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Abstract

Advances in sensor and instrumentation technology, together with cost reductions and

capacity increases in computing and communication technologies, have led to the rapid

accumulation of large amounts of data, additional to that collected by traditional meth-

ods. These sources form data called heterogeneous since it does not conform to a single

type of data structure. A notable example is Electronic Health Record (EHR) data.

Given the size and complexity of heterogeneous data there is a growing need to apply

machine learning to predict, for example, patient outcomes from EHR data. Such data

is inherently uncertain, so learning algorithms based on the framework of probabilistic

graphical models for classification are appropriate.

Despite the popularity of structured prediction, its capability in utilising domain knowl-

edge and modelling on the source of structure is limited. This thesis identifies the

connection between the mechanism of abstract domain knowledge and the structural

setting of a graphical model. A clique-based mapping method is proposed to develop

a structural-binding and knowledge embedding set of feature functions.

A general discriminatively-trained probabilistic graphical model, the transitional ran-

dom field (TRF), is proposed for modelling heterogeneous input data without the local-

ity preserving property, which is widely seen in conditional random field(CRF) problem

settings.

We also introduce a novel ontology-based probabilistic similarity measurement for het-

erogeneous data which simplifies probabilistic computation in TRFs and enables effi-

cient inference. The TRF framework identifies and maps information from the input

structure to the non-isomorphic format determined by the output structure, while at the

same time utilising structurally embedded existing knowledge implicit in the structure

of the input and output. This ability to represent dependencies as features denoting

transitional relations between input and output gives TRF the potential to learn mod-

els from a wide range of heterogeneous data and make predictions about structured

domain knowledge.

Our experiments on a large real-world data set demonstrate that TRF can be suc-

cessfully applied to a demanding structured prediction problem over heterogeneous

EHR data, with the proposed TRF training and inference algorithms obtaining good

accuracy and efficiency.
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1
Introduction

The digitalization and development of medical equipment of life-care facilities in hos-

pitals brings about possibilities of generating and collecting a huge volume of heteroge-

neous Electronic Health Record (EHR) data. The development and spread of wearable

electronic devices could also provide possibilities in collecting high-density and every-

day health data for a much larger population. Notably, the greatly enhanced data

availability to computer systems may well exceed the level that unaided doctors can

possibly have.

Under the natural assumption that these manageable data pools are extremely information-

rich, machine-based analysis and prediction techniques are in great need to automate

the diagnosis and prediction process. However, the current techniques for handling the

heterogeneous input data and utilising the domain knowledge are far from sufficient,

particularly on structured prediction model-related techniques.

The strong belief on the potential of applying state-of-the-art machine learning tech-

niques to EHR prediction problems motivates us to develop novel techniques in this

area. In this thesis, we systematically illustrate the novel ontology-assisted structured

status prediction framework we developed for successfully making structured prediction

over the overall health status of a patient, as will be examined in later chapters1.

The main contributions are:

1Note that in this thesis we use the term “status” rather than the more usual “state” to avoid the
possibility of confusion with the class of probabilistic graphical models known as “state-space models”.
We fully define the meaning of the term status in Chapter 3.
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• exploratory data analysis and prediction learning on health record data (Chapter

2)

• ontology representation and domain knowledge embedding for structured predic-

tion models (Chapter 3)

• heterogeneous input data modelling in structured prediction models (Chapter 4)

• an analysis of the discriminative learning approach to probabilistic graphical

models highlighting the implicit structure on both the input and output compo-

nents of the models (Chapter 4)

• the introduction of a new form of discriminatively learned probabilistic graphical

model, the Transitional Random Field (TRF), that relaxes this implicit structural

restriction (Chapter 4)

• in terms of inference for TRFs, a key insight is how to relax the implicit locality

constraint of Conditional Random Fields (CRFs) during inference, by making use

in TRFs of available structure in the data in a general way (Chapter 5)

• the derivation of a new training algorithm for TRFs, based on similarity, which

avoids the computation of complex partition functions (Chapter 5)

• the implementation of an algorithm to learn TRFs using this framework (Chapter

6)

• results from an application of this algorithm to the challenging task of structural

prediction of codes from the standardised medical International Classification of

Diseases (ICD) ontology on a real sample of heterogeneous EHR data (Chapter

6).

The rest of this chapter is organised as follows. We first describe the characteristics of

EHR data in the real-world healthcare environment and then discuss our motivation

relative to this type of data. After examining the related methodologies for prediction,

we then formalize the prediction problem for EHR data in the context of random field

theories. We develop our machine learning techniques with special effort on the hetero-

geneous input data modelling. We cover different aspects of this ambitious structured

prediction problem in corresponding chapters throughout this thesis.



Chapter 1. Introduction 3

1.1 The Heterogeneous Electronic Health Record (EHR)

Data

We are in an era of data explosion, especially in healthcare-related fields [Gar13].

Hospitals and other healthcare organizations are keen to advanced high-tech equipment

to improve their healthcare quality. Heavy investments have been made in the recent

years by both the resourceful public and private sectors to deliver their vision, whereas

the practitioners in the healthcare industry tend to be more conservative to sticking to

the way they have been used to during the long time before the digital age.

While expensive digitalised equipment is continuously contributing huge amounts of

high density data, the paper-pen weaponed humans are still often required to provide

information for medical records. It makes sense, though, for the data collector to get

every piece of information both from the highly automatic computer-based devices,

such as are found in Intensive Care Units (ICUs) as well as the old school golden-

age machines, such as thermometers, and even from natural language, e.g., as clinical

narrative. The different types of output and various data sources make the resulting

EHR data almost always heterogeneous.

Researchers from different sectors have realised that these information-rich data are

forming a new research base which could result in deep impacts on many industries,

including healthcare, financial and education, etc. [MD13, HY14, KKV13]. Govern-

ments of several countries have been dedicated to building centralised systems to store

the electronic health record (EHR) data, in a way that is comprehensive as well as

exchangeable [GT05, SBH+07].

Despite the fast speed of deploying the infrastructure for EHR data, the ability to

extract information from these heterogeneous observations is limited [OLSH12, HY14].

Thus, a novel machine learning framework is needed to model the latent structure

behind the data and to further exploit the potential ability for structured prediction,

given relevant human knowledge as the prior.

1.2 Motivation

Structure, as an abstraction of relationships, plays a vital role in the whole process of

learning, both by humans and computers. The human brain uses structures to describe

the characteristics of perceived information, and later uses them to understand new sig-

nals. Similarly, machine learning algorithms use structures to build the learning model
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and, in some cases, uses complicated structures to describe the output of prediction.

We are motivated to develop novel machine learning techniques that can fully utilise

the embedded information from structure.

1.2.1 The Absence of Clear Observation Structure

This learning process becomes much more difficult when it is not possible to use one or a

small number of well-defined structures to describe the observations. The reason could

be that the observations may have many heterogeneous sub-structures from different

logical perspectives, so an overall structure is unable to capture most of the structural

information. The reason could also be that the observation does not have any structure

that could be formally described by the current mathematical modelling language at

all.

Such heterogeneous observations not only bring difficulties to the learning process but

also present challenges to the modelling of the output of the predictions. Heterogeneous

data encodes a lot of information, both structurally and semantically, but it is often

the case that we are not even sure about what to predict to fully reveal the information

latent in the observation data.

1.2.2 The Non-Isomorphic Output Structure

Many graphical models have been studied extensively in the machine learning commu-

nity to model the dependencies among factors behind observations. Similar structures

which are isomorphic to the dependency graph, or its elementary subgraph, naturally

become the output of the prediction. The similarities between structures of the latent

variables in the observations, and the structures of the prediction output, benefit the

training and inference algorithms greatly because these two can be represented by the

same or very similar structures.

However, the homogeneity of the mappings between the latent structure behind the

observations and the outputs of prediction can also greatly limit the extent to which

we can learn from the data, and the expressive power of the output. Thus, for machine

learning practitioners it would be more desirable to model the outcome of prediction

as a rigid structure with a full set of prior information from existing knowledge and

then learn from the heterogeneous latent structure in the observations. Note that

this process is actually a transition from a heterogeneous structure to a well-defined
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rigid one for the output, which allows much more potential to make use of available

knowledge.

1.2.3 The Target Problem in General

Any EHR prediction algorithm will need to solve the structure transition problem dis-

cussed above because (1) of the heterogeneous observations making up the input data,

and (2) it will need at the same time to make full use of the dependency information

embedded in available output structure.

Formally, the general target problem can be described as: Let G = (V,E, I) be a graph

structure such that the output random variables Y = (Yv)v∈V , so that Y is indexed

by the vertices of G. I is the invariant knowledge embedded in G and E is the set of

edges of G. Find a target model M such that given the observation random variables

X, M is able to calculate the distribution Pr(Y|X, G).

1.3 Temporal Modelling

1.3.1 Stochastic Process

The following is a definition of a stochastic process: Given a probability space (Ω,F , P )

and a measurable space (S,Σ), an S-valued stochastic process is a collection of S-

valued random variables on Ω, indexed by a totally ordered set T (“time”). That is, a

stochastic process X is a collection {Xt : t ∈ T}, where each Xt is an S-valued random

variable on Ω. The space S is then called the state space of the process.

This is a strictly defined type of random variable sequence, rather than a probability

distribution model. However, it is difficult to model heterogeneous input data with the

state space S shared among {Xt : t ∈ T}.

1.3.1.1 Problems with the Gaussian Process Random Variables and the

Feature Functions

The assumption that a feature function’s value is a random variable which draws values

from a Gaussian distribution or is a sum of a subset of such random variables is often

too strong for applications where very little can be assumed. In most cases of structured

prediction, the feature functions are often little more than indicator functions, which
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means (1) these functions are often not continuous, and (2) we have very limited prior

knowledge about the possible connection between the feature appearing in the input

data and the corresponding change in the distribution over the domain-specific ontology

underlying the output structure.

1.3.2 State Space Models

A state space model (SSM) [Mur12] is an extension to an HMM, with continuous

hidden states. The temporal relation between zt and the previous hidden state zt−1 is

modelled as:

zt = g(ut, zt−1, εt)

The current observation yt is related to the current hidden state zt by:

yt = h(zt,ut, δt)

where zt is the hidden state; ut is an optional input or control signal; yt is the observa-

tion; g is the transition model; h is the observation model; εt is the system noise at time

t; δt is the observation noise at time t; θt = (At,Bt,Ct,Dt,Qt,Rt) are parameters of

the model, which becomes stationary if θt is independent of time.

Clearly the model setting is very similar to an HMM, yet with more flexibility in

describing continuous valued hidden states {zt} and observations {yt}. Nevertheless,

the hidden state dependencies are restricted to the pairwise ones between zt−1 and zt.

Similarly, the current observation yt is only dependent on variables for the current time

t (zt, ut and δt), without further direct modelling of the dependencies between yt and

y1:t−1 or z1:t−1 (t > 1).

The prediction target for SSM is the probability distribution of the belief state p(zt|y1:t,u1:t,θ).

Thus, one direct approach for this is to make use of existing continuous distributions.

One of the major cases used in real world applications is the linear-Gaussian SSM

(LG-SSM), or linear dynamical systems (LDS).

An SSM is a LG-SSM if:

• the transition model is a linear function: zt = Atzt−1 + Btut + εt

• the observation model is a linear function: yt = Ctzt + Dtut + δt
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• The system noise is Gaussian: εt ∼ N (0,Qt)

• The observation noise is Gaussian: δt ∼ N (0,Rt)

The LG-SSM has many applications in the real world because it supports exact infer-

ence. For more details on the training and inference related algorithms see [Mur12].

1.4 Heterogeneous Input Data

Heterogeneous input data brings extra challenges to structured prediction models. Nor-

mally no fixed vocabulary can be assumed for this kind of data. Thus, it is very difficult

to model the dependencies between different observed variables in the data, even if we

know how to define them.

Moreover, due to the lack of structural information, it is often impossible to know the

mapping relation between the local features in the observation and those on the latent

variable side. Thus, locality cannot be preserved. In that sense, any sub-graph of

the output structure is also conditioned on the global observation. Consequently, the

ability to capture complex features is a necessity, e.g., features defined over relatively

large sub-graphs. Thus, the resulting structured prediction model should be able to

handle large cliques.

1.5 Ontology in Structured Prediction

Ontology as a representation of the domain knowledge has great potential in assisting

structured prediction. This is because the output structure is generally a description

of the belief state for the observation. Thus, an ontology could enhance structured

prediction methodologies in two ways:

1. Ontology provides a comprehensive concept vocabulary for describing the status

implied by the current observation; and

2. A structured prediction model could increase the effectiveness of the framework

by incorporating the domain knowledge embedded in an ontology, e.g., co-occurrence

indicators that are hard-wired into feature functions.
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1.5.1 Ontology as Domain Knowledge

Ontology is a standard approach to the definition, organisation and, often, formalisation

of domain knowledge. An ontology is a “specification of a conceptualization” [Gru93],

where a conceptualization is the set of objects and relations defined on them in a do-

main [GN87]. Currently there is a move to standardize widely-used domain knowledge

structures, such as the medical terminologies used in electronic health record data, as

formal ontologies.

1.5.2 Information Transition with Ontology

Ontology is important to structured prediction in terms of information mapping. The

general assumption is that there is useful information residing in the “raw” and some-

times heterogeneous input data. Thus, the learning and prediction process in ontology-

based structured prediction is actually an information transition from the “raw” form

in heterogeneous data to a converted and regularised form given by a rigid ontology

structure. This requires that the concepts together with their interdependencies in an

ontology can be properly represented and such structural information takes part in the

learning and predicting process.

The potential of ontology has not yet been fully addressed in the machine learning com-

munity, except for in some specific applications, e.g., sentiment analysis or classification

and user profiling in social networks [FPM16, GBH09, Jan16, OLC+16, BHML16].

1.5.3 Knowledge Graphs

Essentially, an ontology represents structured knowledge in a specific domain. Knowl-

edge graphs are multi-relational structures that have attracted interest from many

communities, particularly industry, e.g. Google [Sin12]. Discovering facts about enti-

ties and constructing structured knowledge bases, on the other hand, is a major goal

of information extraction and knowledge base population technologies [BEP+08, JG11,

RCR16]. For more details of some initial work on domain-specific information ex-

traction, see [Mil95, RLM+06]. Due to the extremely rapid growth in the amount of

text-based information available on the web, there is a strong need for gathering and

organising knowledge for further storage and query. The concept of knowledge graph

was proposed in [Sin12].
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Although both knowledge graph and ontology consist of a group of concepts and their

relations, the emphasis of each is different. Firstly, knowledge graph related techniques

address the problem of how to gather information and build the connectivity for the

graph, while ontologies are normally and ideally built up by and for professionals with

existing domain knowledge. Thus, the form and source of relations are normally differ-

ent. Secondly, the structure of an ontology is often more hierarchical, with relatively

clearer divisions between different levels of abstraction. Knowledge graphs, on the other

hand, often have fairly simple structures with various logical relations between entities.

A knowledge graph is a symbolic and logical system and many prediction tasks on it

involve aggregating global knowledge over it, thus computational efficiency is often the

major concern. A new trend of techniques named embedding, aiming at solving this

type of problems, is to project the high-dimensional space to a low-dimensional continu-

ous vector space, while preserving the needed topological properties [WZFC14b]. More

follow-up work on the methodologies of extending a knowledge graph and aggregating

information from it can be found in [LLS+15, PMGC13, WZFC14a, Zha02].

1.5.4 Ontology for CRF

1.5.4.1 Validity

Although normally ontology has already the form of structured knowledge, it has to

satisfy several requirements from both its semantic setting and the structural setting

with respect to target prediction models, such as CRFs.

1. An ontology for CRF needs to be valid in terms of the semantic meaning and

relationships of its concepts. Generally speaking, an ontology is valid for being used

in a prediction model, e.g., a CRF, only when it is with a valid concept arrangement

as an ontology by itself in the first place. This already implies the completeness and

accuracy for concepts involved. Nevertheless, the validity also requires the following.

(i) Concepts in an ontology are normally arranged in a hierarchical manner, with dif-

ferent levels of abstractions. There should exist one or several spanning tree(s) whose

paths represent the hierarchical relations between concepts, such that the spanning

tree(s) provide a complete cover over all the concepts from the ontology.

(ii) The concept arrangement should have an appropriate level of granularity, and semi-

continuous changes. More concretely, any change in the position of a concept in the

ontology that is determined by the domain knowledge should be consistent with the
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graphical position of that concept given by the ontology. In other words, the ontology

should be such that position changes along the path of a spanning tree indicate smooth

semantic progression, which can be the basis for modelling the adjacencies from a

hierarchy in the probabilistic graph model.

2. An ontology for a CRF needs to be a Markov Random Field (MRF). As the output

structure of a CRF, the random variable set Y defined by the ontology should obey

the Markov property. This will be discussed in more detail later.

Note that as pointed out in [Cli90], constructing random mosaics which are spatially

Markov is a challenging problem. However, for the purposes of probabilistic modelling,

in this thesis we require only that an ontology to be used as the output structure

in a model should be a general graph such that one or more spanning trees may be

constructed on it.

1.5.4.2 A Fixed Output Structure for Various Instances

One direct implication from using ontology in a predictive model is that, for any predic-

tion task in the same domain, the output structure is the same for the whole category

of structured prediction problems. There is an asymmetry between the output and

the unstructured or semi-structured heterogeneous inputs. More specifically, for a par-

ticular category of prediction problems in some domain, with a well-defined ontology,

the fixed output structure can be used as a common descriptive vocabulary to describe

different input instances. In that sense, it is complete and adequate to use a fixed

ontology-based structure as the basis of induced knowledge to describe different possi-

ble heterogeneous inputs. This motivates a robust yet powerful probabilistic framework

to solve this prediction problem, while relaxing the local structural mapping relation

presented in all previous MRF/CRF-type models. For the formalisation of the local

structural relation between for the input and output, see Section 4.4.

1.5.4.3 Random Field Construction for Ontology

If we put the semantic meaning of an ontology aside and only consider the structural

information, an ontology2 can be reduced to a simple graph G = (V,E), where every

node Vi in G represents a concept explicitly defined in the specific domain. If we

assign a continuous random variable Yi ∈ [0, 1] to Vi, representing the confidence value

2At least for ontologies from the biomedical domains considered in this thesis; in general this may
not apply for ontologies defined using fragments of first-order logic, such as Description Logics.
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of Vi to appear in the result set of the current status described by the ontology, the

configuration y of the set of random variables Y = {Yi} is a complete description of the

current status based on the predefined domain-knowledge. Thus, the probability of a

configuration P (y) is an important measurement in obtaining the Maximum Likelihood

Estimator (MLE).

In order to make the induced random field Markovian, it requires that all the sensible

dependencies lead to edges in E. With this completeness in modelling dependencies, the

resulting random field has only local dependencies. This confidence value-based setting

results in a model with strictly positive distribution and only local dependencies. Thus,

the induced graph is an MRF.

1.5.5 Continuous MRF/CRF

Following the description of the continuous confidence distribution of an ontology as the

desirable prediction space, in this section we consider MRFs with continuous random

variables for modelling the probability of a given distribution.

The Hammersley-Clifford theorem builds the bridge between the Markov property and

clique factorisation in a general setting. So, its conclusion is also applicable to cases

with continuous output variables.

Continuous random variable output does not bring much change to the evaluation of

feature functions. However, it greatly influences the setting and the semantic meanings

of feature functions. We fully examine these in Section 4.3.3. Here we first examine

the relation between a multivariate Gaussian distribution and its corresponding MRF.

Then the previous normalisation scheme is transformed to set up the partition function

for the MRF with continuous random variable output.

1.5.5.1 Non-parametric Models

The continuous output model has a clearer joint probability representation when we

know the abstract form of the distribution of individual random variables. Given the

joint distribution, the dependencies between connected nodes can be inferred.

We take the Gaussian family as an example. Given a multivariate normal distribution,

it forms a Markov random field with respect to a graph G = (V,E) if the missing edges
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correspond to zeros on the precision matrix:

X = (Xv)v∈V ∼ N (µ,Σ)

such that

(Σ−1)uv = 0 if {u, v} 6∈ E

For more details about the proof, see [RH05].

A variation to the traditional usage of the feature function is briefly mentioned in [QLZ+09],

where the C-CRF model tries to combine the similarity relation and the parent-child re-

lation by adding the parent-child term Ri,j(yi−yj) and the similarity term
Si,j

2 (yi−yj)2.

However, the potential of variational features in inference and relational learning was

not identified in this work.

1.5.6 Challenges to Existing Models

Using an ontology as the output structure for a CRF requires a learning framework

able to:

1. handle generally or densely connected CRFs, including training and inference

2. break the locality preserving property, as will be fully examined in the corre-

sponding chapters, which results in a “semantic” preserving property

3. perform efficient feature function-based computation with clique size larger than

2, such that the dependencies appearing in an ontology have presence and real

influence.

In this thesis the central problem will be seen as that of characterising a general in-

formation transition process to enable machine learning, as we have begun to outline

above and will be made clear below. The challenges posed by this general information

transition process are from both the input and output structures, and their depen-

dencies. We first consider the variations to the output and set up the model in the

following Section 1.5.5. The modelling for the input data is discussed in Section 1.4

and Section 3.4.1.2. The general connection between the input and output structure is

discussed in Section 4.2.5 and further examined in more details in Section 4.4.
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1.6 Example Prediction Problems

In this section, we consider several classic prediction problems which are applicable

to be adapted with structured output. By doing this, we demonstrate the possible

settings and difficulties of these problems, without loss of generality. Therefore these

problems will be used as running examples in this thesis, to illustrate our solutions to

all the motivating problems.

1.6.1 Locality Modelling in Applications

In this section, a range of prediction problems are discussed to demonstrate structure

settings for the different types of dependencies formalised in Section 4.5 on the input

X and the output Y. The nature of the dependencies, and the way the random

variables are inter-dependent, are determining factors for the fundamental structure

of the network, and hence the subsequent probabilistic graphical model.

At the end of this section, we identify the dual-locality assumption hiding in the map-

ping between X and Y of almost all structure settings in the literature. Relying on

this property has greatly limited the range of problems to which the existing prediction

frameworks can be efficiently applied.

1.6.2 MRF Applications

Markov random fields find application in a variety of fields, ranging from computer

graphics to computer vision and machine learning. MRFs are used in image processing

to generate textures, as they can be used to generate flexible and stochastic image

models. In image modelling the task is to find a suitable intensity distribution for

a given image, where suitability depends on the kind of task, and MRFs are flexible

enough to be used for image and texture synthesis, image compression and restora-

tion, image segmentation, surface reconstruction, image registration, texture synthesis,

super-resolution, stereo matching and information retrieval. They can be used to solve

various computer vision problems which can be posed as energy minimization problems,

or problems where different regions have to be distinguished using a set of discrimi-

nating features, within a Markov random field framework, to predict the category of

the region. Markov random fields were a generalization over the Ising model and have,

since then, been used widely in combinatorial optimizations and networks.
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1.6.3 The Sequence Segmenting and Labelling Problem in Text Pro-

cessing

Text-based sequence segmentation is actually a tagging problem, which has been stud-

ied extensively in the natural language processing community. Typical examples are

applications in speech recognition/language models [ZN09].

Due to the format of human language, in such applications the input X and output Y

almost always have a linear-chain structure. In text processing, the input X normally

represents a sentence and ∀Xi ∈ X represents a word in X. Thus a configuration x of

X is a specific sentence and the generating random value x has a one-to-one mapping

relation between xt and Xi.

Similarly the output Y represents a tag sequence, which is typically seen in the part-

of-speech (POS) tagging problem [LMP01]. y = {y0, . . . ,yT } is a configuration of Y,

with each yt being the POS tag for the position t in the given input sentence x.

This linear-chain structure in the POS tagging problem is solely based on the temporal

dependencies assumed in the text processing scenario, because the index variable in

describing the current state/stage is t, which could be an analogy to time.

Although this is a general-purpose probabilistic model, text-based application, e.g.,

part-of-speech (POS) tagging, is a classic structured prediction task for this discrimi-

native model [MS99].

Secretariat

NNP 
(noun,proper, 

singular)

is

VBZ (verb, present 
tense, 3rd person 

singular)

expected

VBN (verb, past 
par�ciple)

to

TO (“to” as 
preposi�on or 

infini�ve marker)

race

VB (verb, base 
form)

tomorrow.

NR (adverb)

Figure 1.1: The linear CRF in POS Tagging

As we can observe in Figure 1.1, the CRF for POS tagging is actually a linear CRF,

with both linear input and output structures. Furthermore, there is a strong one-to-one

mapping between the two groups of random variables.

1.6.4 The Area Tagging Problem in Computer Vision

CRFs have also found their way to the field of computer vision [NGL10]. Here the

edges between nodes of the output random variables are used to model adjacent areas

in the figure. Similarly, CRFs can be used to tackle the area tagging problem.
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We can also note that, although MRFs are applicable in the computer vision field, the

ability to model many other features of the input variables makes CRF a more popular

choice.

1.6.5 Specific-Purpose vs. General-Purpose Disease Progression Model

Considering the specific disease progression prediction problem, it could either be focus-

ing on a specific disease (specific-purpose progression model) or on a cohort of diseases

(Hawkes process). For coverage of these descriptions see [CBS+16a].

We focus on the general-purpose progression model here.

1.6.5.1 The Basic Problem Setting

The general scheme is to make predictions by leveraging the large amount of historical

data in EHR. Thus, the model should be able to handle the longitudinal information

within. Intuitively the prediction outcome should be a description of the health status

of the patient, similar to the diagnoses and medication orders from a physician in

future.

The basic setting for the disease progression prediction model is: given a large set of

EHR data for a cohort of patients, predict the most-likely distribution of the confidence

values of all the possible diseases as a comprehensive description of the patient’s current

health status.

The basis of prediction, or the raw input data, is the longitudinal patient records,

including biographical information for the patients, admissions, operations and wards

movements, etc., together with descriptive codes, e.g. diagnosis codes, medication

codes, procedure codes, or even comments from physicians. There is an underlying

assumption that, given all the information available, the outcome of a patient’s health

status is, to some extent, predictable. We hold this to be true because the same

argument for the whole development of medical science applies here. Although it is

probably optimistic to say that disease progression is understandable by humans, the

purpose of developing prediction algorithms is to at least achieve the level of expertise

of the best doctor, or consensus of doctors, available. The output of the prediction is

the physician diagnosis and medication order of the next visit.
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1.6.5.2 Main Challenges

The main challenges for the previous models are, firstly, scalability and secondly, the

lack of domain-specific knowledge.

Given the importance of time as an index variable in all the disease progressions,

temporal models are a necessity.

A naive but straightforward method is to set up individual classifiers for every possible

disease (or ICD code for a disease). However, the hierarchical structure of such disease

predictions means strong inter-dependencies and conceptual overlapping, resulting in

great difficulties in inferring the result at a fine-grained granularity.

Recurrent neural networks (RNN) are used to solve this problem in [CBS+16a] in an

approach called “Doctor AI”. However, this method only considers previous ICD codes

as input, and thus only makes predictions based on the inertia existing in the ICD

progression. Ignoring all the heterogeneous data by only examining the previous ICD

codes as input implies a huge information loss. Moreover, purely relying on the inertia

of the ICD codes without systematically making use of the domain knowledge makes it

difficult to further understand disease progressions. To see this, without considering the

structure of ICD codes defined by an ontology, the model in Doctor AI represents the

output labels as a plain vector composed of indicators of the occurrence of individual

ICD codes.

1.7 Related Literature

1.7.1 Prediction over EHR Data

The prediction problem over healthcare related data is actually not new in the biomed-

ical or informatics literature. Before the boom in data collection from electronics de-

vices, some health-related data was collected by enterprise systems, only in a relatively

simpler form. This was partly motivated by proposals for an intelligent knowledge

agent system for healthcase predictions. These have yet to accomplish their goal.

The efforts to model medical knowledge and to make basic inference and prediction can

be traced back to the days of expert consultant systems and computer-based clinical

decision support systems (CDSSs)[WHB+88, HHHS98, WS08, KHBL05, GAM+05]. As

a matter of fact, the initial systems were designed with a relatively bold, all-inclusive

philosophy. However, it was found that the overall knowledge representation problems
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are extremely difficult and, unfortunately, these are the basis of all medical expert

systems.

An examples is the expert system designed for education of medical students to prac-

tise problem-solving skills where normally a good physician is needed [WHB+88]. The

system is supposed to mimic an expert diagnostician, which requires the ability to rec-

ognize a selected set of diseases. The relations between some specific disease and all

its manifestations are stored as a knowledge frame. This is an interesting attempt to

model the relationships between different diseases, because the list-style representation

of a densely connected two-dimensional disease graph will result in a memory overflow

quickly when the number of diseases increases, especially given the hardware specifica-

tions of computers in the 1980s. A hierarchy as a representation of the disease topology

was used in this design.

Despite many medical expert systems having been designed (diagnostic systems, re-

minder systems, disease management systems, drug-dosing or prescribing systems, etc.)

and put into the professional working environment[GAM+05], the ability of CDSSs is

still fairly limited. They can only demonstrate enhanced clinical performance in a

few specific fields, e.g., drug dosing, preventive care, etc. Systems may actually work

better in patient matching than making clinical suggestions. Results show that many

CDSSs improve practitioner performance. However, the effects on patient outcomes

are sometimes inconsistent[GAM+05].

To further extend the ability of CDSSs, a four-phase approach has been developed to

further enhance the evolution of clinical decision support architectures [WS08]. Al-

though each of them has been proven to be effective, the authors concluded that there

is a common limitation in the knowledge representation system that all the approaches

cannot overcome.

Actually, this conclusion applies universally to all the medical diagnosis oriented expert

systems from the early days. The proposed ideal performance of the applications

cannot be achieved without a comprehensive and accurate knowledge representation

mechanism.

Having experienced difficulties in modelling and representing the overall knowledge in

general, the approach of predicting one or several specific indicator variables have often

been often adopted. Also, statistical association has been preferred to the traditional

logical inference based on abstract knowledge. Various machine learning techniques

e.g. support vector machines (SVM) and some regression models, etc. have been

deployed [WRS10].
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The indicator of heart failure in 6 months’ was chosen as the output random variable

in [WRS10].

The relationships depicted in Figure 1.2 between the indicator variable and a small set

of supporting variables of different types were carefully studied by applying the SVM,

Boosting, and logistic regression separately.

Heart failure in 6 months
Demographics

•Age

•Sex

•Height

Health behaviour

•Weight

•Tobacco use

•Alcohol use

Use of care

•Ambulatory care visits

Clinical diagnosis

•Diabetes

•Atrial fibrilla�on

•Chronic obstruc�ve 
pulmonary disease

•Peripheral vascular 
disease

•Hypertension

•cerebral vascular 
disease

•acute myocardial 
infarc�on

•aor�c aneurysm

•respiratory symptoms

Clinical measures

•Pulse

•systolic blood 
pressure

•Diastolic blood 
pressure

•pulse pressure

Laboratories

•Lipid panel

•basic metabolic panel

•CBC

•liver func�on tests

•high sensi�vity C-
reac�ve protein

•glomerular filtra�on 
rate

•microalbuminuria

•glucose

•haemoglobin A1c, 
others

Other orders

•Echo

•imaging, etc

Prescrip�ons 
orders for 
an�hypertensives

•Renin-angiotensin-
aldosterone system

•beta blockers

•diure�cs

•calcium

•channel blockers

•Other 
an�hypertensives

Figure 1.2: The heart failure indicator and its supporting variables

There are also several studies in the literature adopting similar structures to Figure 1.2

in order to model the relationships between different indicator variables and other

groups of supporting variables, e.g., hospital mortality [vWEGF10, CSC+13, ACZ+13,

TSNJ14], readmission[CBWB12, SGM13, GRB13], cardiopulmonary arrest[ACZ+13],

and so on.

