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Abstract

This thesis contains three main novel contributions that advance the state
of the art in object detection. The first contribution focuses on a real-
time pedestrian detector using a combination of Haar-like features and
covariance features. Unlike the original work of Tuzel et al., where the
feature selection and weak classifier training are performed on the Rie-
mannian manifold, weak classifiers are trained in the Euclidean space for
faster computation. To this end, a novel approach based on AdaBoost
with weighted Fisher Linear Discriminant Analysis (FLDA) based weak
classifiers is designed. To further accelerate the detection, a faster strat-
egy, known as a multiple-layer boosting with heterogeneous features, is
adopted to exploit the efficiency of Haar-like features and the discrimi-
native power of covariance features. Experimental results show that by
combining Haar-like and covariance features, the efficiency of final detec-
tors improves by an order of magnitude with a slight drop in the detection
performance.

The second contribution reveals the drawback of commonly used Ad-
aBoost and a more effective approach, termed Boosted Greedy Sparse
Linear Discriminant Analysis (BGSLDA), is proposed. BGSLDA exploits
a class-separability criterion of LDA and a sample re-weighting property
of boosting. Experimental results demonstrate an improvement in the de-
tection performance compared to the original AdaBoost framework. This
new finding provides a significant opportunity to argue that AdaBoost and
its variants are not the only method that can achieve a high classification
accuracy in a high dimensional problem, such as object detection.

The last contribution points out the drawback of offline object detection
frameworks and an efficient online framework is proposed. Unlike many



existing online boosting algorithms, which apply exponential or logistic
loss, the proposed online algorithm makes use of LDA’s learning criterion
that not only aims to maximize the class-separation criterion but also in-
corporates the asymmetrical property of training data distributions. The
new approach provides a better alternative to online boosting algorithms
in the context of training a visual object detector. Experimental results
on handwritten digits and face data sets show that object detection tasks
benefit significantly when trained in an online manner.

Finally, this thesis concludes with a discussion and future works, which
explore potential advances in the learning of feature descriptors, cascade
classifiers as well as online object detectors.
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1
Introduction

As computer has become more and more powerful, it has turned out to be a vital part in

our daily lives. Researchers have focused on how to extend their uses to perform a more

intelligent task such as visual scene analysis. The study in this area has given rise to a

new discipline in engineering and science known as computer vision. Computer vision

involves three major disciplines:- Image Processing (Engineering and Physics), Arti-

ficial Intelligence (Computer Science) and Pattern Recognition (Mathematics). The

objective of computer vision is to grant a machine the ability to see and think for itself

as similar to us.

During its early stage, a large amount of work has been carried out for translat-

ing 2D low-level images into 3D high-level semantics. Many researchers had focused

on real-world vision applications, e.g., autonomous robots, vision based manufactur-

ing inspection and content-based image retrieval. Since there is no single solution to

solving computer vision tasks; there exist abundant methods in the literature. Some

of these approaches turned out to be very task specific and can seldom be generalized

over a wide range of applications.
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Due to the high complexity of 3D image representations and an increasing popular-

ity of statistical methods and pattern recognition, numerous researchers have switched

their focus to 2D image analysis [10, 116]. Statistical values are extracted from im-

age regions to produce a set of meaningful features. These statistical representations

are then analyzed to produce another output which corresponds to a given set of pat-

terns. This approach, along with an advance in computer hardware, has lead to many

major breakthroughs in computer vision areas such as real-time object segmentation,

real-time object detection, real-time object classification and real-time object tracking.

One application, that statistics-based approach has gained a tremendous success,

is an intelligent video surveillance system. Airports, police stations, office build-

ings, shopping centers, train stations, bus stops, etc. have numerous security cameras

recording at all times covering numerous scenes. However, due to the vast amount of

data being accumulated each day and the fact that most surveillance systems are be-

ing monitored by only a few operators, operators tend to miss many important events

after a certain period. Strictly speaking, it is impossible for human being to monitor

all surveillance cameras in a non-automatic fashion. Hence, an automated system is

needed in order to detect and respond to an abnormal event in real-time.

In order to detect a predefined event, e.g., loitering and trespassing, it is important

that pre-specified objects can be first detected with high accuracy. Object detection is

a computer vision task that identifies and determines locations and sizes of predefined

objects in arbitrary images. The objective of object detection in surveillance video

is to detect one or several objects in any scenes (high/low resolution) under varied

condition, pose, appearance, illumination and background clutter with high accuracy

and low false positives (Figure 1.1)

Although this task seems to be trivial and incredibly easy to humans, computers are

currently far behind us in performing such analysis and inference. It remains a chal-

lenge to explain how humans perceive objects so quickly and accurately with very little

effort. Thus, our primary goal is to grant computer the ability to see, analyze and iden-

tify the object of interest in arbitrary images using modern vision algorithms. In this

chapter, we briefly introduce the problem of object detection, discuss challenges in-

volved, describe general background knowledge and briefly present our contributions.

Section 1.1 begins with an introduction to the problem, our motivation and key appli-

cations. Section 1.2 discusses difficulties of visual object detection. Section 1.3 gives
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1.1 Visual Object Detection

Figure 1.1: An example of pedestrians and vehicles in object detection problem. Note large
variations in pose, appearance, illumination and background clutter. Courtesy
of MIT CBCL, http://cbcl.mit.edu/cbcl/software-datasets/
index.html

some background information on object detection and some perspectives on related

works in this field. Section 1.4 summarizes our own approaches and contributions.

Finally, we conclude with an outline of this thesis in Section 1.5.

1.1 Visual Object Detection

This section covers the definition of object detection, its motivation and key applica-

tions of real-time object detection.

1.1.1 Definition

Real-time visual object detection is a computer vision task that rapidly identifies and

determines locations and sizes of visual objects in arbitrary images and videos. The

ability to rapidly identify objects is important in many human-computer interaction and

real-time monitoring applications. Here we distinguish the difference between other

related vision tasks, e.g., object recognition and object identification, and visual object

detection. The goal of object recognition tasks is to recognize and tell differences be-

tween several pre-specified object classes; e.g., given images of four-legged animals,

the system should be able to tell differences between cats, dogs, horses, cows and ele-

phants. On the other hand, the task of object identification is to recognize an individual

3

http://cbcl.mit.edu/cbcl/software-datasets/index.html
http://cbcl.mit.edu/cbcl/software-datasets/index.html
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instance of an object; e.g., identification of a specific person’s face or fingerprint. For

our problem, we try to successfully locate all instances of pre-specified objects despite

the presence of background clutters or partial occlusions; e.g., all faces in a given im-

age. Clearly, object detection is the first fundamental step to object recognition and

object identification.

1.1.2 Motivation

Security and safety are probably two primary motivations for effective real-time object

detection. As society continues to advance, public surveillance and public safety will

become a more important aspect of our modern life. More cameras with intelligent

surveillance capabilities will be equipped in public places to detect and prevent crimes

and accidents. These surveillance data will be intelligently processed to help security

operators locate emergency events and respond to them in real-time.

There are also other motivations for real-time object detection from a multimedia

point of view. With the advance in a media compression technology, a broadband inter-

net access and a popularity of media sharing web sites, more and more digital media

are being uploaded to the internet at an exponential rate. However, the usability of

these media collections is limited by a lack of effective retrieval methods. Currently, to

find a specific image in such a collection, we have to manually and exhaustively search

the entire database collection. This process is rather slow and tedious. In order to fully

utilize these resources, a tool that can efficiently and effectively manage this massive

video collection has become indispensable. Automatic object detection and recogni-

tion can be used to extract more information from these images and help automatically

label and categorize them.

1.1.3 Applications

Object detection is a fascinating problem since it is the first fundamental step to many

vision applications. Automated visual object detection has attracted a lot of research

attentions in recent years. Effective real-time object detection has tremendous uses.

Here we briefly discuss some of its applications.
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• Faces. Detecting faces is the first vital step in vision-based human computer

interaction systems, e.g., face modeling, face recognition, face authentication,

face tracking, face pose estimation, facial expression recognition and automatic

tagging in social media and digital content management. It can also be applied to

electronic equipments like digital camera, allowing the device to automatically

focus and zoom on detected faces.

• Humans. Human detection could be applied to detect humans for various ap-

plications, e.g., gait recognition, intrusion detection, video surveillance, border

security and pedestrian accident prevention in smart vehicles, market analysis

and survey.

• Vehicles. Vehicle detectors could be used for automatically monitoring traffic,

traffic analysis at the intersection, road accident and video surveillance.

• Hands. Hand detectors are a necessary component in a gesture-based control.

Electronic devices, e.g., televisions, stereos, cameras, can be controlled without

the need of remote controls.

• Boats. Boat detectors can be used to help border patrol officers in monitoring

invasion zones. In intelligent video search would help reduce the burden of

human operators.

• Ground target. Ground target detection can be used in search and rescue opera-

tions for many military applications.

1.2 Challenges

Automated visual object detection is a difficult task. While humans can do this task

effortlessly, it turns out to be a very challenging task for machines. Little progress

has been made over the past few decades in building a robust detector. The foremost

difficulty lies in the amount of object variations (Figure 1.2). In this section, we break

down these difficulties into following factors:-
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• Large variations in appearance. A small change in object’s position or orien-

tation with respect to the camera can change its appearance considerably on 2D

images. As an example, the same human captured by two different cameras at

different position and angle could look completely different on images. In addi-

tion, pixel’s intensity on 2D images depends on many factors in the environment,

e.g., light sources, their colour and their intensity. The robust detector must be

able to handle these viewpoint and scale changes issues.

• Large within-class variations. Most object classes have large within-class vari-

ations. For example, human appearance is strongly influenced by the clothing

they wear, their pose and accessories during the time of capture; a vehicle ap-

pearance is varied due to colors, models and manufacturers. A robust detector

must be able to detect these variations in human and vehicles, regardless of their

poses, colors, manufacturers.

• Image background. Background clutter is common and varies from images to

images. For example, images taken from outdoor scenes have different back-

ground than those taken from indoor environments. Outdoor scenes usually con-

sist of a number of natural objects or large man made structures, e.g., trees,

roads, buildings, while indoor scenes usually consist of indoor furniture, e.g.,

television, sofa, chairs, wall. These differences in background can cause object

boundaries to be different. In addition, background structures can accidentally

be similar to a person’s shape and appearance, e.g., street and light poles. The

detector must be able to distinguish object classes from complex background

regions.

• Occlusion. Occlusions create further difficulties because only a few parts of

objects are visible for processing.

• Lighting and weather condition. Due to the movement of sun and cloud, a light-

ing condition can change rapidly in outdoor scenes. Depending on lighting con-

ditions, average pixel values can be rather bright or dark. Since most cameras

often fail to adjust their hardware to these changes, overexposure and underex-

posure are very common. The system must be invariance to these changes.
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Figure 1.2: An example illustrating difficulties of visual object detectors on faces (left) and
humans (right). Note the amount of variation in images due to pose (orien-
tation of the object and the position of the camera), appearance, illumination,
differences in human clothing and background clutter, etc. Courtesy of http:
//www.creationscience.com and INRIA person detection data sets [24].

In this thesis we focus our study on the detection of fully visible visual objects. In

such poses, the object appearance is relatively constrained. One can thus learn relevant

feature vectors or descriptors and build the robust detector.

1.3 General Background Knowledge

Due to its enormous vision applications, various approaches had been proposed for an

automated object detection problem, ranging from simple intensity-based approaches

to complex high-level approaches utilizing advanced learning methods. Although a

number of approaches had been proposed, a robust real-time object detector was much

too far to be practical. Here we categorized object detection into four categories [150].

• Knowledge-based methods. These rule-based methods encode human knowl-

edge of what constitutes a visual object. Usually, these rules capture relation-

ships between object parts. These approaches have been designed mainly for

object localization [148].
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• Feature invariant approaches. These algorithms aim to find structural features
that exist even when the pose, viewpoint or lighting conditions vary. These
features are then used to locate objects. Several invariant features have been
adopted, e.g., grouping of edges on facial features [64], integration of multiple
features [57].

• Template matching methods. Several object patterns are pre-selected and stored
in the database. During evaluation, correlations between a test image and stored
templates are computed. The correlation value will be highest at places where the
image structure matches the template structure [44]. The technique is commonly
used in manufacturing as a part of quality control [4].

• Appearance-based methods. These algorithms learn a model from a set of train-
ing images. By capturing the representative variability of object appearances,
the learned model can be used for object detection.

In general, appearance-based methods using learning algorithms have shown excel-
lent results in many vision applications and have been an active area of research. For
the rest of this section, our primarily focus will be on appearance-based methods and
their variations. Interested readers in other approaches should refer to recent literature
surveys for more details [41, 42, 112, 150].

Based on appearance-based methods, a region of interest is selected based on prior
scene knowledge [41] or low-level features, e.g., background subtraction [46, 48, 59,
97], image difference [16] and scale-invariant key-points [72]. An object detector then
operates on this selected region. The object detection algorithm can be further bro-
ken down into two components:- feature extraction and classification algorithm. Fea-
ture extraction involves a representation of image patches (regions) as discriminative
feature vectors (also known as descriptors); while the classification algorithm makes
decision based on these feature vectors. This section discusses each component in
details.

1.3.1 Background Subtraction

Background subtraction is a commonly used technique to segment foreground objects
from the background. The popularity of background subtraction is largely due to its
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computational efficiency. Numerous algorithms based on background subtraction have

been proposed. Some of popular and commonly applied approaches are mixture of

Gaussians [59], Kernel density estimators [48], sequential kernel density approxima-

tion [46] and eigenbackgrounds [97]. Background subtraction works well when the

camera is static and lighting condition do not change rapidly.

1.3.2 Feature Extraction

Feature extraction is often the first fundamental technique in any computer vision ap-

plications. The process not only reduces the amount of data one needs to calculate but

also creates a new set of representations which is distinct and unique so that patches

can be easily distinguished in the feature space. Mathematically, a feature is an N -

dimensional vector which is extracted from image patches. Several techniques exist

for generating image patches. The commonly applied technique is the sliding window

technique, where a fixed sized window (based on prior scene knowledge) is shifted at

various scales and locations over the image. For face detection, a fixed sized window is

often a square of size 19× 19 pixels [104], 20× 20 pixels [67] or 24 x 24 pixels [140].

For human detection, a window can be a rectangle of size 64×128 pixels [24, 88, 104]

or 18 × 36 pixels [89]. Since one image can consist of hundred thousands of patches,

several researchers have tried to restrict the search-space based on known camera ge-

ometry [51], prior information about the target object class [41], moving objects using

low-level image features, e.g., background subtraction [48, 155] or optical flow [33].

Patches can then be sampled from these regions.

Feature extraction typically captures intensity patterns, appearances, texture de-

tails, motions, shapes and contour information. Different cues have different char-

acteristics. Choosing the right cue for the right object is an art in itself. Here cues

commonly used in computer vision are briefly explained.

1.3.2.1 Raw Pixel Intensity

This is the most basic feature. Unfortunately, due to its poor performance, its use is

very limited. Part of the reasons is that raw pixel intensity does not encode any specific

domain knowledge. Another reason is that images are often degraded by some random

noise during image capturing, transmission or processing.
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1.3.2.2 Brightness Histogram

The histogram provides the frequency of the brightness in the image. Due to its sim-

plicity, two different images with similar brightness could produce similar brightness

histogram.

1.3.2.3 Colour

Colour is the most basic visual content and it is one of the most widely used features.

Color is usually represented in RGB (red, green, blue) color space. Colour histogram is

one of the best known color features [94]. It has been used to represent a distribution of

colours in an image. The advantage of color histogram is that it is invariant to rotation

and translation.

1.3.2.4 Texture

Texture is often used to describe characteristics of object surfaces. It measures the

intensity variation of a surface. Compare to color features, texture is less sensitive

to illumination changes. Well known and commonly used texture descriptors are co-

occurrence matrices [47], edge frequency [26], primitive length [39], fractal texture de-

scriptor [107], multi-scale texture descriptor, e.g., Gabor transforms [25] and wavelet

transforms [76]. Recently, Local Binary Pattern (LBP), which describes the local tex-

ture information around each pixel, has been proven effective in texture classification

[96].

1.3.2.5 Edges

It is a well-known fact that a human visual system is sensitive to a local luminance

contrast at edges. Edge detector can be used to identify these changes. It is one of the

very first few features to be proposed in the vision community. Edges can be consid-

ered as a strong change in image intensity. An important property of edges is that they

are less sensitive to illumination changes compared to color features. There exists a

large number of edge detection algorithms in literature. Some well known techniques

are Roberts, Sobel, Prewitt and Canny [19, 44]. An evaluation of various edge detec-

tion algorithms can be found in Bowyer et al. [13]. Over the last decade, researchers
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have focused a great deal of attentions on corners and interest points, which can be

considered as a subset of edges. Some of recently proposed interest point detectors are

Harris corner points [49], Scale Invariant Feature Transform (SIFT) [72], Maximally

Stable Extremal Regions (MSER) [79].

1.3.2.6 Shape

Shape contains important semantic information of objects. Shape descriptors gener-

ate a numeric feature vector which characterizes properties of described objects. The

descriptors can be used for measuring a shape similarity. Numerous shape descrip-

tors have been proposed, e.g., chain codes [132], Fourier descriptors [106], B-spline

representation [5], shape context [9], etc.

1.3.3 Global Appearance Versus Local Appearance

Some researchers represent a global appearance of the object as a template [90, 133],

while others focus on regions which contain discriminative information [24, 140].

