1 to 14.

As an example, the magnitude response of filter 4, which has a bandwidth of

5512.5 Hz and a centre frequency of 8268.75 Hz, is plotted in Figure 5.4. An atten-
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Figure 5.3: Bandwidths of the 14 zero-phase filters with trumpet spectrum overlaid.
(The rectangular boxes only indicate bandwidth and should not be associated with
the y axis which indicates the spectral magnitude of the trumpet).

uated viola spectrum using this filter is illustrated in Figure 5.5. Preliminary tests

using ERB gammatone filters similar to those in [107] resulted in measurements be-

ing dependent on harmonic content rather than the spectral envelope. The ERB

gammatone filters had bandwidths that were too fine for spectral envelope analysis

and thus wider logarithmically spaced bandwidth filters were used to observe the

effects of spectral envelope modification.

5.1.1.3 Participants

Five listeners aged between 20 to 26 years participated in the experiment. Four

participants were male and one was female and all were tested and found to have

normal hearing. Three of the participants had musical training with experience

ranging between 5-10 years.
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Figure 5.4: Magnitude response of filter 4.

5.1.1.4 Procedure

A two-alternative forced-choice (2AFC) Reference AB, 1-up 2-down paradigm [73]

was used for all our experimentation. For each trial, the participant heard three

sounds: the reference sound (original, unfiltered) followed by two other sounds - one

of which was filtered and the other which was the same as the reference. The order of

presentation of the two latter sounds were independently randomised for each trial

and 300 msec silence periods separated the presentation of each sound. For each

trial, the participant was prompted with “Which sound has a different timbre to the

reference?” and had to respond by clicking buttons marked A and B on the screen.

Once a response was submitted, feedback was provided to the participant in the form

of “Correct” or “Incorrect”.

The first trial presented for each centre frequency was always with the most

attenuation and the attenuation was incrementally decreased to include more of the

contents of the band. The attenuation step sizes changed from 4 dB to 2 dB and
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Figure 5.5: Attenuation of a band of frequencies by filter 4 on the viola. The spectrum
and spectral envelope of the attenuated signal are illustrated by the solid line while
the dashed line illustrates the original unattenuated viola spectrum.

finally to 0.5 dB. The last 3 reversals were averaged to estimate the discrimination

threshold. Listeners were trained for 15 mins to familiarise themselves with the task

prior to the experiment. Thresholds for the 14 filtered bands were recorded in a

single 50 minute block per instrument.

5.1.2 Results

The results from the experiment were analysed in four different ways. The first was a

measurement of sensitivity which analysed the individual Band Attenuations (BA).

Following that, we computed two different distortion measures as employed in [53]

and [86] to compare the data to previous studies. Finally in Section 5.1.3, the results

are discussed with what is predicted by a psychoacoustic difference limen model.
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5.1.2.1 Band Attenuation

If a listener is more sensitive to a change in a signal parameter, then a smaller

change of that parameter is needed to hear the effect of the change. We define

x[n] to be the original stimulus, x′[n] to be the modified stimulus (as illustrated in

Figure 5.2), x′∗[n] to be the just-noticeable modified stimulus and α∗ to be the just-

noticeable attenuation that produces x′∗[n]. If only a small change in the energy of

a band is required before it is detected, sensitivity is considered to be high for that

band and the ratio of the band signal energy to the distortion will be large. If we

define the Band Attenuation (BA) to be the original energy of the band, divided by

the minimum difference required to observe a change in that band, then sensitivity

is simply proportional to the BA and can be written simply as a function of the

attenuation α (Equation 5.1). Thus the BA can be used as a measure of sensitivity.

BA = 10 log10

(∑
xbpf [n]2∑
u[n]2

)
(5.1)

= 20 log10

(
1
a∗

)
(dB) (5.2)

where α∗ is the just-noticeable attenuation of a particular band (in linear units) and

u[n] = x[n]− x′∗[n] = α∗xbpf [n].

The BA results are shown in Figure 5.6, clearly indicating that there are obvious

differences in the sensitivities for different bandwidths and centre frequencies. Qual-

itatively, it can be observed that smaller changes at lower frequencies consistently

trigger a perceptual change in timbre compared to changes at higher frequencies.

The lower frequencies are therefore more sensitive than higher frequencies.

Another important observation is that the bands that include the first few har-

monics also tend to set the upper bound for sensitivity (filters 1, 3, 7, 11), for all

other bands have lower sensitivity than these. This implies that the maximum sen-

sitivity can be estimated from the sensitivities of the lower frequencies and no other

region of the spectral envelope will have higher sensitivity.
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Figure 5.6: BA plots for the Trumpet (o), Clarinet (+), Viola (x) positioned at the
centre frequencies of filters 1 to 14. Dashed lines indicate the filter bandwidths.

5.1.2.2 Distortion measures

The results can also be expressed in terms of the amount of modification required to

perceive a change. Here we compare our results to two other studies from [53] and

[86].
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Error Level

In a study by Horner et. al. [53], the spectra were altered randomly and the spectral

deviation was measured by observing average error levels as a percentage of the

deviation from the original. Alteration of the harmonic spectra was performed by

multiplying each amplitude of the kth harmonic at time t, Ak(t), with a randomly

selected scalar rk:

A′k(t) = rkAk(t) (5.3)

The scalars {rk} were selected uniformly in the range [1 − 2ε, 1 + 2ε], where ε

denotes the error level.

The calculation of the relative error level whether in the frequency domain or

time domain is analogous, so for simplicity, the error levels (EL) were calculated in

the time domain using:

EL =

√√√√√√√√
N∑

n=1
u[n]2

N∑
n=1

x[n]2
× 100% (5.4)

= α∗

√√√√√√√√
N∑

n=1
xbpf [n]2

N∑
n=1

x[n]2
× 100% (5.5)

where x[n] is the original stimulus, x′∗[n] is the just noticeable modified stimulus,

α∗ is the just-noticeable attenuation of a particular band, u[n] = x[n] − x′∗[n] =

α∗xbpf [n], n is the sample number and N is the total number of samples. Thus for

fixed bandwidth and centre frequency, EL varies linearly with α.

The percentage errors in Figure 5.7, correspond to 70.7% discrimination on the

psychometric curve [73]. These results indicate that the discrimination for the bands

with low centre frequencies (containing most of the signal) is around 13%. This agrees

with the results in [53] where it was found that discrimination was approximately 16%

at the 75% discrimination level. While the analyses for the bands with low centre

frequencies concur with [53], the additional analysis for various bandwidths in this
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study reveals that error levels vary for different bandwidths and centre frequencies.

Bands with higher centre frequencies and with wider bandwidths can only undergo

smaller changes relative to the entire signal before discrimination.
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Figure 5.7: Error Level plots for the Trumpet (o), Clarinet (+), Viola (x) positioned
at the centre frequencies of filters 1 to 14. Dashed lines indicate the filter bandwidths.
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Spectral Distortion

The spectral envelope analysis by Paliwal [86] employed a spectral distortion error

metric to define the maximum error before the altered spectrum could be distin-

guished from the original. The spectral envelopes for each frame were calculated by

the SEEVOC method [89] which proceeds as follows: A periodic signal is divided

into frames and the DFT of each frame is calculated. Using the F0 of the signal,

the harmonic peaks are located and a smooth curve is fitted through them. In this

analysis, 1024 frequency points for the DFT were chosen and cubic interpolation was

chosen to join the harmonic peaks.

The spectral distortion (defined for a given frame as the root-mean-square dif-

ference between the original log-power spectral envelope and the modified log-power

spectral envelope), is averaged over a large number of frames to give the average

spectral distortion:

SD =
1

Nk

Nk∑
k=1

√√√√ 1
M

M−1∑
ω=0

(s(ω)− s′∗(ω))2 (5.6)

where Nk is the number of frames, k is the frame number, M is the number of

frequency points, s(ω) is the original log-power spectral envelope, s′∗(ω) is the just

noticeable modified log-power spectral envelope and ω is the DFT frequency number.

Figure 5.8 illustrates the results with respect to spectral distortion. The spectral

distortion for these envelopes were then calculated by Equation 5.6 yielding a spectral

distortion measure that was averaged over a number of frames. Interestingly, the

results for the bands with lower centre frequencies concur with the 1 dB value of

distortion found for the spectral transparency of speech [86]. The present analysis

sheds further insight into the spectral distortions allowable for various bandwidth

modifications. A significantly larger amount of spectral distortion of up to 17 dB is

allowable before discrimination occurs for bands with higher centre frequency.
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Figure 5.8: Spectral Distortion (SD) plots for the Trumpet (o), Clarinet (+), Viola
(x) positioned at the centre frequencies of filters 1 to 14. Dashed lines indicate the
filter bandwidths.

5.1.2.3 Difference limen model comparison

It would be of interest to compare the subjective experimental data to that pre-

dicted by a psychoacoustic difference limen model. In particular, we would like to

see threshold levels as a function of both stimuli level, centre frequency and band-

width. Thus, a simple frequency or level difference limen model would not suffice. A
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simultaneous auditory masking model, on the other hand, does provide approximate

threshold levels for the complex stimuli such as those used in this study. Masking

thresholds were calculated using [55] for each of the three original stimuli using over-

lapping frames of 512 samples. For each stimulus, the masking thresholds were then

averaged over all the frames, and then for each band (see Figure 5.3) the average

Signal-to-Masking Ratio (SMR) was calculated to represent the band’s SMR. The

SMR describes the relationship between the stimuli and the minimum distortion that

is perceivable. A high SMR indicates that only a small deviation from the original

signal can be tolerated, while a low SMR suggests the opposite. SMR can thus be

viewed as an indication of sensitivity.

Figure 5.9 illustrates the average SMR for each of the instruments. The results

clearly show that the bands with lower centre frequency are more sensitive to change

than the bands with higher centre frequency and therefore agree with the BA results

found in Figure 5.6. The results also show that the lower bands indeed dominate

the sensitivity and the higher bands become increasingly more sensitive as the band-

width narrows. However, the SMR model is not an extremely accurate predictor of

sensitivity in the lower bands, for while the experimental findings suggest a more

consistent sensitivity as the bandwidth narrows, the SMR model clearly suggests an

increase in sensitivity as the bandwidth narrows.

5.1.3 Discussion and Conclusion

The results from the experiment highlight a number of important attributes about

perceptual sensitivity to the spectral envelope. The BA plot (Figure 5.6) clearly

shows that any assumption of sensitivity being equal over centre frequency and band-

width is inaccurate. The spectral envelope’s sensitivity to change varies considerably

over centre frequency and bandwidth, and further studies that manipulate the spec-

tral envelope of an instrument ought to consider such effects.

The experiment highlights that there are clear discrepancies between the amount

of distortion tolerable over frequency, but also accentuates the importance of clar-

ifying the reference for the measure of distortion. This can be seen by comparing

the results from Figure 5.7 and Figure 5.8. What initially seems contradictory in
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Figure 5.9: Signal-to-Masking Ratio (SMR) plots for the Trumpet (o), Clarinet (+),
Viola (x) positioned at the centre frequencies of filters 1 to 14. Dashed lines indicate
the filter bandwidths.

fact proves to be complementary. Figure 5.7 shows that the error required to dis-

criminate changes for higher band decompositions is much smaller than lower band

decompositions. However, this is relative to the entire signal energy. For musical

instruments the higher frequencies generally have much lower amplitudes than the

lower frequencies and thus their relative errors are smaller. Figure 5.8 on the other
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hand gives the spectral distortion in dB. Because the higher frequencies have around

40 dB less power than the lower frequencies, a greater level of distortion is required

for discrimination of the higher bands.

The study in [53] sought to quantify how much spectral envelope modification

could be made before a change in timbre was observed. The error level for 75%

discrimination in [53] was approximately 16% and this result is similar to the 13%

error level at 70.7% discrimination for bands with low centre frequencies found in

this experiment. The spectral distortion threshold result of 1 dB found in [86] is

a criterion that is frequently employed in the design of speech vector quantisers.

Interestingly in the context of musical instruments, this 1 dB result also aligns well

with the 1 dB spectral distortion threshold for bands containing the lower harmonics

as calculated in this experiment. Thus, the results in this experiment agree with

previous results for bands with low centre frequency, but shed further light into the

nature of discriminability when considering change to only a certain bandwidth.

The comparison with a masking analysis model illustrates that our sensitivity

measurements generally agreed with psychoacoustic masking theory. Despite some

differences particularly in the bands with lower centre frequency, Figures 5.6 and 5.9

seem to have the same fundamental appearance and would therefore suggest that

sensitivity to the spectral envelope can be crudely approximated using the average

SMR value for the band in question. However, the experimental results suggest a

more consistent sensitivity of the lower bands than the masking model infers.

In summary, distortion of different portions of musical instrument spectral en-

velopes using band attenuation with different bandwidths and centre frequencies

results in different discrimination levels. This implies that sensitivity varies as a func-

tion of frequency and bandwidth. Sensitivity is maximum for the lower frequencies

and decreases as the centre frequency moves higher. For bands with lower centre fre-

quency, the sensitivity remains approximately the same while the bands with higher

centre frequency consistently decrease in sensitivity. Thus, from a perceptual stand-

point, sensitivity has an upper bound governed by the first few harmonics and our

sensitivity does not improve when extending the bandwidth any higher. However,

if changes are made only to the higher harmonics, then our sensitivity is decreased
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and reduces further as the bandwidth distorted is widened.

