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Abstract

Multiple Input Multiple Output with Orthogonal Frequency Division Multiplexing (MIMO-

OFDM) has been widely adopted as one of the most promising air interface solutions for

future broadband wireless communication systems due to its high rate transmission capa-

bility and robustness against multipath fading. However, these MIMO-OFDM advantages

cannot be achieved unless the channel state information (CSI) can be obtained accurately

and promptly at the receiver to assist coherent detection of data symbols. Channel esti-

mation and training sequence design are, therefore, still open challenges of great interest.

In this work, we investigate the Linear Minimum Mean Square Error (LMMSE) chan-

nel estimation and design nearly optimal training sequences for MIMO-OFDM systems

in spatially correlated fading. We, first, review the LMMSE channel estimation model for

MIMO-OFDM in spatially correlated fading channels. We, then, derive a tight theoretical

lower bound of the channel estimation Mean Square Error (MSE). By exploiting the infor-

mation on channel correlation matrices which is available at the transmitter, we design a

practical and nearly optimal training sequence for MIMO-OFDM systems . The optimal

transmit power allocation for training sequences is found using the Iterative Bisection

Procedure (IBP). We also propose an approximate transmit power allocation algorithm

which is computationally more efficient than the IBP while maintaining a similar MSE

performance. The proposed training sequence design method is also applied to MIMO-

OFDM systems where Cyclic Prefixing OFDM (CP-OFDM) is replaced by Zero Padding

OFDM - OverLap-Add method (ZP-OFDM-OLA). The simulation results show that the

performance of the proposed training sequence is superior to that of all existing training

sequences and almost achieves the MSE theoretical lower bound.
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Chapter 1

Introduction

1.1 Literature Review and Research Motivation

Multiple Input Multiple Output (MIMO) techniques promise to bring a revolution to

wireless communication with more reliable communication link obtained through diver-

sity [4] [38] [39] and higher data rate by spatial multiplexing [13] [14] [40] [45]. Unfortu-

nately, the computational complexity of MIMO symbol detection in a frequency selective

fading channel grows exponentially with the number of antennas, bandwidth and delay

spread. It is because MIMO receivers must suppress both Multiple Access Interference

(MAI) and Inter Symbol Interference (ISI) to adequately detect the signal. MIMO re-

ceiver complexity in a frequency selective fading channel, therefore, becomes prohibitive

even for a small number of transmit and receive antennas [17]. Meanwhile, the basic

idea of OFDM is to convert a frequency selective channel into a set of parallel flat fad-

ing channels. In addition, the implementation of OFDM is very computationally efficient

thanks to the use of Fast Fourier Transform (FFT) algorithm. Therefore, the combination

of MIMO and OFDM is expected to exploit the MIMO merits at a reasonably and prac-

tically computational complexity [8] [35] [37]. MIMO-OFDM is now adopted as one of

the most promising air interface solutions for future broadband wireless communication

systems [1] [2] [3].

The high data rate transmission capability of MIMO-OFDM can only be achieved if

1



1.1 Literature Review and Research Motivation 2

receiver can obtain the channel state information (CSI) accurately and promptly to assist

coherent detection. This information, in practice, has to be calculated at receiver by chan-

nel estimation. There are two popular approaches to channel estimation: decision-directed

and pilot-symbol-aided. In decision-directed channel estimation scheme, the received in-

formation symbols are used as reference to estimate the CSI. Meanwhile, in the pilot-

symbol-aided channel estimation scheme, a known sequence (called a pilot or a training

sequence) is transmitted and this sequence is used to estimate the channel at the receiver.

Pilot-symbol-aided channel estimation methods have been proved to be more reliable and

allow simpler channel estimation algorithms at receivers at the price of spending higher

power and larger bandwidth for transmitting known training sequences [28].

Channel estimation for MIMO-OFDM systems has received great attention since 1990s.

[7] is among the early works considering OFDM channel estimation using Least Square

(LS) and MMSE estimation methods. In this work, Van de Beek et al. developed LS

and MMSE estimators for OFDM systems in slow fading channels. To further reduce the

complexity, the authors proposed a rank reduced method which only considered the chan-

nel taps with significant energy. In [25], Ye Li et al. derived an MMSE channel estimator

which made full use of the time and frequency domain correlations of the frequency re-

sponse of time-varying dispersive fading channels. The authors showed that their robust

channel estimator could significantly improve the performance of OFDM systems in a

rapid dispersive fading channel. Ye Li et al. extended their work in [26] to obtain a chan-

nel estimator for MIMO-OFDM systems. However, this method is highly complex due to

the inversion of a large matrix as a result of a higher number of unknown channel coeffi-

cients. To resolve this problem, Ye Li proposed two techniques to reduce the complexity

of channel parameter estimation in [27]: optimum training sequence design and simpli-

fied channel estimation method at the expense of a slight performance degradation. [5] is

another attractive work on the topic of MIMO-OFDM channel estimation. In this paper,

Barhumi et al. described an LS channel estimation scheme for MIMO-OFDM systems

based on pilot tones. The authors derived optimal pilot sequences and optimal placement

of the pilot tones with respect to the MSE of the LS channel estimate. An important result
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of this paper is to show that the optimal pilot sequences of this channel estimation method

are equipowered, equispaced and phase shift orthogonal.

MIMO-OFDM channel estimators using LS or MMSE methods in [5] [27] only con-

sidered MIMO-OFDM uncorrelated fading channels. However, MIMO channels are often

spatially correlated in practice. Channel estimation, thus, can be improved by exploiting

the channel correlation. As statistics of MIMO channels change slowly with time [6],

the correlation matrices can be estimated at the receiver and fed back to the transmitter.

Therefore, it is assumed that information on the correlation matrices is available at both

transmitter and receiver for channel estimation and training sequence design.

The topic of optimal training sequence design for MIMO-OFDM in spatially corre-

lated fading channels has been considered in [46] in literature. This paper has successfully

formulated an LMMSE channel estimation model for MIMO-OFDM in spatially corre-

lated fading channels. However, many important issues of designing optimal training

sequence have been left unsolved. Some of them are described below.

• Necessary conditions for optimal training sequences have been derived. However,

the existence of a training sequence satisfying these conditions was not considered.

• The training sequence design in this paper only applies for some special cases of

correlated fading channels. Therefore, the optimal training sequence design for the

general case of correlated fading channels is still an open challenge.

• The transmit power allocation for training sequences only uses an asymptotic solu-

tion at very low and very high Signal to Noise Ratio (SNR). Thus, the MSE perfor-

mance is suboptimal. It is expected that a more accurate transmit power allocation

will help to improve the MSE performance.

• A critical issue of optimal training sequence design in correlated fading environ-

ments is the case when channel correlation matrices are singular due to very highly

correlated fading. Actually, in this case, all the mathematical derivations which

depend on the inverse of channel correlation matrices throughout this paper are
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invalid. Therefore, we need a different approach to consider optimal training se-

quence design for MIMO-OFDM in a more general case of correlated fading.

Our research aims to answer the above open research questions. The achievements

that we have gained are summarized in the next section.

1.2 Thesis Contributions

This thesis focuses on several unsolved issues on optimal training sequence design for

MIMO-OFDM systems in spatially correlated fading channels. The main contributions

of the thesis are highlighted as follows.

• The conditions for MIMO-OFDM optimal training sequences in spatially correlated

fading environments which have been discovered in [46] are reviewed in this thesis.

However, we show that the existence of a training matrix cannot be guaranteed in

general.

• A tight theoretical lower bound on the MSE of MIMO-OFDM channel estimation

in spatially correlated fading environments is extracted in Section 3.2.

• If the channel correlation matrices are singular due to highly correlated fading,

all the formulas depending on the inverse of the channel correlation matrices are

invalid. We address this issue in Section 3.3 by considering the limit of the channel

estimation MSE when the channel correlation matrices approach singularity. We

derive a general expression of the MSE theoretical lower bound in (3.23). This

general expression does not depend on the invertibility of the channel correlation

matrix.

• We show that the optimal transmit power allocation for training sequences to achieve

the MMSE performance of channel estimation is a convex optimization problem.

The solution, therefore, can be found by resorting to the IBP [33].
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• We propose an approximate algorithm for transmit power allocation in Section 3.5.

This algorithm is computationally more efficient while maintaining a similar MSE

performance in comparison with the above IBP.

• A practical and nearly optimal training sequence design is demonstrated in Section

3.6. The proposed training sequence shows to have a superior MSE performance

when compared with all existing training sequences. Its MSE performance almost

achieves the MSE theoretical lower bound as specified in (3.23). It is also showed

that its SER performance is very close to the SER performance when assuming

perfect CSI at receiver.

• The training sequence design for MIMO-OFDM in spatially correlated fading en-

vironments can also be applied to MIMO-OFDM systems in which CP-OFDM is

replaced by ZP-OFDM-OLA. We prove that the MSE performance of MIMO-ZP-

OFDM-OLA optimal training sequence is exactly the same as that for the MIMO-

CP-OFDM case.

1.3 Thesis Organization

The remainder of the thesis is organized as follows.

In Chapter 2, we briefly review the literature on MIMO-OFDM and channel estima-

tion. We carefully consider MIMO and OFDM techniques to understand why they can

be combined together to provide an effective air interface solution for future broadband

wireless communication systems. The reason why LMMSE estimation method is chosen

for MIMO-OFDM channel estimation is explained. We then review the LMMSE channel

estimation model for MIMO-OFDM systems with spatially correlated fading channels.

Finally, we extend the LMMSE channel estimation scheme for MIMO-OFDM systems

where CP-OFDM is replaced by ZP-OFDM-OLA.

In Chapter 3, the problem of optimal training sequence design for MIMO-OFDM in

spatially correlated fading environments is comprehensively treated. We derive a tight

theoretical lower bound on MIMO-OFDM channel estimation MSE. We then design a
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practical and nearly optimal training sequence for MIMO-OFDM in spatially correlated

fading environments. The optimal training sequence design for MIMO-ZP-OFDM-OLA

systems is also developed in a similar fashion to that of MIMO-CP-OFDM systems.

We present our conclusions and perspectives for future work in Chapter 4.



Chapter 2

MIMO-OFDM Channel Estimation

2.1 MIMO

2.1.1 MIMO Introduction

A MIMO system is defined as a point-to-point wireless communication link with multi-

ple antennas at both the transmitter and receiver [15]. Figure 2.1 shows a typical MIMO

system with Mt transmit and Mr receive antennas. Over the last few years, MIMO wire-

less communication has been being a very active research area because of its potential for

achieving higher date rate and more reliable data transmission in comparison with tradi-

tional single antenna systems. The performance improvements of MIMO systems are due

Figure 2.1: A typical MIMO system

7



2.1 MIMO 8

to array gain, diversity gain and spatial multiplexing gain. Below is a brief review of the

performance gains of MIMO communication scheme [8] [22] [35] [47] .

1. Array gain

Array gain is the average increase in SNR at the receiver resulting from the co-

herent combining effect of multiple antennas at the receiver, transmitter or both.

The transmit/receive array gain requires channel knowledge in the transmitter and

receiver, respectively, and depends on the number of transmit and receive antennas.

2. Diversity gain

Received signal strength in a wireless communication link fluctuates significantly

in a random manner due to multipath fading. Diversity is a powerful technique

to combat fading. Diversity techniques rely on transmitting the signal over multi-

ple independent fading paths in time/frequency/space. Spatial (or antenna) diver-

sity is preferable to time/frequency diversity as it does not incur an expenditure

in transmission time or bandwidth. An Mr ×Mt MIMO system can exploit the

diversity capability of order up to Mt .Mr with an appropriate space-time coding

technique [4] [39] [38]

3. Spatial Multiplexing Gain

It has been proved that MIMO communication offers an increase of the transmis-

sion rate (or capacity) in proportional with the number of transmit-receive antenna

pairs (or min(Mt ,Mr)) for the same bandwidth and with no additional power ex-

penditure [13] [14] [40] [45]. Such capacity gain can be achieved in a rich scat-

tering propagation environment and can be realized by transmitting independent

data streams over multiple antennas. The receiver exploits all the spatial degrees of

freedom of the MIMO channel to decode the received signals, thereby realizing the

capacity gain.

4. Trade-off
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The price of using a MIMO system is the significantly increased complexity in

transceiver signal processing and the difficulty of multiple antenna implementation.

In addition, it is important to know that it is impossible to exploit all the gains at the

maximum capability simultaneously due to the limit of the available spatial degrees

of freedom of MIMO channels.

