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Abstract

The Trotter-Kato product formula is a mathematical clarification of path integration in

quantum theory [62]. It gives a precise meaning to Feynman’s path integral representation

of the solutions to Schrödinger equations with time-dependent potentials. In this thesis,

we consider the Trotter-Kato product formula in arbitrary symmetrically F-normed ideal

closed with respect to the logarithmic submajorization.

An abstract non-autonomous evolution equation is widely used in various fields of

mathematics and quantum mechanics. For example, Schrödinger equation and linear

partial differential equations of parabolic or hyperbolic type [53, 70]. The second problem

we consider is the existence of the propagator for such an equation and its approximation

formula in an arbitrary symmetric Banach ideal. The approximation formula in the

autonomous case corresponds to the Trotter product formula.
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Chapter 1

Introduction

One of the main objects of this thesis is the exponential formula

eA+B = eA · eB, (1.1)

for some suitable operators A and B. Note that (1.1) is true when A and B are complex

numbers or commuting bounded operators. However, (1.1) does not hold in general for

noncommuting bounded or unbounded operators. A well known formula due to Lie [55,

Theorem VIII.29] states that for a pair of m×m matrices A and B, one has

lim
n→∞

(
e−tA/ne−tB/n

)n
= e−t(A+B), t ≥ 0, (1.2)

where the convergence holds in the uniform norm, and uniformly in t on compact intervals of

[0,∞). Note that the same assertion also holds for pair of bounded operators A, B ∈ L(H)

on a Hilbert space H (see, Section 4.1).

An analogue of (1.2) in more general setting was first obtained by Trotter [69]. Let A

and B be non-negative self-adjoint operators on a Hilbert space H and A+B be essentially

self-adjoint on dom(A) ∩ dom(B). Then, the following Trotter product formula is known

s-lim
n→∞

(
e−tA/ne−tB/n

)n
= e−t(A+B), t ≥ 0, (1.3)

where the convergence holds in the strong operator topology, and uniformly in t on compact

intervals of [0,∞). The Trotter product formula is widely applicable in quantum field

theory. For example, it gives a precise meaning for Feynman’s path integral [62, 50].
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Later, Kato [31] extended (1.3) to a more general case of the form-sum C := A+̇B of

two non-negative self-adjoint operators A and B (more details in Section 2.2.3). Namely,

he proved the following

s-lim
n→∞

(e−tA/ne−tB/n)n = e−tCP, t > 0, (1.4)

where the convergence holds uniformly in t on compact intervals of (0,∞), and P denotes

the orthogonal projection from H onto dom(C) = dom(A1/2) ∩ dom(B1/2). Furthermore,

in [30, 31], Kato generalized (1.4) for a class of Kato functions (see Definition 4.2.1)

s-lim
n→∞

(f(tA/n)g(tB/n))n = e−tCP, t > 0, (1.5)

where the convergence holds uniformly in t on compact intervals of (0,∞). The simple

examples of Kato functions are the following: f(t) = e−t, t ≥ 0 and f(t) = (1+ t)−1, t ≥ 0.

In the literature, the latter type formula (1.5) is known as Trotter-Kato product formula.

A particular point of interest has been to strengthen the convergence in (1.5). One such

result was first obtained by Rogava [57, 56]. He proved the convergence in the operator

norm and gave an estimate on error bound (see Section 4.2).

Further, in a series of papers by Neidhardt, Zagrebnov, Ichinose, Tamura and etc. (see,

for example, [21, 37, 48, 39, 67, 24, 20]), the Trotter-Kato product formula in the operator

norm topology was considered. They obtained the optimal error bounds of such formulas

for certain subclasses of Kato functions for both algebraic sum A+B and form-sum A+̇B

of two non-negative self-adjoint operators A,B under suitable conditions on them. For a

more detailed review of these results, we refer the reader to Chapter 4.

The first attempt to prove the Trotter product formula in the trace norm topology was

made by Zagrebnov in [74]. He proved the Trotter product formula in trace norm topology

for some classes of Gibbs semigroups. Later, in [38, 49], Neidhardt and Zagrebnov proved

that the Trotter-Kato product formula also holds in trace norm provided at least one of

the operators A and B generates a self-adjoint Gibbs semigroup.

First results concerning some symmetric (quasi-)normed ideals were obtained by Hiai

in [15], where the Trotter product formula was proved in Schatten ideals Lp(H) for any

0 < p < ∞ under the assumption that e−A ∈ Lp(H). Moreover, Hiai conjectured that

the Trotter-Kato product formula holds in an arbitrary fully symmetric ideal of bounded
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operators (see [15, Problem 3.16]). In [40] (see also [75, Chapter 6] and [77]), Neidhardt

and Zagrebnov answered the conjecture in the affirmative by showing that the Trotter-Kato

product formula holds in any fully symmetric ideal I(H) of bounded operators provided

the so-called Kac operator (the transfer matrix) e−tB/2e−tAe−tB/2 belongs to this ideal for

some t. Namely, they showed that

lim
n→∞

(
e−tA/ne−tB/n

)n
= e−tCP,

lim
r→∞

(
e−tB/2re−tA/re−tB/2r

)r
= e−tCP,

(1.6)

where the limits are taken with respect to the norm of a fully symmetric ideal, and

P denotes the orthogonal projection from H onto dom(C) = dom(A1/2) ∩ dom(B1/2).

Moreover, they proved similar formulas for the whole class of Kato functions f and g.

In this thesis, we present a result given in [2, Theorem 3.6], where we further extend

the results of Hiai [15], Neidhardt and Zagrebnov [40] to an arbitrary symmetrically F-

normed ideal closed with respect to the logartihmic submajorization. Namely, let A and

B be non-negative self-adjoint operators on a separable Hilbert space H and I(H) be

a symmetrically F-normed ideal closed with respect to the logarithmic submajorization.

Then, we prove the Trotter-Kato product formula (1.6) with respect to the F-norm of

I(H), for a suitable class of Kato function f and g (cf. Theorem 5.3.1).

Note that the class of all symmetrically F-normed ideals closed with respect to the

logarithmic submajorization contains all symmetric quasi-Banach ideals. Hence, the latter

result is also true in an arbitrary symmetric quasi-Banach ideal (see, Corollary 5.3.2).

We also consider error bounds of such formulas and show some examples similar to [40,

Theorem 5.1] (see Proposition 5.4.3 and Corollary 5.4.4).

In the second part of the thesis, we further investigate an abstract non-autonomous

Cauchy problem for the evolution equation on a Hilbert space H. Let A and B(t), t ≥ 0

be non-negative self-adjoint operators on H. We consider the following non-autonomous

evolution equation


du(t)
dt = −(A+B(t))u(t),

u(s) = ξ ∈ H,

0 ≤ s ≤ t ≤ 1. (1.7)

The main problem solving (1.7) is to find a so-called propagator (solution operator)
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{U(t, s)}0≤s≤t≤1, such that u(t) = U(t, s)ξ is a solution of (1.7) in a certain sense for an

appropriate set of initial data ξ. Note that if B(t) = 0, t ≥ 0, then the propagator can be

written via strongly continuous semigroup, i.e., U(t, s) = e−(t−s)A. However, when B(t) is

not trivial, the situation becomes more complicated, and there is no such simple expression

as in the autonomous case.

In the non-autonomous case, the problem of finding the propagator of the evolution

equation (1.7) was first considered by Phillips [53], where the family {B(t)}t∈[0,1] was

assumed to consist of bounded operators. Later, Kato studied a more general setting of

unbounded perturbations in [28, 29]. Since then, there has been a series of papers concerning

the evolution equation in different settings, especially for unbounded perturbations [12, 72,

73, 22, 71, 70, 76].

One common point of all the works mentioned earlier was to prove the existence of

a propagator and that some families of well-behaved approximants tend to converge to

the original propagator in some given topology. For instance, an example of a family of

approximants can be given as follows

Un(t, s) :=
1∏

k=n

e−
(t−s)A

n · e−
t−s
n

B
(
s+

k(t−s)
n

)
, 0 ≤ s ≤ t ≤ 1. (1.8)

Note that if B(t) = B, t ≥ 0 is independent of a time variable t, then the given approxima-

tion problem corresponds to the Trotter product formula (see, for example, [21, 22, 45,

70]).

The above approximation problem in the operator norm topology was successfully

considered in a series of papers [22, 47, 46, 44]. The approximation formula of a propagator

in the operator norm can be used as a lifting tool for other stronger topologies. Hence, in

Section 4.5, we present a detailed review of the results in the operator norm topology.

In this thesis, following the above method, we extend the results of Zagrebnov [76],

where the same problem was considered in the trace norm topology. Namely, we first prove

the existence of a propagator {U(t, s)}0≤s≤t≤1 in an arbitrary symmetric Banach ideal

I(H) of bounded operators under the assumptions given in Section 6.1 (cf. Theorem 6.1.1

or [3, Theorem 1.2]).

Furthermore, we prove that the approximating families as (1.8) converge to the original

propagator {U(t, s)}0≤s≤t≤1 in the norm of symmetric Banach ideal I(H) (cf. Theorem
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6.1.2 or [3, Theorem 1.3]).
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Structure of the thesis

The thesis is organised in the following way. In Chapter 2, we recall the necessary

preliminary material employed in the following chapters. Firstly, we recall the notion of an

F-norm and F-normed space, which contains all quasi-normed spaces. We further recall

some necessary material from the theory of bounded and unbounded operators. Primarily,

we review the non-negative self-adjoint operators, the densely defined non-negative closed

forms, and the connection between them to construct the form-sum of two non-negative

self-adjoint operators.

In Chapter 3, we present one of the main objects of this thesis, the symmetric operator

ideals. As an essential tool, we recall the notion of a logarithmic submajorization and

closedness of the above ideals with respect to the logarithmic submajorization. In Section

3.3, we further present different results regarding the (F, respectively, quasi)-norm of a

symmetric operator ideal.

Chapter 4 consists of a detailed overview of current results on the Trotter-Kato product

formula and an approximation formula for a propagator in the operator norm topology.

Firstly, we discuss the product formulas for elementary cases of finite matrices and bounded

operators. In Sections 4.2 and 4.3, we recall various existing results regarding the Trotter-

Kato product formula in the operator norm topology for the algebraic sum and the form-sum

of two unbounded operators, respectively. Section 4.4 presents a criterion for convergence

of the Trotter-Kato product formula in the operator norm. Finally, Section 4.5 consists of

the basics of the theory of evolution equation and different results on the existence of a

propagator of the non-autonomous evolution equation. We also present an approximation

formula for a propagator in the operator norm topology and various estimates of error

bounds for this approximation formula.

In Chapter 5, we present the Trotter-Kato product formula in symmetrically F-normed

ideal closed with respect to the logarithmic submajorization. First, we prove the equivalence

between formulas for various families generated by the Kato functions. We further present

a lifting method, which helps obtain the product formula in symmetric operator ideal from

the same formula in the operator norm topology. Section 5.3 consists of the main results

of this chapter. Finally, we discuss the error bounds of the Trotter-Kato product formula

in symmetrically F-normed ideals closed with respect to the logarithmic submajorization.
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Chapter 6 consists of results regarding the existence of a propagator of an abstract

non-autonomous Cauchy problem for evolution equation and its approximation formula in

symmetric Banach ideals. The main results of this chapter are proved in Sections 6.3 and

6.4.
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Chapter 2

Preliminaries

In this chapter, we present all notations and preliminary material used throughout this

thesis. In Section 2.1, we recall basic notions and notations regarding the bounded and

unbounded operators. Section 2.2 presents the notion of a densely defined non-negative

closed form on a Hilbert space H. Moreover, we recall the connection between densely

defined non-negative closed forms and non-negative self-adjoint operators on a Hilbert space

H. Using this connection, we further define a form-sum of two non-negative self-adjoint

operators on a Hilbert space H.

2.1 Basic definitions and notations

Let R and C be the set of all real and complex numbers, respectively. We denote the

integer and remainder parts of a real number r ∈ R as usual, by [r] and {r}, respectively.

In the following we use notation Const to denote a positive constant which may vary from

line to line.

We now recall the definition of F-norms.

Definition 2.1.1. Let Ω be a linear space over the field C. A function ∥·∥ from Ω to [0,∞)

is called an F-norm, if for any x, y ∈ Ω the following conditions hold:

(i) ∥x∥ ≥ 0, and ∥x∥ = 0 ⇔ x = 0;

(ii) ∥αx∥ ≤ ∥x∥ for any α ∈ C such that |α| ≤ 1;

(iii) limα→0 ∥αx∥ = 0;

(iv) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
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The couple (Ω, ∥·∥) is called an F-normed space. Note that if ∥ · ∥ is an F-norm on Ω,

then it induces a metrizable topology [27, Chapter 1] and conversely if Ω is metrizable then

it can be equipped with an equivalent F-norm (see e.g. [32, Section 15.11], [27, Chapter 1]).

Remark 2.1.2. To avoid the confusion we do not use the notion of F-space for complete

F-normed spaces, since the notion of F-space often refers to complete metrizable locally

convex spaces.

Another important notion is the notion of a quasi-norm.

Definition 2.1.3. Let Ω be a linear space over the field C. A function ∥·∥ from Ω to [0,∞)

is called an quasi-norm, if for any x, y ∈ Ω the following conditions hold:

(i) ∥x∥ ≥ 0, and ∥x∥ = 0 ⇔ x = 0;

(ii) ∥αx∥ = |α| ∥x∥ for any α ∈ C;

(iii) ∥x+ y∥ ≤ C (∥x∥+ ∥y∥), C ≥ 1.

The least constant C satisfying property (iii) is called the modulus of concavity of the

quasi-norm. In this case, the pair (Ω, ∥ · ∥) is called a quasi-normed space. Note that any

quasi-normed space is locally bounded and metrizable [32, Section 15.10]. Hence, it can be

equipped with an equivalent F-norm. Therefore, any quasi-normed space is an F-normed

space [27, Chapter 1, Section 3].

One can quickly note that if C = 1, in (iii), then Definition 2.1.3 coincides with a usual

definition of a norm.

Next, we recall some preliminary material regarding the bounded operators. Let H be

a separable Hilbert space and L(H) be the C∗-algebra of all bounded linear operators on

H equipped with the uniform norm ∥·∥∞. Let us remind various topologies in L(H) that

are used throughout this thesis. More information about these topologies can be found in

[25, Section 5.1].

Definition 2.1.4. Let {Xn}n≥1 be a sequence of bounded operators on a Hilbert space H.

Then,

(i) the sequence Xn is said to converge to X in the operator norm topology, if

∥Xn −X∥∞ → 0, n → ∞.
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(ii) the sequence Xn is said to converge to X in the strong operator topology and denoted

as s-limn→∞Xn = X, if

∥Xnξ −Xξ∥ → 0, n → ∞

for any ξ ∈ H.

(iii) the sequence Xn is said to converge to X in the weak operator topology and denoted

as w-limn→∞Xn = X, if

⟨(Xn −X)ξ, η⟩ → 0, n → ∞

for any ξ, η ∈ H.

Since the unbounded non-negative self-adjoint operators on a Hilbert space H are the

main objects of this thesis, we now recall the basics regarding the unbounded operators on

a Hilbert space H. Let (H, ⟨·, ·⟩) be a Hilbert space. Let X be a densely-defined linear

operator on H with domain dom(X). Set

dom(X∗) = {η ∈ H : ∃u ∈ H : ⟨Xξ, η⟩ = ⟨ξ, u⟩, for any ξ ∈ dom(X)}.

Since dom(X) is dense in H, the vector u ∈ H satisfying ⟨Xξ, η⟩ = ⟨ξ, u⟩ for all ξ ∈ dom(X)

is uniquely determined by η. Therefore, setting X∗η = u, we obtain a well-defined mapping

X∗ on H. It is easily seen that X∗ is linear and it is called the adjoint operator of X.

Let X be a densely defined linear operator on H. Then X is self adjoint if X = X∗

which means dom(X) = dom(X∗) and Xξ = X∗ξ, ξ ∈ dom(X). We say that X is

essentially self-adjoint if its closure X is self-adjoint. We also say that X is non-negative

and write X ≥ 0 if ⟨Xξ, ξ⟩ ≥ 0 for all ξ ∈ dom(X). For further details in this topic, we

refer the reader to [60].

Let X ∈ L(H) be a bounded operator on a Hilbert space H. It is known that one can

define the exponential function of X as the following uniform norm convergent series

eX :=
∞∑
j=0

Xj

j!
. (2.1)

However, in general, the series (2.1) fails to be convergent for unbounded operators.
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In this case, Hille-Yosida’s theory gives a precise meaning to the exponential function of

an unbounded operator in terms of a strongly continuous semigroup. Let us recall the

definition of a strongly continuous semigroup.

Definition 2.1.5. A family {T (t)}t≥0 of bounded linear operators on a Hilbert space H is

called a strongly continuous semigroup if

T (t+ s) = T (t)T (s), T (0) = I, t, s ≥ 0,

and T (t) is continuous with respect to the strong operator topology.

To understand the strongly continuous semigroup as an exponential function, we first

need to recall the definition of the generator of a strongly continuous semigroup.

Definition 2.1.6. [10, Definition II.1.2] The generator X : dom(X) ⊂ H → H of a

strongly continuous semigroup {T (t)}t≥0 on a Hilbert space H is the operator

Xξ := lim
h↓0

ξ − T (h)ξ

h

defined for every ξ in its domain

dom(X) := {ξ ∈ H : lim
h↓0

ξ − T (h)ξ

h
exists}.

The important result here is the following from [10, Theorem II.1.4]

Proposition 2.1.7. The generator of a strongly continuous semigroup is a closed and

densely defined linear operator that determines the semigroup uniquely.

Since, by Proposition 2.1.7, the strongly continuous semigroup {T (t)}t≥0 is determined

uniquely by its generator X, in the following we denote T (t) := e−tX , t ≥ 0 and the

exponential function is understood as a strongly continuous semigroup. For more details

regarding the semigroup theory, we refer the reader to [10] and [52].

12



2.2 Connection between sesquilinear forms and self-adjoint

operators

In this section, we recall a notion of a densely defined non-negative closed form and its

connection with a non-negative self-adjoint operator on a Hilbert space H (for more details

see [60, Chapter 10]). Using these notions we recall an extended version of a sum, so-called

a form-sum of two non-negative self-adjoint operators on a Hilbert space H, which is used

in Chapters 4 and 5.

2.2.1 Closed sesquilinear forms

Definition 2.2.1. [60, Definition 10.1] A mapping t[·, ·] : dom(t)× dom(t) → C is called

a sesquilinear form (or, shortly, form) on a linear subspace dom(t) of a Hilbert space H

if it is linear on a first variable and conjugate linear on a second variable. In this case,

dom(t) is called a domain of a form t[·, ·].

The sum of two forms s[·, ·] on dom(s) and t[·, ·] on dom(t), and a scalar multiplication

by α ∈ C of a form are defined as follows

(s+ t)[ξ, η] := s[ξ, η] + t[ξ, η], ξ, η ∈ dom(s+ t) := dom(s) ∩ dom(t)

(αs)[ξ, η] := α · s[ξ, η], ξ, η ∈ dom(αs) := dom(s).

Definition 2.2.2. A form t[·, ·] on a linear subspace dom(t) is called symmetric, if

t[ξ, η] = t[η, ξ], for all x, y ∈ dom(t).

A symmetric form is called non-negative if

t[ξ, ξ] ≥ 0, for all ξ ∈ dom(t).

Let t[·, ·] be a non-negative form on dom(t). Then, one can define the inner product

⟨·, ·⟩t on dom(t) as

⟨ξ, η⟩t := t[ξ, η] + ⟨ξ, η⟩, ξ, η ∈ dom(t).

The properties of an inner product ⟨·, ·⟩t trivially follows from the properties of an inner

13



product ⟨·, ·⟩ on a Hilbert space H.

Therefore, one can define a norm ∥ · ∥t on dom(t) associated with the inner product

⟨·, ·⟩t as usual

∥ξ∥t =
(
t[ξ, ξ] + ∥ξ∥2

)1/2
, ξ ∈ dom(t),

where ∥ · ∥ is a norm associated with an inner product of a Hilbert space H.

Definition 2.2.3. [60, Definition 10.2] A non-negative symmetric form t[·, ·] on dom(t) ⊂

H is said to be closed if (dom(t), ∥ · ∥t) is complete.

The closed forms have the following important property. Later, it is used to define a

form-sum of certain unbounded operators on a Hilbert space H.

Proposition 2.2.4. [60, Corollary 10.2] Let {tj}1≤j≤n be a finite number of closed forms

on dom(tj), 1 ≤ j ≤ n, respectively. Then, t1 + t2 + ...+ tn is also closed on ∩n
j=1dom(tj).