More advanced generative models have also been devised to study the relationships

between different layers of features and temporal patterns in terms of the value change

of the indicator variables [CPCC+16]. Results show that more complicated structures

such as these can fit the dependency relations of several different indicator variables at

the same time, albeit with parameter differences.

1.7.2 The Need for Prior Knowledge in EHR Prediction

The limited power of models based on associative dependencies motivates the need to

incorporate more prior-defined domain knowledge to improve EHR prediction. Recall

the embedded information I in the structure G as described in subsection 1.2.3: a

well-defined medical-ontology graph structure should help to utilize the corresponding

domain information.
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The ICD-10 code is the 10th revision of the International Classification of Diseases

(ICD)3. The main part is a tree-like hierarchy to represent all human diseases. Five

different types of dependencies among the whole set of nodes are defined to make the

hierarchy a general graph. The rigorous structure and rich information in the ICD-10

hierarchy provide a good expressive tool to embed human knowledge about diseases. In

this thesis a distribution of well-defined random variables corresponding to the whole

hierarchy will be adopted in chapter 4 to give a structure for prediction of a patient’s

health status.

1.8 The Similarity Problem in the EHR Literature

The first problem when dealing with the similarity between patients is how, based

on EHR data, to define and compute the similarity itself. Intuitively, this should be

possible based on the current in-hospital electronic health data, as well as the medical

history, including the demographic information, for any pair of patients. Based on pair-

wise similarity over a large group of patients, finding the most similar patients has great

potential in many clinical aspects, for example, for predicting the eventual discharge

diagnoses by exploiting similarities between patients along multiple dimensions.

How can such a similarity measure be developed ? One possibility is to apply machine

learning. The prospective outcome of similarity measure learning is a similarity function

S(Pi, Pj) between any two patients Pi, Pj , which is capable of providing normalized

similarity measurements in a metric space.

1.8.1 Problem Definition

The similarity measure that we will introduce later in this thesis will actually provide

a way of defining the distance in the heterogeneous data space. Once defined, such a

similarity measure can have a number of uses. For example, a typical distance based

querying method is the method of k-NN (k-Nearest Neighbours). The particular role

of such queries in the EHR scenario would be to find similar patients to a selected

patient, which can provide the basis for advice on medical treatments.

3http://www.who.int/classifications/icd/en/

http://www.who.int/classifications/icd/en/
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1.8.1.1 A Naive Solution

A naive solution is calculating all the pairwise distances or similarities for all the data

points with respect to the query point, then picking the top-k nearest neighbours to

determine the “peers” of the patient. However, this algorithm is likely to be too

inefficient for practical applications as the number of patients increases.

1.8.1.2 The Peer-Based Prediction Problem

Given two patients with observations xa and xb, calculate the probability distribution

of p(y
(n+1)
a |yb,xa,xb), where y

(n+1)
a stands for the next state after y(n).

There is some existing work in dealing with similarity-based methods in real world

electronic health records (EHR). Several methods have been published for predict-

ing certain patient outcomes using large cohorts of patients. The method in [WRS10]

addresses detection of heart failure more than six months before the actual date of clin-

ical diagnosis, and [FJJ+12] discussed the inference of patient prognosis based on pa-

tient similarities. In [GSR+13], the authors presented a similarity-combining approach

for computing the similarity between patients. Apparently, the authors encountered

the problem of heterogenous data structure, including multi-dimensional and temporal

structure. Their solution is based on a simplified structure for the EHR data for each

patient, by filtering out frequent information. The individual similarity computations

are followed by a combining formula (Score(H, I) = maxH′,I′ 6=H,I
√
S(H,H ′) · S(I, I ′))

to get the maximal similarity to a known, gold-standard EHR history set.

1.8.2 Similarity Measure Construction

Similarity measure construction plays an important role in defining the overall patient

similarity.

In [GSR+13], two ICD code-based similarity measures (1-2) and eight similarity mea-

sures (3-9) between hospitalizations were defined. All similarity measures were normal-

ized to the range[0,1].

1. ICD code similarity: ICD codes ci and cj as: S(ci, cj) =
NCA(ci,cj)

#levels , where NCA

is the level of the nearest common ancestor and #levels are the number of levels

in the ICD hierarchy.
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2. Empirical co-occurrence frequency: use the HCUP data to compute empirical

co-occurrences between ICD codes, across all patients. First compute the Jac-

card score between each pair, then transform the Jaccard score into a similarity

measure.

3. Medical history: each patient may possess medical history from three sources:

(1) past encounters with local health providers; (2) discharge codes of past hospi-

talizations; and (3) personal history ICD codes provided in the current hospital-

ization. The union of these three sources constitutes the patient medical history

profile. To compute the similarity of two such profiles, a bipartite graph is formed

over the member ICD codes, connecting two codes in the two profiles by an edge

whose weight is the similarity between the codes. The similarity score is the value

of a maximal matching in this graph, normalized by the smaller history set size.

4. The maximal matching computation is performed using either of the two ICD

similarity measures, resulting in two similarity measures.

5. Blood test similarity: The authors used only the chronologically first blood test

of each type, performed upon admission for each hospitalization, retaining only

blood test results obtained during the first three days of hospitalization. They

also filtered many other blood tests to fit the traditional array similarity model.

6. The authors formed two other types of similarities: (1) using the entire set of

common blood test array between any two hospitalizations, they computed the

Euclidean distance between the z-score vectors, normalized by their length; and

(2) the average of differences in absolute values between the blood tests with the

highest z-score for each patient. The distance Dij between patients i and j was

converted to a similarity value by linear transformation.

7. ECG similarity: the ECG values included eight interval values as well as the

heart rate. Similar to the blood tests, the authors used only the chronologically

first measurement, performed upon admission for each hospitalization, obtained

during the first three days of hospitalization. Each ECG measurement had un-

dergone the same normalization and similarity construction as the blood tests.

So, both the blood test and ECG values selected for the similarity computation

have lost the characteristics of the temporal pattern.

8. Age similarity: in order to give precedence to age differences at younger ages, the

similarity between two patients pi and pj is computed as S(pi, pj) = 1− |pi−pj |
max(pi,pj) .

9. Gender similarity: defined as 1 if the two patients have the same gender and 0

otherwise.
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In [CCCM10], different similarity measures are defined according to different data

types.

For those categories consisting of a single scalar data field (age, AFP value, number

of lesions and tumour size), the similarity measure between the ith and jth patients is

given by the following expression.

SimAFP(i, j) =
1

1 + | afp(i) + afp(j)|

For those categories consisting of two mutually exclusive binary data fields (gender,

hepatitis, portal vein invasion, degree of liver damage), the patient similarity is given

by the following expression (we use degree of liver damage as an example)

SimDamage(i, j) = damage(i) · damage(j)

For those categories consisting of multiple binary data fields (treatment before TACE

and other image findings), the patient similarity is given by the following expression

(we use treatment after TACE as an example)

SimLtreat(i, j) =
ltreat(i) · ltreat(j)

| ltreat(i)| · | ltreat(j)|

For those categories consisting of two independent binary data fields (locations of le-

sions), the patient similarity is given by the following expression.

SimLocLesion(i, j) =
side(i) · side(j)

| side(i)| · | side(j)|

For those categories consisting of multiple scalar data fields (complete blood picture,

liver function test and renal function test), the patient similarity is given by the fol-

lowing expression (we use liver function test as an example).

SimLFT(i, j) =
lft(i) · lft(j)
| lft(i)| · | lft(j)|

,where lft(k) = [lft1(k), . . . , lft4(k), 1]

1.8.3 Graph based Methods

In [KSS+14], a graph-based semi-supervised learning (SSL) algorithm is used as a

classification method. The SSL graph proposed is a simple similarity graph, with

edges to represent the similarity between k-neighbours. Furthermore, a multigraph,

which has multi-omics information with the same node structure, could be exploited

by this algorithm as well. This structure requirement can make the computation of
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SSL over the multigraph much more efficient. This work demonstrates the possibility

of making predictions based on similarity between patients with multi-level information

in multigraphs, however, in a much-simplified manner.

1.8.4 The Learning Approach

The patient similarity algorithm SimSVM in [CCCM10] is proposed for classification

on EHR data. With 14 similarity measures as input, SimSVM outputs the predicted

class and the degree of similarity or dissimilarity by training a support vector machine

with a linear kernel. However, this method also needs to do a lot of filtering on the raw

data to produce a simplified data structure, and hence this is likely to be inadequate

for large-scale heterogenous EHR data in the real world.

1.9 The Multi-Label Problem

In a vaccine efficacy study [SLF+10], several different labelled data sets D1, . . . ,Dk from

the previous years’ flu are used to help to understand the current new flu data set D0.

Auxiliary data sets D1, . . . ,Dk from multiple sources S = {S1, . . . , Sk} (Di ∈ Si, i ∈
[1, . . . , k]), with various distributions of xDi , i ∈ [1, . . . , k], and possibly different output

label alphabets YDi , i ∈ [1, . . . , k], are considered heterogeneous. In order to make use

of D1, . . . ,Dk, the learning framework extracts (x,y) pairs similar in distribution to the

ones in D0, and transforms the output yDi , i ∈ [1, . . . , k] to yD0 by mapping between the

label alphabets YDi , i ∈ [1, . . . , k] to YD0 . However, the validity of such transformations

relies on a hidden assumption that D0,D1, . . . ,Dk can fit into the same model, and the

corresponding XDi , i ∈ [0, . . . , k] are homogeneous. Actually, the definition proposed

for heterogeneous data is limited to different label alphabets YDi , i ∈ [0, . . . , k] and the

miscellaneous mapping relationships between x and y. The lack of properly modelling

heterogeneous structures on x makes such a definition incomplete.

The multi-source problem addressed in [SLF+10] is based on the multi-view learning

problem motivated by classifying web pages based on two separated feature sets [BM98,

LPZ08]. The formation of a structured feature vector space then provides a rigid

framework to perform various analyses [OKMI07].

Further considerations are needed for situations where the random vectors XDi , i ∈
[0, . . . , k] can have different numbers of components, that is, a dynamic-in-length but
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still normalized feature space. The shared instances among a subset of XDi , i ∈
[0, . . . , k] become the basis for the overall relational network — a weighted graph [SPGP12].

The model above can be formally described as multiple data sources D1, . . . ,Dk provid-

ing features for objects o1, . . . , on. For every op, p ∈ [1, . . . , n], ∃ i ∈ [1, . . . , k] s.t. ∃xop,Di ∈
Di as an instance for the features of op in Di. Moreover, if there also exists a j ∈
[1, . . . , k] s.t. ∃xop,Dj ∈ Dj , it is possible to have |xop,Di | 6= |xop,Dj |. Thus, for every

Di, i ∈ [1, . . . , k], all it has is the instances of one random vector XDi , fully indexed by

p ∈ [1, . . . , n]. Clearly, over-simplifying by using the representation of a single random

vector for one data source greatly limits the range of heterogeneous structures this

model could handle.

Although the multi-source setting partially reflects EHR data’s heterogeneous alpha-

bets, we note that for ∀j ∈ [1, . . . , N ],∃ i ∈ [1, . . . , k], s.t.xj ∈ Di, all the random

variables in X can be indexed by a real number, the time t. This property of EHR

data naturally leads to a stochastic process model [PP02].

In order to capture the complex interdependencies between random variables at a

fine-grained representational level a probabilistic graphical model is often used. As a

generalization of a stochastic process, a random field is a collection of random variables

indexed by nodes in a topological structure [Van10]. By adding restrictions to obey

the Markovian property, the Markov random field (MRF) is obtained, which has been

widely applied to computer vision problems, due to its simplicity and the ability to

incorporate spatial information in its indices [CJ83, Li01].

The traditional learning framework over probabilistic graphical models addresses the

problem of modelling the structure of the input x, mostly either as a generative model

based on a factored representation of the joint probablity of the input and output y,

or as a discriminative model where the output is conditioned on the input. However,

often the output y is simply a single variable as the class label, probably due to the

prevalence of classification problems in machine learning and thus the difficulty in

obtaining labelled data of a different type [Mur12]. In the hidden Markov field (HMRF)

model proposed in [ZBS01], although designed as indexed by the same set of indexes

and the one-to-one mapping as in the HMM, full topological structures were considered

for the first time for both the input x and the output y.

The discriminative conditional random field(CRF) extends the MRF by conditioning on

the input x as a whole [LMP01, SP03]. This is actually a great leap towards spending

the most modelling effort in the structure of output y, while keeping the possibilities of

having a totally different topological structure of x. The fact that CRF often suffers the
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from the same inference complexity as the MRF does, and that its major application

is in natural language processing, has so far limited further exploiting the expressive

power in learning between heterogeneous structures. However, we will demonstrate

later that the CRF-based model has great advantages in correctly modelling possible

dependencies within the structural transition between x and y, along with superior

efficiency in relational learning.

1.10 Summary

The work presented in this thesis aims to propose a general framework and methods

to tackle the problem of structured prediction over heterogeneous data, which has not

previously been solved. A typical class of heterogeneous data — EHR data — will

provide an ideal test domain. The heterogeneous nature and the complex inter-latent-

variable dependencies of this data, as well the definition of a structured output to be

predicted based on an encoding of human knowledge in the medical field as an ontology

(although to a relatively limited extent as sourced from the ICD-10 hierarchy) gives

our approach great potential for theoretical and empirical significance.

The EHR structured prediction problem requires an ontology based on a semantic

vocabulary — the ICD hierarchy. The methodologies for constructing a representation

of this ontology for machine learning should be able to have comprehensive coverage

over all the pre-defined ICD codes, together as much of their complex inter-dependencies

as possible. More importantly, the ontology should be in a suitable form such that the

information embedded can be fully utilised by the probabilistic prediction model in

training and prediction.

In this thesis we consider a complete ontology built on the whole ICD hierarchy, thus it

has comprehensive coverage over existing human diseases. Our representation for this

ontology takes a framework of measuring ICD labels and their inter-dependencies into

the probabilistic model. Meanwhile, given its good coverage of the disease taxonomy,

it is also potentially useful for the output structure. Thus, the ontology plays an

important part not only in assisting learning and prediction, but also in constructing the

output of the whole model. We will discuss this ontology-based structured prediction

problem in the context of multi-label problem, and will demonstrate later that the

existing models and related algorithms fail for this type of problems.

Nevertheless, to our knowledge, there is no work where the whole ICD hierarchy is

used as the ontology for machine learning. We propose algorithms to transfer the ICD
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hierarchy into the output structure, meanwhile utilising the embedded knowledge to

assist model training and prediction.

The rest of this thesis is organized as follows. We first discuss some traditional ways

of capturing and selecting features in the EHR domain, mainly based on temporal pat-

terns. After that we fully examine the possible settings for EHR prediction problems.

Then a special class of CRF called the Transitional Random Field (TRF) is proposed.

A learning framework is developed in the next chapters to allow TRF the ability to

conduct efficient similarity measuring, training and inference. This is then empirically

evaluated on a large-scale real-world EHR dataset. Finally, some future work based on

the proposed techniques is discussed.



2
Feature Construction and Selection Techniques for the

EHR Data

In this chapter, we address the problem of predicting patient outcomes from EHR data

in an empirical study. The selected problem is that of prediction of stroke outcome,

which is a major disease with potentially serious medical consequences. Our basic

hypothesis will be that physiological data patterns over the 48 hours following the oc-

currence of ischaemic stroke can be used to predict the outcomes for patients three

months later. We investigate several approaches to the issue of data representation,

both for input and output of the prediction model. We compare a number of machine

learning algorithms in terms of their prediction performance. A key finding is the im-

portance of using temporal features in the representation to enable improved prediction

performance.

2.1 Introduction

Stroke is one of the most important diseases that can cause human death. However,

despite the frequency and importance of stroke, there are only a limited number of

evidence-based acute treatment options currently available. Therefore, a relatively

accurate prediction of stroke outcome based on justifiable determinants could be im-

portant for decisions on the medical treatment that should be appropriate at the very

beginning of the stroke.

Unfortunately, the domain and effects of the potential determinants are still unclear.

Although some typical physiological variables have already attracted some attention
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from scientists because of their correlation with the outcomes, relatively accurate meth-

ods for such determinants’ identification are still yet to be developed.

In this chapter, we address the problem of identification of such determinants based

on an extended candidate feature set including not only physiological variables but

also their temporal trends. Our approach employs linear classifiers, logistic classifiers

and Parzen classifiers and we use leave-one-out cross-validation to evaluate prediction

accuracy. We demonstrate the efficiency and the accuracy of our approach empirically

on a data set collected from the Royal Brisbane and Women’s Hospital.

Stroke is a major cause of death, particularly following ischaemic heart disease (Aus-

tralian Institute of Health and Welfare 2006). The World Health Organization (WHO)

defines stroke as “rapidly developing clinical signs of focal (or global) disturbance of

cerebral function, with symptoms lasting more than 24 hours or leading to death, and

with no apparent cause other than of vascular origin” [Inv88]. The outcome for a

patient, therefore, is typically the very thing that people care about most.

Although stroke is a dreadful cause of death, outcomes vary tremendously among pa-

tients. At the same time, currently physicians possess only a few therapies that can

improve the outcome. These therapies produce benefit either by abbreviating the

duration of ischaemia, preventing further stroke, or preventing deterioration due to

post-stroke complications. However, huge differences can be observed in the health of

stroke patients after three or six months, with some recovering while others may die.

The majority of stroke victims survive. But in five years post-stroke, about half of

all stroke survivors will be unable to function independently and will rely on others

for assistance with some of all aspects of daily life. Therefore, a relatively accurate

prediction of stroke outcome could potentially be important to the decision on medical

treatment at the very beginning of the stroke.

2.2 Problem Setting

Our target is to identify the critical physiological determinants to achieve an accurate

stroke outcome prediction. This problem is very challenging, but, on the other hand,

it is potentially of great importance. This is because our understanding of the changes

in the main modifiable physiological parameters, namely blood pressure, body tem-

perature and blood glucose, and the impact these changes have on stroke outcomes,

remains incomplete. In particular, threshold levels for instituting treatment to modify



Chapter 2. Feature Construction and Selection Techniques for the EHR Data 29

these parameters, targets to be achieved with treatment, and the effectiveness of such

treatments remain uncertain.

Therefore, research on the determinants and the indicators of the level of damage to the

brain brought by ischaemia of the heart and the correlation between the physiological

variables and the various outcomes could be of important prognostic value, and thus

have attracted interest from the research community. It is reasonable to expect an

improvement in the ability of the stroke unit to achieve better outcomes once any

associations between the physiological variables and the outcomes of acute ischaemic

stroke are adequately modelled.

Figure 2.1: Mean systolic and diastolic blood pressure over the 48-hour period
following ischaemic stroke [Won].

2.2.1 Modelling for the Stroke domain

There are two main types of stroke: ischaemic stroke, caused by occlusion of a cerebral

artery depriving a part of the brain of blood supply and leading to infarction, and

haemorrhagic stroke, caused by rupture of a cerebral artery with damage caused by

bleeding into the brain. Ischaemic stroke is more common, in Australia accounting for

more than 75% of all stroke occurrences [Won].

The relation of ischaemic stroke outcomes to measures of blood pressure (BP) and BP

variability (BPV) has been reported in the literature. In [DMR+00] evidence was found

to support the hypothesis that beat-to-beat systolic BP (SBP), diastolic BP (DBP),

and mean arterial pressure (MAP) levels are associated with a greater incidence of
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Figure 2.2: Mean temperature measurements over the 48-hour period following
ischaemic stroke [Won]. Temperature rise and fall over the period shown for patients
separated by thresholded National Institutes of Health Stroke Scale (NIHSS) scores.

target organ damage. Furthermore, it was observed that those patients with a high

MAP and DBP but not SBP variability within each BP quartile had a worse prognosis

compared with those with a low BPV [DMR+00].

In the literature, the relation of blood pressure to outcomes for stroke patients is

complex. The effect of blood pressure reduction in the first 24 hours of acute stroke

onset was found to correlate with poor outcomes [OFST+03]. Blood pressure monitored

periodically within the first 72 hours after admission demonstrate that extreme values

correlate with unfavourable outcomes [RKH+09]. Several statistical properties (e.g.,

maximum, mean, variability, etc.) of periodically monitored blood pressure within

24 hours of stroke onset have been investigated and found to have strong association

with the outcome at 30 days after ischaemic stroke [YK08]. For example, variability

of systolic BP is inversely associated with favourable stroke outcomes. Other blood

pressure based physiological variables such as the Pulsatility Index have shown strong

associations with stroke outcomes [MFBG+03].

Additionally, other physiological variables have also been demonstrated to have strong

relations with acute intracerebral haemorrhage. For example, abnormalities of blood

glucose [Won], heart rate variability [GSN+04], ECG [CFB05] and temperature [BC01,

RLF09, HHS00] may be predictors of 3-month stroke outcomes. Since changes in

such physiological variables appear to be important in determining stroke outcome

this suggests that they should form part of the representation for outcome prediction
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modelling. Taken all together, therefore, one of the greatest challenges of our problem

setting is how to identify and quantify all the relevant physiological variables of any

potential prognostic value.

The initial work of [Won] further extended the range of the relevant physiological

variables considered, indicating that early changes in some common variables such

as blood pressure (Fig. 2.1) or temperature (Fig. 2.2) represent potential therapeutic

targets. Some systolic BP patterns have also been observed on some subgroups of

patients, e.g., those suffering from infection. Such results can give us hints for selection

of the physiological variables for the candidate feature set.

2.2.2 Related Work

Most of the above analyses, if not all, are based on statistical properties of periodical

snapshots of physiological parameters, hourly or daily, up to three months. However,

it is a natural question whether continuous patterns of physiological stream data, such

as data trends, have a similar predictive role. Although it is clear that elevated blood

pressure levels within 24 hours after stroke have predicted poor outcomes, few studies

have investigated the predictive ability of more sophisticated trends (e.g., combined

trends of several physiological parameters). This could be an effective way to readily

obtain important prognostic information for acute ischaemic stroke patients.

The relationship between beat-to-beat blood pressure (BP) and early outcome after

acute ischaemic stroke was described in [DMR+00]. The authors also raised the ques-

tion of which parameters of BP, or its variability (BPV), had the most power in predict-

ing the outcome. The correlations between BP, BPV and the outcome were examined

in different subgroups of patients (e.g., cortical infarction, subcortical and posterior

circulation infarction patients). The evidence was that a poor outcome at 30 days

after ischaemic stroke was dependent on stroke subtype, beat-to-beat DBP (diastolic

BP), and MAP (mean arterial pressure) levels and variability. However, this study was

limited to the parameters of blood pressure (BP) levels and BP variability (BPV). A

further investigation on BP in [OFST+03] examined the detrimental effect of blood

pressure reduction in the first 24 hours of acute stroke onset. BP reduction is regarded

to have the possibility to worsen an already compromised perfusion in the brain tis-

sue, and so not lowering BP in the early stage after the stroke onset is suggested,

although discussion on the relation of higher BP to outcomes is lacking. In [RKH+09]

blood pressure variation was represented by counting threshold violations. Significant
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differences in the frequency of upper threshold violation occurrences were observed be-

tween different time points after stroke. The authors also indicated that the history of

hypertension and higher National Institutes of Health Stroke Scale (NIHSS) scores on

admission were independent predictors. In [Won] some temporal patterns from changes

of some physiological variables were observed, and they also attempted to employ such

temporal patterns to explain and predict the early outcomes. Unfortunately, the success

of this prediction result was limited, due to the lack of a systematic method. However,

from this and the other research mentioned above it is evident that the possibility of

using machine learning to construct a predictive model for stroke outcomes based on

temporal patterns in the patient’s physiological data is a reasonable hypothesis.

Pre-processing time-series data to construct new features has attracted extensive study

in the data mining research community, e.g., for frequent temporal pattern mining.

Time series “shapelets” is one such approach, proposed in [YK09] to describe local

patterns that are highly predictive of a class. Further investigation on the ability of

logical combinations of shapelets to be used as an expressive primitive for time series

classification is in [MKY11]. However, such techniques are unlikely to be feasible for

physiological variables because of the intrinsic noise and variance of clinical data. This

is due to the different intervals at which nurses collect data from patients, and also by

the various lengths of patients’ time in hospital. Since the assumptions behind such

general-purpose pre-processing techniques as shapelets are not met in clinical data their

simple application is likely to distort the actual shape of the temporal patterns in the

clinical data and make them unsuitable for learning a good predictive model.

2.2.3 Classification for Stroke prediction

Our primary hypothesis is that post-stroke blood pressure, temperature and glucose

exhibit time-dependent trends after ischaemic stroke and that these trends can be

quantified by analysing the timing and magnitudes of serial measurements of these

physiological variables (as in, e.g., [Won]). In addition, it is reasonable to hypothe-

sise that baseline factors that represent determinants of post-stroke physiology may be

detected through their significant relationships with post-stroke physiology, and statis-

tically significant relationships with post-stroke physiological variables would indicate

that these factors are determinants of post-stroke physiology [Won].

Our overall approach will be to build an enhanced candidate feature set to make sure

it contains as many as possible of the relevant physiological variables. In particular, to

handle the complex time series aspect of our data, variables which describe the trend
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of physiological variables (e.g., the slope, the absolute change value, the mean, the

standard deviation, etc.) are derived from the original ones and incorporated into the

candidate feature set. Then regression based classifiers are trained and tuned against

a gold standard dataset. The leave-one-out cross-validation method will be adopted to

achieve a satisfactory estimate of prediction accuracy.

The main contributions of this work are as follows:

• we characterise the problem of learning a model to predict stroke outcomes from

physiological patterns in real world clinical scenarios;

• we develop novel data processing methods to deal with the uncertainty inherent

physiological time series of varying length and time intervals;

• we propose an algorithmic approach which will be able to use machine learn-

ing to identify significant local patterns by incorporating temporal trends of the

physiological time series evident in the data into a predictive model.

2.3 Empirical Study

In this section, we describe the process of constructing the stroke outcome prediction

model and its evaluation on a real-world dataset of patients. The main steps in the

process fall into one of two categories: data preparation and classifier learning.

2.3.1 Data Collection

A cohort of patients with acute ischaemic stroke was recruited. Patients presenting to

the Emergency Department of the Royal Brisbane and Women’s Hospital, a tertiary

referral teaching hospital, within 48 hours of stroke or existing inpatients with an inter-

current stroke between June 1, 2002 and March 31, 2003 were enrolled prospectively.

Systolic blood pressure (SBP), diastolic blood pressure (DBP), temperature and glu-

cose were recorded at least every 4 hours from the time of admission until 48 hours

after the stroke. Measurements from patients who died during these first 48 hours were

included in the analyses. Furthermore, some demographic and other stroke-related

data were also collected, such as age and gender. The age range of these 173 patients

was 16 to 92 years, the median age being 75 years. This data collection was approved

by an ethics committee from the relevant institution.
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Figure 2.3: Flowchart for the construction of the stroke outcome prediction model.

2.3.2 Feature extraction

A number of timing and demographic features are extracted from the subjects’ physi-

ological measurements. A complete list of the 136 candidate features can be found in

Table 2.1. The following paragraphs describe the generation of these features in three

stages.

2.3.2.1 Feature Generation Stage 1.

This stage essentially consists of the basic features extracted from the patient records.

It includes the three demographic features (features 1, 2, 3) - Age, Stroketia and AF.

Additionally, features 4 - 21 are extracted from the measurements of six physiological

parameters, which are blood sugar level (BSL), diastolic blood pressure (DBP), heart

rate (HR), systolic blood pressure (SBP), and temperature and pulse pressure. Pulse

pressure is the difference between systolic blood pressure and diastolic blood pressure:

Ppulse = Psys − Pdias

Three statistical features - the mean value, median value and standard deviation, are

extracted from each of the six physiological parameters.
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2.3.2.2 Feature Generation Stage 2.

Another 35 features were added to the feature set at the second stage. The 35 new

features were generated by extracting seven trend-pattern features from each of the

five physiological parameters (BSL, DBP, HR, SBP, and Temperature). Using the

MATLAB functions polyfit and polyval, one trend is applied to the time-series data

of each physiological parameter of each subject in the dataset. Then the seven trend-

pattern features are extracted from the trend, as follows:

1. xchange: the difference between the x value at the end of the trend and the x

value at the beginning of the trend

xchange = xend−of−trend − xbeginning−of−trend

2. absxchange: the absolute value of the xchange

3. slope: the slope of the trend

4. sign: the sign of the slope

5. bisign: the binary value of the sign of the slope

6. NumofMeasure: the number of the data points

7. FreqofMeasure: the average time interval between measurements:

FreqofMeasure =
∆x

NumofMeasure

2.3.2.3 Feature Generation Stage 3.

At the third stage, the final feature set was generated by including another 80 features,

thus expanding it to 136 features. The method used to obtain these new features is as

follows:

• Chop the time sequence of the physiological parameter data and only use the first

48 hours’ worth of data. The data after 48 hours are discarded.

• Segment the 48-hour-time-sequence data into two sub-sections: 0-24 hours and

25-48 hours.
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• Fit one trend to each of the sub-sections using the MATLAB functions polyfit

and polyval.

• For each of the two resulting sub-sections of each physiological parameter, ten

features are extracted: mean, median, standard deviation, xchange, abschange,

slope, sign, bisign, NumofMeasure, FreqofMeasure.

• Since there are many subjects who have limited data points in their blood sugar

level (BSL) data, which makes it difficult to do trend segmentation, only four

physiological parameters (DBP, SBP, HR, and Temperature) are used to extract

these segmented-trend-pattern features.

Therefore, in total we have:

(10 features)× (2 sub-sections)× (4 physiological parameters) = 80

which is the number of features added in stage 3.

2.3.3 Classification Criteria

Patient outcomes can be classified according to a range of different criteria. In this

study, a standard seven-level scale was used. However, in order to use a two-class

classifier learning algorithm the outcomes labelled according to this scale have to be

converted into two classes. This partitioning was done in three different ways to avoid

possible bias of the learning results.

2.3.3.1 RS3 score

A standard seven-point RS3 (Rankin Scale) scoring system for subject outcomes was

used in this study [Ran57]. The interpretation of each level of this scoring system is

shown in Table 2.2.

The RS3 score categorizes the outcome assessment after three months. The RS3 score

of outcome assessment for the patients in this study was worked out from the follow-up

data of the patients after three months. The RS3 score varies between 0 and 6. For

example, patients with RS3 = 6 means the subject is dead after three months and RS3

= 0 means the subject recovers quite well after three months. The distribution of the

subjects with different RS3 values over the 173 subjects is shown in Table 2.3.
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Table 2.1: Complete set of extracted and derived features for stroke outcome predic-
tion.