Global appearance methods capture the common appearance of the object from train-

ing images. Global appearance is fast but has several disadvantages. Global feature

often emphasizes on coarse attributes of object appearance rather than discriminative

object parts. Hence, it fails to extract a meaningful component if there is a large varia-

tion in the object’s appearances and poses. Furthermore, a template matching on global

appearance is sensitive to small differences in scale, position and orientation.

On the other hand, local appearance decomposes the object into smaller parts and

represents the object based on these parts. Since features are extracted from object

parts, it is less sensitive to above problems. The feature extraction on local appearance

often involves sparse and dense representation.

1.3.3.1 Sparse Representation

Features are extracted from a set of salient image regions. The motivation is that not

all image regions contain useful information, i.e., some are uniform and textureless.

The intuition is based on a human eye-tracking, i.e., a local spatial contrast is signif-

icantly higher at interest points than at random locations. Well known interest point
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detectors are Harris-Laplace [83], Difference of Gaussian (DoG) [77], Hessian-Affine

[82], MSER [79], etc.

1.3.3.2 Dense Representation

Features are computed on every small image region [24, 140]. The intuition behind

this approach is that all image regions are equally important. The later stage will then

make a decision which regions are the most relevant.

1.3.4 Classification

Several classification models and techniques have been studied in the literature and

were also reviewed by [137]. Here we roughly divide them into two categories:- gen-

erative and discriminative model [137]. Both generative and discriminative approaches

can be used during the training stage. Typically generative approaches use Bayesian

graphical models with Expectation-Maximization (EM) to characterize object parts

and to model their co-occurrences. On the other hand, discriminative approaches use

machine learning techniques to classify each feature vector as belonging to the ob-

ject or not. The main difference between generative and discriminative models is how

posterior probabilities are estimated for each class.

1.3.4.1 Generative Models

Generative approaches model the appearance of object class in terms of its class-

conditional density functions. Combining with class priors, posterior probability can

be inferred using a Bayesian approach. Generative models are popular in object recog-

nition, especially for matching similar object categories. The advantage of generative

approaches is with its ability to learn the representative characteristic of seen objects

and can be used to infer on unseen objects.

1.3.4.2 Discriminative Models

Discriminative models approximate the Bayesian maximum-a-posteriori decision by

learning parameters of discriminant functions (hyperplanes) between positive and neg-
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ative class from training examples. Discriminative approach explicitly explores the

distinction of objects from background, and uses that knowledge to learn the model.

1.4 Contributions

Since the objective of our thesis is real-time object detection, we propose our ap-

proaches based on the work of Viola and Jones [140]. Viola and Jones proposed the

use of Haar-like features for a face detection task. However, Haar-like features fail

to capture the shape of other objects, e.g., pedestrian and human. Hence, there has

been considerable interest in applying other features on pedestrian detection problems.

Some of these features are local receptive field [89], covariance features [136] and

histogram of oriented gradient [24]. In order to find the right feature, we first present

a comprehensive experimental study on pedestrian detection using state-of-the-art lo-

cally extracted features. Building upon the finding of our experiments, we propose

a new, simpler pedestrian detector using covariance features. Unlike the existing ap-

proach, where the feature selection and weak classifier training are performed on the

Riemannian manifold [136], we select features and train weak classifiers in the Eu-

clidean space for faster computation. To this end, AdaBoost with weighted Fisher

linear discriminant analysis-based weak classifiers are proposed. To further accelerate

the detection, we adopt a faster strategy — multiple layers boosting with heteroge-

neous features — to exploit the efficiency of Haar-like features and the discriminative

power of covariance features.

Based on our observations, AdaBoost is sub-optimal for training a visual object de-

tector since it operates under the assumption that the number of positive and negative

samples are equal. In other words, it ignores the fact that the training data in object de-

tection problem is often imbalanced and highly skewed. In order to further improve the

performance, we introduce a new classifier, termed Greedy Sparse Linear Discriminant

Analysis (GSLDA), for its conceptual simplicity and computational efficiency. Unlike

Adaboost, GSLDA takes the number of training samples in each class into consider-

ation when solving the optimization problem. This extra information helps minimize

the effect of imbalanced data sets and improves the overall classification accuracy at

the same runtime cost.
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One major drawback of GSLDA is that decision stumps’ thresholds are fixed for the

entire duration of classifier training, i.e., once calculated, we do not re-train these weak

classifiers. Having a fixed threshold value could result in a sub-optimal weak classi-

fier. We propose a new technique, termed Boosted Greedy Sparse Linear Discriminant

Analysis (BGSLDA), to efficiently train a weak classifier. BGSLDA exploits the sam-

ple re-weighting property of boosting to update weak classifiers’ thresholds and the

class-separability criterion of GSLDA to train a strong classifier.

Although offline object detectors have shown a tremendous success. One major

drawback of offline techniques is that a complete set of training data has to be col-

lected beforehand. In addition, once learned, an offline detector cannot make use of

newly arriving data. In order to alleviate these shortcomings, online learning has been

adopted with following objectives:- the technique should be computational and storage

efficient; and the updated classifier must maintain its high classification accuracy.

Improving upon the GSLDA classifier, an effective and efficient framework for

learning an online GSLDA model is proposed. Unlike existing online object detec-

tion algorithms, e.g., Grabner and Bischof [45] or Pham and Cham [110], our online

approach makes use of LDA’s learning criterion which has been shown in our previ-

ous experiment to outperform the AdaBoost’s learning criterion for the offline object

detection task. Our updating algorithm is very efficient since we neither replace weak

learners nor throw away any weak learners during an updating phase. Finally, we adopt

a learning technique similar to a semi-supervised learning where the classifier makes

use of the unlabeled data in conjunction with a small amount of labeled data.

1.5 Thesis Outline

Subsequent chapters of this thesis are organized as follows. Chapter 2 gives an overview

of related works in object detection, discusses the work of Viola and Jones [140], lists

some of their shortcomings and presents recently proposed approaches. In Chapter 3,

a fast method to train human detection is proposed. The key idea of our detector is

based on a combination of projected covariance and Haar-like features. In Chapter 4,

the performance of AdaBoost on skewed data sets is analysed and its drawbacks are

discussed. The LDA based classifier is also proposed. In Chapter 5, shortcomings

of offline detectors are pointed out and the incremental classifier for object detection
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problems are proposed. Finally, Chapter 6 concludes this thesis and discusses some
future works.

The works described in Chapters 3, 4 and 5 have been presented in [100, 101, 102,
127].
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2
Related Works

Like in many fields of science and engineering, the field of computer vision is very

diverse. A multitude of literatures exist for solving various computer vision tasks.

This chapter discusses existing works related to object detection problems. Some of

these works focus on specific objects, e.g., faces, human, vehicles, while other can

be applied to general objects. The chapter consists of three sections. Section 2.1

gives an overall overview of different visual object detection approaches. In the next

section, we introduce the object detection framework based on Viola and Jones [140],

which have been shown to give excellent results with real-time performance. Finally, in

Section 2.3, we discuss some limitations and drawbacks of traditional object detectors

and briefly present recently proposed approaches.

2.1 Overview

The primary goal of object detection is to successfully locate all instances of pre-

specified objects despite the presence of background clutters or partial occlusions,
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e.g., to detect all human faces in a given photo. There exists a number of related

works which cover methods for general object detection to a more specific object, e.g.,

face detection, human detection, body pose estimation and vehicle detection. The re-

search in this field is rather broad and could be classified into many categories. Early

research concentrated on easy-to-classified objects using global parameters. Due to re-

cent advances in computer hardware, attention has been shifted towards local features,

which have shown to be more robust to object variations and complex illuminations.

We briefly tabulate several well known object detection methods in Table 2.1 (sorted

by year of publications). In the following section, we outline these methods in more

details.

Turk and Pentland [133] proposed the use of global features, known as eigenfaces.

They projected face images onto a feature space that spanned the significant varia-

tions among known face images. To be more specific, they applied principal compo-

nent analysis (PCA) to identify the most expressive feature. Unlike local feature ap-

proaches, where features correspond to eyes, ears or noses, eigenface features capture

information from whole faces. Original faces can be reconstructed from a weighted

sum of eigenface features.

The intuition behind their approach is that images of faces do not change radically

when projected onto the face space, while the projection of non-face images appears

differently. By calculating the distance in the face space at every location in the image,

presence of faces can be detected. The technique works well on face images since

human faces have a fixed structure, e.g., two eyes, one nose, one mouth and human

eyes are at the top and mouth is at the bottom. In addition, faces in an image are

often not occluded. However, the drawback of their approach is that the system is

not able to cope with large variations in object’s appearance, occlusions, poses and

illumination conditions. In these conditions, global features fail to extract meaningful

object representations.

Active shape model has been one of the most widely used shape modeling tech-

niques. In Baumberg [6], the shape model is generated using a set of foreground

regions containing walking pedestrians. The estimated shape is scaled to an appro-

priate size. The position of pedestrians and their shape estimates are adjusted until

the contour of the person is found. The strength of the system was the efficiency and

robustness of the system. The system achieved the speed between 14.75 − 33 frames
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Table 2.1: A summary of existing object detection approaches. Extraction method indicates
how a set of local image patches is sampled, e.g., densely, randomly, using a key-
point detector, using background modeling, etc. Feature descriptors are sets of rep-
resentations extracted from image patches. Classification is the machine learning
algorithm used to exploit detection decision based on given feature descriptors.

Year Extraction
Method

Feature Descrip-
tors

Classification Apps.

[133] 1991 Densely PCA Euclidean dist. Faces
[6] 1995 Background Shape B-spline Human

[120] 1998 Densely LRFs Neural Networks Faces
[104] 2000 Densely Haar Wavelet SVM General
[16] 2000 Image Diff. Shape Rule based Human
[48] 2000 Background Silhouette edges SAD Human
[1] 2002 Keypoint Appearance SNoW Vehicles

[40] 2002 Edge Det. Shape template Chamfer dist. Human
[141] 2003 Densely Wavelet/Motion AdaBoost (Stumps) Human
[140] 2004 Densely Wavelet template AdaBoost (Stumps) Faces
[129] 2004 Densely Motion cue SVM Human
[84] 2004 Densely Feature

co-occurrence
AdaBoost (Likelihood
ratio)

Human

[24] 2005 Densely Gradients (HOG) SVM Human
[62] 2005 Keypoint Appearance/Shape ISM/Chamfer dist. Human

[156] 2005 Temporal
Diff.

Shape Hist. Intersection Human

[81] 2006 Keypoint PCA-SIFT Prob. model General
[157] 2006 Densely Gradients (HOG) AdaBoost (SVM) Human
[58] 2006 Densely Gradients (HOG) AdaBoost (LDA) General

[136] 2008 Densely Covariance LogitBoost
(Regression)

Human
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per second on SGI workstation with a 64-bit super pipelined RISC CPU when tested

on gray-scale images at full PAL resolution. However, there existed a number of lim-

itations. Firstly, the system was pre-trained to detect human with a specific shape. In

other words, it fails to detect human engaging in other activities, e.g., running, jump-

ing or sitting down. Secondly, the system performs well only when there exist a high

contrast between human and backgrounds. By relying only on edge information, the

system fails when a large percentage of edge points are not detected, e.g., a person

moving in front of backgrounds similar to person’s clothes.

Rowley et al. [120] proposed a multilayer perceptron neural network-based face de-

tection system. The authors performed experiments with both single neural networks

and modular systems consisting of several neural networks. Each neural network con-

sisted of one layer of hidden units, where each hidden unit has a receptive field of either

5×5, 10×10 or 20×5 pixels. The authors compared their approach with several other

state-of-the-art face detection systems and showed that their approach achieved com-

parable performance in terms of detection and false-positive rates. The drawback of

their approach is the high computation time. Given that there are three types of hidden

units: four 10 × 10 pixels subregions, sixteen 5 × 5 pixels subregions and six 20 × 5

pixels regions. The total number of CPU operations per window is over 2, 000. In their

implementation, it took approximately 383 seconds to evaluate an image of 320× 240

pixels on a 200 MHz R4400 SGI Indigo 2.

Papageorgiou and Poggio [104] proposed a general, trainable object detection sys-

tem which is purely based on pattern classification. Object class is represented in terms

of an over-complete dictionary of local, oriented, multi-scale intensity differences be-

tween adjacent regions, called Haar wavelet transform. Wavelet coefficients from two

frequency bands are used as input to a quadratic classifier. The coefficients in the

quadratic classifier are learned by Support Vector Machines (SVMs) from a large set

of training samples. Their system is the first human detection system that does not rely

on motion, tracking, background subtraction or any assumptions on the scene structure.

To improve the detection speed of their framework, the authors proposed a scheme for

feature selection based on feature variance. However, the speed improvement comes

at a significant drop in detection rate at low false positive rates.

Broggi et al. [16] proposed the method to detect pedestrians from vehicle mounted

camera. Their goal was to develop a safety system which can act as an automatic pilot
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for standard road vehicles. The approach used morphological characteristics and the

strong vertical symmetry of human shapes for pedestrian detection and recognition.

The authors assumed three hypotheses. First, there exist vertical edges with a strong

symmetry with respect to vertical axis. Secondly, size and aspect ratio of detection

bounding boxes must satisfy specific constraints. Finally, the pedestrian must be in a

specific region and the whole pedestrian must be present in the image. In their im-

plementation, vertical edges are first extracted using Sobel operator [44]. After back-

ground has been removed, areas which present high vertical symmetry are considered.

Remaining edge pixels are matched with pedestrian’s head model. The bounding box

is determined from the object’s lateral, bottom boundaries and the pedestrian’s head.

The advantage of using morphological operation is the efficiency of the overall system.

However, the system makes use of edges which might not be robust in scenarios where

large percentage of edge points cannot be detected.

Haritaoglu et al. [48] proposed a real-time visual surveillance system, called W 4.

W 4 constructs dynamic models of people’s movements to answer questions about what

they are doing, where they are, who they are and when they act. The technique employs

a combination of shape analysis and tracking to locate human and their parts. To be

more specific, detection process consists of two steps:- background scene modeling

and foreground region detection. For human classification,W 4 generates a set of shape

(local and global) and appearance features for each detected foreground object. The

authors combined detection with tracking to enhance the robustness of their system.

Due to its careful design and simplicity, the system achieves a real-time performance

on off-the-shelf PCs. However, it remains a challenge whether such a system would

be able to distinguish partial occlusion by relying on silhouette information alone.

Also, the system relies on background subtraction to detect foreground objects. The

disadvantage of background subtraction is that the camera needs to be static.

Agarwal and Roth [1] proposed an approach for learning to detect instances of

objects based on sparse, part-based representation. A vocabulary of object parts is

automatically constructed from a set of sample images. Original objects are then rep-

resented as binary feature vectors based on a presence of vocabulary on object parts,

along with spatial relations observed between pairs of parts. Due to the feature prop-

erty (sparse feature representations), the authors trained a classifier using the sparse
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network of winnows (SNoW) learning architecture [119]. SNoW learns a linear func-

tion over the feature space using a feature-efficient variation of the Winnow learning

algorithm. Their experimental results show that the approach achieves high detec-

tion accuracy and are highly robust to partial occlusions and background variations.

However, their learning approach relies on the repeated observation of co-occurrences

between object parts. The only way to achieve this is to train a system with a large

number of training samples.

Gavrila and Giebel [40] proposed a pedestrian detection approach, which can deal

with a challenging scenario of moving cameras mounted on a vehicle. The authors

represented human model by their shapes. For classification, shape-based template

matching is performed based on the Chamfer distance. To allow for efficient matching,

a hierarchical tree of templates is constructed from a set of templates. This hierarchy

is constructed automatically using partition clustering. During shape matching, the

process starts at the root and works its way towards the leaves to find the best matching

template based on the chamfer distance. The method also includes a Kalman filter

based tracker for taking advantage of the temporal information for filling in missed

detections.

Viola and Jones [140] proposed the first robust real-time face detection frame-

work. Their approach consists of three key contributions. The first contribution is

the introduction of a new image representation called integral image, which allows

rectangular features to be computed very quickly. Their second contribution is the

use of AdaBoost learning algorithm to select a small subset of critical visual features

for building a simple and efficient classifier. Their third contribution is a method for

combining classifiers in a cascade structure which allows non-face images to be dis-

carded quickly. Their system performs comparable to the best system previously re-

ported while achieving real-time performance on off-the-shelf PCs. Nonetheless, be-

ing example-based learning approach, their framework requires a large set of training

samples to achieve high detection rates.

Improving upon their previous work [140], Viola et al. [141] integrated image in-

tensity information with motion information to detect a walking person. For efficient

representation of motion, they extract motion information from the difference between

shifted versions of the image in the current frame, It, with the image from the previous

frame, It−1, where I represent an image frame and t is the time it was captured. In
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their implementation, motion filters operate on five directions:- no shift in the image in

the current frame, image in the current frame is shifted up by one pixel, down by one

pixel, to the left by one pixel and to the right by one pixel. They also capture image

intensity information from motion images. These features measure something simi-

lar to motion shear. For classification, the detector is trained using AdaBoost. Their

approach achieves a frame rate of 4 frames/second with very low false positive rates.

Furthermore, their system was able to operate on low resolution images. The drawback

of their technique is that the approach requires a massive number of training data to

achieve reasonable performance. The second drawback is related to the training data

collection process. Since human motion has a large variation and AdaBoost is not a

multi-class classification algorithm, it might be a challenge whether AdaBoost would

be able to handle large variations of motions and noisy training data.