2.1.2 MIMO Channel Model

A flat fading point-to-point wireless communication system employing Mt transmit and

Mr receive antennas is shown in Figure 2.1. This system can be represented by the fol-

lowing discrete-time channel model



r0
...

rMr−1


 =




h00 . . . h0(Mt−1)
... . . . ...

h(Mr−1)0 . . . h(Mr−1)(Mt−1)







s0
...

sMt−1


+




n0
...

nMr−1




or, simply,

r = Hs+n (2.1)

where

s =
(

s0 s1 . . . sMt−1

)T
represents the Mt-dimensional transmitted signal vector.

r =
(

r0 r1 . . . rMr−1

)T
represents the Mr-dimensional received signal vector.

n =
(

n0 n1 . . . nMr−1

)T
is the Mr-dimensional Additive White Gaussian Noise

(AWGN) noise vector C N (0,σ2IMr).

H is the Mr×Mt channel matrix whose elements hi j represent the channel gain from

jth transmit antenna to ith receive antenna.

2.1.3 Capacity of MIMO Channels

Capacity of Deterministic MIMO Channels

In this part, we consider the MIMO channel H to be deterministic.
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The capacity of a Gaussian channel with transmit power constraint P is defined as [12]

C = max
f (x):E[X2]≤P

I(X ;Y ) bit/s/Hz (2.2)

where X and Y are respectively transmitted and received symbol. The maximization

is taken over all possible input distributions f (x) under the transmit power constraint

E[X2]≤ P.

It is well-known that the capacity of a Gaussian channel is achieved when X is a

circular symmetric complex Gaussian random variable X ∼ C N (0,P).

The corresponding capacity of a deterministic MIMO channel is [40]

C = max
Rss

log2 det
(

IMr + 1
σ2 HRssHH

)
bit/s/Hz (2.3)

where the maximization is performed over all possible input covariance matrix satisfying

the power constraint trace{Rss} ≤ P.

Perfect Channel State Information at Transmitter and Receiver (CSIT and CSIR)

It is assumed here that the CSI is known at both transmitter and receiver. The SVD of the

MIMO channel H is written as

H = UΛVH

where U and V are unitary matrices and Λ is the diagonal matrix of singular values of H.

Accordingly, the transmitted signal can be precoded by multiplying with a transmit

precoding matrix V and the received signal is multiplied by a receive shaping matrix UH

(see Figure 2.2).

The receiver output can be written as

y = UHr

= UH
(

H(Vs)+n
)

= UHUΛVHVs+UHn

= Λs+UHn

or, equivalently,

yi = λisi + ñi , i = 1, . . . ,rank(H) (2.4)
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Figure 2.2: Transmit Precoding and Receive Shaping for MIMO channel

where λi is the ith singular value of H.

Equation (2.4) indicates that a MIMO channel can be transformed into parallel non-

interfering Single Input Single Output (SISO) channels.

Following Equation (2.4), the MIMO channel capacity can be written as

C = max
Pi:∑i Pi≤P

rank(H)

∑
i=1

log2(1+λ 2
i

Pi

σ2 ) (2.5)

where Pi denotes the power allocated for the ith channel of the parallel channels.

The optimal transmit power allocation to achieve the maximum data transmission rate

can be found by resorting to the so-called water-filling principle [11] [12].

CSIR only Acquiring perfect channel knowledge at transmitter is, in general, very dif-

ficult in practical systems. Thus, we assume that the CSI is known at the receiver only.

In this case, the transmitter cannot optimize the transmit power allocation or input co-

variance as it has no knowledge of the channel. Then, it is reasonable to allocate transmit

power equally between transmit antennas, i.e., Rss = P
Mt

IMt . Thus, from (2.3), the capacity

of a deterministic MIMO channel with CSIR is

C = log2 det
(

IMr + P
Mtσ2 HHH

)
bit/s/Hz (2.6)

which may be decomposed as

C =
rank(H)

∑
i=1

log2(1+λ 2
i

P
Mtσ2 ).
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Capacity of MIMO Fading Channels

We have so far discussed channel capacity when the MIMO channel H is deterministic.

We now consider the case when H is a Rayleigh fading channel. We assume that the

receiver has perfect knowledge of the channel while the transmitter has no knowledge of

the channel.

Since the channel is random, the capacity corresponding to that channel is also ran-

dom. We will consider two important notions of capacity - ergodic capacity and outage

capacity - which respectively relate to the mean and tail behaviors of MIMO fading chan-

nel capacity.

Ergodic Capacity Ergodic capacity of a MIMO channel is defined as an ensemble av-

erage of the information rate over the whole distribution range of elements of the channel

matrix H.

Cergodic = EH

[
log2 det

(
IMr + P

Mtσ2 HHH
) ]

bit/s/Hz. (2.7)

Ergodic capacity is often used as the capacity of fast fading channels where the channel

conditions change very quickly in the fast fading environment. Therefore, the capacity of

fast fading channels is calculated as the average capacity over a period of time.

Outage Capacity As H is a Rayleigh fading channel, there is always a nonzero prob-

ability that the capacity of a channel realization is lower than an expected information

rate. We define the p%-outage capacity Cout,p as the information rate that is guaranteed

for (100− p)% of the channel realizations, i.e.,

P(C ≤Cout,p) = p%. (2.8)

Outage capacity is often referred as the capacity of slow fading channels where the chan-

nel gain is random but remains constant for a long time. Suppose that a transmitter sends

data at a rate R bits/s/Hz. However, at the time when the channel is in deep fade and the

channel capacity at that time does not exceed the rate R, then the decoding error proba-

bility cannot be made arbitrarily small irrespective of what channel code to be used in the

transmitter. In this case, the communication system is said to be in outage.
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Figure 2.3: Capacity of MIMO fading channel for various antenna configurations



2.2 OFDM 14

Figure 2.3(a) and 2.3(b) respectively show the ergodic capacity and 1%-outage capac-

ity of Rayleigh fading channel for several MIMO configurations as a function of SNR.

Throughout this thesis, SNR is defined as the ratio between total transmit power P and

total noise power σ2. It is clear from these figures that the capacity of a MIMO channel

increase by r bit/s/Hz (r = min(Mt ,Mr)) for every 3dB increase in SNR (for high SNR)

as opposed to 1 bit/s/Hz in conventional SISO channels.

2.2 OFDM

2.2.1 OFDM Introduction

A high data rate wireless communication scheme is highly desired in many applications.

However, when symbol rate increases, i.e., symbol duration reduces, the received sig-

nal will be suffered from more severe InterSymbol Interference (ISI) which is caused by

the dispersive nature of wireless channels. Thus, a more complex equalization scheme

is required. To facilitate the simplicity of equalization at receiver, OFDM modulation

divides the entire bandwidth of a frequency selective wireless channel into many narrow-

band subchannels whose bandwidth is less than the coherence bandwidth of the wireless

channel. Therefore, each subchannel experiences relatively flat fading and the ISI on each

subchannel is negligible. Figure 2.4 shows this idea graphically.

Another advantage of using OFDM modulation is the high spectral efficiency due to

the use of a set of orthogonal carrier frequencies. That means the spectra of the subcarriers

are overlapped with each other but remain orthogonal as shown in Figure 2.5.

In addition, the data modulation and demodulation on the orthogonal subcarriers can

be implemented by IFFT/FFT algorithm. The implementation of OFDM modulators and

demodulators, therefore, benefits from the computational efficiency of IFFT/FFT.

To deal with channel delay spread, a guard interval is introduced between OFDM

signal blocks. The guard interval, whose length should exceed the maximum excess delay,

is in form of a cyclic prefix in standard CP-OFDM or in form of a zero-padding interval in

ZP-OFDM-OLA. We will discuss about CP-OFDM in the next sections. ZP-OFDM-OLA
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Figure 2.4: OFDM subchannels

(a) Conventional FDM

(b) OFDM

Figure 2.5: Comparison between conventional FDM and OFDM
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Figure 2.6: a typical OFDM system

Figure 2.7: a discrete-time LTI channel

will be discussed in detail in Section 2.8.2.

A graphical view of a standard OFDM transmission system is provided in Figure 2.6.

In the next part, we will elaborate on the mathematical details of OFDM systems [32] [44]

.

2.2.2 OFDM Mathematical View

Block Transmission

We consider a digital communication system with a Linear and Time Invariant (LTI)

discrete-time baseband equivalent channel (Figure 2.7). Transmitted sequence s(n) passes

through an LTI discrete-time baseband equivalent channel with the finite impulse response
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h(l) of length L (the channel order L is determined by dividing the maximum path delay

τmax by the sampling period Ts).

The received baseband signal is expressed as

r(n) =
L−1

∑
l=0

h(l)s(n− l)+w(n) (2.9)

or,

r(n) = h(n)∗ s(n)+w(n)

where

r(n) is the received signal at time index n,

h(l) is the impulse response of the channel,

w(n) is the AWGN noise at time index n.

The received baseband signal in (2.9) can be expressed in a different form as below

r(n) = h(0)s(n)+
L−1

∑
l=1

h(l)s(n− l)+w(n) (2.10)

where the first term is the desired received signal at time n and the second term plays as

the ISI which distorts the desired received signal.

To mitigate such time-domain dispersive effect which gives rise to frequency selec-

tivity, we divide the transmitted sequence into block of size P. P is chosen to be much

longer than the channel order L.

Define the ith transmitted block to be s(i) = [s(iP),s(iP + 1), . . . ,s(iP + P−1)]T and

the ith received block to be r(i) = [r(iP),r(iP+1), . . . ,r(iP+P−1)]T .

The linear convolution operation as in (2.9) can be expressed in a matrix-vector form

as follows

r(i) = Hs(i)+HIBIs(i−1)+w(i) (2.11)

where w(i)∼ C N (0,σ2IP) is the corresponding P×1 AWGN noise vector.

H and HIBI are respectively a P×P lower and upper triangular Toeplitz matrix which
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are determined as below

H =




h(0) 0 0 . . . 0
... h(0) 0 . . . 0

h(L−1) . . .
. . . . . .

...
... . . . . . .

. . . 0

0 . . . h(L−1) . . . h(0)




and

HIBI =




0 . . . h(L−1) . . . h(1)
... . . . 0 . . . ...

0 . . .
. . . . . . h(L−1)

...
...

... . . . ...

0 . . . 0 . . . 0




.

Due to the time-domain dispersive nature of the channel, InterBlock Interference (IBI)

arises between successive blocks and renders r(i) dependent on both s(i) and s(i−1).

To obtain IBI-free received signal blocks, we must introduce a guard interval whose

length is at least L into the transmitted blocks s(i). The guard interval of length L is added

into the information-bearing N×1 vector s̄(i) by pre-multiplying with a P×N precoding

matrix T, where P = N +L

s(i) = Ts̄(i).

We can rewrite Equation (2.11) as

r(i) = HTs̄(i)+HIBITs̄(i−1)+w(i). (2.12)

We observe that P transmitted symbols are now used to transfer only N = P−L information-

bearing symbols. The other L transmitted symbols are redundant symbols acting as a

guard interval.

Two popular methods of filtering a long sequence on a block-by-block basis using

FFT are the OverLap-Save method (OLS) and the OverLap-Add method (OLA) [36] [34].

Motivated by the OLS method, a cyclic prefix of length L, acting as a guard interval, is



2.2 OFDM 19

Figure 2.8: a mathematical view of CP-OFDM

added into the transmitted block. At receiver, the first L elements of the received blocks

are simply discarded. This method is used in standard CP-OFDM system. Meanwhile,

deriving from the OLA method, L trailing zeros is padded into the transmitted block s(i).

This method is used in ZP-OFDM-OLA system. ZP-OFDM-OLA will be treated in detail

in Section 2.8.2.

In the next section, we will look into mathematical details of CP-OFDM system.

Standard CP-OFDM

Figure 2.8 depicts the baseband discrete time block equivalent model of a standard CP-

OFDM system. The ith N×1 information block s(i) is first precoded by the IFFT matrix

FH
N to yield the time-domain block vector

s̃(i) = FH
N s(i). (2.13)

Then a cyclic prefix of length L is added to the time-domain block vector by copying the

last L elements of s̃(i) and placing onto the beginning of s̃(i) to form a P×1 transmitted

block where P = N +L. This step is equivalent to pre-multiplying s̃(i) with a cyclic prefix

matrix Tcp defined by

Tcp =


 0L×N−L IL

IN


 .

Thus, we have

scp(i) = Tcps̃(i). (2.14)

The transmitted block scp(i) then passes through the LTI channel of order L. The received

block is written in matrix-vector form as in (2.11)

r(i) = Hscp(i)+HIBIscp(i−1)+w(i)
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At the receive side, the received block r(i) is pre-multiplied by a receive matrix

Rcp =
(

0N×L IN

)
in order to remove the first L entries of r(i), i.e., remove the IBI

component. We have

RcpHIBI = 0.

Thus,

rcp(i) = Rcpr(i)

= RcpHscp(i)+RcpHIBIscp(i−1)+Rcpw(i)

= RcpHscp(i)+Rcpw(i). (2.15)

Finally, the IBI-free received block rcp(i) is multiplied with the FFT matrix FN

ŝ(i) = FNrcp(i)

= FNRcpHTcpFH
N s(i)+FNRcpw(i)

= FNH̃FH
N s(i)+FNRcpw(i) (2.16)

where H̃ = RcpHTcp is an N×N circulant matrix with the first row(
h(0) 0 . . . 0 h(L−1) . . . h(1)

)
.