Feature No. Feature Name Feature No. Feature Name

1 Age 69 DBPFeature.std2
2 Stroketia 70 DBPFeature.NumofMeasure2
3 AF 71 DBPFeature.FreqofMeasure2
4 BSLFeature.mean 72 DBPFeature.xchange2
5 BSLFeature.median 73 DBPFeature.absxchange2
6 BSLFeature.std 74 DBPFeature.slope2
7 DBPFeature.mean 75 DBPFeature.sign2
8 DBPFeature.median 76 DBPFeature.bisign2
9 DBPFeature.std 77 HRFeature.mean1
10 HRFeature.mean 78 HRFeature.median1
11 HRFeature.median 79 HRFeature.std1
12 HRFeature.std 80 HRFeature.NumofMeasure1
13 SBPFeature.mean 81 HRFeature.FreqofMeasure1
14 SBPFeature.median 82 HRFeature.xchange1
15 SBPFeature.std 83 HRFeature.absxchange1
16 TemperatureFeature.mean 84 HRFeature.slope1
17 TemperatureFeature.median 85 HRFeature.sign1
18 TemperatureFeature.std 86 HRFeature.bisign1
19 Pulse.mean 87 HRFeature.mean2
20 Pulse.median 88 HRFeature.median2
21 Pulse.std 89 HRFeature.std2
22 BSLFeature.xchange 90 HRFeature.NumofMeasure2
23 BSLFeature.slope 91 HRFeature.FreqofMeasure2
24 BSLFeature.absxchange 92 HRFeature.xchange2
25 BSLFeature.sign 93 HRFeature.absxchange2
26 BSLFeature.NumofMeasure 94 HRFeature.slope2
27 BSLFeature.FreqofMeasure 95 HRFeature.sign2
28 BSLFeature.bisign 96 HRFeature.bisign2
29 DBPFeature.xchange 97 SBPFeature.mean1
30 DBPFeature.slope 98 SBPFeature.median1
31 DBPFeature.absxchange 99 SBPFeature.std1
32 DBPFeature.sign 100 SBPFeature.NumofMeasure1
33 DBPFeature.NumofMeasure 101 SBPFeature.FreqofMeasure1
34 DBPFeature.FreqofMeasure 102 SBPFeature.xchange1
35 DBPFeature.bisign 103 SBPFeature.absxchange1
36 HRFeature.xchange 104 SBPFeature.slope1
37 HRFeature.slope 105 SBPFeature.sign1
38 HRFeature.absxchange 106 SBPFeature.bisign1
39 HRFeature.sign 107 SBPFeature.mean2
40 HRFeature.NumofMeasure 108 SBPFeature.median2
41 HRFeature.FreqofMeasure 109 SBPFeature.std2
42 HRFeature.bisign 110 SBPFeature.NumofMeasure2
43 SBPFeature.xchange 111 SBPFeature.FreqofMeasure2
44 SBPFeature.slope 112 SBPFeature.xchange2
45 SBPFeature.absxchange 113 SBPFeature.absxchange2
46 SBPFeature.sign 114 SBPFeature.slope2
47 SBPFeature.NumofMeasure 115 SBPFeature.sign2
48 SBPFeature.FreqofMeasure 116 SBPFeature.bisign2
49 SBPFeature.bisign 117 TemperatureFeature.mean1
50 TemperatureFeature.xchange 118 TemperatureFeature.median1
51 TemperatureFeature.slope 119 TemperatureFeature.std1
52 TemperatureFeature.absxchange 120 TemperatureFeature.NumofMeasure1
53 TemperatureFeature.sign 121 TemperatureFeature.FreqofMeasure1
54 TemperatureFeature.NumofMeasure 122 TemperatureFeature.xchange1
55 TemperatureFeature.FreqofMeasure 123 TemperatureFeature.absxchange1
56 TemperatureFeature.bisign 124 TemperatureFeature.slope1
57 DBPFeature.mean1 125 TemperatureFeature.sign1
58 DBPFeature.median1 126 TemperatureFeature.bisign1
59 DBPFeature.std1 127 TemperatureFeature.mean2
60 DBPFeature.NumofMeasure1 128 TemperatureFeature.median2
61 DBPFeature.FreqofMeasure1 129 TemperatureFeature.std2
62 DBPFeature.xchange1 130 TemperatureFeature.NumofMeasure2
63 DBPFeature.absxchange1 131 TemperatureFeature.FreqofMeasure2
64 DBPFeature.slope1 132 TemperatureFeature.xchange2
65 DBPFeature.sign1 133 TemperatureFeature.absxchange2
66 DBPFeature.bisign1 134 TemperatureFeature.slope2
67 DBPFeature.mean2 135 TemperatureFeature.sign2
68 DBPFeature.median2 136 TemperatureFeature.bisign2
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Table 2.2: Rankin Scale for stroke outcome after 3 months.

RS3 Rankin Scale

0 No symptoms
1 No significant disability
2 Slight disability
3 Moderate disability
4 Moderately severe disability
5 Severe disability
6 Dead

Table 2.3: Distribution of patients into each RS3 category.

RS3 No. of patients

0 42
1 23
2 16
3 23
4 22
5 14
6 33

2.3.3.2 Types of outcome grouping

To apply our method the distribution of seven RS3 outcomes as shown in Table 2.3

need to be partitioned into two groups so that classification learning methods can be

used. This means that the RS3 scores are not analysed as continuous variables. Instead

the RS3 score is divided into two groups in three different ways for comparison based

on the values. The following are the three types of standards used to divide subjects

into ‘good’ and ‘bad’ groups:

Type 1: RS3 0-1 (good) vs. 2-6 (bad)

Type 2: RS3 0-2 (good) vs. 3-6 (bad)

Type 3: RS3 0-3 (good) vs. 4-5 (bad)

The resulting distribution of patients in each of the partitions is shown in Fig. 2.4.
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Figure 2.4: Distribution of patients with good or bad outcomes in 3 different group-
ings of RS3 codes (Y-axis: distribution percentage). Groupings into two outcome types
enable the use of logistic regression (a two-class classifier).

2.3.4 Logistic Regression

In statistics, logistic regression is a type of regression analysis used for predicting the

outcome of a binary dependent variable (a variable which can take only two possible

outcomes, e.g. “yes” vs. “no” or “success” vs. “failure”) based on one or more predictor

variables. As in other forms of regression analysis, logistic regression makes use of one or

more predictor variables that may be either continuous or categorical. Unlike ordinary

linear regression, however, logistic regression is used for predicting binary outcomes

rather than continuous outcomes.

An explanation of logistic regression begins with an explanation of the logistic function,

which, like probabilities, always takes on values between zero and one: f (z) = ez

ez+1 =
1

1+e−z . A graph of the function is shown in Figure 2.5. The input is z and the output

is f(z). The logistic function is useful because it can take as an input any value from

negative infinity to positive infinity, whereas the output is confined to values between

0 and 1.

For subject i is usually defined as: z = β0 + β1xi1 + β2xi2 + β3xi3 + . . . + βkxik

xi = [xi1xi2 . . . xik] is the feature vector of subject i with the k features which are

chosen from the 136 available features. β = [β1β2 . . . βk] are the coefficients. While

calculating the optimal coefficients of a least-squares linear regression has a direct,

closed-form solution, this is not the case for logistic regression. Instead, some iterative

fitting procedure is needed, in which successive ”guesses” at the right coefficients are

incrementally improved. To do the logistic regression, the MATLAB function glmfit

function is easy to apply.
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Figure 2.5: Plot of three functions captured in three univariate models with a single
parameter or coefficient (red=2; blue=1; green=0.5) by a logistic classifier learning
algorithm.

2.3.5 Leave-One-Out Cross-Validation

Cross-validation is used to obtain an unbiased assessment of classifier performance.

N = 173 folds are employed, withholding a subject from the training set for each

run, to later test with. Once a record has been withheld for testing, the classifier is

trained using the remaining (N− 1) = 172 subjects and the withheld subject is then

reintroduced for classification.

2.3.6 Feature Subset Selection

In order to reduce the complexity of the model, potentially both to obtain insight into

which features are important for correct patient outcome classification and to avoid

overfitting, we applied feature subset selection (see Fig. 2.3).
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2.3.6.1 Backward Search

A greedy backward search is performed to identify a near optimum subset of features

from the 136 available, which the classifier model best fits and which provides the

greatest discriminating information. Starting with all 136 features, in sequence, the

feature which improves performance the most (or decreases it the least) is removed

from the current set of features. This is repeated until all features have been removed.

The intermediate feature subset which provides the maximum performance, compared

to all other subset evaluated, is selected as the final feature set. The performance of a

given feature subset is evaluated using accuracy of the classifier model used.

2.3.6.2 Forward Search

A sequential forward floating search (SFFS) algorithm was used for feature selection,

in an attempt to discover the optimal subset of features from the pool of available

candidate features. The optimal subset is defined as the subset of features that provides

the best performance as indicated by the best accuracy value, as estimated using cross-

validation. The SFFS algorithm begins with a forward-selection process, selecting from

the pool of available features the single feature, which most improves the performance

of the model. After selection of a feature, removal of a feature from the set of selected

features is considered. The process of possible feature addition, followed by possible

feature removal, is iterated until the selected feature set converges.

2.3.7 Estimation of Stroke Outcome Using Classification Learning

The following describes a procedure for estimating the subjects’ stroke outcome af-

ter three months. Using the three types of two-class patient outcome labellings (see

Fig. 2.4), a number of time domain features extracted from the time series data of the

physiological measurements, and some supervised statistical classifiers, the stroke out-

come after three months is estimated, following the descriptions above of the feature

extraction and classification process.
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2.3.8 Results

2.3.8.1 Classification criteria

As shown in Table 2.2 the RS3 score varied from 0 to 6 points with RS3=0 being the best

outcome (no symptoms) and RS3=6 being the worst (death within three months). To

simplify the prediction problem the RS3 categories were partitioned into two subsets

forming “good” and “bad” outcomes. Figure 2.4 shows that this was done in three

different ways, to test if any one split was better on the prediction outcome.

2.3.8.2 Prediction accuracy comparisons

With the logistic regression prediction technique previously described, we ran analy-

ses on all above three types of grouping criteria to test our stroke outcome predic-

tion algorithm. Trend pattern features were generated as described in Sections 2.3.2.2

and 2.3.2.3 We noticed that ’backward search’ generated more accurate prediction re-

sults, and this was thus used as the default feature set search strategy.

In Figure 2.6, we also evaluated the benefits of adding trend patterns as new prediction

features. Evidently, including trend patterns as prediction features improves results

for all three types of grouping criteria, obtaining prediction accuracy at about 90%,

compared to the previous 70%.

Figure 2.7 shows prediction accuracy comparisons under all three types of grouping

criteria, broken down as 2 contingency tables. We also show the results for all three

types of grouping criteria in terms of precision and recall. It is worth noting that Type

2 obtains the highest score in all the three values.

2.3.9 Discussion

We observe that, compared against predictions with only temporal and statistical fea-

tures, on average these trend pattern feature based predictions can achieve a 20%

increase in estimation accuracy.

The inclusion of trend patterns as prediction features in our algorithm achieved a higher

precision rate as well as a good recall rate. However, the differences between precision,

recall and accuracy over the three types of grouping criteria are quite small and may

simply reflect the effect of less balanced class ratios for Types 1 and 3.
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Figure 2.6: Including trend patterns as prediction features improves prediction accu-
racy (Y-axis: prediction accuracy).

Type 1

Predicted

Actual Good Bad

Good 56 9

Bad 8 100

Precision=86%,
Recall=88%,

Accuracy=90%

Type 2

Predicted

Actual Good Bad

Good 76 5

Bad 9 83

Precision=94%,
Recall=90%,

Accuracy=92%

Type 3

Predicted

Actual Good Bad

Good 97 7

Bad 13 56

Precision=93%,
Recall=88%,

Accuracy=88%

Figure 2.7: Prediction accuracy comparisons under three types of grouping criteria
for RS3 scale values (N = 173).

Compared against traditional prediction methods that did not consider trend patterns

of physiological parameters, we demonstrated that trend patterns play an important

role in the improvement of prediction accuracy. However, our cohorts were relatively

small. That is also why we only try our methods on dichotomous classification in this

study. We anticipate clinical trials on larger cohorts to validate our prediction tool, to

test prediction accuracy especially on RS3-score based classification.

We also anticipate new collaborations with healthcare professionals to determine the

clinical truth behind those significant physiological trend patterns used in our prediction

methods. We believe this will greatly benefit clinical treatments for acute ischaemic

stroke.
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2.4 Conclusion

In this chapter, we propose novel algorithms for digging physiological patterns to con-

struct and select temporal features. Temporal trends were considered to enhance the

completeness of the overall candidate feature set. We have demonstrated the regres-

sion based classifier can achieve reasonably accurate predictions based on the result of

heuristic candidate feature searching algorithms. This approach also demonstrated its

sound performance in empirical studies of clinical data sets we tested.



3
The Ontology-Assisted Structured Status Prediction

3.1 Introduction

The importance of the prediction problem over EHR data comes from the potential

significant impact to human health and well-beings. Moreover, the fact that the EHR

data is extremely information-rich greatly enhances the public interest from multiple

sectors, including governments, academies and the whole insurance industry. It is

widely accepted that EHR data contains sufficient information and the supporting

argument is simple: clinicians generally can utilise the data effectively to make analysis

and predictions, so the information completeness of the data source for the specific

case is guaranteed[HA13]. Putting the background knowledge of professional clinicians

aside, this assumption is the cornerstone for all the models for EHR prediction.

The study on statistical analysis for EHR data started well before the 1970s in epi-

demiology and biostatistics. Prognosis-based prediction model has also been stud-

ied by non-machine-learning researchers before the era of personal computers [Ran57,

JTB+76, CAM76, BSM79, SSP+80].

The interest in automating the diagnosis process motivates the development in clin-

ical decision-support systems since the 1980s [SKJ84, Inv88, WHB+88, JP90, LC95,

HHHS98, LSF00, KHBL05, GAM+05, Don06, FS08, WS08, RS11, FJJ+12, BRR+13,

MMMS+13, SGM13, CGB+15, FPY+16]. Reasoning related techniques were developed

for this type of expert systems. These efforts motivate the formalisation and contin-

uous research on modelling the problem of automatic standardised medical codes as-

signment in big data era [BKGOM11, BRR+13, WWH14, PPN+14, CGB+15, HDD15,
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SLL+16]. Meanwhile, the importance of domain knowledge to prediction models has

attracted wide attentions [SKJ84, WHB+88, JP90, WH03, HYBV05, WBK06, FS08,

WS08, ZW11, CLSB11, MKE+11, SASS11, SHL+12, JJB12, SR13, BRR+13, GSR+13,

MMMS+13, HA13, MD13, SRFL+14, GNDV+14, KSS+14, PSC+14, NKY+15, HDD15,

PE15, CGB+15, DJW16, NZM+16, LAY+16, FPY+16, CPCC+16, JJQK+16, RKNP16,

VWB+16, JGN+16, CBS+16a, LRPV16, CBS+16b, GNPI17]. Nevertheless, the pre-

diction models developed in these works often have a very small number of output

variables. We will cover more details on different aspects separately in corresponding

sections later.

Despite the popularity of the prediction problem over EHR data among machine learn-

ing community, it is still an open problem. Both the output and its connection to the

heterogeneous input data have not been sufficiently modelled and formalised. Moreover,

we will demonstrate later that the existing machine learning training and prediction

frameworks lack the capability in handling the complexity presented in this type of

problems.

In this chapter, we formalise the structured status prediction problem for EHR data and

identify the potential of domain knowledge in structured prediction. The contribution

is as follows:

1. The ontology-assisted structured status prediction problem identification and for-

malisation for EHR data

2. Novel methodologies for constructing semantic descriptive hierarchy from ontol-

ogy

3. Novel methodologies for domain knowledge abstraction and relation-based knowl-

edge definition

4. Novel methodologies for embedded domain knowledge into probabilistic graphical

models used for structured prediction

5. Proposed formal feature function construction techniques directly based on se-

mantic clique-based configurations from relations

6. Examining the novel methodologies in general parallel real-world examples
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3.2 The Prediction Problem over EHR Type Data

In this section, we discuss and generalize the prediction problem over EHR type data.

Methodologies for analysing the relations and making predictions are widely studied

by both machine learning and non-machine-learning communities in the literature.

Despite the huge amount of literature on related topics and the great diversity of

the prediction target, the types of machine learning models involved are somewhat

limited. Approaches of directly applying existing machine learning models are often

adopted, however, this often results in over-simplification to the complex nature of

health prediction problems and hence implies obvious information loss. By examining

the trajectory of the development of EHR prediction research, we drill down to the

intrinsic requirements for modelling this type of problem and propose a novel prediction

target which has not been addressed before due to limitations of existing machine

learning techniques. We also propose in next sections new machine learning models

and algorithms to address the modelling and computing issues after examining the

existing related theories and algorithms.

We will demonstrate that the challenges from the EHR prediction problem actually

generally exist in many classic machine learning problems. We use the EHR prediction

problem as the major running motivation problem here to guide the discussion and

development of ideas throughout this thesis. We will also apply these novel method-

ologies and techniques to two other parallel motivation problems to demonstrate the

generality of the motivations.

3.2.1 The Prediction Task for EHR Problems

The prediction tasks in the EHR literature are hugely diverse. Obviously, the prediction

task has a direct impact on the model setting. Thus, we discuss several types of

prediction tasks here from different aspects accordingly.

3.2.1.1 Types of Prediction Target Variables

Early diagnosis of patient attracts the interest of medical researchers and professionals[Ran57,

TKV10, MKR+16, YQF+03, WSW14, ZW11, SRFL+14, LZSI12, HLG12, KRN+91,

NZM+16, ZLNY13]. Clearly, an early and accurate diagnosis has significant clinical

meaning to decision-making during treatment and thus has a great influence on the

prognosis. Prognostic variables, on the other hand, give estimations to the outcome
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as the conclusion to a treatment or a progression of a specific disease[Ran57, SLW+15,

SSP+80, FJJ+12, MFBG+03, TDP+16, OE16, YK08, KSS+14, FMG+12, CSC+13,

PGAJ06, CBWB12, MKE+11, YIN+13].

A great advantage of these types of variables is that they are interpretable. Both of

them have direct clinical meanings, thus the results and relevant features have clear

medical explanations. Hence, the diagnostic and prognostic variables become the major

source of traditional prediction tasks for EHR data.

EHR Data
Heart 

Failure? 
Yes/No

EHR Data
Alzheimer’s 

Disease? 
Yes/No

EHR Data
Blood 

Disease? 
Yes/No

Figure 3.1: Disease-based prognostic variables for single-label EHR prediction.

Figure 3.1 depicts several disease-based prognostic variables for single-label EHR pre-

diction. One of the most studied diseases for diagnosis prediction is heart failure

(HF) [WRS10, ATH+13, WWH14, SHL+12, HDD15, DBA+15, FSCH16, ACZ+13,

CGB+15, CBS+16a, PSC+14, CBS+16b, RS11, MMMS+13, GNPI17, KWHS13, VWB+16,

SRFL+14, TSNJ14, GSR+13]. Prediction for Alzheimer’s Disease (AD) is also studied

extensively[LZSI12, NZM+16, ZLNY13, ENL+16, SR13, Gon16, FPY+16, ZLNY12,

MKR+16, DJW16, WSW14, NKY+15, Fra16, SS15, GSRS11]. Despite medical pro-

fessionals also pay attention to other diseases and ongoing research work continuously

appears in recent publications, we only address the structural characteristics of the

prediction models, while ignoring most of the clinical-semantic difference between dif-

ferent physiological output variables. Actually, as depicted in Fig 3.1, the diagnosis
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prediction for some specific disease is a single-label classification problem. A prog-

nostic variable has a clear advantage due to its aggregated semantic meaning and the

remaining simplicity of being single variable.

The relation between the input EHR patient data and some specific prognostic variable

was examined, e.g., the preoperative prediction of postoperative deep vein thrombosis[CAM76],

the level of brain damage from severe head injury[JTB+76], the predictive capability

of estrogen receptor values to patients’ response to endocrine therapy[BSM79], and the

relation between pre-treatment serum lactate dehydrogenase level and the prognosis of

malignant lymphoma[SSP+80], etc. The set of prognostic variables is greatly extended

by the development of machine learning theory and the particular interest from both

the government and the industry. A group of surrogate variables have been studied

intensively within modern probabilistic computing frameworks.

EHR Data 
+ Disease 

Type

Mortality?

Length of 
stay in 

hospital?

Next 
readmission

?

Level of 
brain 

damage?

Postoperativ
e deep vein 
thrombosis?

Figure 3.2: The single-disease model for prognostic variables prediction.

These variables normally semantically represent the outcomes or derivative outcomes

of a disease or a medical treatment, e.g., short or long-term mortality[CSC+13, Hug09,
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TSNJ14, GNDV+14, YIN+13, CPCC+16, NKY+15, Tu96, CA15, GNPI17, TDP+16,

MFBG+03, JPS+16, LAY+16], length of stay(LOS) in hospital[GBZW93, RLF09, CPCC+16,

GRB13, JPS+16, HDD15, GAM+05, PGAJ06, CBWB12, SR13, CA15, FPY+16, Tu96,

JGN+16, LRPV16, vWEGF10, HHHS98, RC14, CAR97, MWHT14, PK11, SGM13,

KCP11, MDLS+13, CR14, CAM76, LAY+16], readmission for hospitalized patients[CBWB12,

SGM13, GRB13, CPCC+16, MDLS+13, LRPV16, SS13, DBA+15, CSC+13, GAM+05,

RBS+15, SR13, FPY+16, YIN+13, KKZ12, GNPI17, HA13, Hug09, RRB13], the lo-

cation of patient (in hospital, in ICU, at home or dead)[Hug09, KHBL05, CBS+16a,

FMG+12, RC14], the probability for an individual patient will be developing a severe

episode[BC01, SASS11, HHS00, RLF09, PGAJ06, WSW14, ZXYP13], etc. Among

them the probability of mortality for a given time frame is the most widely studied

outcome variable, which is treated as a direct reflection to the severity of patients’

condition. Its clear clinical significance brings in the simplicity in interpreting the pre-

diction results, thus, mortality has a long-lasting and continuous attraction to research

interest. On the other hand, the other variables, e.g., Length of stay (LOS), readmis-

sion for hospitalized patients, etc., are regarded as indirect or derivative measurements

of severity [PGAJ06].

3.2.1.2 Disease-Specific Vs. Multi-Task Models

The benefit of the previous settings is obvious - single variable output results in the

simplicity of the probabilistic model, e.g., the direct application of logistic regression

model in [HLS13, Tu96]. Moreover, often one particular setting could be used to model

structures of multiple diseases. The reason is that the basic structures for the feature

variables and the outcome variables are often invariant to the type of disease. Models

are basically trained in the same way for different prediction targets as depicted in

Fig 3.1. Thus, those different prediction target variables are in fact indistinguishable

to the model in terms of structural settings. This brings about a huge number of disease-

specific studies but with limited types of models. For a comparison of methodologies

used for single disease predictions, see [WRS10].

As depicted in Fig 3.3, a well-motivated non-disease-specific scenario is the prediction

problem over intensive care unit (ICU) data[Hug09, GNDV+14, YIN+13, ACZ+13],

where multiple diseases coexist and disease-specific models do not perform well in

the general prediction tasks for unlabelled patients [NKY+15]. Nevertheless, there

are difficulties in combining disease-specific models for non-disease-specific scenarios,

named as multi-task learning for joint diseases risks prediction [WWH14, NKY+15].

Concretely, for any target function ft for an individual task t, a model combination
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Figure 3.3: The multi-disease model for prognostic variables prediction.

across multiple tasks requires a sum over learning errors in all tasks, therefore, it

increases the overall complexity dramatically. For a more comprehensive introduction

to multi-task problems, see [CAR97, Gon16, AEP07]. It is also worth noting that it is

possible to build prediction models for multiple diseases solely based on the temporal

pattern of standardised diagnostic codes [CBS+16a]. Given that such model essentially

eliminates the most part of information input by ignoring all the observed physiological

data, it does not fit into the problem setting here.
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3.2.1.3 Structured Prediction Task for Health Status

Given the previous discussion, there is a strong need for a more descriptive multi-

variable structure as the prediction target. Naturally, the ultimate one is a patient’s

health condition. As a matter of fact, the surrogate variables discussed in the previous

sections are essentially employed to describe the health condition, in a fairly simplified

way. Clearly, it would be an over-simplification to the health status with a limited

number of aggregated statistical variables or even values directly from physiological

test results.
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Figure 3.4: A simple semantic hierarchy description for temporal health status.

An alternative but more natural and desirable output setting is using health status

directly as the output, instead of the surrogate statistical variables, as depicted in

Fig 3.4. Despite the possible difficulty in defining health status, utilising aggregate

variables to measure a patient’s complete health condition is proven to be infeasible -

existing methodologies fail in this task[RRB13, SGM13]. This is mainly due to the fact

that “status description” is a highly subjective behaviour that inevitably involves the

concept space[CBS+16b, CLSB11], where a status is normally described by concepts

and properties, or more systematically, a vocabulary set of semantic variables. In

light of this, a complete hierarchy of semantic labels can make up the skeleton of the
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output descriptive structure. We leave the details on how to construct such descriptive

structures in corresponding sections.

3.2.2 Domain Knowledge Assisted Structured Status Prediction

As discussed in previous sections, domain knowledge plays an important role in con-

structing the semantic output structure. Moreover, it is also critical to the prediction

model itself. In the literature, the role of domain knowledge in machine-based diag-

nostic reasoning and prediction has drawn a wide attention from both medical and

computing research communities [WH03, JP90, WBK06, BZ08]. Given the fact that

the clinical and medical knowledge obtained from long term professional training is

the basis of doctors’ diagnosis, it is naturally assumed that machine-based methodol-

ogy also needs a mechanism to abstract and utilise this domain knowledge to make

reasonable predictions.

Although the domain knowledge can be in various forms, we only address the necessity

of employing domain knowledge into the prediction model for EHR data here. Tech-

niques for abstracting and utilising domain knowledge into model will be discussed in

detail in corresponding sections.

3.2.3 Summary

In this section, we discuss the general modelling requirements for the prediction problem

over EHR data. We summarise the challenges on an abstract level as follows:

Challenge 1. General Modelling Requirement for the Domain Knowledge Assisted

Structured Health Status Prediction Problem:

The domain knowledge assisted structured health status prediction problem over EHR

data requires a structured prediction target with the ability to comprehensively and

semantically describe the overall health status of a patient. The model should also

have the capability of projecting the output probabilistic distribution to such semantic

structure, while fully incorporating the domain knowledge embedded in the ontology

when doing training and prediction.
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3.3 Parallel Motivation Problems

In order to demonstrate the generality of the challenges motivated by the EHR pre-

diction problem, we list two classic problems which are widely studied in the machine

learning literature as parallel motivation problems throughout this thesis. We will also

demonstrate that the novel techniques proposed for the EHR prediction problem could

also be applied to extend these classic machine learning problems to achieve more com-

plicated real-world prediction tasks. The two running examples listed here will be used

to address different aspects of structured prediction, which are critical to modelling the

main motivation problem.

3.3.1 The Multi-Label Problem

In multi-label problem, every observation xi ∈ Rd (or xi ∈ Zd) is a d-dimensional

instance to be labelled. The label space L = {l1, l2, . . . , lq} contains q possible class

labels, out of which up to q labels could be associated with some xi. If a random

variable Yi ∈ {0, 1} denotes an indicator to label li ∈ L, we have a set of random

variables Y = {Y1, Y2, . . . , Yq}, with each Yi associated to some label li ∈ L. All the

possible value configurations {yi}0≤i<2q to Y make up the output space Y = 2Y. For

simplicity, we define the input space as X = Rd. Thus, the learning target basically is

a function h : X 7→ Y, which maps any d-dimensional observation xi ∈ X to some Y

value configuration yi ∈ Y. According to the definition, clearly both xi and yi can be

represented as plain vectors in Rd and {0, 1}q, respectively.

Each label li can be viewed as a class or an assertion regarding a property. Despite

the possible complex inter-dependencies between labels in L, the whole label set L
can be utilised as a semantic vocabulary to describe the observation x. The output

y is a configuration to random variable set Y, where each Yi ∈ Y corresponds to li.

From a semantic point of view, the output yi can be deemed as a descriptive variable

(or super-variable) for xi by making use of the label space L as a fixed vocabulary.

Learning the target function h : X 7→ Y is equivalent to modelling p(y|x), which is the

key to multi-label problem.

Despite having been studied extensively in different settings, the methodology of the

multi-label problem for modelling and utilising the inter-dependencies in L is not suf-

ficient. We will demonstrate later that there are still problems which cannot be solved

by existing techniques. For a review of related algorithms, see [ZZ14, BK11, LZL+16].
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3.3.2 Running Example 1: Text Classification

Text content classification is a classic application of multi-label problem. We take

it as a running example for multi-label classification problem. In this problem, each

observation x is a text object, e.g., an article or simply several paragraphs of text. The

label space L consists of many topics from different abstract levels. It is often the case

that a text object xi covers different topics and several labels are suitable at the same

time. The complexity of human language can easily embed multiple semantic meanings

to a text object. We only consider the target problem here and leave the modelling

details to corresponding sections.

Let’s consider three possible label sets:

1. L1: The U.S., the U.K., Australia, Canada, France, Russia, China, Other, depicted

in Fig 3.5.

The 
country 
labels

U.S.

U.K.

Australia

Canada

France

Russia

China

Others

Figure 3.5: A mutually exclusive semantic label set.

2. L2: Company, start-up, high-tech, car company, traditional car company, Ford,

Tesla, Toyota, Celebrity, CEO, People, entrepreneur, Elon Musk, Car, Engine Power,

Max Speed, Price, Order Number, as depicted in Fig 3.6.
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Figure 3.6: An inter-dependent semantic hierarchical label set.

3. L3: (The Plutchik’s wheel for emotions ): Affection Anger Angst Anguish An-

noyance Anticipation Anxiety Apathy Arousal Awe Boredom Confidence Contempt

Contentment Courage Curiosity Depression Desire Despair Disappointment Disgust

Distrust Ecstasy Embarrassment Empathy Envy Euphoria Fear Frustration Gratitude

Grief Guilt Happiness Hatred Hope Horror Hostility Humiliation Interest Jealousy Joy

Loneliness Love Lust Outrage Panic Passion Pity Pleasure Pride Rage Regret Remorse

Resentment Sadness Saudade Schadenfreude Self-confidence Shame Shock Shyness Sor-

row Suffering Surprise Trust Wonder Worry, as depicted in Fig 3.7.

Obviously, it is safe to ignore interdependencies for L1, while ignoring label correlations

could mean considerable information loss for L2 and L3.

Labels in L2 could have different types of values as measurements, e.g., Boolean values

would suffice for most of them, however, numeric values are needed to describe Engine

Power, Max Speed, price and order number. Moreover, the inter-dependencies are

complex in L2, e.g., label engine power is a major decisive factor to max speed and

price, while price itself has a strong influence on order . There is also possible inter-

branch dependencies, e.g., Tesla is a brand owned by Elon, despite Elon is in the

branch composed of People, CEO, celebrity, entrepreneur, etc.

1https://en.wikipedia.org/wiki/Robert Plutchik
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Figure 3.7: An ontology-based semantic hierarchy for emotion description (The
Plutchik’s wheel of emotions1).

L3 has a more rigid hierarchical structure, where an ontology could be built on it. For

a related work on emotions prediction for text in a multi-class setting, see [ARS05].

Clearly, modelling the relations between different labels is important to the multi-label

problem. The traditional second-order and higher-order approaches normally consider

local dependencies but are insufficient to model the overall structure [JTYY10, EW01,

FHLB08].

Challenge 2. General Modelling Requirements for a Special Text-Based Multi-Label

Problem:

We consider a special type of text-based multi-label problem with a label set L which

can be described as follows:
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1. Members of L forms a hierarchy according to their abstraction level, such that a

spanning tree exists for each label branch. The root of such spanning tree represents

the most abstract level of concept and the level of abstraction decreases with travelling

down along the edges.