Sidenbladh [129] proposed a human detection framework using a motion cue. The

authors believed that the appearance of human varies highly due to many uncontrol-

lable factors like clothing, weather, illumination, etc. In contrast, human motion is a

more discriminative cue than appearance. Dense optical flow was used as the motion

cue. Due to the high dimensionality of the state-space and low number of training

samples, the authors used SVMs to learn and classify human/non-human. The author

used 443 human flow patterns and 11, 688 non-human flow patterns to evaluate their

approach. Their experimental results on a set of videos are encouraging. However, in

their paper, human flow patterns were chosen from a very simple scene, e.g., a very

quiet street with few people walking, scenes with not many moving objects, etc. It

would be challenging whether the system would perform well in busy scenes with a

variety of object classes, e.g., traffic intersection where there are lots of human’s and

vehicles’ motion.

Mikolajczyk et al. [84] proposed an approach for detecting human in the presence

of clutters and occlusions. The authors modeled humans as flexible assemblies of parts.

Seven different body parts (frontal head, face, profile head, profile face, frontal upper

body, profile upper body and frontal legs) are used. Body parts appearance is repre-

sented by orientation-based features. Orientation is either based on first derivatives

(gradient orientation and gradient magnitude) or second derivatives (Laplacian mag-

nitude and the orientation of the second derivative). After computing the dominant
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gradient orientation, features are grouped together. Hence, there will be four differ-

ent feature group types:- horizontal and vertical groups for gradient orientations, and

horizontal and vertical groups for the Laplacian. In order to increase the robustness

of their features to small shifts in location, the authors quantized the location into a

5× 5 grids. Feature selection and part detectors are leaned from training images using

AdaBoost with a linear combination based on log likelihood ratio as weak classifiers.

Detection proceeds in three stages. Individual features are first detected across the

image at multiple scales. Individual parts are then detected based on these features.

Finally, bodies are detected based on assemblies of these parts. The major advantage

of using part based approaches is an improvement in system performance. However,

this extra calculation has a high computation cost. In their experiments, the system

took 10 seconds to evaluate an image of resolution 640× 480 pixels, which is far from

real-time performance.

After Lowe [72] had proposed Scale Invariant Feature Transformation (SIFT) in

1999, numerous researchers have studied the use of orientation histograms in other

vision areas. Dalal and Triggs [24] reviewed various existing edge and gradient based

descriptors and concluded that grids of histograms of oriented gradients (HOG) out-

performed existing feature sets for the task of human detection. HOG works on the

assumption that the shape of objects can be represented by a distribution of local in-

tensity gradients or edge directions. In their paper, this is achieved by dividing the

image into smaller cells and finding the histogram of edge orientations over all pixels

in the cell. To be more specific, a human input image of size 64× 128 pixels is divided

into cells of size 8×8 pixels. A group of 2×2 cells is integrated into a block. Each cell

consists of a 9-bin HOG and each block contains a concatenated vector of all its cells.

A vector is then normalized to a unit length. For classification, feature vectors are

extracted from human and non-human images, and a linear binary classifier is trained

using SVM. This classifier can then be applied to a new input image at several scales

to detect human at various sizes. The major disadvantage of their approaches is that a

pre-defined single size cell (8 × 8 pixels) with a fixed size block (2 × 2 cells) is used.

Hence, a HOG block would fail to capture body parts which do not have square shapes,

e.g., human limbs which have a rectangular shape. The second disadvantage is the high

evaluation time. Since features in every block have to be calculated, the system spends

a lot of time extracting both discriminant and non-discriminant features.
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Leibe et al. [62] employed the appearance-based feature for pedestrian detection

in crowded scenes with severe overlaps. Their approach combines local and global

cues via probabilistic top-down segmentation. The feature extraction proceeds in two

steps. First, a codebook is learned based on Implicit Shape Model (using DoG inter-

est point detector [72] and agglomerative clustering scheme [61]). In the second step,

they learn the spatial occurrence distribution of each codebook entry from all train-

ing images. During recognition, each patch is matched to the codebook and matching

codebook entries cast votes for possible object positions and scales. The final segmen-

tation is obtained from the likelihood ratio between figure and ground probabilities.

The authors combined local appearance features with global cues from pedestrian sil-

houettes. The combination scheme exploits the similarity between the inferred seg-

mentation and pedestrian silhouettes. The combined approach provides better results

than either method alone. Experimental results show that their technique is able to de-

tect walking pedestrians under crowded scene with few false positives. However, their

approach is far from real-time performance. Combining both local and global features

can further improve the performance at a cost of higher computation time.

Zhou and Hoang [156] proposed a real time human detection by applying temporal

differencing to segment blob and use codebook to classify a human being from other

detected objects. The advantage of using temporal differencing is that it is adaptive to

dynamic environment and can be computed quickly. In order to identify human, the

authors introduced a codebook to classify human from other objects. Details of their

approach can be briefly summarized as follows. First, the object was normalized to

a size of 20 × 40 pixels. The shape of objects was then extracted as visual features.

Next, codeword with smallest distortion to the feature vector of objects is matched.

If the minimum distortion is less than a threshold, this object is classified as human.

The algorithm is simple, fast and has proved to be robust to varying environments.

However, temporal differencing assumes that the camera is static and the differences

are caused only by pre-specified foreground objects, i.e., if there is an overlap between

two people, the system will fail to recognize the blob as having two people. This

drawback has also been mentioned in their paper that the system fails to detect human

when there is a partial occlusion or when two people walk close together. Furthermore,

it remains a challenge how well this technique would perform in a busy environment,

e.g., traffic intersection, or with camera mounted in a moving vehicle.
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Mikolajczyk et al. [81] proposed an approach to locate multiple object classes us-

ing a generative model. The recognition method is based on a hierarchical codebook

representation where appearance clusters, built from edge based features, are shared

among several object classes. The structure is efficiently constructed during learning to

allow for efficient object detection during evaluation. For classification, a probabilistic

model is used for detecting various objects in the same image. The authors reported an

excellent performance on several object categories over a wide range of scales, in-plane

rotations, background clutter and partial occlusions. Their algorithm is comparable to

those state-of-the-art approaches dedicated to a single object class recognition prob-

lem. Nonetheless, similar to other probabilistic model, the major drawback of their

approach is the high computation cost. The system has to first extract local features,

cluster these points, perform matching and compute the likelihood. Depending on the

number of features in the given image, the process could take up to 10 seconds. In

addition, the approach has a number of parameters involved. Finding the right param-

eter value for several objects can be rather tedious and requires a lot of preliminary

experiments.

Zhu et al. [157] used similar features as in Dalal and Triggs [24]. However, they

integrated the cascade approach [140] with HOG features to achieve a fast and accu-

rate human detection system. Instead of using a fixed size block, they used HOG of

variable-size blocks with AdaBoost for feature selection. Linear SVMs trained with a

concatenated vector of 250 random blocks are used as AdaBoost weak learners. The

authors reported a speed-up of 70 times at accuracy comparable to the original ap-

proach [24] (0.1 second versus 7 seconds). Although the authors had improved the

speed of [24], we think that their performance is still sub-optimal. In other words, they

randomly selected 250 blocks as their weak learner and there is no guarantee that the

selected learner will give optimal performance.

Laptev [58] proposed a method for object detection based on AdaBoost learning

with local histogram features. Unlike in Dalal and Triggs [24] and Zhu et al. [157], the

position and shape of histogram features were chosen to minimize the training error.

A complete set of rectangular regions in the object window were used to compute

histogram of oriented gradients. AdaBoost procedure was used to select vector valued

histogram features and to learn an object classifier. In their approach, a weak learner

based on Weighted Fisher Linear Discriminant was adopted on Viola and Jones’ object
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detection framework [140]. The approach achieves comparable performance to other

state-of-the-art methods submitted to the 2005 Pascal Visual Object classes challenge

[34]. However, similar to other example-based learning approaches, their framework

requires a large number of training samples in order to build a robust classifier.

Tuzel et al. [136] proposed a new algorithm to detect pedestrians in still images

by utilizing covariance matrices as object descriptors. Due to a property of covariance

matrices (symmetric positive definite matrices), distance between two covariance ma-

trices do not lie on a Euclidean space. The authors represented covariance matrices in a

Riemannian manifold. To calculate features, they first compute normalized covariance

matrices for all rectangular regions. For each region, covariance mean (point which

minimizes the sum of squared Riemannian distances) can then be computed. For clas-

sification, they use LogitBoost to learn a set of regression functions. For training weak

learners, the authors learned regression functions on the tangent space at the weighted

mean of covariance points. The authors tested their approach on INRIA human data

sets [24] and reported that their approach outperformed all other methods significantly.

The only drawback of their approach is the heavy calculation of eigenvalue decompo-

sition, which require O(d3) arithmetic operations (where d is the number of rows or

columns of covariance matrices).

2.2 Boosted Cascade Classifiers on Haar-like Fea-
tures

Despite a multitude of literature on object detection, a large number of proposed ap-

proaches were far from real time performance. This had limited their use in real-world

applications. It was not until recently that object detection problem received consid-

erable attention among researchers owing to the impressive performance of Viola and

Jones’ face detector [140].

The work of Viola and Jones was the first method that achieved real-time detection
speed and high accuracy comparable to previous state-of-the-art methods. Parts of

their approaches were based on Papageorgiou and Poggio [104]. However, instead of

designing a single complex classifier like in Papageorgiou and Poggio, coarse-to-fine

search, termed cascade classifier, is adopted for computational efficiency. The cascade
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structure reflects the fact that within any single image there are very few faces and a

vast majority of sub-windows are negative. As such, the cascade attempts to reject as

many non-face patches as possible at the early stage of the cascade. An input patch is

classified as a face only if it passes tests in all nodes.

As previously discussed in the last section, their work consists of three contribu-

tions. The first contribution is a cascade of classifiers. The second contribution is

the boosted classifier where a combination of linear classifiers is formed to achieve

fast calculation time with high accuracy. The last contribution is a simple rectangu-

lar Haar-like feature which can be extracted and computed in fewer than ten Central

Processing Unit (CPU) operations using integral image. The rest of this section dis-

cusses their contributions and analyzes the component that gives rise to a robust object

detector, which yields high detection performance and extremely low false positives.

2.2.1 Viola and Jones’ Cascade Design

Since face detection problem can be classified as a rare event detection task, i.e., the

problem typically consists of a very imbalanced ratio of positive and negative samples,

a majority of execution time is spent in rejecting negative samples. A cascade is a

sequence of classifiers arranged in a coarse-to-fine manner (from simple to complex).

It can be viewed as a degenerate decision tree [113]. The key insight to achieving real-

time detection speed of Viola and Jones’ framework is the idea of designing a cascade

of classifiers with increasing complexity, illustrated in Figure 2.1. The complexity of

each node can be determined from the number of weak classifiers it contains. The

cascade classifier operates as follows. A positive result from the first node triggers the

evaluation of a second classifier node. A positive result from the second node triggers

the evaluation of a third classifier node, and so on. A negative outcome at any node

leads to the rejection of the sub-window. Using this classifier arrangement, a large

number of negative patches will be rejected during early node classifiers, allowing the

detector to achieve real-time performance.

In order to achieve a high detection rate on the final cascade classifier, each node

needs to have a very high detection rate. The global detection rate,D, and false positive

rate, F , are the product of the detection rate and false positive rate of each individual
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Figure 2.1: An illustration of cascade classifiers. The oval size represents the complexity of
classifiers. Note that the complexity of classifiers increases as we progress along
the cascade.

node classifier. They can be calculated as,

D =
N∏
i=1

di, (2.1)

F =
N∏
i=1

fi, (2.2)

where di is a detection rate of the ith node classifier and fi is a false positive rate of the

ith node classifier. Based on (2.1) and (2.2), Viola and Jones chose all nodes’ detection

rate to be D1/N and F 1/N , respectively. In other words, to achieve 95% detection rate

with less than 10−5 false positive rate in a 20-stage cascade architecture, each node

classifier should achieve a minimal detection rate of 99% and false positive rate of

around 50%.

Note that during cascade training, an approach known as bootstrapping is often

used. Bootstrapping is a general machine learning technique that iteratively trains and

evaluates a classifier in order to improve the overall performance. During training, the

first classifier node is trained with random negative patches and positive patches. The

second classifier node is then trained with false positives from the first node. The third

node is then trained with false positives from the first and second node, and so on. By

having a sequence of classifiers, efficient and robust object detectors can be generated.

In Viola and Jones’ cascade design, the same set of positive samples is used in all node

classifiers.
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Figure 2.2: An illustration of strong classifiers. The final strong classifier takes the form of
weighted combinations of weak classifiers. A tick indicates a positive response
(+1) and a cross indicates a negative response (−1).

2.2.2 Viola and Jones’ Boosted Classifier

Boosting is a meta-algorithm that has been proposed to improve the classification per-

formance of base classifiers (weak classifiers). Several algorithms have been used in

conjunction with boosting, for example decision stumps and decision trees. Several

boosting algorithms have been proposed. The most popular boosting algorithm is Ad-

aBoost (Adaptive Boosting) by Schapire [123].

AdaBoost combines a collection of weak learners to form a stronger classifier. The

algorithm can be interpreted as a greedy feature selection process. In each iteration, a

weak learner is called to solve a learning problem. The weak learning algorithm se-

lects the single feature which best separates the positive and negative examples. After

the first weak learner is selected, examples are re-weighted in order to emphasize those

which were incorrectly classified by the initial weak learner. The process continues un-

til all samples are correctly classified or the maximum number of iterations is reached.

The final strong classifier takes the form of a weighted combination of weak classifiers

followed by a threshold, illustrated in Figure 2.2.

The strong boosted classifier is a linear combination of T weak classifiers, which

can be defined as,

H(x) = sign (F (x)) = sign

(
T∑
t=1

αtht (x)

)
, (2.3)

where αt is the coefficient associated with weak classifiers. A new weak classifier

ht(x) is learned by minimizing an exponential upperbound of the classification error
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Algorithm 1 AdaBoost Training algorithm.
Input:

• Training set with their labels; (x1, y1), (x2, y2), · · · , (xN , yN ) where x ∈ Rk and
y ∈ {−1, 1};

• The number of boosting iterations, Nw.

Initialize: t = 0; s(i) = 1
N , i = 1, · · · , N ; F (.) = φ1

while t < Nw do2

1. t = t+ 1;3

2. Train base learner using sample weights, s, on the training data;4

3. Find the best weak classifier, ht(.), with minimal weighted5

misclassification error, et =
∑N

i=1 s(i)1[yi 6=ht(xn)];6

4. Compute αt = 1
2 log(

1−et
et

);7

5. Update sample weights, s(i) = s(i) exp(−yiαtht(xi)), i = 1, · · · , N ;8

6. Update F (.) =
∑T

t=1 αtht(.).9

Output:

• Final classifier H(x) = sign (F (x)) = sign
(∑Nw

t=1 αtht (x)
)

.

of boosted classifiers.

minimize
αt,ht(x)

E

[
exp

(
t−1∑
i=1

αihi (x) + αtht (x)

)]
, (2.4)

where E denotes the expectation with respect to the empirical distribution. The new

weak learner is selected from a set of feature classifiers. An algorithmic overview of

AdaBoost is shown in Algorithm 1.

2.2.3 Viola and Jones’ Haar-like Features with Integral Image

The authors proposed a very efficient way to compute Haar-like features based on a

new image representation called integral image. A sum of pixels in any rectangles

can be computed very rapidly using the integral image. The integral image at location
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Figure 2.3: Left: The value of the integral image at point (x, y), J(x, y), is the sum of all
pixels above and to the left. Right: The sum of pixels within rectangle D can be
computed with four array references. The value of the integral image at location 1

is the sum of pixels in rectangle A. The value at location 2 is A + B, at location 3

is A + C, and at location 4 is A + B + C + D. The sum within D can be computed
as 4 + 1− (2 + 3). Courtesy of [140].

(x, y) contains the sum of pixels above and to the left of (x, y):

J(x, y) =
∑
x′≤x

∑
y′≤y

I(x′, y′), (2.5)

where J(x, y) is the integral image and I(x, y) is the original image. By using the
integral image, the sum of pixel intensities of a rectangle can be computed using at
most four references to the integral image, independent of its location or size. Fig-
ure 2.3 gives an overview of integral image and operations required to compute the
rectangular sum. Once integral image is computed, Haar-like features can be calcu-
lated in constant time. Three different kinds of Haar-like features at various scales and
locations were used in their paper (Figure 2.4).

Despite the success of object detector proposed by Viola and Jones, there exists
a number of challenging learning issues. Numerous researchers in recent year have
focused their attention to various aspects of these issues, e.g., improving the cascade
classifier, learning an alternative classifier instead of AdaBoost, designing better fea-
tures, improving the complexity of weak learners’ training time. In the next section,
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A  B  C D 

Figure 2.4: An example of Haar-like rectangle features. The sum of pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey rectangles: (A,B)
Two-rectangle features (C) three-rectangle features and (D) four-rectangle feature.
The value of a two-rectangle feature (A,B) is the difference between the sum of
pixels within two rectangular regions. A three-rectangle feature (C) computes the
sum within two outside rectangles subtracted from the sum in a center rectangle.
Finally, a four-rectangle feature (D) computes the difference between diagonal
pairs of rectangles. Courtesy of [140].

we categorize these improvements into four categories and discuss each of them in
details.

2.3 Improvements of Boosted Cascade Classifiers

In this section, we discuss issues related to the traditional boosted cascade classifier
and review recently proposed methods to overcome these drawbacks.