2.2.2 A form associated with a self-adjoint operator

In this subsection, we assume that X is a non-negative self-adjoint operator with a domain

dom(X) ⊆ H. Let EX(·) be a spectral measure of X. One can associate a densely-defined

non-negative symmetric form tX to X as follows

dom(tX) := dom(X1/2) =

{
ξ ∈ H,

∫
R
|λ|d⟨EX(λ)ξ, ξ⟩ < ∞

}
,

tX [ξ, η] :=

∫
R
λd⟨EX(λ)ξ, η⟩, ξ, η ∈ dom(tX).

Then, tX is called a form associated with X and dom[X] := dom(X1/2) is called a form-

domain of X.

The next proposition shows another description of the form tX associated with a

non-negative self-adjoint operator X, avoiding the direct use of spectral representation.

For the proof of it and more properties of the forms associated with self-adjoint operators,

we refer the reader to [60, Proposition 10.4].

Proposition 2.2.5. Let X be a non-negative self-adjoint operator with domain dom(X) ⊂

H, then

tX [ξ, η] = ⟨X1/2ξ,X1/2η⟩ for all ξ, η ∈ dom(X1/2).

Conversely, if a form t[·, ·] with dense domain dom(t) is given, then one can associate
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an operator Xt to it as follows: the domain dom(Xt) contains all vectors ξ ∈ dom(t) for

which there exists a vector uξ ∈ H such that t[ξ, η] = ⟨uξ, η⟩ for any η ∈ dom(t). In this

case, Xtξ = uξ, ξ ∈ dom(Xt). Note that since dom(t) is dense in H, the vector uξ is unique

for a given ξ ∈ dom(t). Therefore, Xt is well-defined and linear. Now, we present the main

result of this subsection. The proof can be found in [60, Proposition 10.7 and Corollary

10.8].

Proposition 2.2.6. (i) If t[·, ·] is a densely defined non-negative closed form, then the

operator Xt is non-negative self-adjoint and t[·, ·] ≡ tXt (for a form associated with

X).

(ii) The mapping X → tX is a bijection between the set of non-negative self-adjoint

operators on a Hilbert space H and the set of densely defined non-negative closed

forms on H.

2.2.3 The form-sum of two non-negative self-adjoint operators

Let (X,dom(X)) and (Y, dom(Y )) be self-adjoint operators on a Hilbert space H. In this

subsection, we define a notion of a form-sum of X and Y , which extends the notion of

the usual algebraic sum. It is essential to do so since the algebraic sum of two self-adjoint

operators is not always self-adjoint on the common domain dom(X)∩dom(Y ). For example,

let Y be a self-adjoint operator defined as Y = −X on dom(X). In this case, the algebraic

sum X+Y is a zero operator defined on dom(X). Therefore, if dom(X) ̸= H, the algebraic

sum X + Y is not self-adjoint. For further deep investigation of a problem of a sum of two

unbounded self-adjoint operators, we refer the reader to [6, 13].

In order to define the form-sum, assume that X and Y are non-negative self-adjoint

operators with domains dom(X) and dom(Y ), respectively. By Proposition 2.2.6, there

exist unique densely defined non-negative closed forms tX [·, ·] and tY [·, ·] with domains

dom[X] = dom(X1/2) and dom[Y ] = dom(Y 1/2), respectively. Moreover, by Proposition

2.2.5, they are defined as follows

tX [ξ, η] = ⟨X1/2ξ,X1/2η⟩, ξ, η ∈ dom(X1/2),

tY [µ, ν] = ⟨Y 1/2µ, Y 1/2ν⟩, µ, ν ∈ dom(Y 1/2).

By Proposition 2.2.4, the sum of tX and tY is a closed form on dom(X1/2) ∩ dom(Y 1/2).
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Therefore, by Proposition 2.2.6, there exists an operator Z associated with a closed form

tX + tY , which is self-adjoint on dom(X1/2) ∩ dom(Y 1/2). The operator Z is called a

form-sum of the operators X and Y and denoted as Z := X+̇Y.

Note that dom(X) ⊂ dom(X1/2) := dom[X], hence, for an unbounded operator X, the

form-domain dom[X] is strictly larger than the domain dom(X). Therefore, in particular,

dom(X) ∩ dom(Y ) ⊂ dom(X1/2) ∩ dom(Y 1/2). Hence, assuming that the form-sum is

densely defined is weaker than the requirement that the algebraic sum is densely defined.

Furthermore, the form-sum can exist and be self-adjoint on dom(X1/2) ∩ dom(Y 1/2) even

if the algebraic sum is not self-adjoint (see, for example, [6, p. 54-55]).
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Chapter 3

Symmetric operator ideals

This chapter contains necessary definitions of one of the main objects of this thesis, the

symmetric operator ideals, and their various properties. In Section 3.1, we recall the basic

definitions regarding the two-sided ideals of compact operators and introduce the class of

symmetrically F-normed ideals. Section 3.2 presents the essential tool, so-called logarithmic

submajorization, and we introduce the class of ideals closed with respect to the logarithmic

submajorization. Furthermore, in Section 3.3, we present various results in these ideals,

which are necessary for later chapters.

3.1 Symmetrically F-normed ideals

Let H be a separable Hilbert space. Recall that a proper non-trivial subspace I(H) ⊂ L(H)

is called a two-sided ideal (or, shortly, an ideal) of L(H) if XY, Y X ∈ I(H) whenever

X ∈ I(H) and Y ∈ L(H). Denote by K(H) ⊂ L(H) and L∞(H) ⊂ L(H) the ideal of all

finite rank and compact operators on H, respectively. The Calkin’s theorem [5] states that

for any ideal I(H) of L(H), one has

K(H) ⊆ I(H) ⊆ L∞(H).

For any compact operator X ∈ L∞(H), we denote by {sj(X)}j≥0 the singular values

of the operator X, i.e. the eigenvalues {λj(|X|)}j≥0 of the operator |X| = (X∗X)1/2

arranged in decreasing order, and counting multiplicities. For the sequences of singular

values {sj(·)}j≥0 of any two compact operators X,Y ∈ L∞(H) and a bounded operator

B ∈ L(H), we have the following classical inequalities (see, e.g., [14, Sections 2.1 and 2.4,
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respectively]):

sj(BX) ≤ ∥B∥∞sj(X), j ≥ 0,

m∏
j=0

sj(XY ) ≤
m∏
j=0

sj(X)
m∏
j=0

sj(Y ), m ≥ 0.
(3.1)

Note that there is a remarkable correspondence between sequence spaces generated by

singular values and two-sided ideals of compact operators due to Calkin [5]. Let {ej}j≥0 be

an orthonormal basis in the Hilbert space H, then, for any bounded sequence z = {zj}j≥0,

we can define the diagonal operator diag(z) =
∑

j≥0 zj⟨·, ej⟩ej on H. Let c0 be the space

of all sequences x = {xj}j≥0 which tends to zero, i.e., xj → 0 as j → ∞. A subspace J

of c0 is called a (F-, respectively, quasi-)normed Calkin sequence space if it is equipped

with (F-, respectively, quasi-)norm ∥ · ∥J such that for any bounded sequence y = {yj}j≥0,

y∗j ≤ x∗j , j ≥ 0 and x ∈ J imply that y ∈ J and ∥y∥J ≤ ∥x∥J , where z∗ = {z∗j }j≥0 is the

decreasing rearrangement of {zj}j≥0. One can write the above-mentioned correspondence

in the following way: If J is a Calkin sequence space, then the associated two-sided ideal

J (H) is defined as

J (H) := {X ∈ L∞(H) : s(X) = {sj(X)}j≥0 ∈ J}. (3.2)

Conversely, if J (H) is a two-sided ideal of compact operators, then the associated sequence

space is defined as

J := {z ∈ c0 : diag(z) ∈ J (H)}. (3.3)

The following result is known as a Calkin correspondence (see, [5] or [33, Theorem

1.2.3]).

Proposition 3.1.1. The correspondence J ↔ J (H) is a bijection between Calkin sequence

spaces and two-sided ideals of compact operators.

We now present a definition of a symmetrically F-normed ideal.

Definition 3.1.2. Let I(H) be a two-sided ideal in L(H) equipped with an F-norm

∥ · ∥I . We say that I(H) is a symmetrically F-normed ideal if X ∈ I(H), Y ∈ L(H)

and sj(Y ) ≤ sj(X) for any j ∈ N ∪ {0} imply that Y ∈ I(H) and ∥Y ∥I ≤ ∥X∥I . In

the particular case when ∥ · ∥I is a (quasi-)norm, we say that I(H) is symmetrically
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(quasi)-normed ideal.

Note that if symmetrically (quasi)-normed ideal I(H) is equipped with a complete

(quasi)-norm ∥ · ∥I , then it is called a symmetric (quasi)-Banach ideal.

Throughout the thesis, we assume for convenience that ∥U∥I = ∥U∥∞ for any rank-one

operator from L(H).

We now state the Calkin correspondence in terms of symmetrically (quasi-)normed

ideals (see [34, Section 3.1] or [66], for more details).

Proposition 3.1.3. [34, Theorem 3.1.1]

(i) Let J be a Calkin sequence space equipped with a (quasi-)norm ∥ · ∥J . Then, an

expression

X 7→ ∥s(X)∥J , X ∈ J (H),

is a (quasi-)norm on J (H), and J (H) is a symmetrically (quasi-)normed ideal

equipped with the given (quasi-)norm (cf. (3.2)).

(ii) Let (J (H), ∥ · ∥J ) be a symmetrically (quasi-)normed ideal. Then, an expression

z 7→ ∥diag(z)∥J , z ∈ J,

is a (quasi-)norm on J , and J is a (quasi-)normed Calkin sequence space (cf. (3.3)).

(iii) The correspondence (J, ∥ · ∥J) ↔ (J (H), ∥ · ∥J ) is one-to-one, and it preserves com-

pleteness.

Note that a similar result (as in Proposition 3.1.3) is also true regarding symmetrically

F-normed ideals and F-normed Calkin sequence spaces. For more details, we refer the

reader to [18].

By the separable part of a symmetrically normed ideal I(H), equipped with a norm

∥ · ∥I , we understand the closure of finite rank operators in L(H) with respect to ∥ · ∥I .

A symmetrically normed ideal (I(H), ∥ · ∥I) is called separable if it is coincides with its

separable part i.e., the class of finite rank operators in L(H) is dense in I(H) with respect

to ∥ · ∥I .

Let us present some examples of symmetrically F-normed ideals.
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Example 3.1.4. (i) [14, Section III.7] The basic example is the class of Schatten-von-

Neumann ideals

Lp := {X ∈ L∞(H),
∑
k≥0

sk(X)p < ∞}, 0 < p < +∞,

equipped with a standard Schatten (quasi-)norm

∥X∥p :=

∑
k≥0

sk(X)p

1/p

, X ∈ Lp(H).

The pair (Lp(H), ∥ · ∥p) is a symmetric Banach ideal for 1 ≤ p < ∞ and symmetric

quasi-Banach ideal for 0 < p < 1 [15, Section 2.2]. Note that (Lp(H), ∥ · ∥p), p ≥ 1 is

separable [14, Theorem 7.1].

(ii) [33, Example 1.2.6] Another important example is a class of weak-lp ideals Lp,∞(H)

for 0 < p < ∞, defined as

Lp,∞(H) := {X ∈ L∞(H), sup
k≥0

(k + 1)1/psk(X) < ∞}

equipped with

∥X∥p,∞ := sup
k≥0

(k + 1)1/psk(X), X ∈ Lp,∞(H).

The pair (Lp,∞(H), ∥ ·∥p,∞) is a symmetric quasi-Banach ideal for any 0 < p < ∞. If

p > 1, there exists an equivalent Calderón norm and Lp,∞(H) becomes a symmetric

Banach ideal equipped with a Calderón norm [63, Section 1.7]. However, it is known

that the ideal Lp,∞(H) fails to be normable for 0 < p ≤ 1 (see, for example, [54, pp.

210] and [19, pp. 259-260]).

(iii) [9, Section 4] A simple example of a complete symmetrically F-normed ideal is a

trace class ideal L1(H) equipped with a functional

∥X∥log :=

∞∑
k=0

log(1 + sk(X)), X ∈ L1(H).

The properties (i)-(iii) of F-norm (see Definition 2.1.1) follow from the fact that
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sk(αX) = |α|sk(X) for any k ≥ 0, α ∈ C and X ∈ L∞(H). Since f(x) = log(1 + x),

x ≥ 0 is a concave function, the triangle inequality follows from [59, Theorem 1]. Now

assume that sk(Y ) ≤ sk(X), k ≥ 0 for X ∈ L1(H) and Y ∈ L∞(H). Hence, it easily

follows that Y ∈ L1(H). Moreover, since f(x) = log(1 + x), x ≥ 0 is an increasing

function, we have ∥Y ∥log ≤ ∥X∥log. Hence, (L1(H), ∥ · ∥log) is a symmetrically

F-normed ideal. Furthermore, since

x

1 + x
≤ log(1 + x) ≤ x, x ≥ 0,

it follows that L1(H) coincides as a set with

Llog(H) := {X ∈ L∞(H) : ∥X∥log < ∞}.

Therefore, the completeness follows from the fact that (Llog(H), ∥ · ∥log) is complete

(see [9, Section 4]).

(iv) Now, we present an example of a symmetrically F-normed ideal from [58, Section 4],

which cannot be equipped with an equivalent quasi-norm. Let {tk}k≥1 be a sequence

of positive numbers such that t1 is an arbitrary positive number and tn is a positive

solution of the equation t2n + tn = t2n−1 for each n ≥ 2. Define a function M(t) on

[0,∞) in the following way:

M(t) =



t2(t2+t)
t22k

, t2k+1 ≤ t < t2k, k ≥ 1;

t22k+1, t2k+2 ≤ t < t2k+1, k ≥ 0;

t2, t ≥ t1;

M(0) = 0.

Then Orlicz sequence space lM , defined as

lM = {x = {xk}k≥0 ∈ l∞,

∞∑
k=0

M (xk) < ∞}

equipped with

∥x∥lM = inf{ε : ε > 0,

∞∑
k=0

M
(xk
ε

)
< ε},
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is a complete F-normed Calkin sequence space (for details, see [58, Section 4], [35,

Theorem 2] and [33, Section 2.4]). Moreover, as shown in [58, Section 4], the function

M does not satisfy the condition (b) of [58, Theorem 1]. Hence, by [58, Theorem 1],

the space lM is not locally bounded, that is lM cannot be equipped with an equivalent

quasi-norm (see e.g. [27, Chapter I.3] or [32, Chapter 3, Section 15.10]). Passing to

operator ideals, [18, Theorem 3.8] guarantees that the corresponding Orlicz ideal

LM := {X ∈ L∞(H), s(X) := {sk(X)}k≥0 ∈ lM}

equipped with

∥X∥LM = inf{ε : ε > 0,
∞∑
k=0

M

(
sk(X)

ε

)
< ε}, X ∈ LM ,

is a complete symmetrically F-normed ideal, which cannot be equipped with a quasi-

norm (since otherwise the corresponding sequence space lM would be quasi-normed

too, [18, Theorem 3.9]).

We now present some properties of F-norm ∥ · ∥I .

Proposition 3.1.5. Let (I(H), ∥ · ∥I) be a symmetrically F-normed ideal. Then,

(i) ∥XY ∥I ≤ ∥∥X∥∞Y ∥I ≤ ⌈∥X∥∞⌉∥Y ∥I for X ∈ L(H) and Y ∈ I(H), where ⌈·⌉

denotes the ceiling function;

(ii) ∥ · ∥I is unitarily invariant, i.e., for any unitary operator U ∈ L(H) and any

X ∈ I(H), one has

∥UX∥I = ∥XU∥I = ∥X∥I ;

(iii) ∥X∗∥I = ∥X∥I for any X ∈ I(H).

Proof. (i). Since sj(XY ) ≤ ∥X∥∞sj(Y ) = sj(∥X∥∞Y ), j ≥ 0, the first inequality follows

from the definition of a symmetrically F-normed ideal and the second follows from the

repeated use of triangle inequality.

(ii). Let U, V ∈ L(H) be the unitary operators. Then,

sj(UXV ) ≤ ∥U∥∞sj(X)∥V ∥∞ = sj(X), j ≥ 0,
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which implies that ∥UXV ∥I ≤ ∥X∥I . On the other hand,

sj(X) = sj(U
∗UXV V ∗) ≤ ∥U∗∥∞sj(UXV )∥V ∗∥∞ = sj(UXV ), j ≥ 0,

which implies that ∥X∥I ≤ ∥UXV ∥I . Hence, assuming that V = I is the identity operator

and combining the latter two inequalities, we prove the assertion.

(iii) Let X = U |X| be the polar decomposition of the operator X. Then, by (i), one has

∥X∥I ≤ ∥U∥∞∥|X|∥I = ∥|X|∥I .

Since U∗X = |X|, we also have

∥|X|∥I ≤ ∥U∗∥∞∥X∥I = ∥X∥I ,

which together with the previous inequality implies that ∥X∥I = ∥|X|∥I .

Using the same argument for the representation X∗ = |X|U∗, one can also obtain that

∥X∗∥I = ∥|X|∥I , which together with ∥X∥I = ∥|X|∥I ends the proof.

3.2 Logarithmic submajorization

First, we define a notion of logarithmic submajorization for compact operators in L∞(H).

For any X,Y ∈ L∞(H) we say that Y is logarithmically submajorised by X (denoted by

Y ≺≺log X) if
k∏

j=0

sj(Y ) ≤
k∏

j=0

sj(X), ∀k ∈ N ∪ {0}.

The important class of all symmetrically F-normed ideals is the following symmetrically

F-normed ideals closed with respect to the logarithmic submajorization.

Definition 3.2.1. A symmetrically F-normed ideal I(H) is said to be closed with respect

to the logarithmic submajorisation if

(i) X ∈ I(H), Y ∈ L(H) and Y ≺≺log X imply that Y ∈ I(H);

(ii) there is a constant CI > 0 such that ∥Y ∥I ≤ CI∥X∥I for any X,Y ∈ I(H) with

Y ≺≺log X.

23



We note that our definition of the closedness with respect to the logarithmic subma-

jorization is stronger than that in [65, Definition 6] and includes inequality for the F-norm

(ii) of Definition 3.2.1. However, if (I(H), ∥ · ∥I) is symmetric (quasi)-Banach ideal, then

the latter definition is superfluous since all symmetric (quasi)-Banach ideals are closed

with respect to the logarithmic submajorization. We show the latter fact in the following

proposition.

Proposition 3.2.2. Any symmetric quasi-Banach ideal (I(H), ∥ · ∥I) is closed with respect

to the logarithmic submajorization.

Proof. By [26, Proposition 3.2] any symmetric quasi-Banach ideal is geometrically stable,

i.e., if X ∈ I(H), then

diag (sj(X))

:= diag(s0(X), (s0(X)s1(X))1/2, ..., (s0(X)s1(X)...sj−1(X))1/j , ...) ∈ I(H),

and

∥diag(sj(X))∥I ≤ Const · ∥X∥I (3.4)

for some constant Const > 0 depending only on the modulus of concavity of the quasi-norm.

Furthermore, by [65, Lemma 35], any geometrically stable ideal satisfies the condition

(i) of Definition 3.2.1. Since sj(Y ) ≤
(∏j−1

k=0 sk(Y )
)1/j

, j ≥ 0, the symmetricity of the

quasi-norm ∥ · ∥I and (3.4) imply that

∥Y ∥I ≤
∥∥diag(sj(Y ))

∥∥
I ≤

∥∥diag(sj(X))
∥∥
I ≤ Const · ∥X∥I

provided that Y ≺≺log X. Thus, the condition (ii) of Definition 3.2.1 is satisfied too.

However, Proposition 3.2.2 is no longer true for a general symmetrically F-normed

ideal (even in the case when the ideal (I(H), ∥ · ∥I) is complete). To demonstrate this, we

present the following example.

Example 3.2.3. Consider the ideal of trace-class operators

L1(H) = {X ∈ L∞(H) :

∞∑
j=0

sj(X) < +∞},
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and the functional ∥ · ∥log log defined as

∥X∥log log =

∞∑
j=0

log(1 + log(1 + sj(X))), ∀X ∈ L(H).

Note that for any positive real number x > 0, one has

log(1 + x) ≤ x.