5.2 Experiment 2: Spectral Envelope Morphing

While the majority of musical timbre research has focused extensively on real musical

instrument sounds, the timbre space can be explored in greater depth by considering

sounds that lie in between real instrument sounds. Grey’s [42] investigation of the

timbre space was facilitated by the use of morphed or interpolated sounds and in

this section, we propose a novel extension of morphing strategies that will aid in the

development of timbre space models.

This study explores the timbre space by using a number of different linear-

logarithmic morphing permutations of the spectral envelopes of a trumpet sound

and a clarinet sound. The results of a two-alternative forced-choice experiment

are compared with existing spectral envelope classification parametrisations and a

psychoacoustic masking model, providing insight into considerations for developing

models of the timbre space.

5.2.1 Experimental Method

5.2.1.1 Stimuli

Two musical instrument sounds, of a trumpet and a clarinet from [1], were selected for

the experiment. The samples were recorded using 16 bits, and a 44100 Hz sampling

rate, and each sound was played at a pitch of Eb4, corresponding to a fundamental

frequency of approximately 311.1 Hz. The duration of each sound was standardised to

1.5 s using a 100 msec half-Hanning window to taper the offsets, while the onsets were

left unmodified. The level of each sound was adjusted by a gain factor and presented

monaurally at an average level of approximately 65 dB SPL through Beyerdynamic

DT770pro headphones in a sound-insulated (Acoustic systems) anechoic chamber.

The spectral envelopes of each sample using the spectral envelope estimation

vocode (SEEVOC) method [89], which proceeds as follows: A periodic signal is

divided into frames and the DFT of each frame is calculated. Using the F0 of the

signal, the harmonic peaks are located and a smooth curve is fitted through them.
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In this analysis, 4096 frequency points for the DFT were chosen, with a step size of

1024 samples and cubic interpolation was chosen to join the harmonic peaks.

The trumpet and clarinet samples were selected for their contrasting spectral

envelopes and their similar residual1 spectra. The contrasting envelopes of the two

instruments, illustrated in Figure 5.10, allow for the investigation of the prominent

parameters of the spectral envelope which dominate timbre classification.
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Figure 5.10: Average spectral envelopes of the trumpet and clarinet.

5.2.1.2 Morphing

Each morphed stimulus was created by dividing the magnitude spectrum by the

spectral envelope and multiplying the result with the desired spectral envelope. Six

sets of morphs from the trumpet to the clarinet were created, consisting of 30 morphs

per set. Each set was assigned a cut-off frequency fc, which denoted the boundary
1The residual is defined as the stochastic component of the signal obtained by subtracting the

deterministic sinusoidal component (see Section 2.3.2).
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at which different morphing strategies were employed. The envelope frequencies

lower than fc were morphed linearly (see the left-hand-side of Figure 5.11), while

the envelope frequencies higher than fc were morphed logarithmically (see the right-

hand-side of Figure 5.11). The values of fc for the 6 sets are given in Table 5.1.

Set # 1 2 3 4 5 6
fc (Hz) 22050 11025 5512.5 2756.25 1378.125 689.0625

Table 5.1: fc values for the 6 sets.

The variable cut-off frequencies and linear-logarithmic morphing strategy facili-

tates the exploration of the timbre space. The logarithmic morphing of the higher

frequencies in particular, assists in revealing the salient aspects of the spectral enve-

lope that relate to instrument classification.
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Figure 5.11: Linear and logarithmic morphing with fc = 11025 Hz. 30 morphs were
used per set, however only 5 morphs are illustrated for clarity.
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5.2.1.3 Procedure

Six listeners participated in the experiment, which was conducted using a two-

alternative forced-choice (2AFC) paradigm. Three participants were musicians with

experience ranging between 5-10 years and the remaining participants were non-

musicians. All participants were tested and were found to have normal hearing.

Sufficient training was then provided until they could consistently distinguish be-

tween the trumpet and clarinet samples.

The stimuli from each set were presented monaurally and randomised. For each

stimulus, participants were prompted to select “What instrument name best describes

the sound?”, selecting from buttons labelled “Trumpet” and “Clarinet”.

5.2.2 Results

5.2.2.1 Psychometric functions

The results from the participants were averaged and psychometric functions were

calculated using a least squares fit to a cumulative Gaussian curve. Figure 5.12

illustrates the results, where the dotted horizontal line indicates the threshold for

classification as a trumpet at 75%. As the cut-off frequencies fc decreased, the morph

numbers at which the thresholds for classification as a trumpet were generally found

to increase.
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Figure 5.12: Psychometric functions of the 6 sets.

Figure 5.13 compares the psychometric functions of each set with normalised

distances using Mel-frequency cepstral coefficients (MFCC) [24] and the spectral

centroid [43, 80, 17]. Both the MFCCs and the spectral centroid are parametrisations

of the spectrum and have been used extensively in instrument timbre classification.

MFCCs are computed by taking the cosine transform of the log-amplitude spec-

trum calculated along the Mel-frequency scale. The calculation of the normalised

MFCC distance for a morphed sound was obtained by computing a 13 point MFCC

vector [104], finding the euclidean distance relative to the MFCCs of the trumpet

sample, and normalising the result by the distance between the trumpet sample and

the clarinet sample.

The spectral centroid is the amplitude-weighted mean frequency of the energy

spectrum given by

SCm =
∑

k fk |Xm[k]|∑
k |Xm[k]| (5.7)
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Figure 5.13: Comparison of the psychometric functions and normalised MFCC and
spectral centroid distances. The circles indicate the 95%, 75% and 50% probabilities.
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where |Xm[k]| is the magnitude of the kth DFT bin at the mth frame, where fk is the

corresponding frequency of the kth DFT bin. The calculation of the normalised spec-

tral centroid distance for a morphed sound was obtained by computing the relative

distance between the centroid of the morphed sound and the trumpet sample, and

normalising the result by the distance between the trumpet sample and the clarinet

sample.

For Set 1, the normalised distances for both the MFCCs and the spectral centroid,

align with the 50% probability point of the psychometric function. However as fc

decreases, the spectral centroid quickly deviates from this point while the MFCCs

correspond well until Set 4 and 5. This can be attributed to the linear frequency

axis employed in the calculation of the spectral centroid. The MFCCs on the other

hand, are based on the human-auditory inspired Mel-frequency axis, which has higher

frequency resolution at lower frequencies and lower frequency resolution at higher

frequencies. Thus the initial high frequency modifications of Sets 2 and 3, which

play a perceptually minimal role in influencing the 50% probability point, are also

less influential on the MFCCs distance measure, compared to the spectral centroid.

The averaged morphed spectral envelopes corresponding to the 50%, 75% and

95% trumpet identification probabilities are illustrated in Figure 5.14. The figure

highlights that the spectral envelopes of what is perceived to be a trumpet even at

95% probability for the various morphs, contain a large proportion of the clarinet

resonances. This implies that timbre perception is dependent on more than just the

resonances and the anti-resonances of the spectral envelope.

5.2.2.2 Masking Analysis

A psychoacoustic masking model [55] was applied to the morphed sounds and Signal-

to-Mask Ratios (SMR) were calculated and time-averaged, resulting in the plots given

in Figure 5.15. In each of the 6 sets, trumpet classification (75%) occurs consistently

when the SMRs of certain frequency components increase above zero (e.g. 500-700

Hz, 1100-1300 Hz).
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Figure 5.14: Probability for trumpet identification. Averaged results of 6 sets.

5.2.3 Discussion and Conclusion

The results of this experiment provide a few insights into the nature of the timbre

space with respect to the spectral envelope. The psychometric functions for each set

shown in Figure 5.12, indicate that in the case of morphing from the trumpet to the

clarinet, the chance-level discrimination point (50%) corresponds to the morphed

sounds that have envelopes that lie approximately half-way between the trumpet

and clarinet envelopes for sets 1-3. These sets only have the higher envelope fre-

quencies (>5 kHz) logarithmically morphed, implying that for these samples, these

frequencies do not impact timbre discrimination as much as the lower frequencies.

Once frequencies below 5 kHz are logarithmically morphed (sets 4-6), the envelopes

require more morphing to achieve the chance-level discrimination point, reaching a

maximum morph at the lowest cut-off frequency.

The psychometric functions were then compared with two spectrum parametri-
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Figure 5.15: Signal-to-Mask Ratio of the 6 sets for 50%, 75% and 95% probabilities.
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sations that are used extensively in classification - MFCC and spectral centroid. The

MFCCs provided better correspondence to the chance-level discrimination points on

the psychometric functions, particularly between sets 1-3. This can be attributed to

the approximately logarithmic frequency axis which better approximates the manner

in which listeners perceive sound. The spectral centroid has a linear frequency axis,

equally weighting all frequencies, which results in a higher sensitivity to the initial

higher frequency changes.

The SMR results of the 6 sets reveal potential reasons for the discrepancies found

between the normalised MFCC distances and the psychometric functions for sets 4-

6. The SMR results highlight that the trumpet classification point (75%) occurs

consistently when the SMR at certain frequencies, increases above zero (e.g. 500-

700 Hz, 1100-1300 Hz). These frequencies correspond to masked frequencies, which

implies that the perceptual timbre space is dependent on masking. Perceptual in-

strument classification therefore requires these frequencies which provide important

timbre cues, to be unmasked before they can be classified as certain instruments.

Thus models of the timbre space would benefit by accounting for the masking that

occurs in the auditory system.

This experiment has presented a novel strategy for exploring the timbre space us-

ing different permutations of linear-logarithmic morphing between instrument spec-

tral envelopes. Upon generating psychometric functions and comparing them with

normalised MFCC and spectral centroid distance measures, logarithmic frequency

axes, like that of the Mel-frequency scale, were shown to provide a more accurate

representation of the timbre space than a linear axis. Furthermore, the SMR analy-

sis revealed that incorporating psychoacoustic masking models into models of timbre

may produce models that are more coherent with perception.

5.3 Experiment 3: Noise Sensitivity

Musical timbre is a multidimensional property of sound and while the spectral enve-

lope is a salient attribute of timbre, temporal changes (such as the attack transient)

and non-harmonic components (such as the breathiness of wind instruments) have
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been found to be perceptually relevant [42]. Instrument synthesis experiments in

particular have revealed that real instrument sounds are usually perceived as having

more roughness than sounds that are synthesised by merely modelling the harmonic

component [29].

To investigate the perceptual salience of the non-harmonic or noise components

of pitched instruments, musical sounds were decomposed into a harmonic component

and a noise component. The perceptual sensitivity to the noise component was then

investigated by attenuating various bands of the noise component in a two-alternative

forced-choice experiment.

5.3.1 Experimental Method

5.3.1.1 Stimuli

Four musical instrument sounds were selected for analysis. Samples of an alto sax-

ophone, clarinet, viola and flute taken from a University of Iowa website [1] were

used. The sounds were recorded using 16 bits, and a 44100 Hz sampling rate, and

each sound was played at a pitch of Eb4, corresponding to a fundamental frequency

of approximately 311.1 Hz - a frequency within the normal playing range of these

instruments and commonly used in timbre experiments for this reason [80, 53]. The

duration of each sound was standardised to 1.5 seconds using a 100 msec half-Hanning

window to taper the offsets. The onsets of each sample were left unmodified.

5.3.1.2 Stimuli Modification

The harmonic component of each stimulus was extracted using the spectral filtering

method described in Section 4.1.2. The noise component was then obtained by

subtracting the harmonic component from the original stimulus in the time domain.

The harmonic and noise decomposition of the 4 stimuli are shown in Figure 5.16.

The stimuli for the experiment were created by passing the noise component of

each stimulus through a zero-phase band-pass filter and the output of the filter was

then attenuated and added to the harmonic component of the stimulus. Using 7

zero-phase filters of differing centre frequencies and bandwidths, we compiled a set
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of stimuli where the output was the original signal with the noise component of a

certain frequency band attenuated.
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Figure 5.16: The harmonic and noise spectrum of an alto saxophone (top left),
clarinet (top right), viola (bottom left) and flute (bottom right). Dotted lines indicate
frequency bands attenuated.

The zero-phase filters were designed by taking 256-tap linear-phase band-pass

filters (designed by the window method based on a Hamming window) and advancing

the output signal by the group delays of the filters. Seven filters were created,

consisting and an all-pass filter and the first 6 filters of the experiment in Section

5.1 (see Figure 5.3).

The stimuli presentation was controlled using MATLAB on an Intel PC with an

RME Multiface sound card. Each of the stimuli was presented monaurally at an aver-

age level of approximately 65 dB SPL through Beyerdynamic DT770pro headphones

in a sound-insulated (Acoustic Systems) anechoic chamber.
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5.3.1.3 Procedure

Four listeners aged between 20 to 26 years participated in the experiment and all

were tested and found to have normal hearing. Two of the participants had musical

training with experience ranging between 5-10 years.

A two-alternative forced-choice (2AFC) Reference AB, 1-up 2-down paradigm

[73] was used for all our experimentation. For each trial, the participant heard three

sounds: the reference sound (original, unfiltered) followed by two other sounds - one

of which was filtered and the other which was the same as the reference. The order of

presentation of the two latter sounds were independently randomised for each trial

and 300 msec silence periods separated the presentation of each sound. For each

trial, the participant was prompted with “Which sound has a different timbre to the

reference?” and had to respond by clicking buttons marked A and B on the screen.

Once a response was submitted, feedback was provided to the participant in the form

of “Correct” or “Incorrect”.