2.3.1 Shortcomings of Cascade Designs

The drawback of Viola and Jones’ cascade is that it is not known beforehand how many
boosted classifiers are needed or which combination of Receiver Operating Character-
istics (ROC) curves produces an optimal cascade. In the original design, these param-
eters are obtained mainly by trial and error. For simplicity, Viola and Jones used the
same detection rate and false positive rate for all nodes in the cascade structure. In this
section, we discuss some of recently proposed techniques that deal with these draw-
backs. Table 2.2 briefly summarizes issues related to the traditional cascade classifier
and recently proposed approaches
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Table 2.2: An overview of recently proposed approaches over cascade structure

Drawbacks of original cas-
cade

Proposed approaches

[131] By fixing a detection rate,
e.g., 99%, and a false positive
rate, e.g., 50%, at each node
classifier, the cascade classi-
fier is sub-optimal.

The authors proposed a cascade indifference
curve framework for automatic cascade learn-
ing.

[12] Information learned from ear-
lier nodes are discarded.

The authors trained one large strong classifier
and injected decision threshold at every weak
classifier.

[130] Existing approach used ad
hoc parameter setting.

The authors formulated this trade-off as Wald’s
sequential probability ratio test and build a sin-
gle boosted ensemble.

[73] Node thresholds designed us-
ing Viola and Jones’ cascade
classifier is not optimal.

The authors proposed to globally allocate opti-
mal trade-offs across all node classifiers in the
cascade.

[146] Improve upon [12] The authors proposed to train one large strong
classifier, similar to [12], but incorporated sev-
eral improvements.

[147] Only negative samples are
bootstrapped. Information of
weak classifiers from previ-
ous nodes is ignored.

The authors proposed an efficient learning algo-
rithm that bootstraps both positive and negative
samples. A new cascade structure was also in-
troduced.

[31] The cascade classifier does
not generalize well on noisy
data.

The authors proposed the joint optimization of
cascade classifiers.

[17] The cascade classifier is sub-
optimal

The authors introduced a fully-automatic
framework for training a cascade classifier
based on a probabilistic prediction.

[111] Tradeoff between speed and
accuracy wasn’t well studied
in[12]

The authors proposed multi-exit classifier,
where previous scores are propagated from one
boosted classifier to the next.
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Some progress towards automatic training of cascade classifiers has been made.

Sun et al. [131] proposed a cascade indifference curve framework for automatic cas-

cade learning algorithm. The approach connects the learning objective for an individ-

ual node to the overall cascade performance. In their paper, a new cost function based

on a cascade risk is derived for learning a node classifier. The authors adjusted the

learning goal according to the difficulty of node learning problems and demonstrated

that this new cost function yields an optimal learning goal for each node.

Based on their paper, the approach assumes that subsequent nodes perform similar

to the previous node. However, achieving the same node objective (e.g. a detection rate

of 99.5% and a false positive rate of 50%) in every node might be almost impossible,

i.e., negative samples in subsequent nodes are often harder to classify. Similar to Viola

and Jones, the authors introduced an additional parameter, termed maximum number of

weak classifiers per node, to terminate node learning when an additional computation

cannot decrease cascade risk cost function. In summary, the approach consists of three

unknown parameters, i.e., [fmin, fmax], which indicates a range of acceptable false

positive rates in each stage, a trade-off parameter, λ, which balances speed and the

predicted detection rate. Finding optimal values among these parameters often require

extensive experiments.

Bourdev and Brandt [12] suggested that the traditional cascade classifier had a

large number of weak classifiers because information learned from weak classifiers

in early nodes were discarded. They generalized the cascade structure by training a

single monolithic boosted classifier using AdaBoost and called it the Soft Cascade.

The authors proposed a calibration algorithm that breaks the large boosted classifier

into a cascade by augmenting a rejection threshold function into every weak classifier

(Figure 2.5). The authors demonstrated that the approach achieved a high detection

rate using fewer features compared to state-of-the-art detectors. The advantage of their

methods is that the accuracy/speed trade-off can be systematically explored through

the ROC surface. Although the authors showed a performance improvement, it is

arguable whether their structure would lead to an optimal cascade. Since thresholds

were obtained after all weak classifiers had been trained, their final classifier could be

sub-optimal.

Sochman and Matas [130] formulated a classification problem in the framework of

sequential decision-makings called WaldBoost. The decision threshold is chosen based
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Figure 2.5: An illustration of classifiers with soft cascade [12] (top) and multiple exit nodes
[111] (bottom).

on the class-conditional response of sequence of strong classifiers. During evaluation,

the detector decides whether to accept an instance, reject an instance or continue the

evaluation to the next weak classifier. WaldBoost can be considered as a theoreti-

cally justifiable boosted cascade classifier proposed by Viola and Jones. The authors

evaluated their approach on face detection problem and showed that their results are

superior to the state-of-the-art method. Since the approach has a decision threshold

at every weak classifier, bootstrapping is required after each weak classifier training.

Hence, their approach has a high computational cost during training.

Luo [73] proposed an optimization algorithm for designing a cascade classifier.

The approach attempts to jointly optimize thresholding parameters of all node classi-

fiers after the full cascade has been trained. Their performance improvement clearly

signifies the importance of node thresholds in cascade classifier. In their paper, it

was suggested that the approach could serve as a useful post-processing process for

cascaded design. However, two important things seems not to be addressed in their

paper. The first one is related to node decision thresholds and bootstrapped data. In

traditional cascade classifier, modifying decision threshold value could result in a com-
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pletely different bootstrapped data. In their approach, it remains a challenge whether

weak classifiers in later nodes should be modified based on their new threshold value.

The other is whether threshold should be chosen during cascade training instead of

after full cascade has been trained.

Xiao et al. [146] proposed a novel cascade structure called Dynamic Cascade, for

training an efficient face detector on massive data sets. Unlike the Soft Cascade, which

calculates thresholds after all weak classifiers have been trained, Dynamic Cascade cal-

culates rejection thresholds and updates training sets before training each weak classi-

fier. To address the challenge of massive training sets, the authors made use of a weight

trimming technique [38]. Experimental results show that their approach effectively im-

proves the detection performance. However, similar to the Soft Cascade, it remains a

challenge whether it is beneficial to have a decision threshold at every weak classifier.

Also, their approach has a high computation cost during training since bootstrapping

is required after each weak classifier training.

Yan et al. [147] proposed a novel matrix-structural learning (MSL) method which

overcomes the limitation of cascade classifiers (Figure 2.6). Unlike in the original

Viola and Jones’ cascade, which bootstraps only negative samples (Section 2.2), the

proposed structure bootstraps both positive and negative samples. The authors also

proposed an accumulative technique to inherit features learned previously. The authors

used 230, 000 face training samples to learn a classifier and their detector achieves a

performance better than the state-of-the-art on CMU+MIT frontal face test sets.

Since increasing the size of training set can further improve the classification per-

formance, it remains a challenge whether a performance gain in their experiment is

the result of using a larger training set or the result of adopting their MSL method.

Based on their experimental results, their performance performs similar to Bourdev

and Brandt [12], which also reuses some of previously learned classifiers (i.e., they

inject the decision threshold at every weak classifier). Hence, it remains a challenge

whether the performance gain is a result of MSL or their feature-inheriting technique.

In my view, bootstrapping is a process of collecting small and representative training

sets. If all positive training samples can be fit into memory, their technique would

turn out to be obsolete. However, if one is fortunate to have a massive training set of

positive samples, bootstrapping positive samples might be more convincing.
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each bootstrap iteration results in a sub-classifier and the 
false positives of all previous sub-classifiers are collected 
into a new negative training set with a predefined size. The 
sub-classifier is constructed by boosting. Each step of the 
boosting involves a tradeoff between accuracy and speed. 
Generally speaking, the more features used, the higher 
detection accuracy achieved. By using suitable number of 
features, each sub-classifier is adjusted to have a very high 
target detection rate and moderate false alarm rate to 
achieve the overall high detection rate and very low false 
alarm rate of the final strong classifier.  

The framework of the proposed MSL method is 
illustrated in figure 5. In the figure, Ni and P(.) denote the 
bootstrapped negative and positive training set respectively, 
and C(.) denotes sub-classifier. As can be seem clearly, 
MSL is a matrix-like structure with two alternated 
bootstrap procedures, i.e. positive and negative sample set 
bootstrap. While the negative bootstrap is conducted 
similarly as in Viola and Jones’ method, the positive 
bootstrap is illustrated in figure 4 and described as follows.  

Each row in figure 5 is an iteration of positive sample 
bootstrap, as shown in figure 4. To guarantee the same 

1) Start with a small set of positive training samples

randomly selected from ESS; 

2) Train a strong classifier on current training set with

terminal conditions of target detection rate dmin and target 

maximal false alarm rate fmax; 

3) Run the classifier on positive ESS to get a detection rate 

d. If d exceeds dmin, the classifier is the final

sub-classifier, train is over; otherwise, collect some 

samples that the current system wrongly classifies and 

add these samples into the training set as new training

samples, return to 2).  
Figure 4: positive sample bootstrap in sub-classifier learning. 

classification accuracy performance (detection rate) on 
both the whole positive ESS and the current training set, the 
sub-classifier learned from the training set with target 
accuracy is validated on the whole positive ESS. If the 
detection rate does not meet the target, new positive 
samples wrongly classified are collected by bootstrap and 
added to the training set, until the detection rate on positive 
ESS meets the target. Thus, in positive sample bootstrap, 
for the ith sub-classifier, the relation between two 
successive positive training sample sets, say the jth and the 
(j+1)th iteration, can be expressed as: 

( , )  ( , 1)P i j P i j⊂ +   0<i<B+1, 0<j<Mi  
where P(.) denotes the bootstrapped positive training set, B 
the total number of sub-classifiers, and Mi the number of 
bootstrap of positive samples.  
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Figure 5: Matrix-Structural Learning of Cascaded Classifier. 

Figure 2.6: An illustration of matrix-structural learning. C(i, j) indicates classifier built by
ith stage learning from jth positive training sample set. P (i, j) indicates positive
training set for C(i, j). Ni indicates bootstrapped negative training set for C(i, .).
B is the total number of stages. Mi is the iteration number of positive bootstrap of
ith stage. Each row is an iteration of positive samples bootstrap while the negative
bootstrap is conducted similar to Viola and Jones’ framework. Courtesy of [147].

Dundar and Bi [31] proposed a different training architecture known as AND-OR

learning. Instead of training each node classifiers independently, all nodes were trained

in a joint fashion. Unlike, traditional approach, which used greedy algorithm to train

node classifiers sequentially, their approach optimizes all node classifiers in parallel

based on mutual feedback between node classifiers. The basic intuition behind their

approach is based on the fact that an example is classified as positive if it is labeled as

positive by all nodes and negative if it is rejected at any node. The algorithm assigns

different loss functions to positive and negative samples. The approach iteratively

optimizes the overall cascade performance by adjusting a single node’s parameters

while fixing all other nodes’ parameters. The authors applied the approach to the

problem of automatically detecting polyps from multi-slice CT images and showed a
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significant speed-up while achieving comparable performance to the current state-of-

the-art.

Brubaker et al. [17] proposed another fully-automatic framework for training a

cascade classifier based on a probabilistic prediction. They used a probabilistic frame-

work based on validation time. Based on this probability, a cost function is defined.

The cost model allows one to decide the minimal amount of required weak hypotheses

and offers a better exploitation of false alarms versus correct detection rate trade-off.

Additionally, existing node classifiers can be split into smaller classifiers in order to

improve efficiency. By splitting the node classifier, negative samples can be discarded

with fewer evaluations.

Pham et al. [111] proposed a boosted classifier with multiple exit nodes. The au-

thors combined the idea of propagating scores across boosted classifiers with the use

of asymmetric goals. The intuition behind their approach is that the classification

problem becomes harder in later cascade stages since most easy-to-classify negative

samples have already been removed. Having a decision made at every weak classi-

fier, like in the Soft Cascade [12], effectively discards important information that may

have been exploited if decisions are postponed until further downstream (Figure 2.5).

In their approach, the classification score obtained from previous boosted classifier is

propagated to the next classifier. Experimental results shows a significant reduction in

training time and number of weak classifiers, as well as better accuracy, compared to

conventional cascades and multi-exit boosted classifiers.

2.3.2 Shortcomings of AdaBoost and Boosted Classifiers

Since the objective of AdaBoost is to minimize misclassification error, Viola and Jones

introduced a new decision threshold to each boosted classifier to guarantee a high de-

tection rate with moderate false positives. However, in object detection problem, the

probability of observing a positive sample is much lower than the probability of observ-

ing a negative sample. Their simple modification turned out to be sub-optimal and had

raised a number of questions. In recent year, a number of researchers, including Viola

and Jones themselves, have later addressed this problem by introducing new learn-

ing objective function that penalize a false negative much more than a false positive

(asymmetric objective). Furthermore, several researchers raised a number of questions
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related to AdaBoost coefficients and introduced alternative classifiers, which are more

suited to object detection problem. Table 2.3 briefly summarizes issues related to the

traditional boosted classifier and recently proposed approaches.

Fan et al. [35] proposed AdaCost where a misclassification cost adjustment func-

tion is introduced into the weight updating rule. The cost function increases weights

of costly wrong classifications more aggressively, but decreases weights of costly cor-

rect classifications more conservatively. In brief, weights for expensive examples are

higher and weights for inexpensive examples are comparatively lower. As a result, the

final ensemble will correctly predict more costly instances. The authors evaluated their

algorithms on seven data sets using Cohen’s RIPPER [21] as a weak learner. They ob-

served that AdaCost shows a consistent and significant reduction in misclassification

cost over AdaBoost.

Nonetheless, the technique has some drawbacks when applying to object detection

problems. Firstly, there is no fixed rule to estimate a trade-off parameter between

false positive and false negative. Unlike in fraud detection applications, where prior

experience can be used to estimate average financial cost of false positive and false

negative, in face detection, one has to search for the cost factor that achieves the pre-

defined node learning goal. This often needs extensive trails for best performance.

Choosing the wrong parameter value could result in a complex classifier which barely

rejects any negative samples and cannot be run in real-time.

Secondly, using AdaCost threshold does not always guarantee the cascade objec-

tive (high detection rate with moderate false positives). Adjusting this parameter might

again result in sub-optimal performance. Finally, to find boosting coefficients, the au-

thors suggested that the estimation method can be used to find a candidate [37] and

numerical methods can be applied to fine-tune this estimate [124]. Nonetheless, their

technique of estimating boosting coefficients are not provably optimal and the algo-

rithm can perform worse than simply using traditional AdaBoost.

Viola and Jones [139] later addressed the problem of highly skewed example dis-

tributions in cascade classifiers by introducing a new learning objective function that

penalizes a false negative much more than a false positive. In the new objective func-

tion, they introduce an additional term called asymmetric loss where a false negative

costs k times more than a false positive. Here k is an asymmetric cost parameter. In

terms of algorithm, the only difference between Asymmetric AdaBoost and AdaBoost
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Table 2.3: An overview of recently proposed approaches over AdaBoost based classifiers.

Drawbacks of boosted classifiers Proposed approaches

[35] A false negative is penalized the
same as a false positive.

The authors proposed AdaCost that penal-
izes a false negative and a false positive dif-
ferently.

[139] A false negative is penalized the
same as a false positive.

The authors proposed a new learning objec-
tive function that penalizes a false negative
more than a false positive (Asymmetric Ad-
aBoost).

[68] AdaBoost is not robust to out-
liers.

The authors considered different loss func-
tions, e.g., Gentle AdaBoost which has been
show to be more resistant to noisy data.

[74] A false negative is penalized the
same as a false positive.

The authors proposed a cost-sensitive Ad-
aBoost algorithm, which has (1) unequal ini-
tial sample weights and (2) different weight
updating rules for positive and negative sam-
ples.

[69] AdaBoost and weak learners
used in Viola and Jones are sub-
optimal.

The authors introduced KL feature, which
is based on Kullback-Leibler divergence of
two-class histograms, to a boosting frame-
work.

[67] AdaBoost is a stagewise greedy
optimization, which can be char-
acterized as being short-sighted
and non-recoverable.

The authors introduced a backtrack mecha-
nism to AdaBoost learning.

[52] Improving upon [74, 139],
where fixed asymmetric factors
were used for all subsequent
weak learners.

The authors proposed Asymmetric Ad-
aBoost with variable asymmetric factor.

[78] A false negative is penalized the
same as a false positive.

The authors proposed another alternative
cost-sensitive boosting algorithm.

[110] Improve upon [139] The authors defined a rule so asymmetric
goal can be chosen prior to training.
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Figure 2: Two simple examples: positive examples are ’x’, negative ’o’ and weak classifiers
are linear separators. On the left is the naive asymetric result. The first feature selected is
labelled ’1’. Subsequent features attempt to balance positive and negative errors. Notice
that no linear combination of the 4 weak classifiers can achieve a low false positive and
low false negative rate. On the right is the asymetric boosting result. After learning 4 weak
classifier the positives are well modelled and most of the negative are rejected.
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Figure 3: ROC curves for four boosted classifier with 4 features. The first is naive asym-
metric boosting. The other three results are for the new asymmetric approach, each using
slightly different parameters. The ROC curve has been cropped to show only the region
of interest in training a cascaded detector, the high detection rate regime. Notice that that
at 99% detection asymmetric Adaboost cuts the false positive by about 20%. This will
significantly reduce the work done by later stages in the cascade.