Hence,

∥X∥log log =
∞∑
j=0

log(1 + log(1 + sj(X))) ≤
∞∑
j=0

log(1 + sj(X)) ≤
∞∑
j=0

sj(X),

which means that ∥·∥log log is finite on L1(H). Furthermore, an argument similar to Example

3.1.4(iii) shows that (L1(H), ∥ · ∥log log) is a complete symmetrically F-normed ideal. From

the fact that any quasi-Banach ideal is closed with respect to the logarithmic submajorization

(see Proposition 3.2.2) we know that L1(H) satisfies the condition (i) of the Definition

3.2.1, i.e. Y ≺≺log X, X ∈ L1(H) implies Y ∈ L1(H). For any finite n ∈ N consider the

finite-rank operators

Yn = diag(en, en, ..., en︸ ︷︷ ︸
n-times

, 0, ...), Xn = diag(en
2
, 1, ..., 1︸ ︷︷ ︸
(n-1)-times

, 0, ...).

It is easy to see that Yn ≺≺log Xn, n ∈ N, and

∥Yn∥log log
∥Xn∥log log

=
n · log(1 + log(1 + en))

log(1 + log(1 + en2)) + (n− 1) log(1 + log(2))
→ ∞, n → ∞.

Therefore, there is no constant CI > 0 such that ∥Yn∥log log ≤ CI ∥Xn∥log log , ∀n ∈ N.

We further recall previously established results without proofs regarding the logarithmic

submajorization. The proofs can be found in their respective references.

Lemma 3.2.4. [40, Lemma 2.5] Let X,X0, Y, Y0 be non-negative self-adjoint compact

operators such that Xr ≤ X0 and Y r ≤ Y0 for some r ≥ 1, then

(
Y 1/2XY 1/2

)r
≺≺log Y

1/2
0 X0Y

1/2
0 .
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Lemma 3.2.5. [16, Theorem 2.3] Let X and Y be non-negative self-adjoint operators on

a separable Hilbert space H and Z = X+̇Y be their from sum. Then,

e−tZP ≺≺log

(
e−tY/2re−tX/re−tY/2r

)r
, t ≥ 0,

where P is the orthogonal projection onto dom(Z).

3.3 Some results in symmetric operator ideals

We now present some properties of symmetric Banach ideals, which are helpful in the

following chapters.

Lemma 3.3.1. Let (I(H), ∥ · ∥I) be a symmetric Banach ideal. Let A be a positive

self-adjoint operator such that e−tA ∈ I(H) for all t > 0 and let {Bj}nj=1 ⊂ L(H). For

every strictly positive sequence {tj}nj=1, we have

∥∥∥∥∥∥
n∏

j=1

Bje
−tjA

∥∥∥∥∥∥
I

≤ Const ·
n∏

j=1

∥Bj∥∞
∥∥∥e−(t1+t2+···+tn)A

∥∥∥
I
,

where Const > 0 is some constant which depends only on ∥ · ∥I .

Proof. Without loss of generality assume that ∥Bj∥∞ = 1 for every 1 ≤ j ≤ n. Hence, by

(3.1), we have

m∏
k=0

sk

 n∏
j=1

Bje
−tjA

 ≤
n∏

j=1

(
m∏
k=0

sk
(
Bje

−tjA
))

≤
n∏

j=1

(
m∏
k=0

sk
(
e−tjA

))
=

m∏
k=0

 n∏
j=1

sk
(
e−tjA

) .

(3.5)

Observe that for any positive number tj > 0, one has

sk(e
−tjA) = sk(e

−A)tj , k ≥ 0.

Therefore,
n∏

j=1

sk
(
e−tjA

)
= sk

(
e−(t1+t2+···+tn)A

)
, k ≥ 0.
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Substituting the latter equality in (3.5) yields

m∏
k=0

sk(

n∏
j=1

Bje
−tjA) ≤

m∏
k=0

sk

(
e−(t1+t2+···+tn)A

)
, m ≥ 0.

In other words,
n∏

j=1

Bje
−tjA ≺≺log e−(t1+t2+···+tn)A.

Since every symmetric Banach ideal is closed with respect to the logarithmic subma-

jorization, it follows from Proposition 3.2.2 that

∥∥∥∥∥∥
n∏

j=1

Bje
−tjA

∥∥∥∥∥∥
I

≤ Const ·
∥∥∥e−∑n

j=1 tjA
∥∥∥
I

for some positive constant Const which only depends on norm ∥ · ∥I .

For a bounded operator X ∈ L(H), the left support and the right support mean

the smallest projections P ∈ L(H) and Q ∈ L(H) such that PX = X and XQ = X,

respectively. We denote them by suppl(X) := P and suppr(X) := Q, respectively.

We now present two convergence results for the symmetric Banach ideal, which are

helpful in Chapter 6.

Lemma 3.3.2. Let I(H) be a symmetric Banach ideal and let X belongs to the separable

part of I(H). Let the functions f : [a, b] → L(H) and g : [c, d] → L(H) be continuous in

the strong operator topology. Then, the mapping

(t, s) → f(t)Xg(s), t ∈ [a, b], s ∈ [c, d],

is jointly continuous with respect to ∥ · ∥I . The same assertion holds for not necessarily

closed intervals.

Proof. For every ξ ∈ H, the mapping t → f(t)ξ, t ∈ [a, b], is a continuous H-valued function.

In particular, it is H-bounded. By the Uniform Boundedness Principle, f : [a, b] → L(H)

is bounded in the uniform norm. So is the mapping g : [c, d] → L(H). We can assume

without loss of generality that

∥f(t)∥∞ ≤ 1, ∥g(s)∥∞ ≤ 1, t ∈ [a, b], s ∈ [c, d].
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Without loss of generality, ∥X∥I ≤ 1.

Fix ϵ ∈ (0, 1). Since X belongs to the separable part of the ideal we can choose

finite rank operator Y ∈ L(H) such that ∥X − Y ∥I < ϵ. Note that ∥Y ∥I < 2. The

mapping t → f(t) · suppl(Y ), t ∈ [a, b], is continuous in the uniform norm. The mapping

s → suppr(Y ) · g(s), s ∈ [c, d], is continuous in the uniform norm. Choose δ > 0 such that

∥f(t1) · suppl(Y )− f(t2) · suppl(Y )∥∞ < ϵ,

whenever |t1 − t2| < δ and

∥suppr(Y ) · g(s1)− suppr(Y ) · g(s2)∥∞ < ϵ,

whenever |s1 − s2| < δ.

We write

f(t1)Xg(s1)− f(t2)Xg(s2) = f(t1)(X − Y )g(s1)− f(t2)(X − Y )g(s2)+

+(f(t1)·suppl(Y )−f(t2)·suppl(Y ))·Y ·g(s1)+f(t2)·Y ·(suppr(Y )·g(s1)−suppr(Y )·g(s2)).

By triangle inequality and the symmetricity of ∥ · ∥I , we have

∥f(t1)Xg(s1)− f(t2)Xg(s2)∥I ≤ ∥f(t1)∥∞∥X −Y ∥I∥g(s1)∥∞+ ∥f(t2)∥∞∥(X −Y )g(s2)+

+∥f(t1) · suppl(Y )− f(t2) · suppl(Y )∥∞∥Y ∥I∥g(s1)∥∞+

+∥f(t2)∥∞∥Y ∥I∥suppr(Y ) · g(s1)− suppr(Y ) · g(s2)∥∞ <

< 1 · ϵ · 1 + 1 · ϵ · 1 + ϵ · 2 · 1 + 1 · 2 · ϵ = 6ϵ

whenever |t1 − t2| < δ and |s1 − s2| < δ. Since ϵ is arbitrary, it follows that our mapping is

jointly continuous with respect to ∥ · ∥I . This proves the assertion in the case of a closed

intervals.

Now, let us consider not necessarily closed intervals. For example, let the first interval be

(a, b] and let the second interval be [c, d). Consider our mapping on the set [a+ 1
n , b]×[c, d− 1

n ].

There, it is continuous with respect to ∥ · ∥I . Hence, it is continuous with respect to ∥ · ∥I
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on the set ⋃
n≥1

[a+
1

n
, b]× [c, d− 1

n
] = (a, b]× [c, d).

This proves the assertion for not necessarily closed intervals.

Lemma 3.3.3. Let I(H) be a symmetrically normed ideal and let X belong to the separable

part of I(H). Let f : [a, b] → L(H) be continuously differentiable in strong operator topology.

The mapping

t → f(t)X, t ∈ (a, b],

is continuously differentiable with respect to ∥ · ∥I . Its derivative is t → f ′(t)X, t ∈ [a, b].

The same assertion holds for not necessarily closed intervals.

Proof. The mapping f ′ is continuous in the strong operator topology and is, therefore,

bounded in the uniform norm (see the proof of Lemma 3.3.2). Since f is continuously

differentiable in the strong operator topology, it follows that g(·) = ⟨f(·)ξ, η⟩ is continuously

differentiable and its derivative is g′(·) = ⟨f ′(·)ξ, η⟩ for any ξ, η ∈ H. Hence, the fundamental

theorem of calculus implies that

⟨(g(t1)− g(t2)) ξ, η⟩ =
∫ t2

t1

⟨f ′(t)ξ, η⟩dt, ∀ξ, η ∈ H.

Therefore,

f(t1)− f(t2) =

∫ t2

t1

f ′(t)dt,

where the integral is understood in the weak operator topology (see [8, Section II.3] or [61,

Chapter 2]). It implies that

∥f(t1)− f(t2)∥∞ ≤
∫ t2

t1

∥∥f ′(t)
∥∥
∞ dt ≤ sup

t∈[a,b]

∥∥f ′(t)
∥∥
∞ |t1 − t2|,

which means that f is Lipschitz in the uniform norm. Without loss of generality,

∥f ′(t)∥∞ ≤ 1, ∥f(t1)− f(t2)∥∞ ≤ |t1 − t2|, t, t1, t2 ∈ [a, b].

Without loss of generality, ∥X∥I ≤ 1.

Fix ϵ ∈ (0, 1). Since X belongs to the separable part of the ideal we can choose finite

rank operator Y ∈ L(H) such that ∥X − Y ∥I < ϵ. Note that ∥Y ∥I < 2. The mapping
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t → f(t) · suppl(Y ), t ∈ [a, b], is continuously differentiable in the uniform norm. Choose

δ > 0 such that

∥∥∥∥f(t2) · suppl(Y )− f(t1) · suppl(Y )

t2 − t1
− f ′(t1) · suppl(Y )

∥∥∥∥
∞

< ϵ,

whenever |t1 − t2| < δ.

We write

f(t2)X − f(t1)X

t2 − t1
− f ′(t1)X =

(f(t2)− f(t1)

t2 − t1
− f ′(t1)

)
· (X − Y )+

+
(f(t2) · suppl(Y )− f(t1) · suppl(Y )

t2 − t1
− f ′(t1) · suppl(Y )

)
· Y.

By the triangle inequality and the symmetricity of ∥ · ∥I , we have

∥∥∥∥f(t2)X − f(t1)X

t2 − t1
− f ′(t1)X

∥∥∥∥
I
≤
∥∥∥∥f(t2)− f(t1)

t2 − t1
− f ′(t1)

∥∥∥∥
∞
∥X − Y ∥I +

+

∥∥∥∥f(t2) · suppl(Y )− f(t1) · suppl(Y )

t2 − t1
− f ′(t1) · suppl(Y )

∥∥∥∥
∞
∥Y ∥I <

< 2 · ϵ+ ϵ · 2 = 4ϵ

whenever |t1 − t2| < δ. This proves the differentiability of our mapping with respect to

∥ · ∥I . That the derivative is continuous with respect to ∥ · ∥I follows from Lemma 3.3.2.

This proves the assertion in the case of a closed interval.

Now, let us consider not necessarily closed interval. For example, let the interval be

(a, b]. Consider our mapping on the interval [a+ 1
n , b]. There, it is continuously differentiable

with respect to ∥ · ∥I . Hence, it is continuously differentiable with respect to ∥ · ∥I on the

set ⋃
n≥1

[a+
1

n
, b] = (a, b].

This proves the assertion for not necessarily closed intervals.

Finally, we present an extension of [40, Lemma 2.6] to the general class of symmetrically

F-normed ideals.

Lemma 3.3.4. Let X ∈ I(H), Y ∈ L∞(H) and Z ∈ L(H) be self-adjoint operators, where

I(H) is a symmetrically F-normed ideal in L(H). If {Z(t)}t≥0 is a family of self-adjoint
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bounded operators such that s-limt→+0 Z(t) = Z, then

lim
r→∞

sup
t∈[0,T ]

∥(Z(t/r)− Z)Y X∥I = lim
r→∞

sup
t∈[0,T ]

∥XY (Z(t/r)− Z)∥I = 0

for any T ∈ (0,∞), where r ∈ R.

Proof. Fix T ∈ (0,∞) and arbitrary ε > 0. It is sufficient to prove

lim
r→∞

sup
t∈[0,T ]

∥(Z(t/r)− Z)Y X∥I = 0,

since the second equality can be showed by taking adjoints. Since Y is a compact operator,

it can be represented as Y = Y1 + Y2, where Y1 is a finite-rank operator and Y2 satisfies

∥Y2∥∞ < δ for a given δ > 0. Then, by triangle inequality, we have

sup
t∈[0,T ]

∥(Z(t/r)− Z)Y X∥I ≤ sup
t∈[0,T ]

∥(Z(t/r)− Z)Y1X∥I

+ sup
t∈[0,T ]

∥(Z(t/r)− Z)Y2X∥I .
(3.6)

We consider the two terms in (3.6) separately. Writing Y1 =
∑m

k=1⟨·, ξk⟩ηk for some

{ξk}mk=1, {ηk}mk=1 ⊂ H and m ∈ N, and using triangle inequality repeatedly, we have

sup
t∈[0,T ]

∥(Z(t/r)− Z)Y1X∥I ≤
m∑
k=1

sup
t∈[0,T ]

∥(Z(t/r)− Z) (⟨·, ξk⟩ηk)X∥I

=

m∑
k=1

sup
t∈[0,T ]

∥(Z(t/r)− Z) (⟨·, ξk⟩ηk)X∥∞

≤ ∥X∥∞
m∑
k=1

sup
t∈[0,T ]

∥(Z(t/r)− Z)ηk∥.

Since s-limt→+∞ Z(t) = Z, there exist rk ∈ R, k = 1, ...,m, such that

sup
t∈[0,T ]

∥(Z(t/rk)− Z)ηk∥ <
ε

2m∥X∥∞
.

Setting R1 = max1≤k≤m rk, for any r ≥ R1, we have

sup
t∈[0,T ]

∥ (Z(t/r)− Z)Y1X∥I <
ε

2
. (3.7)

Now we consider the second term of (3.6). Since s-limt→+0 Z(t) = Z, it follows that
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s-limr→∞ Z(t/r) = Z uniformly in t ∈ [0, T ]. Therefore, there exists a constant C > 0 and

a large enough number R2 ∈ R+ such that supt∈[0,T ] ∥Z(t/r)− Z∥∞ ≤ C for any r ≥ R2.

Then, for a given ε > 0, using axiom (iii) of the F-norm, we can choose δ > 0 such that

∥CδX∥I < ε. By the symmetricity of the F-norm, (i) and the choice of the operator Y2,

we have

sup
t∈[0,T ]

∥(Z(t/r)− Z)Y2X∥I ≤ sup
t∈[0,T ]

∥∥(Z(t/r)− Z)∥∞ ∥Y2∥∞X∥I

≤ ∥CδX∥I <
ε

2

(3.8)

for any r ≥ R2. Therefore, since ε > 0 is arbitrary, combining (3.7) and (3.8) with

r ≥ max{R1, R2}, we conclude the proof.
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Chapter 4

Trotter-Kato product formula in

the operator norm topology

Note that the results of the Trotter-Kato product formula and the approximation formula

for a propagator in the operator norm topology are crucial to considering these formulas

in symmetric operator ideals. Hence, in this chapter, we first overview existing results

regarding the Trotter-Kato product formula and approximation formula for a propagator

in the operator norm topology. Section 4.1 discusses the elementary cases of finite matrices

and bounded operators. Section 4.2 presents the results on the Trotter-Kato product

formula in the case of the algebraic sum of two (possibly unbounded) operators on a

Hilbert space H. In Section 4.3, we recall similar results in the case of the form-sum of two

(possibly unbounded) operators on a Hilbert space H. The criterion of the Trotter-Kato

product formula in the operator norm topology is given in Section 4.4. Section 4.5 first

recalls the basics of the abstract Cauchy problem for the evolution equation. Moreover, in

Subsection 4.5.3, we present some existence results for a propagator of the non-autonomous

evolution equation. In Subsection 4.5.4, we overview various approximation formulas for a

propagator in the operator norm topology.

4.1 Product formulas for bounded operators

It was Sophus Lie who first considered the exponential formulas for a case of finite matrices

(see, for example, [55, Theorem VIII.29]). We present this result in the following lemma.
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Proposition 4.1.1. Let A and B be finite k × k matrices. Then, one has

lim
n→∞

(
e−tA/ne−tB/n

)n
= e−t(A+B)

in the operator norm topology and uniformly in t ∈ [0, T ], 0 < T < ∞. Moreover, there

exists a constant Const = Const (∥A∥∞, ∥B∥∞, t) > 0 such that

∥∥∥(e−tA/ne−tB/n
)n

− e−t(A+B)
∥∥∥
∞

≤ Const

n
, n ≥ 1.

Proof. Firstly, note that for any matrices X,Y with dimensions k×k, one has the following

telescopic representation

Xn − Y n =
n−1∑
j=0

Xj(X − Y )Y n−j−1. (4.1)

Hence, taking X = e−tA/ne−tB/n and Y = e−t(A+B)/n, (4.1) implies

(
e−tA/ne−tB/n

)n
−
(
e−t(A+B)/n

)n
=

n−1∑
j=0

(
e−tA/ne−tB/n

)j (
e−tA/ne−tB/n − e−t(A+B)/n

)
e−t(A+B)(n−j−1)/n.

Thus, ∥∥∥(e−tA/ne−tB/n
)n

−
(
e−t(A+B)/n

)n∥∥∥
∞

≤
n−1∑
j=0

∥∥∥(e−tA/ne−tB/n
)∥∥∥j

∞

∥∥∥e−tA/ne−tB/n − e−t(A+B)/n
∥∥∥
∞

∥∥∥e−t(A+B)/n
∥∥∥n−j−1

∞

n · e−t((∥A∥∞+∥B∥∞))
∥∥∥e−tA/ne−tB/n − e−t(A+B)/n

∥∥∥
∞
.

Note that

∥∥∥e−tA/ne−tB/n − e−t(A+B)/n
∥∥∥
∞

=

∥∥∥∥∥∥
∞∑
k=0

1

k!

(−tA)k

nk

∞∑
j=0

1

j!

(−tB)j

nj
−

∞∑
i=0

1

i!

(−t(A+B))i

ni

∥∥∥∥∥∥
∞

≤
∥∥∥∥ t2

2n2
(AB −BA) +

t3

6n3

(
ABA+BAB +BA2 +B2A− 2AB2 − 2A2B

)∥∥∥∥
∞

+O

(
1

n4

)

≤ t2

n2
∥A∥∞ ∥B∥∞ +

2t3

3n3

(
∥A∥2∞ ∥B∥∞ + ∥A∥∞ ∥B∥2∞

)
+O

(
1

n4

)
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≤ Const

n2
, n → ∞,

for some positive constant depending on ∥A∥∞ and ∥B∥∞. Hence, from the latter inequali-

ties it follows that

sup
t∈[0,T ]

∥∥∥(e−tA/ne−tB/n
)n

−
(
e−t(A+B)/n

)n∥∥∥
∞

≤ Const

n
sup

t∈[0,T ]
e−t(∥A∥∞+∥B∥∞)

≤ Const

n
,

which completes the proof.

Moreover, one can also prove a similar product formula for a symmetrized family as

below. Note that the convergence rate is better in this case.

Proposition 4.1.2. Let A and B be finite k × k. Then, one has

lim
n→∞

(
e−tA/2ne−tB/ne−tA/2n

)n
= e−t(A+B)

in the operator norm topology and uniformly in t ∈ [0, T ], 0 < T < ∞. Moreover, there

exists a constant Const = Const(∥A∥∞ , ∥B∥∞ , t) > 0 such that

∥∥∥(e−tA/2ne−tB/ne−tA/2n
)n

− e−t(A+B)
∥∥∥
∞

≤ Const

n2
, n ≥ 1.

Proof. Using the similar arguments as in Proposition 4.1.1, one has

∥∥∥(e−tA/2ne−tB/ne−tA/2n
)n

−
(
e−t(A+B)/n

)n∥∥∥
∞

≤ n · e−t(∥A∥∞+∥B∥∞)
∥∥∥e−tA/2ne−tB/ne−tA/2n − e−t(A+B)/n

∥∥∥
∞
.