2. Hierarchical relations cannot completely cover all the inter-dependencies between

labels. If each pairwise dependency has a corresponding edge connected between the

related labels, a generally connected undirected graph G =< V,E > is formed, where

V is the node set composed of all the labels and the edge set E represents all the

pairwise inter-dependencies among L.

General Modelling Requirement : The multi-label prediction with the previously de-

scribed label set L problem requires methodologies to completely and accurately model

the high-order inter-dependencies among L in a way that efficient training and predict-

ing can be achieved.

3.3.3 Running Example 2: Image Tagging

The image segments tagging problem plays an important role in computer vision. In

contrary to running example 1, where the structural modelling is mostly on the y side

and the structural information of x is essentially ignored, the image tagging problem

addresses the structural characteristics of x and its relation to the structure of y. The

observation x here is an image, while the output y is a configuration to the label

indicator for a given label set L.

The image tagging problem can have two possible settings, the segments(superpixel)

level tagging and the pixel level tagging [HZCP04, LRKT09, Li01, RC95, SWS+00].

This actually falls in the multi-label problem setting: given a segmentation of an image,

the prediction task is to assign tags or labels to the individual segments, based on the

features from texture, colour, position, etc. A direct derivation is the task of finding

out the boundaries so that the computer knows what and where the segments are.

In Computer Vision, Image processing is one of the motivation problems for spatial

statistical theories, e.g. MRF, whose classic applications are texture analysis and image

segmentation, as depicted in Fig 3.8. A natural assumption for this type of modelling is

that, adjacencies in a spatial distribution, e.g., between pixels, mega-pixels or segments

in an image, imply dependencies in a probabilistic graph. There are huge amount of

work on these topics, see [RC95, KPQ02, RB05, Liu15].
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Figure 3.8: A simple locality-based image segmentation and labelling case.

Semantic features have been proved to be effective in computer vision [SWS+00]. This

motivates the employment of semantic label set, which has its own dependency struc-

ture based the semantic relations among labels. For example, consider the following

label sets as depicted in Fig 3.9:

1. L1: for painting styles: Modernism, Impressionism, Abstract Style, Expressionism,

Cubism, Surrealism, None of the Others.

These semantic image labels are connected to the whole image instead of some local part

and provide a comprehensive description to the nature of the examining image. Given

that these labels actually represent a taxonomy in the domain of art, this is a precise

way of describing complex objects by utilising the domain knowledge and the ontology-

based descriptive hierarchy. Meanwhile, because these labels represent complicated

overlapped concepts, its corresponding graph is fully connected, as depicted in Fig 3.10.

In this figure, each node corresponds to a painting style.

Suppose the input is a painting and the prediction task is to assign a distribution over

all the possible single-label assertions regarding the style. Apparently, we could have

different reasonable estimations on the distribution, as depicted in the lower half of

Fig 3.9, because the boundaries between painting styles are normally not very clear

and the human-based classification is usually a very subjective matter.

Thus, the labels in L1 are all related to each other, even conditioned on an observation

x. Meanwhile, there is an unique label “None of the Others”, indicating an intention of
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Figure 3.9: An ontology-based highly inter-connected semantic image labelling set.

Figure 3.10: A structural representation of the connectivity of the ontology-based
semantic image labelling set L1 in running example 2.



Chapter 3. Ontology-Assisted Structured Prediction 61

a disagreement with any other substantive label. It is worth noting that the structural

variation happens on both x and y sides. Given the high level of inter-dependences in L,

the indicator set Y forms a fully-connected undirected graph with 7 nodes as depicted

in Fig 3.10. While the segmentation of the image determines the structure of x, which

is non-isomorphic to the structure of y, unless in exceptional rare cases. Moreover,

numerical value of Yi is used to measure the confidence level of the corresponding label

li. Thus, the desirable output of this prediction model for L1 is essentially a numerical

distribution of confidence values across highly inter-depended label set L1.

2. L2: (The Plutchik’s wheel for emotions): Affection Anger Angst Anguish An-

noyance Anticipation Anxiety Apathy Arousal Awe Boredom Confidence Contempt

Contentment Courage Curiosity Depression Desire Despair Disappointment Disgust

Distrust Ecstasy Embarrassment Empathy Envy Euphoria Fear Frustration Gratitude

Grief Guilt Happiness Hatred Hope Horror Hostility Humiliation Interest Jealousy Joy

Loneliness Love Lust Outrage Panic Passion Pity Pleasure Pride Rage Regret Remorse

Resentment Sadness Saudade Schadenfreude Self-confidence Shame Shock Shyness Sor-

row Suffering Surprise Trust Wonder Worry. Note that L2 is the same with L3 in

running example 1 and Fig 3.7.

The emotion prediction problem has a similar setting to the painting style prediction.

Nevertheless, there are still differences. First of all, the emotion label set L2 does not

need a dummy label “None of the Others”, because it is generally assumed that the

ontology for emotions is complete and that one can always find out one or more most

suitable emotion(s) to describe the target people. Secondly, as discussed in running

example 1, L2 has a more rigid ontology-style structure, where domain knowledge has

a stronger presentation.

Challenge 3. General Modelling Requirements for a Special Type of Image Tagging

Problem:

We consider a special type of image tagging problem with a label set L which can be

described as follows:

1. Members of L forms a highly inter-depended undirected graph, constructed either

from a semantic structure or an ontology. In the case of non-fully-connected graph,

there exists a hierarchy in L, the root of the spanning tree in each label branch rep-

resents the most abstract level of concept and the level of abstraction decreases with

travelling down along the edges. The dummy variables as parents to the corresponding

root indicate the absence of the whole branch.
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2. The indicator set Y for L take values in [0,+∞), thus the model output y is a

numerical distribution of confidence values across highly inter-depended label set L.

3. The structure of x determined by the segmentation of the observed image is non-

isomorphic to the structure of y.

General Modelling Requirement:

Given the previously described label set L, input image x and the output y, the image

tagging problem requires methodologies to completely and accurately model the high-

order inter-dependencies among L and the structural relations between x and y in a

way that efficient training and predicting can be achieved.

3.3.4 Summary

In this section, we examine the multi-label prediction problem and discuss two classic

prediction examples. By applying the challenges to the traditional settings, we demon-

strate that the challenges posed by EHR prediction are applicable to general prediction

problems in machine learning. We use them as running examples to lead the discussion

and development throughout the rest of this chapter.

3.4 The Ontology-Based Semantic Hierarchy for Struc-

tured Status Prediction

As discussed in previous sections, the semantic hierarchy plays an importance role in

describing the status in structured prediction. In this section, we discuss and answer

the following questions:

• What is a structured status in structured prediction?

• What is a semantic hierarchy for structured status prediction?

• How to build a semantic hierarchy from an ontology?

3.4.1 The Extended Concept of Structured Status

We discuss the different types of structured status in prediction problems before we

formalise the concept of generally-indexed structured status. It is worth noting that
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the term with a similar name “structured state space” appears in signal processing and

system control literature[FC93, SK94], but with a totally different definition compared

to the one in machine learning problems.

3.4.1.1 The Static Structured Status in Structured Prediction

The term “status” has a direct correspondent target “stage”. A structured status

output y is generally assumed to be the description to the implied stage. However,

there are cases where it is difficult to find multiple stages from the observation x. For

example, in Running example 2, there is only one stage in the observed image x simply

because x is static.

Nevertheless, these two concepts bring quite a confusion in the literature when stages

and status are defined on different objects. Let’s consider the sequential tagging prob-

lem [LMP01, Sar06, YLCW09]. Given an observed sequence x = x1, x2, . . . , xn, we

want to predict a structured output y = y1, y2, . . . , yn, such that each yi ∈ y is the

optimal label associated with xi. In a structured prediction setting, the output y is a

description to the static structured status of the whole observation x and there is only

one stage for x in this setting, because x is static. Whereas it is also possible to define

stages according to index i, so that there are n stages for the single variable xi. In

this setting, single variable yi could also be a description to a status of stage i. Never-

theless, it is not a structured prediction problem anymore because the output for one

stage has only one variable yi so it is not a description to a structured status. Thus, the

stage index is critical in defining the nature of a prediction problem. To summarise, in

the sequence tagging problem, when the prediction model is p(y|x), there is one static

stage and this is a structured prediction problem. Whereas when the prediction model

is p(yi|x1, . . . , xi−1, xi, y1, . . . , yi−1, i > 1, |yi| = 1), the stage index is i and this is not a

structured prediction problem.

Given the above, we give definition to static structured status as follows:

Definition 3.1. Static Structured Status

A structured output y in structured prediction becomes a description to a static struc-

tured status when its implied stage index is the only one in the stage index set.
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3.4.1.2 The Time-Indexed Structured Status in EHR Models

Diseases have temporal progression trajectories[SLW+15, ENL+16, EA12]. The disease

progression models (DPM) have attracted a wide interest from machine learning com-

munities [NZM+16, ZLNY12, HNN+14, ZLNY13, WSW14, MKR+16]. Given that the

majority components of an EHR observation x has a time stamp, x is roughly along the

temporal trajectory and thus, stage indices are time-based ones in the corresponding

structured prediction settings. A related but greatly simplified time-indexed model is

the time series, which has been studied extensively and applied in many domains. For

an overview of its related algorithms, see [Ham94, EA12].

3.4.1.3 The Generally-Indexed Structured Status Setting

The status of a stage is snapshot to the underlying system in progression. The stage

index indicates the order of these snapshots. Although generally stage indices are not

limited to time-based ones, time is a critical variable in most of progression models.

We give a general definition to structured status here.

Definition 3.2. Structured Status:

A structured status S is a snapshot indexed by t ∈ T to a underlying progression system,

where T is a totally ordered set and S can only be fully described by a valid semantic

structure.

Note that we will discuss and define the validity of a semantic structure later.

3.4.2 The Ontology

Structured status description is a direct motivation for constructing and setting up

semantic structures. However, it requires a complete yet well-defined semantic label set

L in the first place. Ontology is a formal naming and definition of the types, properties,

and interrelationships of the entities in a domain, which has attracted great interest

from the research community [WPBPM13, MV01, WMD08, Gru93, RLM+06, WD09,

MS02, ABB+00, SCMD13, HYBV05]. Without further discussion on its mechanism

on domain knowledge abstraction, we address its potentials in constructing semantic

structure here.

A major component of an ontology can be essentially described as a gathering of con-

cepts from human knowledge in a domain with a rigid taxonomy. Thus, it provides
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a hierarchy of semantic labels with an excellent coverage and structural presentation.

Before moving forward to introducing ontology-based semantic hierarchy, we examine

an example in the medical domain first.

3.4.2.1 The ICD Coding System

The International Classification of Diseases (ICD), short for the International Statisti-

cal Classification of Diseases and Related Health Problems, is a code system released

and maintained by the World Health Organization (WHO) focusing on standardising

diagnostic codes for classifying diseases2. The ICD system has a complete coverage of

human diseases and the hierarchy defined upon individual diseases provides a compre-

hensive and systematic description to the inter-relations. Another standardised coding

system worth noting is the SNOMED Clinical Terms or SNOMED CT 3 [Don06], which

also has a significant appearance as a complete label set for medical concepts in recent

researches[CLSB11, MMMS+13, SRFL+14, SLL+16, DLN+09]. Considering the equiv-

alence between the two coding systems for machine learning in terms of completeness

and structural characteristics, we adopt the ICD coding system here in this thesis.

The need for standardising the disease taxonomy and description was greatly stim-

ulated by the development of medical expert systems in the 1980s. For example, a

diagnosis training system for medical students mimics the strategy of a medical expert

to provide assistance to learning[WHB+88], which requires all the coding system for

related diseases should be precise and suitable for machine-based inference. In addi-

tion to representing diseases themselves, the coding system should also be applicable to

rule-based diagnostic reasoning, where directed graphs could be built for depicting and

modelling the reasoning process[JP90, FS08]. With the technological developments for

text categorisation and processing, diseases labels are used to categorise the content

of discharge summaries[LC95, LSF00, PPN+14, PE15], where the inter-relationship

modelling becomes critical to the overall complexity.

The utilities of ICD codes in most of the existing work on developing auto-diagnosis

systems are essentially as a labelling vocabulary, whereas the labelling target is of-

ten text-based clinical notes[FS08] or discharge summaries[dLLRN98, LC95]. Without

fully adoption of structured prediction related techniques, a reduced set of ICD codes

or combinations among them are used as labels. The models in these work are ba-

sically with multi-label problem settings with very limited efforts in exploiting the

2http://www.who.int/classifications/icd
3http://www.snomed.org/
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inter-dependencies inside the plain label set. As a classic problem in machine learning,

the existing multi-label related techniques need to be further extended to handle the

ICD codes based EHR prediction problems.

The ICD coding system also plays part in disease recognition and clustering, particu-

larly in data pre-processing for disease-specific research problems. For example, in the

work on heart failure prediction in [WRS10], the heart failure diagnosis criteria adopted

is based on the ICD codes appeared in the problem list or clinical assessment notes

and the plausibility between the prescribed medications and the ICD codes according

to the ICD hierarchy. This methodology prompts potentials to the diagnosis validation

problem.

Sole ICD-based prediction is a special type of work. This means the prediction model

is built solely upon the momentum and flowing pattern of the appeared ICD codes,

without considering any physiological EHR input data[CBS+16a]. Thus, both the input

and output diagnosis and medication manifestation take form of ICD codes.

Despite that the ICD coding system provides an information-rich label set with com-

plex inter-relations, which have unfortunately yet to be fully modelled and utilised, it

cannot fit into the traditional multi-label classification setting, given its cardinality and

complexity. Thus, it poses challenges to the existing label-based structured prediction

techniques.

3.4.3 The Ontology-Based Semantic Hierarchy

Before jumping into the formalisation of the ontology-based semantic hierarchy, we dis-

cuss its relation to the general semantic structures. Recall the label set L1 in running

example 1 and the L1 in running example 2, there is no hierarchy-style structure inside

the two label sets. Although the pairwise relations can be modelled by edges from

a densely-connected undirected graph, there is no “root” concept or abstraction level

difference existing in L. So there is no neat way of modelling the case of “none of the

others”. Moreover, non-hierarchical semantic structure normally means the semantic

labels are either logically diverse or not directly comparable, which means the descrip-

tive power is very likely limited due to the granularity. Thus, this directly results in

the difficulties in embedding domain knowledge into the semantic label set L. In con-

trary, the hierarchical representation for taxonomy has great additional advantages in

organising and making use of the domain knowledge. Hence, our discussions in this

thesis focus on semantic hierarchy, particularly the one based on ontologies.
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Given the discussion on structured status prediction and the relationship between the

ontology and the semantic hierarchy. We ask this question, what is a valid semantic

hierarchy for the demanding structured status prediction task?

Using a reduced set of semantic labels has a directly benefit in simplifying the output

structure, where only semantic labels of interest comprise the semantic vocabulary L′.
However, the semantic label set adopted should be able to have a complete coverage

over the labels needed for describing the structured status of x, instead of the ones in

L′.

Definition 3.3. The Validity of an Ontology-Based Semantic Hierarchy:

A valid ontology-based semantic hierarchy is the one with a complete coverage over

the labels needed for describing the structured status of observation x in the ontology,

together with related hierarchical relations.

Then we formalise the definition of Ontology-Based Semantic Hierarchy as:

Definition 3.4. Ontology-Based Semantic Hierarchy:

Given a domain-specific ontology O, an ontology O-based semantic hierarchy H is a

tree or a forest, which covers all the nodes in O while keeping all the hierarchical

information. More concretely, the root of each tree represents the most abstract level

of concept and the level of abstraction decreases with travelling down along the edges to

leaf nodes.

3.4.4 Summary

In this section, we formally define the concept of structured status for prediction and

the semantic hierarchy for describing the target structured status. The semantic hier-

archy construction utilises the concepts taxonomy of the ontology to help with building

descriptive structures, however, the potential of ontology has not been fully developed.

We will propose ontology-based methodologies for domain knowledge abstraction and

embedded in the next section.
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3.5 The Ontology-Based Domain Knowledge Abstraction

and Embedding

The prospective role of domain knowledge to the structured prediction problem is two-

folded:

• Abstraction: The domain knowledge is transformed and abstracted into a suitable

form without much information loss or distortion.

• Utilisation: The domain knowledge embedded in the abstraction is utilisable by

the model, such that it can actively bring domain knowledge-based influence in

a complete and precise way in the process of model training and prediction.

In this section, we first discuss the existing forms of domain knowledge in the literature

and then propose our methodologies for knowledge abstraction and embedding based

on ontologies. We then formalise the representation of the ontology-based domain

knowledge and compare it to the ontology-based semantic hierarchy before conclusion.

3.5.1 Forms of Domain Knowledge in Prediction Models

Knowledge representation is generally based on a conceptualization of entities in the

concept space[Gru93]. Concretely, each conceptualized entity can be represented by a

label l and thus an enumerable label set L can be constructed. As the vocabulary of

knowledge, the label set L provides a way of abstracting the relations between entities

by mathematically modelling the dependencies between labels, e.g., a probability space

(Ω,F , P ), where Ω is the sample space, F is a σ-algebra and a probability measurement

P can be used to depict the relation among elements in ∀Lrelation ∈ F , Lrelation ⊆ L.

However, the methodology for abstracting the inter-relations for Lrelation and F is di-

rectly influenced by the potential way of being incorporated into the model. That is, the

abstract representation has to be in a form that the model could bring into the proba-

bilistic model. For example, the rule-based abstraction is a prevailing form for Bayesian

style models[LIT92, WH03, Gru93, JP90], where the domain knowledge takes form of

pairwise associative probabilities between concepts or labels as local “causal rules”.

Despite its popularity in reasoning, it is often difficult to construct directed graph with

quantitative description. An ontology is one step further in the organisation of the con-

cept space, where it adopts a systematic categorization of concepts[JGN+16]. For the
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approaches in constructing ontologies from text-based sources for further information

extraction, see [WD09, Hwa99, MV01].

The form of domain knowledge in medical-related predictions also mostly falls into

the rule-based probabilistic relations. Concretely, directed acyclic graphs(DAG) are

often used for modelling plain structures or tree-style hierarchies[LRPV16, CPCC+16].

Conditional probabilities are the quantities for describing the pairwise relationship,

however, it is often difficult to infer such values directly from training. Thus, prior

knowledge is needed for further modelling the overall probabilities for the graphical

model.

Among the various medical domain knowledge abstractions, the simplest one is the prior

for similarities. Similarity matrices for both diseases and the observed clinical features

are constructed in [NKY+15] to form the regularization term in the loss function.

Similarly, the domain knowledge could also take form of rules in decision tree based

algorithms or simply as conditional probabilities in Bayesian type methods [BZ08].

3.5.2 Domain Knowledge Abstraction and Embedding Based on On-

tology

Given the above discussion, there is a huge diversity in the forms of domain knowl-

edge in prediction models, however, there is no existing methodology in the literature

being capable of accurately and comprehensively abstracting the domain knowledge.

Thus, the current capability of prediction models in utilising domain knowledge is very

limited. We develop and formalise an ontology-based domain knowledge model here.

Given an ontology O, we can directly have a complete semantic label set L and a

descriptive semantic hierarchy H. The target capabilities of a domain knowledge K

can be summarised as follows:

• K should be able to tell whether labels from a subset Lsub ⊆ L are related.

• K should be able to tell how labels from a subset Lsub ⊆ L are related in terms

of semantic types of relations.

• Given a confidence value configuration ysub to labels from a subset Lsub ⊆ L, K

should be able to give a numeric score s ∈ R indicating the level of support based

on the domain knowledge.
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In light of these summarised target capabilities, we develop our methodology for mod-

elling K.

• The complete semantic label set L can be treated as nodes in an undirected

graph G =< V,E >, where the node set V = L. An edge eij from G’s edge set E

provides a simple categorical information regarding the relation between nodes li

and lj . Concretely, nodes li and lj are related if and only if eij exists. Thus, given

Lsub ⊆ L, the domain knowledge K can tell whether li and lj (∀li, lj ∈ Lsub, i 6= j)

are related by checking the edge set E of G.

• To describe how labels from Lsub ⊆ L are related we first need to model the

representation of relations for ∀li, lj ∈ Lsub, i 6= j. The types of relation between

entities in human knowledge could be in various forms. So a categorical indicator

for related or not between labels does not suffice for K. It is worth noting that

different types of relations between li and lj could co-exist in many cases, as long

as there is no semantic conflict. We denote rij = {r1
ij , r

2
ij , . . . , r

mij

ij } as the relation

set indexed by li and lj , where rkij stands for the kth relation type between li and

lj with a total number mij . The existence of rij has a direct relation to the

edge eij . If eij ∈ E exists, eij has an associated relation set rij with |rij | ≥ 1,

otherwise, rij does not exist. Note that because rij is uniquely indexed by li and

lj , the components and sizes vary accordingly.

It is also important to note that the ability of describing the relation for multiple

labels is critical to the model. We examine this in the context of an undirected

graph G =< V,E >. Note that any non-fully-connected subgraph of G can be

decomposed into a set of cliques. A clique-based relation model would suffice to

describe any type of relation over the semantic label set L. Consequently, we

denote rGsub
= {rC1 , rC2 , . . . , rCmC

} as the relation set indexed by a sub-graph

Gsub ⊆ G, where rCk
stands for the kth clique in Gsub with a total mGsub

cliques.

To summarize, with this clique-based relation modelling, K could tell how labels

from a given subset Lsub ⊆ L are related by checking ALL the rCi indexed by

clique ∀Ci ⊆ Lsub.

• In addition to modelling relations between labels, another important capability of

domain knowledge is evaluating a given hypothesis. In the context of ontology-

based knowledge representation, a hypothesis takes form of a confidence value

configuration ysub to labels from a subset Lsub ⊆ L. The evaluation outcome is a

numeric score s = K(ysub), s ∈ R indicating the level of support based on the do-

main knowledge. The hypothesis ysub actually is based on the semantic structure
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H as vocabulary. Following the clique-based relation notation, the embedded do-

main knowledge for an individual Gsub-indexed relation rGsub
is modelled by the

output numeric score sGsub
∈ R. Similarly, sGsub

indicates the level of support to

the hold of relation rGsub
based on the domain knowledge, given the hypothesis

ysub. More concretely, sGsub
= rGsub

(ysub). Consequently, the relation set rGsub

will be associated with a score set sGsub
= {sC1 , sC2 , . . . , sCmC

}. Then sGsub
can

be further aggregated to a single-valued sGsub
∈ R for rGsub

, which can be simply

written as sGsub
= rGsub

(ysub). Again, K could give an overall numeric score

s ∈ R by checking sCi from ALL the rCi , ∀Ci ⊆ Lsub.

3.5.3 Definition

We summarize the above ontology-based domain knowledge modelling by first formal-

izing the key concepts here.

Definition 3.5. Single Type Pairwise Relation between Semantic Labels in the Ontology-

Based Domain Knowledge Abstraction:

In the ontology-based domain knowledge abstraction, given an ontology O, a semantic

label set L, a descriptive semantic hierarchy H and an undirected graph G〈V,E〉 with

a node set V = L, a single type pairwise relation rij associated with edge eij ∈ E

between semantic labels li, lj ∈ L is a function of a confidence value yi for li and

another confidence value yj for lj in the form of sij = rij(yi,yj), sij ∈ R, where sij is

an output numeric score indicating the level of support to the hold of this single type

pairwise relation rij based on the domain knowledge, given yi,yj.

Definition 3.6. Mixed Type Pairwise Relation between Semantic Labels in the Ontology-

Based Domain Knowledge Abstraction:

In the ontology-based domain knowledge abstraction, given an ontology O, a semantic

label set L, a descriptive semantic hierarchy H and an undirected graph G〈V,E〉 with

a node set V = L, a mixed type pairwise relation rij = {r1
ij , r

2
ij , . . . , r

mij

ij } associated

with edge eij ∈ E between semantic labels li, lj ∈ L is a set of mij single type pairwise

relations. rij is uniquely indexed by li and lj. When given a confidence value yi for

li and another confidence value yj for lj, rij is associated with a support score set

sij = {s1
ij , s

2
ij , . . . , s

mij

ij }, where each skij ∈ R is the support score of the single type

pairwise relation rkij(yi,yj). rij can also be viewed as a function of yi and yj with an

output score aggregated from sij, which indicates the level of support to the hold of this

mixed type pairwise relation rij based on the domain knowledge. The term pairwise

relation by default refers to mixed type pairwise relation in this thesis.
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Definition 3.7. Hypothesis in the Ontology-Based Domain Knowledge Abstraction:

In the ontology-based domain knowledge abstraction, given an ontology O, a semantic

label set L, a descriptive semantic hierarchy H and an undirected graph G〈V,E〉 with

a node set V = L, a hypothesis takes form of a confidence value configuration ysub to

labels from a subset Lsub ⊆ L.

Definition 3.8. Clique-Indexed Relation in the Ontology-Based Domain Knowledge

Abstraction:

In the ontology-based domain knowledge abstraction, given an ontology O, a semantic

label set L, a descriptive semantic hierarchy H and an undirected graph G〈V,E〉 with

a node set V = L, a relation rC = {rC1 , rC2 , . . . , rCmC
} indexed by a clique C ⊆ G is

a mixed type pairwise relation when C is an edge, otherwise rC is a set composed of

all the relations indexed by the cliques in C, excluding itself, if applicable. The support

score value for a hypothesis ysub on the relation indexed by clique C is an aggregation

of score values of its member relations.

Definition 3.9. Graph-Indexed Relation in the Ontology-Based Domain Knowledge

Abstraction:

In the ontology-based domain knowledge abstraction, given an ontology O, a semantic

label set L, a descriptive semantic hierarchy H and an undirected graph G〈V,E〉 with

a node set V = L, a relation rG′ = {rC1 , rC2 , . . . , rCmC
} indexed by a graph G′ ⊆ G is

a mixed type pairwise relation when G′ is an edge, otherwise rG′ is a set composed of

all the relations indexed by the cliques in G′, excluding itself, if applicable. The support

score value for a hypothesis ysub on the relation indexed by graph G′ is an aggregation

of score values of its member relations.

It is worth noting that, although the definitions for graph-indexed and clique-indexed

relations are similar, the graph-indexed one relies on the recursive definition of clique-

indexed relations. Thus, they cannot be combined.

Definition 3.10. The Ontology-Based Domain Knowledge:

Given an ontology O, a semantic label set L and a descriptive semantic hierarchy H, the

ontology-based domain knowledge K is a tuple K = 〈G〈V,E〉, {rC}C⊆G〉, where G〈V,E〉
is an undirected graph with a node set V = L and {rC}C⊆G is a set of relations indexed

by every clique in G. For every hypothesis ysub, the ontology-based domain knowledge

K is able to give a numeric score s = K(ysub), s ∈ R indicating the level of support

based on the domain knowledge K.
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3.5.4 Summary

In this section, we discuss and develop a systematic way for ontology-based domain

knowledge abstraction and embedding. The definitions proposed in the end presents

the methodology and building units for formalizing ontology-based domain knowledge.

This section is the second half for utilizing ontology in structured prediction. In con-

trary to the ontology-based semantic hierarchy, the ontology-based domain knowledge

has a way more complex structure and the included graph is undirected. Whereas

the ontology-based semantic hierarchy only provides a complete label set and the hi-

erarchical structure is based on tree or forest, which is directed. Despite both being

ontology-based, the functionality differs.

We will demonstrate later, the methodologies for domain knowledge abstraction and

embedding proposed here are the theoretical basis for the probabilistic graphical model

settings. They have deep connections not only to the features construction for the

output structure but also for the observed heterogeneous input data.

3.6 The Ontology-Assisted Structured Status Prediction

Problem

Given the modelling and formalization on the structured prediction task, ontology-

based semantic hierarchy and domain knowledge, we summarize the ontology-assisted

structured status prediction problem by formalizing the problem setting. We discuss

the generality of this problem and example prediction scenarios in the real world before

concluding the problem modelling part of this thesis.

3.6.1 The Prediction Problem Setting

The ontology-assisted structured status prediction problem can be formally described

by the following:

Given an ontology O, the semantic label set L provided by O, an ontology O-based se-

mantic hierarchy H, an ontology O-based domain knowledge K and a heterogeneous ob-

servation x, the model predicts the hypothesis y on H with the largest p(y|x,O,H,K)

for a stage indexed by a given t, where the hypothesis y takes form of the distribution

of confidence values over L.
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3.6.2 Real-World Scenarios

Although being motivated by the EHR prediction problem, the ontology-assisted struc-

tured status prediction is actually a very general yet fundamental problem in machine

learning. We demonstrate this by examining three real-world scenarios in the context

of parallel examples.

• Text-based interest flow prediction:

Suppose a man decides to spend 1 hour in reading news online. News websites

would like to know more about the temporal progression of the reader’s interest in

reading within that time. Consider a semantic label set similar to L2 in running

example 1 to be used in the prediction model, L2 provides a way to describe

the reader’s interest with these hierarchical topics. The article topic taxonomy

from linguistics comprises the ontology O, which provides a complete semantic

topic hierarchy H. The relations between semantic labels or even news features

could also be defined by professionals, thus they can be abstracted to an O-based

domain knowledge K. Let’s assume the reader likes both pictures and texts on the

news website. The observation x is heterogeneous because it consists of multiple

data formats. The website would like to predict the reader’s interest in terms of

the distribution over the semantic topic hierarchy after 30 minutes, given all the

reading history x in the first 30 minutes.

• Image-based emotion prediction:

Recall the discussion for running example 2, the structural status for one image

is static. However, when an art student is browsing an online art gallery, there

should be a huge number of images. Consider the emotion semantic label set

L2 proposed in running example 2, each image actually corresponds to a stage

and they can be easily by a main stage index throughout the browsing process.

Clearly, the whole emotion progression trajectory provides a good context of

structural status prediction.

The emotion taxonomy from psychologist comprises the ontology O here, which

provides an O-based semantic hierarchy H. It is also possible for psychologist

to embed their knowledge regarding the connections between colour, shape and

human emotions, etc., into the ontology O. Thus it can be assumed that the

O-based domain knowledge K is obtainable. Images or paintings have intrinsic

complexities in colour, texture, shape, etc. Thus the browsed image as observed

data x is heterogeneous. The online gallery wants to predict the art student’s
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emotion in terms of the distribution over the semantic emotion hierarchy H when

the student is looking at the 100th painting, given all the previously browsed 99

ones.

• Video-based emotion prediction: Given the same ontology O for emotions, the

semantic label set L and the semantic emotion hierarchy H, we can easily trans-

fer the image-based emotion prediction problem to a video-based one. Suppose

a college student is watching movie. As the types and intensity of visual stimu-

lates changes, together with the story progresses, the student’s emotion fluctuates

accordingly. Suppose we can bring in the video features into the ontology for emo-

tions, again it turns out to be an ontology-assisted structured status prediction

problem.

3.7 Conclusion

In this chapter, we identify and propose solutions to the ontology-assisted structured

status prediction problem. The techniques for abstracting and implementing domain

knowledge are fully formalised. Essentially, the problem modelling part is addressed and

completed. Despite being motivated in the EHR prediction problems, we demonstrate

its generality by examining real-world prediction scenarios for progression systems. We

will go further into the probabilistic computing models in the next chapters to fulfil

the computing requirements discussed and proposed here.



4
The Transitional Random Field (TRF): Modelling

4.1 Introduction

Following up the contributions to identify and model the ontology-assisted structured

status prediction problem, in this chapter, we address the probabilistic computing

models, particularly for graphical models. As we will demonstrate in this chapter,

theoretical improvement is needed to address all the requirements discussed in the

ontology-assisted structured prediction problem.