Figure 2.7: A shortcoming of AdaBoost illustrated on toy data sets. ×’s and ◦’s represent
positive and negative samples, respectively. Weak classifiers are linear separators.
The first feature selected is labeled ’1’. On the left is the result of symmetric
AdaBoost. Subsequent features attempt to balance positive and negative errors
(note the large number of false negatives). On the right is the result of asymmetric
AdaBoost. The final strong classifier yields very high detection rates and moderate
false positive rates. Courtesy of [139].

is in the distribution of sample weights. For Asymmetric AdaBoost, one needs to

multiply additional asymmetric parameter, exp( 1
N
yi log

√
k), to sample weights before

each round of boosting. Intuitively, by increasing sample weights of misclassified pos-

itive samples, the subsequent weak learner is forced to focus asymmetrically on these

positive examples. The authors showed that their new asymmetric loss yields signifi-

cant improvements in performance over conventional AdaBoost on both toy data sets

(Figure 2.7) and face data sets.

The major drawback of their approach is in choosing the optimal asymmetric pa-

rameter, k. The second drawback of their approach is that the asymmetric parameter

is always fixed for all subsequent weak learners. Although this parameter can be cal-

culated by cross-validation, there is no guarantee that the selected parameter will yield

higher performance results than using the original AdaBoost classifier. Furthermore,

it remains a challenge whether it would be beneficial to train classifier using Asym-

metric AdaBoost in later cascade stages when negative patches look visually similar to

positive patches.

Lienhart et al. [68] proposed to apply different boosting algorithms, namely Real
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and Gentle AdaBoost, together with various weak learners, e.g., decision stumps and

decision tress for training face detector. The only difference between each boosting

algorithm is in their learning. Real AdaBoost is a more generalized version of the

original AdaBoost [124] and Gentle AdaBoost is a more robust implementation of

Real AdaBoost [38]. Real AdaBoost is based on confidence-rated predictions while

Gentle Adaboost is based on weighted least square. Due to weighted least square,

Gentle AdaBoost has been shown to be more resistant to outliers and perform consid-

erably better than AdaBoost on noisy data. Based on their experimental results, Gentle

AdaBoost with CART trees is the most successful learning procedure tested for face

detection.

Ma and Ding [74] proposed a method of detecting faces based on Cost-Sensitive

AdaBoost (CS-AdaBoost) algorithm. Two main differences between CS-AdaBoost

and the original AdaBoost are (1) unequal initial weights according to its misclassi-

fication cost and (2) sample weights are updated separately for positive and negative

samples at each boosting step. Compared to the original face detector [140] which

has 38 layers and 6, 000 features, their detector only has 20 layers and 3, 000 features.

Nonetheless, a few important information is missing in their paper, e.g., the value of

cost parameter used in their cascade training, how they derived this parameter and it

remains a challenge whether this parameter should be adjusted in each cascade layer.

Currently, it seems this parameter is very application dependent and extensive experi-

ments are needed to achieve the best performance.

Liu and Shum [69] introduced a Kullback-Leibler boosting (KLBoosting) to derive

weak learners by maximizing projected KL distances. KLBoosting computes weak

learners by maximizing the relative entropy between two 1-D projected distributions

of face and non-face samples. Unlike conventional AdaBoost, KLBoosting learns the

coefficients by minimizing the recognition error each time a new feature is added to

the classifier. The drawback of KLBoosting is that data weights are updated according

to authors’ heuristic formulas.

Li and Zhang [67] proposed an extension to AdaBoost, called FloatBoost. Float-

Boost applies a backtrack mechanism after each iteration of AdaBoost learning to min-

imize the error rate. The backtrack mechanism deletes those weak classifiers, which

do not help in terms of the error rate, from the set of learned weak classifiers. Since

deletions in backtrack are performed according to the error rate, a lower error rate and
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reduced feature set are guaranteed. The authors showed that by incorporating the idea

of backward elimination into AdaBoost, the final detector achieves a lower error rate

with the same number of weak classifiers. However, one major drawback of FloatBoost

is that the algorithm takes a long time to train, especially for those classifiers in later

cascade stages. In my opinion, in later cascade stages, negative patches can look visu-

ally similar to positive patches. The system continues removing a slightly worse weak

classifier (backward elimination) and adding a slightly better weak classifier (forward

selection) to the set of selected weak classifiers. Although the training error continues

to decrease slowly, it is arguable whether this would lower the generalization error.

Improving upon the work of Fan et al. [35], Masnadi-Shirazi and Vasconcelos pro-

posed Asymmetric Boosting, which exploited the statistical interpretation of boosting

by replacing symmetric loss with asymmetric loss. The cost-sensitive extension min-

imizes this asymmetric loss by gradient descent on the functional space of convex

combinations of weak learners. Using gradient descent, optimal coefficients can be

computed on an average of 6 iterations of bisection search. The authors evaluated their

algorithm on a face database of 9832 positive and 9832 negative examples. 6, 000 sam-

ples were used for training and the remaining is used for testing. Weak learners and

visual features used in their experiment are the same as in Viola and Jones. Asymmet-

ric boosting was shown to consistently outperform all other methods, achieving the

smallest misclassification cost at all cost factors evaluated. Although the authors have

shown accuracy improvement compared to [35], it remains a challenge how asymmet-

ric loss can be applied to cascade classifier. In the early stage of cascades, the cost

factor between positive and negative samples might be large. However, in later stages

when negative samples are harder to separate, this cost factor might need to be changed

accordingly. However, this has not been pointed out in the paper.

The drawback of Asymmetric AdaBoost, proposed by [74, 78, 139], is that the

asymmetric factor was fixed for all subsequent weak learners, i.e., in Viola and Jones

[139], the authors distributed the asymmetric weights among all weak classifiers equally.

As a result, subsequent weak classifiers often fail to balance the overall node objective

(requirement for high detection rate and moderate false acceptance rate).

Hou et al. [52] proposed the Asymmetric AdaBoost with variable asymmetric fac-

tor. They assigned different values for positive and negatives samples (they use the

real number, a, for positive samples instead of +1 and a real number, −b, for negative
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samples instead of −1). For each weak learner, the authors calculated the maximal

margin by fine-tuning the parameter a and b. The weak learner with maximal margin

is selected. AdaBoost coefficients and sample weights are updated based on the Ad-

aBoost algorithm. By automatically selecting the most appropriate asymmetric factor

for each weak learner, the algorithm is shown to perform slightly better than other

AdaBoost-based methods. Although the asymmetric factor can now be computed, the

authors have introduced another parameter, a and b. It remains a challenge whether

this parameter should be fixed in each cascade layer or adjusted accordingly. Another

drawback of their technique is the computation cost in training weak learners. Tuning

both parameters for hundred thousand features can be very computationally expensive.

Instead of distributing asymmetric weights equally among all weak classifiers,

Pham and Cham [110] distributed asymmetric weights based on equal label skewness.

In other words, asymmetric factor is chosen to ensure equal label skewness presented

to weak classifiers. By balancing the skewness of labels, the authors reported a perfor-

mance gain compared to naively assigning equal asymmetric weight [139]. Although

the approach sounds convincing, there are a number of issues involved. Firstly, similar

to [139], the approach has two unknown parameters; namely asymmetric factor and

the total number of weak learners. Since the number of weak learners in each cascade

stage is often not known beforehand, one has to estimate the total number of weak

learners before one can estimate the asymmetric factor. Without any prior knowledge,

it is quite difficult to estimate this value. Secondly, the authors proposed an approach

to distribute asymmetric factor among all weak learners but failed to mention whether

this asymmetric factor should be distributed among nodes in the cascade classifier.

Recently, more and more boosting techniques have been proposed [29, 36, 38].

Some examples are LogitBoost and BrownBoost. LogitBoost was first formulated by

Friedman et al. [38] as a boosting algorithm which applies logistic regression as the

cost function. Unlike AdaBoost, the algorithm minimizes the logistic loss instead of

exponential loss.

BrownBoost was first introduced by Freund [36]. Unlike AdaBoost, which focuses

on repeated misclassified samples, BrownBoost ignores these samples which are re-

peatedly misclassified. In other words, samples are divided into two classes, noisy

samples and non-noisy samples. The final classifier is learned only from those non-

noisy samples. BrownBoost uses a non-convex loss function. It solves a system of
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Table 2.4: An overview of recently proposed approaches over Haar-like features.

Drawbacks of Haar-like features Proposed approaches

[68] Haar-like features fail to capture
diagonal edges.

The authors proposed efficient rotated Haar-
like features.

[67] The features work well only
frontal faces.

The authors separated the Haar-like wavelet
boxes for multi-view face detection.

[65] Haar-like features require a huge
training database for good per-
formance.

The authors proposed EOHs for both frontal
and profile view faces.

[144] Haar-like features do not work
well on human.

The authors proposed Edgelet features for
body part detection.

[53] Haar-like features are limited to
frontal face detection due to their
rigorous structural constraints.

The authors proposed sparse granular fea-
tures, which represent a sum of pixel inten-
sities in a square.

[109] Haar-like features proposed only
represent edge, line and diagonal
line.

The authors included corner and center-
surrounded features. To improve weak clas-
sifier training time, the authors used statisti-
cal based features.

two equations and two unknowns (hypothesis coefficient and amount of time) using
standard numerical methods.

2.3.3 Shortcomings of Haar-like Features

The simplicity of Haar-like features is the key to a success of Viola and Jones’ frontal
face detector. However, the features are not discriminative enough to distinguish more
complex objects, e.g., profile view of faces, pedestrian and vehicles. Table 2.4 briefly
summarizes issues related to traditional Haar-like wavelet features and recently pro-
posed approaches.

Numerous researchers have introduced more types of wavelets to extend Haar-
like’s discriminative power. Lienhart et al. [68] proposed to generalize Haar-like fea-
tures by in-plane rotating Haar-like features by 45 degrees (Figure 2.8). For fast feature
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Figure 2.8: An illustration of variants of Haar-like features [140] (top), Extended Haar-like
features [68] (middle) and Simple Haar-like features [67] (bottom). Courtesy of
[67, 68, 140].

extraction, they introduced a 45-degree rotated integral image. Interestingly, the total

number of proposed feature sets is only 30% larger than the total number of Haar-like

features (117, 941 versus 91, 536). Based on their experimental result, their new rotated

features yield an average of 10% lower false alarm rate at the same hit rate compared

to Haar-like features. This finding indicates that features are one of the most important

factors required to achieve a robust face detector and that there is still room for further

improvement.

Li and Zhang [67] proposed a simple Haar wavelet, which separates Haar-like rect-

angles at some distance apart (Figure 2.8). The authors tested their proposed features

on multi-view faces and demonstrated excellent performance. However, it takes a very

long time to train their face detector since their total number of features is a few orders
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experiments, the intensity MI(p) and normal vector 

n
I(p) are calculated by 3×3 Sobel kernel convolutions. 

Since we want to use the edgelet features only as weak 

features for a boosting algorithm, we simplify them for 

computational efficiency. First, we quantize the 

orientation of the normal vector into six discrete values, 

see Figure 1. The range [0o,180o) is divided into six 

bins evenly, which correspond to the integers from 0 to 

5 respectively. An angle  within range [180o,360o) has 

the same quantized value as its symmetry 360o- .

Second, the dot product between two normal vectors is 

approximated by the following function: 

1 0
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[ ]

1/ 2 2, 4

0 3

x
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x
,

where the input x is the difference between two 

quantized orientations. Denote by 
1{ }E k

i iV  and VI(p)

the quantized edge orientations of the edgelet and the 

input image I respectively. The simplified affinity 

function is 

1
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Thus the computation of edgelet feature only includes 

short integer operations. 

edgelet features

0
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1
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Figure 1. Edgelet features. 

In our experiments, the possible length of one 

single edgelet is from 4 pixels to 12 pixels. The edgelet 

features we used consist of single edgelets, including 

lines, 1/8 circles, 1/4 circles, and 1/2 circles, and their 

symmetric pairs. A symmetric pair is the union of a 

single edgelet and its mirror. Figure 1 illustrates the 

definition of our edgelet features. When the size of the 

reference window is 24×58, the overall number of 

possible edgelet features is 857,604. 

3. Learning Part Detectors 

Human body parts used in this work are head-

shoulder, torso, and legs. Besides the three part 

detectors, a full-body detector is also learned. Figure 2 

shows the definition of the body parts. We use an 

enhanced version [10] of the original boosting method 

of Viola and Jones [3] to learn the part detectors. An 

edgelet feature can be seen as a function from the 

image space to the feature space. Denote by fedgelet an 

edgelet feature and fedgelet has been normalized to [0,1], 

divide the range of fedgelet into n sub-ranges:  

binj = [(j-1)/n, j/n), j=1,…,n

In our experiments, n = 16. This even partition on the 

feature space corresponds to a partition on the image 

space. For object detection problem, a sample is 

represented as {x, y}, where x is the image patch and y

is the class label whose value can be +1 (object) or -1 

(non-object). According to the real-valued version of 

AdaBoost algorithm [11], the weak classifier h based 

on fedgelet can be defined as 

If 
edgelet
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j

f binx  then 1

1

1
( ) ln

2

j

j

W
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W
x

where  is a smoothing factor [11], and 
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Given the characteristic function 
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the weak classifier can be formulated as: 

1

edgelet

1 1

1
( ) ln ( )

2

jn

j

nj

j

W
h B f

W
x x .

Full-body Head-

shoulder
Torso Legs

h

w

0.3h 0.27h

0.48h

0.5h

Figure 2. The definition of body parts. 

For each edgelet feature, one weak classifier is built. 

Then the real AdaBoost algorithm [11] is used to learn 

strong classifiers, called layers, from the weak 

classifier pool. The strong classifier H is a linear 

combination of a series of weak classifiers: 

1
( ) ( )

T

ii
H h bx x ,

where T is the number of weak classifiers in H, and b

is a threshold. The learning procedure of one layer is 

referred to as a boosting stage. At the end of each 

boosting stage, the threshold b is tuned so that H has a 

high detection rate and new negative samples for the 

next stage are collected in a bootstrap way. Finally 

nesting structured detectors [10] are constructed from 

these layers. One of the main advantages of this 
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Figure 2.9: An illustration of Edgelet features. Courtesy of [144].

of magnitude larger than Haar-like features.

Levi and Weiss [65] proposed local edge orientation histograms (EOHs), which

divide edges into a number of bins. Three set of features are used to describe an

image region:- a ratio between each orientation, a ratio between a single orientation and

the difference between two symmetric orientations. For frontal face detection, EOHs

achieve state-of-the-art performance while using only a few hundred training images.

For profile view faces, EOHs outperform the state-of-the-art in real-time systems even

with a small number of training examples. However, compared to Haar-like features,

their features have higher computation time and memory storage.

Wu and Nevatia [144] improved the work of Viola and Jones by modeling human

as an assembly of natural body parts. The authors introduced a new type of silhouette

oriented features, called Edgelet features (Figure 2.9). Part detectors are learned by

a boosting method and responses are combine to form a joint likelihood model that

includes cases of multiple, possibly inter-occluded humans. The detection method re-

sults in better performance for individual human detection and furthermore can deal

with crowded scenes. Based on their implementation, the detector performed at about

1 frame per second on an image with a resolution of 384 × 288 pixels on a 2.8GHz

CPU. However, detecting faces is often simpler than detecting human and it is com-

putationally expensive to compute the likelihood for multiple faces when overlapping
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2.3 Improvements of Boosted Cascade Classifiers

4.1 Sparse Features Represented in Granular Space

The granular space as shown in Fig. 12 is made up of four
bitmaps: I0, I1, I2, and I3. Denote the scale variable as
s ðs ¼ f0; 1; 2; 3gÞ, each granular bitmap Is is the result of
smooth filtering in way of averaging over 2s � 2s patches of
the original image. Therefore, a granule Isðx; yÞ can be
specified by the x-offset, y-offset, and the scale s. In such a
granular space, a sparse feature is represented as the linear
combination of several granules as

� ¼
X
i

�iIsiðxi; yiÞ; �i 2 f�1;þ1g; si 2 f0; 1; 2; 3g; ð23Þ

where the combining coefficient ai is restricted to be binary
value for the sake of computational efficiency (Fig. 13). Once
the granular space is constructed, calculating a granule needs
to access memory only once rather than four times for a
rectangle of Haar-like features. Therefore, compared with the
Haar-like features [7] as well as their extended versions in [9],
[18], the sparse granular features are highly scalable: they can
be more versatile while keeping the same computation load,
or more economic to compute if keeping similar structural
complexity. Moreover, in order to increase robustness and
discriminability of sparse granular features, the integral
image is retained to apply the normalization of mean and
standard deviation like Haar-like features. Based on such
normalized features, stronger weak classifiers could be
learned instead of logic-operator approaches with those
unnormalized features in [19], [21].

4.2 Domain-Partition-Based Weak Learner for
Vector Boosting Algorithm

Weak learner in boosting algorithms aims to train a proper
weak hypothesis to reduce the training loss of strong
classifier as it holds the upper bound of training error. In
our approach, a weak hypothesis could be decoupled into
two parts: the first part is extracting a sparse granular
feature from input pattern; the second part is calculating the
prediction result through a piece-wise function. In the
following parts, a weak hypothesis fðx; �; �Þ with input
pattern x is characterized by two parameters: � for sparse
feature and � for piece-wise function.