Note that ∥∥∥e−tA/2ne−tB/ne−tA/2n − e−t(A+B)/n
∥∥∥
∞

=

∥∥∥∥∥∥
∞∑
k=0

1

k!

(−tA)k

(2n)k

∞∑
j=0

1

j!

(−tB)j

nj

∞∑
i=0

1

i!

(−tA)i

(2n)i
−

∞∑
m=0

1

m!

(−t(A+B))m

nm

∥∥∥∥∥∥
∞

=

∥∥∥∥ t3

24n3

(
A2B +BA2 + 4BAB − 2ABA− 2AB2 − 2B2A

)
+O

(
1

n4

)∥∥∥∥
∞

≤ t3

6n3

(
∥A∥2∞ ∥B∥∞ + 2 ∥A∥∞ ∥B∥2∞

)
+O

(
1

n4

)
≤ Const

n3
, n → ∞,
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for some positive constant depending on ∥A∥∞ and ∥B∥∞. Hence, we finally have that

sup
t∈[0,T ]

∥∥∥(e−tA/2ne−tB/ne−tA/2n
)n

−
(
e−t(A+B)/n

)n∥∥∥
∞

≤ Const

n2
sup

t∈[0,T ]
e−t(∥A∥∞+∥B∥∞)

≤ Const

n2
.

Note that a further extension for a couple of bounded operators A,B ∈ L(H) is

straightforward and it is shown in the following proposition. A proof mainly follows the

same line of reasoning as in the proof of Propositions 4.1.1 and 4.1.2, hence, is omitted.

Proposition 4.1.3. Let A and B be bounded operators on a separable Hilbert space H.

Then, the following convergences in the operator norm

lim
n→∞

(
e−tA/ne−tB/n

)n
= e−t(A+B),

lim
n→∞

(
e−tA/2ne−tB/ne−tA/2n

)n
= e−t(A+B)

holds uniformly in t ∈ [0, T ], 0 < T < ∞. Moreover, there exists a constant Const =

Const(∥A∥∞ , ∥B∥∞ , t) > 0 such that

∥∥∥(e−tA/ne−tB/n
)n

− e−t(A+B)
∥∥∥
∞

≤ Const

n
, n ≥ 1,

∥∥∥(e−tA/2ne−tB/ne−tA/2n
)n

− e−t(A+B)
∥∥∥
∞

≤ Const

n2
, n ≥ 1.

4.2 Product formulas with the algebraic sum of unbounded

operators

Let A and B be possibly unbounded operators on a Hilbert space H. Note that the obvious

domain dom(A) ∩ dom(B) might be a trivial set. Hence, the algebraic sum of A and B

is not defined in general. However, one can impose the assumption that the algebraic

sum A + B is self-adjoint on dom(A) ∩ dom(B). In this setting, it is possible to obtain

the Trotter-Kato product formula in the operator norm topology with various rates of

convergences under additional suitable conditions on domains dom(A),dom(B) and Kato

functions f, g.
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The first result regarding the convergence of the Trotter product formula in the operator

norm topology was obtained by Rogava [57] (see also [56]). He considered an error bound

of the Trotter-product formula for a non-symmetric product case of exponential functions.

Namely, let A and B be non-negative self-adjoint operators on a Hilbert space H such that

the algebraic sum C := A+B is self-adjoint on dom(C) = dom(A) ⊂ dom(B). Then, he

proved the following

∥∥∥(e−tB/ne−tA/n
)n

− e−tC
∥∥∥
∞

= O

(
lnn√
n

)
, n → ∞, (4.2)

where the convergence holds uniformly in t on compact interval [0, T ] ⊂ [0,∞). The detailed

proof of this result can be found in [56, Theorem 1].

Later, Ichinose and Tamura [21] obtained a stronger estimate for an error bound of the

Trotter product formula in symmetric product case. They considered two non-negative

self-adjoint operators A and B such that dom(Aα) ⊂ dom(B) for some α ∈ [0, 1). Then, one

has that the algebraic sum C := A+B is non-negative self-adjoint on dom(C) = dom(A).

Moreover, they proved the following convergence result

∥∥∥(e−tA/2ne−tB/ne−tA/2n
)n

− e−tC
∥∥∥
∞

= O

(
1

n2/(3+α)

)
, n → ∞, (4.3)

where the convergence holds uniformly in t on compact interval [0, T ] ⊂ [0,∞).

Before proceeding further, let us recall the notion of a Kato function.

Definition 4.2.1. [30] A Borel measurable function f(·) defined on [0,∞) is called a Kato

function if it satisfies the following

0 ≤ f(x) ≤ 1, f(0) = 1, f ′(0) = −1.

For example, the exponential function f(x) = e−x, x ≥ 0, is a simple example of a Kato

function.

In [37], Neidhardt and Zagrebnov further extended the above results of Rogava, and

Ichinose and Tamura, for a certain subclass of Kato functions under weaker conditions

than in [21]. It was assumed that A and B are non-negative self-adjoint operators such

that A ≥ I and B ≥ I. It was also assumed that dom(A) ⊂ dom(B) and B is a relatively
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A-bounded with bound a less than 1, i.e.,

∥Bξ∥ ≤ a∥Aξ∥, ξ ∈ dom(A).

Let f and g be Kato functions such that

C1/2γ := sup
x>0

xf(x)1/2

1− f(x)
< ∞,

C1 := sup
x>0

1− f(x)

x
< ∞,

C2 := sup
x>0

∣∣∣∣(f(x)− 1

1 + x

)
1

x2

∣∣∣∣ < ∞,

S1 := sup
x>0

1− g(x)

x
< ∞,

S2 := sup
x>0

∣∣∣∣(g(x)− 1

1 + x

)
1

x2

∣∣∣∣ < ∞.

(4.4)

Moreover, assume that

0 < aC0S1 < 1.

Then, one has the following convergences for both symmetric and non-symmetric product

cases

∥∥∥(f(tA/n)1/2g(tB/n)f(tA/n)1/2
)n

− e−tC
∥∥∥
∞

= O

(
lnn

n

)
, n → ∞,

∥∥(f(tA/n)g(tB/n))n − e−tC
∥∥
∞ = O

(
lnn

n

)
, n → ∞,

(4.5)

where the convergences hold uniformly in t ≥ 0.

One can easily see that an estimate (4.5) is, indeed, stronger than both (4.2) and (4.3).

Moreover, the conditions on operators A and B in this case are weaker than in [21] (for

more details, see [37, Section 3]).

Note that the simple examples of functions which satisfy (4.4) are the following

f(x) = g(x) = e−x, x ≥ 0

and

f(x) = g(x) =
(
1 +

x

k

)−k
, x ≥ 0, k ≥ 2.
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4.2.1 An optimal error bound

One can easily notice that all previous results in this section were obtained under the

assumption that the algebraic sum of the pair of given operators is self-adjoint on common

domain dom(A)∩dom(B). This subsection presents the optimal estimates for error bounds

under the analogues assumption. Further details can be found in [23] and [24].

Let us first recall the subclass K̂γ , γ ∈ (1, 2] of Kato functions.

Definition 4.2.2. [75, Definition 5.24] A Kato function f is said to belong to the class

K̂γ for γ ∈ (1, 2], if

(i) for any ε > 0, there exists δ = δ(ε) < 1 such that

f(x) ≤ 1− δ(ε), x ≥ ε;

(ii)

[f ]γ := sup
x>0

|f(x)− 1 + x|
xγ

< ∞.

The standard examples of functions from class K̂γ are

f(x) = e−x, f(x) =
(
1 +

x

k

)−k
, k > 0, x ≥ 0.

Let A and B be non-negative self-adjoint operators on a separable Hilbert space H

such that the algebraic sum C = A + B is self-adjoint on dom(A) ∩ dom(B). Let f, g

be Kato functions from class K̂γ for some given 3/2 ≤ γ ≤ 2. Then, in [23, Theorem 1],

Ichinose and Tamura proved that

∥∥(f(tA/2n)g(tB/n)f(tA/2n))n − e−tC
∥∥
∞ = O

(
n−1/2

)
, n → ∞,∥∥(f(tA/n)g(tB/n))n − e−tC

∥∥
∞ = O

(
n−1/2

)
, n → ∞,

(4.6)

uniformly in t on compact interval [0, T ] ⊂ [0,∞). Moreover, they showed that if C is a

strictly positive operator, then the convergences in (4.6) are uniform on [T,∞), T > 0.

In the subsequent paper [24], the given approach was further studied and the authors

proved the following
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Theorem 4.2.3. ([24, Theorem 1 and Corollary 1]) Let A and B be non-negative self-

adjoint operators on a separable Hilbert H such that their algebraic sum C = A + B is

self-adjoint on dom(A)∩ dom(B). Let f, g be Kato functions from the class K̂2. Then, one

has ∥∥(g(tB/2n)f(tA/n)g(tB/2n))n − e−tC
∥∥
∞ = O

(
1

n

)
, n → ∞,

∥∥(f(tA/2n)g(tB/n)f(tA/2n))n − e−tC
∥∥
∞ = O

(
1

n

)
, n → ∞,

∥∥(f(tA/n)g(tB/n))n − e−tC
∥∥
∞ = O

(
1

n

)
, n → ∞,

∥∥(g(tB/n)f(tA/n))n − e−tC
∥∥
∞ = O

(
1

n

)
, n → ∞,

in t on compact interval [0, T ] ⊂ [0,∞). Moreover, if C is a strictly positive operator, then

the convergence above is uniform on [T,∞), T > 0.

Note that the given estimate O
(
1
n

)
for an error bound is optimal, although, only in

case of k = 2. Hence, it improves and extends all the given results in this section for the

algebraic sum of two non-negative self-adjoint operators.

In the following example we show that the error bound in Theorem 4.2.3 is, indeed,

optimal. For more details, we refer the reader to [67].

Example 4.2.4. Let
(
Hk :=

(
R2, ⟨·, ·⟩k

))
k≥1

be a countable family of Hilbert spaces. One

can define a direct sum H = ⊕∞
k=1Hk with the inner product ⟨ξ, η⟩k =

∑
k≥1⟨ξk, ηk⟩k

for ξ = (ξk)k≥1 and η = (ηk)k≥1 in H. For each k ≥ 1, define the following bounded

non-negative self-adjoint operators on Hk

Ak = k(S + E), Bk = k (S cos θk + T sin θk + I) ,

where

S =

1 0

0 −1

 , T =

0 1

1 0

 , I =

1 0

0 1

 ,

and the parameter θk ∈ (0, π/2] is chosen to satisfy

cos θk = 1− εk, ε =
1

2k2
.
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Define two unbounded non-negative self-adjoint operators as follows

A = ⊕ (Ak)k≥1 , dom(A) =

ξ = (ξk)k≥1 ∈ H,
∑
k≥1

∥Akξk∥2k < ∞

 ,

B = ⊕ (Bk)k≥1 , dom(B) =

η = (ηk)k≥1 ∈ H,
∑
k≥1

∥Bkηk∥2k < ∞

 ,

where ∥ · ∥k is a norm with respect to the inner product ⟨·, ·⟩k. One can also define the

algebraic sum A + B = (Ak + Bk)k≥1 which is symmetric and non-negative on domain

dom(A) ∩ dom(B).

By [24, Proposition 1], it follows that dom(A) = dom(B) and the algebraic sum A+B

is self-adjoint on dom(A) ∩ dom(B) = dom(A) = dom(B). Moreover, by [24, Proposition

2], there exists a positive bounded continuous function L(t) for t > 0 independent of n ≥ 1

such that ∥∥∥(e−tB/2ne−tA/ne−tB/2n
)n

− e−t(A+B)
∥∥∥
∞

≥ L(t)

n
, (4.7)

for every t > 0 and n ≥ 1. Therefore, (4.7) shows that an error bound which is shown in

Theorem 4.2.3 is, indeed, optimal.

4.3 Product formulas with the form-sum of unbounded op-

erators

In contrast to previous results, we consider the Trotter-Kato product formula for a more

general type of sum of two unbounded operators, the so-called form-sum (see Section 2.2.3

for more details). Note that if the algebraic sum of two unbounded operators is self-adjoint

on their common domain, then the form-sum is also self-adjoint; moreover, it coincides

with the algebraic sum.

In [48], Neidhardt and Zagrebnov further extended their result by considering two

self-adjoint operators A and B such that

A ≥ I, B ≥ 0,

dom(Aα) ⊂ dom(Bα), for some
1

2
< α < 1,
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and

∥Bαξ∥ ≤ a∥Aαξ∥, ξ ∈ dom(Aα), 0 < a < 1.

Let f and g be Kato functions such that

C1/2γ := sup
x>0

xf(x)1/2α

1− f(x)
< ∞,

C1 := sup
x>0

1− f(x)

x
< ∞,

C2 := sup
x>0

∣∣∣∣(f(x)− 1

1 + x

)
1

x2

∣∣∣∣ < ∞,

and

S1 := sup
x>0

1− g(x)

x
< ∞,

S2 := sup
x>0

∣∣∣∣(g(x)− 1

1 + x

)
1

x2

∣∣∣∣ < ∞.

Moreover, assume that

0 < a1/αC0S1 < 1.

Then, for the self-adjoint form-sum C := A+̇B on dom(A1/2) ∩ dom(B1/2) = H, they

proved the following

∥∥∥(f(tA/n)1/2g(tB/n)f(tA/n)1/2
)n

− e−tC
∥∥∥
∞

= O

(
1

nα−1/2

)
, n → ∞,

∥∥(f(tA/n)g(tB/n))n − e−tC
∥∥
∞ = O

(
1

nα−1/2

)
, n → ∞,

where the convergence is uniform in t ∈ (0,∞). Moreover, they obtained stronger estimates

∥∥∥(f(tA/n)1/2g(tB/n)f(tA/n)1/2
)n

− e−tC
∥∥∥
∞

= O

(
lnn

n2α−1

)
, n → ∞,

∥∥(f(tA/n)g(tB/n))n − e−tC
∥∥
∞ = O

(
lnn

n2α−1

)
, n → ∞,

where the convergence is uniform in [ε,∞), ε > 0. Additionally, if

dom(Cα) ⊂ dom(Aα),
1

2
< α < 1,
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then

∥∥∥(f(tA/n)1/2g(tB/n)f(tA/n)1/2
)n

− e−tC
∥∥∥
∞

= O

(
1

n2α−1

)
, n → ∞,

∥∥(f(tA/n)g(tB/n))n − e−tC
∥∥
∞ = O

(
1

n2α−1

)
, n → ∞,

uniformly in t ∈ [0,∞). Note that the latter estimate of an error bound O
(
n1−2α

)
turned

out to be optimal under the given fractional conditions on operators A and B for any

α ∈ (12 , 1) (see [67]). Moreover, in [67], a counter-example was given. It shows that under

the given fractional conditions on operators A and B with 0 < α ≤ 1
2 , the convergence of

the Trotter-Kato product formula in the operator norm is not possible in general. Lastly,

note that a case with α = 1 is considered in an earlier paper [37].

4.3.1 An optimal error bound

Now we present the results from [20], which further extended the results of [48] and obtained

an optimal error bound assuming weaker conditions than in [48]. Authors in [20] use the

methods from [23] and [24] with some modifications.

Define

mf (x) := sup
y≥x

f(y), x > 0. (4.8)

In [20, Theorem 1.1], authors proved the following

Theorem 4.3.1. Let A and B be non-negative self-adjoint operators with the form-sum

C = A+̇B. Let β ∈ (0, 1] be given and f and g be Kato functions such that [f ]2β < ∞

and [g]2β < ∞ (see Definition 4.2.2) with mf (x) < 1 for x > 0 (cf. (4.8)). If dom(Cα) ⊆

dom(Aα) ∩ dom(Bα) for some α ∈ (1/2, 1) and dom(A1/2) ⊆ dom(B1/2), then for any

compact interval [0, T ] ⊂ (0,∞) there exists a constant Const which only depends on α and

T > 0 such that

∥∥(f(tA/2n)g(tB/n)f(tA/2n))n − e−tC
∥∥
∞ ≤ Const · 1

n2α−1
,

for t ∈ [0, T ] and n ≥ 1.

Note that Theorem 4.3.1 improves the results of [48, Theorem 5.5 and Corollary 5.6],

where an additional condition involving the domains of fractional powers Aα and Bα,
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α ∈ (1/2, 1] was assumed. Nevertheless, the given error bound in Theorem 4.3.1 is still

optimal, as shown in [67]. Although putting α = 1, one can get the error bound shown in

Theorem 4.2.3 of the previous section, the methods of [20] do not allow including the case

α = 1. Note also that in the case of α = 1 (see, Theorem 4.2.3), the additional condition

dom(A1/2) ⊂ dom(B1/2) is not needed.

4.4 Criteria for a convergence in the operator norm

In [39], Neidhardt and Zagrebnov further investigated the problem of the convergence of

the Trotter-Kato product formula in the operator norm topology. They obtained some

necessary and sufficient conditions using the generalization of Chernoff’s theorem in the

operator norm topology (see [39, Theorem 2.2] and [6, Theorem 1.1]).

We now mention some results from [39], which are helpful in the next chapter. Let f(·)

be a Kato function. Define

0 ≤ φ0(x) := inf
0<s≤x

s−1

(
1

f(s)
− 1

)
, 0−1 := +∞

and

f0(x) :=


1, x = 0

(1 + xφ0(x))
−1, x > 0.

Note that f0(·) is also a Kato function.

They proved the following convergence result.

Theorem 4.4.1. [39, Theorem 3.2] Let A and B be non-negative self-adjoint operators on a

separable Hilbert space H with form-sum C. Let f and g be Kato functions. If f0(t0A) ∈ L∞

is a compact operator for some t0 > 0, then the Trotter-Kato product formula converges in

the operator norm, uniformly on compact intervals of (0,∞).

Note that if f(x) = g(x) = e−x, x ≥ 0, then Theorem 4.4.1 implies that the Trotter

product formula (for exponential functions) converges in the operator norm uniformly on

compact intervals of (0,∞) if (I + t0A)−1 ∈ L∞(H) is a compact operator for some t0 > 0.

We now recall the notion of a regular Kato function (see [40] or [2, Definition 2.10]).

Definition 4.4.2. A Kato function f(·) is called regular if 0 ≤ sups∈[x,+∞) f(s) < 1 for
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x > 0 and

lim
x→+∞

sup0≤s≤x sf(s)

x
= 0.

The authors of [39] further obtained the criterion of the convergence of the Trotter-Kato

product formula in the operator norm topology using Theorem 4.4.1.

Theorem 4.4.3. [39, Theorem 3.7] Let A be a non-negative self-adjoint operator. The

Trotter-Kato product formula converges in the operator norm uniformly on compact intervals

of (0,∞) for any regular Kato function f(·), any Kato function g(·) and any non-negative

self-adjoint operator B if and only if (I +A)−1 ∈ L∞(H) is a compact operator.

4.5 Abstract Cauchy problem for evolution equation

In this section, we present some preliminary material regarding the abstract Cauchy

problem for evolution equation. Moreover, we overview existing results on existence of a

propagator of such equation and its various approximation results in the operator norm.

4.5.1 Autonomous evolution equation

Let H be a Hilbert space and C : dom(C) ⊆ H → H be a linear operator. An autonomous

Cauchy problem for an evolution equation is given as follows


du(t)
dt = Cu(t), t ≥ 0,

u(0) = ξ ∈ H,

(4.9)

where t is a time variable and u(·) is Hilbert space H valued function. Firstly, we recall

the notion of a solution and well-posedness of (4.9).

Definition 4.5.1. ([36, Definition 1.1])

1. A function u : [0,+∞) → H is called a (classical) solution of (4.9) if u(·) is

continuously differentiable such that u(t) ∈ dom(C) for each t ∈ [0,+∞) and (4.9)

holds.

2. A continuous function u : [0,+∞) → H is called a mild solution of (4.9) if∫ t
0 u(τ)dτ ∈ dom(C) for all t ≥ 0 and u(t) = C

∫ t
0 u(τ)dτ + ξ.

3. The abstract Cauchy problem (4.9) is called well-posed if
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(i) the subspace dom(A) is dense on H and for every ξ ∈ H there exists a classical

solution u(·; ξ) of (4.9);

(ii) this classical solution is unique;

(iii) for a sequence dom(C) ∋ ξn → 0 it follows that u(t; ξn) → 0 uniformly on t in

compact intervals [0, T ], 0 < T < +∞.

Cauchy problem for an evolution equation in autonomous case can be fully described

by Hille-Yosida’s semigroup theory. Namely, the following result is true.

Proposition 4.5.2. ([36, Theorem 1.2]) An autonomous Cauchy problem for an evolution

equation (4.9) is well-posed if and only if (C,dom(C)) is the generator of a strongly

continuous semigroup {T (t)}t≥0. In this case, for any ξ ∈ dom(C), the classical solution

of (4.9) is given by t 7→ T (t)ξ = u(t). Moreover, for any ξ ∈ H, the function t 7→ T (t)ξ is

a mild solution of (4.9).