The first trial presented for each centre frequency was always with the most

attenuation and the attenuation was incrementally decreased to include more of the

contents of the band. The attenuation step sizes changed from 4 dB to 2 dB and

finally to 0.5 dB. The last 3 reversals were averaged to estimate the discrimination

threshold. Listeners were trained for 15 mins to familiarise themselves with the task

prior to the experiment.

5.3.2 Results

The sensitivity of each frequency band to the attenuation of band-pass filtered noise

was calculated using the band attenuation (BA) measure described in Section 5.1.2.1,

Equation 5.1. The BA is defined to be the original energy of the band, divided by

the minimum difference required to observe a change in that band. The BA results

from all the participants were averaged and are illustrated in Figure 5.17.

The sensitivity to noise attenuation varies for each instrument and also varies as

a function of frequency. Sensitivity to noise attenuation is generally higher around

6-11 kHz and as the bandwidth narrows, sensitivity decreases. The flute and clarinet,
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which have relatively large noise components, are the most sensitive to noise atten-

uation for both broadband and narrow-band attenuation. The harmonic component

of the saxophone and the viola is more prominent, with harmonics extending up to

the higher frequencies, resulting in lower sensitivity to noise attenuation particularly

around the higher frequencies.

5.3.3 Discussion and Conclusion

The BA results indicate that the noise component of a harmonics plus noise decom-

position is a salient attribute of timbre. Sensitivity to noise attenuation varies as a

function of frequency, and sensitivity is at a maximum around 6-11 kHz. This im-

plies that low frequency harmonics are effective maskers of noise, resulting in lower

sensitivity to noise below 6 kHz. Sensitivity was also found to decrease as the band-

width of the noise being attenuated narrowed, suggesting that sensitivity to noise is

governed by broadband sensitivity.

Compared to the sensitivity results for the spectral envelope (Section 5.1), sen-

sitivity to instrument noise is lower and exhibits higher variability as a function of

frequency for different instruments. Future investigations should explore the tempo-

ral nature of the noise in conjunction with spectral variations.

The results of this experiment highlight the need to consider the noise component

in the development of timbre models. Timbre models have traditionally focused on

the spectral and temporal variations of the harmonics, however the results presented

in this study indicate that the non-harmonic components, for certain instruments

such as the flute and the clarinet, are salient, and sensitivities to these components

vary as a function of frequency and bandwidth.
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Figure 5.17: Error level results.
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Chapter 6

Separation of Harmonic Musical

Instrument Notes using

Spectro-Temporal Modelling of

Harmonic Magnitudes and

Multiple Input Spectrogram

Inversion

Resolving overlapping harmonics and the re-synthesis of accurate source signals re-

main persistent and unsolved issues when separating individual sources from a single

channel mixture of harmonic musical instruments. In this chapter we bring together

concepts described in previous chapters and present novel methods that address both

of these issues.

In Section 3.3, it was shown that the spectro-temporal correlations which exist

between instrument harmonics can be modelled using linear combinations of neigh-

bouring harmonics. In this chapter, we elaborate on this model, deriving a novel

method which facilitates source separation by resolving overlapping harmonics. The

performance of the method is evaluated against other approaches, and is shown to
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provide better and more robust estimates of the harmonic magnitudes as a function

of time. The multiple input spectrogram inversion algorithm (Section 4.2.4) is then

employed for source synthesis and additional results are presented demonstrating its

potential in source separation. The methods are then combined in a source separa-

tion framework, and the overall performance is evaluated using a variety of objective

distortion measures, as well as a subjective evaluation, motivated by the perceptual

investigations presented in Chapter 5.

6.1 Introduction

The separation of individual sources from a single channel mixture of multiple sources

involves amongst other considerations, an insight into the nature of correlations

and inter-dependencies between the sources. Musical mixtures in particular, are

noteworthy, because they are a practical example of spectro-temporally concordant

mixtures. The extensive dependencies within such a mixture inherently coerce the

need to engage source-specific information in order to produce exceptional source

separation.

In the context of music source separation, a system capable of separating musical

mixtures from a single channel also has a vast number of applications. Some of

these include source modelling based audio compression; greater flexibility in the

recording, mixing and mastering of audio; robust automatic transcription; and the

facilitation of music education. Source separation would also open many avenues

for the processing of polyphonic music signals, by the numerous monophonic audio

processing algorithms which have been developed.

The separation of musical mixtures is a non-trivial task due to the vast proportion

of overlapping components. Western music in particular, is often arranged so that

sounds are not only played simultaneously, but are also harmonically related. This

results in numerous overlapping harmonic trajectories, which make source separation

problematic. The work described in this thesis presents a novel method of estimat-

ing regions of overlap by exploiting spectro-temporal intra-instrument dependencies,

integrating the spectral and temporal approaches which are currently employed in
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a mutually exclusive manner in existing systems. Subsequent to the harmonic mag-

nitude extraction using this method, we present a unique, closed-loop approach to

source synthesis, separating sources by iteratively minimising the aggregate error of

the sources, constraining the minimisation to a set of estimated parameters.

Existing single channel source separation systems can be broadly classified into

either model-based systems or unsupervised learning based systems. The latter are

usually built on a simple linear model and aim to find decompositions where the

sources are statistically independent or non-redundant. Proposed systems have been

based on Independent Subspace Analysis (ISA) [18], Non-negative Matrix Factori-

sation [110] and sparse coding [123, 3]. Based on the principles of Independent

Component Analysis (ICA), ISA provides a framework in the power spectrogram

domain for the estimation of sources from a single mixture that are as statistically

independent as possible. By contrast, Non-negative Matrix Factorisation (NMF) al-

gorithms employ non-negativity constraints to the basis functions, which has been

shown to be sufficient for the separation of sources [110]. In sparse coding algorithms,

redundancy reduction is the central motivation. Sources are formed using a small

number of elements from a large set. The selection of these elements is typically

based on a cost function which aims to minimise the estimation error and maximise

the efficiency of the representations.

While unsupervised learning algorithms have produced good results of late, model-

based single-channel separation systems [34, 124] have been able to achieve greater

separation in mixtures that are predominantly harmonic with a limited number of

simultaneous sources. Harmonic sources are well modelled using a sinusoidal model

[81, 111, 101], where sinusoids are approximately harmonically spaced and each si-

nusoid trajectory is parametrised by frequency, amplitude and phase. Grouping

principles are then applied to form sources by superimposing sinusoidal trajectories,

and the parametric sinusoidal information is then used to aid in the re-synthesis of

the sources.

Model-based, single-channel source separation is a complex problem which is

comprised of a number of non-trivial problems, ranging from parameter selection

and modelling, to mixture analysis and source synthesis. Of the myriad of problems
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to be solved in source separation, the resolution of overlapping harmonics and source

synthesis are particularly challenging issues. Overlapping harmonics are both prolific

and problematic in the separation of musical mixtures, and their resolution is non-

trivial due to the high spectro-temporal correlations which exist between sources.

Once the harmonics have been estimated, the sources need to be synthesised and

obtaining high-quality separated sources from parametric information remains an-

other challenging task. In the following, some of the existing techniques for resolving

overlapping harmonics and synthesising sources are reviewed.

In musical mixtures, harmonic and rhythmic concordance is problematic, result-

ing in many overlapping sinusoidal trajectories. Attempts to resolve these overlap-

ping harmonics can be broadly classified as either a spectral approach or a temporal

approach. Spectral approaches [87, 67, 34], resolve harmonics exclusively based on

spectral information at a given time, disregarding information of the spectrum at

other points in time. Parsons [87] and Klapuri [67] both exploited the expectation

that spectral envelopes of real sound sources tend to be continuous, and overlapping

harmonics were resolved by interpolating between the amplitudes of adjacent har-

monics. In [34], Every and Szymanski designed spectral filters to filter harmonics

from their estimated frequency locations. The filters worked to effectively partition

the energy of shared spectral peaks to the relevant sources based on frequency lo-

cation. In all of these methods, overlapping harmonics were estimated by utilising

the information of spectrally neighbouring harmonics in a given frame. By contrast,

the methods which employ a temporal approach [127, 130], exploit the temporal

correlations found between harmonics but do not utilise the spectral information. In

[127], Viste and Evangelista combined knowledge of the temporal nature of harmonic

tracks with multichannel separation techniques to resolve overlapping harmonics. In

regions of harmonic overlap, the closest non-overlapping harmonic track was used

to aid in the spatial demixing of the sources. Woodruff et al. [130], proposed a

method for resolving overlapping harmonics using the strongest harmonic to model

amplitude changes and pitch information to predict phase changes. These tempo-

rally based methods exclusively employ a selected trajectory to aid in separation,

thereby ignoring other spectral information. Given these two approaches to har-
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monic magnitude estimation, the work described within is based on the hypothesis

that a unified spectro-temporal model will provide better performance by exploit-

ing both the spectral and temporal dependencies which are known to exist between

harmonic magnitude tracks.

Individual sources are synthesised from their parametric representations (includ-

ing harmonic magnitudes). There have been a variety of approaches to estimating

the source magnitudes and phases from parametric models and these have included

using banks of oscillators [81], spectral synthesis [102], binary masking [129], and a

hybrid approach [130]. The approaches employed by McAulay and Quatieri [81], as

well as Serra et al. [102], are based on sinusoidal synthesis. Directly synthesising

sinusoids in the context of source separation, produces estimates that are devoid of

interfering artifacts, however this can also result in a loss of perceptual ’natural-

ness’ as the sidelobes of the harmonics contain perceptually salient information. An

alternative approach presented by Wang [129], relies on the construction of binary

masks to denote regions of the time-frequency representation which correspond to

a particular source. This method captures these spectral nuances of the harmonics,

but only when the harmonics do not overlap with any other harmonics. In the re-

gions where there is an overlap, binary masking produces unreliable source estimates

corrupted by the presence of other sources. In [130], Woodruff et al. presented a

hybrid approach to source synthesis. After using least-squares estimation to approx-

imate sinusoidal parameters, sources were estimated by using binary masking for

non-overlapping harmonics and spectral synthesis for overlapping harmonics. Each

of the methods reviewed above employ an open-loop estimation method for generat-

ing time domain source estimates. In the typical scenario where all the sources are

to be estimated in a mixture, we propose that a closed-loop estimation system can

improve the quality of synthesis by successively refining the source estimates.

In following sections, we present novel methods for spectro-temporally resolving

overlapping harmonics and synthesising sources using a closed-loop estimator. In

Section 6.2, a method for resolving overlapping harmonics using spectro-temporal

harmonic magnitude track prediction is presented. A diverse selection of harmonic

musical instruments are analysed and a generalised-instrument magnitude track pre-
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diction model is derived that utilises both the spectral and temporal information to

generate magnitude track estimates. In Section 6.3, a novel closed-loop algorithm

is presented to refine the synthesis of the separated sources. Given the source mag-

nitudes, the algorithm iteratively refines the phase estimates of the sources using a

spectrogram inversion algorithm for multiple inputs. In Section 6.4, the performance

of the harmonic magnitude track prediction model and the phase estimation algo-

rithm are evaluated independently. They are then utilised in a separation system

to assess the objective and subjective performance gains achieved when separating a

mixture of harmonic sounds. The results are then discussed in Section 6.5, followed

by conclusions in Section 6.6.

6.2 Harmonic Magnitude Track Prediction

6.2.1 Sinusoidal Modelling of Harmonic Tracks

The modelling in this work begins with a transformation of the time domain signal

into a time-frequency representation, from which sinusoid frequencies and amplitudes

are estimated. Sinusoid trajectories or tracks are then defined and the tracks are

grouped into sources. This kind of sinusoidal modelling [81, 111, 101] has been widely

adopted, particularly in music signal processing due to its efficient and convenient

parametrisation of the harmonic components of pitched sounds.

Consider a mixture y[n] =
∑J

j=1 xj [n], comprising of a superposition of J sources.

Each source xj [n] is assumed to be a harmonic source and is therefore adequately

modelled as a sum of sinusoids

xj [n] =
Hj∑
h=1

ah,j [n]cos (2πfh,j [n]n/fs + θh,j [n]) (6.1)

where (ah,j [n], fh,j [n], θh,j [n]) are the time-varying amplitudes, frequencies and phases

for the hth harmonic of the jth source respectively, fs is the sampling frequency and

Hj is the number of harmonics for the jth source. The objective of any separation

system is to obtain estimates of the sources x̂j [n] that best approximate the true

sources xj [n], from a single channel observation of the mixture, y[n].
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The process begins with the computation of the Short-time-Fourier-transform

(STFT) for the mixture y[n], which gives the time-frequency representation

Yr[k] =
∞∑

n=−∞
y[n]w[n− rH]e−i 2πk

N
n (6.2)

where r is the time frame index, k is the DFT frequency bin index, w[n] is an analysis

window, H is the hop size in samples and N is the size of the DFT. In this work a

Hanning window is used for the analysis window.

The magnitude spectrum |Yr| of the mixture is then calculated and the harmonics

estimated using spectral peak picking [34]. Refined estimates of the frequencies

corresponding to each harmonic peak are then calculated using the Phase Derivative

Fast Fourier Transform (PDFFT) (Section 3.2, [46]), and the peaks are used to form

harmonic tracks. Each harmonic track is parametrised as a vector of magnitudes Mh
j ,

which correspond to a vector of frequencies F h
j , where h is the harmonic number of

the jth source. The parameters are estimated by tracking the harmonic peaks based

on frequency proximity, harmonicity and magnitude continuity [81, 34]. For the

purposes of evaluating the proposed methods, the fundamental frequency, F0 , of

each note are assumed to be known and the validity of each track in the mixture is

verified using the original sources.