4.2.1 Learning Piece-Wise Functions for Selected

1D Features in Vector Boosting Algorithm

The piece-wise function �, illustrated in Fig. 14b, divides the

1D feature space into a set of disjoint bins with equal widths,

and outputs a constant value (scalar or vector) for samples

falling into the same bin. Actually, it is a straightforward

implementation of domain partition based hypothesis in [14],

which is superior to stump function (shown in Fig. 14a)

adopted in [7] since it is capable to fit likelihoods more

precisely through finer partition granularity. Three para-

meters are necessary to determine the partition of a chosen

1D feature space: the lower bound, the upper bound, and the

granularity. The first two are estimated through distributions

of training samples on the chosen feature, and the last one,

granularity, is predefined by experience.
Denote the samples that are grouped into the jth bin as

Sj ¼ fðxi; eviÞj�ðxiÞ 2 binjg; ð24Þ
where �ðxiÞ is the extracted feature value of xi and binj is

the jth bin after domain partition.
Let cj be the constant output for binj and recall (9), we

have the minified loss function as

dLossðFðxÞ þ fðxÞÞ /
Xm
i¼1

wi exp �vi � fðxiÞð Þ

¼
X
j

X
ðxi;~viÞ2Sj

wi expð�vi � cjÞ;
ð25Þ

where FðxÞ is the previously learned strong hypothesis,

fðxÞ is the newly adopted weak hypothesis, and wi is the

weight of sample xi w:r:t FðxÞ. In particular, the loss

received for binj is

lossjðcjÞ /
X

ðxi ;~viÞ2Sj

wi expð�vi � cjÞ ð26Þ

which is a convex function with regard to cj. Hence, the

optimal constant outputs for each bin can be calculated with

some proper optimization algorithm such as Newton-step

method. Besides, the newly received loss given in (25) tells

the fitness of the new weak hypothesis fðxÞ if added into

the original strong hypothesis FðxÞ, which guides the

heuristic search method for the selection of discriminative

features in the next section.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 4, APRIL 2007

Fig. 12. Granular space of a gray image (s denotes the scale of

granules).

Fig. 13. Two examples of sparse features. White blocks are positive

granules while black ones are negative. Calculating each granule needs

to access memory only once.

Fig. 14. Stump function versus piece-wise function. The stump function
only divides the 1D feature space into two parts with an adjustable
threshold, giving binary outputs, while the piece-wise function partitions
the feature space in finer granularity and outputs various values for each
bin. (a) Stump function. (b) Piece-wise function.
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Figure 2.10: An illustration of sparse granular features. White and black blocks are positive
and negative granules, respectively. Each granule can be pre-computed and cal-
culated in one lookup table (access memory only once). Courtesy of [53].

between two faces rarely occurs.

Huang et al. [53] further extended Haar-like features in a slightly different way.

Instead of using rectangles, they proposed sparse granular features, which represent a

sum of pixel intensities in a square (Figure 2.10). An efficient weak learning algorithm

is introduced which adopts heuristic search method in pursuit of discriminative sparse

granular features. Since sparse granular features have a smaller rectangular region

than Haar-like features; it has a better discriminative power for multi-view faces due

to their less within-class variance. The advantage of using sparse granular features is

that features can be calculated in one lookup table, compared to Haar-like features,

which often require 6 - 9 memory operations. However, the major disadvantage of

sparse granular features is that the approach is heuristic and has a large number of

parameters. The performance of the system relies heavily on sparse granular features

which are calculated heuristically.

Pham and Cham [109] proposed to use only statistics of the weighted input data

to train a weak classifier. The advantage of using statistical based features is that it

has a smaller training time complexity, O(Nd2 + M), compared to the traditional

technique, O(NMlogN), where N is the number of samples (approximately 10, 000),

d is the number of pixels in the training sample (usually less than 500) and M is the

number of features (approximately 100, 000). Since the training time complexity is no

longer a product of the number of samples and the number of features, the authors can
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afford to introduce more mother wavelets to the feature set. In additional to edge, line

and diagonal line features, the authors included corner and centre-surrounded features.

Experimental results revealed a significant reduction in weak classifiers’ training time

to the order of seconds. However, the drawback of statistical based features is that it is

not robust to noisy data and outliers.

Recently, more invariance local features have been applied to object detection

tasks. Some examples are SIFT-based descriptors [72] and local binary pattern (LBP)

texture operator [96]. The SIFT descriptor is a 3-D histogram of gradient locations and

orientations. A block is quantized into a number of n×n cells and the gradient angle in

each cell is quantized into k orientations. In the original paper, Lowe set n to be equal

to 4 and k to be equal to 8, which result in 128-dimensional descriptors. To reduce

the effect of illumination changes, the descriptor is normalized to a unit length. The

influence of large gradient magnitudes is minimized by thresholding the descriptor in

each histogram bin to a maximum value of 0.2.

LBP is a simple and powerful texture operator. It labels pixels by thresholding the

neighbourhood of each pixel with the value of the centre pixel and considers the result

as a binary number. Due to its computational simplicity and high discriminative power,

LBP has become a popular method in various applications, e.g., face recognition [3],

moving object detection [50], facial expressions [153], etc. LBP has several properties

that favour its usage as texture descriptor. The features are robust against monotonic

gray-scale changes, fast to compute, do not require many parameters to be set and have

high discriminative power.

2.3.4 Other Issues Related to Viola and Jones’ Face Detector

Since the choice of good training samples plays an important role in the generalization

ability of cascade classifiers, Chen et al. [20] presented an approach to optimize the

training data. The authors proposed a genetic algorithm and manifold-based method

to resample a given training set for more robust face detection. An initial training

set is first expanded by a genetic algorithm (crossover operations) and undergone re-

lighting (mutations) to generate new samples. After each round of genetic algorithms,

generated samples are tested against a face classifier and those which have too large

variations are discarded. Once a sufficient amount of samples have been generated,
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a manifold space is created by means of the Isomap algorithm to represent the local

distances of the face space in a lower-dimensional space. Finally, the set was resam-

pled to a sufficiently large set of samples that evenly covered the original face space.

In their paper, a one-class SVM was used as an additional last step to reject further

false positives, thereby lowering the false alarm rate compared to cascade classifiers.

Their approach achieves 90.73% accuracy with no false alarm on MIT+CMU frontal

face test set. This finding emphasizes the important of having well-represented training

samples.

Although a cascade of boosted classifiers exhibit real-time run-time performance,

training time usually takes from days to weeks. There have been a number of attempts

to shorten the training time while maintaining run-time accuracy. Based on the train-

ing time complexity, factors that affect the training time are the amount of training

samples and feature-set size [145]. The traditional training approach has a run-time

of O(MTNlog(N)) where N represents the number of samples, M is the number of

features and T is the number of boosting iterations. Since reducing the number of

training samples often deteriorate generalization ability, a lot of work have focused on

reducing the size of feature sets by removing less discriminative features.

Bourdev and Brandt [12] focused on shortening the training time by reducing the

number of trained weak classifiers. Wu et al. [145] proposed a forward feature selec-

tion (FFS) algorithm in order to avoid re-training AdaBoost weak learners which is

time consuming. Wu et al. first trained weak classifiers using uniform sample weights.

A subset of pre-trained weak classifiers are sequentially added to an ensemble classi-

fier until the classifier’s learning goal is met. The overall time complexity of the FFS is

O(NMT +NMlog(N)), which is only 1/T of the AdaBoost training time. Pham and

Cham [109] proposed to model a response of Haar-like features with Gaussian distri-

bution. The approach avoids the recalculation of feature values by using Gaussian to

model the distribution of feature values. Therefore, the training time can be reduced to

O(TNd2 + TM), where d is the amount of pixels within the probed feature region.

The most successful and straight-forward approach to reduce the training time is

probably the use of memory caching via lookup table as suggested by Wu et al. [145].

In AdaBoost, each weak classifier has to be trained based on the current weight dis-

tribution. For Haar-like features, the classification is a simple threshold decision on

the scalar difference of rectangular areas. In each boosting iteration, sample weights
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change, but not the computed rectangular areas. Precalculating and caching the order
of these rectangular sums for all samples is the fastest way to train a weak learner.
Their technique was able to compute the best threshold for each feature in time O(N)

regardless of sample weights. Using their strategy, it is possible to reduce the training
time from O(NMTlogN) to O(NMT ). In their paper, the authors reported a signifi-
cant speed-up in training time compared to the traditional approach. The drawback of
their technique is that it requires a large amount of memory to store the sorted order of
features. As an example, to train 40, 000 samples on 24× 24 pixels faces, which have
at least 100, 000 Haar-like features, requires at least 10 GB of RAM (Random Access
Memory).
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3
Fast Pedestrian Detection using Boosted

Covariance Features

3.1 Introduction

Efficiently and accurately detecting pedestrians is of fundamental importance for many

applications in computer vision, e.g., smart vehicles, surveillance systems with intel-

ligent query capabilities, sports video content analysis. In particular, there is growing

effort in the development of intelligent video surveillance systems. An automated

method for finding human in a scene serves as the first important preprocessing step in

understanding human activity. Despite the multitude of literature on this subject, the

problem of automated object detection is far to be solved (e.g., [41, 62, 104, 125, 140,

141, 144]). Pedestrian detection in still images is one of the most difficult examples

of generic object detection. Most challenges are due to a wide range of poses that

human can adopt, large variations in clothing, as well as cluttered backgrounds and

environmental conditions.
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FEATURES

In this chapter, a new simpler pedestrian detection technique using covariance fea-

tures is proposed. The first contribution of this chapter is an approach to integrate

multi-dimensional covariance features with weighted linear discriminant analysis for

the AdaBoost classifier. To be more specific, the AdaBoost framework is adapted to

vector-valued covariance features and a weak classifier is designed according to the

weighted linear discriminant analysis. This technique is not only accurate but also

faster. In order to support our claim, the proposed approach is compared against the

state-of-the-art pedestrian detection technique evaluated in Munder and Gavrila [89].

The proposed boosted covariance detector achieves about four times faster detec-

tion speed than the method proposed in Tuzel et al. [136]. Unfortunately, it is still not

fast enough for real-time applications. On one hand, Haar-like features can be com-

puted rapidly due to its simplicity [140] but is less powerful for classification [65].

On the other hand, covariance features are more powerful in capturing human body

parts but not fast enough for a real-time performance. In order to further accelerate the

proposed detector, a novel strategy known as two-layer boosting with heterogeneous

features, is adopted to exploit the efficiency of Haar-like features and the discriminative

power of covariance features in a single framework. Due to the flexibility of cascaded

classifiers, Haar-like features based classifiers are employed at the beginning of the

cascade; and covariance features are applied at latter stages. Experiments show that

the proposed approach performs at an order of magnitude faster than the conventional

covariance detector [136] while achieving a comparable detection performance. On a

360 × 288 pixels image, the proposed system can process at around 4 frames per sec-

ond with an unoptimized code. To our knowledge, this is the first real-time covariance

features based pedestrian detector.

The chapter is organized as follows. Section 3.2 gives a detailed description of the

proposed approach. The experimental setup and experimental results are presented in

Section 3.4. The chapter concludes in Section 3.5.

3.2 Boosted Covariance Features

It is well known that the choice of weak classifiers is vital to the classification accuracy

of boosting techniques. Although effective weak classifiers increase the performance
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Figure 3.1: Detection examples on AVSS 2007 and CAVIAR data sets. Top: Input region.
Middle: Best matching region found using covariance features based on distance
in the Riemannian manifold [134]. Bottom: Best matching region found using
covariance features based on distance in the Euclidean space.

of the final strong classifiers, the large amount of potential features make the computa-
tion prohibitively heavy with the use of complex classifiers such as SVMs. For scalar
features such as Haar-like features [140, 141] or LBP feature [95], a very efficient
stump can be used. Unfortunately, for vector-valued features, such as HOG or covari-
ance features, seeking an optimal linear discriminant would require much longer time.
In this chapter, a more efficient approach is adopted. The multi-dimensional feature is
projected onto a 1D line using weighted Fisher linear discriminant analysis (WLDA).
WLDA finds a linear projection function which guarantees optimal classification of
normally distributed samples of two classes.

Note that the approach is different from [134, 136], where the covariance matrix
is directly used as the feature and the distance between features is calculated in the
Riemannian manifold1. However, eigen-decomposition is involved for calculating the
distance in the Riemannian manifold. Eigen-decomposition is computationally expen-
sive (O(d3) arithmetic operations). Instead, correlation coefficient is vectorized and
the distance is measured in the Euclidean space, which is faster. The extracted covari-
ance descriptor assumes that the image statistics follow a single Gaussian distribution.

1Covariance matrices are symmetric and positive semi-definite, hence they reside in the Riemannian
manifold.
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Compute region co-
variance features (Rn)

Apply weighted LDA (R1)

Select the best weak
classifier using AdaBoost

Update the sample weights

Meet the pre-set
training objective?

Output the
strong classifier

Training data

No

Yes

Figure 3.2: An architecture of the proposed pedestrian detection system using boosted covari-
ance features.

Although this assumption may look overly simple, experiments prove the covariance

features’ efficacy, e.g., Jin et al. [55] have used an identical idea for network intrusion

detection.

A preliminary experiment, similar to the one described in Tuzel et al. [134], was

conducted on covariance descriptor in Euclidean space and Riemannian space. The

experiment compares two different distance measures:- distance based on two normal-

ized covariance matrices in the Euclidean space and distance based on two normalized

covariance matrices in the Riemannian manifold. Figure 3.1 shows some of experi-

mental results. From the figure, it can be concluded that both distance metrics yield

reasonable matching on pedestrian patches and are comparable.

Figure 3.2 shows the structure of the proposed approach. This section begins with

a short explanation of Fisher linear discriminant analysis (LDA) and weighted LDA.

Next, the technique used to train multi-dimensional covariance features on a cascade of

AdaBoost classifiers is described. Finally, a new two-layer pedestrian detector, which

utilizes the efficiency of Haar-like features and the discriminative power of covariance

features, is introduced.
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3.2 Boosted Covariance Features

3.2.1 Weighted Fisher Linear Discriminant Analysis

Let us assume that we have a set of training patterns x = [x1, x2, ..., xM ]> where each
of which is assigned to one of two classes, C1 and C2. One can find a weight vector
w = [w1, w2, ..., wM ]> and a threshold w0 such that,

w>x + w0 > 0 (x ∈ C1),

w>x + w0 < 0 (x ∈ C2). (3.1)

In general, one seeks the vector [w0, w1, w2, ..., wM ] that best satisfies (3.1). The
data are said to be linearly separable if for all x, (3.1) is satisfied.

The objective of the Fisher’s criteria is to find a linear combination of variables
that can separate two classes as much as possible. The computed linear combination
reduces the number of our data dimensions to one dimension. The criterion proposed
by Fisher is the ratio of between-class to within-class variances which can be written
as,

J =

[
w> (mC1 −mC2)

]2∑
c∈{C1,C2}

∑
x∈c (w>x−w>mc)

2

=
w>Sbw

w>Sww
, (3.2)

Sb = (mC1 −mC2) (mC1 −mC2)
> , (3.3)

Sw =
∑

c∈{C1,C2}

∑
x∈c

(x−mc) (x−mc)
>. (3.4)

Here mc is the mean of class c, m̄ is the global mean, Sb and Sw are the so-called
between-class and within-class scatter matrices. The numerator of (3.2) denotes the
distance between the projected means and the denominator denotes the variance of
the pooled data. We want to find linear projections w that maximizes J , the distance
between the means of the two classes while minimizing the variance within each class.
The solution can be obtained by the generalized eigen-decomposition. The optimal
solution w is the eigenvector corresponding to the maximal eigenvalue and can be
expressed as [30],

w ∝ S−1
w (mC2 −mC2). (3.5)
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However, the criterion proposed by Fisher assumes uniform weighted training sam-
ples. In AdaBoost training, each data point is associated with a weight which measures
how difficult to correctly classify them. Therefore, we need to apply a weighted Fisher
linear discriminant analysis (WLDA). Similar to LDA, WLDA finds a linear combina-
tion of the variables that can separate two classes as much as possible with emphasis
on training samples with high weights.

Let us suppose that each sample is assigned with AdaBoost weights, si, where∑Ns

i=1 si = 1 and Ns is the total number of instances. Using the previous notation, the
between-class variance and within-class variance of the weighted data can be written
as,

S ′b ∝
(
m′C1
−m′C2

) (
m′C1
−m′C2

)>
, (3.6)

S ′w =
∑

c∈{C1,C2}

∑
xi∈c

si (xi −m′
c) (xi −m′

c)
>
. (3.7)

Here m′
c is the weighted mean of class c which can be expressed as

∑
x∈c sixi∑
x∈c si

. Hence,
the optimal solution w for WLDA can be expressed as,

w′ ∝ S ′−1
w (m′

C2
−m′

C2
). (3.8)

Each weak learner can then be defined as,

h(x) =

{
+1 if w>x > w0;

−1 otherwise,
(3.9)

where h(·) defines a weak learner, x is a vector of calculated covariance features and
w0 is an optimal threshold such that the minimum number of examples are misclassi-
fied.

Covariance features efficiently capture the relationship between different image
statistics. Combining with WLDA, this information can be used to represent a distinct
part of the human body. At each AdaBoost iteration, a simple classifier is trained from
the collection of region covariance features. The experimental results show that the
covariance region selected by AdaBoost are physically meaningful and can be easily
interpreted as shown in Figure 3.3. The first selected feature focuses on the bottom
part of the human body while the second selected feature focuses on the top part of the
body. It turns out that covariance features are well adapted to capture patterns that are
invariant to illumination changes and human poses/appearance changes.
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3.2 Boosted Covariance Features

Figure 3.3: The first and second covariance regions selected by AdaBoost. The first two co-
variance regions overlayed on human training samples are shown in the first col-
umn. The second column displays human body parts selected by AdaBoost. The
first covariance feature represents human legs (two parallel vertical bars) while
the second covariance feature captures the information of the head and the human
body.