Note that there are other definitions of well-posedness of (4.9) which do not obtain any

strongly continuous semigroup on a given Hilbert space. Since, we are not interested in

these different concepts of well-posedness, we refer the reader to [4, 7, 51].

4.5.2 Non-autonomous evolution equation

In this subsection, we further consider (4.9) where the operator on the right hand side

depends on time variable t. Let C(t), t ≥ 0 be a family of linear operators on H with

domains dom(C(t)), t ≥ 0. The non-autonomous Cauchy problem for an evolution equation

is given as follows 
du(t)
dt = C(t)u(t), t ≥ 0,

u(t) = ξs ∈ H,

(4.10)

where us is an initial value. In this case, the solvability of (4.10) is not straightforward as

in autonomous case and it heavily depends on the initial time s and initial value ξs. We

first recall a definition of a classical solution and well-posedness of (4.10) is this setting.

Definition 4.5.3. ([36, Definitions 2.1 and 2.2])

1. For a given s ∈ [0,+∞) and ξs ∈ H, a continuous function u : [0,+∞) → H is

called a classical solution of (4.10) if u(·) is continuously differentiable such that

u(t) ∈ dom(C(t)) for all s ≥ t and (4.10) holds.
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2. The abstract Cauchy problem (4.10) is called well-posed with regularity subpaces

Hs, s ∈ [0,+∞) if

(i) For each s ∈ [0,+∞), the subspace

Hs := {η ∈ H : there exists a solution for (4.10)} ⊂ dom(C(t))

is dense in H;

(ii) For each s ∈ [0,+∞) and η ∈ Hs the solution u(·; s, η) is unique;

(iii) if sn → s ∈ [0,+∞) and Hsn ∋ ηn → η ∈ Hs, then one has

∥û(t; sn, ηn)− û(t; s, η)∥ → 0

uniformly for t in compact intervals of [0,+∞), where

û(t; s, η) :=


u(t; s, η), t ≥ s,

η, t < s.

In contrast to the autonomous case, there is no explicit necessary and sufficient

conditions for a well-posedness of (4.10). However, in the series of papers there were

obtained best available sufficient conditions, for which we refer the reader to the next

subsection.

In this case, one need a notion of a propagator (or solution operator) of (4.10).

Definition 4.5.4. ([36, Deinition 3.1]) A family {U(t, s)}0≤s≤t of bounded linear operators

on a Hilbert space H is called a (strongly continuous) family of propagators (shortly,

propagator) if

(i) U(t, r)U(r, s) = U(t, s) and U(s, s) = I for 0 ≤ s ≤ r ≤ t;

(ii) the mapping {(t, s) ∈ [0,+∞) × [0,+∞) : t ≥ s} ∋ (t, s) 7→ U(t, s) is strongly

continuous.

One can easily see that if {T (t)}t≥0 is a strongly continuous semigroup on H, then it

gives rise to a propagator U(t, s) = T (t− s), t ≥ s with special property that all operators

U(t, s) commute with each other.
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Definition 4.5.5. The family of propagators {U(t, s)}0≤s≤t is said to be solving (4.10)

on subspaces Hs if there are dense subspaces Hs such that U(t, s)Hs ⊂ Ht ⊂ dom(C(t))

for t ≥ s and a function u(·; s, ξs) : t 7→ U(t, s)ξs is a classical solution of (4.10) for

s ∈ [0,+∞) and ξs ∈ Hs.

Using the notion of a propagator solving non-autonomous Cauchy problem (4.10), one

can give the following equivalency of well-posedness.

Proposition 4.5.6. A non-autonomous Cauchy problem (4.10) is well-posed with regularity

subspaces Hs if and only if there is a family of propagators {U(t, s)}0≤s≤t solving (4.10)

on subspaces Hs.

Hence, in order to solve the non-autonomous evolution equation (4.10), one can consider

the problem of finding the family of propagators solving (4.10). Therefore, in the next

subsection, we recall some important results presenting sufficient conditions of existence of

a propagator.

4.5.3 Results about the existence of a propagator

Let H be a complex Hilbert space and consider the following non-autonomous evolution

equation

du(t)

dt
= −A(t)u(t), 0 ≤ t ≤ T, (4.11)

where the unknown u(t) is a Hilbert space H valued function and A(t) is a (possibly

unbounded) linear operator on H. In [68], the non-autonomous evolution equation (4.11)

was considered under the following conditions

(i) The operators −A(t) are the generators of some semigroups of bounded operators

for each t ∈ [0, T ].

(ii) The domain D = dom(A(t)), 0 ≤ t ≤ T is independent of time t. Note that an

operator B(t, s) := (I + A(t))(I + A(s))−1 is bounded for fixed t, s ∈ [0, T ] since

Ran((I +A(s))−1) = dom(A(s)) = D = dom(A(t)). Assume that B(t, s) is uniformly

bounded for 0 ≤ t, s ≤ T , i.e.,

sup
0≤t,s≤T

∥B(t, s)∥∞ < +∞.
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Moreover, B(t, s) is Lipschitz continuous in t for every s in the operator norm, i.e.,

for 0 ≤ s ≤ T

∥B(t, s)−B(τ, s)∥∞ ≤ Const · |t− τ |, 0 ≤ t, τ ≤ T.

(iii) B(t, s) is strongly continuously differentiable in t for every s.

(iv) For each 0 ≤ s ≤ T and t > 0, (d/dt)e−tA(s) is a bounded operator and there exist

positive constants Const and t0 such that

∥∥∥∥ d

dt
e−tA(s)

∥∥∥∥
∞

=
∥∥∥A(s)e−tA(s)

∥∥∥
∞

≤ Const

t
,

for any s and t ≤ t0.

Note that even though the assumptions (i)− (iii) are enough for the existence of an

unique propagator family U0(t, s), by [28, Theorem 1 and Theorem 2], the additional more

restrictive condition (iv) makes it easy to deduce various properties of the propagator

family U0(t, s).

In [68, Theorem 1.1], the following important existence result of a classical solution of

(4.11) was obtained.

Proposition 4.5.7. Let the assumptions (i)-(iv) be satisfied. Then, there exists a propaga-

tor U0(t, s) for 0 ≤ s ≤ t ≤ T , which is strongly jointly continuous in t and s and strongly

differentiable in t for each fixed s < t ≤ T . The propagator U0(t, s) is an unique solution

of (4.11), i.e., ∂
∂tU0(t, s) and A(t)U0(t, s) are bounded operators for s < t and

∂

∂t
U0(t, s) = −A(t)U0(t, s), U(s, s) = I.

Moreover, there exists a positive constant Const such that

∥∥∥∥ ∂

∂t
U0(t, s)

∥∥∥∥
∞

= ∥A(t)U0(t, s)∥∞ ≤ Const · (t− s)−1,

for 0 ≤ s < t ≤ T.

Note that a propagator in Proposition 4.5.7 is identical to the one constructed by

Kato [28]. Note also that if non-negative self-adjoint operators A(t) = A, 0 ≤ t ≤ T are
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independent of time variable t with domain dom(A(t)) = dom(A). Then, the assumptions

(i)-(iv) are satisfied automatically and as a result of Proposition 4.5.7, there exists a solution

in the following form

U0(t, s) = e−(t−s)A, 0 ≤ s ≤ t ≤ T.

Now consider the following perturbed non-autonomous evolution equation

du(t)

dt
= − (A(t) +B(t))u(t), 0 ≤ t ≤ T. (4.12)

Additional to the assumptions (i)-(iv) we consider the following assumptions

(i’) The operators A(t), 0 ≤ t ≤ T have a common domain D. Moreover, the operators

B(t), 0 ≤ t ≤ T are closed such that D = dom(A(t)) ⊂ dom(B(t)), 0 ≤ t ≤ T .

(ii’) The operator B(t)A(s)−1 is continuous in 0 ≤ t ≤ T for each s in the operator norm.

(iii’) There exists constants Const > 0 and ρ ≤ 1 such that

∥∥∥B(t)e−τA(s)
∥∥∥
∞

≤ Const

τ1−ρ
,∥∥∥(B(t)−B(t′))e−τA(s)

∥∥∥
∞

≤ Const

|t− t′|1−ρ

for 0 ≤ t, t′, s ≤ T and τ > 0.

The solution of (4.12) can formally be constructed as a following Dyson-Phillips series

U(t, s) =
∞∑
k=0

Uk(t, s),

where U0(t, s) is a solution of (4.11) and

Uk(t, s) = −
∫ t

s
U0(t, σ)B(σ)Uk−1(τ, s)dσ, k ≥ 1.

In fact, in [68], Tanabe showed the following

Proposition 4.5.8. Let the assumptions (i)-(iv) and (i’)-(iii’) be satisfied. Then, the

solution U(t, s), 0 ≤ s ≤ t ≤ T defined as above Dyson-Phillips series is an unique solution

of (4.12) which is strongly jointly continuous in t and s for 0 ≤ s ≤ t ≤ T and strongly

differentiable in t for each fixed s < t ≤ T . The operators ∂
∂tU(t, s) and (A(t)+B(t))U(t, s)
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are bounded operators and

∂

∂t
U(t, s) = −(A(t) +B(t))U(t, s), U(s, s) = I.

Moreover, there exists a constant Const > 0 such that

∥∥∥∥ ∂

∂t
U(t, s)

∥∥∥∥
∞

≤ Const

t− s
, ∥A(t)U(t, s)∥∞ ≤ Const

t− s
,

∥B(t)U(t, s)∥∞ ≤ Const

t− s
.

Note that if A(t) +B(t) has the form A+B(t) and satisfy the Assumptions (A1)-(A4)

(see Section 6.1), then the Assumptions (i)-(iv) and (i’)-(iii’) are satisfied automatically and

the above Proposition 4.5.8 implies that there exists a unique propagator constructed as

above Dyson-Phillips series, where U0(t, s) = e−(t−s)A. The given propagator is a solution

of (4.12) with A+B(t) on the right hand side.

In [64, Theorem 1], Sobolevskĭı proved a similar existence result of a propagator in

Hilbert space H under the different conditions. We use this result in Chapter 6 to prove

the existence of a propagator U(t, s) in symmetric normed ideals.

Theorem 4.5.9. Let A(t), t ∈ [0, T ] be a family of linear operators on H with time

independent domain D := dom(A(t)), t ∈ [0, T ]. Let the operator A(·)A−1(τ) be a Hölder

continuous function in [0, T ] for any τ ∈ [0, T ]. Assume that for any λ with Reλ ≥ 0, the

operator A(t) + λI is invertible and

∥∥∥(A(t) + λI)−1
∥∥∥
∞

≤ Const

|λ|+ 1
.

Then, there exists an operator valued function U(t, s) which is jointly continuous in t

and s for 0 ≤ s ≤ t ≤ T in the strong operator topology. Furthermore, it is differentiable in

t for t > s in the strong operator topology and

∂U(t, s)

∂t
= −A(t)U(t, s).

Moreover, U(t, s) satisfy the following property

U(t, s) = U(t, τ)U(τ, s), U(s, s) = I, 0 ≤ s ≤ τ ≤ t ≤ T.

51



The expression u(t) = U(t, 0)ξ0 defines a continuous and continuously differentiable in

t ∈ [0, T ] solution of (4.11) with initial value condition u(0) = u0. For any ξ0 ∈ H, the

same expression defines a continuous in t ∈ [0, T ] and differentiable in t ∈ (0, T ] solution

of (4.11) with initial value condition u(0) = u0.

For more detailed investigation of the operator U(t, s) and its various properties such as

differentiability in the second variable and the inequalities involving U(t, s) and fractional

powers of A(t), we refer the reader to [64].

4.5.4 Approximation formula for a propagator

In this subsection we recall some existing results on the approximation formula for a

propagator of an abstract Cauchy problem for non-autonomous evolution equation


du(t)
dt = −(A(t) +B(t))u(t),

u(s) = ξs ∈ H,

0 ≤ s ≤ t ≤ T. (4.13)

Note that some results presented in this subsection were initially considered in Banach

spaces. However, for convenience, we consider them in Hilbert spaces.

The first result in this direction was obtained by Faris [12], where he proved the

approximation formula in the strong operator topology. Namely, he proved the following

Theorem 4.5.10. Let −A(t) and −B(t) are the infinitesimal generators of the strongly

continuous semigroups
{
e−τA(t)

}
τ≥0

and
{
e−τB(t)

}
τ≥0

for each t ∈ [0, T ]. Let also A(t) +

B(t) be a closed operator with a time independent dense domain D in H for each t ∈ [0, T ].

Let {U(t, s)}0≤s≤t≤T be a propagator consisting contractions and solving (4.13) on D (see,

Definition 4.5.5). Then, for t ∈ [0, T ], one has

U(t, 0) = lim
n→∞

0∏
k=n−1

exp

(
−A

(
kt

n

)
t

n

)
· exp

(
−B

(
kt

n

)
t

n

)
,

where the convergence holds in the strong operator topology.

Further improved results in the strong operator topology were obtained in [71] and

[70]. Authors supposed more detailed assumptions on operators A(t) and B(t) to prove

the existence of a propagator {U(t, s)}0≤s≤t≤T which is continuous and continuously

differentiable in both t and s, and satisties (4.13) in the operator norm. Moreover, they
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proved the following approximation formula (similar to the one in Theorem 4.5.10) in the

strong operator topology

U(t, s) = lim
n→∞

0∏
k=n−1

exp

(
− t− s

n
A

(
s+

k(t− s)

n

))
· exp

(
− t− s

n
B

(
s+

k(t− s)

n

))
.

The first approximation formula in the operator norm topology was proved in [22].

Ichinose and Tamura proved the approximation formula in terms of error bounds. They

assumed the operators A(t) = A be independent of time variable and proved the following

Theorem 4.5.11. Let A and B(t), t ∈ [0, T ] be strictly positive self-adjoint operators

on a Hilbert space H. Let also that dom(Aα) ⊂ dom(B(t)), t ∈ [0, T ] for some α ∈ [0, 1)

independent of t. Assume that B(t)A−α : H → H is uniformly bounded and an operator

valued function [0, T ] ∋ t 7→ A−αB(t)A−α is Lipschitz continuous. Then, one has the

following formula for a propagator

∥∥∥∥∥U(t, 0)−
0∏

k=n−1

exp

(
− tA

2n

)
· exp

(
− t

n
B

(
kt

n

))
· exp

(
− tA

2n

)∥∥∥∥∥
∞

= O

(
log n

n

)
,

as n → ∞, where the convergence holds uniformly in t ∈ [0, T ].

Note that the above assumption of strictly positivity is not essential and one might

assume that the operators involved are semi-bounded uniformly in t. Furthermore, one

can use the same approximating family as in Theorem 4.5.10 and prove the following

convergence (see, [22, Section 7]):

∥∥∥∥∥U(t, 0)−
0∏

k=n−1

exp

(
− tA

n

)
· exp

(
− t

n
B

(
kt

n

))∥∥∥∥∥
∞

= O

(
log n

n

)
, n → ∞,

Later, there were series of papers on the direction of approximation formula for a

propagator in the operator norm topology. The common part of those papers are using

the ”relatively” new method introduced by Howland and Evans [17, 11], and Neidhardt

[41, 42, 43]. This method does not use any approximants. However, its main point is to

reformulate non-autonomous evolution equation as autonomous one on the Banach space

Lp([0, T ], H). Note that these results used modified versions of the previous assumptions.

For example, in [47, Theorem 5.6], Neidhardt, Stephan and Zagrebnov proved the

following in case of A(t) = A, t ∈ [0, T ] being independent of the time variable t
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Theorem 4.5.12. Let the operators A ≥ I and B(t), t ∈ [0, T ] be positive self-adjoint

operators on a separable Hilbert space H. Assume that there exists α ∈ (12 , 1) such that

D(Aα) ⊆ D(B(t)) for a.e. t ∈ [0, 1] and the function B(·)A−α : [0, 1] → L(H) is strongly

measurable and essentially bounded in the operator norm. Moreover, assume that the

mapping [0, T ] ∋ t 7→ A−αB(t)A−α ∈ L(H) is Lipschitz continuous. Then, one has

∥∥∥∥∥U(t, s)−
1∏

k=n−1

exp

(
−(t− s)A

n

)
· exp

(
− t− s

n
B

(
s+

k(t− s)

n

))∥∥∥∥∥
∞

= O

(
1

n1−α

)
,

as n → ∞.

In [44, Theorem 7.11], the same authors further extended the result as follows

Theorem 4.5.13. Let the operators A ≥ I and B(t), t ∈ [0, T ] be positive self-adjoint

operators on a separable Hilbert space H. Assume that there exists α ∈ (0, 1) such that

D(Aα) ⊆ D(B(t)) for a.e. t ∈ [0, 1] and the function B(·)A−α : [0, 1] → L(H) is strongly

measurable and essentially bounded in the operator norm. Moreover, assume that the

mapping [0, T ] ∋ t 7→ A−1B(t)A−α ∈ L(H) is Hölder continuous with Hölder exponent

β ∈ (α, 1). Then, one has

∥∥∥∥∥U(t, s)−
1∏

k=n−1

exp

(
−(t− s)A

n

)
· exp

(
− t− s

n
B

(
s+

k(t− s)

n

))∥∥∥∥∥
∞

= O

(
1

nβ−α

)
,

as n → ∞.

Another work of these authors further improved the Hölder continuity case with a

better estimate of approximation formula (see, [46, Theorem 3.14]). Namely, they proved

the following

Theorem 4.5.14. Let the operators A ≥ I and B(t), t ∈ [0, T ] be positive self-adjoint

operators on a separable Hilbert space H. Assume that there exists α ∈ (0, 1) such that

D(Aα) ⊆ D(B(t)) for a.e. t ∈ [0, 1] and the function B(·)A−α : [0, 1] → L(H) is strongly

measurable and essentially bounded in the operator norm. Moreover, assume that the

mapping [0, T ] ∋ t 7→ A−αB(t)A−α ∈ L(H) be Hölder continuous with Hölder exponent

β ∈ (2α− 1, 1). Then, one has

∥∥∥∥∥U(t, s)−
1∏

k=n−1

exp

(
−(t− s)A

n

)
· exp

(
− t− s

n
B

(
s+

k(t− s)

n

))∥∥∥∥∥
∞

= O

(
1

nβ

)
,
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as n → ∞.

We further refer the reader to [1, Section 7] and [71, 70] for a detailed discussion of

various assumptions under which the evolution equation (4.13) and the approximation

formula of its propagator were considered.
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Chapter 5

Trotter-Kato product formula in

symmetric operator ideals

In this chapter, we extend the convergence of the Trotter-Kato product formula for arbitrary

symmetrically F-normed ideal closed with respect to the logarithmic submajorization. The

latter class of ideals contains all symmetric (quasi-)Banach ideals of compact operators.

Hence, the results of this chapter extend the results of Hiai [15], Neidhardt and Zagrebnov

[40].

This chapter is based on the results of [2] and is organised as follows. In Section 5.1, we

first introduce the notion of convergence in this case. Furthermore, we show the equivalence

of the Trotter-Kato product formula for various families generated by pair of Kato functions.

In Section 5.2, we present the lifting method which helps to obtain the convergence in

symmetrically F-normed ideals closed with respect to the logarithmic submajorization via

the similar convergence in the operator norm topology. Section 5.3 consists of the main

results of this chapter, the Trotter-Kato product formula in symmetrically F-normed ideals

closed with respect to the logarithmic submajorization. Moreover, we present a criterion

of the latter convergence for a suitable class of Kato functions. In Section 5.4, we describe

the error bound of the Trotter-Kato product formula in symmetrically F-normed ideal

closed with respect to the logarithmic submajorization and present some examples where

it can be computed directly.
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5.1 An equivalence of the Trotter-Kato product formula for

various families

In this section, we first introduce the notion of convergence of the Trotter-Kato product

formula in the norm of a symmetrically F-normed ideal. Moreover, we show an equivalence

result regarding the Trotter-Kato product formula for various families generated by Kato

functions.

Throughout this chapter, we assume that A and B are non-negative self-adjoint

operators on a separable Hilbert space H and C = A+̇B is the form-sum of A and B (see

Subsection 2.2.3). Moreover, we assume that (I(H), ∥ · ∥I) is an arbitrary symmetrically

F-normed ideal closed with respect to the logarithmic submajorization (see Definitions

3.1.2 and 3.2.1).

We now introduce a notion of a convergence of the Trotter-Kato product formula for

various families generated by Kato functions.