Equalization of CP-OFDM transmission relies on the following two well-known prop-

erties

• Property 1 (Diagonalization of a circulant matrix): an N×N circulant matrix H̃

can be diagonalized by pre- and post- multiplication with N-point FFT and IFFT

matrices, i.e.,

FNH̃FH
N = DH = diag

(
H0 H1 . . . HN−1

)
(2.17)

where

Hk =
L−1

∑
l=0

h(l)e
− j2πkl

N . (2.18)

• Property 2: the statistics of a random noise vector is unchanged by a unitary trans-

formation.
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Consider a random noise vector w∼ C N (0,Rw), then

E[w̃] = E[FNw] = 0

and

Rw̃ = E[wHFH
N FNw]

= E[wHw]

= Rw (2.19)

Therefore, Equation (2.16) can be rewritten as

ŝ(i) = diag
(

H0 H1 . . . HN−1

)
s(i)+ w̃(i) (2.20)

where w̃(i) = FNRcpw(i).

Without loss of generality, we can drop the block index i. Equation (2.20) is simplified

to

ŝk = Hksk + w̃k,k = 0,1, . . . ,N−1. (2.21)

It is clear from (2.21) that the frequency selective channel is divided into parallel sub-

channels and received symbols on each subchannel can be decoded independently.

2.3 Space-Time Coding

Space Time Block Coding (STBC) is a very remarkable transmit diversity technique in

MIMO communication. It starts with Alamouti’s genuinely brilliant simple idea about

a transmit diversity technique for wireless communication using orthogonal code and

two transmit antennas [4]. A similar approach was used to generalise STBC for MIMO

systems involving an arbitrary number of antennas in [38]. The extension to other transmit

diversity techniques such as space time trellis coding [39], space frequency coding [10]

and space time frequency coding [29] has also been well investigated. In this section, we

will carefully examine Alamouti space time coding for a communication system using

two transmit antennas and one receive antenna. A STBC scheme for a 4× 4 MIMO
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Figure 2.9: A block diagram of Alamouti space time encoder

communication system proposed in [38] is reviewed in Section 3.10. This STBC scheme

will be used to examine the SER performance of the proposed training sequence design in

Chapter 3. Readers who are interested in the topic of space time coding are recommended

to look for further information in relevant textbooks [21] [43].

Alamouti code We consider a communication system with two transmit antennas and

one receive antenna employing Alamouti code as in Figure 2.9.

First, the transmitter picks two symbols s1 and s2 from the input sequence. It then

sends s1 from antenna 1 and s2 from antenna 2 at time 1. At time 2, it transmits −s∗2 and

s∗1 from Antenna 1 and 2, respectively. Accordingly, the transmitted codeword is

C =


 s1 s2

−s∗2 s∗1


 .

It is important to note that the two columns of the square matrix C are orthogonal as their

inner product is equal to zero,i.e.

s1s∗2 +(−s∗2s1) = 0.

Let us assume that the wireless channel is Rayleigh flat fading and the path gains from

transmit antenna 1 and 2 to the receive antenna are respectively h1 and h2. We also assume

that these gains are constant across two consecutive symbol transmission periods.
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The received signals at time 1 and 2 can be expressed as:

r1 = h1s1 +h2s2 +n1

r2 = −h1s∗2 +h2s∗1 +n2

where n1 and n2 represents AWGN noise at the receiver at time 1 and 2 respectively.

The received signals can be expressed in a vector-matrix form as follows.

 r1

r2


 =


 s1 s2

−s∗2 s∗1





 h1

h2


+


 n1

n2




or

r = Ch+n. (2.22)

Take the negative complex conjugate of the second received signal, we have

 r1

−r∗2


 =


 h1 h2

−h∗2 h∗1





 s1

s2


+


 n1

n∗2




or

r̃ = Hs+ ñ. (2.23)

We now assume that the channel gains h1 and h2 can be perfectly recovered at the receiver.

The decoding procedure can be performed by left-multiplying HH as follows

y = HH r̃

= HHHs+HH ñ

= (|h1|2 + |h2|2)s+w. (2.24)

That is,

yi = (|h1|2 + |h2|2)si +wi, i = 1,2. (2.25)

We note that the statistics of the noise w in (2.24) is unchanged in comparison with

the noise n in (2.22) due to a unitary transformation and conjugation operation.
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It is clear from (2.25) that Alamouti space time coding provides the diversity order of

2 for a 2×1 Multiple Input Single Output (MISO) communication channel. It is straight

forward to extend this scheme to the case of 2 transmit antennas and Mr receive antennas

where the maximum diversity order is up to 2Mr.

It is also very important to note that the Alamouti space time decoding procedure has

low complexity as each symbol is decoded separately using only linear signal processing.

The performance of Alamouti code over a Rayleigh flat fading channel is provided

in Figure 2.10. This figure shows the symbol error rate (SER) against SNR for wireless

communication systems using QPSK constellation and different number of transmit and

receive antennas. It is clear that the SER performance of communication systems using

Alamouti code with two transmit antennas is much better than that of a SISO system.

2.4 MIMO-OFDM

2.4.1 Why MIMO and OFDM ?

MIMO techniques promise to bring a revolution to wireless communication with more

reliable communication link obtained through diversity [4] [39] [38] and higher data rate

by spatial multiplexing [40] [13] [14] [45]. However, a major challenge of MIMO system

is the complexity of signal processing, especially at the receive side. Data transmission

through a broadband wireless channel is expected to experience large delay spread and,

thus, has to deal with frequency selectivity. Unfortunately, the computational complexity

of MIMO symbol detection in a frequency selective fading channel grows exponentially

with the bandwidth and delay spread [35] and becomes infeasible even for a small number

of transmit/receive antennas. Hence, most MIMO signaling techniques developed so far

are for frequency flat fading channel only.

Meanwhile, the basic idea of OFDM is to convert a frequency selective channel into

a set of parallel flat fading channels. Moreover, the implementation of OFDM is very

computationally efficient thanks to the use of IFFT/FFT algorithm.

Therefore, the combination of MIMO and OFDM is expected to exploit the MIMO
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Figure 2.11: A typical MIMO-OFDM system model

merits at a reasonably and practically computational complexity. MIMO-OFDM is now

recognized as one of the most promising air interface solutions for future broadband wire-

less communication systems.

2.4.2 MIMO-OFDM Signal Model

A typical MIMO-OFDM system is shown in Figure 2.11. The transmitted data sequence

is first encoded into Mt sequences by an encoder such as a space–time encoder. Then

the encoded sequence at each output of the encoder is divided into blocks of N symbols.

Each block goes through an OFDM modulator to form an OFDM block. And each of

these OFDM blocks is transmitted through a transmit antenna.

The MIMO-OFDM system has Mt transmit antennas and Mr receive antennas. N is

the number of subchannels for each OFDM block. The OFDM cyclic prefix length is

chosen to be longer than the channel order L to avoid Inter Block Interference (IBI).

The three-dimensional view of MIMO-OFDM transmitted signal is demonstrated in

Figure 2.12.
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Figure 2.12: 3D view of MIMO-OFDM transmitted signal
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For the kth subchannel, received signal at the ith receive antenna is

ri(k) =
Mt−1

∑
j=0

Hi j(k)s j(k)+ ñi(k)

or, equivalently,

ri(k) = hT
i (k)s(k)+ ñi(k)

where Hi j(k) is defined as in (2.18)

Hi j(k) =
L−1

∑
l=0

hi j(l)e
− j2πkl

N

and hi j(l), l = 0, . . . ,L−1 is the channel impulse response from jth transmit antenna to ith

receive antenna.

hT
i (k) =

(
Hi0(k) Hi1(k) . . . Hi(Mt−1)(k)

)
is a row vector.

Stacking signals at all receive antennas and normalize the noise terms to unit variance,

we have

r(k) =
√

ρ
Mt

H f (k)s(k)+n(k) (2.26)

where

ρ is the expected received SNR at each receive antenna.

r(k) =
(

r0(k) r1(k) . . . rMr−1(k)
)T

is the received signal vector.

s(k) =
(

s0(k) s1(k) . . . sMt−1(k)
)T

is the transmitted signal vector. Each entry

of s(k) has unit mean square on average, i.e. ∑N−1
k=0 s(k)Hs(k) = NMt .

n(k) =
(

n0(k) n1(k) . . . nMr−1(k)
)T

is the i.i.d complex Gaussian random noise

vector with zero mean and unit variance C N (0,IMr).

H f (k) is the MIMO channel frequency response matrix on the kth subchannel

H f (k) =
L−1

∑
l=0

Hle− j2π lk
N (2.27)

where Hl is the Mr×Mt channel matrix of the lth tap, l = 0,1, . . . ,L−1 with the coefficient

[Hl]i, j to be hi j(l) defined above.
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2.5 Channel Estimation

2.5.1 Introduction to Channel Estimation

In MIMO-OFDM systems as well as other digital communication systems, CSI is needed

for signal detection at the receiver. Its accuracy directly affects the overall performance

of the system. In the previous sections, we had assumed perfect channel knowledge when

analyzing the performance of MIMO systems. However, in practice, CSI has to be esti-

mated.

There are two popular approaches to channel estimation: decision-directed and pilot-

symbol-aided. Each of the two schemes has its own advantages and drawbacks. In the

decision-directed channel estimation scheme, CSI is estimated by exploiting the statistical

properties of the communication channel and the received information symbols. As no

independent pilot signal is needed, the entire transmission session can be used to send in-

formation symbols. The decision directed channel estimation scheme is, therefore, ideally

bandwidth efficient in theory. However, this channel estimation scheme has some critical

drawbacks. Firstly, the computation based on second-order statistics of the channel and

received signal is highly complicated. It is, therefore, impractical to implement decision

directed channel estimation in real time communication systems. Secondly, decision-

directed methods often rely on time averaging, thus are only suitable for slowly varying

channel where the channel statistics do not change over a long period. It is well known

that all decision directed channel estimation algorithms have very poor performance in

fast fading communication channels. Consequently, decision-directed channel estimation

methods have limited use in practice due to their high computational cost and restriction

to some data and channel assumptions.

In pilot symbol aided channel estimation scheme, a pilot (or training) sequence, known

to the receiver, is embedded into the transmitted signal frame and sent through the chan-

nel. At the receiver, CSI is estimated from the received signal and the known pilot se-

quence. Pilot symbol aided channel estimation algorithms, in general, have high accuracy

and relatively low computational complexity. Therefore, this channel estimation scheme
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Figure 2.13: A schematic representation of channel estimation: conventional pilot symbol

aided vs. superimposed training

is widely used in current wireless communication systems. A major drawback of pilot

symbol aided channel estimation scheme is the reduced bandwidth efficiency due to the

wasteful transmission of a known pilot sequence.

Recently, there is a growing interest in a novel channel estimation scheme called su-

perimposed training. Figure 2.13 shows the difference between the conventional pilot

symbol aided and superimposed training channel estimation schemes. In superimposed

training channel estimation scheme, the pilot signal is superimposed on the information

signal. Using this approach, the entire transmitted frame can still be used to transmit

information symbols. Therefore, superimposed training scheme is considered as more

bandwidth efficient than the conventional pilot symbol aided channel estimation scheme.

However, some useful power, which could have been allocated for transmitting informa-

tion signal, is wasted in transmitting the superimposed training sequence. The current

superimposed training channel estimation methods are, in general, still far from practi-

cal implementation due to their complexity in decoupling information/training signal at

receiver and the orthogonal vulnerability of precoding and training matrices.

The research in this thesis uses the conventional pilot symbol aided channel estimation

scheme.
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2.5.2 Choosing an Estimator

The general problem of estimation theory is described as follows.

Given an observed data set y =
{

y[0],y[1], . . . ,y[N−1]
}

which depends on an un-

known parameter x, find an optimal estimator of x, denoted by x̂.

The literature on estimation theory consists of many different estimation methods

which are based on different optimal criteria. The choice of a good estimator for a partic-

ular application depends upon many considerations [23]

• The selection of a good data model is of primary concern. It should be complex

enough to precisely describe the nature of the data but at the same time simple

enough to allow an estimator to be practically implemented.

• Prior knowledge of the estimated parameters is also very important in choosing an

appropriate estimator. It is a fundamental rule of estimation theory that the use of

prior knowledge will result in a more accurate estimator.

• Dimensionality of the estimation problem should also be taken into account in the

decision making process. In many practical cases, it is better to choose a suboptimal

estimator which can be easily implemented rather than an optimal one which is too

computationally expensive.

There are two popular approaches in estimation theory: classical estimation and Bayesian

estimation.