Having parametrised the harmonic tracks of the sources in the mixture, overlap-

ping harmonics were classified by observing their proximity to other source harmon-

ics. An overlapping vector Oh
j for each frame r, was then defined such that,

Oh
j [r] =

⎧⎪⎪⎨⎪⎪⎩
1, if

∣∣∣F h
j [r]− F g

s [r]
∣∣∣ < δoverlap

0, otherwise

(6.3)

where g is the harmonic number of source s, s �= j, and δoverlap is dependent on

the width of the primary spectral lobe related to w.

6.2.2 Harmonic Track Prediction

Previous approaches to resolving overlapping harmonics have relied on either inter-

polating spectral information, or alternatively utilising a single temporal magnitude
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trajectory to estimate the magnitudes of overlapping harmonics. In this section,

we describe a spectro-temporal approach to resolving overlapping harmonics that

utilises both the spectral and the temporal information to predict harmonic track

estimates. The method is based on a generalised-instrument track weighting model

presented in Section 3.3.3, where harmonic tracks are modelled as a weighted linear

combination of neighbouring tracks.

The magnitude tracks of musical instrument harmonics are known to be highly

correlated to each other and knowledge of this has been used in a number of sep-

aration systems [125, 127, 130]. Gunawan and Sen [48] quantitatively investigated

this correlation on a large database of musical instrument notes and found that the

correlation between harmonic magnitude tracks was highest between directly adja-

cent partials, with the correlation decreasing exponentially with increasing distance

from a particular harmonic. The significant correlation between harmonic tracks,

suggests that harmonic tracks can be predicted as a weighted linear combination

of normalised neighbouring harmonic tracks. The prediction of the hth harmonic

magnitude track M̂h can be expressed as,

M̂h =

∑H
q=1 vh,qM̄

q∑H
q=1 vh,q

(6.4)

where q �= h, H is number of harmonics of the source, and vq,h is the weight

contribution of the qth normalised harmonic magnitude track M̄ q. An optimal so-

lution for these weights in a least squares sense can be found using regularised least

squares, which has the solution:

vh = (ΓT Γ + δrlsI)−1ΓT M̄h (6.5)

where M̄h is the hth normalised harmonic magnitude track which is to be pre-

dicted, Γ is the matrix with columns containing the normalised harmonic magnitude

tracks but excluding M̄h, δrls is the regularisation parameter, I is the identity matrix

and T denotes the conjugate transpose. To construct a generalised-instrument track

weighting model, Equation 6.5 was used to compute the weights for 3000 musical in-

strument samples from the University of Iowa instrument database [1]. The weights
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for each harmonic were then averaged over all the samples, and a curve was fit to

the averaged weights. The resulting parametrisation is given by,

vh,q =

⎧⎪⎪⎨⎪⎪⎩
−((h+β1)−1+γ1)

q−h , q < h

(h+β2)−1+γ2

q−h , q > h

(6.6)

for the weight of the qth harmonic to model the hth harmonic, where the opti-

mum values for β1, γ1, β2, γ2 were empirically found to be β1 = 0.994366, γ1 =

0.092848, β2 = 1.880769, γ2 = 0.060059, by minimising the root mean squared er-

ror as illustrated in Figure 6.2. Figure 6.1 illustrates the weights determined using

regularised least squares, and the corresponding model of the weights.
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Figure 6.1: Weighting functions (dotted lines) averaged over 3000 musical instrument
samples, and the modelled weighting functions (solid lines). For clarity, only every
5th set of weights is illustrated.

The harmonic track estimate M̂h, is therefore a prediction of the hth harmonic

track, which is derived by exploiting the spectral and temporal correlations which
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Figure 6.2: Empirical determination of model parameters β1 and γ1. The parameters
for the model given in Equation 3.21, were found by minimising the root mean
squared error between the model and the averaged weights determined by regularised
least squares.

exist between the neighbouring harmonic tracks. In the source separation context,

this provides a robust method of estimating the magnitude trajectories of harmonic

tracks which may have been corrupted due to the interference of other sources.

6.3 Iterative Source Synthesis

In separation systems based on sinusoidal modelling, a widely-adopted approach for

source synthesis, involves the estimation of the magnitude spectra of the sources,

followed by the masking of the phase spectra of the mixture in regions where the

magnitude spectra is salient [129, 34]. The sources are then synthesised in an open-

loop manner, inverting the spectral magnitude and phase information into the time-

domain. While the binary masking of the mixed phase may suffice in applications

where the sources in the mixture are uncorrelated, using the mixed phase for source

synthesis in music mixtures produces significant distortions due to sources being
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spectrally and temporally concordant.

In this section, we propose a novel closed-loop algorithm to synthesise separated

sources. The method is an extension of the spectrogram inversion algorithms [44,

131], iteratively producing time-domain source estimates from magnitude spectra

estimates and the time-domain mixture signal.

In a typical source separation scenario, the observed acoustic waveform y[n] can

be written as a superposition of source signals y[n] =
∑J

j=1 xj [n], where xj [n] is

the jth source signal and J is the number of sources. Given the short-time Fourier

transform magnitude (STFTM) estimates of the sources, we describe the Multiple

Input Spectrogram Inversion (MISI) algorithm, which iteratively estimates the time-

domain source signals xj [n] in a mixture y[n] given the corresponding STFTM of the

source signals. An overview of the algorithm is illustrated in Figure 6.3.

Magnitude-
constrained

phase
estimation

�X1 [k]�

�X J [k]�
�xJ [n]

�x1[n]

Magnitude-
constrained

phase
estimation

�y[n]

y[n]

e [n]

-

Figure 6.3: Overview of the MISI algorithm. Given the magnitude estimates of each
source, the phase responses are estimated and the signal is transformed into the time
domain. The source estimates are then subtracted from the original mixture and the
error is used to refine the phase estimates.

Consider the short-time Fourier transform of the jth source xj [n]

Xj,r[k] =
∞∑

n=−∞
xj [n]w[n− rH]e−i 2πk

N
n (6.7)

where w is the analysis window, H is a positive integer denoting the hop size, N is
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the size of the DFT, and r is the frame index of the STFT. If the STFTM of the

source |Xj,r[k]|, is known or can be well estimated, then it is possible to iteratively

estimate each source using spectrogram inversion. Spectrogram inversion [44, 131]

algorithms are a subset of reconstruction algorithms [7] which aim to estimate sig-

nals by recovering the missing phase information through an iterative process that

converges towards a signal with a magnitude-constrained spectrum.

Using the update equation described by Griffin and Lim [44], it is possible to

calculate an estimate for the it + 1th iteration of the jth source signal,

x̂it+1
j [n] =

∑∞
r=−∞w[n− rH] 1

N

∑N−1
k=0 X̄it

j,r[k]ei 2πk
N

n∑∞
r=−∞w2[n− rH]

(6.8)

where

X̄ it
j,r[k] = |Xj,r[k]|

¯̄Xit
j,r[k]∣∣∣ ¯̄Xit
j,r[k]

∣∣∣ (6.9)

Since multiple inputs are involved, it is necessary to account for the error term ob-

tained by subtracting the superposition of the estimated sources ŷ[n] =
∑J

j=1 x̂it
j [n],

from the mixture y[n]. ¯̄X it
j is thus obtained by taking the STFT of

¯̄xit
j [n] = x̂it

j [n] +
eit [n]

J
(6.10)

eit [n] = y[n]−
J∑

j=1

x̂it
j [n] (6.11)

The algorithm is initialised with each of the initial source estimates set to x̂0
j [n] =

y[n] and the error set to e0[n] = 0. The algorithm then constrains each estimate

with the known STFTM |Xj,r[k]| and then calculates an inverse STFT. The MISI

algorithm then accounts for the total error eit [n], between y[n] and ŷ[n], adding a

scaled version of the error to each of the source estimates before the next iteration.

As long as the sum of the scaled errors equals the total error, the energy of the

summed sources will be conserved at each iteration. In the MISI algorithm, this is

achieved by simply dividing the error equally among the sources, so that the scaled
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error assigned to each source is given by eit [n]
J , where J is the total number of sources.

At each iteration, the scaled errors that are fed back, combined with the magnitude

constraints, ensure that the phase estimates of each source approach the true phases.

The source magnitude constraints shape the errors so that the phase is re-estimated

in the frequency regions where the error is large, and the phase is retained in the

regions where the error is low. Thus the MISI algorithm essentially computes a

spectrogram inversion for each source with the additional constraint of minimising

the error between the mixture and the superposition of the estimated sources at each

iteration.

6.4 Results

To demonstrate the performance of the presented methods, each method was evalu-

ated individually and also in the context of a source separation system. The perfor-

mance of the harmonic magnitude track prediction method is evaluated in Section

6.4.1, while the performance of the Multiple Input Spectrogram Inversion algorithm

is evaluated in Section 6.4.2. Both methods are then placed within the context of

a source separation system, and the separation of a harmonic mixture is assessed in

Section 6.4.3.

All of the results presented use the samples from the University of Iowa musical

instrument samples database [1], with each sample recorded at 44.1 kHz sampling

rate and 16 bits. The samples range in duration from 1.5-5 seconds and have funda-

mental frequencies between 65-2100 Hz. Sample mixtures were created by randomly

summing p samples in the time domain, where p is the polyphony of the mixture.

The power of each sample was randomly scaled between 0-10 dB to simulate the

varying levels of sources found in musical mixtures. The parameters for the STFT

were N = 8192, H = 1024, Hanning analysis window, fs = 44.1 kHz, and the

parameter defining overlapping tracks was δoverlap = 2fs
N .
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6.4.1 Harmonic Magnitude Track Prediction Results

The harmonic magnitude track prediction method was first assessed by analysing the

prediction performance for individual instrument samples. Sinusoidal models were

generated for 360 monophonic samples, comprising of 20 samples from 18 different

instruments. Magnitude track prediction estimates were calculated for the first 20

harmonics of each sample, using the method described in Section 6.2. The correlation

coefficient was then calculated to compare the estimates to the true magnitude tracks.

To comparatively evaluate the performance of the prediction method, the results

were assessed relative to existing methods of magnitude track estimation, which

include the spectral approach of linear interpolation which is employed in [87, 34],

as well as the temporal approaches of the strongest harmonic [130], and the adjacent

harmonic[127].

Box plots of the averaged correlation coefficients for each method are illustrated

in Figure 6.4. The upper and lower edges of each box correspond to the upper and

lower quartiles, the middle line denotes the median value, and the whiskers extend

to the largest observations excluding the outliers. For clarity, the outliers have

been excluded from the plot. On average, the prediction method produced better

estimates of the magnitude track compared to the other methods, and did so with a

lesser degree of variability.

Figure 6.5 is a plot of the correlation coefficients averaged over 18 different in-

struments. The figure illustrates the consistent performance of the magnitude track

prediction method across a range of different musical instruments. While the other

methods vary in their performance as a function of instrument, the prediction method

leverages both the spectral and temporal information to provide consistently accu-

rate estimates. By contrast, the estimation consistency of the methods varies more

so as a function of instrument. The spectral interpolation method performs well for

instruments that have a smooth spectral envelope, such as the trumpet, however

for instruments where this is not the case, such as the clarinet, the interpolation

method does not perform as well as the other methods. The methods employing the

strongest harmonic track and the adjacent harmonic track also vary in performance,

121



6.4. RESULTS

Prediction Interpolation Strongest Adjacent
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Figure 6.4: Box plots of the correlation coefficient comparing the proposed harmonic
magnitude track prediction, spectral interpolation, strongest track and adjacent track
methods. The results are an average over the first 20 harmonics of 360 monophonic
instrument samples. The proposed prediction method produces the optimum esti-
mates on average, with the minimum variance.

each being highly dependent on the particular instrument being estimated.

The harmonic magnitude track prediction method was also assessed in the con-

text of random mixtures of varying polyphonies. Polyphonies ranged from 2 to 6

samples per mixture, and for each polyphony, 50 random mixtures were assessed.

Harmonic track prediction estimates were calculated for each overlapping harmonic,

and were scaled by αh, which was estimated in one of two ways depending on the

what proportion of the track was overlapping. If
P

∀r∈Rh
no

Oh[r]
P

∀r Oh[r]
≤ δtoverlap, where Rh

no

is the set of frame indices corresponding to the non-overlapping frames for harmonic

track h, then the non-overlapping temporal regions of the track were used to estimate

the scale factor, αh =
P

∀r∈Rh
no

Mh[r]
P

∀r∈Rh
no

M̂h[r]
. If

P
∀r∈Rh

no
Oh[r]

P
∀r Oh[r]

> δtoverlap, then due to the in-

sufficient non-overlapped portions of the track, the scale factor was calculated using
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Figure 6.5: Correlation comparison of harmonic magnitude track estimation meth-
ods with the true harmonic tracks as a function of musical instrument. While the
performance of the spectral and temporal methods are instrument dependent, the
proposed spectro-temporal method consistently provides the best estimate.
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a spectrally linear-interpolated track. Scale factors for all other temporally-based

approaches, were also calculated in a similar manner, and δtoverlap = 0.8.