Definition 5.1.1. Let f(·), g(·) be Kato functions (see Definition 4.2.1). Then we say that

(i) the Trotter-Kato product formula for the family {f(tA)g(tB)}t≥0 converges locally

uniformly away from t0 > 0 in I(H) if for any bounded interval [τ0, τ ] ⊂ (t0,∞)

there is a natural number n0 ≥ 1 such that

e−tC ∈ I(H0), (f(tA/n)g(tB/n))n ∈ I(H),

for any t ∈ [τ0, τ ] and n ≥ n0, and the convergence

lim
n→∞

sup
t∈[τ0,τ ]

∥∥(f(tA/n)g(tB/n))n − e−tCP0

∥∥
I = 0

holds.

(ii) the Trotter-Kato product formula for the symmetrized family {g(tB)1/2 f(tA)g(tB)1/2}t≥0

converges locally uniformly away from t0 > 0 in I(H) if for any bounded interval

[τ0, τ ] ⊂ (t0,∞) there is a real number r0 ≥ 1 such that

e−tC ∈ I(H0),
(
g(tB/r)1/2f(tA/r)g(tB/r)1/2

)r
∈ I(H),
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for any t ∈ [τ0, τ ] and r ≥ r0, and the convergence

lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥(g(tB/r)1/2f(tA/r)g(tB/r)1/2
)r

− e−tCP0

∥∥∥
I
= 0

holds.

In a similar way, one can define the notion of convergence for the families {g(tB)f(tA)}t≥0

and {f(tA)1/2g(tB)f(tA)1/2}t≥0 by exchanging f with g and A with B. Moreover, if the

convergence holds for all these families, then we say that the Trotter-Kato product formula

converges locally uniformly away from t0 > 0 in I(H) for all families generated by f(·) and

g(·).

In the case when ∥ · ∥I is the operator norm ∥ · ∥∞ we say that the Trotter-Kato product

formula converges locally uniformly away from t0 > 0 in the operator norm.

For the convenience, we introduce the following notations:

F (t) = g(tB)1/2f(tA)g(tB)1/2, t ≥ 0,

G(t) = f(tA)1/2g(tB)f(tA)1/2, t ≥ 0.

First we want to demonstrate that it is sufficient to consider the convergence of

the Trotter-Kato product formula just for one of the families {F (t)}t≥0, {G(t)}t≥0,

{f(tA)g(tB)}t≥0 and {g(tB)f(tA)}t≥0. We prove a proposition similar to [40, Propo-

sition 3.1] that establishes equivalence of the convergences of the Trotter-Kato product

formula for different families considered in Definition 5.1.1.

Proposition 5.1.2. Let A and B be non-negative self-adjoint operators on a separable

Hilbert space H and I(H) be any symmetrically F-normed ideal closed with respect to the

logarithmic submajorization. Let also f(·) and g(·) be Kato-functions. Then, the following

assertions are equivalent:

(i) The Trotter-Kato product formula for the family {F (t)}t≥0 converges locally uniformly

away from t0 > 0 in I(H);

(ii) The Trotter-Kato product formula for the family {G(t)}t≥0 converges locally uniformly

away from t0 > 0 in I(H);

(iii) The Trotter-Kato product formula for the family {f(tA)g(tB)}t≥0 converges locally

uniformly away from t0 > 0 in I(H);
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(iv) The Trotter-Kato product formula for the family {g(tB)f(tA)}t≥0 converges locally

uniformly away from t0 > 0 in I(H).

Proof. First we show that (i) implies (ii). Fix a bounded interval [τ0, τ ] ⊂ (t0,+∞). Choose

an interval [a, b] ⊂ (t0,∞) such that [τ0, τ ] ⊂ (a, b). Assume a real number r ∈ R+ is given,

and it can be decomposed as r = [r] + {r} for integer and fractional parts. For any t > 0

we can write

G(t/r)r = G(t/r){r}f(tA/r)1/2g(tB/r)1/2F (t/r)[r]−1g(tB/r)1/2f(tA/r)1/2. (5.1)

Note that F (t/r)[r]−1 = F (θ/([r]− 1))[r]−1, where θ = t([r]− 1)/r. Since the assumption of

the proposition is true for the family {F (t)}t≥0, for the interval [a, b] we can find a number

R1 ∈ N such that F (t/r)[r]−1 = F (θ/([r]− 1))[r]−1 ∈ I(H) for any θ ∈ [a, b] and [r] ≥ R1.

Note that condition θ ∈ [a, b] is equivalent to t ∈ [ra/([r]− 1), rb/([r]− 1)]. However, since

[τ0, τ ] ⊂ (a, b) and r
[r]−1 → 1 as r → ∞, it follows that there exists a large enough number

R2 ∈ R+ such that

[τ0, τ ] ⊂ [ra/([r]− 1), b] ⊆ [ra/([r]− 1), rb/([r]− 1)]

for any r ≥ R2. Therefore, if r ≥ max{R1, R2}, then we have that F (t/r)[r]−1 ∈ I(H) for

any t ∈ [τ0, τ ] and r ≥ Rmax. Thus, (5.1) implies that G(t/r)r ∈ I(H) for any t ∈ [τ0, τ ]

and r ≥ max{R1, R2}. Similarly, since e−θC ∈ I(H0) for any θ ∈ [a, b], it follows that

e−tC ∈ I(H0) for any t ∈ [τ0, τ ].

We have left to show the convergence from Definition 5.1.1(ii). Note that, for any t ≥ 0

and r ∈ R+ we can write

G(t/r)r − e−tCP0

= G(t/r){r}f(tA/r)1/2g(tB/r)1/2
[
F (t/r)[r]−1 − e−tCP0

]
g(tB/r)1/2f(tA/r)1/2

+G(t/r){r}f(tA/r)1/2g(tB/r)1/2e−tCP0

[
g(tB/r)1/2 − I

]
f(tA/r)1/2

+G(t/r){r}f(tA/r)1/2g(tB/r)1/2e−tCP0

[
f(tA/r)1/2 − I

]
+G(t/r){r}f(tA/r)1/2

[
g(tB/r)1/2 − I

]
e−tCP0

+G(t/r){r}
[
f(tA/r)1/2 − I

]
e−tCP0 +

[
G(t/r){r} − I

]
e−tCP0.
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Therefore, using the triangle inequality and (i), noting that
∥∥G(t/r){r}

∥∥
∞ ≤ 1,

∥∥f(tA/r)1/2∥∥∞ ≤

1 and
∥∥g(tB/r)1/2

∥∥
∞ ≤ 1 for any t > 0 and r ∈ R+, we have

sup
t∈[τ0,τ ]

∥∥G(t/r)r − e−tCP0

∥∥
I ≤ sup

t∈[τ0,τ ]

∥∥∥F (t/r)[r]−1 − e−t([r]−1)C/rP0

∥∥∥
I

+ sup
t∈[τ0,τ ]

∥∥∥e−t([r]−1)C/rP0 − e−tCP0

∥∥∥
I
+ sup

t∈[τ0,τ ]

∥∥∥e−tCP0

(
I − g(tB/r)1/2

)∥∥∥
I

+ sup
t∈[τ0,τ ]

∥∥∥e−tCP0

(
I − f(tA/r)1/2

)∥∥∥
I
+ sup

t∈[τ0,τ ]

∥∥∥(I − g(tB/r)1/2
)
e−tCP0

∥∥∥
I

+ sup
t∈[τ0,τ ]

∥∥∥(I − f(tA/r)1/2
)
e−tCP0

∥∥∥
I
+ sup

t∈[τ0,τ ]

∥∥∥(I −G(t/r){r}
)
e−tCP0

∥∥∥
I
.

(5.2)

Since [τ0, τ ] ⊂ (a, b) there exists small enough number δ > 0 such that τ0 − δ > a and

e−tCP0 = e−(τ0−δ)Ce−(t−τ0+δ)CP0, where e−(τ0−δ)C ∈ I(H0) and e−(t−τ0+δ)CP0 ∈ L∞(H).

Moreover, the spectral theorem implies that s-limt→+0 f(tA)1/2 = I, s-limt→+0 g(tB)1/2 =

I, and, additionally, s-limt→+0 G(t) = I. Therefore, by Lemma 3.3.4, we have

lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥e−tCP0

(
I − g(tB/r)1/2

)∥∥∥
I

= lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥(I − g(tB/r)1/2
)
e−tCP0

∥∥∥
I
= 0

(5.3)

and

lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥e−tCP0

(
I − f(tA/r)1/2

)∥∥∥
I

= lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥(I − f(tA/r)1/2
)
e−tCP0

∥∥∥
I
= 0

(5.4)

and

lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥(I −G(t/r){r}
)
e−tCP0

∥∥∥
I

≤ lim
r→∞

sup
t∈[τ0,τ ]

∥∥(I −G(t/r)) e−tCP0

∥∥
I = 0,

(5.5)

where the last inequality follows from the symmetricity of the F-norm.
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Therefore, using (5.3), (5.4), (5.5) and (5.2), we obtain that

lim
r→∞

sup
t∈[τ0,τ ]

∥∥G(t/r)r − e−tCP0

∥∥I
≤ lim

r→∞
sup

t∈[τ0,τ ]

∥∥∥F (t/r)[r]−1 − e−t([r]−1)C/rP0

∥∥∥
I

+ lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥e−t([r]−1)C/rP0 − e−tCP0

∥∥∥
I
.

(5.6)

We estimate two terms of (5.6) separately. Since the Trotter-Kato product formula

converges for the family {F (t)}t≥0 and the interval [a, b], we have

lim
r→∞

sup
θ∈[a,b]

∥∥∥F (θ/([r]− 1))[r]−1 − e−θCP0

∥∥∥
I
= 0,

which is equivalent to say that

lim
r→∞

sup
t([r]−1)/r∈[a,b]

∥∥∥F (t/r)[r]−1 − e−t([r]−1)C/rP0

∥∥∥
I
= 0,

and, hence,

lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥F (t/r)[r]−1 − e−t([r]−1)C/rP0

∥∥∥
I
= 0, (5.7)

since [τ0, τ ] ⊂ [ra/([r]− 1), rb/([r]− 1)] for r ≥ max{R1, R2}. Hence, the first term of (5.6)

is equal to zero. For the second term, since [τ0, τ ] ⊂ (a, b) and [r]−1
r → 1 as r → ∞, we can

find ε > 0 and R3 ∈ R+ such that t([r] − 1)/r − ε ∈ [a, b] for any t ∈ [τ0, τ ] and r ≥ R3.

Hence, e−t([r]−1)C/rP0 = e−(t([r]−1)/r−ε)CP0e
−εCP0, where e−(t([r]−1)/r−ε)CP0 ∈ I(H) and

e−εCP0 ∈ L∞(H). Therefore, by Lemma 3.3.4 for the second term of (5.6) we have

lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥e−t([r]−1)C/rP0 − e−tCP0

∥∥∥
I

= lim
r→∞

sup
t∈[τ0,τ ]

∥∥∥e−(t([r]−1)/r−ε)CP0e
−εCP0

(
I − e−(t−t([r]−1)/r))CP0

)∥∥∥
I
= 0

which together with (5.7) applied to (5.6) proves the convergence. Therefore, for arbitrarily

given interval [τ0, τ ] we find a number Rmax := max{R1, R2, R3} such that the convergence

of the Trotter-Kato product formula locally uniformly away from t0 > 0 in I(H) holds for

the family {G(t)}t≥0.
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Note that we have the equalities

(f(tA/n)g(tB/n))n = f(tA/n)1/2G(t/n)n−1f(tA/n)1/2g(tB/n)

(g(tB/n)f(tA/n))n = g(tB/n) (f(tA/n)g(tB/n))n−1 f(tA/n)

and

F (t/r)r = F (t/r){r}g(tB/r)1/2f(tA/r) (g(tB/r)f(tA/r))[r]−1 g(tB/r)1/2,

where r = [r] + {r}. Therefore, the proof of implications (ii)⇒(iii), (iii)⇒(iv) and (iv)⇒(i)

is similar to the proof above, hence, is omitted.

5.2 Lifting results

In this section, we present a lifting result similar to [40, Proposition 3.2] which implies the

convergence of the Trotter-Kato product formula in symmetrically F-normed ideals from

operator-norm convergence. Since the convergence of the Trotter-Kato product formula in

symmetrically F-normed ideals for different families hold if convergence holds for one of

these families (as established in Proposition 5.1.2), it is sufficient to show the convergence

for the family {F (t)}t≥0.

Proposition 5.2.1. Let A and B be non-negative self-adjoint operators on a separable

Hilbert space H. Let also I(H) be symmetrically F-normed ideal closed with respect to the

logarithmic submajorization and f(·), g(·) be Kato functions. Let some real number t0 > 0

be given. Assume that

(i) the Trotter-Kato product formula for {F (t)}t≥0 converges locally uniformly away

from zero in the operator norm;

(ii) for any bounded interval [τ0, τ ] ⊂ (t0,+∞) there exists a number r0 ≥ 1 such that

F (t/r)r ∈ I(H) for any t ∈ [τ0, τ ] and r ≥ r0 and

M([τ0, τ ]) := sup
r≥r0

sup
t∈[τ0,τ ]

∥F (t/r)r∥I < +∞;

(iii) e−tC ∈ I(H0) for t > t0.
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Then the Trotter-Kato product formula for the family {F (t)}t≥0 converges locally uniformly

away from t0 > 0 in I(H).

Proof. Fix a bounded interval [τ0, τ ] ⊂ (t0,∞) and arbitrary ε > 0. Then there exists a

number α ∈ (0, 1) such that τ ′0 := ατ0 > t0. It is clear that for any t ∈ [τ0, τ ] we have that

αt ∈ [τ ′0, τ ]. Denoting by EC(·) the spectral measure of C, we can write

F (t/r)r − e−tCP0 = (F (t/r)(1−α)r − e−(1−α)tCP0)F (t/r)αr

+e−(1−α)tCEC([0, N))P0(F (t/r)αr − e−αtCP0)

+e−(1−α)tCEC([N,∞))P0(F (t/r)αr − e−αtCP0).

Using the triangle inequality, we infer

sup
t∈[τ0,τ ]

∥∥F (t/r)r − e−tCP0

∥∥
I

≤ sup
t∈[τ0,τ ]

∥∥∥(F (t/r)(1−α)r − e(1−α)tCP0)F (t/r)αr
∥∥∥
I

+ sup
t∈[τ0,τ ]

∥∥∥e−(1−α)tCEC([0, N))P0(F (t/r)αr − e−αtCP0)
∥∥∥
I

+ sup
t∈[τ0,τ ]

∥∥∥e−(1−α)tCEC([N,∞))P0(F (t/r)αr − e−αtCP0)
∥∥∥
I
.

(5.8)

We estimate each term on the right hand side separately. For any t ≥ 0 we have

F (t/r)αr = F (αt/αr)αr. Hence, by (ii), for the interval [τ ′0, τ ], there exists a number

r0 ∈ R+ such that F (αt/αr) ∈ I(H) for any αt ∈ [τ ′0, τ ], r ≥ r0 and

M([τ ′0, τ ]) := sup
αt∈[τ ′0,τ ]

sup
r≥r0

∥F (αt/αr)αr∥I < +∞.

Since αt ∈ [τ ′0, τ ] for any t ∈ [τ0, τ ], we have that F (t/r)αr ∈ I(H) for any t ∈ [τ0, τ ],

r ≥ r0 and

∥F (t/r)αr∥I ≤ M([τ ′0, τ ]). (5.9)

We now estimate the third term of (5.8). Since CEC([N,∞)) ≥ NEC([N,∞)) we have

sup
t∈[τ0,τ ]

∥∥∥e−(1−α)tCEC([N,∞))P0

∥∥∥
∞

≤ e−(1−α)τ0N
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for N ≥ 1. Therefore, by (i) and triangle inequality, we have

sup
t∈[τ0,τ ]

∥∥∥e−(1−α)tCEC([N,∞))P0(F (t/r)αr − e−αtCP0)
∥∥∥
I

≤ sup
t∈[τ0,τ ]

∥∥∥∥∥ sup
t∈[τ0,τ ]

∥∥∥e−(1−α)tCEC([N,∞))P0

∥∥∥
∞
F (t/r)αr

∥∥∥∥∥
I

+ sup
t∈[τ0,τ ]

∥∥∥∥∥ sup
t∈[τ0,τ ]

∥∥∥e−(1−α)tCEC([N,∞))P0

∥∥∥
∞
e−αtCP0

∥∥∥∥∥
I

≤ sup
t∈[τ0,τ ]

∥∥∥e−(1−α)τ0NF (t/r)αr
∥∥∥
I
+ sup

t∈[τ0,τ ]

∥∥∥e−(1−α)τ0Ne−ατ0CP0

∥∥∥
I

for N ≥ 1. Note that the sequence of real numbers {e−(1−α)τ0N}N≥1 converges to zero as

N goes to infinity. By (5.9) and the fact that ∥e−ατ0CP0∥I < +∞, Definition 2.1.1(iii)

implies that for given ε > 0, there exists large enough natural number Nmax such that

sup
t∈[τ0,τ ]

∥∥∥e−(1−α)τ0NF (t/r)αr
∥∥∥
I
+ sup

t∈[τ0,τ ]

∥∥∥e−(1−α)τ0Ne−ατ0CP0

∥∥∥
I
< ε/3 (5.10)

for any r ≥ r0 and n ≥ Nmax. We fix this number Nmax.

To estimate the second term of (5.8), we firstly note that sj(e
−tβC) = sj(e

−tC)β, j ≥ 1

for any β > 0, implies that e−tC is compact for any t > 0. Therefore, the spectrum of C is

discrete with the only accumulation point at infinity. Hence, the projection EC([0, N)) is

finite-rank operator for each N = 1, 2, ..., and, in particular, EC([0, N)) ∈ I(H) for any

N ≥ 1. Since F (t/r)αr → e−αtC in the strong operator topology [30, 31], Lemma 3.3.4

(with X = Y = EC([0, N)) and Z(t/r) = F (t/r)αr, Z = e−αtC) implies that

lim
r→∞

sup
t∈[τ0,τ ]

∥EC([0, N))P0(F (t/r)αr − e−αtC)∥I = 0.

Therefore, by (i), we can find large enough rmax ≥ r0 such that

sup
t∈[τ0,τ ]

∥∥∥e−(1−α)tCEC([0, Nmax))P0(F (t/r)αr − e−αtCP0)
∥∥∥
I
< ε/3, (5.11)

for any r ≥ rmax.

Lastly, since the Trotter-Kato product formula converges locally uniformly away from
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zero in the operator-norm, we have

lim
r→+∞

sup
t∈[τ0,τ ]

∥∥∥F (t/r)(1−α)r − e(1−α)tCP0

∥∥∥ = 0.

Therefore, by (5.9), the symmetricity of the F-norm and Definition 2.1.1(iii) imply that

there exists a real number R ≥ rmax such that

sup
t∈[τ,τ0]

∥∥∥(F (t/r)(1−α)r − e(1−α)tCP0)F (t/r)αr
∥∥∥
I

≤ sup
t∈[τ,τ0]

∥∥∥∥∥ sup
t∈[τ,τ0]

∥∥∥F (t/r)(1−α)r − e(1−α)tCP0

∥∥∥
∞
F (t/r)αr

∥∥∥∥∥
I

< ε/3 (5.12)

for any r ≥ R.

Finally, combining the estimates (5.10), (5.11), (5.12) and representation (5.8), for any

bounded interval [τ0, τ ] and ε > 0, we can find a real number R ∈ R+ such that

sup
t∈[τ0,τ ]

∥∥F (t/r)r − e−tCP0

∥∥
I < ε

for r ≥ R. This proves that the Trotter-Kato product formula for the family {F (t)}t≥0

converges locally uniformly away from t0 > 0 in I(H).

In the following Lemmas 5.2.3 and 5.2.4, we verify that conditions (ii) and (iii) of the

Proposition 5.2.1 are satisfied. Let us first recall the notion of a dominated Kato function

(see [40] or [2, Definition 2.11]).

Definition 5.2.2. Let fD(·) : [0,∞) → [0,∞) be a Borel measurable function. A Kato

function f(·) is said to be a dominated by fD(·) if for any x ≥ 0 and 0 < q ≤ 1 one has

f(qx)1/q ≤ fD(x).

Lemma 5.2.3. Let A and B be non-negative self-adjoint operators on a separable Hilbert

space H and let fD(·) : [0,∞) → [0,∞) and gD(·) : [0,∞) → [0,∞) be bounded Borel

measurable functions such that FD(t0) = gD(t0B)1/2fD(t0A)gD(t0B)1/2 ∈ I(H) for some

t0 > 0, where I(H) is a symmetrically F-normed ideal closed with respect to the logarithmic

submajorization. If Kato functions f(·) and g(·) are dominated by fD(·) and gD(·), then
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F (t/r)r ∈ I(H) and

∥F (t/r)r∥I ≤ CI ·
∥∥FD(t0)

∥∥
I

for t0 ≤ t ≤ rt0, r ≥ 1 and constant CI > 0 from Definition 3.2.1.