In the classical approach, the parameter to be estimated is viewed as deterministic

but unknown. Accordingly, this approach assumes no prior knowledge on the estimated

parameter. The optimal estimator in classical approach is a Minimum Variance Unbiased

Estimator (MVUE). An unbiased estimator means that it will yield the true value of the

unknown parameter on average. And the optimality criterion of an MVUE is the mini-

mum variance between the estimated and true value of the parameter. The problem is that

an MVUE does not always exist. Even if an MVUE exists, there is no known procedure to

find the MVUE in general. Maximum Likelihood Estimator (MLE) is a well-known alter-

native to MVUE. MLE is desirable in situations where an MVUE does not exist or does
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exist but cannot be found. Based on the maximum likelihood criterion, the performance

of an MLE is asymptotically optimal for large enough data set. However, a closed form

expression for an MLE problem does not always exist. A numerical approach has to be

employed in that case but the computational complexity is very high and the convergence

of the numerical algorithm is not guaranteed in general.

In the Bayesian approach, the parameter to be estimated is considered as a random

variable whose particular realisation must be estimated. By this way, we can incorporate

some prior statistical knowledge about the parameter into our estimator. Therefore, the

Bayesian approach can improve the estimation accuracy if the prior knowledge is appro-

priate. On the contrary, if the prior knowledge is unreliable, Bayesian approach will result

in biased estimators.

We define a Bayesian cost function C(x, x̂) to be a nonnegative real value function of

the true parameter x and the estimated parameter x̂. A typical example of cost function is

the quadratic error of the estimator (x− x̂)2, which is used in MMSE estimator.

A Bayesian risk function is defined to be the average value of the cost function

R = E[C(x, x̂)].

The minimisation of this criterion using different cost functions results in a variety of

estimators. In the next section, we will elaborate on MMSE estimator, the most important

and most commonly used class of Bayesian estimators.

2.5.3 MMSE Estimation

MMSE estimator Given an observed data set y =
{

y[0],y[1], . . . ,y[N−1]
}

which

depends on an unknown parameter x and assuming that the estimation parameter x to be a

random variable with known PDF, find an estimator x̂ of x in order to minimize the mean

square error

MSE(x̂) = E[(x− x̂)2]. (2.28)
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The optimal estimator x̂ regarding the MMSE criterion is the mean of the posterior PDF

p[x/y)

x̂ = E[x/y]. (2.29)

For a wireless fading channel, MMSE estimator is found to be the most accurate and

practical one for the following reasons:

• Prior knowledge of the estimation parameters can be incorporated into the MMSE

estimator, thus, leading to a more accurate estimation result.

• MMSE estimator always exists and is optimal on average with respect to the as-

sumed prior Probability Distribution Function (PDF) of the estimation parameters.

• An MMSE estimator can be found easily under the jointly Gaussian distribution

assumption.

2.5.4 LMMSE Estimation

It is, in general, difficult to express MMSE estimator in a closed form. And the implemen-

tation of MMSE estimator is often very computationally expensive as expression (2.29)

usually involves multidimensional integration except under the jointly Gaussian distribu-

tion assumption.

For practical purpose, we can retain the MMSE criterion but constrain the estimator

to be linear [23]. In other word, we can choose a linear estimator

x̂ =
N−1

∑
n=0

any[n]+aN (2.30)

in order to minimize the MSE (2.28)

This class of estimators are called LMMSE estimators.

If x and y are zero mean, the LMMSE estimator is found as [23]

x̂ = RxyR−1
y y (2.31)

and

MSE = Rx−RxyR−1
y Ryx (2.32)
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where

Rx is the variance of x,

Rxy and Ryx are respectively the cross-covariance vector between x and y and vice

versa. And we have Rxy = RT
yx,

Ry is the N×N covariance matrix of y.

2.5.5 LMMSE Vector Estimation

In a more general case, the vector LMMSE estimator is a straightforward extension of the

scalar LMMSE estimator. It is summarized in the following theorem.

Bayesian Gauss-Markov Theorem [23]

If the data are described by Bayesian linear model form

y = Hx+n (2.33)

where

y is an N×1 data vector,

H is a known N× p matrix,

x is a p×1 random vector whose realization is to be estimated and has zero mean and

covariance matrix Rx,

n is an N × 1 random noise vector with zero mean and covariance matrix Rn; n is

uncorrelated with x.

Then, the LMMSE estimator of x is

x̂ = RxHH(HRxHH +Rn)−1y (2.34)

and the MSE performance is

MSE = E
[

(x− x̂)H(x− x̂)
]

= trace
{

Rx−RxHH(HRxHH +Rn)−1HRx

}
. (2.35)
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If Rx and Rn are invertible, using the matrix inversion lemma (1.6), the LMMSE

estimator of x can be re-written in a more convenient form

x̂ = (R−1
x +HHR−1

n H)−1HHR−1
n y (2.36)

and the MSE performance is

MSE = E
[

(x− x̂)H(x− x̂)
]

= trace
{

(R−1
x +HHR−1

n H)−1
}

. (2.37)

It can be seen that an LMMSE estimator is always determined in an explicit form

and only depends on the first two moments of the PDFs. It is important to note that

LMMSE estimator does not require Gaussian distribution assumption. The performance

of an LMMSE estimator is identical to that of an MMSE estimator under the jointly

Gaussian distribution assumption. Consequently, LMMSE is widely used for channel

estimation in practice. In this thesis, we apply LMMSE estimator for MIMO-OFDM

channel estimation.

2.6 MIMO Spatially Correlated Fading Channel Model

The simplest and most common probabilistic model for a MIMO fading channel is the

i.i.d. Rayleigh fading model [42] where the entries of MIMO channel matrix H are in-

dependent, identically distributed and circular symmetric complex Gaussian. However,

this fading model is only true in a richly scattered environment where there are a large

number of statistically independent reflected and scattered transmission paths. Under this

assumption, the mathematical calculations corresponding to MIMO techniques are sig-

nificantly simplified. In practice, correlation does exist between different entries of the

channel matrix as the antennas are often not spaced far enough or the wireless environ-

ment is not scattered sufficiently. Therefore, the i.i.d. Rayleigh fading channel model is

not an accurate description of real-world MIMO fading channels.

In this section, we will consider a widely accepted MIMO spatially correlated fading

channel model as presented in [9] [8]. This fading model represents a good balance
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between accurate simulating spatially correlated fading channels and being expressed in

a simple analytical form.

A schematic representation of a MIMO spatially correlated fading channel is shown

in figure 2.14. For simplicity, only relevant angles for transmit array are shown. Those

of receive array are similar. We consider that each channel tap is corresponding to a

significant scatterer cluster.

Figure 2.14: MIMO spatially correlated fading channel model composed of 2 clustered

paths

It is assumed that the channel is a Rayleigh block fading channel. This means that the

elements of the channel matrix [Hl]m,n are (possibly correlated) circular symmetric zero-

mean complex Gaussian random variables. In addition, the channel remains constant over

a period of multiple of N signal symbols and then changes randomly to a new state which

is independent of the previous ones. We also assume that spatially correlated fading

occurs at both transmitter and receiver. Under these assumptions, according to [9], the
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MIMO channel matrix can be decomposed to

Hl = R1/2
rl Hwl (R

1/2
tl )T (2.38)

where

Hwl is an Mr×Mt matrix whose elements are i.i.d complex Gaussian variables with

zero mean and unit variance C N (0,1),

Rtl = R1/2
tl R1/2

tl and Rrl = R1/2
rl R1/2

rl are the transmit and receive correlation matrix,

respectively.

Elements of the correlation matrices Rtl and Rrl are given by

[Rtl]m,n =
√

σ2
l ξ

(
(n−m)∆t , θ̄tl,σθt ,l

)
, (2.39)

[Rrl]m,n =
√

σ2
l ξ

(
(n−m)∆r, θ̄rl,σθr,l

)
.

where

∆t = dt
λ , ∆r = dr

λ are the relative transmit and receive antenna spacing respectively,

where dt and dr stand for absolute antenna spacing and λ is the wavelength of the carrier.

Here it is assumed that uniform linear antenna arrays are used at both the transmitter and

receiver,

θ̄tl and θ̄rl are the mean angle of departure from the transmit array and the mean angle

of arrival at the receive array respectively,

σ2
θt ,l and σ2

θr,l are the cluster angle spread perceived by the transmitter and receiver

respectively,

σ2
l is the lth-path power delay profile.

Assuming real angles of departure from the transmitter and real angles of arrival at

the receiver are Gaussian distributed around the mean angle θ̄ , it is shown in [9] that for

small cluster angle spread, we have

ξ (s∆, θ̄ ,σθ )≈ e− j2πs∆cos(θ̄) e−
1
2 (2πs∆sin(θ̄)σθ )2

. (2.40)

It can be seen from the above formula that large antenna spacing and/or large cluster angle

spread result in low spatial fading correlation and vice versa.
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As statistics of MIMO channels change slowly with time [6], the correlation matrices

can be estimated at the receiver and fed back to the transmitter. Therefore, it is assumed

that information of the correlation matrices is available at both transmitter and receiver

for channel estimation and training sequence design.

2.7 LMMSE Channel Estimation for MIMO-OFDM

We refer again to the MIMO-OFDM system model in Figure 2.11 and 2.12. The MIMO-

CP-OFDM signal model provided in (2.26) and (2.27) is duplicated here

r(k) =
√

ρ
Mt

H f (k)s(k)+n(k)

where

H f (k) =
L−1

∑
l=0

Hle− j2π lk
N .

During the training period, the transmitted sequences s(k),k = 0,1, . . . ,N − 1 are

known to the receiver. Therefore, the channel matrices Hl, l = 0,1, . . . ,L−1 can be esti-

mated from Equation (2.26). The LMMSE channel estimation model for MIMO-OFDM

with correlated fading is presented in detail as below.

First, using the property of Kronecker product as in Section A.1.2: Hl s(k) = (sT (k)⊗
IMr)vec(Hl), Equation (2.26) can be re-written as

r(k) =
√

ρ
Mt

M(k)h+n(k) (2.41)

where

h =
(

vec(H0)T vec(H1)T . . . vec(HL−1)T
)T
∈ CLMtMr×1,

M(k) =
(

M0(k), M1(k), . . . , ML−1(k)
)

with Ml(k) = e− j2π kl
N sT (k)⊗ IMr .

Define

r =
(

r(0)T r(1)T . . . r(N−1)T
)T
∈ CNMr×1,

n =
(

n(0)T n(1)T . . . n(N−1)T
)T
∈ CNMr×1,

M =
(

M(0)T M(1)T . . . M(N−1)T
)T
∈ CNMr×LMtMr .
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Stacking received signal vectors of all OFDM subchannels, Equation (2.41) can be

expressed as

r =
√

ρ
Mt

Mh+n. (2.42)

This equation represents a Bayesian linear model as in (2.33). Therefore, we can apply the

LMMSE channel estimation for MIMO-OFDM with spatially correlated fading channels.

Now, we have to find the correlation matrix of h. Applying the Kronecker product

property: vec(AXB) = (BT ⊗A)vec(X) into Equation (2.38), we have

vec(Hl) = (R1/2
tl ⊗R1/2

rl )vec(Hwl).

Note that Hwl, l = 0, . . . ,L− 1 are Mr ×Mt matrices whose elements are i.i.d complex

Gaussian variables C N (0,1). Thus, the correlation matrix of h in (2.42) is given by

Rh = E{hhH}

=




Rt0⊗Rr0 . . . 0
... . . . ...

0 . . . Rt(L−1)⊗Rr(L−1)


 (2.43)

where Rtl and Rrl are determined as in (2.39).

According to (2.34), the LMMSE estimator of the channel vector h in (2.42) is deter-

mined by

ĥ =
√

ρ
Mt

RhMH(
ρ
Mt

MRhMH + INMr)
−1r. (2.44)

If Rh is invertible, we can rewrite ĥ as follows

ĥ =
√

ρ
Mt

(R−1
h +

ρ
Mt

MHM)−1MHr (2.45)

and the MSE is

MSE = E
{

(ĥ−h)H(ĥ−h)
}

= trace
{

(R−1
h + ρ

Mt
MHM)−1

}
. (2.46)

It is important to note that Rh can approach singularity if the channel fading is highly

correlated, i.e. small antenna spacing and/or small cluster angle spread. We will also

consider this case in Section 3.3 of the next chapter.
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2.8 MIMO-ZP-OFDM-OLA and LMMSE Channel Esti-

mation

A dual of CP-OFDM is ZP-OFDM-OLA. While CP-OFDM cyclic prefixing idea de-

rives from the fast convolution algorithm based on the OverLap-Save (OLS) method,

ZP-OFDM-OLA is based on the OverLap-Add (OLA) method [36] [34] [44] [32]. ZP-

OFDM-OLA has equivalent computational complexity as CP-OFDM and is an alternative

solution for CP-OFDM in practical wireless systems. We will elaborate on the MIMO-

ZP-OFDM signal model and its LMMSE channel estimation in spatially correlated fading

environments in the following sections.