In this chapter, we first discuss the general probabilistic learning and prediction frame-

work as background. Then we fully examine the equivalence relation between a set of

feature functions and the underlying structure. Also, the feature function setting is

important to comprehensively and precisely represent the domain knowledge. Thus,

we propose a novel model for heterogeneous input data and identify and formalise the

locality preserving property, which is an important formalisation for further theoretical

discussion. In light of these, we propose the transitional random field to conclude this

chapter.

The theoretical contribution to the general structured prediction problem in machine

learning is as follows:

• Proposed the structural equivalence condition for feature functions and the un-

derlying graph structure

• Proposed the equivalence condition for domain knowledge abstraction and repre-

sentation
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• Proposed the heterogeneous input model with novel connection settings between

input and output

• Formalise the locality preserving property, a critical underlying assumption widely

existing in the literature, which limits the CRF’s capability.

• Mixed type of dependencies analysis and construction for probabilistic graphical

models

• Proposed a novel structured prediction model: the transitional random field, to

address the identified problems

• Identify the information transition process from heterogeneous input data to a

rigid output ontology based structure

4.2 Probabilistic Models for Structured Prediction

The general goal of supervised learning is to model the relation between the input x

and output y from a given training set D = {(xi,yi)}Ni=1, where N is the number of

training examples. In the context of statistical learning and machine learning, the rela-

tion between x and y often takes form of the distribution of joint probability p(x,y) or

conditional probability p(y|x). Probabilistic models are extensively studied in the ma-

chine learning literature for efficient computing the conditional probability distribution

(CPD) p(y|x), which is vital to training and prediction. Concretely, the prediction for

any new input xj /∈ D is achieved by inferring a corresponding yj from the model P

learnt from D = {(xi,yi)}Ni=1.

The structural characteristics of both x and y are important to modelling, training and

prediction. In this section, we address the methodologies for computing probability dis-

tributions by fully examining related models with various structural settings. We start

with single-output and non-structured multi-output settings before fully examining

probabilistic graphical models for structured prediction. The structural characteristics

of these models, in order of increasing complexity, directly determine the types of de-

pendencies a graphical structure can model, and hence the applicability of each model

class to different real-world problems.



Chapter 4. TRF: Modelling 78

4.2.1 Single-Output Prediction Models

We start with very simple cases where |y| = 1, that is, y contains one single output

variable y. The goal is to learn p(y|x), given a training set D = {(xi, yi)}Ni=1, where N

is the number of training examples.

The range of y has a direct influence to the way we develop probabilistic models. When

the range of y is a finite set {c0, c1, . . . , ck}, with each yi being a categorical or nominal

variable, it becomes a classification problem. In this case, the value of yi is either a

discrete number or a categorical value, both representing some class.

On the other hand, when each yi is real-valued, e.g. y ∈ R, we are having a regression

problem. For both cases, there are many models that have been studied and applied

extensively (text books on machine learning normally provide a good coverage on these,

e.g. [Mur12, Bis07]). Here we examine two classic models with continuous and discrete

output y, respectively.

4.2.1.1 Linear Regression

We consider the situation where the output y is a single continuous response variable,

e.g., y ∈ R. Linear regression asserts that y is a linear function of the inputs x, which

takes the form:

y(x) = wTx + ε =

D∑
j=1

wjxj + ε

where w is the weight vector and wTx is an inner or scalar product between the input

vector x and w, and ε represents the residual error of prediction outcomes compared

to true yi.

Then we come to a second assumption that, the distribution of ε is Gaussian with mean

µ and variance σ2, which can be denoted by ε ∼ N (µ, σ2).

Based on these two assumptions above, p(y|x,θ) is also Gaussian, given x and param-

eter θ:

p(y|x,θ) = N (y|µ(x), σ2(x)) (4.1)

The term wTx can be further modified to model non-linear relationships by applying

basis function expansion, which replaces x with some non-linear function of the inputs,
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φ(x). It doesn’t change the number of assumptions have to be made regarding the

numerical relation between x and y and the distribution of ε, though.

If the training examples in D = {xi, yi}Ni=1 are independent and identically distributed

(iid), which is almost always assumed for D. We can write the log-likelihood as:

`(θ) , log p(D|θ) =
N∑
i=1

log p(yi|xi,θ)

The negative log likelihood (NLL) can be used to please the often minima-targeted

numerical optimisers. The NLL is defined by simply adding a negative sign to `(θ), as:

NLL(θ) , −
N∑
i=1

log p(yi|xi,θ)

The analytical form of p(yi|xi,θ) can be inserted into `(θ) with the Gaussian represen-

tation. Then we can rewrite `(θ) as:

`(θ) =
N∑
i=1

log

[(
1

2πσ2

) 1
2

exp

(
− 1

2σ2
(yi −wTxi)

2

)]

If we define the residual sum of squares (RSS) function (also called sum of squared

errors (SSE)) as:

RSS(w) ,
N∑
i=1

(yi −wTxi)
2 = ‖ε‖22 =

N∑
i=1

ε2i

where εi = (yi −wTxi).

Then we can get a simpler form of `(θ) as:

`(θ) =
−1

2σ2
RSS(w)− N

2
log(2πσ2)

Due to the simplicity of the target optimisation function, ŵ is the maximum likelihood

estimate (MLE) of w if and only if it minimises the RSS.

Structural characteristics:

In linear regression, each input xi is assumed as a plain vector and there is a continuous

corresponding single variable yi for it. The mapping xi 7→ yi in this model thus
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considers no structural information inside xi or yi. Actually, yi can be seen as a

numerical measurement for the status of input xi by aggregating it into one single

numerical value.

4.2.1.2 Logistic Regression

We consider the case where the output y is a single categorical response variable, e.g.,

y ∈ {c0, c1, . . . , ck}, k ≥ 1. Similar to the case of linear regression, we also need to make

assumption on p(y|x).

When k = 1, the multiclass classification problem reduces to a binary classification.

We can generalise the linear regression model to a binary classification setting simply

by replacing the Gaussian assumption for y with a Bernoulli distribution to suit the

output y ∈ {0, 1} as:

p(y|x,w) = Ber(y|µ(x))

where µ(x) = E[y|x] = p(y = 1|x).

Given that µ(x) = p(y = 1|x) is actually a function from the input x to [0, 1], this

mapping can be further represented by a sigmoid function (also called logistic or logit

function) of the weighted sum of x. The range can be guaranteed by the definition of

sigmoid function as follows:

sigm(η) ,
1

1 + exp(−η)
=

eη

eη + 1

Clearly, any µ(x) can be replaced by sigm(wTx) with the help from wT . Then we can

rewrite p(y|x,w) for the logistic regression model, as:

p(y|x,w) = Ber(y| sigm(wTx))

In spite of its name, logistic regression is actually a form of classification because of the

range y ∈ {0, 1}. The appearance of wTx in formalising p(y|x) brings some similarity

to linear regression and hence the name. The assumption of Bernoulli distribution for

p(y|x) in logistic regression distinguishes itself from regression problems.
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Given the probability distribution above, the negative log-likelihood (NLL) for logistic

regression with y ∈ {0, 1} can be rewritten as follows:

NLL(w) = −
N∑
i=1

log[µ
I(yi=1)
i × (1− µi)I(yi=0)]

= −
N∑
i=1

[yi logµi + (1− yi) log(1− µi)]

Clearly, the MLE of w is not in closed form and an optimisation algorithm is needed

to compute it.

Structural characteristics:

In logistic regression, a categorical value is associated with each xi. That is, the status

of xi is described by a vocabulary of class indices. The mapping xi 7→ yi in logistic

regression also assumes plain vector structure in xi and no structural consideration for

yi. The information from xi is aggregated by the model into one single categorical value

yi, indicating some specific class rather than a numerical value, as the only difference

compared to the output of linear regression.

4.2.2 Vector-based Multi-Output Prediction

Although having been applied widely, the single output setting is limited in its capa-

bility of representing the underlying system, either as a descriptive random variable or

a latent generative factor. In linear regression and logistic regression, neither a con-

tinuous real-valued yi nor an output with categorical/discrete value representing the

belonging class of xi has the capability of precisely describing overall status for complex

systems. In order to equip predictive models with capabilities of giving a comprehen-

sive and precise overlook of the underlying system, multiple output random variable

setting is needed.

When |y| > 1, y becomes a multi-dimensional output variable. The goal is to learn the

joint distribution p(y|x), given a training set D = {(xi,yi)}Ni=1, where N is the number

of training examples. We discuss prediction models where x and y can be represented

by plain vectors, as a direct extension to the single-output prediction models. Because

the learning target p(y|x) is in R, the example discussed here is based on an extension

to the classic single-output regression problem.
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4.2.2.1 Multi-Output Linear Regression

Recall Eq. 4.1, given x and parameter θ, p(y|x,θ) is Gaussian in linear regression. A

most straightforward extension to the single-output linear regression to accommodate

vector y as output is the independence assumption between elements {yi ∈ y}06i<|y|.
Without further modelling any interdependence, {yi ∈ y}06i<|y| are independent ran-

dom variables. Thus, the joint distribution p(y|x,W) is Gaussian, which can be fac-

torized across dimensions as:

p(y|x,W) =

M∏
j=1

N (yj |wT
j xi, σ

2
j )

where W = [w1, . . . ,wM ] is the overall weight vector and M is the number of dimen-

sions of y.

Similar to the likelihood factorization, the MLE for W also factorize across dimensions

in the form below:

Ŵ = [ŵ1, . . . , ŵM ]

where ŵi is the MLE for wi.

Structural characteristics: The independence assumption across dimensions of y

gives a neat analytical form of p(y|x,W) and the MLE for W. However, such assump-

tion ignores the inter-relationship between {yi ∈ y}06i<|y|. These random variables

from each dimension of the plain-vector-based output structure contribute equally and

individually to the overall distribution. Actually, the MLE for W can be obtained by

firstly applying the corresponding single-output model separately on each dimension

and then combining the results. Thus, in order to build up a more powerful descriptive

output structure, we need to further model the possible interdependences to lose the

independence assumption by this model.

4.2.3 General Probabilistic Graphical Models

Given the structural limitation identified in single-output and vector-based multi-

output prediction models, there is an apparent need for a stronger descriptive power

from the output. Recall that the primary goal of structured prediction problem is to

model p(y|x using the factorized inter-dependencies defined by the graph. Clearly, the

way a graph G defines the relations among output variables determines the method-

ologies for modelling the target distribution. We first brief general methodologies for
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modelling structured dependencies in the probabilistic graphical models before fully ex-

amining classic ones, e.g., the Markov random field (MRF) and the conditional random

field (CRF), etc.

4.2.3.1 Background

Prediction models generally target at computing p(y|x) with two different possible ap-

proaches. One way is to create a joint model of the form p(y,x) based on the generative

relations assumed between y and x, and then derive p(y|x) by modelling p(x), which

is called the generative approach. An alternative way, namely, the discriminative ap-

proach, is to model the marginals needed, in this case p(y|x), without calculating p(y,x)

or p(x). In this thesis, we adopt term definitions as follows: “graphical model” denotes

a family of distributions defined by a graph structure; “random field” or “distribution”

denotes a single probability distribution; “network” denotes the graph structure itself.

The probabilistic graph model has been extensively studied in relational learning and

many other fields. Under specific assumptions, a graph model is normally able to

provide an analytical representation of probability distributions over a set of random

variables, including both input and output ones. Given the network composed of the

input variable set X and output variable set Y, the analytical form of the joint or

conditional distribution p(y,x) or p(y|x), respectively, can often be greatly simpli-

fied by making use of local dependencies in the network, and hence the probability

computation.

The conditional independence (CI) is the basis for probabilistic graphical models to

describe the dependencies. The underlying requirement for the CI property to hold

is that edges of a graph representing dependencies are complete. The CI property

between two variables only holds when all the depended variables of the current two

are visible (text books on machine learning normally provide a good coverage on this

topic, e.g. [KF09, Mur12]).

Graphical models are a major group for structured prediction, however, it is worth not-

ing that there are several other models that are also good with basic output structures,

e.g. hierarchical/multilevel logistic regression [WM85, Mur12], structured SVM [TGK04,

YFRJ07, LJ09]. The term structured regression often appears in recent papers referring

models with extensions to classic regression settings [LUW+14, Kim14]. Nevertheless,

technically structured regression is a fairly general term, many graphical model based

settings with continuous structured output could also be categorised into structured
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regression problems, e.g. ordinal-valued label predictions [Kim16, Kim14], continu-

ous CRF [PBX09, BRM14], etc. For a complete introduction to the related models,

see [KF09, Mur12].

4.2.3.2 Directed Graphical Model

The directed graphical model is a widely used probabilistic graphical model, which is

commonly known as Bayesian network [HNC65]. Every node except the root has its

parent node because every edge has a direction. The directed graph under the model

can be written as G = 〈V,E〉, where V and E are the node set and edge set, respectively.

The directed graphical model essentially provides a direct way for factorization, so that

chain rule can be applied according to the directed edges. Thus, we have:

p(y,x) =
∏
v∈V

p(v|π(v))

where π(v) are the parents of v in G.

In an generative model, nodes representing output variables topologically precede the

inputs, that is, no x ∈ X can be a parent of an output y ∈ Y . Essentially, a genera-

tive model is one that directly describes how the outputs probabilistically “generate”

the inputs. However, the single-directional pairwise relation normally requires extra

modelling in describing the conditional probability. In addition, such relation can po-

tentially over-simplify the relation between a pair of nodes, particularly when there are

possibilities for multiple co-existing relations. Thus, in the case of domain knowledge

representation, the undirected graphical model is a more suitable choice.

4.2.3.3 Undirected Graphical Model

An undirected graphical model represents structural dependencies where there is no

topological ordering associated, so the chain rule in the directed graphical model does

not suit here to represent p(y) [SM12]. As a consequence, the methodologies for formal-

izing distributions based on undirected graphical model usually less straightforward.

The general strategy for representing the distribution is utilising the conditional inde-

pendence (CI) depicted by the graph to simplify the number of related clique-indexed

potential functions. We examine the related techniques in detail in corresponding sec-

tions.
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4.2.4 Markov Random Field (MRF)

A Markov random field (MRF), as a class of parametric models, was motivated by the

need for methodology improvement in statistical analysis of spatial data [Bes74, Cli90].

It is often also named as Markov network, which is widely used in the domain of

probability theory and physics. An MRF is a set of random variables described by

an undirected graph complying the Markov property, with its nodes and edges rep-

resenting the random variables and their inter-dependencies, respectively. Neverthe-

less, in order to have a factorized representation of the probability distribution, an

MRF has additional requirements, which we will examine in detail. MRF is widely

studied in applications for low to mid-level tasks in image processing and computer

vision [NL11, BKR11, Li12, Liu15]. For a time line and history of the development of

mathematical theories for MRF , see [Cli90].

4.2.4.1 The Markov Property

We examine the Markov Property here in detail, given its importance in constructing

the numerical probability measure for a random field. The Markov property is actually

the cornerstone for bridging the overall probability of a given configuration to a random

field and the CI defined by the graphical network. We follow the notations adopted

in [Cli90] here.

Let G = 〈V,E〉 be an undirected graph so that a set of random variables X = (Xv)v∈V

can be indexed by the members of the node set V . E is the edge set and two nodes

which form an edge e ∈ E are said to be neighbours of each other. For any subset

Y ⊆ V we define the boundary of Y , denoted as ∂Y , by

∂Y = {x : (x, y) ∈ E, x 6∈ Y, y ∈ Y }

A clique is thus defined as a node set that always includes its boundary. Formally, a

node set Y in a graph G = (V,E), Y ⊆ V is said to be a clique if and only if

Y ⊆ y + ∂y, ∀y ∈ Y

In other words, a clique Y, Y ⊆ V takes the form of either a singleton or a node set

where every member of Y is a neighbour of every other member of Y .
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There are three forms of Markov property describing dependencies in the undirected

graph G:

• Pairwise Markov property: Any two non-adjacent variables are conditionally in-

dependent given all other variables: Xu⊥Xv|XV \{u,v} if {u, v} 6∈ E

• Local Markov property: A variable is conditionally independent of all other vari-

ables given its neighbours: Xv⊥XV \ cl(v)|Xne(v), where ne(v) is the set of neigh-

bours of v, and cl(v) = v ∪ ne(v) is the closed neighbourhood of v.

• Global Markov property: Any two subsets of variables are conditionally indepen-

dent given a separating subset: XA⊥XB|XS , where every path from a node in A

to a node in B passes through S.

4.2.4.2 Definition of MRF

Recall the previous definition for a graphical model, it represents a family of probability

distributions defined by the graph structure. In addition to the Markov property, we

examine the general conditions for the probability measurement here.

Consider a probability mass function P for the variable set X indexed by the node set

V in an undirected graph G.

• The regularization condition: A direct requirement is
∑

x∈X P (x) = 1, which is

a summation over the possible configuration set X . Thus, the probability of a

partial configuration to a node set A ⊆ V , denoted as xA, can be represented as

P (xA) =
∑
x′∈X

P (x′)

where x′ are all the global configurations in X that yield a partial configuration

xA.

• The positivity condition: ∀x ∈ X , P (x) > 0. This allows us define logarithmic

likelihood

Q(x) = logP (x)

and the conditional probabilities, such as ∀A,B ⊆ V ,

P (xA|xB) =
P (xA,xB)

P (xB)
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• The Markov condition: ∀A ⊆ V,∀x ∈ X

P (x)

P (xV−A)
=
P (xA+∂A)

P (x∂A)

If A is a singleton set, it turns to the form of local Markov property.

As pointed out in [Cli90], the global and local Markov properties are equivalent to each

other. Thus, we directly give the definition of MRF as follows:

Definition 4.1. Markov Random Field

An undirected graphical model G is called a Markov Random Field (MRF) if any two

nodes are conditionally independent whenever they are separated by evidence nodes and

if the associated probability mass function P obeys the above conditions. In other words,

for any node Xi in the graph, the following conditional property holds:

P (Xi|XG\i) = P (Xi|XNi)

where XG\i denotes all the nodes except Xi, and XNi denotes the neighbourhood of Xi

- all the nodes that are directly connected to Xi.

A MRF or a Markov network is often compared with Bayesian network due to their sim-

ilarity in the representation of dependencies. However, a Bayesian network is directed

and acyclic while a MRF is undirected and may be cyclic. Thus, an MRF can repre-

sent certain dependencies that a Bayesian network cannot (e.g. cyclic dependencies),

particularly when the relation between nodes are complex such that it is not possible

to obtain conditional probability distribution as priors. Besides, the underlying graph

of a Markov random field may be finite or infinite.

Moreover, there are stronger mathematical results on the relation between being Marko-

vian and the analytical forms of P . We will examine the details in the context of

factorisation in corresponding sections.

4.2.4.3 The Log-Linear Form of MRF

Without going further to the details of structural binding feature functions and a

number of possible probability mass function P s, we examine a typical form of an

MRF where the overall probability can be factorized in the log-linear form. Given that

an MRF should have a strictly positive density, the full-joint distribution is a perfect

match for a log-linear model of feature functions {fk} as
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P (X = x) =
1

Z
exp

(∑
k

wTk fk(x{k})

)

where Z is the partition function and wTk fk(x{k}) is simply a dot product over field

configurations as follows:

Z =
∑
x∈X

exp

(∑
k

wTk fk(x{k})

)

Clearly, calculating the partition function Z requires an enumeration over X , the set

of all possible assignments of values to all the network’s random variables. Besides, the

local score wTk fk(x{k}) can represent multiple relations, with separate weight wk,i for

individual feature fk,i.

wTk fk(x{k}) =

Nk∑
i=1

wk,i · fk,i(x{k})

4.2.5 The Conditional Random Field (CRF)

The model of CRF is a direct extension to the MRF model by conditioning the proba-

bility distribution of the output random variables on the whole observations. We adopt

the notations in the original paper here [LMP01].

Definition 4.2. The Conditional Random Field:

Let G = (V,E) be a graph such that Y = (Yv)v∈V , so that Y is indexed by the

vertices of G. Then (X,Y) is a conditional random field in case, when conditioned

on X, the random variables Yv obey the Markov property with respect to the graph:

p(Yv|X,Yw, w 6= v) = p(Yv|X,Yw, w ∼ v), where w ∼ v means that w and v are

neighbours in G.

Concretely, the probability distribution of a linear-chain CRF can be defined as follows:

Definition 4.3. The Linear-Chain CRF:

Let Y,X be random vectors, Λ = {λk} ∈ RK be a parameter vector, and {fk(y, y′,xt)}Kk=1

be a set of real-valued feature functions. Then a linear-chain conditional random field

is a distribution p(y|x) that takes the form

p(y|x) =
1

Z(x)
exp

{
K∑
k=1

λkfk(yt, yt−1,xt)

}
(4.2)
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where Z(x) is an instance-specific normalization function

Z(x) =
∑
y

exp

{
K∑
k=1

λkfk(yt, yt−1,xt)

}
(4.3)

The linear-chain CRF is widely used for part-of-speech (POS) tagging problems due

to the simplicity of both X and Y structures. Actually, the linear-chain CRF has a

deep root in the hidden Markov model (HMM) and its feature functions have direct

interpretations similar to the ones in the HMM setting. Given that the linear-chain

CRF style feature setting takes an important role in almost all the tagging-targeted

applications, we first illustrate the transformation from an HMM to a linear-chain CRF

and then fully examine the model in the context of generally structured CRF.

4.2.5.1 A Transformation From HMM to Linear-Chain CRF

Recall the original form of an HMM distribution (for more details of HMM, see [Mur12,

Bis07]):

It can be factorized as:

p(y,x) =
T∏
t=1

p(yt|yt−1)p(xt|yt) (4.4)

The joint model in (4.4) can be easily rewritten as:

p(y,x) = exp

∑
t

∑
i,j∈S

λij1{yt=i}1{yt−1=j} +
∑
t

∑
i∈S

∑
o∈O

µoi1{yt=i}1{xt=o}

 (4.5)

where the total parameter set of the distribution is θ = {λij , µoi}, which is composed

of two parts, λij = log p(y′ = i|y = j) and µoi = log p(x = o|y = i), both can take any

real value.

We can write (4.5) more compactly by bringing the concept of feature functions. Each

feature function has the form fk(yt, yt−1, xt). In order to duplicate (4.5), there needs

to be one feature fij(y, y
′, x) = 1{y=i}1{y′=j} for each transition (i, j) and one feature

fio(y, y
′, x) = 1{y=i}1{x=o} for each state-observation pair (i, o). Then we can write an

HMM as:

p(y,x) = exp

{
K∑
k=1

λkfk(yt, yt−1, xt)

}
(4.6)
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Then it is straightforward to get the conditional distribution p(y|x) that results from

(4.6) as:

p(y|x) =
p(y,x)∑
y′ p(y

′,x)
=

exp
{∑K

k=1 λkfk(yt, yt−1, xt)
}

∑
y′ exp

{∑K
k=1 λkfk(y

′
t, y
′
t−1, xt)

} (4.7)

Clearly, the conditional probability is already in the form of linear-chain CRF. Several

key ideas presented in this transforming process are important to other advanced CRF

variants, e.g., skip-chain CRF and dynamic CRF [SM07, SMR07, SRM04, TDF16], etc.

For more details on this topic, see [SM12, LMP01].

4.2.5.2 Generally Structured CRF

Without examining the theoretical criteria for factorization in detail, we give the prob-

ability distribution in the form of Gibbs measure here [SM12].

Following the notations in the CRF definition,

p(y|x,θ) =
1

Z(θ)

∏
c∈C

ψc(yc|x,θc) (4.8)

where C is the set of all the (maximal) cliques of G, ψc(yc|x,θc is a set of real-valued

feature functions indexed by clique c and Z(θ) is the partition function given by

Z(θ) ,
∑
y

∏
c∈C

ψc(yc|x,θc) (4.9)

It is worth noting that Z(θ) is an instance-specific normalisation function. Without

causing confusion, we can write it as Z(x,θ).

4.2.6 Probabilistic Models for Structured Status Prediction along

Progression Trajectories

Status prediction is the core of structured prediction problem. The sequential pre-

diction has been widely studied and applied. However, its single-variable per stage

setting is limited in status description. Meanwhile, the multi-label model demonstrates

superior capabilities in information aggregation and inter-label dependency modelling.

Only until very recently, the unified view of these two models attracted interest from

the research community[RMH17].
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Nevertheless, many real-world prediction problems require even stronger power in sta-

tus description and modelling. Often, the status of the underlying progression system

is extremely difficult to describe without domain knowledge-assisted vocabulary and

semantic structures. We were motivated to bring the ontology-based semantic hier-

archy to the probabilistic prediction model for structured status description with any

given global index. This requires us to fully examine the dependency source along the

progression trajectory and inside the semantic hierarchy.

4.2.6.1 The Progression System

It is ubiquitously true that almost every physical system progresses with time. Progression-

based observation thus becomes a major source of human knowledge. In machine learn-

ing, it is also desirable to enable computing models to capture the characteristics during

the course of progression. We now study a special case of supervised learning, where

the (xi,yi) pair is from partial or the whole trajectory of a progression system. It is

worth noting that the i.i.d. assumption still hold for D in this setting.

The importance of the progression system in the context of supervised learning is two-

folded:

• The consistency and inter-dependence along the progression trajectory, which

provides the basis of model training and prediction.

• The wide existence of such systems in everyday life, e.g., the emotion changes

when reading diaries or novels, etc.

4.2.6.2 Probabilistic Models for Sequence-based Progression Trajectories

In sequence-based models, e.g., hidden Markov model (HMM)(Fig 4.1), maximum-

entropy Markov model (MEMM)(Fig 4.2) and linear-chain conditional random field

(linear-chain CRF)(Fig 4.3), etc., each yi ∈ y is associated with its corresponding

state i as status description[Mur12, RMH17]. Although the probability distribution

p(yi|x) or p(yi,x) varies according to the model, a single-value yi suffices for the status

description in these models. For simplicity, we call it simple status.

Fig 4.4 is an example of a complex progression trajectory, where any stage indexed by

some time t can only be represented by a semantic structure. It can be regarded as a

direct abstraction to Fig 3.4.
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x1 x2 x3 x4

Figure 4.1: The hidden Markov model (HMM).

x1 x2 x3 x4

Figure 4.2: The maximum-entropy Markov model (MEMM).

x (x1, x2, x3, x4)

Figure 4.3: The linear-chain conditional random field (linear-chain CRF).

Figure 4.4: The CRF with a semantic output structure for structured status predic-
tion along a progression trajectory.
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4.2.7 Summary

In this section, we introduce models with single-output and non-structured multi-

output settings before fully examining the probabilistic graphical models for structured

prediction. The MRF and CRF discussed here provide general frameworks for mod-

elling distributions based on structured dependencies described by undirected graphs.

Different sequence-based probabilistic models for trajectory modelling are also dis-

cussed. We will go further to address the structural settings in more detail in the next

section.

4.3 Feature Functions for Structural Binding and Knowl-

edge Embedding

Graph factorisation is the basis methodology for handling the structural complexity

of an undirected graphical model. Although the criteria for judging whether an MR-

F/CRF is clique-decomposable is clear, there is a surprisingly huge confusion in the

literature on a valid setting of feature functions that could truthfully reflect the struc-

tural decomposition and the domain knowledge to be embedded.

In this section, we discuss and solve the following two questions:

• What is a valid set of feature functions that can completely and precisely reflect

the structural information defined by the graph?

• What is a valid set of feature functions that can completely and precisely embed

the domain knowledge into the model of structured prediction?

4.3.1 The Structural Characteristics of the Observable and Latent

Variables

In probabilistic graph model, we consider two sets of random variables, a set X which

can be observed before model training and another set Y which cannot be observed

and thus becomes the prediction target. X is also called the set of input variables and

Y is the set of output variables.

An MRF constructs the network of both X and Y together, which means the depen-

dencies among X ∪ Y have been fully modelled. For any configuration (y,x) to the



Chapter 4. TRF: Modelling 94

overall graph, p(y,x) can be represented by the CI defined by the network. Given the

training data, the p(y|x) for calculating overall log-likelihood requires computing all

the possible p(y′,x) and then do a summation. In that sense, although p(x) cannot be

computed directly due to the absence of related y, p(x) has been fully modelled and

it has a clear analytical form of a summation over all the possible configurations of

its boundary variables. In this case, the dependencies are fully modelled by the MRF

itself and there is no clear division between X and Y in terms of the position inside

the graph network.

The CRF, on the other hand, has a clear division between X and Y. Moreover,

the network of a CRF does not model the dependencies between X and Y or the

intra-dependencies of X explicitly. Instead, a CRF depicts any Y distribution by

conditioning over the whole observed configuration x and put more emphasis on the

inter-dependencies on the output variable set Y side. This setting makes it more

suitable for building discriminative classifiers.

Some initial work demonstrated some initial discussion on the relationship between

MRF and the Gibbs Random Field. [Bes74] provides an alternative proof for the

result.

4.3.2 The Feature Function Setting for Structural Binding

Recall the definition of CRF, the output random variables Y form an MRF and the

factorization follows the same form of clique-based decomposition. Thus, the discus-

sions on the MRF factorisation also applies to CRF. We first discuss different forms

of the Hammersley-Clifford theorem and then examine the Gibbs measure. Then we

conclude the structural requirement on feature functions for factorization by defining

the structural binding feature function set, which answers the first question proposed

at the beginning of this section.

4.3.2.1 The Hammersley-Clifford Theorem

The relation between a Markovian probability mass function and the form of Gibbs

measure has been discussed in some initial work [Spi71, She73]. The equivalence be-

tween them was originally proved in an unpublished paper [HC71] and the main result

was named after the authors as the Hammersley-Clifford Theorem. An alternative proof

was given in an influential work [Bes74]. For an interesting review of the development
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of Hammersley-Clifford theorem, see [Cli90]. For more MRF-related mathematical

results, see [Spi71, She73, Mou74, Cli90].

It is worth noting that there are several forms of the Hammersley-Clifford Theorem.

Reference in the literature often points to the original work in [HC71]. However, the

different forms of description actually have minor differences. For example, the original

form is in the context of graph colouring problem as follows:

Theorem 4.1. The Original Form of Hammersley-Clifford Theorem:

A probability mass function P is Markovian if and only if it can be written in the form

P (X )/P (XZ) = exp

 ∑
Y ∈LX

Q(X Y )


where P is a probability mass function, X is a configuration of light colouring to the

overall node set Z, P (X )/P (XZ) is the probability of a colouring X when no additional

information is given, LX is the set of all cliques from the nodes appeared in X , X Y

is an partial light colour configuration on clique Y and Q is an arbitrary real-valued

function of light colourings on cliques.

We can have another form which often appears in recent text books [KF09, Mur12].

Theorem 4.2. The Hammersley-Clifford Theorem:

A positive distribution p(y) > 0 satisfies the conditional independence (CI) properties

of an undirected graph G iff p can be represented as a product of factors, one per

(maximal) clique, i.e.,

p(y|θ) =
1

Z(θ)

∏
c∈C

ψc(yc|θc) (4.10)

where C is the set of all the (maximal) cliques of G, and Z(θ) is the partition function

given by

Z(θ) ,
∑
y

∏
c∈C

ψc(yc|θc) (4.11)

Note that the partition function is what ensures the overall distribution sums to 1.

Note that this form does not really distinguish the factorization according to all the

cliques or all the maximal cliques.
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Thus, we look back into the proofs, we find that what the Hammersley-Clifford theorem

really tells is the equivalence between an Markovian probability mass function P and

the Gibbs measure [HC71, Cli90]:

Theorem 4.3. The Gibbs Measure Form of The Hammersley-Clifford Theorem:

The Hammersley-Clifford theorem basically states that a distribution that has a positive

probability mass or density satisfies one of the Markov properties with respect to an

undirected graph G if and only if it is a Gibbs random field, that is, its density can be

factorized over the cliques of the graph.