Proof. Let X = f(tA/r), Y = g(tB/r) and X0 = fD(t0A), Y0 = gD(t0B). We have

Xr = f(tA/r)r ≤ f(tA/r)rt0/t ≤ fD(t0A) = X0

Y r = g(tB/r)r ≤ g(tB/r)rt0/t ≤ gD(t0B) = Y0

for t0 ≤ t ≤ rt0 and r ≥ 1. Therefore, by Lemma 3.2.4 we have

F (t/r)r = (Y 1/2XY 1/2)r ≺≺log Y
1/2
0 X0Y

1/2
0 = FD(t0),

for t0 ≤ t ≤ rt0 and r ≥ 1. Since I(H) is closed with respect to the logarithmic subma-

jorization, it follows that F (t/r)r ∈ I(H) and

∥F (t/r)r∥I ≤ CI ·
∥∥FD(t0)

∥∥
I .

Next we show that under the assumption of Lemma 5.2.3 one has e−tC ∈ I(H0) for

t > t0.

Lemma 5.2.4. Let A and B be non-negative self-adjoint operators on a separable Hilbert

space H and let fD(·) : [0,∞) → [0,∞) and gD(·) : [0,∞) → [0,∞) be bounded Borel

measurable functions such that FD(t0) = gD(t0B)1/2fD(t0A)gD(t0B)1/2 ∈ I(H) for some

t0 > 0, where I(H) is a symmetrically F-normed ideal closed with respect to the logarithmic

submajorization. If Kato functions f(·) and g(·) are dominated by fD(·) and gD(·), then

e−tC ∈ I(H0) and ∥∥e−tC
∥∥
I ≤ CI ·

∥∥FD(t0)
∥∥
I (5.13)

for t ≥ t0 and constant CI > 0 from Definition 3.2.1.

Proof. Note that, for x ≥ 0, we have

e−x = lim
r→∞

f(x/r)r ≤ fD(x),

e−x = lim
r→∞

g(x/r)r ≤ gD(x).
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Hence, the assumption of the lemma implies that f0(x) = g0(x) = e−x are dominated by

fD(·) and gD(·), respectively. Lemma 5.2.3 guarantees that
(
e−tB/2re−tA/re−tB/2r

)r ∈

I(H) for t0 ≤ t ≤ rt0. By Lemma 3.2.5, we have

e−tCP0 ≺≺log

(
e−tB/2re−tA/re−tB/2r

)r
∈ I(H), r ≥ 1, (5.14)

for t0 ≤ t ≤ rt0. Therefore, by the assumption on ideal I(H) and (5.14), we obtain that

e−tCP0 ∈ I(H) and (5.13) holds.

5.3 Trotter-Kato product formula in symmetrically F-normed

ideals

Now, using the lifting method from the previous section and the convergence of the Trotter-

Kato product formula in the operator norm from Chapter 4, we present the main result of

the present chapter.

Theorem 5.3.1. Let A and B be non-negative self-adjoint operators on a separable Hilbert

space H and I(H) be a symmetrically F-normed ideal closed with respect to the logarithmic

submajorization. Let fD(·) : [0,∞) → [0,∞) be a Borel measurable functions such that

fD(t0A) ∈ I(H) for some t0 > 0. If g(·) is any Kato function and f(·) is any regular

Kato function dominated by fD(·), then the Trotter-Kato product formula converges locally

uniformly away from t0 > 0 in I(H) for all families generated by f(·) and g(·).

Proof. Similar argument as in proof of Lemma 5.2.4 implies that e−x is dominated by

fD(x), x ≥ 0. Thus, one has e−t0A ∈ I(H) provided that fD(t0A) ∈ I(H). In particular,

(I + t0A)−1 ∈ L∞(H). Then, since f(·) is regular, Theorem 4.4.3 implies that the Trotter-

Kato product formula converges locally uniformly away from zero in the operator norm for

the family {F (t)}t≥0.

Setting gD(x) ≡ 1, x ≥ 0, it easily follows that FD(t0) ∈ I(H). Notice that any Kato

function g(·) is dominated by gD(·) ≡ 1. Hence, by Lemma 5.2.3 and Lemma 5.2.4, we have

that for any bounded interval [τ0, τ ] ⊂ (t0,∞) there exists r0 ≥ 1 such that e−tC ∈ I(H0)

and F (t/r)r ∈ I(H) for any t ∈ [τ0, τ ] and r ≥ r0 such that

sup
t∈[τ0,τ ]

sup
r≥r0

∥F (t/r)r∥I ≤ ∥FD(t0)∥I < +∞.
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Thus, all assumptions of Proposition 5.2.1 are satisfied, and the Trotter-Kato product

formula for the family {F (t)}t≥0 converges locally uniformly away from t0 > 0 in I(H).

Finally, by Proposition 5.1.2, we have the convergence of the Trotter-Kato product formula

in symmetrically F-normed ideal I(H) for all other families generated by f(·) and g(·).

As a corollary of Theorem 5.3.1, we have analogues result for symmetric quasi-Banach

ideals.

Corollary 5.3.2. Let I(H) be a symmetric quasi-Banach ideal and let the operators A, B

and the functions f(·), g(·), fD(·) be as in Theorem 5.3.1. If fD(t0A) ∈ I(H) for some

t0 > 0, then the Trotter-Kato product formula converges locally uniformly away from t0 > 0

in I(H) for all families generated by f(·) and g(·).

We present a concrete example of a symmetric quasi-Banach ideal and the noncommuting

operators A and B for Corollary 5.3.2, which is not covered by [15] and [40].

Example 5.3.3. Let I(H) = L1,∞(H) be a weak-l1 ideal from the part (ii) of Example

3.1.4, equipped with its natural quasi-norm

∥X∥1,∞ = sup
k≥0

(k + 1)sk(X)

Let D : W 1,2(T) → L2(T) be a self-adjoint operator given by the formula Df = 1
i
df
dt ,

f ∈ W 1,2(T), where T is the unit circle. It is known that (1 + |D|)−1 ∈ L1,∞(H). Indeed,

for k ≥ 0

s0

(
(1 + |D|)−1

)
= 1, s2k

(
(1 + |D|)−1

)
= s2k+1

(
(1 + |D|)−1

)
=

1

k + 1
.

We set A = log(1 + |D|). Hence, we have that e−A = (1 + |D|)−1 ∈ L1,∞(H). Moreover,

(1 + |D|)−1 generates the principal ideal L1,∞(H) and, therefore, e−A cannot belong to any

ideal which is strictly smaller than L1,∞(H).

We claim that an operator B with non-trivial continuous spectrum does not commute

with A. Indeed, otherwise it commutes with spectral projections of A. Let pn = χ{n}(|D|)

be the spectral projection of A. It follows that

B =
∑
n∈Z+

Bpn =
∑
n∈Z+

pnBpn,
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where the sums are taken in the strong operator topology. Each of the operators pnBpn is

of finite rank; hence its spectrum consists of eigenvalues. Since the operators {pnBpn}n∈Z+

are pairwise orthogonal, it follows that the spectrum of B consists of eigenvalues as well, a

contradiction with the assumption. In particular, if we take B = Mh, h ∈ L∞(T), then the

operators A and B do not commute.

Let the function fD(·) from Corollary 5.3.2 be an exponential function e−x, x ≥ 0.

Hence, it follows that fD(A) = e−A = (1 + |D|)−1 ∈ L1,∞(H) for t0 = 1. Therefore, by

Corollary 5.3.2, one has that the Trotter-Kato product formula converges locally uniformly

away from t0 = 1 in L1,∞(H) for all families generated by the exponential functions.

Now we want to specify a particular subclass of Kato functions to present a necessary

and sufficient condition of the convergence of the Trotter-Kato product formula in I(H)

similar to [40, Theorem 4.10].

Definition 5.3.4. A Kato function f(·) is said to be a self-dominated if for any x ≥ 0

and 0 < q ≤ 1, one has f(qx)1/q ≤ f(x).

Theorem 5.3.5. Let A and B be non-negative self-adjoint operators on a separable

Hilbert space H and let I(H) be a symmetrically F-normed ideal closed with respect to the

logarithmic submajorization. Let also f(·) and g(·) be self-dominated Kato functions which

additionally satisfy

sup
x>0

xf(x)

1− f(x)
< ∞, sup

x>0

xg(x)

1− g(x)
< ∞.

Then, there exists t0 > 0 such that the Trotter-Kato product formula converges locally

uniformly away from t0 > 0 in I(H) for all families generated by f(·) and g(·) if and only

if there exists s0 > 0 and p ∈ Z+ such that F (s0)
p ∈ I(H).

Proof. The necessity follows from Definition 5.1.1 of the convergence of the Trotter-Kato

product formula in I(H).

Assume that there exists s0 > 0 and p ∈ Z+ such that F (s0)
p ∈ I(H) ⊂ L∞(H). It

follows that F (s0) is a compact operator and a similar argument to [40, Theorem 4.6]

implies that (I +A)−1(I +B)−1 ∈ L∞(H). Hence, by [39, Theorem 5.3], the Trotter-Kato

product formula converges locally uniformly away from zero in the operator norm. Finally,

the sufficiency follows from Proposition 5.2.1 together with Lemma 5.2.3 and 5.2.4, taking

fD(x) ≡ f(x) and gD(x) ≡ g(x) for x ≥ 0 and t0 = ps0.
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5.4 Error bound of the Trotter-Kato product formula in

symmetric operator ideals

In this section we determine the error bounds of the Trotter-Kato product formulas in

symmetrically F-normed ideals closed with respect to the logarithmic submajorization and

give some examples where they can be computed directly. As before, we assume that A

and B are non-negative self-adjoint operators on a separable Hilbert space H with the

form-sum C = A+̇B and I(H) is a symmetrically F-normed ideal closed with respect to

the logarithmic submajorization. Let f(·) and g(·) be Kato functions and use the same

notation as before

F (t) := g(tB)1/2f(tA)g(tB)1/2, t ≥ 0,

G(t) := f(tA)1/2g(tB)f(tA)1/2, t ≥ 0.

We first define the notion of an error bound in the same manner as in [40]. Let

ε(·) : R+ → R+ (or ε(·) : N → R+) be a function such that limx→∞ ε(x) = 0.

Definition 5.4.1. A function εI(·) : R+ → R+ is called an error bound of the Trotter-Kato

product formula for the family {F (t)}t≥0 away from t0 > 0 in I(H) if for any bounded

interval [a, b] ⊂ (t0,∞) there exists 1 ≤ r0 ∈ R+ such that

F (t/r)r − e−tCP0 ∈ I(H)

and

∥F (t/r)r − e−tCP0∥I ≤ Const · ε(r)

for any t ∈ [a, b], r ≥ r0 and some constant Const > 0.

In a similar way, one can define the notion of an error bound for the families {G(t)}t≥0,

{f(tA)g(tB)}t≥0 and {g(tB)f(tA)}t≥0, assuming that r ∈ N in the last two cases. In case

when ∥ · ∥I is the operator norm ∥ · ∥∞, we simply write ε∞(·) instead of εI(·), and call

it an error bound of the Trotter-Kato product formula away from t0 > 0 in the operator

norm.

First we want to prove an auxiliary lemma.
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Lemma 5.4.2. Let A and B be non-negative self-adjoint operators on a separable Hilbert

space H and I(H) be a symmetrically F-normed ideal. Let also fD(·) : R+ → R+, g
D(·) :

R+ → R+ be Borel measurable functions such that FD(t0) := gD(t0B)1/2fD(t0A)gD(t0B)1/2 ∈

I(H) for some t0 > 0. Then GD(t0) := fD(t0A)1/2gD(t0B)fD(t0A)1/2 ∈ I(H) and

sj
(
GD(t0)

)
≤ sj

(
FD(t0)

)
, j ≥ 1. (5.15)

Proof. Let

E(t) = fD(tA)1/2gD(tB)1/2, t ≥ 0.

Note that |E(t)| = FD(t)1/2 and |E(t)∗| = GD(t)1/2. Therefore, denoting by U(t) the

partial isometry in the polar decomposition

E(t) = U(t)FD(t)1/2, t ≥ 0

we conclude that

GD(t0) = E(t0)E(t0)
∗ = U(t0)F

D(t0)U(t0)
∗ ∈ I(H)

which also implies (5.15).

Now we present the following result which is helpful to compute the error bounds of

the Trotter-Kato product formula in symmetrically F-normed ideals closed with respect to

the logarithmic submajorization. The proof is similar to [40, Theorem 5.1].

Proposition 5.4.3. Let A and B be non-negative self-adjoint operators on a separable

Hilbert space H and I(H) be a symmetrically F-normed ideal closed with respect to the

logarithmic submajorization. Let also fD(·) : R+ → R+ and gD(·) : R+ → R+ be Borel

measurable functions such that FD(t0) = gD(t0B)1/2fD(t0A)g(t0B)1/2 ∈ I(H) for some

t0 > 0. Assume that the Kato-functions f(·) and g(·) are dominated by fD(·) and gD(·),

respectively. Then:

(i) For families {F (t)}t≥0 and {G(t)}t≥0, we have

∥F (t/r)r − e−tCP0∥I ≤ 2CI

∥∥∥∥F (t/r)r/2 − e−tC/2P0∥∞FD(t0)
∥∥∥
I

∥G(t/r)r − e−tCP0∥I ≤ 2CI

∥∥∥∥G(t/r)r/2 − e−tC/2P0∥∞FD(t0)
∥∥∥
I
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for 2t0 ≤ t ≤ rt0 and r ≥ 2.

(ii) For families {f(tA)g(tB)}t≥0 and {g(tB)f(tA)}t≥0, we have

∥ (f(tA/n)g(tB/n))n − e−tCP0∥I

≤ CI

∥∥∥∥ (f(tA/n)g(tB/n))k − e−ktC/nP0∥∞FD(t0)
∥∥∥
I

+ CI

∥∥∥∥ (f(tA/n)g(tB/n))m − e−mtC/nP0∥∞FD(t0)
∥∥∥
I
,

∥ (g(tB/n)f(tA/n))n − e−tCP0∥I

≤ CI

∥∥∥∥ (g(tB/n)f(tA/n))k − e−ktC/nP0∥∞FD(t0)
∥∥∥
I

+ CI

∥∥∥∥ (g(tB/n)f(tA/n))m − e−mtC/nP0∥∞FD(t0)
∥∥∥
I

for t0 ≤ (m − 1)t/n ≤ (m − 1)t0, m ≥ 2 and kt/n ≥ t0, where k :=
[
n
2

]
and

m :=
[
n+1
2

]
with n ≥ 3.

Proof. (i). For r ∈ R+, we write

F (t/r)r − e−tCP0

=
(
F (t/r)r/2 − e−tC/2P0

)
F (t/r)r/2 + e−tC/2P0

(
F (t/r)r/2 − e−tC/2P0

)
.

(5.16)

By (i), we have

∥∥F (t/r)r − e−tCP0

∥∥
I ≤

∥∥∥∥∥∥F (t/r)r/2 − e−tC/2P0

∥∥∥
∞
F (t/r)r/2

∥∥∥
I

+
∥∥∥∥∥∥F (t/r)r/2 − e−tC/2P0

∥∥∥
∞
e−tC/2P0

∥∥∥
I
.

Since FD(t0) ∈ I(H), Lemmas 5.2.3 and 5.2.4 imply

F (t/r)r/2 ≺≺log FD(t0)

for 2t0 ≤ t ≤ rt0, r ≥ 2 and

e−tC/2P0 ≺≺log FD(t0)

for t ≥ 2t0. Hence, since the ideal I(H) is closed with respect to the logarithmic subma-

jorization, it follows that

∥F (t/r)r − e−tCP0∥I ≤ 2CI

∥∥∥∥F (t/r)r/2 − e−tC/2P0∥∞FD(t0)
∥∥∥
I
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for 2t0 ≤ t ≤ rt0

For the family {G(t)}t≥0 we have a similar estimate via decomposition similar to (5.16)

with an additional reference to Lemma 5.4.2.

(ii). We prove the result for the family {f(tA)g(tB)}t≥0. The argument for the family

{g(tB)f(tA)}t≥0 is similar, and therefore, is omitted. Let n ∈ N and write n = k+m with

k :=
[n
2

]
, m :=

[
n+ 1

2

]
, n ≥ 3.

We have

(f(tA/n)g(tB/n))n − e−tCP0

= ((f(tA/n)g(tB/n))k − e−ktC/nP0)(f(tA/n)g(tB/n))m

+ e−ktC/nP0((f(tA/n)g(tB/n))m − e−mtC/nP0).

Therefore, triangle inequality and (i) imply

∥ (f(tA/n)g(tB/n))n − e−tCP0∥I

≤
∥∥∥∥ (f(tA/n)g(tB/n))k − e−ktC/nP0∥∞ (f(tA/n)g(tB/n))m

∥∥∥
I

+
∥∥∥e−ktC/nP0∥ (f(tA/n)g(tB/n))m − e−mtC/nP0∥∞

∥∥∥
I
.

(5.17)

We consider two terms of (5.17) separately. Note that

(f(tA/n)g(tB/n))m = f(tA/n)g(tB/n)1/2F (t/n)m−1g(tB/n)1/2.

By Lemma 5.2.3, F (t/n)m−1 ∈ I(H) when t0 ≤ (m− 1)t/n ≤ (m− 1)t0 and m− 1 ≥ 1,

Therefore, (f(tA/n)g(tB/n))m ∈ I(H) and

(f(tA/n)g(tB/n))m ≺≺log F (t/n)m−1 ≺≺log FD(t0) (5.18)

for t0 ≤ (m−1)t/n ≤ (m−1)t0 and m−1 ≥ 1. Lemma 5.2.4 implies that e−ktC/nP0 ∈ I(H)

and

e−ktC/nP0 ≺≺log FD(t0) (5.19)

for kt/n ≥ t0. Hence, by (5.18), (5.19) and (5.17), together with the fact that I(H) is
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closed with respect to the logarithmic submajorization, we have

∥ (f(tA/n)g(tB/n))n − e−tCP0∥I

≤ CI

∥∥∥∥ (f(tA/n)g(tB/n))k − e−ktC/nP0∥∞FD(t0)
∥∥∥
I

+ CI

∥∥∥∥ (f(tA/n)g(tB/n))m − e−mtC/nP0∥∞FD(t0)
∥∥∥
I

for t0 ≤ (m− 1)t/n ≤ (m− 1)t0, m ≥ 2 and kt/n ≥ t0.

Now we present some examples similar to [40, Theorem 5.1], where the error bounds

can be computed directly. Recall that the notion of an error bound in the operator norm

is defined as in Definition 5.4.1.

Example 5.4.4. (i) Let (I(H), ∥ · ∥I) be a symmetrically F-normed ideal closed with

respect to the logarithmic submajorization and let the functions f(·), g(·), fD(·) and

gD(·) be as in Proposition 5.4.3 such that FD(t0) ∈ I(H) for some t0 > 0, and

∥∥αFD(t0)
∥∥
I = O(αq), α → 0. (5.20)

Let ε(r), r ≥ 0 be an error bound of the Trotter-Kato product formula in the operator

norm away from t0 > 0. Then, by Proposition 5.4.3(i), we have

∥F (t/r)r − e−tCP0∥I ≤ 2CI

∥∥∥∥F (t/r)r/2 − e−tC/2P0∥∞FD(t0)
∥∥∥
I
.

Hence, the symmetricity of the F-norm and (5.20) imply that

∥F (t/r)r − e−tCP0∥I ≤ Const · ∥ε(r/2)FD(t0)∥I ≤ Const · ε(r/2)q

for some constant Const > 0. Hence, the function εI(r) = ε(r/2)q, r ≥ 0 is an

error bound of the Trotter-Kato product formula for the family {F (t)}t≥0 away from

2t0 in I(H). Similarly, by the second inequality of Proposition 5.4.3(i), we have an

analogous error bound for a family {G(t)}t≥0 away from 2t0 in I(H). For the family

{f(tA)g(tB)}t≥0, using Proposition 5.4.3 (ii) and arguments above, we have

∥ (f(tA/n)g(tB/n))n − e−tCP0∥I
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≤ Const ·
(∥∥∥ε([n

2

])
FD(t0)

∥∥∥
I
+

∥∥∥∥ε([n+ 1

2

])
FD(t0)

∥∥∥∥
I

)
which together with (5.20) implies

∥ (f(tA/n)g(tB/n))n − e−tCP0∥I

≤ Const ·
(
ε
([n

2

])q
+ ε

([
n+ 1

2

])q)
for some constant Const > 0. Therefore, εI(n) = ε(

[
n
2

]
)q + ε(

[
n+1
2

]
)q, r ≥ 0 is an

error bound of the Trotter-Kato product formula for the family {f(tA)g(tB)}t≥0 away

from 2t0 in I(H). In a similar way, by the second inequality of Proposition 5.4.3(ii),

we have analogues error bound for the family {g(tB)f(tA)}t≥0.