3.2.2 A Cascade of Covariance Descriptors

In order to reduce computation time during human detection phase, a cascade of clas-

sifiers is built [140]. The key insight is that efficient boosted classifiers, which can

reject many of simple non-pedestrian patches while detecting almost all pedestrian

patches, are constructed and placed at early stages of the cascade. Time-consuming

and complex boosted classifiers, which can remove difficult non-pedestrian samples,

are placed in later stages of the cascades. By constructing classifiers in this way, the

system can quickly discard simple background regions of the image, e.g., sky, build-

ing, road, etc. while spending more time on pedestrian-like regions. Only samples that

can pass through all stages of the cascade are classified as pedestrians. The proposed

boosted covariance features based detection framework is summarized in Algorithm 2.
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Algorithm 2 The training algorithm for building a cascade of boosted covariance de-
tector

Input:

• {(xn, yn)
Ns
n=1}: Training set;

• Dmin: minimum acceptable detection rate per cascade level;

• Fmax: maximum acceptable false positive rate per cascade level;

• Ftarget: target overall false positive rate.

Initialize: i = 0; Di = 1; Fi = 1;1

while Ftarget < Fi do2

i = i+ 1; fi = 1;3

while fi > Fmax do4

1. Normalize sample weights, si, i = 1, · · · , Ns such that
∑Ns

i=1 si = 1;5

2. Calculate projection vector, w′ (3.8), and project covariance features to 1D;6

3. Train decision stumps using the training set (3.9);7

4. Add the best decision stump classifier into the strong classifier;8

5. Update sample weights, si, i = 1, · · · , Ns, in the AdaBoost manner;9

6. Lower AdaBoost threshold such that Dmin holds;10

7. Update fi using this threshold.11

Di+1 = Di ×Dmin; Fi+1 = Fi × fi; and remove correctly classified negative samples12

from training sets;
if Ftarget < Fi then13

Evaluate the current cascade classifier on negative images and add false positive14

samples to negative training sets.

Output: A cascade of boosted covariance classifiers for each cascade level i = 1, · · · .

3.3 Multiple-layer Boosting with Heterogeneous Fea-
tures

In order to further accelerate the proposed detector, an approach which consists of
a multiple-layer cascade of classifiers is built [80]. The intuition is to achieve high
detection speed while maintaining comparable accuracy. The idea is to place simple
and fast-to-compute features in the first layer while putting a more accurate but slow-
er-to-compute features in the second layer of the cascade. The simple feature filters
out most simple non-pedestrian patterns in the early stage of the cascade.

Haar-like wavelet features have proved to be extremely fast and robust in the appli-
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cation of face detections [140]. However, it performs poorly in the context of human

detection as reported in Viola et al. [141]. In order to improve the overall accuracy,

the boosted covariance detector is applied in the second layer. In other words, the first

layer consists of a number of Haar-like based AdaBoost classifiers while the second

layer consists of a number of Boosted covariance classifiers. This way, the efficiency of

Haar-like features and the discriminative power of covariance features can be utilized

in a single framework. Figure 3.4 illustrates an architecture of the two-layer approach.

A cascade of

boosted classifier

with Haar features

A cascade of boosted

classifier with

covariance features

Test sample
Yes Yes

Pedestrian

NoNo

Non-pedestrianNon-pedestrian

Figure 3.4: The structure of the proposed two-layer pedestrian detector.

Covariance and Haar-like features are experimentally evaluated on the same train-

ing set using AdaBoost. The positive training set is extracted from INRIA data sets

[24], which consist of 2, 416 human samples (mirrored). The negative training set

comes from random patches extracted from negative images. The classifiers are evalu-

ated on the INRIA test set. Figure 3.5 gives a comparison of performances of different

feature types. The following observation can be made from the figure. The test error

decreases quickly with the number of AdaBoost iterations for all features. The test

error of covariance features run into saturation after about 100 iterations while the test

error rate of Haar-like features continues to decrease slowly. The results can also be

interpreted in terms of the number of selected features and test error rate. For example,

it is possible to achieve a 5% test error rate using either 25 covariance features or 100

Haar-like features. Table 3.1 shows the computation time for different feature types

(including computation overhead of integral images). The computation of Haar-like

features are much faster than the computation of covariance features.

Due to the flexibility of the cascaded structure, it is easy to integrate multiple het-

erogeneous features. Although Haar-like and covariance features are used here, differ-

ent combination of other features may lead to a better performance. It remains a future

study topic on how to find the best combination.
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Figure 3.5: A performance comparison between covariance and Haar-like features on INRIA
test sets [24].

3.4 Experiments

The proposed approach is evaluated on two publicly available data sets:- Daimler-

Chrysler pedestrian data sets [89] and INRIA human test sets [24]. The first data sets

contain a set of extracted pedestrian and non-pedestrian samples, scaled to a resolu-

tion of 18 × 36 pixels. Three experiments are conducted using covariance features

trained with SVM and AdaBoost. The second data sets contains 1, 176 human samples

from 288 images. Two experiments are conducted using covariance features trained

Table 3.1: An average time required to evaluate covariance and Haar-like features.

# features COV (µ-seconds) Haar-like (µ-seconds)

20 71 5

50 137 7

100 250 11

200 490 20

300 715 29
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with AdaBoost. To our knowledge, Dalal and Triggs [24] and Tuzel et al. [136] are

current state-of-the-art human detection approaches in literature. Hence, the proposed

approach is compared with these two techniques.

The experimental section is organized as follows. First, the experimental setup

and parameter values chosen are described. Experimental results are then presented

with an in-depth analysis. In all experiments, associated parameters are optimized via

cross-validation.

3.4.1 Experiments on Daimler-Chrysler Data Sets with Boosted
Covariance Features

3.4.1.1 Experiment Setup

For boosted cascade of covariance features, a full set of overcomplete rectangular co-

variance filters is generated and the overcomplete set is sub-sampled in order to keep

a manageable set during the training phase. The set contains approximately 1, 120

covariance filters. Each filter (weak classifier) consists of four parameters e.g., x-

coordinate, y-coordinate, width and height. A strong classifier consisting of several

weak classifiers is built in each stage of the cascade. At each stage, weak classifiers

are added until the predefined objective is met. In this experiment, the minimum de-

tection rate is set to 99.5% and the maximum false positive rate is set to 50% in each

stage. Negative samples used in each stage of the cascade are collected from false

positives of previous stages of the cascade.

Since the resolution of the test samples is quite small, the border of each test sample

is extended by one pixel. The extra margin helps shifting the pedestrian in the test

sample to the center. Doing so increases a flexibility of boosted classifiers. During

classification, the number of positively classified sub-windows is counted. The total

number of sub-windows is then used to determine whether the test sample is pedestrian

or non-pedestrian.

As the baseline in our comparisons, we train two state-of-the-art features, namely

Histogram of Oriented Gradients (HOG) [24] and covariance features [136], with vari-

ous SVM (Support Vector Machine) classifiers. The reasons these two features are se-

lected along with SVM are: (1) It has been shown that these two local features are best
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Figure 3.6: A performance comparison of the proposed cascade of boosted covariance features
with (a) covariance features trained using SVM and (b) histogram of oriented gra-
dients (HOG) features trained using SVM.

candidates for pedestrian detection tasks; (2) SVM is one of the most advanced classi-

fiers. It is easy to train and, unlike neural networks, the global optimum is guaranteed.

Hence the variance caused by suboptimal training is avoided for fair comparisons. In

the following experiment, features are concatenated and train with SVM classifiers of

two different functions: linear and RBF kernels (Gaussian).

3.4.1.2 Results based on Boosted Covariance Features

Figure 3.6 shows detection results of proposed covariance features. The proposed

approach performs best when compared with a linear SVM. When compared with a

non-linear SVM, the proposed approach performs very similar to covariance features

+ Gaussian SVM and slightly worse than HOG features + Gaussian SVM. Note that

the non-linear SVM has a much higher computation cost, during both training and

evaluation, than the proposed approach.

It might not be fair to compare three detectors directly since the boosted cascade

is trained with more non-pedestrian samples, i.e., by making use of cascade structure,
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Figure 3.7: A performance comparison of different feature types on Daimler-Chrysler data
sets.

the negative training size has been manually increased. In order to compare the per-

formance of three detectors, a bootstrapping technique is applied to HOG [24] and

covariance features. Bootstrapping is applied iteratively, generating 10, 000 new non-

pedestrian samples at each iteration. It was observed that collecting the first 10, 000

new non-pedestrian samples did not take long but the second iteration took a long

time. This is what one would expect since the new classifier has better accuracy than

the previous classifier. Hence, it takes longer time to collect more new false positive

patches. We observe that the improvement of training HOG feature using bootstrap-

ping technique over initial classifier is up to 7% increase in detection rate at 2.5% false

positives rate while the improvement is slightly lower in covariance features (about

3% increases at 2.5% false positives rate). However, this performance gain comes at a

higher computation cost for training.

The best performing result of different feature types are compared in Figure 3.7.

The following observations can be made. Out of three features, both HOG and co-

variance features perform much better than LRF. One can observe that gradient infor-

mation is very helpful in human detection tasks. In all experiments, nonlinear SVMs

(quadratic or Gaussian RBF SVM) improve performance significantly over linear ones.
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Figure 3.8: Examples of mistakes made by our boosted covariance detector on the Daimler-
Chrysler data sets. The first row shows false negative examples and the last row
shows false positive examples.

However, this comes at the cost of a much higher computation time, i.e., in this experi-

ment, building a non-linear SVM model is approximately 50 times slower than building

a linear SVM model.

Figure 3.8 presents a qualitative assessment of the errors made by our detector,

showing some false negative (non-pedestrian-like pedestrians) and false positive (pedestrian-

like non-pedestrian) examples from our detectors point of view. It can be seen that most

of false negatives are due to the subject’s pose deformation, occlusions, or the very

difficult illumination environments. False positives usually contain gradient informa-

tion which looks like human body boundaries. It is interesting to see that many false

positives are road signs. In contrast, most false negatives are due to the subject’s pose

deformation, occlusions, or the very difficult illumination environment. False positives

usually contain gradient information which looks like human body boundaries.

The advantages of the proposed method over features trained using SVM are ease

of parameter tuning and much faster detection speed. SVM has more parameters com-

Table 3.2: An average time required to evaluate 10 frames of half resolution videos (384×288

pixels) of various approaches. Each image consists of 17, 280 windows (scale factor
of 0.8 and step-size of 4 pixels).

windows per sec seconds per frame

HOG, Quadratic SVM 25 714

HOG, Linear SVM 4800 3.6

Proposed COV approach 6000 2.9

66



3.4 Experiments

pared to the boosted cascade, e.g., trade-off between training error and margin, param-

eters of the nonlinear kernel, etc. These parameters need to be manually optimized for

the specific classification task using cross-validation.

In the next experiment, the processing speed of two best classifiers, HOG with

quadratic SVM and 20 stages of boosted covariance features, is compared. Both clas-

sifiers are evaluated on a sequence of 10 images with a resolution of 384× 288 pixels

in width and height. Table 3.2 shows the average detection speed for both classifiers.

As expected, the detection speed of boosted covariance features is much faster than the

detection speed of the non-linear SVM classifier.

3.4.2 Experiments on Daimler-Chrysler data sets with two-layer
boosting

3.4.2.1 Experiment setup

A set of overcomplete Haar-like wavelet filters is generated and the overcomplete set

is sub-sampled. The set of Haar-like features that is used to train the cascade contained

20, 547 filters: 5, 540 vertical two-rectangle features, 5, 395 horizontal two-rectangle

features, 3, 592 vertical three-rectangle features, 3, 396 horizontal three-rectangle fea-

tures and 2, 624 four-rectangle features. From the preliminary experiments on signed

and unsigned wavelets, it was observed that the performance of signed wavelets out-

perform unsigned wavelets. Hence, the sign of intensity gradients is preserved in this

experiment. For covariance features, a set of rectangular covariance features from pre-

vious section is used.

In this experiment, the minimum detection rate and maximum false positive rate for

both cascade (a layer of boosted Haar-like features and a layer of boosted covariance

features) is set to 99.5% and 50%. Figure 3.9(a) gives some details about the proposed

two-layer boosting cascade.

3.4.2.2 Results based on Multi-layer Boosting

Table 3.3 shows the evaluation time in windows per second for different hybrid con-

figurations. Adding more stages of Haar-like wavelet features as a preprocessing step

increases the detection speed approximately exponentially. Figure 3.9(b) shows the
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Figure 3.9: (a) A number of weak classifiers in different cascade levels on Daimler-Chrysler
data sets. Note that adding Haar-like features as a preprocessing step hardly affect
the number of covariance features in later stages. (b) A performance comparison
of the two-layer boosting approach and a cascade of boosted covariance features
on Daimler-Chrysler data sets. The two-layer boosting approach performs compa-
rable to cascade of boosted covariance features at low false positive rate (< 0.01),
which is the range of interest.

performance of two-layer boostings. The curve of the proposed method is generated

by adding one cascade level at a time. Boosted covariance features outperform all

other approaches. The performance of hybrid classifiers is quite poor at high false pos-

itive rate due to haar-like features in the initial stages of the cascade. Nonetheless, the

performance improves as more covariance features have been added to later stages of

cascades.

3.4.3 Experiments on INRIA Human Data Sets with Boosted Co-
variance Features

INRIA data sets consist of one training set and one test set. The training set contains

1, 208 pedestrian samples (2, 416 mirrored samples) and 1, 200 non-pedestrian images.

The pedestrian samples were obtained from manually labeling images taken from a

digital camera at various time of days and locations. The pedestrian samples are mostly
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in standing position. A border of 8 pixels is added to the sample in order to preserve

contour information. All samples are scaled to size 64 × 128 pixels. The test set

contains 1, 176 pedestrian samples (mirrored) extracted from 288 images.

The proposed approach is evaluated on given test sets using both classification and

detection methods. For human classification, cropped human samples taken from test

images are used. During classification, the number of positively classified windows

is used to determine if the test sample is human or non-human. For human detection,

a fixed size window is used to scan test images with a scale factor of 0.95 and a step

size of 4 pixels. As in Tuzel et al. [136], mean shift clustering [22] is used to cluster

multiple overlapping detection windows. Simple rules as in Viola and Jones [140] are

also applied on the clustering results to merge those close detection windows.

The criteria similar to the one used in PASCAL VOC Challenge [142] is adopted

here. Detections are considered true or false positives based on the area of overlap with

ground truth bounding boxes. To be considered a correct detection, the area of overlap

between the predicted bounding box, Bp, and ground truth bounding box, Bgt, must

exceed 40% by,

a0 =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
> 40%.

Multiple detections of the same object in an image are considered false detections. For

quantitative analysis, miss rate versus false positive rate curves are plotted on a log-log

scale. The experiments are conducted using a standard desktop with 2.8 GHz Intel

Pentium-D CPU and 2 GB RAM.

Table 3.3: An average evaluation time in windows per second for different parameters of two-
layer boosting approaches.

windows per sec

Proposed COV (20 stages) 6, 000

Haar-like (3 stages) and COV (17 stages) 30, 000

Haar-like (5 stages) and COV (15 stages) 50, 000

Haar-like (10 stages) and COV (10 stages) 100, 000

Haar-like (20 stages) 200, 000
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3.4.3.1 Experiment Setup

Similar to previous experiments, a set of overcomplete rectangular covariance filters

is generated and the overcomplete set is subsampled. The set contains approximately

15, 225 covariance filters. In each stage, weak classifiers are added until the predefined

objective is met. In this experiment, for each stage, the minimum detection rate is set

to 99.5% and the maximum false positive rate is set to 50%. Each stage is trained

with 2, 416 human samples and 5, 000 non-human samples. Negative samples used in

each stage are collected from false positives of previous stages of cascades. The final

cascade consists of 29 stages.

3.4.3.2 Results based on Boosted Covariance Features

Figure 3.10(a) shows a comparison of proposed approach with different algorithms.

The curve of the proposed approach is generated by adding one cascade level at a

time. Based on the figure, the proposed system’s performance is much better than

HOG with linear SVM [24] while achieving a comparable detection rate to the tech-

nique described in Tuzel et al. [136]. Tuzel et al. calculates distance between covari-

ance matrix on the Riemannian manifold. An eigen-decomposition is required which

slows down the computation speed. In contrast, the proposed approach avoids the

eigen-decomposition and therefore it is much faster. It is also easier to implement.

The figure also shows the performance of the proposed system on human detection

problem. In order to achieve the results at low false positive rate, i.e., < 10−5, the

minimum neighbor threshold (a number of merged detections) is manually adjusted.

From Figure 3.10(a), covariance technique with detection approach outperforms the

same technique with classification approach. The reason is due to the clustering and

merging techniques used. By clustering and merging multiple overlapping detection

windows, one is able to further reduce the number of false detections. As a result,

the curve is slightly shifted to the left. As for the processing time, an unoptimized

implementation of the proposed approach in C++ can search about 12, 000 detection

windows per second. Due to the cascade structure, the search time is faster when hu-

man is against plain backgrounds and slower when human is against more complex

backgrounds. Table 3.4 shows the average detection speed for three different classi-

fiers. Compared to Dalal and Triggs [24] and Tuzel et al. [136], the proposed approach
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Figure 3.10: (a) A performance comparison between boosted covariance features, HOG +

linear SVM [24] and covariance on Riemannian manifold [136]. (b) The number
of weak classifiers in different cascade levels on INRIA test data sets [24].

has a smaller evaluation time than both techniques (2.2 times faster than [24]1 and 4

times faster than [136]2). Note that the system in [136] is implemented in C++ on a

Pentium-D 2.8 GHz processor with 2GB RAM, which is the same as the system used

in this experiment.