More concretely, the property of being Markovian is equivalent to the ability of being

Gibbs measure applicable.

Thus, we fully examine the Gibbs measure next.

4.3.2.2 The Gibbs Measure

The Gibbs measure roots from thermodynamics and thus has a direct entropy style

interpretation [Jay65, Mou74, Mur12]. The Gibbs measure for finite systems is actually

the vocabulary for describing the probability distribution for all the MRF and its

derivatives. Given its importance in all the MRF-based structured prediction models

and the confusion often presented in the literature, we feel it is necessary to review the

definition of related concepts in measure theory [TJ02, Wei00, Bes74].

We assume the target system is finite, which can be represented by a finite set of nodes

S. We also assume that for each node i ∈ S, there is a measure space (Xi,Fi) and all

the Xi are finite.

let

(Ω,F) ,

(∏
i∈S
Xi,
∏
i∈S
Fi

)
equal the product measure space.

On the measure space (Ω,F), we define an independent reference measure λ =
∏
i∈S λi

where each λi is the uniform measure on (Xi,Fi).

Let

S , {Λ ⊂ S,Λ 6= ∅}
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be the set of all non-empty subsets of S. For A ∈ S, let ΩA and FA equal the restriction

of Ω and F to A, respectively. Similarly, ωA represents the projection of ω ∈ Ω to the

set ΩA.

Now we have the definition for the potential associated with a Gibbs measure.

Definition 4.4. A potential is a family Φ = {ΦA}A∈S of functions ΦA : Ω → R such

that

(1) For each A ∈ S we have ΦA is FA-measurable.

(2) For all Λ ∈ S and ω ∈ Ω the energy HΦ
Λ (ω) exists.

HΦ
Λ (ω) ,

∑
A∈S,A∩Λ 6=∅

ΦA(ω)

Now we can define Gibbs measure on (Ω,F).

Definition 4.5. The finite Gibbs measure is defined as

µΦ(ω) ,
e−H

Φ
S (ω)λ(ω)

ZΦ
S

where

ZΦ
S =

∑
ω∈Ω

e−H
Φ
S (ω)λ(ω)

where ZΦ
S is called the partition function.

We review the definition for Gibbs distribution from [Che08], which states clearly about

the requirement for clique-based decomposition.

Definition 4.6. A probability distribution P (X) on an undirected graphical model G

is called a Gibbs distribution if it can be factorized into positive functions defined on

cliques that cover all the nodes and edges of G. That is,

P (X) =
1

Z

∏
c∈CG

φc(Xc) (4.12)

where CG is a set of all (maximal) cliques in G and Z =
∑

c∈CG
φc(Xc) is the normal-

ization constant.

Essentially, a Gibbs distribution is the result from applying Gibbs measure and it

provides a direct criteria for a valid set of feature functions that can equivalently reflect
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the structural information in an MRF/CRF. Nevertheless, it also provides possibilities

for many different but equivalent ways of factorisation.

It is important to note that the clique set C should cover all the nodes and edges of G.

4.3.2.3 Summary

We summarize the structural requirement on feature functions for factorization by

giving the definition of the structural binding feature function set as follows:

Definition 4.7. The Structural Binding Feature Function Set:

Given an undirected graph G of an MRF/CRF, the feature function set F = fCi , Ci ⊆ G
is a structural binding feature function set of G if and only if:

1. The index cliques {Ci}, Ci ⊆ G together provide a complete cover over all the

nodes and edges of G

2. The feature function fCi indexed by clique Ci is locally defined on the same clique,

and there exists a non-zero clique configuration for fCi. Concretely, ∃ yCi ∈
Y, s.t. fCi(yCi) 6= 0.

This definition answers the first question proposed at the beginning of this section.

Note that although there are usually multiple clique decompositions to achieve the

same coverage, the clique size and the number of overall cliques have direct impacts to

time complexity and the effectiveness of the model as well.

4.3.3 The Feature Function Setting for Knowledge Embedding

The feature function setting has a direct relation to the knowledge abstraction. We

first examine the forms of feature functions and then formally define the knowledge

embedding feature function set.

4.3.3.1 The Forms of Features Functions

Feature functions are normally defined as indicators of the cliques’ configuration. for

example, if some local configuration xiCk
corresponds to the i-th possible configuration

of the k-th clique Ck, a feature function fk,i identified by the clique index k and local
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configuration index i can be defined as fk,i(x) = 1 when the current input x matches

a local configuration xCk
and fk,i(x) = 0 otherwise.

There is a direct interpretation to the clique factorisation model given by 4.6. Actually,

for a clique Ck and the input xCk
indexed by Ck, the weighted sum over all the feature

functions
∑

iwk,i·fk,i(xCk
) corresponds to the logarithm of the clique factor log φC(xC).

The types of feature functions or simply features can be generally summarised as fol-

lows:

• A configuration indicator/binary features: Such feature simply stands for a par-

ticular configuration to a subgraph or a clique that indicates a probabilistic re-

lation to some specific category of output. Because such feature is an indicator,

the domain of the feature function is simply {0, 1}.

• A numerical value: Such feature is better formalised in contrast to the previous

one. No matter its domain is a continuous space or simply discrete numbers, the

numerical value stands for different levels of relation to the overall probability.

Such feature has already embedded a measure of the degree of dependency. Thus

together with its corresponding weight, this type of feature function provides

a more fine-grained way to emphasis some particular pattern presented in the

observation.

The feature function is allowed to be more general than indicator functions [SM12].

However, label-observation features can result in a large number of parameters in fea-

ture engineering, e.g. 3.8 million binary features in the best model of [SM12, SP03]

4.3.3.2 The Source and Semantic Meaning of Features

Recall the definition of the structural binding features functions and the relation-based

domain knowledge representation, feature functions have a deep connection to the

structure presented in a graph. It is interesting to bridge the inter-dependencies defined

by an MRF/CRF and the undirected-graph-based domain knowledge abstraction. It

is straightforward to note the connection between cliques in both. Actually, the CI

and dependencies are direct abstractions to the relations defined in the knowledge

abstraction. Moreover, a feature behind a feature function directly corresponds to the

logical relation on the same clique.
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Definition 4.8. The Knowledge Embedding Feature Function Set:

Given an undirected graph G of an MRF/CRF and an ontology-based domain knowledge

K = 〈G, {rCC⊆G}〉, a structural binding feature function set F = fCi , Ci ⊆ G is a

knowledge embedding feature function set of G and K iff

1. For every clique Ci where these exists a rCi from {rCC⊆G} ∈ K, there exists a

Ci-indexed feature function fCi ∈ F , and vice versa.

2. Given any confidence value configuration yCi to an index clique Ci, each Ci-

indexed feature function fCi ∈ F takes value of the numeric score s ∈ R given by

K, indicating the level of support based on the domain knowledge.

4.3.4 Summary

In this section, we examine the relation between the feature function setting and the

structural and domain knowledge information embedded in a graph. The two questions

asked in the beginning of this section were addressed by defining the structural binding

and knowledge embedding feature set, which truthfully reflects equivalent information

from the graph structure and domain knowledge, respectively.

4.4 The Heterogeneous Input Data and The Locality Pre-

serving Property

In this section, we discuss the challenges posed to the structured prediction model from

the heterogeneous input data. We develop the model for the heterogeneous input and

then identify a widely existing underlying assumption in almost all the CRF applica-

tions - the locality preserving property. We discuss the potential simplification brought

by this assumption to the CRF-related model and then propose a general case where

the locality preserving property cannot hold. This section addresses the input side as

the first part of the development of a novel model.
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4.4.1 Background

Feature generating and selecting are important to capturing signals from the observed

input data, particularly when the data is heterogeneous. In the EHR prediction litera-

ture, the text-based information consists a major part of the input feature set, e.g., de-

compositions from free-text hospital notes as latent topic-derived features [GNDV+14].

Without the independence assumption, the feature source could be a fairly large range,

e.g., the category of the diagnosis [YIN+13], top features with positive coefficients

[NKY+15], etc. Nevertheless, we need to further work on modelling the heterogeneous

data for structured prediction, particularly for discriminative models.

4.4.2 The Heterogeneous Input Data Modelling

The input space X of heterogeneous input data D is infinite because the vocabulary

cannot be fixed. Thus, a single observation x could have various forms. As a result, the

structure of X usually is not able to be captured or abstracted to analytical representa-

tions. This unstructured or semi-structured input space X often makes direct learning

f(x) : X → Y a difficult task. The infinite X also makes enumeration generally

computationally intractable, which brings great difficulties in calculating MRF-style

probability distributions when modelling these variables directly.

A natural abstraction is to use a group of random variables x′(x) as descripting surro-

gates. A surrogate variable x′i(x) takes its value from an aspect of x, though it is not

necessarily a feature in the sense of knowledge abstraction and representation.

Comparison between a feature and a surrogate variable:

1. A feature in the context of domain knowledge abstraction K corresponds to a

relation defined over a sub-structure, e.g., a clique, however, it is usually difficult

to capture the CI relations between x′i(x) such that a covering graph could be

built.

2. A feature in a K stands for a relation which could give a confidence value to

indicate the support to the given configuration based on K, however, the influence

from x′i(x) to the likelihood of given x cannot usually analytically represented or

even captured by a probability mass function p. Concretely, p(x|x′i(x)) ' p(x),

for a given heterogeneous input x.
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Clearly, the surrogate x′(x) set is the vocabulary for describing x. As will demonstrate

later, x′(x) is on a suitable level of abstraction for heterogeneous data, particularly for

further feature construction. To address its potential connection to a real feature from a

subgraph of an ontology, we call x′i(x) a feature fragment. We adopt the representation

of heterogeneous input x as feature fragments x′. Unless specified individually, we

simply use x to stand for the feature fragment representation of the input throughout

this thesis.

The key points of feature fragments x can be summarised by this definition:

Definition 4.9. Feature fragment for heterogeneous input model

A feature fragment is a surrogate variable in x′(x) for heterogeneous input x, where no

structural representation is possible. Its properties can be described as follows:

• The CI relation among x is generally limited or unknown. That is, the depen-

dencies inside x cannot be sufficiently modelled and the maximum size of known

maximal clique could be very small or even 1.

• A feature fragment xi must be associated to a relation rj in a domain knowledge

abstraction K of an ontology-based output structure to be an influencing factor

f(xi, rj) to p(y|x), where y is the structured output in discriminative models,

e.g., a CRF.

• Each feature fragment xi or a group of feature fragments xC indexed by a known

clique C must be associated with any relation ∀ rj ∈ K from an ontology-based

output structure, because the relation between different parts of x and y is un-

known to the model.

4.4.3 The Locality Preserving Property

Recall the probability distribution of a CRF, every clique-indexed feature function fC

is based on a local configuration yC and the global observation x. However, we observe

a strong presence of a locality-preserving property of the feature function setting for a

local yC and the corresponding part of x in the literature. We examine classic CRF

application scenarios in the following, e.g., part of speech (POS) tagging for human

languages [SRM04, SC04], image segmentation and tagging [NGL10, ZC12], etc.

• Consider the POS tagging problem, each observation x is a sentence composed

of words and the corresponding sequential order. Note that the possible word set
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is generally assumed to be finite and it is possible to enumerate over the word

space. Thus, in this scenario the input space X is not heterogeneous and x is the

original input rather than surrogate feature fragments. Clearly, there is a rigid

structure for x. The CI relation can be represented in a form of sequence. On the

other side, the output y is a tagging for x, where each yi corresponds to a word

xi. Thus, the structure of y is inherited from x and there is a direct structural

mapping relation between them. Concretely, a xi has a direct corresponding tag

yi and for ∀yi, yj ∈ y, yi 6= yj , yi and yj could not map to the same x ∈ x. That

said, two different locations in x can have the same tag, while two different tags

cannot be assigned to the same location in x.

• Consider the image segmentation and tagging problem. The observed image x is

composed of multiple super-pixels {xi}. For simplicity, each yi ∈ y takes value

from a finite label set indicating the segment type for xi. Clearly, the structure of

y is a direct inheritance from x, both having been fully modelled. Similarly, one

super-pixel xi cannot have two different segmentation tags yi, yj , yi 6= yj assigned.

Given its wide appearance in CRF applications, it is worth pointing out that such

underlying assumption greatly limits the range of CRF applications. Although it is

still a special type of CRF, it counterfeits the claim of global condition on observation

in the original CRF definition. We illustrate this in the following.

Given a CRF model p(y|x), where Y forms an MRF, p(y|x) is represented by the Y -

based factorisation. That is, every feature function fC for yC is indexed by and defined

on a clique C ∈ Y , while being conditioned on the global observation x. Thus, this

clique C-indexed feature function could be written as fC(yC |x) or simply, fC(yC ,x).

Clearly, in the original CRF setting, a clique C-indexed local configuration yC is not

bounded by the association from any local xsub. Concretely, any local configuration

yC is an indicator connected with the overall x, instead of a local one.

Recall the features of heterogeneous input data, . This structural mapping cannot hold,

because. The locality-preserving property cannot be maintained even for tagging-type

problems.

Definition 4.10. The Locality Preserving Property:

Given a conditional random field G with input x and a clique-indexed feature function

set F = {fC(yC ,x)}, for any two non-overlapping maximal cliques ∀C1, C2 ⊆ G,C1 ∩
C2 = ∅, let x1 = {xi | ∃fCsub1

(yCsub1
, xi ∈ x) ∈ F,Csub1 ⊆ C1} and x2 = {xj |
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∃fCsub2
(yCsub2

, xj ∈ x) ∈ F,Csub2 ⊆ C2}, if x1∩x2 = ∅, the locality preserving property

of G holds.

Corollary 4.4. Given a condition random field G whose maximal cliques are all edges,

if the input and output set x and y has one-to-one (xe, ye mapping and the feature

function takes the form f(ye−1, ye, xe) and/or f(ye, xe), the locality preserving property

of G holds.

Proof. Consider any two non-overlapping maximal cliques in the previously described

CRF G, (yi−1, yi) and yj−1, yj , where i 6= j, |i− j| ≥ 2, the only x associated with the

feature function defined on (yi−1, yi) and (yj−1, yj) is xi and xj , respectively. Because

i 6= j, we have x1 = {xi},x2 = {xj},x1 ∩ x2 = ∅.

Corollary 4.5. Given a conditional random field G with heterogeneous input data x

as feature fragment set, the locality preserving property of G does not hold.

Proof. According to the feature of heterogeneous input data of a CRF G, each feature

fragment xi ∈ x or a group of feature fragments xC ∈ x indexed by a known clique

C must be associated with any relation ∀ rj ∈ K from an ontology-based knowledge

abstraction K. Given the one-to-one mapping relation between relation and feature

function in K and G, for any two non-overlapping maximal cliques C1 and C2 in G ,

every xi ∈ x or xC ∈ x has an associated fC1(yC1 ,xi) and fC2(yC2 ,xi), respectively.

Because x1 ∩ x2 6= ∅, the locality preserving property of G does not hold.

Clearly, the locality is preserved by the projection from Y → X , which implies a

strong mapping between the structures on the input and output sides. This prop-

erty guarantees that the input and output structures could be divided into separated

and little-or-non-overlapping parts by single or groups of input and output random

variables.

Adopting the same set of index for both X and Y is the source of the locality preserving

property as discussed in the tagging-based problems, because the index v for Xv and

v′ for Xv’s corresponding Yv′ are always local to each other in the same index space if

the feature functions are defined accordingly.

4.5 Dependency Source Analysis for Graphical Models

The conditional independence (CI) relation is the basis of probabilistic graphical mod-

els. The network or the structure of a graphical model is used to represent different



Chapter 4. TRF: Modelling 105

kind of dependencies. In this section, we discuss the potential sources of dependencies

in a graph.

We examine three types of dependencies as the sources of the adjacency in the index

space, including temporal-based, position-based indices and a combination of these two.

The first two types have strong appearances in the literature, however, the combination

type has yet to be sufficiently discussed and addressed.

Being motivated by the EHR prediction problem, where we need to model the connec-

tivity in an ontology and consider the temporal trajectory at the same time, we address

the mix model of dependencies here.

4.5.1 Temporal-based Dependencies

The temporal dependency describes the relationship between random variables that

can be indexed and sorted according to the temporal order. It is a natural way of

modelling the adjacency in the position defined by the index.

Following the previous notations, given a set of input random variables X and output

random variable Y, the dependencies in the graphical network describe the relationships

between all the possible pairs (Oi,Oj), ∀i, j i 6= j,Oi ∈ X ∪Y,Oj ∈ X ∪Y. For time

series, however, the set of input random variables X is actually generated by x ∈ RDx ,

whose value changes over time t = {0, . . . , T}. In this case, ∀ Xi ∈ X corresponds

to the random variable representing the value of x at some time t in some dimension

d, 1 ≤ d ≤ Dx. Thus we have Xi = f(x, t, d),∀ Xi ∈ X, 0 ≤ t ≤ T, 1 ≤ d ≤ Dx.

A configuration y ∈ RDy to the output random variable set Y can be written as

y = {y0, . . . ,yT }, with each yt ∈ y often associated with the corresponding xt at some

time t rather than some Xi ∈ X. However, another commonly seen notation xt differs

from xt ∈ RDx , a random variable representing the value of x at time t. For some

configuration x to X, xt is defined as the components of the global observations x that

are needed by the feature functions at time t. Thus, unlike {y0, . . . ,yT }, which is always

a division of y, x0 ∪ x1 . . . ∪ xT could be an incomplete cover of x in some cases and

there could be some overlapping between some (xt,xt′) pair. We note the importance

of clarifying this issue, because there has been some confusion in the literature where

the relation of X and Y has not been made sufficiently clear when applying graphical

models to temporal sequences.

It is important though to note the existence of the concept of a step or stage indexed

by the current time t in x, which makes {xt} a totally-ordered set. Despite the actual
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structure of the input random variable set X, the elementary substructure here is

(xt−1,xt) and its corresponding output is (yt−1,yt). Every yt is a descriptive variable

to depict the status of xt, and the current yt has possible dependencies with the current

input and all the previous input and output {xt,xt−1, . . . ,x0,yt−1,yt−2, . . . ,y0}.

4.5.2 Position-based Dependencies

The index variable t = {0, . . . , T} in the one-dimensional temporal-based dependencies

can be extended to a position-based variable v for a structure, where the adjacencies in

the index space {v} could represent much more complex dependencies. The position-

based index variable v could take value either from R2 for a dense two-dimensional

structure or the node set V = {V0, V1, . . . , VN} for a graph G = (V,E), where E is the

edge set describing the connectivity between any node pair 〈Vi, Vj〉 , 0 ≤ i, j ≤ N . Thus

the connectivity of any node pair < Vi, Vj > in G maps to the dependency between ran-

dom variable pair (OVi ,OVj ), Vi, Vj ∈ V,OVi ,OVj ∈ X∪Y. Different settings of graph

G provide convenient ways to describe not only the dependencies between spatially

adjacent objects, e.g. the adjacent image segments, but also similarity/dissimilarity in

the concept space, e.g. the logically closely-related entities in an ontology.

4.5.3 A Combination of Different Types of Dependencies

As described in Section 4.5.1, in temporal-based dependencies, the random variable x ∈
RDx generates the input random variable set X so that the relation between ∀Xi ∈ X

and x can be described by a function Xi = f(x, t, d),∀ Xi ∈ X, 0 ≤ t ≤ T, 1 ≤ d ≤ Dx.

To further our understanding of the dependencies among the output random variable

set Y, a generating random variable y ∈ RDy is considered. Similarly, the relation

between ∀Yi ∈ Y and y can be described by the function Yi = f(y, t, d), ∀ Yi ∈
Y, 0 ≤ t ≤ T, 1 ≤ d ≤ Dy. Suppose y is a configuration to Y, y = {y0, . . . ,yT }
has a more clearer mapping relation to yt, a random variable representing the value

of y at time t. yt is actually a configuration direct to yt. In contrast to {x0, . . . ,xT },
which are determined by the X − Y dependencies, where x0 ∪ x1 . . . ∪ xT could be

an incomplete cover of x and there could be some overlapping between some (xt,xt′)

pair, {y0, . . . ,yT } is always a strict division of y and there should be no overlapping

between any (yt,yt′) pair.

After modelling the output random variable set Y with a generating time-variant ran-

dom variable y, the position-based dependencies existing in y is often worth considering
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for sake of the completeness of the dependencies among Y. Following the notations in

Section 4.5.2, we model the position-based dependencies among y by assuming elements

in y can be indexed by a position-based index variable v, which takes value either from

a Euclidean space R2 or from a node set V = {V0, V1, . . . , VN} for a graph G = (V,E)

where V is the node set and E is the edge set. Because R2 can be equivalently modelled

as the node set V of a locally-connected graph G′ with nodes for every grid position in

R2, we only adopt the node-based index variable v ∈ {V0, V1, . . . , VN} for simplicity.

The combination of the position-based dependencies among yv and the temporal-based

ones among yt provides great potentials in describing complex inter-dependent and

time-variant output space for modelling information-rich structured prediction prob-

lems. We adopt this model in EHR prediction problem.

4.5.4 Summary

In this section , we examine the dependency sources of probabilistic graphical models.

We summarize the dependencies presented in the ontology-based structured prediction

problem as follows:

• The dependencies among related labels in an ontology

• The dependencies among related variables from the observed data

• The temporal dependencies for labels in an ontology along the temporal trajec-

tories

• The mixed dependencies between cliques from both of the input and output sides.

4.6 Transitional Random Field (TRF)

We see a clear trend in the development of probabilistic graphical models. An MRF

models both the input and output set X and Y together in the same random field, with

fully specified inter-dependencies. A CRF, on the other side, totally splits X from Y

and only model the inter-dependencies among Y as an MRF, leaving the structure of

X unknown. This discriminative model brings great benefits and flexibility in setting

up the conditioning of Y on X, however, it also brings chaos. As identified in the

previous sections, the classic settings adopted in the literature are mostly not global

conditioning.
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In this section, we fill the gap by asking these questions:

1. How to describe and define the global conditioning between y and x?

2. Given the locality preserving property which is widely existing in the CRF liter-

ature, what is the methodology for really achieving global conditioning in CRF

models?

3. What is the mechanism for passing the information in x to the output distribution

of a globally-conditioned model?

4.6.1 An Extension to the Heterogeneous Input Model

Recall Definition 4.9, despite that the structure of the heterogeneous input x cannot

be sufficiently modelled, due to the lack of CI information and the complex input space

X , the connections between x and y have been well enhanced. The strong need for

association to cliques in y from x actually makes a global conditioning to the input

from y.

Such relation could be roughly described by : Each feature fragment xi or a group of

feature fragments xC indexed by a known clique C must be associated with any rela-

tion ∀ rj ∈ K from an ontology-based output structure, because the relation between

different parts of x and y is unknown to the model.

In light of this, we propose a special type of CRF with true global conditioning on x

with formalised connection model between y and x.

4.6.2 The TRF Definition

Definition 4.11. The Transitional Random Field:

Given a conditional random field (CRF) Y and its associated undirected graph Gy =

(Vy, Ey), where Y is indexed by Gy’s node set Vy as Y = (Yv)v∈Vy and Ey is Gy’s

edge set, let Gx = (Vx, Ex) be an undirected graph on the input variable X side, such

that X is indexed by the vertices of Gx as X = (Xv′)v′∈Vx. Let Cy be a maximal clique

in Gy, Cx be a maximal clique in Gx, and F = fC(yC |x) |C⊆G be the total feature

function set, the CRF Y becomes a transitional random field (TRF) if and only if:

• F is any structural binding feature function set of Gy
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• ∀Cy ⊆ Gy, Cx ⊆ Gx, ∃fC′(yC′ , x ∈ xCx) ∈ F |C′⊆Cy

Recall Definition 4.7, F could be an arbitrary clique-based decomposition to Gy as long

as it satisfies the two conditions.

It is worth noting that a graph Gx = 〈V,E〉, V 6= ∅, E = ∅ on the input side can

still form a TRF with a structured output structure Gy. This could actually be an

extreme case for heterogeneous input model, where none of the structural information

is available and each maximum clique is a single node in x. Nevertheless, it still could

be a global conditioning scenario.

Corollary 4.6. A conditional random field with the heterogeneous input data model is

a TRF.

Proof. Recall the third feature in the definition of the heterogeneous input model 4.9,

each feature fragment xi ∈ x or a clique C-indexed xCx is associated to any relation

∀rj ∈ K, where the domain knowledge K-based relation rj is defined on all the cliques.

Thus, any clique-indexed xCx , including the maximal clique indexed ones form feature

functions with all the cliques in Gy. Therefore, such feature function exists for any pair

of cliques from both x and y. This is actually a stronger connection type. Moreover,

given all the formed feature functions indexed by cliques from x and y, a structural

binding feature function set can always be extended and developed. Thus, a conditional

random field with the heterogeneous input data model is a TRF.

Theorem 4.7. A TRF does not have the locality preserving property.

Proof. The proof is straightforward: ∀xCx |Cx⊆Gx , and any two non-overlapping maxi-

mal cliques (if not exists, the locality preserving property does not hold automatically)

∀C1, C2 ⊆ Gy, C1 ∩ C2 = ∅, according to the definition of TRF, ∃fC′1(yC′1 , x ∈ xCx) ∈
F |C′1⊆C1

and, similarly, ∃fC′2(yC′2 , x ∈ xCx) ∈ F |C′2⊆C2
. Thus, xCx ∈ x1 and xCx ∈ x2,

x1 ∩ x2 6= ∅. Thus, a TRF does not have the locality preserving property.

4.6.3 Features of TRF

Now we can answer the motivation questions as follows:

1. The global conditioning between y and x is described and defined by the connec-

tion between any pair of maximal cliques from y and x.
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2. Given the proof the locality preserving property does not hold for TRF, being a

TRF is a gold standard for global conditioning.

3. Given the classic definition of a CRF (a TRF is still a special type of CRF), the

probability given by the model p(y|x) is factorized according to Gy. Given that

the feature functions defined over cliques are having corresponding x configura-

tions as parameter(s), the probability mass is inevitably influenced by x. This is

the mechanism for passing information.

We now can have a brief summary over the features of TRF:

• A loose of clique size limitation: recall that the feature function set F could

be any structured binding feature function set of Gy, the TRF retain the full

capability of the expressing power from an arbitrary clique. Despite that, it is

worth noting that it is not compulsory to cover all the large-sized cliques.

• A true global conditioning over x, with formalised methodologies.

• A wider range of applications for structured prediction, where a global condition-

ing is necessary.

4.7 Conclusion

In this chapter, we address the problem of probabilistic modelling, given the formalised

problem modelling from previous chapters. Being the basis of a probabilistic graphical

model, the feature functions are the real vocabulary for representing the structural

information defined by a graph. Given the surprisingly amount of confusion in the lit-

erature, we fully examine the structural equivalence between a set of feature functions

and the structure and propose the criterial for structural binding feature function set.

Moreover, by bridging the relation in semantic knowledge abstraction and the feature

function, we propose the definition of knowledge embedding feature function for seman-

tic equivalent knowledge embedding. After discussions on the features of heterogeneous

input and the dependency source on the output side, we propose the concept of TRF

to lose some vital limitations to classic CRF models. This inevitably will impact the

model training and inference process, which we will examine in next sections.



5
The Transitional Random Field (TRF): Inference and

Estimation

5.1 Introduction

The structural setting for TRF proposed in the last chapter stands for a general case

of CRF abstracted from a majority real-world prediction problems. To address the

efficiency problem of traditional algorithms, we develop related methodologies to make

efficient training and inference possible for highly-connected graphical models.

In this chapter, we first discuss the challenges from this class of problems in the context

of training and prediction, and then progressively develop novel methodology to tackle

these problems.

To capture the pairwise relations implied/fixed by the model, we also develop a novel

similarity measure. It turns out that this new measure has multiple benefits to model

learning, in addition to measuring the similarity between heterogeneous object pair

itself. Thus, a training algorithm can be built based on it. Actually, similarity measure

plays a critical role in the era of data explosion, not only because it is a basis of the

traditional data querying and clustering techniques, but also because it is a decisive

metric over the entire data topological structure, which stores huge information. How-

ever, the similarity measure is often not straightforward especially when considering

data with heterogeneous structures and features. Moreover, the loss of certainty in

time series data with complex structure and conspicuous noise makes defining sim-

ilarity even more difficult. Thus, probabilistic models with adaptive and expressive

structures are more capable of understanding the inner structure of such data set. In
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this paper, probabilistic graph model, specifically Conditional Random Field (CRF) is

adopted to solve the similarity measure learning problem over the real world Electronic

Health Record(EHR) data.

The discriminative conditional random field is an expressive model to connect the

topologically indexed output random field to the observed input data. The difficulty in

training and inferencing over general structured probabilistic graphs has greatly limited

the application of CRFs to real world problems. Although accelerated sampling based

inference method is possible, as examined in this paper, the deterministic approaches

are still the optimal solution. The feature functions have intrinsic connections with the

graph structure. Thus, a further exploitation over the feature functions results a novel

similarity measurement as well as a fast deterministic training algorithm.

The traditional methods for inference also do not fit in our TRF model. It either

oversimplified the problem by making assumptions on the distribution (e.g. Gaussian)

or rely on special sub-structures (e.g. chordal graph). Moreover, there lacks the method

for inferencing over continuous output space without the distribution space.

In the ontology-based prediction problem with a semantic hierarchy as the vocabulary,

we identify the inference target, a group of predictions. Thus, we develop a straightfor-

ward method for inferring the result. Experimental results prove its effectiveness and

efficiency, as will be demonstrated in the experiment chapter.

The contributions in this chapter can be summarised as follows:

1. Examining the existing training and inference algorithms for probabilistic graph-

ical models do not fit for TRF, thus a novel training and inference framework is

needed.

2. Propose a semantic hierarchy-based novel similarity measurement, such that het-

erogeneous input data can be put into a rigid yet comprehensive descriptive struc-

ture.

3. Discuss the benefits of the proposed similarity measurement and provide theoret-

ical proofs for the effectiveness and its efficiency.

4. Develop a novel training framework to solve the additional training and inference

problem for the whole MRF/CRF family.

5. Develop a novel semantic feature-based inference algorithm with the ability to

fully utilise the ontology-assisted domain knowledge in the hierarchy.
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5.2 Background

Given the formal definition of the TRF, we need to utilise the probability distribu-

tion defined by the model to conduct training, inferencing and distance calculating

efficiently. To fully exploit the potential of the TRF model, we first examine the linear-

chain structure in a CRF as background and then discuss the variations and challenges

from TRF. For more details on this topic, see [Mur12].

5.2.1 The General Setting

For a general training problem, we have a training set D = {(xi,yi)}Ni=1, where N is the

number of training examples and the hypothesis h is represented by the model. The

two major target estimations are the maximum a posteriori (MAP) and the maximum

likelihood estimate (MLE), which can be formally written as the following:

ĥMAP = arg max
h

p(D|h)p(h)

ĥmle = arg max
h

p(D|h) = arg max
h

log p(D|h)

Clearly, the core part of the MAP or MLE is log p(D|h), which is the log-likelihood

of the data set D, given the hypothesis/model. Thus, a rewritten to a log-linear form∑
log p(yi) is more straightforward because normally p(y) has analytical forms by the

model.

5.2.1.1 Linear Chain CRF Training

We first examine the training process for a linear chain CRF based on unary and

pairwise elementary decomposition for obtaining the MLE of the parameter θ.