The root mean square error (RMSE) was calculated between each harmonic track

and the corresponding estimate, and the errors were averaged over the mixtures per-

taining to a particular polyphony. The results are illustrated in Figure 6.6, highlight-

ing the performance of the prediction method relative to the previously described

spectral interpolation, strongest harmonic and adjacent harmonic methods. The

interpolation method produced comparatively poorer results because it does not

leverage the non-overlapping temporal information. This resulted in large estima-

tion errors, primarily due to scaling. The methods which leverage the temporal

information however, produce more accurate estimates particularly when a sufficient

proportion of the track is not overlapped. At lower polyphonies, the performance of

the temporal approaches are similar to the prediction methods, however at higher

polyphonies, the relative errors between the prediction method and the other meth-

ods clearly widen. As the polyphony increases, the number of overlapping harmonic

tracks in the mixtures also increase, thereby reducing the number of non-overlapping

tracks from which estimates can be made. Since the temporal approaches rely on

a single harmonic magnitude track, the reduction of non-overlapping harmonics in

each mixture escalates the errors relative to the prediction method, which obtains

its estimate from a weighted combination of tracks.

6.4.2 Source Synthesis Results

The performance of the Multiple Input Spectrogram Inversion algorithm for closed-

loop source synthesis was evaluated using the Signal-to-Noise Ratio (SNR) distortion

metric which is defined as,

SNR = 10log10

( ∑
∀n x[n]2∑

∀n [x[n]− x̂[n]]2

)
dB (6.12)

where x[n] is the original time-domain source signal, x̂[n] is the estimated time-

domain source signal. Randomly selected samples were formed into mixtures con-

taining 2, 3, 4, 5 and 6 instrument samples. The magnitude responses of each source

124



6.4. RESULTS

2 3 4 5 6
0

2

4

6

8

10

12

Polyphony

R
M

S
E

 

 

Prediction
Strongest
Interpolation
Adjacent

Figure 6.6: Root mean square error (RMSE) performance in polyphonic mixtures,
comparing the proposed prediction method, strongest harmonic track, spectral in-
terpolation and adjacent harmonic track. Increasing polyphony is synonymous with
increasing number of overlapping tracks.

were then obtained from their respective monophonic samples, and these were used

in conjunction with the time-domain mixture signal in the MISI algorithm. The

Signal-to-Noise Ratios of the synthesised source estimates obtained from the MISI

algorithm, were then calculated and averaged for each polyphony. Figure 6.7 illus-

trates the SNR performance of the MISI algorithm as a function of the iteration

index, for various polyphonies. Due to the manner in which the MISI algorithm is

initialised, the first iteration is equivalent to the binary masking of the phase and

provides a reference to which the method can be compared. The monotonically

increasing SNR values over various polyphonies, indicate that the MISI algorithm

provides a closed-loop method of iteratively improving source synthesis estimates

given sufficiently accurate magnitude estimates. In mixtures containing 2 sources,

the average SNR gains after 50 iterations are approximately 4 dB per source, rela-
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tive to the binary masking of the phase (it = 1). As the polyphony increases, the

estimation accuracy of the phase binary masked values decrease, since the phase of

the mixture contains increasingly more corrupted phase estimates. However after 50

iterations of the MISI algorithm, the relative SNR gains for 6 sources increase by

approximately 6 dB per source, to a value which is higher than the average phase

binary masking value for 3 sources.
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Figure 6.7: Averaged SNR time-domain synthesis performance when using the MISI
algorithm given the true magnitude spectra of the sources. The first iteration is
equivalent to binary masking of the phase, and the MISI algorithm clearly improves
the source estimates with each iteration.

An example of the estimation of a mixture containing 4 sources over 1000 itera-

tions is illustrated in Figure 6.8. The SNR gains after 1000 iterations vary for each

source, ranging from 6 to 21 dB. The majority of the gains for sources 2 to 4 occur in

the first 50 iterations, whereas the predominant performance gains continue to rise

for the first source until the 300th iteration.

Employing the MISI algorithm for source synthesis is clearly advantageous when
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Figure 6.8: SNR improvements of 4 separated sources using the MISI algorithm over
1000 iterations. Asymptotic behaviour plateaus around the 50th iteration for all the
sources with the exception of the first source.

the source magnitudes are known, however in the context of a source separation

architecture, the magnitudes for each source are often estimated. To simulate the

effect of magnitude estimation errors, additive white Gaussian noise (AWGN) was

added to each of the source samples and the erroneous magnitudes were fed into the

MISI algorithm to observe the performance on source synthesis. Figure 6.9 illustrates

the separated source SNRs as a function of the source SNRs due to AWGN, for 20

mixtures containing 4 sources, after 100 iterations of the MISI algorithm. Once again,

the first iteration is the phase binary masking baseline, and the results clearly show

that given sufficiently accurate estimates, the MISI algorithm provides noticeable

improvements. Below a certain source SNR threshold, in this case 13 dB, there is a

marginal decrease in performance relative to phase binary masking. Above this value

however, the magnitude estimates are sufficiently accurate for the MISI algorithm to

converge to the true sources.
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Figure 6.9: Performance of the MISI algorithm with the inclusion of Additive White
Gaussian Noise to the source estimates. A threshold determines the point at which
the MISI algorithm improves the source estimates.

6.4.3 Separation of 3 sources

To illustrate the potential of the proposed methods, the magnitude track prediction

method and the MISI algorithm were placed within the context of a source separation

system. A mixture was then separated using the separation system shown in Figure

6.10.

The mixture, comprised of three notes C4, E4 and G4, played by the tuba, Eb

clarinet and alto saxophone, was selected for its perpetual use in Western music and

high inter-instrument correlations resulting in a large proportion of overlapping har-

monic tracks. To isolate the performance evaluation to that of the proposed methods,

ground truth source track estimates were calculated from the original sources. Over-

lapping tracks were identified using Equation 6.3, and estimated using the magnitude

track prediction method. The magnitude spectra of the sources were then estimated
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Figure 6.10: System diagram of the separation system for performance evaluation.

using the non-overlapping tracks, the estimated harmonic tracks and the STFT of

the mixture. For the non-overlapping tracks, source magnitude estimates were de-

termined using binary masking [129], while the spectral synthesis [102] method was

employed for approximating the magnitude spectra of the estimated tracks (see Sec-

tion 4.2.1). Using the source magnitude estimates and the time-domain mixture

signal, the sources were then synthesised using the MISI algorithm. The perfor-

mance at each iteration of the MISI algorithm was evaluated using the separation

measures described in [122], from the BSS_EVAL MATLAB toolbox.

The results shown in Figures 6.11, 6.12 and 6.13 correspond to the Source-to-

Distortion Ratio (SDR), Source-to-Interference Ratio (SIR) and Source-to-Artifacts

Ratio (SAR) performance metrics [122]. The results are shown for each source, over

100 iterations of the MISI algorithm. The SDR curves in Figure 6.11, show the dis-

tortion reduction of the first and third sources due to the MISI algorithm, increasing

the SDR by 1 dB and 5.5 dB respectively, while the SDR of the second source de-

creased by 1 dB. Since SDR ≈ SAR, it can be concluded that the predominant

errors are attributed to the signal artifacts which are caused by source magnitude

estimation errors. However, since the average SDR and SAR values increase, the
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source magnitude estimates are adequate, and this is attributed to the effectiveness

of the harmonic track prediction method. The errors due to source interference,

illustrated in Figure 6.12, clearly confirm the negligible impact of the interference

errors. The large SIR values continue to increase with each iteration of MISI algo-

rithm, with the exception of the first source, which decreases after the 18th iteration.

This asymptotic decrease is, on average, offset by the significant increase of the third

source, which is a compromise the MISI algorithm makes to obtain optimal global

error minimisation without implicit knowledge of the sources. At a systemic level,

the harmonic track prediction method produced sufficiently accurate estimates from

which the MISI algorithm was able to improve the average SIR by 24 dB.
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Figure 6.11: Source-to-Distortion Ratio of 3 separated sources as a function of MISI
iterations. The magnitude spectra produced by the harmonic magnitude track pre-
dictions were sufficiently accurate for the MISI algorithm to improve to average SDR
of the sources.

Table 6.1 compares the SDR, SIR and SAR performance, of three approaches

with successively increasing levels of ground truth to determine the source magnitude
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Figure 6.12: Source-to-Interference Ratio of 3 separated sources as a function of MISI
iterations. Overall, the MISI algorithm provides drastic reduction of interference
errors.

spectra. The first approach employs the prediction method to estimate overlapping

tracks, followed by the previously described magnitude estimation. The second ap-

proach utilises the ground truth for all the tracks, including the overlapping tracks,

followed by magnitude estimation. The final approach uses the ground truth for

all the magnitude spectra of the sources. The results show that when using phase

binary masking (it = 1), the harmonic track prediction method produces results

that are comparable to that of the ground truth tracks, and the sinusoidal model

is a reasonable approximation for estimating the magnitude. After 100 iterations of

the MISI algorithm however, the closed-loop estimator is able to capitalise on even

small magnitude spectra improvements, producing gains of greater than 10 dB for

the SDR of the ground truth magnitude.
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Figure 6.13: Source-to-Artifacts Ratio of 3 separated sources as a function of MISI
iterations. The resemblance to the SDR results indicates that the predominant source
of error is due to artifacts.

6.4.4 Subjective Evaluation

The results presented in Chapter 5 highlighted the importance of considering the

perceptual aspects of source separation. In practise, objective measures provide a

means of efficiently evaluating large quantities of separated mixtures, however until a

robust objective timbre distortion measure is developed, subjective tests provide the

best discriminator of perceptual separation quality for music source separation. In

this section we evaluate the subjective quality of the proposed methods in a source

separation architecture, using a MUSHRA listening test using MUSHRAM [121].

6.4.4.1 Stimuli

Six musical instrument samples were selected from the University of Iowa musical

instrument samples database [1] and are listed in Table 6.2. The duration of the
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SDR (dB) SIR (dB) SAR (dB)

(it = 1) (it = 100) (it = 1) (it = 100) (it = 1) (it = 100)

1. Predicted tracks 15.14 16.96 43.88 67.93 15.24 16.96

2. Ground truth tracks 15.74 19.49 42.14 70.01 15.9 19.49

3. Ground truth magnitude 16.32 26.50 35.69 60.45 16.56 26.50

Table 6.1: Comparison of the average separation performance of successively in-
creasing levels of ground truth for estimating the magnitude spectra. Performance
is evaluated over 100 iterations of the MISI algorithm.

samples were between 1.5-4 s and all of the samples were recorded using 16 bits and

a 44100 Hz sampling rate. They were chosen for their representation of different

instrument families, thus having different timbres and inharmonicities. The samples

are also harmonically related to each other, resulting in a large number of overlapping

harmonic tracks.

Instrument # Instrument Note F0 (Hz)
1 Alto Saxophone C4 261.63
2 Trumpet E4 329.63
3 Viola G4 392.00
4 Tenor Trombone Bb4 466.16
5 Bb Clarinet D5 587.33
6 Cello F5 698.46

Table 6.2: Musical instrument samples

Eight mixtures with polyphonies varying between 1-6, listed in Table 6.3, were

created to test the subjective quality of the proposed methods in the context of a

source separation architecture. The mixtures were separated using an automatic sep-

aration framework supplied with the note fundamental frequencies, and note onsets

and offsets. A harmonic tracking algorithm based on [34] was used to form harmonic

tracks from which overlapping harmonics were resolved using estimates from the

harmonic magnitude track prediction method. Source magnitude spectra were then

estimated using binary masking for non-overlapping regions and sinusoidal synthesis

for overlapping regions, and the synthesised time-domain estimates were obtained

after 20 iterations of the MISI algorithm.

For comparative purposes, the overlapping harmonics were also resolved using

spectral interpolation and no magnitude track prediction, and the time-domain sep-
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Mix # Polyphony Instrument # in mix
1 1 1
2 1 2
3 1 3
4 2 1, 2
5 2 3, 4
6 3 1, 2, 3
7 4 1, 2, 3, 4
8 5 1, 2, 3, 4, 5
9 6 1, 2, 3, 4, 5, 6

Table 6.3: Musical instrument mixtures

arated sources were also synthesised using binary masking of the mixed phase spec-

trum. Three algorithms were evaluated thus used in the evaluation shown in Table

6.4.

Algorithm # Overlap resolution Synthesis
1 Predicted Tracks MISI
2 Spectral Interpolation Binary Masking
3 None Binary Masking

Table 6.4: The 3 algorithms evaluated in the subjective tests, with differing methods
for overlap resolution and time-domain synthesis.

The resulting separated sounds from instruments 1, 2 and 3 from each polyphony

were then evaluated in the subjective tests. Thus the stimuli comprised of 54 sounds

from 3 instruments, 6 polyphonies and 3 separation algorithms.

6.4.4.2 Procedure

Five listeners aged between 22 and 27 participated in the experiment, 3 of which had

musical training with experience ranging between 5-10 years. The stimuli presenta-

tion was controlled using MATLAB on a PC with a MOTU 828mkII audio interface.

The levels of the stimuli were adjusted to have equal A-weighted levels and were

presented monaurally through Beyerdynamic DT 770 headphones, at a comfortable

listening level in a quiet, acoustically treated recording studio.

A MUSHRA paradigm was used for the experiment which comprised of 18 trials.

Each trial consisted of a reference sound and 3 test sounds whose quality was to be

rated against the reference sound. The reference sounds were the original, unaltered
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sounds from [1] that were used in creating the mixtures found in Table 6.3. The

order of the 4 test sounds were randomised, and comprised of 3 stimuli from the 3

different algorithms at the same polyphony and 1 anchor sound which was the same

as the reference sound.