2.8.1 ZP-OFDM-OLA Signal Model

Figure 2.15: A mathematical view of ZP-OFDM-OLA

Figure 2.15 depicts the baseband discrete time block equivalent model of a ZP-OFDM-

OLA system. The major difference to CP-OFDM is that the guard interval is L trailing

zeros instead of a cyclic prefix. The trailing zeros are inserted by multiplication with a

zero-padded matrix Tzp at the transmit side and removed by multiplication with a receive

matrix Rzp at the receive side. Tzp and Rzp are defined as follows

Tzp =


 IN

0L×N


 and Rzp =


 IN

IL

0N−L×L


 . (2.47)

According to the signal flow as shown in Figure 2.15, the frequency domain received
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signal block ŝ(i) is written as

ŝ(i) = FNRzp

(
HTzpFH

N s(i)+HIBITzpFH
N s(i−1)+w(i)

)
(2.48)

= FNRzpHTzpFH
N s(i)+FNRzpw(i) (2.49)

= FNH̃FH
N s(i)+FNw̄(i) (2.50)

= diag
(

H0 H1 . . . HN−1

)
s(i)+ w̃(i). (2.51)

The first simplifying step from (2.48) to (2.49) results from the property that RzpHIBI = 0.

In the second step, we have RzpHTzp = H̃, which is an N×N circulant matrix with the

first row
(

h(0) 0 . . . 0 h(L−1) . . . h(1)
)

. Therefore, the first term in (2.51) is

achieved according to (2.17).

We now consider the noise term. To simplify the notation, we will omit the block

index i. Similar to the noise term in (2.11), w ∼ C N (0,σ2IP) is a P× 1 AWGN noise

vector. Then, we have

w̄ = Rzpw

=
(

w0 +wN , . . . , wL−1 +wN+L−1, wL, . . . , wN+L−1

)T
. (2.52)

Accordingly, w̄ is a random vector with zero mean and covariance matrix

Rw̄ = E[w̄w̄H ]

=


 2σ2IL 0

0 σ2IN−L


 . (2.53)

The noise term w̃(i) in (2.51) has the same distribution as w̄ as a unitary transformation

does not change the statistics of a random noise as specified in (2.19).

From the above analysis, we can draw the following conclusions about ZP-OFDM-

OLA

• ZP-OFDM-OLA can be decoded in the same way as CP-OFDM since the received

signal in (2.51) has a similar form as the received signal in (2.20)

• The spectral efficiency of ZP-OFDM-OLA is the same as that of CP-OFDM if the

length of zero-padding interval is equal to the length of cyclic prefix.
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• The advantage of ZP-OFDM-OLA in comparison with CP-OFDM is to save trans-

mit power. While CP-OFDM has to transmit the cyclic prefix as a guard interval,

ZP-OFDM-OLA does not spend power for zero-padding interval. In other words,

the power efficiency rate of ZP-OFDM-OLA is 1 in comparison with N
N+L in CP-

OFDM.

• However, in ZP-OFDM-OLA systems, colored noise is incurred at the receiver.

This may be problematic for the receiver.

2.8.2 LMMSE Channel Estimation for MIMO-ZP-OFDM-OLA in

Spatially Correlated Fading Environments

If ZP-OFDM-OLA replaces CP-OFDM in MIMO-OFDM systems, the ”frequency do-

main” received signal is expressed in a similar form as (2.26)

r(k) =
√

ρ
Mt

H f (k)s(k)+ ñ(k). (2.54)

All the terms are defined exactly the same as in (2.26) except the following two points.

First, as the power efficiency rate of ZP-OFDM-OLA is higher than that of CP-

OFDM, the total transmit power constraint of the MIMO-ZP-OFDM-OLA system is

∑N−1
k=0 s(k)Hs(k) = (N +L)Mt as opposed to NMt in the standard MIMO-OFDM system.

Second, the noise term ñ(k) is colored. We have

ñ(k) =





n(k)+n(N + k) if 0≤ k ≤ L−1

n(k) if L≤ k ≤ N−1
(2.55)

where n(k) is the i.i.d complex Gaussian random noise vector with zero mean and unit

variance C N (0,IMr).

We define

ñ =
(

ñ(0)T ñ(1)T . . . ñ(N−1)T
)T
∈ CNMr×1. (2.56)

Then, the covariance of ñ is expressed as

Rñ = E{ñH ñ}
= diag

(
E{ñ(0)H ñ(0)} . . . E{ñ(N−1)H ñ(N−1)}

)
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For 0≤ k ≤ L−1: E{ñ(k)H ñ(k)} = 2IMr

For L≤ k ≤ N−1: E{ñ(k)H ñ(k)} = IMr

Accordingly, the covariance of ñ is determined as

Rñ =


 2ILMr 0

0 I(N−L)Mr


 . (2.57)

Using similar mathematical manipulation as in Section 2.7, the MIMO-ZP-OFDM-OLA

received signal can be rewritten as

r =
√

ρ
Mt

Mh+ ñ (2.58)

where all the terms are determined exactly in the same manner as in (2.42) except ñ

defined as in (2.56).

According to (2.36) and (2.37), the LMMSE channel estimation for the MIMO-ZP-

OFDM-OLA system in spatially correlated fading environments is determined by

ĥ =
√

ρ
Mt

(R−1
h +

ρ
Mt

MHR−1
ñ M)−1MHR−1

ñ r (2.59)

and the channel estimation MSE is

MSE = E
[

(ĥ−h)H(ĥ−h)
]

= trace
{

(R−1
h + ρ

Mt
MHR−1

ñ M)−1
}

. (2.60)

Different to the MIMO-CP-OFDM case, the LMMSE channel estimation for MIMO-

ZP-OFDM-OLA systems in spatially correlated fading environments is affected by col-

ored noise. This can be seen from the existence of the covariance noise term Rñ in (2.59)

and (2.60). The optimal training sequence design for MIMO-ZP-OFDM-OLA systems

which will be presented in Section 3.7 will have to address the affect of colored noise

onto the MSE performance of training sequences.
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Optimal Training Sequence Design for

MIMO-OFDM in Spatially Correlated

Fading Environments

The objective of optimal training sequence design for MIMO-OFDM in spatially corre-

lated fading environments is to find training sequences s(k), k = 0,1, . . . ,N−1, or equiv-

alently a training symbol matrix S =
(

s(0) s(1) . . . s(N−1)
)T
∈ CN×Mt , to mini-

mize the MSE of channel estimation under the transmit power constraint. It is equivalent

to the following mathematical optimization problem

min
S∈CN×Mt

trace{(R−1
h + ρ

Mt
MHM)−1} (3.1)

subject to trace{SHS}= NMt .

3.1 Conditions for Optimal Training Sequences

As the transmit and receive correlation matrices Rtl and Rrl are Hermitian Toeplitz positive-

definite matrices, they are unitarily diagonalizable.

Rtl = UlΛtlUH
l and Rrl = VlΛrlVH

l (3.2)

where

44
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Ul and Vl are respectively Mt ×Mt and Mr×Mr unitary matrices,

Λtl and Λrl are diagonal matrices with the diagonal elements to be the eigenvalues of

Rtl and Rrl respectively.

According to the property of Kronecker product in Section A.1.2, we have

Rtl⊗Rrl = (Ul⊗Vl)(Λtl⊗Λrl)(Ul⊗Vl)H . (3.3)

Applying (3.3) into (2.43), the eigen-decomposition of Rh is written as

Rh = UhΛhUH
h (3.4)

where

Uh = diag
(

U0⊗V0, . . . , UL−1⊗VL−1

)
,

Λh = diag
(

Λt0⊗Λr0, . . . , Λt(L−1)⊗Λr(L−1)

)
.

Hence, the MSE of channel estimation in Equation (2.46) can be re-written as

MSE = trace
{

(Λ−1
h + ρ

Mt
UH

h MHMUh)−1
}

. (3.5)

Lemma [18]: From the inverse matrix formulae (p.14 of [48]), for a positive definite

matrix X = [xi j] ∈ Cn×n, the following inequality holds true

trace{X−1} ≥
n

∑
i=1

x−1
ii . (3.6)

The equality occurs if and only if X is a diagonal matrix.

From the above lemma, it can be seen that the MSE in (3.5) will be minimized if

UH
h MHMUh is a diagonal matrix [24] [41] [46] .

For simplification, we can partition matrix MUh as follows

MUh =




A0(0) . . . AL−1(0)
... . . . ...

A0(N−1) . . . AL−1(N−1)


 (3.7)
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where

Al(k) = Ml(k)(Ul⊗Vl) = e− j2π kl
N

(
sT (k)Ul

)
⊗Vl. (3.8)

Define Al as a block column of matrix MUh, i.e.

Al =
(

Al(0)T . . . Al(N−1)T
)T

. (3.9)

Al can also be expressed as

Al = (Dl SUl)⊗Vl (3.10)

where

Dl = diag
(

e− j2π 0.l
N , e− j2π 1.l

N , . . . , e− j2π (N−1).l
N

)
. (3.11)

UH
h MHMUh is a diagonal matrix if and only if the columns of matrix MUh are orthogonal.

This means that the following two conditions must be satisfied

AH
l Al = (UH

l SHSUl)⊗ IMr must be diagonal

or, equivalently,

UH
l SHSUl must be diagonal (3.12)

For l′ 6= l

AH
l′ Al = (UH

l′ S
HDH

l′ Dl SUl)⊗ (VH
l′ Vl) = 0MrMt

which is equivalent to

SHDl−l′S = 0Mt . (3.13)

In general, (3.12) and (3.13) are a set of nonlinear equations where the number of the

equations excesses the number of the unknowns. Therefore, the existence of a training

matrix S satisfying the diagonality of UH
h MHMUh cannot be guaranteed in general.

3.2 MSE Lower Bound of MIMO-OFDM Channel Esti-

mation

In this section, we will find a theoretical lower bound on the MSE of channel estimation

under the assumption of diagonality of the matrix UH
h MHMUh.
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Under this assumption, condition (3.12) is equivalent to

(SUl)H(SUl) = diag
(

α0, α1, . . . , αMt−1

)
(3.14)

where αi ≥ 0, i = 0, . . . ,Mt − 1 and ∑Mt−1
i=0 αi = NMt to be the total power constraint of

the training sequence.

Therefore, a lower bound on the MSE in (3.5) can be written as

MSE =
L−1

∑
l=0

trace
{

(Λ−1
tl ⊗Λ−1

rl + ρ
Mt

AH
l Al)−1

}

=
L−1

∑
l=0

trace
{

[Λ−1
tl ⊗Λ−1

rl + ρ
Mt

diag
(

α0, α1, . . . , αMt−1

)
⊗ IMr ]

−1
}

=
L−1

∑
l=0

Mt−1

∑
i=0

Mr−1

∑
j=0

(
1

λi(Rtl)λ j(Rrl)
+ ρ

Mt
αi

)−1
(3.15)

where λi(X) denotes the ith eigenvalue of matrix X.

Define

λik =
1

λi(Rtl)λ j(Rrl)
,

i = 0, . . . ,Mt −1

k = 0, . . . ,LMr−1
. (3.16)

We have

MSE =
Mt−1

∑
i=0

LMr−1

∑
k=0

1
aαi +λik

(3.17)

where a = ρ
Mt

.

This lower bound on the MSE is attainable only when both conditions (3.12) and

(3.13) are satisfied.

3.3 Limit of the MSE when Channel Correlation Matrix

Approaches Singularity

Up to now, we have only considered the case when the channel correlation matrix Rh is

invertible. Accordingly, the MSE expression in (2.44) can be written as (2.45) using the

matrix inversion lemma. However, it is the fact that in very highly correlated fading en-

vironments, Rh approaches singularity and the matrix inversion lemma cannot be applied
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in (2.44). Therefore, all the previous results do not hold. To resolve this problem, we will

consider the limit of channel estimation MSE when Rh is singular.

Let

R̂h = Rh + εI (3.18)

where ε is a positive scalar.

We observe that R̂h is non-singular, and

Rh = lim
ε→0

R̂h.

From (2.46), we have

MSE = lim
ε→0

trace
{

(R̂−1
h + ρ

Mt
MHM)−1

}
.