Concretely, the parameter estimation method aims at estimating the parameters θ =

{λk} of a linear-chain CRF from the given independent and identically distributed (iid)

training data D = {x(i),y(i)}Ni=1, where each x(i) = {x(i)
1 , x

(i)
2 , . . . , x

(i)
T } is a sequence of

inputs, and each y(i) = {y(i)
1 , y

(i)
2 , . . . , y

(i)
T } is a sequence of the desired predictions.

Given that a CRF is a discriminative model, the conditional probability is directly

modelled. Thus, we can have this conditional log likelihood form as follows:
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`(θ) =

N∑
i=1

log p(y(i)|x(i)) (5.1)

Recall that the linear CRF has a direct decomposition over edges, which are essentially

their maximal cliques. Thus, we have a neat form of decomposition based on feature

functions defined on edges and/or nodes.

`(θ) =

N∑
i=1

T∑
t=1

K∑
k=1

λkfk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

N∑
i=1

logZ(x(i)) (5.2)

In general, the function `(θ) cannot be maximized in closed form, so numerical opti-

mization is used. The partial derivatives are:

∂`

∂λk
=

N∑
i=1

T∑
t=1

fk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

N∑
i=1

T∑
t=1

∑
y(i)

fk(y
(i)
t , y

(i)
t−1,x

(i)
t )p(y(i)|x(i))− λk

σ2
(5.3)

The function `(θ) is concave, thanks to the general convexity of functions of the form

g(x) = log
∑

i expxi.

5.2.1.2 Training for Generally Connected CRF/MRF

Clearly, the simplest form of decomposition is based on linear structured feature func-

tions. Concretely, the number of feature functions is linear to the length of the target

sequence. However, the definition of TRF allows a feature function set with arbitrary

clique size setting. Thus, the number of feature function indexed by cliques is poten-

tially much higher. Actually, this is exact the same problem in the training problem

for generally connected CRF/MRF models.

We first examine the log-linear form of an MRF:

p(y|θ) =
1

Z(θ)
exp

(∑
c

θTc φc(y)

)

where c is the clique index.

the scaled log-likelihood is thus:

`(θ) ,
1

N

∑
i

log p(yi|θ) =
1

N

∑
i

[∑
c

θTc φc(yi)− logZ(θ)

]
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Because MRFs are in the exponential family, this log-likelihood function is convex in

θ. Thus, there exists a unique global maximum so that we can apply gradient-based

optimizers.

The derivative for the weights of a particular clique c as input to the optimizer:

∂`

∂θc
=

1

N

∑
i

[
φc(yi)−

∂

∂θc
logZ(θ)

]

The CRF model, on the other side, is a discriminative one. We follow the conditional

distribution representation as follows:

p(y|x) =
1

Z(x)

∏
ΨA∈G

exp


K(A)∑
k=1

λAkfAk(yA,xA)

 (5.4)

Note that now the feature functions are indexed by cliques, thus the number of feature

functions could be exponential if we enumerate all the possible cliques, while this setting

is still a valid decomposition. Given the simplicity of log-linear form, the conditional

log likelihood can be written as:

`(θ) =
∏
Cp∈C

∏
Ψc∈Cp

K(p)∑
k=1

λpkfpk(xc,yc)− logZ(x) (5.5)

The partial derivatives are:

∂`

∂λpk
=

∏
Ψc∈Cp

fpk(xc,yc)−
∏

Ψc∈Cp

∑
y′c

fpk(xc,yc)p(y
′
c|x) (5.6)

Clearly, in the training process, we need to enumerate all the possible configuration y′c

in calculating the partial derivatives, which is exponential to the size of the clique c. In

addition, inferring the value for Z(x) also requires an enumeration over all the possible

y over the whole graph, for even one x. This involves the inference problem, which we

examine in the following section.

5.2.1.3 The CRF/MRF Inference

There are two common inference problems for CRF/MRFs. The first inference task

happens during training, as discussed, computing the gradient requires marginal dis-

tributions for each clique p(y′c|x) and computing the likelihood requires inferring the
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value of Z(x). Moreover, this calculation is required for every step of optimization,

which makes it computationally intractable.

The second type of inference is the labelling process in y∗ = arg maxy p(y|x), e.g., the

most likely (Viterbi) labelling. Because the inference is mostly about how to compute

for every possible configuration y′. A naive inference method is to enumerate all the

possible y′. Thus, in linear-chain CRFs, both inference tasks can be performed effi-

ciently and exactly by variants of the standard dynamic-programming algorithms for

HMMs due to the linear structure. For generally connected MRF/CRF, however, this

exact inference problem is a #P -complete problem. Concretely, the time complexity of

such algorithm is in Θ(|Y |n), |Y | is the size of Y space and n is the length of possible

y′. Clearly, the naive inference is computational intractable. Because a TRF is also

a CRF, its inference is also a #P -complete problem. For more details on this topic,

see [Mur12].

5.2.2 Approximations

Given the complexity in exact inference and the overall training and prediction frame-

work, sampling-based method attracted wide interests in the research community and

the primary target is to approximate the value of partition function.

5.2.2.1 The Partition Function

The partition function appeared in the MRF and CRF definitions roots from sta-

tistical physics and plays an important role in probabilistic modelling and machine

learning [Mur12].

However, computing the partition function is normally computationally expensive and

it is a major issue with all the Gibbs measure based models, e.g. MRF and CRF.

As introduced in Theorem 4.2, the partition function for discrete output random vari-

ables in MRF takes the form of

Z(θ) ,
∑
x

∏
c∈C

ψc(yc|θc)

We can also have a more general definition for discrete outputs as:
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Definition 5.1. Given a set of discrete random variables X taking on values {x}i, and

some sort of potential function or Hamiltonian H(x1, x2, . . .), the partition function for

Xi is defined as:

Z(β) =
∑
xi

exp(−βH(x1, x2, . . .))

The sum over the xi is understood to be a sum over all possible values that each of the

random variables Xi may take.

5.2.2.2 Efficient Inference by Sampling

A distribution Q(X) is calculated as the best approximation to the true probability

distribution P (X|I,θ) = 1
Z(I,θ) exp(−E(X|I,θ)) of the model. Q(X) is assumed to be

a product of independent marginals over each of the variables Q(X) =
∏
iQi(Xi) with

the constraint that
∑

xi
Qi(Xi) = 1, Qi(Xi) ≥ 0.

For example, To make an estimation for
∑

y′ p(y
′|xt)× fj(y′,xt), if we write:

p(y′|xt) =
exp[score(y′|xt)]

Z(xt)
=
p̃(y′)

Zp

some other distribution q(y′)

q(y′) =
q̃(y′)

Zq

if we write:

r̃(s) =
p̃(y(s))

q̃(y(s))

then:
Zp
Zq
≈ 1

S

∑
s

r̃(s)

Thus, the sum over all clique configurations y′ can be approximated by:

∑
y′

p(y′|xt)× fj(y′,xt) ≈
Zq
Zp

1

S

S∑
s=1

fj(y
(s),xt)

p̃(y(s))

q̃(y(s))
,y(s) ∼ q(y)

≈ 1

S

S∑
s=1

fj(y
(s),xt)

r̃(s)

1
S

∑
s r̃

(s)

=

∑S
s=1 fj(y

(s),xt) · r̃(s)∑
s r̃

(s)

Thus, both the two inferences can be calculated efficiently by sampling according to

some arbitrary distribution q(y) without enumerating all the possible y′.
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5.2.3 Summary: Problems with Sampling-Based Methods

The sampling-based method seems attractable, particularly when the CRF/MRF is

fully connected, which makes the gradient computation require performing exact infer-

ence over all the possible distributions for very large cliques [KK13].

The approximation based methods are studied extensively by the community [Bis07,

SM12], however, as pointed out by [SM12], the numerical value tends to be very sensi-

tive to the divisor Z(x). It is important to note that there can be complex inter-actions

between the inference procedure and the parameter estimation. Actually, putting the

approximate inference in the subprocess of numeric optimization could the whole train-

ing process much more unpredictable. Moreover, we will demonstrate that the tradi-

tional training and prediction framework does not fit the TRF due to its special input

and output settings.

5.3 The Structural Challenges from TRF

Given the discussions in previous sections, the traditional training and prediction frame-

work is problematic for generally connected CRF/MRFs. This significantly affects the

application of these types of models due to the structural limitation posed by training

and inference efficiency problems.

In this section, we first examine the variations TRF could bring to traditional CRF/MRF-

based methods. The potential challenges to existing learning and prediction methods

motivate us to further exploit the possibilities in developing novel methodologies for

this new model.

5.3.1 The Heterogeneous Input

We developed the heterogeneous input model in the context of probabilistic dependen-

cies from x to y. Nevertheless, it also affects traditional MRF/CRF-based algorithms.

Given a heterogeneous input x, a direct result is the input space X cannot be enumer-

ated. Thus, for an MRF, the value of partition function Z(x) cannot be calculated

simply by enumerating over possible configurations.

The change of the input space X also affects the potential feature functions. In both a

CRF and an MRF, a feature function should put the input space X into its domain in
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order to generate feature scores. This is particularly true for indicator-based features,

where features are directly based on the value of inputs.

5.3.2 Number of Indexing Cliques

Recall that a TRF only requires the feature function set F to be structural binding

set, which means the number of indexing cliques could be large. Consider the feature

functions could also be indexed by a pair of cliques, the potential number is even higher.

Putting aside the possible affection the training and inference process. A shear increase

of indexing cliques only results an increase of the length of weight vectors. Nevertheless,

numeric optimizers are often sensitive to the length of weight vector during training.

5.3.3 Size of Indexing Cliques

The size of a clique is important to traditional training and inference methods. Because

in an MRF, we need to enumerate over all the possible configurations for the input x to

calculate the value of the feature functions and then sum them over, the number of the

possible x configurations is a major factor in estimating the complexity in calculating

the partition function Z(x).

5.3.4 The Partition Function with Continuous Input

Given a set of continuous random variables Xi and some sort of potential function or

Hamiltonian H(x1, x2, . . .), the partition function for Xi is thus defined as:

Z(β) =

∫
exp(−βH(x1, x2, . . .)) dx1 dx2 · · ·

5.3.5 Summary

Given the above discussions, without going further to the details of existing training and

inference techniques, we exploit other possibilities for efficient training and inference.

5.4 Similarity and Distance for Heterogeneous Data

Distance and similarity represent a quantitative degree of how far apart or how near

two objects are, respectively. The choice of distance/similarity measures depends on the
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extent to which we can precisely represent and abstract target objects. In this section,

we discuss available distance/similarity measures for different levels of abstractions with

a special consideration to the applicability to heterogeneous data.

Given the complexity in training the structured prediction models for heterogeneous

data, in this section, we consider using a similarity measurement s(x1,x2) for two

heterogeneous observations x1,x2 ∈ X , where X is an infinite input space, to learn

some basic topological information. We first examine how similarity measurements

work and then develop a novel similarity measurement for heterogeneous data.

5.4.1 The Projected Space for Similarity Measurement

A similarity measure s(x1,x2) actually projects the given input to a target space where

it can easily define the concept of distance. Clearly, there are numerous possibilities

for constructing such space. We examine several major types in the following.

5.4.1.1 Norm/Form-Based Similarity

Norm/form-based similarity measurements try to define similarity based on represen-

tations, e.g., the norm of feature vector, matching level of structural features, etc. The

implication is that the norm or form of a representation reflects some location infor-

mation in the projected space. There are a huge amount of work on this. For a review

on this topic, see [SWS+00]. However, because this method lacks of semantic interpre-

tation, it generally does not fit for heterogeneous data, due to the infinite input space

X .

5.4.1.2 Probabilistic Similarity Measurement

There are many probabilistic similarity measures that have been proposed in the lit-

erature. For a recent survey see [Cha07]. In this type of method, the abstraction of

x1 and x2 to random variables actually simplifies the problem. By making use of the

toolset for measuring probability distributions, one can directly measure the similar-

ity in terms of statistical features. However, none of these methods could be directly

applied in our approach, so we defined a new similarity measure to fit the particular

requirements of our model in Section 5.2.
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5.5 The TRF-based Similarity

Given the difficulties in directly measure the topological-related norm of heterogeneous

data, we seek an approach that could

1. reflect the similarity with consideration to semantic meanings.

2. utilise numerical values to indicate the similarity in a precise way.

In this section, we first examine an interesting CRF-based similarity. Then we develop

a new framework for the heterogeneous data.

5.5.1 CRF based Similarity

In [MBP05], CRF were applied to measure the distance/dissimilarity between strings.

The conditional probability of some alignment a given two strings x and y can be

formally defined in the form of a variation to the traditional CRF as p(a|x,y) =
1

Zx,y

∏|a|
i=1 Φ(ai−1, ai,x,y). However, despite CRF itself is a probabilistic model, this

method falls in the category of exacting matching based similarity measures, thus

cannot be applied to the heterogeneous data.

However, this methods provides some interesting insights as described in the following:

1. Given the difficulties in measuring the similarity between x and y directly, an

alignment a is utilized as a descriptive object to indicate how match the two

inputs are.

2. The structured prediction model adopted actually projects the information be-

tween x and y to the output structure. For example, the output distribution

varies according to different a value, thus forms a distribution as prediction.

5.5.2 A New Probabilistic Measurement Scheme

Consider a discriminative probabilistic graphical model, e.g., a CRF, the conditional

probability distribution p(y|x) for any (x,y) pair is given by the model, it the well-

defined analytical form. Such mechanism actually bridges x and y in a compact yet

divisible way. The conditional probability connects these two parts of variables, how-

ever, they are still separable. Thus, it is interesting to exploit further potentials from
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x1

y1 y2

| P(y1|x1) P(y2|x1) |-

Figure 5.1: Using the output configuration as a descriptive structure for a given input
in a fixed-structure discriminative model.

this discriminative setting. Example: Let us consider a fixed structured CRF model,

where the output structure is fixed no matter what the input x is (a counter example is

a linear chain CRF model in the sequence tagging problem, where the model outputs a

y configuration for various-length input sequence with different but similar structures).

More concretely, for a group of fixed-length input sequences/sentences, the output Y
space consists all the possible ys with a fixed length as well. Recall the probability

mass function definition in CRF, ∀y ∈ Y we have p(y|x) > 0 for any possible x. In

another word, ∀y ∈ Y is possible of becoming the right representation of the input x, as

depicted in Fig 5.1. Thus, for two given pairs of input and output configuration (xi,yi)

and (xj ,yj), the configurations to the output structure yi and yj provide structural

interpretations to xi and xj , respectively. In this case, the difference in values when

using one output configuration, e.g., yi or yj for another input, e.g., in this case, xj or

xi, gives an insight to the difference between xi and xj .

Now let us examine the meanings of these four pairs: p(yi|xi), p(yj |xi), p(yi|xj) and

p(yj |xj). With the assumption that these conditional probabilities are from a fixed-

structured CRF, yi and yj are valid candidate structured output configurations for any

x.

Thus, |p(yi|xi) − p(yi|xj)| can partially reflect the difference between xi and xj . The

same is with |p(yj |xi) − p(yj |xj)| for xi and xj in the sense of yj . Such difference

will have more sense if (xi,yi) and (xj ,yj) are already the most-likely pairs, where

p(yi|xi) and p(yj |xj) get their maximals given the model. Thus, without going to much

to details here, we only point out that ∀k, p(yk|xi)
p(yi|xi)

represents the percentage yk could
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y1 y2

x1 x2

P(y1|x1)

P(y1|x2) P(y2|x1)

P(y2|x2)

Figure 5.2: Using two output configurations as descriptive structures with a cross-
representation for two given inputs in a fixed-structure discriminative model.

achieve in terms of representing xi compared to xi’s optimal/most likely representation

yi.

5.5.3 Semantic Hierarchy based Similarity

It is worth nothing the assumption that the criminative model being a fixed-structured

one is difficult for real-world problems, particularly for heterogeneous data. For this

type of structured prediction problem, a fixed output semantic hierarchy provided

by the ontology is important in constructing such descriptive structure. Recall the

domain knowledge abstraction and embedding, an ontology-based hierarchy is used as

the descriptive output structure for ontology-assisted structured status prediction. In

this way, the input x can be projected into a conditional probability space of y as long

as the semantic hierarchy based discriminative model has the abilities in the following:

• Given a trained model, ∀y ∈ Y, the model gives a p(y|x) indicating the likelihood

for y becoming the best describing structure for x

• Given a trained model and an input x, the model can infer the best y to describe

x, such that p(y|x) is the largest possible value.

5.5.4 The Similarity Function Definition

Suppose a parameter vector Λ = {λk} ∈ RK is obtained after training with a best

overall log-likelihood. A most likely configuration y can be inferred from the parameter
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y1 y2

x1 x2

P(y1|x1)

P(y1|x2) P(y2|x1)

P(y2|x2)

P(y1|x1) P(y2|x2)

P(y2|x1)P(y1|x2)

x1 ~ x2

y1 ~ y2

Figure 5.3: The cross-representation for describing a pair of input observations by
utilising a pair of most-likely output configurations in a TRF.

vector Λ and the feature function set. Thus, for observation x1 and x2, we can get two

pairs: (x1,y1) and (x2,y2).

Given the discuss above, we can have a measurement for this semantic hierarchy based

pairwise similarity in a symmetric way.

p(y1|x2)

p(y1|x1)
= s(x1,x2|y1) (5.7)

Eq: 5.7 reflects the similarity between x1 and x2 in the view of y1, and similarly, we

have:
p(y2|x1)

p(y2|x2)
= s(x1,x2|y2) (5.8)

Eq: 5.8 reflects the similarity between x1 and x2 in the view of y2.

Because we can have a symmetric representation to measure the aggregated similarity

between x1 and x2 in both views of y1 and y2 at the same time, which can be written

as:

p(y1|x2)

p(y1|x1)
× p(y2|x1)

p(y2|x2)
= s(x1,x2|y1,y2) (5.9)
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It is important to note that, we also have semantic interpretations for the cross terms,

as depicted in Fig 5.3: the p(y1|x2)
p(y2|x2) and p(y2|x1)

p(y1|x1) .For example, in the case of p(y1|x2)
p(y2|x2) , it

represents the percentage of description power y1 has as an alternative for y2 in best

describing x2. Because the (x2,y2) is known to be most-likely pair, p(y1|x2) can never

exceed p(y2|x2). Thus, we have

0 <
p(y1|x2)

p(y2|x2)
≤ 1 (5.10)

Similarly, we can also have

0 <
p(y2|x1)

p(y1|x1)
≤ 1 (5.11)

Thus, we have a nice property in combining these two terms (Eq: 5.10 and Eq: 5.11) into

the cross product-based semantic representation in Eq: 5.9, which we will demonstrate

by giving a formal definition for the similarity measurement as follows:

Definition 5.2. The Similarity Measurement for Heterogeneous Input

Let xa and xb be two observations for a TRF, Λ = {λk} ∈ RK be a parameter vector

learnt from training process, {fk(yt,xt)}Kk=1 be a set of real-valued feature functions,

and (xa,ya) and (xb,yb) be two most likely configuration pairs. Then the similarity

between xa and xb can be defined as:

S(xa,xb)
def
=

√
p(ya|xb) · p(yb|xa)
p(ya|xa) · p(yb|xb)

∈ (0, 1] (5.12)

Clearly, the higher value of S(xa,xb) is, the more similar xa and xb are to each other.

Theorem 5.1. The similarity measurement S(xa,xb) defined in a TRF is a Mercer

kernel.

Proof. Given that G is a TRF, any probability mass is non-zero and normalized.

S(xa,xb) is strictly positive definite according to the property of cross-product terms.

Thus, the S(xa,xb) for TRF is a Mercer kernel.

In summary, this similarity-based approach makes use of the topology fixed by a

criminative model defined by a class of general probabilistic models. Although a

fully modelling of the overall probability distribution requires calculating the obser-

vation x-dependent partition function Z(x), the pairwise relation can be calculated

directly from a weight vector θ for any pair of (xi,xj). The modelling of this novel

similarity measurement relies on the cross relation between different combinations of
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p(ya|xb), p(yb|xa), p(ya|xa), p(yb|xb), as discussed. This results in a neat form and a

great computational benefit which we will introduce next.

5.5.5 Efficient Evaluation

According to the definition above, the similarity between two observations is

S(xa,xb)
def
=

√
p(ya|xb) · p(yb|xa)
p(ya|xa) · p(yb|xb)

Recall the form of probability distribution defined by a TRF or a CRF:

p(y|x,θ) =
1

Z(θ)

∏
c∈C

ψc(yc|x,θc)

Each conditional probability can be written in the log-linear form. However, as we

mentioned above, computing the instance-specific normalisation function Z(θ) is com-

putational intractable, which is one of the major factors to the difficulty of training

and inference for MRF/CRF model family.

If we calculate p(ya|xb), p(yb|xa), p(ya|xa), p(yb|xb) separately to get the similarity

measurement, we’d missed the nice view.

Fortunately, if we expand Eq: 5.12 with the distribution, we can have:

S(xa,xb) =

√√√√√ exp[score(ya|xb)]
Z(xb) · exp[score(yb|xa)]

Z(xa)

exp[score(ya|xa)]
Z(xa) · exp[score(yb|xb)]

Z(xb)

where the score(ya|xb), score(yb|xa), score(ya|xa) and score(yb|xb) are basically linear

function of θ and the feature function set fθ(x,y). Then the partition functions are

eliminated and the S(xa,xb) can directly calculated by without any calculation for the

partition function Z(xa) and Z(xb). The neat form we have for S(xa,xb) now is:

S(xa,xb) =
√

exp[score(ya|xb) + score(yb|xa)− score(ya|xa)− score(yb|xb)] (5.13)

Where the score is the dot product between the trained weight vector and the fea-

ture functions. Thus, this similarity function can be efficiently evaluated without the

calculation of partition function Z(x).
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5.5.5.1 Evaluation Complexity

Theorem 5.2. The time complexity for evaluating any S(xa,xb) is O(1).

Proof. According to Eq: 5.13, there are only one factor θ that actually influences the

overall time complexity. Given that |θ| is constant, which thus makes |fθ(x,y)| also a

constant, the overall time complexity in calculating S(xa,xb) is in O(1).

5.5.5.2 Evaluation Algorithm

We propose the algorithm for evaluating S(xa,xb) as follows:

input : Two pairs of most likely pairs xa, ya, xb, yb
output : The similarity measurement S(xa,xb)
parameter: Feature function set F , θ

1 Feature function set F is structural binding and θ is trained successfully ;
2 for i← 1 to |F | do
3 score← score+ θi × (fi(ya,xb) + fi(yb,xa)− fi(ya,xa)− fi(yb,xb));
4 score←

√
exp(score);

Algorithm 1: The similarity measure evaluation for heterogeneous input data.

5.6 TRF Training

We demonstrate the methodology for training TRF based on pairwise distance provided

by the novel similarity measure function.

5.6.1 Motivation for Similarity Based Training

Consider the classic training setting for a structured prediction problem, given a data

set D = {(xi,yi)}Ni=1, the training labels yi |i∈[1,N ] provides a target distribution that

the training model is about to fit in. In classic training setting, the information em-

bedded in the yi |i∈[1,N ] is usually processed independently. That is, the (xi,yi) pairs

are assumed to be i.i.d. and xi and yi are put into the training model directly without

further exploiting the embedded information.

In the case of plain label set in the simple multi-label problem setting, although obser-

vations xi with the same labels can be deemed as similar to each other, it is difficult to
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quantify the difference and bring it into the probabilistic model. Meanwhile, it is fairly

likely that the person who chose the label did the selection simply because there is no

better option. Thus, in this scenario, modelling the similarity between input data is

extremely difficult. The possible reasons are as follows:

• Plain label set structure generally means less latent information embedded. For

a categorical small label set it usually difficult to measure the similarity solely

based on the tagging.

• The main cause for label choosing in the case of plain label set is that, often the

chosen label is given simply because the person didn’t have other better choice.

This falls into the category of MLE. However, such information is not rich enough

to model the similarity instead of pure ranking.

In the case of complex structured prediction, however, the training set has much more

information embedded, particularly for ontology-based output semantic hierarchies.

This is because:

• The ontology-based structures are normally easier to define similarity/distance

by its semantic nature. These structures usually have directed hierarchical in-

formation embedded inside already. The reason behind is straightforward - due

to the increased descriptive power from complex output structures, the ontology-

assisted learning has the ability of being describing the heterogeneous observation

in a much more fine-grained accuracy.

• The main cause for one configuration yi appearing in the training set usually is

not the lack of choices. Given that the form of distributions could be various, the

person who made the configuration for training usually has other choices. Thus,

the yi here is a MLE and at the same time they form a topological space where

relative similarity and distance among the whole training set could be induced.

In summary, a further exploitation to the latent information in the training set is

promising for structured predicting model training, particularly when considering the

general computing difficulties from traditional method in training the MRF/CRF-based

models. Given the efficiency provided by the proposed similarity measurement for

general semantic hierarchy-based output, it is interesting to examine the similarity-

based training techniques.
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5.6.2 Similarity-based Training for TRF

Given the discussion above, we have an improved description for the training setting

of TRF, where a fixed ontology-based semantic hierarchy is used as the descriptive

output structure. Given a data set D = {(xi,yi)}Ni=1 and the assumption that these

day obeys i.i.d., the training set D = {(xi,yi)}Ni=1 implies a topological space where the

similarity information is embedded, such that observations which are similar to each

other according to the ontology-based domain knowledge would have similar confidence

value distributions over the semantic hierarchy.

Theorem 5.3. The Equivalence between the MLE and the Similarity-based Methods

for TRF θ is the MLE of an exact-inference trained TRF if and only if θ is also the

MLE of the similarity-based method trained TRF.

Proof. The uniqueness of MLE is guaranteed by the convexity of the log-likelihood

function of a TRF. Hence, if a MLE of one method with gradients equal to 0, it is the

MLE, then its uniqueness is guaranteed. thus it is also the MLE of the other training

method, and vice versa.

5.6.3 The Training Algorithm for TRF

By revealing the dual form of the training process from the perspective of negative

log likelihood and pairwise distances we obtain Algorithm 2 based on the proposed

similarity measure. With a discriminatively-trained graphical model, where a unified

ontology-based semantic hierarchy is adopted as a fixed output structure, we further

demonstrate in Chapter 6 the capability of the proposed similarity measure in simpli-

fying geometric analysis of the projected space.

5.7 Inference for TRF

Given the difficulties in inferencing for traditional MRF/CRF models, we propose the

novel methodology for directly inferencing with semantic structural features by giving

the proofs directly as follows.

Theorem 5.4. Given a TRF with continuous output confidence value distribution, a

structural binding feature function set F and a fully trained weight vector θ, there is

always a range of distributions {y∗} that is y∗ = arg maxy p(y|x).
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input : A training set D = {(xi,yi)}Ni=1, The similarity measurement
S(xa,xb)

output : θ
parameter: Feature function set F

1 Feature function set F is structural binding and θ is initialized with 0.5f ;
2 for step← 1 to LBFGS Converge do
3 for i← 1 to N do
4 for j ← 1 to |F | do
5 score← score+ θj × (fj(yi,xi));
6 score← score− 2× logS(xi,x

′
i);

7 for j ← 1 to |F | do
8 gradientj ← gradientj + 2× score× (fj(yi,xi));

9 LBFGS Optimizing;
Algorithm 2: The similarity-based TRF training.

Proof. The feature function set F could be treated as single function as F (y,x,θ).

Because F is a structural binding feature function set, F is not a full indicator function.

Thus, there are always more than one points achieve maximal p(y|x) |θ.

Theorem 5.5. Given a TRF with continuous output confidence value distribution, a

structural binding feature function set F and a fully trained weight vector θ, one can

always induce another y∗ from an origin one y, such that y∗ = arg maxy p(y|x).

Proof. The same argument as 5.4 above applies here.

Theorem 5.6. Given a TRF with continuous output confidence value distribution,

an ontology O-based hierarchy H, a structural binding feature function set F with H-

edge-indexed structural features and a fully trained weight vector θ, one can induce the

y∗ = arg maxy p(y|x) directly.

Proof. According to 5.4, with a fixed θH , one can always induce a group FθH , such

that the corresponding yFθH
is obtainable. Then according to 5.5, the optimal y∗ is

obtainable, s.t., y∗ = arg maxy p(y|x) .

5.8 Conclusions

Similarity measures used in supervised machine learning methods typically assume

a fixed-width vector representation for data and a scalar class label, but these can-

not be used for structured prediction tasks with heterogeneous input data. Following

the contributions to modelling the TRF related structured prediction problem, in this
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chapter, we developed and proposed novel algorithms to tackle the computing problem

over the entire CRF/MRF model family. To better model and understand seman-

tic states underlying heterogeneous data we present a novel similarity measure in the

context of discriminatively-trained graphical models, where a unified ontology-based

semantic hierarchy is adopted as a fixed output structure. This similarity measure

greatly simplifies geometric analysis of the projected space defined by discriminative

graphical models. The efficiency of evaluating this similarity measure enables learning

discriminatively-trained probabilistic graphical models without many of the standard

structural limitations, e.g., linear chains, two dimensional grids, etc. Thus, the pro-

posed novel similarity-based learning and prediction framework can be applied to a

much wider range of problems, e.g., recommendation systems, information extraction

systems, etc. In the previous chapters including this one, we did semantic problem

modelling, theoretical modelling and computing problem modelling. Now we move to

the empirical study in the next chapter to provide an insight to the mechanism of the

algorithms proposed when applying to solve real-world problems.



6
Implementation and Experiments with TRF over

Heterogeneous EHR Data

6.1 Introduction

Based on the theoretical techniques developed above, we conduct empirical studies of

the proposed ontology-assisted structured status prediction problem over heterogeneous

EHR data. In this chapter, we first introduce the EHR data and then we report our

experimental results and observations in detail. We conclude the empirical study in

the end.

6.2 The EHR Data Feature

In the empirical study, the major playground for this proposed learning framework is a

real-world data set which was generated and collected in several celebrated hospitals in

Sydney (see Table 6.1). Different types of health-related data records, including text-

based etiology and manifestation descriptions, numerical and categorical test results

from different medical departments with various forms together with strings of cate-

gorical ICD codes as diagnosis results, etc. were gathered with specific time stamps and

patient information. As depicted in Figure 6.1, the heterogeneous EHR data set has

138,737 admission records by 57,941 patients with a huge number of pathological test

results of various kinds and in-hospital movement records. According to Figure 6.2,

the one-time-admission patients take up to 70% of the cohort. The patient number

decreases rapidly as the admission number gets larger.
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138,737 
admissions 
by 57,941 
patients

11,318,584 
pathological 
test results

61,378 
surgical 

procedures

373,120 
ward 

movements

Figure 6.1: The EHR data overview

Figure 6.2: The Histogram of Patients Admission Times
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Definition
[0] number of admissions before the current one
[1] is female
[2] is male
[3] cumulative length of stay (LOS) previous year
[4] time from the beginning of first admission to the current one
[5] time from the end of last admission to the start of current one
[6] length of the last admission
[7] number of pathological tests in the last admission
[8] number of theatre movements in the last admission
[9] number of ward movements in the last admission
[10] current age
[11] length of the current admission
[12] number of pathological tests in the current admission period
[13] number of tests with abnormal results
[14] percentage of tests with abnormal results
[15] percentage of tests with normal results
[16-29] distribution of tests among chosen departments,

with a fixed length list : 14 dept name
[30-43] distribution of tests with abnormal results among

chosen departments, with a fixed length list:14
[44-243] distribution of tests among different panel name,

with a fixed length list : 200 panelname
[244-443] distribution of tests with abnormal results among different panel names,

with a fixed length list : 200 panelname: based on 20000 patients
[444] max interval of all tests in this admission
[445] max interval of tests with abnormal results in this admission
[446] number of adjacent tests(not the same day) with department changes
[447] number of adjacent test(not the same day) with panel name changes
[448] number of adjacent test(not the same day)

with department changes with abnormal results
[449] number of adjacent test(not the same day)

with panel name changes with abnormal results
[450-599] mostly concerned test code count list, appeared tag list: 150
[600-749] mostly concerned test code list, w/ appeared & abnormal tag list: 150
[750] number of theatre movements in the current admission period
[751] time from the start of the current admission period

to the start of the last theatre movement
[752] no surgery period time
[753] accumulative length of surgery for this admission
[754] max length of surgery in this admission
[755] min length of surgery in this admission
[756] average length of surgery in this admission
[757] max interval of surgery in this admission
[758] min interval of surgery in this admission
[759] average interval of surgery in this admission
[760] number of ward movements in the current admission period
[761-786] mostly concerned ward tag list: 26
[787] max length of ward stay in this admission
[788] min length of ward stay in this admission
[789] average length of ward stay in this admission
[790] time to the first ward change from the start of current admission
[791] time from the last ward change to the end of the current admission

Table 6.1: Complete Feature list for X
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6.2.1 The Heterogeneous EHR Data Features

The EHR data presents several unique features which make traditional prediction model

inapplicable to the heterogeneous structures. Potential limitations imposed by these

features are discussed as follows.