Each participant was briefed on the nature of the experiment, and was told

that they had the task of grading the quality of each of the test sounds between

0-100 with respect to the reference sounds. A test sound that was perceptually

identical to the reference sound was given a score of 100 and test sounds that deviated

significantly from the reference sounds were given lower scores. In the training phase,

each participant then listened to all the sounds that they would have to grade, paying

attention to the varying levels of distortion between the test sounds and the reference

sounds. Once the participants had familiarised themselves with the stimuli, they

then proceeded to the evaluation phase. In the evaluation phase, participants were

presented with an interface that allowed them to play the reference sound and the

test sounds. The interface also had 5 sliders which allowed the participants to grade

the tests sounds between 0-100. Once they had graded each of the test sounds in

the trial, they then clicked a “Save and proceed” button and continued to grade the

tests sounds of the next trial until all the trials were complete.

6.4.4.3 Results

The scores for the stimuli were averaged over all participants and stimuli of the same

polyphony and algorithm were then also averaged. These results are illustrated in

Figure 6.14.

The results indicate that Algorithm 1, containing both of the proposed meth-

ods, produced the least perceptual distortions for all polyphonies. Consistent with

the other objective measures, the performance of all 3 algorithms perceptually de-

graded as the polyphony increased. Algorithm 3 provided the baseline and expect-

edly produced the most audibly distorted sounds in general, since no harmonic track

resolution method was used. However, for a polyphony of 6, the mis-estimations

resulting from spectral interpolation in Algorithm 2, proved to be perceptually more

detrimental than not estimating the overlapped harmonics at all. The overall qual-
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ity assessments are generally consistent with the previous results, particularly with

the individual instrument correlation results in Figure 6.5. The differences in per-

formance can be explained by the instruments added at each stage, and the pre-

dictability of their harmonic magnitude tracks. For example, in the case of the two

source mixture, the addition of the trumpet, which is well predicted by both spectral

interpolation and the track prediction method, resulted in perceptually better sepa-

ration compared to Algorithm 3. When the Bb clarinet was added into the 5 source

mixture, the poor estimation of the spectral interpolation method resulted in a drop

in quality compared to the higher quality prediction offered by the track prediction

method.
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Figure 6.14: Participant scores for the subjective quality assessment. The figure
shows the averaged scores from the participants, for sounds 1, 2 and 3 for each
polyphony.
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6.5 Discussion

The results presented in Section 6.4.1 highlight the gains achieved by exploiting both

the spectral and temporal harmonic information in the estimation of overlapping har-

monic magnitude tracks. In the evaluations comparing the spectral, temporal and

the proposed spectro-temporal approach, the benefits of each method were high-

lighted. Spectral approaches provide good information about the general shape of

the temporal trajectory, and this is due to the inherent averaging of the magnitude

tracks. In the case of spectral linear interpolation, the magnitude tracks are pre-

dicted to be the average of the adjacent tracks, and this averaging produces results

which reduce the variability of the estimated shape, as seen in correlation coeffi-

cients of Figure 6.4. In addition to the shape information, the spectral approach

also provides scale information, which is obtained in the interpolation process. This

scale information is reasonably accurate for certain musical instruments which have

a smoother spectral envelope (see Figure 6.5), however for other instruments, this

scale information can lead to grossly inaccurate estimation. This is particularly ev-

ident in the RMSE results in Figure 6.6, where the spectral interpolation method

produced the lowest performance. By contrast, the temporal approaches performed

well in the track estimation for various polyphonic mixtures, and this is primarily at-

tributed to the ability to estimate the scale of harmonic tracks from non-overlapping

regions. While temporal approaches have this over their spectral counterparts, their

performance relies on a single harmonic track, such as the strongest harmonic track

[130] or the adjacent harmonic track [127]. As Figure 6.5 illustrates, there are certain

instruments for which this produces good results, but there are also instruments for

which such an assumption does not hold. The solution is therefore to combine the

merits of both the spectral and temporal approaches, creating an estimator which

is able to exploit spectral averaging to determine trajectory shape, as well as use

non-overlapping temporal regions to determine trajectory scale. The harmonic mag-

nitude track prediction method does both, by linearly combining neighbouring har-

monic tracks to produce a trajectory shape estimate, and exploiting non-overlapping

regions to estimate the scale of the track. The results verify the combinatorial per-
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formance benefits. In general shape estimation (Figure 6.4), the magnitude track

predictor achieved the highest correlation coefficient scores with the least amount of

variability relative to the other methods, producing the best results consistently over

all the instruments tested (Figure 6.5). The RMSE results for track estimation in

harmonic mixtures also emphasise the merits of the prediction method, surpassing

the interpolation method due to the estimation of scale, and bettering the temporal

methods due to the estimation of shape. In the broader context of source separation,

the magnitude track prediction method provides a spectro-temporally derived esti-

mate of harmonic magnitude tracks which can be employed to approximate source

magnitude spectra estimates using methods such as filtering [34], partial demixing

[127] or least-squares [130].

Given these source magnitude spectra, it is then possible to synthesise the sources.

Besides sinusoidal synthesis based techniques, the majority of source synthesis is

heavily reliant on the phase spectrum of the mixture. This becomes increasingly

more problematic as the polyphony of the mixtures increase, since it results in an

increasing number of overlapping harmonics and thus an increasing amount of cor-

rupted phase information. The MISI algorithm provides a closed-loop approach to

the synthesis of sources, minimising the error between the collective source estimates

and the time-domain mixture. Given the true magnitude spectra of the sources,

the MISI algorithm is able to substantially improve on phase binary masking, pro-

viding increasing performance gains with increasing polyphony (Figure 6.7). The

performance benefits vary from source to source, dependent on the proportion of

overlap, with source synthesis SNRs ranging from 6 dB to 21 dB in the example

presented in Figure 6.8. When presented with erroneous estimates of the source

magnitude spectra, the performance of the MISI algorithm is dependent on the esti-

mation error. When the source magnitude estimates are below a certain threshold,

the performance of the MISI algorithm suffers a minor degradation relative to phase

binary masking. However, when the source magnitude estimates are above a cer-

tain error threshold, the MISI algorithm produces performance gains significantly

larger than the losses incurred when below the threshold (Figure 6.9). Overall, the

MISI algorithm highlights the merits of a closed-loop synthesis algorithm, which
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contrasts with the predominant use of open-loop algorithms for synthesising sources

in sinusoid-based separation systems. The iterative phase estimation of the MISI

algorithm produces significant gains, minimising the synthesis errors with respect to

the time-domain mixture, given sufficiently accurate source magnitude spectra.

Embedding the proposed methods in a separation architecture in Section 6.4.3,

highlighted the importance of precision estimation at every stage of the separation

process. The harmonic magnitude track prediction model provides a robust means

of estimating sinusoidal magnitude tracks with high precision, performing similarly

to the ground truth of the tracks (at it = 1). After 100 iterations of the MISI

algorithm however, the additional improvements to the magnitude estimation become

increasingly more significant. Future investigations should focus on utilising the

MISI algorithm with magnitude spectra estimated as a combination of sinusoidal

and non-sinusoidal components. While the sinusoidal model accounts for most of

the salient energy in harmonic instrument signals, the additional gains achieved by

estimating non-sinusoidal information appear to be significant with regard to the

MISI algorithm.

The subjective tests in Section 6.4.4, offered insight into the overall performance

of the proposed methods from a perceptual perspective. The participant assessments

were, on the whole, consistent with the objective results, suggesting that the sep-

aration quality was dependent on the proportion of overlapped harmonics in the

mixtures. Furthermore, the results were also related to the instrument type and the

track estimation method employed. The robust estimation of the harmonic magni-

tude track prediction method across a variety of instruments, resulted in perceptually

superior performance across the various mixtures.

6.6 Conclusion

Within the context of source separation systems, two particularly challenging issues

are the resolution of overlapping harmonics and source synthesis. To address the

issue of overlapping harmonics, a model was presented which exploited the spectro-

temporal correlations of harmonic magnitude tracks. The benefits of combining the
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spectral and temporal information were verified in a performance evaluation, where

the prediction method was shown to be superior in all regards.

The Multiple Input Spectrogram Inversion (MISI) algorithm was also presented,

which iteratively estimates time-domain sources given source magnitude spectra and

the time-domain mixture. Given sufficiently accurate magnitude spectra, the closed-

loop architecture of the algorithm effectively minimised the source phase errors,

resulting in significant improvements in the Signal-to-Noise Ratio of synthesised

sources.
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Chapter 7

Conclusions

7.1 Conclusions

This thesis has presented several methods related to the separation of musical sources

in polyphonic mixtures. It has specifically focused on the separation of pitched

sounds, and methods by which the harmonic component can be successfully segre-

gated from a mixture. Experiments were also conducted exploring perceptual sensi-

tivity to timbre to aid in the formulation of an objective distortion metric for timbre.

7.1.1 Source Separation

The source separation of musical mixtures is a complex problem that involves the

collaboration of several mechanisms. In this thesis, a signal model-based separation

paradigm was employed. Using a sinusoidal parametrisation to model the harmonics

of pitched sounds, the harmonic peaks were identified and the refinement of pa-

rameters was accomplished using the PDFFT. This novel, computationally efficient

estimation algorithm presented in Section 3.2, computes highly accurate estimates of

sinusoid frequencies using coarse frequency estimates provided from the FFT and the

time derivative of the phase response. For single sinusoid frequency estimation, the

accuracy of the PDFFT outperformed the frequently employed QIFFT, even with

zero-padding, at the expense of only 4 multiplies per peak. Unlike other interpo-

lation methods, the PDFFT was shown to also perform well at resolving multiple

frequencies from a single peak in the magnitude spectrum.
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Due to the inherent properties of musical mixtures (discussed in Section 2.1.2),

overlapping harmonics are a prevalent issue in music source separation. To assist

in the resolution of these harmonics, a quantitative investigation into the nature

of the spectro-temporal correlations between the harmonic tracks of 3000 instru-

ment samples was conducted. It was found that the highest similarity was between

directly adjacent harmonics, with similarity decreasing exponentially as a function

of distance from the harmonic location. Using regularised least squares, modelled

weighting functions were then derived for the prediction of harmonic tracks as a

linear combination of neighbouring tracks. The modelled weighting functions were

then used to construct model harmonic tracks from which ambiguous harmonics in

polyphonic mixtures were identified (Section 3.3.4).

Obtaining parametric estimates of the sources of a mixture is only a portion of the

complete source separation objective. The parametric data must then be synthesised

in the time-domain (Section 4.1.1). Using estimates of the source magnitudes, a novel

multiple input spectrogram inversion (MISI) algorithm was presented to iteratively

estimate the phase response of each source. The sum of the source estimates is

minimised with respect to the mixture signal, and average RMS errors less than

10−3 are achieved for mixtures of 6 sources given accurate source magnitude spectra.

The precision of the phase estimation was found to be governed by the fidelity of

the magnitude spectra and given accurate magnitudes, the MISI algorithm produced

significant synthesis improvements over existing methods.

In Chapter 6, a novel harmonic magnitude track prediction method was intro-

duced, based on the spectro-temporal correlation findings of Section 3.3. This was

combined with the closed-loop synthesis approach of the MISI algorithm, to offer

solutions to the issues of overlapping harmonics and source re-synthesis for music

mixtures. Performance evaluations of the individual methods were conducted exclu-

sively, as well as in the context of a source separation system. The results of the

objective and subjective evaluations revealed that the proposed methods provided

substantial advancements over existing approaches over a wide variety of instruments

and polyphonies.
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7.1.2 Exploration of Timbre

The experiments presented in Chapter 5 explored the perceptual sensitivity of timbre.

In the first experiment, sensitivity to the modification of the spectral envelopes of

musical instruments was investigated. By observing the just-noticeable attenuation

levels of several frequency bands, spectral envelope sensitivity was shown to vary as a

function of frequency and bandwidth. The first few harmonics were generally found

to govern the overall sensitivity, with sensitivity decreasing for higher frequencies

and wider bandwidths.

The second experiment presented novel methods for investigating the spectral

envelope space. Trumpet and clarinet sounds were morphed using 7 different linear-

logarithmic permutations, to explore classification thresholds. Psychometric func-

tions were approximated for the subjective results and classification thresholds were

compared to spectrum parametrisations, revealing that the spectral envelope space is

best described using logarithmic frequency resolution. Additional masking analysis

revealed psychoacoustic masking models should be considered in the development of

timbre space models.

The third experiment investigated the perceptual sensitivity to the noise compo-

nent of pitched sounds. Musical instrument samples were separated into harmonic

and noise components, and the sensitivity to the attenuation of several frequency

bands of the noise components were measured. Noise sensitivity was generally lower

compared to spectral envelope sensitivity, with the sensitivity varying for different

instruments. The low frequency harmonics were effective maskers of noise and max-

imum sensitivity was found to be around 6-11 kHz.

7.2 Future Work

7.2.1 Source separation utilising broader temporal context

The separation methods presented in this thesis primarily address the separation of

pitched sounds occurring simultaneously. This is one of the more difficult problems

and instrument anonymity adds further complications. While the sounds considered
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throughout this research were recordings of acoustic instruments, they were consid-

ered in isolation. Music signals typically consist of several instruments playing a

series of notes. The majority of these notes are played simultaneously with other

notes, but there may be occasions when notes are played in isolation or they dom-

inate the mixture for a particular time period. In these time periods, information

about the nature of the tones may be used to construct tone models that may aid in

the separation of other sounds played simultaneously elsewhere in the mixture. This

is an example of integrating broader temporal context into separation systems - an

area which has yet to be explored in great detail.