(ii) Let (I(H), ∥ · ∥I) be a symmetrically quasi-normed ideal and ε(r), r ∈ R+, be an

error bound of the Trotter-Kato product formula in the operator norm away from

t0 > 0. Then, under the assumptions of Proposition 5.4.3, the arguments similar

to (i) and the homogeneity of the quasi-norm imply that εI(r) = ε(r/2), r ∈ R+

and εI(n) = ε(
[
n
2

]
) + ε(

[
n+1
2

]
), n ∈ N are the error bounds locally away from 2t0

in I(H) for families {F (t)}t≥0, {G(t)}t≥0 and {f(tA)g(tB)}t≥0, {g(tB)f(tA)}t≥0,

respectively.

(iii) Let L1(H) be a trace class ideal equipped with a functional ∥X∥log =
∑

k≥1 log(1 +

sk(X)), X ∈ L∞(H). By [9], it follows that (L1(H), ∥ · ∥log) is a complete symmet-

rically F-normed ideal. For X ∈ L1(H) and a real number α ∈ [0, 1], we have the

following inequality

∥αX∥log ≤ ∥αX∥1 ≤ α(1 + ∥X∥∞)∥X∥log, (5.21)

where ∥ · ∥1 is trace class norm. Let ε(r), r ∈ R+, be an error bound of the Trotter-

Kato product formula in the operator norm away from t0 > 0. Therefore, under the

assumptions of Proposition 5.4.3, (5.21) and the arguments similar to (i) imply that

the error bounds are εI(r) = ε(r/2), r ∈ R+ and εI(n) = ε(
[
n
2

]
)+ε(

[
n+1
2

]
), n ∈ N for

families {F (t)}t≥0, {G(t)}t≥0 and {f(tA)g(tB)}t≥0, {g(tB)f(tA)}t≥0, respectively.
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Chapter 6

Approximation formula for a

propagator in symmetric Banach

ideals

In this chapter, we consider abstract non-autonomous Cauchy problem for an evolution

equation and an approximation formula of its propagator. Firstly, in Section 6.1, we state

the assumptions under which the evolution equation is considered and present main results

of this chapter. Section 6.2 consists basic properties of a propagator. In Sections 6.3

and 6.4, we prove the main results of this chapter, Theorem 6.1.1 and Theorem 6.1.2,

respectively. This chapter is based on the results of [3].

6.1 Assumptions and Main results

Let H be a separable Hilbert space and A and B(t), t ≥ 0 be the non-negative self-adjoint

operators on H. The main object of this chapter is the following abstract non-autonomous

evolution equation on a compact interval [0, 1]


du(t)
dt = −(A+B(t))u(t),

u(s) = us ∈ H,

0 ≤ s ≤ t ≤ 1. (6.1)

We consider the non-autonomous Cauchy problem (6.1) with the following assumptions:

(A1) An operator A ≥ I is self-adjoint and a family {B(t)}0≤t≤1 consists of positive
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self-adjoint operators on a separable Hilbert space H.

(A2) There is a number α ∈ (0, 1) such that D(Aα) ⊆ D(B(t)) for a.e. t ∈ [0, 1] and the

function B(·)A−α : [0, 1] → L(H) is strongly measurable and essentially bounded in

the operator norm, i.e.,

ess sup
t∈[0,1]

∥∥B(t)A−α
∥∥
∞ < ∞.

(A3) The mapping [0, 1] ∋ t 7→ B(t)A−1 ∈ L(H) is Hölder continuous in the operator

norm.

(A4) Let (I(H), ∥ · ∥I) be an arbitrary symmetric Banach ideal (see, Definition 3.1.2).

Then, the operator A is the generator of a strongly continuous semigroup {e−tA}t≥0

such that {e−tA}t>0 ⊂ I(H).

Following the classical methods of solving (6.1), we prove the following existence result

for a propagator.

Theorem 6.1.1. Let (I(H), ∥ · ∥I) be an arbitrary symmetric Banach ideal and let the

assumptions (A1)-(A4) be satisfied. We have

∥U(t, s)∥I ≤ Const∥e−
t−s
2

A∥I , s ≤ t.

Furthermore, the propagator U(·, ·) is continuous (in the norm of I(H)) in both variables

and is continuously differentiable (in the norm of I(H)) in the first variable.

We introduce the following approximants for the propagator

Un(t, s) :=
1∏

k=n

e−
t−s
n

Ae−
t−s
n

B(s+ k
n
(t−s)),

U ′
n(t, s) :=

1∏
k=n

e−
t−s
n

B(s+ k
n
(t−s))e−

t−s
n

A, (6.2)

U ′′
n(t, s) :=

1∏
k=n

e−
t−s
2n

Ae−
t−s
n

B(s+ k
n
(t−s))e−

t−s
2n

A. (6.3)

Note that when B(t) = B does not depend on time, then the given approximation problem

corresponds to the Trotter product formula in symmetric Banach ideals (see, [40] or [2]).
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Throughout this paper, we are using the notation

ϵ∞(n) = ess sup
0≤s≤t≤1

∥Un(t, s)− U(t, s)∥∞ , n ∈ N. (6.4)

Various estimates on ϵ∞(n) are available in Subsection 4.5.4.

The first lifting result from the operator norm topology to other various topologies was

first considered in [76]. Zagrebnov considered the same problem (6.1) under slightly different

assumptions (in (A4), (I(H), ∥ · ∥I) was assumed to be a trace class ideal (L1, ∥ · ∥1)) and

proved the following approximation formula in the trace norm

ess sup
0≤s<t≤1

∥Un(t, s)− U(t, s)∥1 ≤ Const · ∥e−
t−s
16

A∥1ϵ∞(n), n ∈ N,

where Const depends only on α, β.

In this thesis, we further extend the last result to the general class of all symmetric

Banach ideals in L(H) and prove the following approximation formula.

Theorem 6.1.2. Let (I(H), ∥ · ∥I) be an arbitrary symmetric Banach ideal and let the

assumptions (A1)-(A4) be satisfied. We have

ϵI(n) ≤ Const ·
∥∥∥e− (t−s)A

4

∥∥∥
I
·
(
ϵ∞

([n
2

])
+ ϵ∞

([
n+ 1

2

]))
, 2 ≤ n ∈ N,

where Const > 0 depends only on the ideal I(H) and on the constant α and where

ϵI(n) = ess sup
0≤s<t≤1

∥Un(t, s)− U(t, s)∥I .

6.2 Existence and basic properties of the propagator

Note that Assumptions (A1) and (A2) imply that the operators C(t) := A + B(t) for

t ∈ [0, 1] have a common domain dom(C(t)) = dom(A) and C(t), t ∈ [0, 1] are self-adjoint

in this common domain dom(A).

Proposition 6.2.1. Let Assumptions (A1)-(A3) be satisfied. Then, there exists a

propagator {U(t, s)}0≤s≤t≤1 solving (6.1) on dense subspace H0 = dom(A).

Proof. We need to verify the assumptions in Theorem 4.5.9 in our setting.
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Firstly,

∥B(t)A−α∥∞ ≤ c, t ∈ [0, 1].

Let λ > 0 be such that

c · λα−1 · sup
u>0

uα

u+ 1
=

1

2
.

We have

∥B(t)(A+ λ)−1∥∞ ≤ ∥B(t)A−α∥∞ · ∥Aα(A+ λ)−1∥∞ ≤ c · sup
u>0

uα

u+ λ
=

1

2
.

Thus,

∥A · (A+B(t))−1∥∞ ≤ ∥A · (A+B(t) + λ)−1∥∞ · ∥(A+B(t) + λ) · (A+B(t))−1∥∞

≤ (1 + λ) · ∥A · (A+B(t) + λ)−1∥∞

≤ (1 + λ)∥A(A+ λ)−1∥∞ · ∥(A+ λ) · (A+B(t) + λ)−1∥∞

≤ (1 + λ) · ∥(1 + (A+ λ)−1B(t))−1∥∞ ≤ 2(1 + λ).

In particular, we have

∥(A+B(s)−A−B(t)) · (A+B(t))−1∥∞ ≤ ∥(B(s)−B(t))A−1∥∞ · ∥A(A+B(t))−1∥∞

≤ 2(1 + λ)∥B(s)A−1 −B(t)A−1∥∞ ≤ 2(1 + λ) · c′|t− s|β, t, s ∈ [0, 1].

This verifies the assumption of Hölder continuity in Theorem 4.5.9. The assumption of

bounded invertability in Theorem 4.5.9 is immediate in our setting.

The following integral equation for the propagator is known (see, for example, [10,

Section VI.9.c] or [52, Section 5.6])

U(t, s) = e−(t−s)A −
∫ t

s
e−(t−τ)AB(τ)U(τ, s)dτ.

Here, the integral is understood in the strong operator topology.

The following assertion is established in [76].

Proposition 6.2.2. The propagator {U(t, s)}0≤s≤t≤1 can be constructed as an uniformly
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operator norm convergent Dyson-Phillips series

U(t, s) =
∞∑
n=0

Sn(t, s), S0(t, s) = e−(t−s)A,

Sn(t, s) = −
∫ t

s
e−(t−τ)AB(τ)Sn−1(τ, s)dτ, n ≥ 1,

where each Sn(t, s), n ≥ 1 is bounded, strongly continuous and strongly differentiable for

0 ≤ s < t ≤ 1, and satisfies the following operator norm estimate for n ≥ 1 :

∥Sn(t, s)∥∞ ≤ (Const)n
Γ(1− α)n

n(1− α)Γ(n(1− α))
(t− s)n(1−α).

Proof. It follows from the assumptions (A1) and (A2) that

∥e−(t−τ)AB(τ)∥∞ ≤ Const

(t− τ)α
, 0 ≤ τ < t ≤ 1. (6.5)

Hence,

∥Sn(t, s)∥∞ ≤ Const

∫ t

s
(t− τ)−α∥Sn−1(τ, s)∥∞dτ.

We conclude by induction that

∥Sn(t, s)∥∞ ≤ (Const)n · In(t, s),

where, for n ≥ 1

In(t, s) :=

∫ t

s

dτn
(t− τn)α

∫ τn

s

dτn−1

(τn − τn−1)α

∫ τn−1

s

dτn−2

(τn−1 − τn−2)α
· · ·
∫ τ2

s

dτ1
(τ2 − τ1)α(τ1 − s)α

.

It is easy to see that

In(t, s) =
Γ(1− α)n

n(1− α)Γ(n(1− α))
(t− s)n(1−α), n ≥ 1.

6.3 Proof of Theorem 6.1.1

First of all, using Assumption (A4) we need to prove that the propagator defined as in

Subsection 6.2 belongs to I(H) and is continuous in ∥ · ∥I for 0 ≤ s < t ≤ 1. To prove this
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fact we now present an extension of the lemma given in [76, Lemma 2.2] to the case of

symmetric Banach ideals, which is helpful in further discussion.

Lemma 6.3.1. Let Assumptions (A1)-(A4) be satisfied. For the propagator {U(t, s)}0≤s≤t≤1

we have the following estimate

∥U(t, s)∥I ≤ Const∥e−
t−s
2

A∥I , s ≤ t.

Proof. Recall that the propagator is defined as following Dyson-Phillips series

U(t, s) =

∞∑
n=0

Sn(t, s),

Sn(t, s) = (−1)n
∫ t

s
dτn

∫ τn

s
dτn−1...

∫ τ2

s
dτ1

e−(t−τn)AB(τn)e
−(τn−τn−1)A · · · e−(τ2−τ1)AB(τ1)e

−(τ1−s)A.

Denote by V (x, y) the following

V (x, y) := B(x)e−(x−y)A/2, 0 ≤ y < x ≤ 1.

Hence, by (6.5), it follows that V (x, y) is bounded for any 0 ≤ x < y ≤ 1 and

∥V (x, y)∥∞ =
∥∥∥B(x)e−(x−y)A/2

∥∥∥
∞

≤
∥∥B(x)A−α

∥∥
∞

∥∥∥Aαe−(x−y)A/2
∥∥∥
∞

≤ Const

(x− y)α
.

We write (using the convention τ0 = s)

e−(t−τn)AB(τn)e
−(τn−τn−1)A · · · e−(τ2−τ1)AB(τ1)e

−(τ1−s)A =

= e−(t−τn)A
1∏

j=n

V (τj , τj−1)e
−(τj−τj−1)A/2.

By Lemma 3.3.1, we have

∥∥∥e−(t−τn)AB(τn)e
−(τn−τn−1)A · · · e−(τ2−τ1)AB(τ1)e

−(τ1−s)A
∥∥∥
I
≤

≤ Const · ∥e−(t−s)A/2∥I
1∏

j=n

∥V (τj , τj−1)∥∞ ≤
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≤ Const · ∥e−(t−s)A/2∥I
1∏

j=n

(τj − τj−1)
−α.

Therefore,

∥Sn(t, s)∥I ≤ Const∥e−(t−s)A/2∥I ·
∫ t

s
dτn

∫ τn

s
dτn−1 · · ·

∫ τ2

s
dτ1

1∏
j=n

(τj − τj−1)
−α.

Computing the integral, we arrive at

∥Sn(t, s)∥I ≤ Const
∥∥∥e−(t−s)A/2

∥∥∥
I
· Γ(1− α)n

n(1− α)Γ(n(1− α))
(t− s)n(1−α), n ≥ 1. (6.6)

Hence, the above Dyson-Phillips series converges in ∥ · ∥I for t > s. Since symmetric

Banach ideal is norm-complete, it follows that the propagator belongs to I(H) and,

moreover by (6.6), one has

∥U(t, s)∥I ≤ Const · ∥e−(t−s)A/2∥I .

Lemma 6.3.2. Let Assumptions (A1)-(A4) be satisfied. The propagator is continuous

with respect to ∥ · ∥I for t > s.

Proof. Let 0 < u1 < u2 < 1. We claim that the propagator is continuous with respect to

∥ · ∥I on the domain (u2, 1]× [1, u1).

Indeed, we have

U(t, s) = U(t, u2) · U(u2, u1) · U(u1, s), t ∈ (u2, 1], s ∈ [0, u1).

By Theorem 4.5.9, the mappings f : t → U(t, u2), t ∈ (u2, 1], and g : s → U(u1, s),

s ∈ [0, u1) are continuous in the strong operator topology. By Lemma 6.3.1, we have

U(u1, u2) = U(u1,
u1 + u2

2
) · U(

u1 + u2
2

, u2) ∈ I(H) · I(H).

In particular, U(u1, u2) belongs to the separable part of the ideal I(H). The claim follows

now from Lemma 3.3.2.
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By the above claim, the propagator is norm-continuous on the set

⋃
0<u1<u2<1

(u2, 1]× [1, u1) = {(t, s) : 0 ≤ s < t ≤ 1}.

Lemma 6.3.3. Let Assumptions (A1)-(A4) be satisfied. The propagator is continuously

differentiable in the first variable with respect to ∥ · ∥I for t > s. Its derivative is −(A+

B(t))U(t, s).

Proof. Let s < u < 1. We claim that the propagator is continuously differentiable in the

first variable with respect to ∥ · ∥I on the interval (u, 1].

Indeed, we have

U(t, s) = U(t, u) · U(u, s).

By Theorem 4.5.9, the mapping f : t → U(t, u), t ∈ (u, 1], is continuous in the strong

operator topology. By Lemma 6.3.1, we have

U(u, s) = U

(
u,

u+ s

2

)
· U
(
u+ s

2
, s

)
∈ I(H) · I(H).

In particular, U(u, s) belongs to the separable part of the ideal I(H). The claim follows

now from Lemma 3.3.3.

By the above claim, the propagator is norm-continuously differentiable in the first

variable on the set ⋃
s<u<1

(u, 1] = (s, 1].

Proof of Theorem 6.1.1. The norm estimate for the propagator is established in Lemma

6.3.1. The norm-continuity of the propagator in both variables is established in Lemma

6.3.2. The norm-differentiability of the propagator is established in Lemma 6.3.3.

6.4 Proof of Theorem 6.1.2

Now we prove the approximation formula for a propagator {U(t, s)}0≤s<t≤1.
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Lemma 6.4.1. We have

Un(t, s) = U[n+1
2 ]

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
· U[n2 ]

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
.

Proof. Denote for brevity

Wn,k(t, s) = e−
t−s
n

Ae−
t−s
n

B(s+ k
n
(t−s)), 1 ≤ k ≤ n.

We write

Un(t, s) =
1∏

k=n

Wn,k(t, s) =

[n2 ]+1∏
k=n

Wn,k(t, s) ·
1∏

k=[n2 ]

Wn,k(t, s).

Note that

W[n+1
2 ],k

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
= Wn,k+[n2 ]

(t, s), 1 ≤ k ≤
[
n+ 1

2

]
,

W[n2 ],k

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
= Wn,k(t, s), 1 ≤ k ≤

[n
2

]
.

Therefore,

[n2 ]+1∏
k=n

Wn,k (t, s) =

1∏
k=[n+1

2 ]

W[n+1
2 ],k

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
= U[n+1

2 ]

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
,

1∏
k=[n2 ]

Wn,k (t, s) =
1∏

k=[n2 ]

W[n2 ],k

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
= U[n2 ]

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
.

Combining these equalities, we complete the proof.

Proof of Theorem 6.1.2. By Lemma 6.4.1 and by the properties of the propagator, we have

Un (t, s)− U (t, s) = U[n+1
2 ]

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
· U[n2 ]

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
−

−U

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
· U

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
=

=

(
U[n+1

2 ]

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
− U

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

))
· U[n2 ]

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
+
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+U

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
·

(
U[n2 ]

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
− U

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

))
.

Hence, by the triangle inequality and the symmetricity of the norm ∥ · ∥I , we have

∥Un (t, s)− U (t, s)∥I ≤

∥∥∥∥∥U[n+1
2 ]

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
− U

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)∥∥∥∥∥
∞

×

∥∥∥∥∥U[n2 ]
(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)∥∥∥∥∥
I

+

∥∥∥∥∥U
(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)∥∥∥∥∥
I

∥∥∥∥∥U[n2 ]
(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
− U

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)∥∥∥∥∥
∞

.

By (6.4), we have

∥∥∥∥∥U[n+1
2 ]

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)
− U

(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)∥∥∥∥∥
∞

≤ ϵ∞

([
n+ 1

2

])
,

∥∥∥∥∥U[n2 ]
(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)
− U

(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)∥∥∥∥∥
∞

≤ ϵ∞

([n
2

])
.

Therefore,

∥Un (t, s)− U (t, s)∥I ≤ ϵ∞

([
n+ 1

2

])∥∥∥∥∥U[n2 ]
(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)∥∥∥∥∥
I

+ ϵ∞

([n
2

]) ∥∥∥∥∥U
(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)∥∥∥∥∥
I

.

(6.7)

Since B (·) is positive, it follows from Lemma 3.3.1 that

∥Um (t, s)∥I =

∥∥∥∥∥
1∏

k=m

e−
t−s
m

Ae−
t−s
m

B(s+k t−s
m )

∥∥∥∥∥
I

≤ Const·
∥∥∥e−m· t−s

m
A
∥∥∥
I
= Const·

∥∥∥e−(t−s)A
∥∥∥
I
.

Therefore,

∥∥∥∥∥U[n2 ]
(
t
[
n
2

]
+ s

[
n+1
2

]
n

, s

)∥∥∥∥∥
I

≤ Const ·
∥∥∥∥e− (t−s)[n2 ]

n

∥∥∥∥
I
≤ Const ·

∥∥∥e− t−s
4

A
∥∥∥
I
.

Also, by Lemma 6.3.1, we have

∥∥∥∥∥U
(
t,
t
[
n
2

]
+ s

[
n+1
2

]
n

)∥∥∥∥∥
I

≤ Const ·

∥∥∥∥∥e− [
n+1
2 ](t−s)A

2n

∥∥∥∥∥
I

≤ Const ·
∥∥∥e− t−s

4
A
∥∥∥
I
.

Substituting those estimates into (6.7), we complete the proof.
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Note that Lemma 6.4.1 is also valid for other families of approximants introduced in

(6.2) and (6.3). Furthermore, the same line of reasoning as in proof of Theorem 6.1.2 also

holds for those families, hence, we omit them.
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