Similar to (3.4), an eigen-decomposition of R̂h is written as

R̂h = Uh(Λh + εI)UH
h . (3.19)

Hence, equivalent to (3.5), we have

MSE = lim
ε→0

trace
{

((Λh + εI)−1 + ρ
Mt

UH
h MHMUh)−1

}
. (3.20)

Based on the derivation as in Section 3.1 and Section 3.2, the lower bound of MSE

when UH
h MHMUh is a diagonal matrix is written as

MSE = lim
ε→0

L−1

∑
l=0

trace
{ (

(Λtl⊗Λrl + εIMtMr)
−1 + ρ

Mt
AH

l Al

)−1
}

= lim
ε→0

L−1

∑
l=0

trace






 (Λtl⊗Λrl + εIMtMr)

−1+
ρ
Mt

diag
(

α0, α1, . . . , αMt−1

)
⊗ IMr



−1 




= lim
ε→0

L−1

∑
l=0

Mt−1

∑
i=0

Mr−1

∑
j=0

(
1

λi(Rtl)λ j(Rrl)+ε + ρ
Mt

αi

)−1
. (3.21)

Let Ki be the number of non-zero eigenvalue products λi(Rtl)λ j(Rrl) for different l

and j.

Define

λik =
1

λi(Rtl)λ j(Rrl)
,

i = 0, . . . ,Mt −1

k = 0, . . . ,Ki−1
(3.22)
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where λi(Rtl)λ j(Rrl) > 0.

Thus, limit of MSE when ε → 0 can be written as

MSE =
Mt−1

∑
i=0

Ki−1

∑
k=0

1
aαi +λik

(3.23)

where a = ρ
Mt

When Rh is invertible, all λi(Rtl)λ j(Rrl) are non-zero and Ki is equal to LMr.

We now have to find the optimal transmit power allocation αi, i=0,...,Mt−1 in order to

minimize the MSE lower bound in (3.23). This is the general form of channel estimation

MSE lower bound regardless of the invertibility of the channel correlation matrix Rh.

3.4 Finding Optimal Transmit Power Allocation by the

IBP

The optimization problem (3.1) is converted to the following optimization problem

min
αi, i=0,1,...,Mt−1

MSE = ∑Mt−1
i=0 ∑Ki−1

k=0
1

aαi+λik
(3.24)

subject to: ∑Mt−1
i=0 αi = NMt

αi ≥ 0, i = 0, . . . ,Mt −1.

From the Gradient and Hessian of the objective function MSE(αi, i=0,1,...,Mt−1) in the

optimization problem (3.24) we can easily see that it is both convex and decreasing with

all αi, i = 0, . . . ,Mt −1.

The Lagragian associated with the optimization problem (3.24) is [11]

L(αi,µ,µi, i = 0, . . . ,Mt −1) = MSE−
Mt−1

∑
i=0

(αiµi)+ µ(
Mt−1

∑
i=0

αi−NMt) (3.25)

(for Lagrange multipliers µ ≥ 0, µi ≥ 0, i = 0, . . . ,Mt −1).

The optimal value of αi, i=0,...,Mt−1, µ and µi i=0,...,Mt−1 have to satisfy the KKT con-
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ditions [11]




∑Mt−1
i=0 αi = NMt

αi ≥ 0, i = 0, . . . ,Mt −1

µi ≥ 0, i = 0, . . . ,Mt −1

µiαi = 0, i = 0, . . . ,Mt −1
∂L
∂αi

= ∑Ki−1
k=0

−a
(aαi+λik)2 −µi + µ = 0, i = 0, . . . ,Mt −1

(3.26)

Note that µi acts as a slack variable in the last equation, so it can be eliminated.

The KKT conditions, therefore, can be re-written as




∑Mt−1
i=0 αi = NMt

αi ≥ 0, i = 0, . . . ,Mt −1

αi(µ−∑Ki−1
k=0

a
(aαi+λik)2 ) = 0, i = 0, . . . ,Mt −1

∑Ki−1
k=0

a
(aαi+λik)2 ≤ µ , i = 0, . . . ,Mt −1

(3.27)

It can be seen that this optimization problem belongs to the class of water-filling opti-

mization problems. The optimal solution of (3.24), thus, can be expressed as

αiopt = α+
i (µ) := max(0,α∗i ) , i = 0, . . . ,Mt −1 (3.28)

where α∗i is the solution of the following equation

f (αi) =
Ki−1

∑
k=0

a
(aαi +λik)2 = µ (3.29)

and the value of α+
i (µ), i = 0, . . . ,Mt − 1 as functions of the scalar Lagrange multiplier

µ must satisfy the total transmit power constraint: ∑Mt−1
i=0 α+

i (µ) = NMt .

Function f (αi) in equation (3.29) is a decreasing function over the range αi ∈ [0,NMt ].

Therefore, if µ is known, equation (3.29) can be solved by the IBP [33] as below.

Iterative Bisection Procedure (IBP): Solve an equation: f (x) = α ,x ∈ [x,x] where

f (x) is a decreasing function.

• If f (x) < α or f (x) > α , then there is no solution for x ∈ [x,x]
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• Otherwise, set x = x+x
2 . If f (x) > α , reset x = x

If f (x) < α , reset x = x

• Repeat until | f (x)−α |< ε (where ε is the tolerance of the solution deviation).

Observe that the objective function MSE in (3.24) has the following lower bound and

upper bound
Mt−1

∑
i=0

Ki

aαi +λimax
≤MSE≤

Mt−1

∑
i=0

Ki

aαi +λimin
(3.30)

where λimax = maxk λik and λimin = mink λik.

Therefore, we can find the value of µ in the range [µ ,µ], where µ and µ are respec-

tively the Lagrange multipliers corresponding to the equality constraint in the following

two simple optimization problems.

min
αi, i=0,1,...,Mt−1

∑Mt−1
i=0

Ki
aαi+λimax

(3.31)

subject to: ∑Mt−1
i=0 αi = NMt

αi ≥ 0, i = 0, . . . ,Mt −1.

and

min
αi, i=0,1,...,Mt−1

∑Mt−1
i=0

Ki
aαi+λimin

(3.32)

subject to: ∑Mt−1
i=0 αi = NMt

αi ≥ 0, i = 0, . . . ,Mt −1.

These are two simple water-filling optimization problems and can be easily solved.

Figure 3.1 shows the flow diagram to find the optimal value of αi, i=0,...,Mt−1 where ε1

and ε2 are respectively the tolerance of the difference between µ and µ , and the tolerance

of the difference to the total allocated power constraint.
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Figure 3.1: Flow Diagram for Optimal Power Allocation Algorithm

3.5 Approximate Optimal Transmit Power Allocation Al-

gorithm

The optimal solution of the optimization problem (3.24) is guaranteed with the IBP de-

scribed in the previous section. However, the computational complexity of such algorithm
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is quite high. It involves two water-filling problems and a computationally intensive loop

of IBP. This gives us a motivation to find a more efficient algorithm.

From (3.15), we define a function

fi(αi) =
Mr−1

∑
j=0

L−1

∑
l=0

(
1

λi(Rtl)λ j(Rrl)
+ ρ

Mt
αi

)−1
. (3.33)

Since (x−1 + b)−1 is a concave function of scalar variable x > 0, we can find an upper

bound for fi(αi) in (3.33) as follows

fi(αi)≤ LMr(γ−1
i +

ρ
Mt

αi)−1 (3.34)

where

γi =
1

LMr

Mr−1

∑
j=0

L−1

∑
l=0

λi(Rtl)λ j(Rrl). (3.35)

We now consider the following optimization problem

min
αi, i=0,1,...,Mt−1

∑Mt−1
i=0

LMr
aαi+γ−1

i
(3.36)

subject to: ∑Mt−1
i=0 αi = NMt

αi ≥ 0, i = 0, . . . ,Mt −1.

which is the minimization of an upper bound of the objective function in (3.24). This is

only a simple water-filling optimization problem. Therefore, the iterative solution can be

easily implemented.

We will see in the simulation results that the MSE performance of this approximate

solution of transmit power allocation is almost the same as that of the optimal solution in

the previous part.

3.6 Nearly-Optimal Training Sequence Design

As mentioned in Section 3.1, there is no guarantee for the existence of an optimal training

sequence. However, a class of nearly-optimal training sequences can be designed only

according to the correlation information of the strongest delay tap. The correlation matrix
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of this tap is denoted as R and its eigen-matrix corresponding to the eigen-decomposition

is U.

From condition (3.12), we have

(SU)H(SU) = diag
(

α0, α1, . . . , αMt−1

)
. (3.37)

Thus, a nearly-optimal training symbol matrix S can be designed as follows

SU = (
√

α0q0, . . . ,
√

αMt−1qMt−1)

⇔ S = (
√

α0q0, . . . ,
√

αMt−1qMt−1)U
H . (3.38)

where

The values of αi, i = 0, . . . ,Mt −1 are chosen using the IBP or the approximate algo-

rithm as in the previous sections,

q0, . . . ,qMt−1 are a set of N-element orthonormal vectors.

To satisfy condition (3.13), we can choose qi according to [27] as follows

Let q0 =
(

q0(0) . . . q0(N−1)
)T

be any training sequence that is good for timing

and frequency synchronization and |q0(k)|= 1√
N
, for k = 0,1, . . . ,N−1

and qi =
(

q0(0)W−K0i0
N . . . q0(N−1)W−K0i(N−1)

N

)T
, i = 0, . . . ,Mt−1 where WN =

e− j 2π
N and K0 = b N

Mt
c to be the largest integer smaller than or equal to N

Mt
.

3.7 Extension to MIMO-ZP-OFDM-OLA Optimal Train-

ing Sequence Design

As ZP-OFDM is considered as an alternative to CP-OFDM in practical wireless systems,

it is worthwhile to have further discussion on the topic of optimal training sequence design

for MIMO-ZP-OFDM. Due to the similar implementation of the two OFDM systems, the

optimal training sequence design for MIMO-ZP-OFDM will follow the same manner as

having been discussed throughout this chapter.
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3.7.1 Conditions for MIMO-ZP-OFDM-OLA Optimal Training Se-

quences

The objective of optimal training sequence design for MIMO-ZP-OFDM-OLA in spa-

tially correlated fading environments is to find training sequences to minimize the MSE

of channel estimation under the transmit power constraint. It is equivalent to the following

mathematical optimization problem

min
S∈CN×Mt

trace
{

(R−1
h + ρ

Mt
MHR−1

ñ M)−1
}

(3.39)

subject to trace{SHS}= (N +L)Mt .

Using the same mathematical manipulations as in Section 3.1, the optimization prob-

lem (3.39) can be re-written as

min
S∈CN×Mt

trace
{

(Λ−1
h + ρ

Mt
UH

h MHR−1
ñ MUh)−1

}
(3.40)

subject to trace{SHS}= (N +L)Mt .

The objective function in (3.40) will be minimized if UH
h MHR−1

ñ MUh is a diagonal matrix

[24] [46] [41].

To simplify the above condition, we can partition matrix MUh as follows

MUh =




A0(0) . . . AL−1(0)
... . . . ...

A0(N−1) . . . AL−1(N−1)


 =


 B1

B2


 (3.41)

where

Al(k) = Ml(k)(Ul⊗Vl) = e− j2π kl
N (sT (k)Ul)⊗Vl,

B1 ∈ CLMr×LMtMr and B2 ∈ C(N−L)Mr×LMtMr .

Accordingly, we have

UH
h MHR−1

ñ MUh =
(

BH
1 BH

2

)



1
2ILMr 0

0 I(N−L)Mr





 B1

B2




=
1
2

BH
1 B1 +BH

2 B2. (3.42)
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The training symbol matrix S can be partitioned as follows

S =


 S1

S2


 =

(
s(0) s(1) . . . s(N−1)

)T
∈ CN×Mt (3.43)

where S1 ∈ CL×Mt and S2 ∈ C(N−L)×Mt .

We define

Dl =


 D1l 0

0 D2l


 = diag

(
e− j2π 0.l

N , e− j2π 1.l
N , . . . , e− j2π (N−1).l

N

)
∈ CN×N (3.44)

where D1l ∈ CL×L and D2l ∈ C(N−L)×(N−L).

The lth block column of B1 and B2 can be respectively represented as follows

(B1)l = (D1lS1Ul)⊗Vl,

(B2)l = (D2lS2Ul)⊗Vl.

Accordingly, we have

(B1)H
l (B1)l = (UH

l SH
1 S1Ul)⊗ IMr ,

(B2)H
l (B2)l = (UH

l SH
2 S2Ul)⊗ IMr .

The diagonal structure of 1
2BH

1 B1 +BH
2 B2 is equivalent to

UH
l (

1
2

SH
1 S1 +SH

2 S2)Ul must be diagonal (3.45)

1
2

SH
1 D1 l−l′S1 +SH

2 D2 l−l′S2 = 0Mt (3.46)

We define a modified training symbol matrix as follows

S̃ =




1√
2
S1

S2


 . (3.47)

Conditions (3.45) and (3.46) are respectively equivalent to

UH
l S̃H S̃Ul must be diagonal (3.48)

and for l′ 6= l

S̃HDl−l′S̃ = 0Mt (3.49)
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(3.48) and (3.49) are the necessary and sufficient conditions for the diagonality of

UH
h MHR−1

ñ MUh. We observe that the conditions (3.48) – (3.49) are exactly the same as

conditions (3.12) – (3.13) in the MIMO-CP-OFDM case which was presented in Section

3.1.