There is also a wealth of contextual information that has yet to be harnessed

by incorporating musicological models into separation systems. These models can

be used to predict the probabilities of the properties of future notes, such as their

onset time and their fundamental frequency. For example, most music pieces have

a particular musical “key” they are played in, increasing the probability of notes

being played at a certain F0. “Time signatures” also guide the underlying rhythmic

structure of the piece, increasing the probability of notes being played at certain

times. Utilising this sort of information in separation architectures will be beneficial,

particularly in the analysis stages of the system.

Music signals have a vast amount of useful information that can be gleaned by

considering broader temporal context and future research should investigate these

avenues.

7.2.2 Development of Objective Distortion Metric for Timbre

Several attempts have been made to develop a deeper understanding of the timbre

space [42, 43, 17, 50, 47, 49], however the information has yet to be consolidated

into an objective distortion metric. The research on timbre is generally converging

towards a consensus of the “axes” that define the multidimensional nature of timbre,

and these relate to the spectral and temporal variations of musical sounds.

Developing a robust distortion metric for timbre will require further investiga-

tion into the perceptual sensitivity of temporal variations, temporal and frequency

parametrisations that adequately map to perception, and an exploration into the
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benefits of incorporating psychoacoustic masking models.

145



Bibliography

[1] The University of Iowa musical instrument samples.

http://theremin.music.uiowa.edu/, Date last viewed 24/9/2008. 50, 55,

70, 79, 93, 103, 115, 120, 132, 135

[2] T. J. Abatzoglou. A fast maximum likelihood algorithm for frequency estima-

tion for a sinusoid based on newton’s method. IEEE Trans. Acoust., Speech,

Signal Processing, 33(1):77–89, 1985. 38

[3] S.A. Abdallah and M.D. Plumbley. Polyphonic music transcription by non-

negative sparse coding of power spectra. International Conference on Music

Information Retrieval, 2004. 6, 110

[4] M. Abe and J.O. Smith III. Design criteria for the quadratically interpolated

fft method (i): Bias due to interpolation. Technical report, Technical Report

STAN-M-114, Dept. of Music, Stanford University, August 2004. 31, 44

[5] S. S. Abeysekera. An efficient hilbert transform interpolation algorithm for

peak position estimation. In Proc. IEEE Signal Processing Workshop on Sta-

tistical Signal Processing, pages 417–420, 2001. 38

[6] J. Allen. Short term spectral analysis, synthesis, and modification by discrete

fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, 25(3):235–238, 1977. 21

[7] L.D. Alsteris and K.K. Paliwal. Iterative reconstruction of speech from short-

time fourier transform phase and magnitude spectra. Computer Speech & Lan-

guage, 21(1):174–186, 2007. 66, 119

146

http://theremin.music.uiowa.edu/


BIBLIOGRAPHY

[8] ANSI. American national standard psychoacoustical terminology. American

National Standards Institute, New York, 1973. 75

[9] ANSI. American national standard acoustical terminology. American National

Standards Institute, New York, 1994. 15

[10] H. Barlow. Redundancy reduction revisited. Network: Computation in Neural

Systems, 12(3):241–253, 2001. 6

[11] A. J. Bell and T. J. Sejnowski. An information maximization approach to

blind separation and blind deconvolution. Neural Computation, 7(6):1004–

1034, 1995. 6

[12] A.J. Bell and T.J. Sejnowski. The “independent components” of natural scenes

are edge filters. Vision Research, 37(23):3327–3338, 1997. 5

[13] K.W. Berger. Some factors in the recognition of timbre. J. Acoust. Soc. Am.,

36(10):1888–1891, 1964. 76

[14] A.S. Bregman. Auditory scene analysis. MIT Press Cambridge, 1990. 3

[15] G. J. Brown. Computational auditory scene analysis: A representational ap-

proach. PhD thesis, University of Sheffield, 1992. 5

[16] J.C. Brown. Calculation of a constant q spectral transform. J. Acoust. Soc.

Am, 89(1):425–434, 1991. 20

[17] A. Caclin, S. McAdams, B. K. Smith, and S. Winsberg. Acoustic correlates

of timbre space dimensions: A confirmatory study using synthetic tones. J.

Acoust. Soc. Am., 118:471–482, 2005. 76, 77, 97, 144

[18] M.A. Casey and A. Westner. Separation of mixed audio sources by independent

subspace analysis. In Proc. International Computer Music Conference, 2000.

110

[19] C. Chafe, K. Kashima, B. Mont-Reynaud, and J. Smith. Source separation and

note identification in polyphonic music. Technical report, Stanford University,

Report STAN-M-29, 1985. 8

147



BIBLIOGRAPHY

[20] P. Comon et al. Independent component analysis, a new concept? Signal

Processing, 36(3):287–314, 1994. 6

[21] P. Cook. Tbone: An interactive waveguide brass instrument synthesis work-

bench for the next machine. Proceedings of the 1991 International Computer

Music Conference, Montreal, pages 297–299, 1991. 29

[22] M. P. Cooke. Modelling auditory processing and organisation. PhD thesis,

University of Sheffield, 1991. 5

[23] R. Crochiere. A weighted overlap-add method of short-time fourier analy-

sis/synthesis. IEEE Transactions on Acoustics, Speech, and Signal Processing,

28(1):99–102, 1980. 22

[24] S. Davis and P. Mermelstein. Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. IEEE Trans.

Acoust., Speech, Signal Processing, 28(4):357–366, 1980. 97

[25] M. Davy and SJ Godsill. Bayesian harmonic models for musical signal analysis.

Bayesian Statistics, 7, 2003. 7, 8

[26] P. Depalle, G. Garcia, X. Rodet, and P. IRCAM. Tracking of partials for

additive sound synthesis using hidden markov models. In Proc. IEEE Int.

Conf. Acoust., Speech, Signal Processing, 1993. 31, 49

[27] P. Depalle, T. Helie, and P. IRCAM. Extraction of spectral peak parame-

ters using a short-time fourier transform modeling and no sidelobe windows.

Proc. IEEE ASSP Workshop on Applications of Signal Processing to Audio and

Acoustics, 1997. 31, 38

[28] R. Desimone and J. Duncan. Neural mechanisms of selective visual attention.

Annual Review of Neuroscience, 18(1):193–222, 1995. 28

[29] D. Deutsch, editor. The Psychology of Music. Academic Press, 1999. 1, 103

[30] R. Duda, R. Lyon, and M. Slaney. Correlograms and the separation of sounds.

In Proc. IEEE Asilomar conf. on sigs., sys. and computers, 1990. 5, 20

148



BIBLIOGRAPHY

[31] D. Ellis and D. Rosenthal. Mid-level representations for computational audi-

tory scene analysis. In Proc. Int. Joint Conference on Artificial Intelligence

Workshop on Computational Auditory Scene Analysis, August 1995. 20

[32] D.P.W. Ellis. Prediction-driven computational auditory scene analysis. PhD

thesis, Massachusetts Institute of Technology, 1996. 5

[33] M.R. Every. Separation of musical sources and structure from single-channel

polyphonic recordings. PhD thesis, University of York, 2006. 60, 63

[34] M.R. Every and J.E. Szymanski. Separation of synchronous pitched notes by

spectral filtering of harmonics. IEEE Trans. on Audio, Speech, Lang. Process.,

14(5):1845–1856, 2006. 7, 20, 31, 35, 36, 48, 49, 60, 66, 110, 111, 114, 117, 121,

133, 138

[35] D. FitzGerald. Automatic Drum Transcription and Source Separation. PhD

thesis, Dublin Institute of Technology, 2004. 10

[36] H. Fletcher. Auditory patterns. Reviews of Modern Physics, 12(1):47–65, 1940.

26

[37] A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith. Query by humming:

musical information retrieval in an audio database. Proc. ACM International

conference on Multimedia, 1995. 9

[38] M. Goodwin. Residual modeling in music analysis-synthesis. In Proc. IEEE

Int. Conf. Acoust., Speech, Signal Processing, 1996. 32, 37

[39] M. Goto. A predominant-f0 estimation method for cd recordings: Map esti-

mation using em algorithm for adaptive tone models. Proc. IEEE Int. Conf.

Acoust., Speech, Signal Processing, 2001. 7

[40] M. Goto and Y. Muraoka. A sound source separation system for percussion

instruments. Trans. Institute of Electronics, Information and Communication

Engineers, 77(5):901–911, 1994. 10

149



BIBLIOGRAPHY

[41] David M. Green and Christine R. Mason. Auditory profile analysis: Frequency,

phase, and weber’s law. J. Acoust. Soc. Am., 77:1155–1161, 1985. 78

[42] J. M. Grey. An exploration of musical timbre. PhD thesis, Stanford University,

1975. 76, 93, 103, 144

[43] J. M. Grey. Multidimensional perceptual scaling of musical timbres. J. Acoust.

Soc. Am., 61:1270–1277, 1977. 76, 77, 78, 97, 144

[44] D. Griffin and J. Lim. Signal estimation from modified short-time fourier

transform. IEEE Trans. Acoust., Speech, Signal Process., 32(2):236–243, 1984.

66, 67, 118, 119

[45] D. Griffin and J. Lim. A new model-based speech analysis/synthesis system.

In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1985. 31, 35

[46] D. Gunawan and D. Sen. Sinusoidal frequency estimation based on the time

derivative of the stft phase response. Proc. Int. Conf. on Information, Com-

munications and Signal Processing, Bangkok, pages 1452–1456, 2005. 31, 38,

114

[47] D. Gunawan and D. Sen. An exploration of the spectral envelope space of mu-

sical instruments using envelope morphing permutation strategies. Association

of Research in Otolaryngology (ARO) Convention, Denver, 2007. 76, 144

[48] D. Gunawan and D. Sen. Identification of partials in polyphonic mixtures based

on temporal envelope similarity. 123rd Audio Engineering Society Convention,

New York, October 2007. 13, 115

[49] D. Gunawan and D. Sen. Sensitivity to musical instrument noise in harmon-

ics plus noise modelling. International Conference on Music Communication

Science, Sydney, 2007. 76, 144

[50] D. Gunawan and D. Sen. Spectral envelope sensitivity of musical instrument

sounds. J. Acoust. Soc. Am., 123(1):500–506, 2008. 25, 76, 144

150



BIBLIOGRAPHY

[51] H. von Helmholtz. On the Sensation of Tone. New York: Dover, 1954. 17, 28,

75

[52] P. Herrera-Boyer, G. Peeters, and S. Dubnov. Automatic classification of mu-

sical instrument sounds. Journal of New Music Research, 32(1):3–21, 2003.

29

[53] A. Horner, J. Beauchamp, and R. So. Detection of random alterations to time-

varying musical instrument spectra. J. Acoust. Soc. Am., 116:1800–1810, 2004.

77, 78, 79, 83, 85, 86, 92, 103

[54] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and

applications. Neural Networks, 13(4-5):411–430, 2000. 6

[55] J. Johnston, S. Quackenbush, G. Davidson, K. Brandenburg, and J. Herre.

MPEG audio coding. In A. Akansu and M. Medley, editors, Wavelet, Subband,

and Block Transforms in Communications and Multimedia. Kluwer Academic,

1999. 90, 99

[56] M. Karjalainen, J. Backman, and J. Polkki. Analysis, modeling, and real-time

sound synthesis of the kantele, a traditional finnish string instrument. Proc.

IEEE Int. Conf. Acoust., Speech, Signal Processing, 1993. 29

[57] M. Karjalainen, UK Laine, TI Laakso, and V. Valimaki. Transmission-line

modeling and real-time synthesis of string and wind instruments. Proceedings

of the 1991 International Computer Music Conference, Montreal, pages 293–

296. 29

[58] K. Kashino and S.J. Godsill. Bayesian estimation of simultaneous musical

notes based on frequency domain modelling. Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Processing, 2004. 20

[59] K. Kashino, K. Nakadai, T. Kinoshita, and H. Tanaka. Organization of hier-

archical perceptual sounds: Music scene analysis with autonomous processing

modules and a quantitative information integration mechanism. Proc. Inter-

national Joint Conf. on Artificial Intelligence, 1995. 5

151



BIBLIOGRAPHY

[60] K. Kashino and H. Tanaka. A sound source separation system with the ability

of automatic tone modeling. Proc. International Computer Music Conference,

pages 248–255, 1993. 5

[61] C. Kayser, C.I. Petkov, M. Lippert, and N.K. Logothetis. Mechanisms for

allocating auditory attention: An auditory saliency map. Current Biology,

15(21):1943–1947, 2005. 28

[62] A. Klapuri. Number theoretical means of resolving a mixture of several har-

monic sounds. In Proc. European Signal Processing Conference, 1998. 18

[63] A. Klapuri. Sound onset detection by applying psychoacoustic knowledge.