• Sparse
• Both numerical and categorical 

values
• Multidimensional
• Less periodicity demonstrated
• Noise, various lengths

Heterogeneous input

• Classification & Prediction
• Probabilistic graphical 

modelling
• Efficient training and inference

Difficult learning tasks

Figure 6.3: The heterogeneous EHR data challenge

6.2.2 Different Perspectives of the Input Data

The logical hierarchy for Pk and Ak described implies different possible ways of event

grouping. For every event ei with a time stamp falls in a corresponding time interval

tkl (tkl ∈ akl ,a
k
l ∈ Ak, 1 6 l 6 |Ak|), we have ei ∈ rkl ∪skl ∪wk

l , 1 6 i 6
∣∣rkl ∣∣+ |skl |+ |wk

l |.
The whole set {ei} can be grouped according to the nature of the individual event

(ei ∈ rkl ∪skl ∪wk
l ), the different levels of logical abstractions (e.g. the level of admissions

{akl } or the level of patients {Pk}) or even to the time stamps associated with events

{ei}.

These various combinations together with the total order guaranteed by the time stamps

of all the events {ei} give different possible logical perspectives of the input EHR data.

The choice of the suitable logical view is determined by the desired content and the

preferred structure of the prediction target.
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6.2.2.1 The Multi-Source Generative Data View

A natural way of alleviating the difficulties brought by the heterogeneity of the EHR

data is to divide the overall input into groups with similar structures or patterns. Un-

fortunately, the name of ‘heterogeneous input’ itself implies that it is difficult to define

or even find any abstract structure or pattern other than the form of representation

of the observation data itself. In the health-related scenarios, medical equipments of

similar types are normally generating similar forms of records. Thus the type of the

data source is almost the most straightforward and most decisive single factor to the

form of the observation. Consequently a generative data view is formed by dividing

the whole heterogeneous input according to the types of the data-generating sources.

(e)(c) (d)(a) (b)

(P)

(f)

(S)

Figure 6.4: The EHR data’s multi-source view.

The components of the multi-source data view are depicted in Figure 6.4. The EHR

data of patients (P) are generated from different sources (e.g. from part (a) to part

(f)). Part (a) represents the pathological tests from different departments. The result

data could be both numerical and categorical, or even pure descriptive text; Part (b)

represents the electronic medical equipment that can check and record the patients’

physiological variables automatically; Part (c) represents the ward-related movements;
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Part (d) represents the surgical procedures; Part (e) represents the diagnosis informa-

tion given by doctors in the forms of ICD-10 codes; Part (f) represents the patients’

physiological variables checked or recorded by human (e.g. nurses and doctors), where

additional noise is inevitably brought in. All the heterogeneous EHR data, no matter

its type, volume or the location of source, is collected and stored by central servers (S).

6.2.2.2 The Timestamp-Based Totally Ordered Event Sequence View

The data collected by the central servers in Figure 6.4 can be further merged and sorted

according to the associated time stamps to form a sequence of events in the ascending

order, as depicted in Figure 6.5.

Data    11 10 9 8 7 6 5 4 3 2 1 0

Totally ordered event sequence

Figure 6.5: The EHR data’s totally ordered event sequence view.

Such totally ordered sequence {ei}, i > 0 is an event-level representation which sim-

ulates the typical type of data input for an online system. Each event ei contains

elementary signals with small pieces of information, however, the content data of ei

could also have heterogeneous substructures as well as various forms.

6.2.2.3 The Patient’s Admission Trajectory View

Although the totally ordered event sequence preserves strong inter-event temporal re-

lations, it is difficult to model medical patterns and to associate with the domain

knowledge. Thus a patient and admission based logical view with a more natural

presentation for patients’ health cycles is required to further model the complex de-

pendencies and the underlying medical rules. Recall the data components discussed,

each patient Pk = {vk,Ak} ∈ P can be treated as a combination of an invariable

feature vector vk and a sequence of admissions Ak = {ak1,ak2, . . . ,akn}. As depicted in

Figure 6.6, each admission period akl ∈ Ak, 1 6 l 6 |Ak| of the patient Pk is actually a

container for all the heterogeneous information akl = {id, tkl , rkl , skl ,wk
l }, which gives an

overall description for this admission period. The list of all the previously seen patients

is maintained to track the corresponding admission trajectories.
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Figure 6.6: The EHR data’s admission trajectory view

The non-admission periods can be treated as relatively stable time intervals between

admissions, hence no signal is assumed during those periods of time. The admission

periods, including the short time from the patient’s being aware of new symptoms to

the point of arriving at the hospital, usually represents relatively rapid physiological

change, thus the intense signals embedded and the inter-dependencies between them

are information-rich and of great significance in the potential learning and prediction

tasks.

6.2.2.4 The Combination of Different Logical Views for Extracting Fea-

tures of Observations

One direct difficulty in modelling the heterogeneous input data lies in extracting fea-

tures for the observation. Different logical views contribute separately in extracting

features at different levels. The combination of features from different views provides a

mechanism for completely extracting features for the heterogeneous input. This results

in a large set of highly inter-related features for the observation. Thus, the learning

and prediction model is required to have the ability of handling these challenges, as

will be demonstrated in Figure 6.7.
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Figure 6.7: Dependencies in the ICD-10 hierarchy.
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6.3 Experiment Setting

Experiment Platform

Java 1.8.0 ver 121

Linux 4.4.0-64

64GB memory

Multi-threading for File 
Streaming

Multi-core Utilisation

Efficient Java GC

Feature-based Training

Figure 6.8: Experiment setting for empirical study.

6.3.1 The Prediction Framework

The computing resources used were as listed in Fig 6.8 and the major functions of this

framework are as follows:

• Build a probabilistic graphic model on the large EHR type data set to represent

the knowledge and dependencies among a huge number of factors, so that

• This model can be trained with good efficiency

• Given the heterogenous EHR type data from some patient, a distribution of all

the possible health problems (ICD code) can be predicted as an accurate and

complete description of the health status of such patient at the corresponding

time when the data set was generated.

• Given the heterogenous EHR type data from some patient, a list of admissions

from the database with the most similar health trends and status can be gener-

ated, without compromising any patient’s privacy.

The following are the steps to build the TRF model for EHR type data with confidence

distribution for the ICD codes as input and output Y side values.

• Setup the feature functions for the TRF model’s X side
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• Adapt to a basic Gibbs random field (MRF with a strictly positive probability

density function) from the ICD hierarchical structure

• Train the model with different methods for different clique sizes in TRF (different

levels of connectivity)

• Inference problem reduces to a numerical optimization problem, given the weight

vector and feature functions.

• Find the most similar admissions based on the similarity measures.

6.3.1.1 Similarity Based Training for Different Admission Pair Combina-

tions

Given that the basic methodology for learning the TRF model in this problem is based

on pairwise similarities. Thus, an important part of empirical study is to combine

admissions from different patients or different positions in the same temporal trajectory.

It is worth noting that, once the combinations having been fixed, it is not necessary to

rebuild such relation each time.

6.3.2 The ICD-10 Ontology-Based Semantic Hierarchy

The running example below is on the subgroup of the disease of liver with ICD code

range K70-K77, particularly K70 - Alcoholic liver disease (page 522 of the ICD-10-CM

tabular).

6.3.3 Feature Function Construction

As discussed, the equivalence criteria must be met in order to truthfully reflect the

structural information defined in a graph. In TRF, a feature function is generally

conditioned on cliques from both the input and output side at the same time. Given

the high connectivity between every pair of maximal cliques according to the TRF

definition, we first build single-clique-indexed feature functions and then combine them

to form the final structural binding set. We examine the details below.
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Figure 6.9: The ICD-10 hierarchy.

6.3.3.1 Feature functions for the observations

1. A feature vector (length: 792) is constructed for every observation x to try to

capture all the relevant statistical and temporal information of the data.

2. Then all the feature functions can be built up from combining feature functions

from both the observation and the output ICD code separately

6.3.3.2 Clique Decomposition: Feature Functions for the Output Structure

For the cliques with max size of 3, it is still possible to use the traditional max-likelihood

method to train this model. It also sets up the performance and accuracy baseline for

the TRF model. As the clique size becomes larger, the similarity based training method

involves to make a more efficient training.

6.3.4 Implementation Techniques

• Data streaming: as discussed in similarity-based training part, the input to the

training algorithm is a stream of admission pairs. Given that the number of
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The First 12 Feature Fragments for the 
input EHR data X
1) The number of admissions the patient had previously (integer: 

number of previous admissions)

2) The current patient’s gender (integer: 1 for male; -1 for female)

3) The cumulative length of stay (LOS) in the previous year (double: 
converted to days)

4) The time span from the beginning of the first admission to the 
beginning of the current one (double: converted to days)

5) The time interval between the patient’s previous admission and 
current one (double: converted days)

6) The LOS of the patient’s previous admission(long integer: days)

7) The number of pathological tests in the previous admission (integer: 
0 if the current is the first one)

8) The number of theatre movements in the previous admission 
(integer: 0 if the current is the first one)

9) The number of ward movements in the previous admission (integer: 
0 if the current is the first one)

10)The age at the beginning of the current admission (integer: age)

11)The LOS of the current admission (double: converted to days)

12)The number of pathological tests in the current admission (integer)

Table 6.2: Feature fragment list for the EHR input X.

possible pairwise combinations is n2, streaming in such high volume is challenging

to the implementation techniques.

• Parallel Training: a question right after setting up the data streaming mechanism

is on the potential capability of concurrently handling training data. Despite that

the training algorithm cannot be fully paralleled due to the central numerical op-

timizer, handling the individual pair of admissions before entering the LBFGS

optimization engine is feasible. It is worth noting that writing back to the weight

vector or gradient vector needs synchronisation. Furthermore, because these vec-

tors are generally very long, synchronization with a lock on the vector is very

likely to decrease the system throughput, particularly when the concurrency is

high.
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6.4 Result Evaluation Techniques

In this section, we examine several evaluation techniques as the measurement for eval-

uating the outcome of the TRF model. These variables actually play an important role

in the empirical study.

6.4.1 Distance Measurement for Confidence Value Distribution over

Ontology-Based Semantic Hierarchies

Recall the training process of a TRF, we need to measure a numerical distribution over

a semantic hierarchy to let the similarity function to simulate the distribution. Thus,

we look into the measurement for directly infer the structural difference between two

semantic hierarchy-based distributions.

6.4.1.1 The Distance between Two Nodes in a Semantic Hierarchy

The distance between two ICD nodes is formally defined as the average number of edges

in the overall hierarchy to the nearest common ancestor node. According to WHO, ev-

ery ICD node has been assigned a hierarchy-compliant code. Thus instead of traversing

inside the ICD hierarchy, the distance between two ICD nodes can be calculated by

simply measuring the length of the maximum common prefix and averaging the rest

part of ICD code pair.

The maximum common prefix between two ICD codes ICD1 and ICD2 can be denoted

as s(ICD1, ICD2). Then the distance d(ICD1, ICD2) between ICD1 and ICD2 can

be defined as:

Definition 6.1. the half-length of the shortest distance travelled from one ICD node

to another along the ICD hierarchy.

d(ICD1, ICD2) :=
length(ICD1) + length(ICD2)

2
− length(s(ICD1, ICD2))

6.4.1.2 The Distance between Two ICD Node Sets

Given two ICD sets, namely the prediction set P and the true label set A, in order

to measure the accuracy of the prediction the corresponding true ICD code should be
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found to measure the distance. Formally,

∀pi ∈ P ∃ ai ∈ A s.t. d(pi, ai) = min
aj∈A

d(pi, aj)

.

The accuracy of the prediction presented by set P can be described by the followings

three measurements.

1. the best distance among all nearest < pi, ai > pairs :

dbest(P,A) = min
pi∈P

d(pi, ai)

2. the worst distance among all nearest < pi, ai > pairs :

dworst(P,A) = max
pi∈P

d(pi, ai)

3. the mean distance among all nearest < pi, ai > pairs :

dmean(P,A) =
1

|P|
∑
pi∈P

d(pi, ai)

The extent to which the true ICD nodes in the true label set A are reflected in the

prediction set P is also needed to measure the completeness of the output prediction,

but in the reversed direction. Similarly,

∀ai ∈ A ∃ pi ∈ P s.t. d(ai, pi) = min
pj∈P

d(ai, pj)

The ability for the prediction set P of fully and accurately recalling the true ICD code

in A can be described by the followings three measurements.

1. the best distance among all nearest < ai, pi > pairs :

dbest(A,P) = min
ai∈A

d(ai, pi)

2. the worst distance among all nearest < ai, pi > pairs :

dworst(A,P) = max
ai∈A

d(ai, pi)
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3. the mean distance among all nearest < ai, pi > pairs :

dmean(A,P) =
1

|A|
∑
ai∈A

d(ai, pi)

It is worth noting that the corresponding measurements between A and P are normally

not symmetric, with the only exception that:

dbest(P,A) ≡ dbest(A,P)

However normally,

dworst(P,A) 6= dworst(A,P)

dmean(P,A) 6= dmean(A,P)

6.4.2 The Ratio of Valid Predictions

In Figure 6.10 we show the validity of model predictions on the patients in the test

set. This means, that for each patient admission, the model predicts each ICD-10 code

with a confidence value. Predictions can be ranked by confidence. For each predicted

code, if it appears in the patient test set record, this is counted as a valid prediction.

In particular, the top-k predictions can be valid for some subset of the patients. As we

see from Figure 6.10, for the top 100 ranked predictions, approximately 4000 patients

have a valid prediction in the test set.

6.4.3 Precisions and Recalls

From Figure 6.11 the results show that precision and recall exhibit a trade-off. Here,

precision is the proportion of predicted codes that actually are recorded in the test

set patient admission, and recall is the proportion of recorded codes that are actually

predicted. Actually, the best distance-based measurement proposed above has partial

connection to these two concepts. Where ICD codes from the prediction set or the true

label set can be associated to the other set with different directions. We will see the

relations in the figures below.
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Figure 6.10: Number of valid predictions on test set.
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Figure 6.11: Precision / recall trade-off on test set predictions.

6.5 Empirical Study

In this section, we report the results and the observations got from a number of exper-

iments, which were carried out on the EHR dataset as outlined above.
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Data Set Name
Active 
Patient Set 
Size

Active 
Patients 
Generation

Training Set 
Size

Training Set 
Generation

p01 P01_25 5000 The first 5k 25 Random 25 
out of first 
5k

P01_50 5000 The first 5k 50 Random 50 
out of first 
5k

P01_100 5000 The first 5k 100 Random 
100 out of 
first 5k

P01_150 5000 The first 5k 150 Random 
150 out of 
first 5k

p11 P11_25 5000 Random 5k 25 Random out 
of p11

P11_50 5000 Random 5k 50 Random out 
of p11

P11_100 5000 Random 5k 100 Random out 
of p11

P11_150 5000 Random 5k 150 Random out 
of p11

p21 P21_25 5000 Random 5k 25 Random out 
of p21

P21_50 5000 Random 5k 50 Random out 
of p21

P21_100 5000 Random 5k 100 Random out 
of p21

P21_150 5000 Random 5k 150 Random out 
of p21

p31 P31_25 5000 Random 5k 25 Random out 
of p31

P31_50 5000 Random 5k 50 Random out 
of p31

P31_100 5000 Random 5k 100 Random out 
of p31

P31_150 5000 Random 5k 150 Random out 
of p31

Table 6.3: The dataset preparation and generation for EHR data.
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6.5.1 The Data Set

In this experiment a random sample set from 25 to 150 patients out of 5000 was selected

and their EHR data records for each admission was used for training. The resulting

model was then tested on a second random sample of patients not used for training.

We set up the data set as depicted in Table: 6.3.

6.5.2 The Challenge from the Optimization

The optimization process in machine learning is generally challenging, however, it is

particularly true for EHR heterogeneous data where the feature functions are normally

set up with various indicative values. See Fig: 6.12 and Fig: 6.13 for the two important

values taken by the L-BFGS optimizer.
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Figure 6.12: A distribution of initial loss function values before optimization.

Apparently, the initial values are normally huge, particularly when compared to the

ultimate optimization goal - the converged f function and the norm of the gradient

vector, as depicted in Fig: 6.14 and Fig: 6.15 below. Recall the sampling based method

for computing the partition function, it is pointed out by several works that the com-

plex inter-reactions between the randomized optimizer and the other part of sampling

methods. We will demonstrate later that the optimizer is also critical to the TRF

training method.

It is also worth noting that, the parameter setting to the optimizer is critical. Of-

ten, nowadays numerical optimizers make use of the first-generation Fortran-based
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Figure 6.13: A distribution of initial gradient norm values before optimization.
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Figure 6.15: A distribution of gradient norm values after optimization.

implementations, e.g., the RISO L-BFGS optimizer implemented in Java following the

original Fortran code. Normally these optimizers pose fairly strong stopping conditions

regarding the relation between the current norm of gradient vector and the current f-

value. In real-world training, particularly when the feature space is huge, those default

settings might not fit.

We also had difficulties in bridging the traditional single-thread L-BFGS implementa-

tion into a multi-threading experiment code framework. We managed to implement a

centralized mechanism to control the synchronisation, though it still affects the overall

system throughput. Moreover, it is important to consider the power of the current

machine and the balance between different workload threads in this sense.

6.5.3 The Time Efficiency Study

As listed in Table: 6.4, the time variance for the training experiments is much larger

than expected, even when running on similar sized files for training. This observation

leads us to consider the relation between the size of the training set and the resulting

training pairs. Nevertheless, we observed that there are many possible influential factors

that could take a role in the whole process. We will address these issues later.

Clearly, the time requires by different batch of experiments presents a large variation.

Even considering the possible influence from the sampling based training set, there
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Training Set Size Training Time

50 27:42:43

25 6:49:50

25 19:39:43

25 0:04:55

50 40:03:59

50 10:06:53

100 35:56:48

100 12:30:03

25 3:33:26

50 6:47:21

50 2:56:28

100 32:59:11

150 32:20:39

25 0:00:03

100 15:44:29

100 43:36:38

150 47:34:35

Table 6.4: The training time needed for L-BFGS-based TRF learning framework to
converge.

should be more decisive factors behind. Then we studied the number of iterations

needed by the L-BFGS optimizer and its relation to the training size, as depicted in

Fig: 6.16 below.

As depicted in Fig 6.16, more than half of the optimization processes were regarded

converged simply due to an optimizer setting for the default upper limit number of steps

for stop. Though in practice wo found out that this type of termination actually does

not bring harm to the numerical performance after training because the optimization

process would often already be in the final stages of being about to converge at the

given steps.

Nevertheless, we managed to find out a clear relation among the three major factors to

the overall performance, as depicted in Fig: 6.17. Given various experiment settings,

the number of training pairs follow closely with the increase of training size, while the

number of active features remains steady (see the yellow dots).
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Figure 6.16: The number of iterations/steps required by the L-BFGS optimizer to
converge.
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However, the high level of diversions between data distributions among different pa-

tients from different training and prediction sets discussed above indeed bring extra

noise to further studying the relations between major factors for the learning frame-

work. Thus, we consider a controlled scenario where each patient data run a fixed

number of steps in the LBFGS optimization to show more about the complexity of the

data. The time spent on the same steps of optimizer in a steady state can reasonably

eliminate the differences between datasets. We run on different sizes of training sets,

which are picked from a randomized 5000 patients out of the total 58k. The results

in Fig 6.18 reasonably reflects the expectation, where the time for going through 300

steps of LBFGS optimization increases with the training size.

0

200

400

600

800

1000

1200

1400

1600

1800

25 50 100 150

Ti
m

e(
se

co
nd

s)

Training Set Size

Time in Controlled Optimization

p11 p21 p31

Figure 6.18: Time needed for 300 steps of Controlled optimization

Clearly, the learning framework cares more about the number of training pairs rather

than the patient training set itself and this is reasonable because the effect of the

number of training pairs will be greatly exaggerated during the iterative optimizing

process.

On the efficiency study on the prediction side, as we can find in Fig: 6.19, the predic-

tion/inference speed is relevant to the size of the training size, however, the inference

process is not sensitive to the change of training size due to our proposed semantic

inference techniques discussed above.
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Figure 6.19: The efficiency in making structured prediction by inference.

6.5.4 The Effectiveness Study

We also study the effectiveness of the framework by examining the accuracy of pre-

diction results. Recall the hierarchy-based distance measurement proposed above, it

measures the distance between two positions within a same hierarchy. We adopt this

measurement for evaluating the distance between the predicted ICD code and the cor-

responding true label.

According to the distance measurement definition, such measure is directional. We

report the results utilising the directed measurement from the predicted label set to

the true label set in Fig: 6.20. Clearly, the result is promising, particularly when

considering the candidate ICD code set has more than 40k potential labels. As shown

in the figure, for every prediction, the best predicted code should be very close to

one true ICD label, with no more than 1 digit’s difference. Considering the average

length of a ICD code is roughly 6 digits, this prediction can give a reasonably accurate

indication to what is really happening to the patient. The worst single label in each

prediction though, is not ideal. The difference is between 4 to 5 digit, which actually

a mapping to other branch. It is quite likely though, when there is no single ICD label
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Figure 6.20: The accuracy in ICD code prediction when measuring from the predicted
code set to the true label set.

from a branch appearing in the final set, while there is still reason to consider some

remote branch. Nevertheless, for every prediction, on average, every of the predicted

code is not too far away from a corresponding true label. The level of difference usually

means the average code in one prediction can only map to a correct branch instead of

specific ICD codes. This could largely due to the lack of complete modelling of the

observation features, which could lead to the lack of capabilities in capturing signals in

the input from several specific types of diseases.

The measurement on bridging from the true label set to the predicted set depicted in

Fig: 6.21 shares the same pattern, but with a little improved accuracy. Actually this

direction can give a more precise description to the accuracy, because a mapping from a

true label to a potentially corresponding one in the predicted set can avoid mismatching

between two semantic groups. Nevertheless, on average, the best predicted code in

every prediction should be no more than 1 digit away from the true label.
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Figure 6.21: The accuracy in ICD code prediction when measuring from the true
label set to the predicted code set.

6.5.4.1 Discussion: A Curse from the Sparsity

We can make an interesting observation here in Fig: 6.20 and Fig: 6.21: the predic-

tion distance slightly increases with the increase of the training size. Intuitively, the

increased training size should improve the prediction result, however, the experimental

data proves the reverse. This observation attracted our attention and we did a thorough

examining for the possible cause. It turns out that, due to the sparsity of the hetero-

geneous input EHR data, the feature space is also becoming more sparse, which make

the optimizer more difficult to handle larger number of features concurrently. This

can be directly reflected to the form of trained feature vector, where the heavily opti-

mised feature weights either gather in small portions or are very sparsely distributed.

Apparently, it is a challenging problem and would likely to exist in many general ma-

chine learning problems, particularly in a scenario where handling heterogeneous data

is needed.
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6.5.4.2 Discussion: A Perspective of Information Extraction

Given the experimental results on real-world record-based data, the TRF framework

demonstrated the capability of extracting information from the input structure to a

non-isomorphic format determined by the output structure, while at the same time util-

ising structurally embedded existing knowledge implicit in the output structure. The

locality preserving property is a core underlying assumption which greatly limits the

applicability of CRF for general information extraction. By relaxing the assumption,

the proposed TRF can handle a much wider range of structured prediction problems,

e.g., where the output can have non-isomorphic information extraction-style structures.

No existing linear or semi-linear style CRF setting in the literature could handle output

structures presented in this chapter, or the templates required for structured predic-

tion, due to the lack of capabilities in modelling the information transition process as

in TRF.

6.6 Conclusion

In this section, we report our experimental work and discuss the results. In summary,

the effectiveness and efficiency of this TRF framework can be proved by the accu-

racy and time complexity represented in the data, particularly when considering the

candidate ICD label set has more than 40k codes in the XML file we imported into

the prediction framework. We also made several interesting observations regarding

the performance and sparsity issue generally existing in the machine learning prob-

lems. Moreover, the experimental results motivate us to further improve the overall

efficiency, particularly on the training set construction. In addition, we also demon-

strate that the novel TRF model and its related training and inference techniques are

effective. Our implementation can handle arbitrary connected general graph where all

other traditional CRF/MRF implementations would fail.

We thus move forward to the last part of this thesis to further conclude our work

presented.



7
Discussion and Future Work

In this thesis, we develop a novel probabilistic learning framework to tackle the ontology-

assisted structured status prediction problem for heterogeneous data. We formalise the

prediction task for EHR related problem and then develop and propose a novel proba-

bilistic graphical model to represent this type of problems. To achieve this, we examine

the knowledge abstraction and embedding process, and identify the latent connection

between feature functions and the domain knowledge in a semantic context. We build

up the rules for bridging the feature functions to the structural CI information provided

by a graph. We also develop methodologies for representing domain knowledge with

an equivalent set of feature functions.

Given the problem modelling and structural characteristics, we identify a special type

of probabilistic graphical model to describe this general type of prediction problems.

However, all the existing training and inference techniques fail in tackling this level of

complexity. We thus develop a novel framework to do efficient training and inference.

The effectiveness and efficiency of the proposed theoretical contributions are examined

and proved in the experiment chapter. Empirical study shows that the proposed model

can capture the desired structural information and make accurate predictions, even on

an extremely large candidate set.

In summary, the main contributions of this work include:

• exploratory data analysis and prediction learning on health record data

• ontology representation and domain knowledge embedding for structured predic-

tion models
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• heterogeneous input data modelling in structured prediction models

• an analysis of the discriminative learning approach to probabilistic graphical

models highlighting the implicit structure on both the input and output compo-

nents of the models

• the introduction of a new form of discriminatively learned probabilistic graphical

model, the transitional random field (TRF), that relaxes this implicit structural

restriction

• in terms of inference for TRFs, a key insight is how to relax the implicit locality

constraint of CRFs during inference, by making use in TRFs of available structure

in the data in a general way

• the derivation of a new training algorithm for TRFs, based on similarity, which

avoids the computation of complex partition functions

• the implementation of an algorithm to learn TRFs using this framework

• results from an application of this algorithm to the challenging task of structural

prediction of ICD-10 codes on a real sample of heterogeneous EHR data.

The work presented in this thesis could be regarded as an extension to the existing

machine learning tech framework and the implementation for empirical study is also a

possible tool for medical professionals for research in their domain.

7.1 Further Work

Our further work will be focused on the improvement of feature construction between

input and output of TRF model. As pointed out in the experiment chapter, a complex

feature function setting and the heterogenous input data have potential influence to

other parts of classic learning framework, e.g., the optimization process. It would

be interesting to address this sparsity feature problem in the optimization process as

identified in this thesis.

We will also apply TRF to other general machine learning problems for further study,

particularly where we can have rigid non-isomorphic structures on both sides of the

input and output. Methodologies for building more descriptive feature functions to

bridging the input and output structures in a novel way will also be in the interest of

our research.
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Brinker. Multilabel classification via calibrated label ranking. Machine

Learning, 73(2):133–153, 2008.

[FJJ+12] Fei Wang, Jianying Hu, Jimeng Sun, F Wang, J Hu, and J Sun. Med-

ical prognosis based on patient similarity and expert feedback. In 21st

International Conference on Pattern Recognition, pages 1799–1802, 2012.

[FMG+12] Roberto Forero, Geoff McDonnell, Blanca Gallego, Sally McCarthy, Mo-

hammed Mohsin, Chris Shanley, Frank Formby, and Ken Hillman. A

Literature Review on Care at the End-of-Life in the Emergency Depart-

ment. Emergency Medicine International, 2012:1–11, 2012.

[FPM16] E Fersini, F A Pozzi, and E Messina. Approval network: a novel approach

for sentiment analysis in social networks. World Wide Web, pages 1–24,

2016.

[FPY+16] Ruogu Fang, Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, and S. S.

Iyengar. Computational Health Informatics in the Big Data Age: a sur-

vey. ACM Computing Surveys (CSUR), 49(1):1–36, 2016.

[Fra16] Abraham Jacob Frandsen. Machine Learning for Disease Prediction. All

theses and dissertations, for master of science, Brigham Young University,

2016.

[FS08] Richárd Farkas and György Szarvas. Automatic construction of rule-

based ICD-9-CM coding systems. BMC bioinformatics, 9(3):S10, 2008.



Bibliography 167

[FSCH16] Joseph Futoma, Mark Sendak, C Blake Cameron, and Katherine Heller.

Predicting Disease Progression with a Model for Multivariate Longitudi-

nal Clinical Data. In Proceedings of the 1st Machine Learning for Health-

care Conference, pages 42—-54, 2016.

[GAM+05] Amit X Garg, Neill K J Adhikari, Heather McDonald, M Patricia Rosas-

Arellano, P J Devereaux, Joseph Beyene, Justina Sam, and R Brian

Haynes. Effects of computerized clinical decision support systems on prac-

titioner performance and patient outcomes: a systematic review. Jama,

293(10):1223–1238, 2005.

[Gar13] E Gardner. The HIT approach to big data. Health data management,

21(3):34–36, 2013.

[GBH09] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification

using distant supervision. CS224N Project Report, Stanford, 1:12, 2009.

[GBZW93] Thomas Galski, Richard L Bruno, Richard Zorowitz, and John Walker.

Predicting length of stay, functional outcome, and aftercare in the reha-

bilitation of stroke patients. The dominant role of higher-order cognition.

Stroke, 24(12):1794–1800, 1993.

[GN87] Michael R Genesereth and Nils J Nilsson. Logical Foundations of Artificial

Intelligence, volume 55. Springer, 1987.

[GNDV+14] Marzyeh Ghassemi, Tristan Naumann, Finale Doshi-Velez, Nicole Brim-

mer, Rohit Joshi, Anna Rumshisky, and Peter Szolovits. Unfolding phys-

iological state: Mortality modelling in intensive care units. In Proceedings

of the 20th ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 75–84. ACM, 2014.

[GNPI17] Benjamin A Goldstein, Ann Marie Navar, Michael J Pencina, and

John PA Ioannidis. Opportunities and challenges in developing risk

prediction models with electronic health records data: a systematic re-

view. Journal of the American Medical Informatics Association : JAMIA,

24(1):198–208, 2017.
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