3.7.2 Lower Bound of the MSE of MIMO-ZP-OFDM-OLA Channel

Estimation

In this section, we will find a theoretical lower bound of the MSE of channel estimation

when assuming the diagonality of the matrix UH
h MHR−1

ñ MUh. Under this assumption,

condition (3.48) is equivalent to

(S̃Ul)H(S̃Ul) = diag
(

α0, α1, . . . , αMt−1

)
(3.50)

where αi ≥ 0, i = 0, . . . ,Mt −1 and

Mt−1

∑
i=0

αi = trace{S̃H S̃}

=
N

N +L
trace{SHS}

= NMt . (3.51)

Therefore, a lower bound of the objective function in (3.40) can be written as

MSE = trace
{

(Λ−1
h + ρ

Mt
UH

h MHR−1
ñ MUh)−1

}

= trace
{ [

Λ−1
h + ρ

Mt
(1

2BH
1 B1 +BH

2 B2)
]−1

}

=
L−1

∑
l=0

trace
{ [

Λ−1
tl ⊗Λ−1

rl + ρ
Mt

UH
l (1

2SH
1 S1 +SH

2 S2)Ul⊗ IMr

]−1
}

=
L−1

∑
l=0

trace
{ (

Λ−1
tl ⊗Λ−1

rl + ρ
Mt

UH
l S̃H S̃Ul⊗ IMr

)−1
}

=
L−1

∑
l=0

trace
{ [

Λ−1
tl ⊗Λ−1

rl + ρ
Mt

diag
(

α0, α1, . . . , αMt−1

)
⊗ IMr

]−1
}

=
L−1

∑
l=0

Mt−1

∑
i=0

Mr−1

∑
j=0

(
1

λi(Rtl)λ j(Rrl)
+ ρ

Mt
αi

)−1
.
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The optimization problem (3.39), thus, can be converted to

min
αi, i=0,1,...,Mt−1

∑Mt−1
i=0 ∑Ki−1

k=0
1

aαi+λik
(3.52)

subject to: ∑Mt−1
i=0 αi = NMt

αi ≥ 0, i = 0, . . . ,Mt −1

where the parameters Ki, λik and a are defined the same as in Section 3.3.

This optimization problem is exactly the same as the optimization problem in (3.24)

for MIMO-CP-OFDM case. Therefore, the optimal solution and the approximate solution

can be found by the same algorithms as in Section 3.4 and 3.5 respectively.

3.7.3 Nearly-Optimal Training Sequence Design

Similar to the training sequence design specified in Section 3.6, a class of nearly-optimal

training sequences can be designed only according to the correlation information of the

strongest delay tap. The correlation matrix of this tap is denoted as R and its eigen-matrix

corresponding to the eigen-decomposition is U.

From condition (3.48), we have

(S̃U)H(S̃U) = diag
(

α0, α1, . . . , αMt−1

)
. (3.53)

Thus, we must have

S̃U = (
√

α0q0, . . . ,
√

αMt−1qMt−1)

⇔ S̃ = (
√

α0q0, . . . ,
√

αMt−1qMt−1)U
H (3.54)

where

The values of αi, i = 0, . . . ,Mt−1 are chosen using the IBP as in the previous section.

q0, . . . ,qMt−1 are a set of N-element orthonormal vectors which are specified as in

Section 3.6.

The modified training symbol matrix S̃ in (3.54) has the same value as the optimal

training symbol matrix S in (3.38). This means the optimal training symbol matrix S for

MIMO-ZP-OFDM-OLA systems as defined in (3.43) has to increase power in the first
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L training symbols. However, as the optimization problem (3.52) is exactly the same as

the optimization problem in (3.24) for MIMO-CP-OFDM case, the MSE performance of

the nearly optimal training sequence for MIMO-ZP-OFDM-OLA channel estimation is

identical to that of MIMO-CP-OFDM case. Therefore, the simulation results presented in

Section 3.8 are also valid for the MIMO-ZP-OFDM-OLA training sequence design.

3.8 Simulation Results

3.8.1 MSE Performance

In this section, we present the performance of the proposed training sequence in compar-

ison with that of the existing ones and the MSE lower bound through simulation results.

The simulated MIMO-OFDM system has 4 transmit antennas (Mt = 4) and 4 receive

antennas (Mr = 4). 32 OFDM subchannels (N = 32) are used and the cyclic prefix is long

enough to avoid Inter Block Interference. Assuming that the channel has 5 delay taps

(L = 5) with

power delay profile σ2 =
(

0.3 0.2 0.2 0.15 0.15
)

,

the mean angles of departure θ̄t =
(

13o 16o 20o 24o 27o
)

,

the mean angles of arrival θ̄r =
(

290o 300o 315o 320o 335o
)

.

The angle spread for all taps at both transmitter and receiver are the same and equal

to 8.6o. The relative transmit and receive antenna spacing are both equal to 1.

With respect to the MSE of channel estimation, figure 3.2 demonstrates the perfor-

mance of three different training sequences: training sequence with equal power allo-

cation, training sequence with asymptotic solution as in [46] and the proposed training

sequence with optimal transmit power allocation as in Section 3.4. It verifies that the

training sequence with asymptotic solution as described in [46] is only optimal at very

low and very high SNR. The training sequence which is proposed in Section 3.6 provides

a better MSE over the whole range of SNR.

Figure 3.3 compares the MSE performance of the proposed training sequence with the

MSE theoretical lower bound as specified in Equation (3.23). It can be seen that the gap
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Figure 3.2: The proposed training sequence vs. existing training sequences
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Figure 3.4: The approximate training sequence vs. the proposed training sequence
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between the two curves is very narrow. The MSE performance of a genuinely optimal

training sequence will lie between these two curves. Therefore, we can conclude that the

MSE performance of the nearly-optimal training sequence as in Section 3.6 is optimal.

It can be seen from Figure 3.4 that the MSE performance of the proposed training

sequence using the approximate algorithm as in Section 3.5 is almost identical to that

of the proposed training sequence with optimal transmit power allocation. Therefore, it

is expected that the training sequence using the approximately optimal transmit power

allocation algorithm can be considered as a strong candidate for practical MIMO-OFDM

wireless systems due to its simple implementation and optimal MSE performance.

More significantly, Figure 3.2(b), 3.3(b) and 3.4(b) show that the proposed training

sequence works well even in the case Rh is rank deficient due to very high spatially

correlated fading (σθ = 1o).

3.8.2 SER Performance

In this section, we set up a simulated scenario of MIMO-OFDM communication system

to examine how much the proposed training sequence improve the SER in comparison

with other training sequences.

The MIMO-OFDM system configuration and the MIMO spatially correlated fading

channel model are chosen exactly the same as those specified in Section 3.8.1. The angle

spread for all taps at both transmitter and receiver are the same and equal to 8.6o. The

transmission system uses QPSK constellation without any channel coding scheme. A rate

3/4 STBC scheme as specified in Appendix 3.10 is employed.

The SNR range to be examined is from 0dB to 12dB. Within this SNR range, the MSE

performance of the training sequence with equal power allocation and that of the training

sequence with asymptotic solution as in [46] are exactly the same. Therefore, the SER

performances of MIMO-OFDM systems using these two training sequences are identical.

Similarly, the SER performances of MIMO-OFDM systems using the proposed training

sequence with optimal and approximate optimal power allocation are equal. To simplify

the graph, figure 3.5 only demonstrates the SER performance of the MIMO-OFDM sys-
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tem with three different ways to obtain CSI: training sequence with equal power alloca-

tion, proposed optimal training sequence and perfect CSI at receiver.

It is observed that the SER performance when using the proposed optimal training

sequence is very close to that when assuming perfect CSI at receiver. The proposed

optimal training sequence provides 0.2dB power gain in SER performance in comparison

with the training sequence using equal power allocation. This benefit is achieved at a

slight complexity increase in training power allocation. It is important to note again that

the approximate transmit power allocation algorithm as proposed in Section 3.5 is only a

simple water-filling optimisation algorithm. Its iterative solution, therefore, can be easily

implemented in practice.

3.9 Chapter Summary

In this chapter, we have comprehensively addressed the topic of optimal training sequence

design for MIMO-OFDM in spatially correlated fading environments.

Section 3.1 reviewed the conditions for optimal training sequences which have been

identified in [46]. At the end of this section, it was shown that the existence of a training

matrix satisfying these conditions is not guaranteed. Consequently, we can only say that

there is a lower bound for channel estimation MSE when assuming these conditions are

satisfied. This lower bound on the channel estimation MSE is derived in Section 3.2.

Section 3.3 considered the limit of the MSE of channel estimation when the channel

correlation matrix Rh approaches singularity due to very high correlated fading. A general

expression of the MSE lower bound was given in (3.23) irrespective of the invertibility of

the channel correlation matrix.

The optimal transmit power allocation which minimizes the MSE lower bound was

presented in Section 3.4 and an approximate algorithm was proposed in Section 3.5.

A nearly optimal training sequence design using proposed power transmit allocation

algorithms was presented in Section 3.6.

In Section 3.7, we also extended the optimal training sequence design to MIMO-
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OFDM systems where standard CP-OFDM is replaced by ZP-OFDM-OLA. It is con-

cluded that the optimal training sequence design for MIMO-ZP-OFDM-OLA systems is

similar to that of MIMO-CP-OFDM systems and the performance of the LMMSE channel

estimation is exactly the same.

The superior performance of the proposed training sequence in comparison to that of

the existing training sequences was presented through the simulation results in Section

3.8.

3.10 Appendix: a STBC scheme for 4× 4 MIMO com-

munication system

In this appendix, we consider a STBC scheme for 4×4 MIMO communication system as

presented in [38]

3.10.1 The STBC transmission model

We consider a wireless communication system with Mt transmit antennas and Mr receive

antennas. At each time slot t, symbols ci
t , i = 1,2, . . . ,Mt are simultaneously transmitted

from the Mt transmit antennas. The channel is assumed to be a flat fading channel and the

path gain from transmit antenna i to receive antenna j is defined to be αi j. The wireless

channel is assumed to be quasi-static so that the path gains are constant over a frame of

length l and vary from one frame to another.

At time t, the received signal at antenna j is given by

r j
t =

Mt

∑
i=1

αi jci
t +n j

t (3.55)

where n j
t is the AWGN noise presented at antenna j at time t.

Assuming perfect CSI is available, the receiver has to computes the decision metric

l

∑
t=1

Mr

∑
j=1

∣∣∣ r j
t −∑Mt

i=1 αi jci
t

∣∣∣
2

(3.56)
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over all code words c1
1c2

1 . . .cMt
1 c1

2c2
2 . . .cMt

2 . . .c1
l c2

l . . .cMt
l and decides in favour of the code

word that minimizes the above sum.

3.10.2 Encoding algorithm

We consider a STBC scheme with the code rate of 3/4, which means transmitting 3

information symbols over a frame of 4 time slots.

The transmitted codeword matrix of this STBC scheme is as follows

H4 =




s1 s2
s3√

2
s3√

2

−s∗2 s∗1
s3√

2
− s3√

2
s∗3√

2
s∗3√

2
−s1−s∗1+s2−s∗2

2
−s2−s∗2+s1−s∗1

2
s∗3√

2
− s∗3√

2
s2+s∗2+s1−s∗1

2 − s1+s∗1+s2−s∗2
2




. (3.57)

3.10.3 Decoding algorithm

Maximum likelihood decoding of this STBC scheme can be achieved by minimizing the

decision metric for different information symbols independently.

More specifically, the decoder minimises the decision metric
∣∣∣∣

[
∑Mr

j=1

(
r j

1α∗1 j +(r j
2)
∗α2 j +

(r j
4−r j

3)(α
∗
3 j−α∗4 j)

2 − (r j
3+r j

4)
∗(α3 j+α4 j)

2

) ]
− s1

∣∣∣∣
2

+
(
−1+∑Mr

j=1 ∑Mt
i=1 |αi j|2

)
|s1|2

for decoding s1,

minimises the decision metric
∣∣∣∣

[
∑Mr

j=1

(
r j

1α∗2 j− (r j
2)
∗α1 j +

(r j
4+r j

3)(α
∗
3 j−α∗4 j)

2 + (−r j
3+r j

4)
∗(α3 j+α4 j)
2

) ]
− s2

∣∣∣∣
2

+
(
−1+∑Mr

j=1 ∑Mt
i=1 |αi j|2

)
|s2|2

for decoding s2,

minimises the decision metric
∣∣∣∣

[
∑Mr

j=1

(
(r j

1+r j
2)α

∗
3 j√

2
+

(r j
1−r j

2)α
∗
4 j√

2
+ (r j

3)
∗(α1 j+α2 j)√

2
+ (r j

4)
∗(α1 j−α2 j)√

2

) ]
− s3

∣∣∣∣
2

+
(
−1+∑Mr

j=1 ∑Mt
i=1 |αi j|2

)
|s3|2
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for decoding s3.