Proc. IEEE. Int. Conf. on Acoustics, Speech and Signal Processing, 1999. 8

[64] A. Klapuri. Multiple fundamental frequency estimation based on harmonic-

ity and spectral smoothness. IEEE Trans. Speech and Audio Processing,

11(6):804–816, 2003. 7, 20, 38, 44

[65] A. Klapuri. Signal Processing Methods for the Automatic Transcription of

Music. PhD thesis, Tampere University of Technology, 2004. 7, 8

[66] A. Klapuri. Multiple fundamental frequency estimation by summing harmonic

amplitudes. International Conference on Music Information Retrieval, Victo-

ria, Canada, October 2006. 7, 29

[67] A.P. Klapuri. Multipitch estimation and sound separation by the spectral

smoothness principle. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-

cessing, 2001. 111

[68] C. Koch and S. Ullman. Shifts in selective visual attention: towards the un-

derlying neural circuitry. Hum Neurobiol, 4:219–227, 1985. 28

[69] L. Biscainho L. Nunes, R. Merched. Recursive least-squares estimation of the

evolution of partials in sinusoidal analysis. In Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Processing, 2007. 31, 49

152



BIBLIOGRAPHY

[70] M. Lagrange, S. Marchand, and J.B. Rault. Using linear prediction to enhance

the tracking of partials. In Proc. IEEE Int. Conf. Acoust., Speech, Signal

Processing, volume 4, pages 241–244, 2004. 49

[71] D.D. Lee and H.S. Seung. Algorithms for non-negative matrix factorization.

Advances in Neural Information Processing Systems, 13:556–562, 2001. 6

[72] S.N. Levine. Audio representations for data compression and compressed do-

main processing. PhD thesis, Stanford University, 1999. 30

[73] H. Levitt. Transformed up-down methods in psychoacoustics. J. Acoust. Soc.

Am., 49:467–477, 1971. 82, 86, 105

[74] D.A. Luce. Physical correlates of nonpercussive musical instrument tones. PhD

thesis, Massachusetts Institute of Technology, 1963. 76

[75] M. D. Macleod. Fast nearly ml estimation of the parameters of real or complex

single tones or resolved multiple tones. In IEEE Trans. Signal Processing,

volume 46, pages 141–148, 1998. 31, 38

[76] R.C. Maher and J.W. Beauchamp. Fundamental frequency estimation of

musical signals using a two-way mismatch procedure. J. Acoust. Soc. Am,

95(4):2254–2263, 1994. 30

[77] S. Makeig, A.J. Bell, T.P. Jung, T.J. Sejnowski, et al. Independent compo-

nent analysis of electroencephalographic data. Advances in Neural Information

Processing Systems, 8:145–151, 1996. 5

[78] K.D. Martin. Automatic transcription of simple polyphonic music: Robust

front end processing. Massachusetts Institute of Technology Media Laboratory

Perceptual Computing Section Technical Report, (399), 1996. 8

[79] L.G. Martins, J.J. Burred, G. Tzanetakis, and M. Lagrange. Polyphonic instru-

ment recognition using spectral clustering. In Proc. International Conference

on Music Information Retrieval, 2007. 29

153



BIBLIOGRAPHY

[80] S. McAdams, J. W. Beauchamp, and S. Meneguzzi. Discrimination of musical

instrument sounds resynthezied with simplified spectrotemporal parameters.

J. Acoust. Soc. Am., 105:882–897, 1999. 76, 77, 79, 97, 103

[81] R. McAulay and T. Quatieri. Speech analysis/synthesis based on a sinusoidal

representation. IEEE Trans. Acoust., Speech, Signal Process., 34(4):744–754,

1986. 7, 29, 30, 31, 35, 37, 48, 49, 59, 66, 110, 112, 113, 114

[82] R. Meddis and L. O’Mard. A unitary model of pitch perception. J. Acoust.

Soc. Am, 102(3):1811–1820, 1997. 34

[83] D.K. Mellinger. Event formation and separation in musical sound. PhD thesis,

Stanford University, 1991. 5

[84] B. C. J. Moore. Introduction to the Psychology of Hearing. Macmillan, London,

1977. 80

[85] BCJ Moore and BR Glasberg. A revision of zwicker’s loudness model. Acustica,

82(2):335–345, 1996. 26, 27

[86] K. K. Paliwal and B. S. Atal. Efficient vector quantization of LPC parameters

at 24 Bits/Frame. IEEE Trans. Speech and Audio Processing, 1:3–14, 1993.

77, 78, 83, 85, 88, 92

[87] T.W. Parsons. Separation of speech from interfering speech by means of har-

monic selection. J. Acoust. Soc. Am., 60:911–918, 1976. 7, 111, 121

[88] RD Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, and

M. Allerhand. Complex sounds and auditory images. Auditory Physiology

and Perception, pages 429–446, 1992. 27

[89] D. B. Paul. The spectral envelope estimation vocoder. IEEE Trans. Acoust.,

Speech, Signal Processing, ASSP-29:786–794, 1981. 76, 77, 88, 93

[90] R. Plomp. Timbre as a multidimensional attribute of complex tones. In

R. Plomp and G. F. Smoorenburg, editors, Frequency Analysis and Period-

icity Detection in Hearing. Sijthoff, Leiden, 1970. 76, 77

154



BIBLIOGRAPHY

[91] R. Plomp and W.J.M. Levelt. Tonal consonance and critical bandwidth. J.

Acoust. Soc. Am, 38:548–560, 1965. 18

[92] B. G. Quinn. Estimation of frequency, amplitude, and phase from the dft of a

time series. IEEE Trans. Signal Processing, 45(3):814–817, 1997. 38

[93] E. Rank and G. Kubin. A waveguide model for slapbass synthesis. In Proc.

IEEE Int. Conf. Acoust., Speech, Signal Processing, pages 443–446, 1997. 29

[94] D. C. Rife and R. R. Boorstyn. Single-tone parameter estimation from discrete-

time observations. In IEEETrans. Info. Theory, volume 20, pages 591–598,

1974. 31, 38

[95] O. Rioul and M. Vetterli. Wavelets and signal processing. IEEE Signal Pro-

cessing Magazine, 8(4):14–38, 1991. 23

[96] T.D. Rossing. The Science of Sound. Addison-Wesley, 1990. 16

[97] B. Scharf. Critical bands and the loudness of complex sounds near threshold.

J. Acoust. Soc. Am., 31:365–370, 1959. 26

[98] E.D. Scheirer. Tempo and beat analysis of acoustic musical signals. J. Acoust.

Soc. Am., 103(1):588–601, 1998. 8, 9

[99] JF Schouten. The perception of timbre. Reports of the 6th International

Congress on Acoustics, 1968. 76

[100] D. Sen and WB Kleijn. Synthesis methods in sinusoidal and waveform-

interpolation coders. Proceedings of the IEEE Workshop on Speech Coding

for Telecommunications, pages 79–80, 1995. 59

[101] X. Serra. A System for Sound Analysis/Transformation/Synthesis Based on a

Deterministic Plus Stochastic Decomposition. PhD thesis, Stanford University,

1989. 7, 30, 110, 113

[102] X. Serra, J. Bonada, P. Herrera, and R. Loureiro. Integrating complementary

spectral models in the design of a musical synthesizer. In Proc. International

Computer Music Conference, 1997. 59, 63, 64, 66, 112, 129

155



BIBLIOGRAPHY

[103] X. Serra and J. Smith III. Spectral modeling synthesis: A sound analy-

sis/synthesis system based on a deterministic plus stochastic decomposition.

Computer Music Journal, 14(4):12–24, 1990. 32, 37

[104] M. Slaney. Auditory toolbox, version 2. Technical Report No: 1998-010, 1998.

97

[105] M. Slaney and R.F. Lyon. On the importance of time-a temporal representation

of sound. Visual Representations of Speech Signals, pages 95–116, 1993. 27

[106] M. Slaney, D. Naar, RE Lyon, A.C. Inc, and CA Cupertino. Auditory model

inversion for sound separation. Proc. IEEE. Int. Conf. on Acoustics, Speech

and Signal Processing, 1994. 20

[107] Malcolm Slaney. An efficient implementation of the Patterson-Holdsworth au-

ditory filter bank. Technical Report 35, Apple Computer, 1993. 27, 81

[108] P. Smaragdis. Redundancy Reduction for Computational Audition, a Unifying

Approach. PhD thesis, Massachusetts Institute of Technology, 2001. 5, 6

[109] P. Smaragdis. Discovering auditory objects through non-negativity constraints.

ISCA Tutorial and Research Workshop on Statistical and Perceptual Audio

Processing, 2004. 6

[110] P. Smaragdis and JC Brown. Non-negative matrix factorization for polyphonic

music transcription. In IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics, pages 177–180, 2003. 110

[111] J.O. Smith and X. Serra. Parshl: A program for the analysis/synthesis of

inharmonic sounds based on a sinusoidal representation. In Proc. International

Computer Music Conference, 1987. 7, 30, 31, 35, 37, 38, 110, 113

[112] J.O. Smith III. Physical modeling using digital waveguides. Computer Music

Journal, 16(4):74–91, 1992. 29

[113] E. Terhardt. Calculating virtual pitch. Hearing Research, 1:155–182, 1979. 34

156



BIBLIOGRAPHY

[114] DJ Thomson. Spectrum estimation and harmonic analysis. Proceedings of the

IEEE, 70(9):1055–1096, 1982. 31, 35, 36

[115] T. Tolonen and M. Karjalainen. A computationally efficient multipitch analysis

model. IEEE Trans. Speech and Audio Processing, 8(6):708–716, 2000. 7, 8

[116] K. Torkkola. Blind separation for audio signals–are we there yet. Proc. Int.

Workshop on Independent Component Analysis and Blind Separation of Signals

(ICA’99), pages 239–244, 1999. 6

[117] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE

Trans. Speech and Audio Processing, 10(5):293–302, 2002. 9

[118] G. Tzanetakis, G. Essl, and P. Cook. Audio analysis using the discrete wavelet

transform. In Proc. WSES Int. Conf. Acoustics and Music: Theory and Ap-

plications, 2001. 20

[119] V. Valimaki, J. Huopaniemi, M.. Karjalainen, and Z. Janosy. Physical modeling

of plucked string instruments with application to real-time sound synthesis.

Journal of the Audio Engineering Society, 44(5):331–353, 1996. 30

[120] TS Verma and THY Meng. A 6kbps to 85kbps scalable audio coder. In Proc.

IEEE Int. Conf. Acoust., Speech, Signal Processing, 2000. 30

[121] E. Vincent. MUSHRAM: A MATLAB interface for MUSHRA listening tests

interface for mushra listening tests, 2005. 132

[122] E. Vincent, R. Gribonval, and C. Fevotte. Performance measurement in blind

audio source separation. IEEE Trans. on Audio, Speech and Language Pro-

cessing, 14(4):1462–1469, 2006. 129

[123] T. Virtanen. Sound source separation using sparse coding with temporal con-

tinuity objective. Proc. International Computer Music Conference, pages 231–

234, 2003. 6, 110

[124] T. Virtanen. Sound Source Separation in Monaural Music Signals. PhD thesis,

Tampere University of Technology, 2006. 110

157



BIBLIOGRAPHY

[125] T. Virtanen and A. Klapuri. Separation of harmonic sound sources using

sinusoidal modeling. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,

2:765–768, 2000. 5, 7, 31, 35, 36, 48, 49, 55, 115

[126] T. Virtanen and A. Klapuri. Separation of harmonic sounds using multipitch

analysis and iterative parameter estimation. IEEE Workshop on the Applica-

tions of Signal Processing to Audio and Acoustics, pages 83–86, 2001. 20

[127] H. Viste and G. Evangelista. A method for separation of overlapping partials

based on similarity of temporal envelopes in multi-channel mixtures. IEEE

Trans. Speech and Audio Processing, 14(3):1051–1061, May 2006. 6, 20, 50, 55,

56, 60, 111, 115, 121, 137, 138

[128] P. J. Walmsley. Signal Separation of Musical Instruments. PhD thesis, Uni-

versity of Cambridge, 2000. 7

[129] D.L. Wang. On ideal binary mask as the computational goal of auditory scene

analysis. Speech Separation by Humans and Machines, 2005. 60, 63, 64, 66,

112, 117, 129

[130] J. Woodruff, Y. Li, and D.L. Wang. Resolving overlapping harmonics for

monaural musical sound separation using pitch and common amplitude mod-

ulation. Proc. Int. Conf. on Music Information Retrieval, 2008. 66, 111, 112,

115, 121, 137, 138

[131] X. Zhu, GT Beauregard, and LL Wyse. Real-time signal estimation from

modified short-time fourier transform magnitude spectra. IEEE Trans. on

Audio, Speech, Lang. Process., 15(5):1645–1653, 2007. 66, 118, 119

[132] E. Zwicker. Subdivision of the audible frequency range into critical bands

(frequenzgruppen). J. Acoust. Soc. Am., 33:248, 1961. 26

[133] E. Zwicker and H. Fastl. Psychoacoustics, Facts and Models. Springer-Verlag,

Berlin, 1990. 26

158


	Title Page - Musical Instrument Sound Source Separation
	Abstract
	Acknowledgements
	List of publications
	Acronyms and Abbreviations
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Music Signal Modelling for Source Separation
	Chapter 3 - Harmonic Signal Modelling for Musical Mixtures and Separation
	Chapter 4 - Synthesis of Separated Sources
	Chapter 5 - Perceptual sensitivity of Timbre: Towards an objective distortion metric
	Chapter 6 - Separation of Harmonic Musical Instrument Notes using Spectro-Temporal Modelling of Harmonic Magnitudes and Multiple Input Spectrogram Inversion
	Chapter 7 - Conclusions
	Bibliography