Chapter 4

Conclusion and Future Work

4.1 Thesis Conclusion

This thesis has focused on the optimal training sequence design for MIMO-OFDM sys-

tems in spatially correlated fading channels. Some important original contributions of this

work are summarized as follows.

• The conditions for MIMO-OFDM optimal training sequences in spatially correlated

fading environments discovered in [46] have been reviewed in this thesis. However,

we have discovered that the existence of a training matrix cannot be guaranteed in

general.

• A tight theoretical lower bound on the MSE of MIMO-OFDM channel estimation

in spatially correlated fading environments has been extracted in Section 3.2

• We have considered the limit of the channel estimation MSE when the channel

correlation matrices approach singularity in Section 3.3. We, then, have derived a

general expression of the MSE lower bound in (3.23). This general expression does

not depend on the invertibility of the channel correlation matrix.

• The optimal transmit power allocation for training sequences to achieve the MMSE

performance of channel estimation has been found by resorting to the IBP [33]

69
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• We have proposed an approximate algorithm for transmit power allocation in Sec-

tion 3.5. This algorithm is more computationally efficient while maintaining a sim-

ilar MSE performance in comparison with the above optimal solution.

• A practical and nearly optimal training sequence design has been demonstrated in

Section 3.6. The proposed training sequence shows to have a superior MSE perfor-

mance when compared with all existing training sequences. Its MSE performance

almost achieves the MSE theoretical lower bound. It is also confirmed that its SER

performance is very close to the SER performance when assuming perfect CSI at

receiver.

• The training sequence design for MIMO-OFDM in spatially correlated fading en-

vironments can also be applied to MIMO-OFDM systems in which CP-OFDM is

replaced by ZP-OFDM-OLA. This idea has been presented in Section 3.7.

4.2 Future Work

Although this thesis has addressed some fundamental problems of MIMO-OFDM optimal

training sequence design, it will not be the last-mile research work on this topic. We are

still considering some unsolved problems for our future research.

1. The training sequence design in this thesis has shown to be practically implemented

and has superior MSE performance when comparing with that of all existing train-

ing sequences. The further step is to test this training sequence in various practical

correlated fading models to verify its superiority.

2. Although the training sequence design proposed in this thesis demonstrates nearly

optimal channel estimation MSE performance, the exact optimal training sequence

in a general case of correlated fading channels has not been found yet. We em-

phasize that this optimal solution is not necessary to satisfy the conditions as re-

ported in [46]. It is optimal in a sense that it has the best MSE performance. This
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optimal solution can be found by formulating the mathematical optimization prob-

lem (3.1) into an equivalent Semi-Definite Programming (SDP) optimization prob-

lem [18]. This SDP problem can then be solved by some SDP softwares such as

YALMIP [30]. However, the computational complexity of the current SDP soft-

wares is still very high and impractical for wireless communication applications.

Consequently, a more computationally efficient algorithm for finding the MIMO-

OFDM optimal training sequence is still an open challenge.

3. In this thesis, information on the MIMO channel correlation matrices is assumed to

be available at both transmitter and receiver for channel estimation and training se-

quence design. This is because the statistics of MIMO channels often change slowly

with time. The receiver, therefore, has enough time to estimate the MIMO chan-

nel correlation matrices and feed back to the transmitter. However, the estimation

of MIMO channel correlation matrices cannot achieve perfect accuracy in practice.

This inaccurate information certainly has negative effect on the performance of the

proposed training sequence which is presented in Chapter 3. This effect should be

carefully considered and quantitatively evaluated when implementing the training

sequence in practice.



Appendix A

Mathematical Background

In this appendix, we introduce some mathematical concepts which are necessary to under-

stand the mathematical derivations in the thesis. Anyone who is interested in the topic of

MIMO-OFDM is strongly recommended to carefully review Matrix Analysis in advance.

Meanwhile, Convex Optimization is a very important class of mathematical optimization

problems. It arises in a variety of applications in practice and can be solved numerically

very efficiently. In this thesis, convex optimization is used to find the optimal transmit

power allocation for MIMO-OFDM training sequences.

All the proofs will be omitted to keep the mathematical review brief. Interested readers

can easily find the detailed treatment of these topics in the referenced standard textbooks

[19] [31] [20] [16] [48] [11].

A.1 Matrix Analysis

A.1.1 Singular Value Decomposition (SVD)

Definition: For each matrix A ∈ Cm×n of rank r, there are unitary matrices U ∈ Cm×m,

V ∈ Cn×n and a diagonal matrix D = diag(σ1,σ2, . . . ,σr) with σ1 ≥ σ2 ≥ . . . ≥ σr > 0

such that

A = U


 D 0

0 0




m×n

VH (1.1)
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The σis are called nonzero singular values of A. The values of σis are the positive square

roots of the eigenvalues of AHA. When r < p = min{m,n}, A is said to have p− r

additional zero singular values.

The above factorization is called SVD of matrix A, and the columns of U and V are

called left-hand and right-hand singular vectors for A, respectively.

A.1.2 Kronecker Product

Definition: The Kronecker product of a matrix A ∈ Cm×n and a matrix B ∈ Cp×q, is

denoted by A⊗B and is defined to be the following block matrix

A⊗B =




a11B . . . a1nB
... . . . ...

am1B . . . amnB


 ∈ Cmp×nq (1.2)

Notice that A⊗B 6= B⊗A in general.

Definition: With each matrix A ∈Cm×n, an associated vector vec A ∈Cmn×1 is defined

as

vec A = [a11, . . . ,am1,a12, . . . ,am2, . . . ,a1n, . . . ,amn]T (1.3)

Some basic properties of the Kronecker product include: (αA)⊗B = α(A⊗B)

(A⊗B)H = AH ⊗BH

(A⊗B)⊗C = A⊗ (B⊗C)

(A+B)⊗C = A⊗C+B⊗C

(A⊗B)(C⊗D) = AC⊗BD

If A ∈ Cm×m and B ∈ Cn×n are nonsingular, then so is A⊗B, and

(A⊗B)−1 = A−1⊗B−1

vec AXB = (BT ⊗A)vec X

vec AX = (I⊗A)vec X
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A.1.3 Matrix Inversion Formulae

Let A be an invertible matrix partitioned as follows

A =


 A11 A12

A21 A22




where A11 and A22 are also invertible matrices.

The blockwise inverse of matrix A is provided by the following matrix inversion for-

mulae

A−1 =


 A−1

11 +A−1
11 A12∆

−1
1 A21A−1

11 −A−1
11 A12∆

−1
1

−∆−1
1 A21A−1

11 ∆−1
1


 (1.4)

and

A−1 =


 ∆−1

2 −∆−1
2 A12A−1

22

−A−1
22 A21∆

−1
2 A−1

22 +A−1
22 A21∆

−1
2 A12A−1

22


 (1.5)

where

∆1 = A22−A21A−1
11 A12 is the Schur complement of A11

∆2 = A11−A12A−1
22 A21 is the Schur complement of A22

Equating equation (1.4) and (1.5), we have the following important identity, which is

called the matrix inversion lemma

(A11−A12A−1
22 A21)−1 = A−1

11 +A−1
11 A12∆

−1
1 A21A−1

11 (1.6)

A.2 Convex Optimization

A.2.1 Convex Sets

Definition: A set C is convex if the line segment between any two points in C lies in C,

i.e., if for any x1,x2 ∈C and any θ with 0≤ θ ≤ 1, we have

θx1 +(1−θ)x2 ∈C (1.7)

Figure A.1 illustrates a simple example of convex and nonconvex set.



A.2 Convex Optimization 75

(a) Convex Set (b) Nonconvex Set

Figure A.1: An example of convex and nonconvex set

(a) Convex Function (b) Concave Function

Figure A.2: An example of convex and concave function

A.2.2 Convex Functions

Definition: A function f : Rn → R is convex if the domain of function f , denoted by

dom f , is a convex set and if for all x1,x2 ∈ dom f , and θ with 0≤ θ ≤ 1, we have

f (θx1 +(1−θ)x2)≤ θ f (x1)+(1−θ) f (x2) (1.8)

Geometrically, this inequality means that the line segment between (x1, f (x1)) and (x2, f (x2)),

which is the chord from x1 to x2, lies above the graph of f (figure A.2).

We say f is concave if − f is convex.

A.2.3 Necessary and Sufficient Conditions for Convex Functions

First-order conditions: Suppose f is differentiable (i.e., its gradient ∇ f exists at each

point in dom f ). Then f is convex if and only if dom f is convex and

f (x)≥ f (x1)+∇ f (x1)T (x− x1) (1.9)

hold for all x1,x ∈ dom f
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Figure A.3: If f is convex and differentiable, then f (x)≥ f (x1)+∇ f (x1)T (x−x1) for all

x1,x ∈ dom f

Second-order conditions: We now assume that f is twice differentiable, that is, its

Hessian ∇2 f exists at each point in dom f . Then f is convex if and only if dom f is

convex and its Hessian is positive semidefinite: for all x ∈ dom f , which is

∇2 f (x)º 0 (1.10)

For a function on R, this reduces to the simple condition f ′′(x)≥ 0

A.2.4 Optimization Problems

Definition: A mathematical optimization problem, or just optimization problem, has the

form

minimize f (x) (1.11)

subject to gi(x)≤ 0 i = 1, . . . ,m

h j(x) = 0 j = 1, . . . , p

where

The vector x = (x1, . . . ,x1) is the optimization variable of the problem

The function f (x) : Rn → R is the objective function
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The functions gi(x) : Rn → R are called the inequality constraint functions and the

inequalities gi(x)≤ 0 are called inequality constraints

The functions h j(x) : Rn → R are called the equality constraint functions and the

equalities h j(x)≤ 0 are called equality constraints

The set of points for which the objective and all constraint functions are defined

D = dom f ∩
m⋂

i=1

dom gi∩
p⋂

j=1

dom h j

is called the domain of the optimization problem (1.11).

A point x ∈ D is feasible if it satisfies the constraints gi(x) ≤ 0, i = 1, . . . ,m and

h j(x) = 0, j = 1, . . . , p. The problem (1.11) is said to be feasible if there exists at least

one feasible point, and infeasible otherwise. The set of all feasible points is called the

feasible set.

A vector x∗ is called an optimal solution of the problem (1.11), if it has the smallest

objective value among all vectors that satisfy the constraints, i.e., for any x with gi(x) ≤
0, i = 1, . . . ,m and h j(x) = 0, j = 1, . . . , p, we have f (x)≥ f (x∗)

A.2.5 Convex Optimization

Definition: A convex optimization problem has a form

minimize f (x) (1.12)

subject to gi(x)≤ 0 i = 1, . . . ,m

h j(x) = 0 j = 1, . . . , p

where all the objective and constraint functions are convex. And the equality constraint

functions must be affine, i.e., h j(x) = aT
j x−b j

Notice that the feasible set of a convex optimization problem is convex, since it is the

intersection of convex sets D = dom f ∩⋂m
i=1 dom gi
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A.2.6 The Lagragian

Consider an optimization problem

minimize f (x)

subject to gi(x)≤ 0 i = 1, . . . ,m

h j(x) = 0 j = 1, . . . , p

with variable x ∈ Rn. Assuming that domain of the optimization problem D = dom f ∩
⋂m

i=1 dom gi∩
⋂p

j=1 dom h j is nonempty.

Definition: Lagragian L : Rn×Rm×Rp → R associated with the above optimization

problem as

L(x,λ,ν) = f (x)+
m

∑
i=0

λigi(x)+
p

∑
j=0

ν jh j(x) (1.13)

with dom L = D ∩Rm∩Rp

λi is referred as the Lagrange multiplier associated with the ith inequality constraint

gi(x)≤ 0

ν j is referred as the Lagrange multiplier associated with the jth equality constraint

h j(x) = 0

A.2.7 Karush-Kuhn-Tucker (KKT) Optimality Conditions for Con-

vex Problems

Consider a convex optimization problem

minimize f (x)

subject to gi(x)≤ 0 i = 1, . . . ,m

h j(x) = 0 j = 1, . . . , p

where f ,g1, . . . ,gm are differentiable and convex functions.

Necessary and sufficient conditions for x∗ to be the optimal solution for the above

convex optimization problem is that there exist x∗, λ∗, ν∗ satisfy the following KKT
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conditions 



gi(x∗)≤ 0, i = 1, . . . ,m

aT
j x∗−b j = 0, j = 1, . . . , p

λ ∗i ≥ 0, i = 1, . . . ,m

λ ∗i gi(x∗) = 0, i = 1, . . . ,m

f (x∗)+∑m
i=0 λ ∗i gi(x∗)+∑p

j=0 ν∗j h j(x∗) = 0

(1.14)
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