The next experiment demonstrates how adding a cascade of Haar-like wavelet fea-

1Based on the experiment.
2Personal communication with the authors of [136].

Table 3.4: An average evaluation time on 240 × 320 pixels images (12, 800 windows per im-
age) of different approaches.

windows per sec

HOG, Quadratic SVM [24] 60

COV, Riemannian Manifold [136] 3, 000

HOG, Linear SVM [24] 5, 500

Proposed COV approach 12, 000
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tures to a cascade of boosted covariance features could help improve the detection

speed while maintaining a high detection rate.

3.4.4 Experiments on INRIA Human Data Sets with Two-layer
Boosting

3.4.4.1 Experiment Setup

Similar to experiments on data sets of [89], we subsample the overcomplete set of

Haar-like features to 54, 779 filters: 11, 446 vertical two-rectangle features, 14, 094

horizontal two-rectangle features, 8, 088 vertical three-rectangle features, 10, 400 hor-

izontal three-rectangle features and 10, 751 four-rectangle features. Unlike in previous

experiment, the performance of unsigned wavelets seems to outperform the perfor-

mance of signed wavelets. We think that when the human resolution is large, clothing

and background details can be easily observed and intensity gradient sign becomes

irrelevant. In other words, a wide range of clothing and background colors make the

gradient sign uninformative, e.g., a person with a black shirt in front of a white back-

ground should have the same information as a person with a white shirt in front of

a dark background. Hence, absolute values of the wavelet responses are used in this

experiment. For covariance features, a set of rectangular covariance features from pre-

vious section is used. Figure 3.10(b) gives some details about the two-layer boosting

cascade.

3.4.4.2 Results based on Multi-layer Boosting

The evaluation time in windows per second for different hybrid configurations is shown

in Table 3.5. Similar to previous results, adding Haar-like wavelet features as a pre-

processing step increases the detection speed significantly. Compared with the original

covariance detector in [136], the two-layer boosting approach is 10 times faster (Ta-

ble 3.5).

Figure 3.11 shows the performance of two-layer boosting approach using the clas-

sification and detection approaches. For the classification approach, the overall perfor-

mance of different hybrid configurations is very similar to the performance of a cascade

of boosted covariance features. A hybrid classifier with 15 levels of Haar-like features
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Figure 3.11: A performance comparison between different configurations of the two-layer
boosting approach based on (left) classification and (right) detection on INRIA
test sets. Overlapping amongst ROC curves indicates the performance similarity.

and 12 levels of covariance features might seem to perform poorly at high false positive

rate. However, at a low false positive rate, i.e., 2×10−5, both approaches perform sim-

ilarly. For the detection approach, the two-layer boosting approach performs slightly

inferior to the cascade of boosted covariance features. This is not surprising since IN-

RIA human data sets contain humans with various poses which Haar-like features are

less capable to discriminate. Nonetheless, applying boosted covariance features in the

second layer improves the overall accuracy of Haar-like features significantly. Fig-

ure 3.12 demonstrates some detection examples using the proposed hybrid detector on

INRIA test data set and Advanced Video and Signal based Surveillance (AVSS) 2007

data sets 1.

The two-layer boosting approach and HOG features are also compared on INRIA

data sets with 18 × 36 pixels training data (instead of 64 × 128 used in previous ex-

periments). The experimental setup used in this experiment is similar to the one used

in previous experiments (Sections 3.4.1 and 3.4.2). Figure 3.13 shows experimental

results of different approaches. Results obtained are slightly different from results in

Section 3.4.2 due to the different resolution used. However, the overall results seem to

1http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007 d.html
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Figure 3.12: Human detection examples. Boxes show detection results of the proposed hybrid
classifier (9 levels of Haar-like features and 22 levels of covariance features). Top:
INRIA test sets. Bottom: AVSS 2007 data sets. Note that no post-processing has
been applied to detection results.

be consistent with results shown in Figures 3.7 and 3.9(b).

3.4.5 Detection Performance versus Speed Trade-off for the Two-
layer Boosting

From previous experiments, results show that the speed of Haar-like features based

classifiers is much faster than the speed of covariance features based classifier. There-

fore, it’s best to place as many stages of Haar-like features in the first layer of the

Table 3.5: An average evaluation time (in windows per second) for different parameters of
two-layer boosting approaches.

windows per sec

Proposed COV (29 stages) 12, 000

Haar-like (7 stages) and COV (22 stages) 35, 000

Haar-like (9 stages) and COV (20 stages) 40, 000

Haar-like (15 stages) and COV (12 stages) 52, 000

Haar-like (27 stages) 200, 000
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Figure 3.13: A performance comparison on human detection between the proposed approach
(Haar-like features plus covariance features) and HOG features on INRIA test
sets with training data of resolution 18× 36 pixels.

classifier. However, having too many stages of Haar-like features will degrade the

overall performance. The objective of this section is to find the best combination that

will give best overall results.

To study the trade-off between the detection performance and detection speed, a

test is performed on different false positive rates. For example, to achieve a 5 × 10−4

false positive rate for boosted covariance classifier on INRIA data sets, only first 19

stages of covariance features (instead of all 29 stages) are used. The average compu-

tation time is calculated by evaluating the 19 stages classifier on a test sequence of

images. Figure 3.14 shows the detection rate and computation time for different con-

figurations of multiple-layer boosting on the data sets of and INRIA data sets. From

the figure, it can be concluded that there is a trade-off between the detection perfor-

mance and speed. In order to achieve a high detection rate, only a small number of

Haar-like based AdaBoost classifiers should be placed in the first layer of cascades.

For small resolution data sets (18× 36 pixels), a configuration of 5 stages Haar-like/15

stages covariance cascade classifier seems to perform best at a reasonable computa-

tion time. For larger resolution data sets (64× 128 pixels), a configuration of 7 stages
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Haar-like/22 stages covariance cascade classifier seems to perform best.

3.4.6 Discussion

This section tests previously trained classifier (classifier trained on INRIA data sets)

on random internet images with pedestrians having variable illumination, appearance,

pose and occlusion. Some results are shown in Figure 3.15. The top row shows raw

detection results. The bottom row shows merged detection results using mean shift

clustering. Based on experimental results, the system works well on images where

there is a small gap between pedestrians, i.e., no occlusion between pedestrians. When

humans stand in a group or occlude one another, the human contour is quite complex

and different from what the classifier was trained. In addition, these exist a lot of

multiple overlapping detection windows when human occludes one another. Mean

shift clustering fails to merge the detection windows correctly when there is a lot of

overlapping windows. As a result, the system fails to detect most of pedestrians. Note

that a lot of false detections came from various human body parts, e.g., human limbs

and body. This is not surprising since negative training samples used do not contain

any of these body parts.

3.5 Conclusion

This chapter has presented a fast and robust pedestrian detection technique. We use

weighted Fisher linear discriminant analysis as the weak classifier for AdaBoost train-

ing. In order to speed up the computation time, a cascaded classifier architecture is

adopted [140]. From the experimental results on Daimler-Chrysler data sets [89], the

proposed system has shown to give high detection performance at a low false posi-

tive rate. Comparing with techniques using linear SVM classifier, the proposed system

outperforms all systems evaluated. When compared with non-linear SVM systems, the

system is shown to perform very similar to covariance features with Gaussian SVM and

slightly inferior compared to HOG with quadratic SVM. Nonetheless, the computation

time of HOG with quadratic SVM is much higher than the proposed approach.

The performance of the proposed approach is also evaluated on INRIA human data

sets [24]. The performance of the proposed approach is comparable to the state-of-
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Figure 3.14: Detection rate versus speed trade-off for different configurations of two-layer
boosting. First two figures show Detection Rate vs. False Positive Rate on
Daimler-Chrysler data sets and INRIA data sets, respectively. The last two fig-
ures show Computation Time vs. False Positive Rate. Clearly, covariance fea-
tures have the highest detection rate across all false positive rates while Haar-like
features have the lowest detection rate. On the other hand, Haar-like features are
the fastest to compute while covariance features are the slowest.
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Figure 3.15: Detection examples on images collected randomly from the internet. Top: raw
detection results. Bottom: merged detection results using a mean shift clustering
technique.

the-art [136] while is almost 4 times faster during evaluation due to its new design. To
further accelerate the detection speed, a faster strategy—two-layer boosting with het-
erogeneous features—is introduced. The approach exploits the efficiency of Haar-like
features and the discriminative power of covariance features. This way the proposed
detector runs 10 times faster than the original covariance feature detector [136] 1.

One major drawback of Boosting based classifiers is that the algorithm ignores the
imbalanced property of training data, i.e., a typical natural image often contains many
more negative background patterns than object patterns. In the next chapter, a new
learning criterion, which considers this highly skewed data distribution, is introduced.
Experiments demonstrate that classifiers trained with the new criterion outperforms
AdaBoost and its variants. This finding provides a significant opportunity to argue that
AdaBoost is not the only method that can achieve high classification results for high
dimensional data in object detection.

1 Note that this speedup factor would have been lower if the two-layer approach is also applied to
[136].
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4
Efficiently Training a better Visual
Detector with Sparse Eigenvectors

4.1 Introduction

Real-time object detection, objection detection such as face detection, has numerous

computer vision applications, e.g., intelligent video surveillance, vision based telecon-

ference systems and human motion analysis [91, 92]. Various detectors have been

proposed in the literature [100, 117, 121, 126, 140]. Object detection is challenging

due to large variations of the visual appearances, poses and illumination conditions.

Furthermore, object detection is a highly-imbalanced classification task. A typical nat-

ural image contains many more negative background patterns than object patterns. The

number of background patterns can be 100, 000 times larger than the number of object

patterns. That means, if one wants to achieve a high detection rate, together with a low

false detection rate, one needs to design a specific and sensitive classifier that takes the

imbalanced data distribution into consideration [139].
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non-target non-target non-target

targetinput

Figure 4.1: An illustration of cascade classifiers. Here a circle represents a node classifier. An
input patch is classified as a target only when it passes tests at all node classifiers.

Viola and Jones [140] proposed the first real-time AdaBoost based face detector.

They introduced a framework for selecting discriminative features and training clas-

sifiers in a cascaded manner as shown in Figure 4.1. The cascade framework allows

most non-face patches to be rejected quickly before reaching the final node, resulting

in fast performances. A test image patch is reported as a face only if it passes tests

in all nodes. This way, most non-face patches are rejected by these early nodes. Cas-

cade detectors have led to very fast detection speed and high detection rates. Due to

their tremendous success, numerous further work have been proposed. Most of them

focused on improving the underlying boosting method or accelerating the training pro-

cess. For example, AsymBoost was introduced in Viola and Jones [139] to alleviate the

limitation of AdaBoost in the context of highly skewed example distribution. Li et al.

[67] proposed FloatBoost for a better detection accuracy by introducing a backward

feature elimination step into the AdaBoost training procedure. Wu et al. [145] used

forward feature selection for fast training by ignoring the re-weighting scheme in Ad-

aBoost. Another technique based on the statistics of the weighted input data was used

in Pham and Cham [109] for even faster training. KLBoost was proposed in Liu and

Shum [70] to train a strong classifier. The weak classifiers of KLBoost are based on

histogram divergence of linear features. Notice that in KLBoost, the classifier design is

separated from feature selection process. Bourdev and Brandt [12] developed the Soft

Cascade to reduce the complexity of cascade design and training. The idea was further

improved in multi exit boosted classifiers [111]. Cascade classifiers were applied not

only to boosting based classifiers, but also to Support Vector Machines (SVMs) [117].

In this chapter, an improved learning algorithm for object detection, known as Boosted

Greedy Sparse Linear Discriminant Analysis (BGSLDA), is proposed.

One issue that contributes to the efficacy of the system comes from the use of Ad-
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aBoost for training cascade nodes (Chapter 2). Chapter 2 introduces the AdaBoost

classifier. AdaBoost combines an ensemble of weak classifiers to produce a final

strong classifier with high classification accuracy. AdaBoost chooses a small subset

of weak classifiers and assigns them with proper coefficients. The linear combination

of weak classifiers can be interpreted as a decision hyper-plane in the weak classifier

space. The proposed BGSLDA differs from the original AdaBoost in the following

aspects. Instead of selecting decision stumps with minimal weighted error as in Ad-

aBoost, the proposed BGSLDA algorithm finds a new weak learner that maximizes the

class-separability criterion. As a result, the coefficients of selected weak classifiers are

updated repetitively during the learning process according to this criterion.

The proposed technique differs from Wu et al. [145] in the following aspects. Wu

et al. proposed the concept of Linear Asymmetric Classifier (LAC) by addressing the

asymmetries and asymmetric node learning goal in the cascade framework. Unlike the

proposed work where features are selected based on the Linear Discriminant Analysis

(LDA) criterion, Wu et al. selects features using AdaBoost/AsymBoost algorithms.

Given the selected features, Wu et al. then build an optimal linear classifier for the node

learning goal using LAC or LDA. Note that similar techniques have also been applied

in neural network. In Webb and Lowe [143], a nonlinear adaptive feed-forward layered

network with linear output units has been introduced. The input data is nonlinearly

transformed into a space in which classes can be separated more easily. Since LDA

considers the number of training samples of each class, applying LDA at the output of

neural network hidden units has been shown to increase the classification accuracy of

two-class problem with unequal class membership. As experimental results show, in

terms of feature selection, the proposed BGSLDA method is better than AdaBoost and

AsymBoost for object detection.

Viola and Jones pointed out the limitation of AdaBoost in the context of highly

skewed example distribution [139]. Since AdaBoost minimizes weighted exponential

loss function, it does not minimize the number of false negatives. As a result, the se-

lected features are no longer optimal for the task of rejecting negative examples. The

authors proposed a new variant of AdaBoost called AsymBoost which is experimen-

tally shown to give a significant performance improvement over conventional boosting.

In brief, the sample weights were updated before each round of boosting with the ex-
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tra exponential term which causes the algorithm to gradually pay more attention to

positive samples in each round of boosting.

The key contributions of this chapter are as follows.

• Firstly, GSLDA is introduced as an alternative approach for training face detec-

tors. Similar results are obtained compared with Viola and Jones’ approach.

• Secondly, a new algorithm, known as BGSLDA, is proposed. The approach

combines the sample re-weighting schemes typically used in boosting into GSLDA.

Experiments show that BGSLDA can achieve better detection performances.

• Thirdly, it is shown that feature selection and classifier training techniques can

have different objective functions (in other words, the two processes can be sepa-

rated) in the context of training a visual detector. This offers more flexibility and

even better performance. Note that previous boosting based approaches select

features and train a classifier simultaneously.

• Finally, experimental results confirm that it is beneficial to consider the highly

skewed data distribution when training a detector. LDA’s learning criterion has

already incorporated this imbalanced data information. Hence it is better than

standard AdaBoost’s exponential loss for training an object detector.

4.2 Algorithms

In this section, an alternative approach to AdaBoost for object detection is presented.

The section begins with a brief explanation of the concept of GSLDA [86]. It then

compares LDA and AdaBoost on asymmetric toy data sets. Next, a new algorithm,

that makes use of sample re-weighting scheme commonly used in AdaBoost to select

a subset of relevant features for training the GSLDA classifier, is proposed. Finally,

the training time complexity of proposed methods is analyzed.

4.2.1 Greedy Sparse Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) can be cast as a generalized eigenvalue decom-

position. Given a pair of symmetric matrices corresponding to the between-class (Sb)
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and within-class covariance matrices (Sw), one maximizes a class-separability criterion
defined by the generalized Rayleigh quotient:

max
w

w>Sbw

w>Sww
. (4.1)

The optimal solution of a generalized Rayleigh quotient is the eigenvector correspond-
ing to the maximal eigenvalue. The sparse version of LDA is to solve (4.1) with an
additional sparsity constraint:

Card(w) = k, (4.2)

where Card(·) counts the number of nonzero components, also known as the `0 norm.
k ∈ ZZ is an integer set by a user. Due to this sparsity constraint, solving (4.1) with
an additional constraint of (4.2) becomes non-convex and NP-hard. Moghaddam et

al. presented a technique to compute optimal sparse linear discriminants using branch
and bound approach [86]. Nevertheless, finding the exact global optimal solution for
high dimensional data is infeasible. The algorithm was later improved by the same
authors with new sparsity bounds and efficient matrix inverse technique. Their new
algorithm shows 1, 000 fold speedup relative to branch and bound approach [87]. The
technique works by sequentially adding the new variable which yields the maximum
eigenvalue (greedy forward selection) until a maximum number of elements are se-
lected or some predefined condition is met. As shown in Moghaddam et al. [87],
for two-class problem, the computation can be made very efficient as the only finite
eigenvalue λmax(Sb, Sw) can be computed in closed-form 1 as b>S−1

w b with Sb = bb>

because in this case Sb is a rank-one matrix and b is a column vector. Therefore, the
computation is mainly determined by the inverse of Sw. When a greedy approach is
adopted to sequentially find the suboptimal w, a simple rank-one update for comput-
ing S−1

w significantly reduces the computation complexity [87]. In this thesis, forward
greedy search is applied due to its simplicity. For forward greedy search, if l is the
current subset of k indices and m = l ∪ i for candidate i which is not in l. The new
augmented inverse (Smw )−1 can be calculated in a fast way by recycling the last step’s
result (Slw)−1:

(Smw )−1 =

[
(Slw)−1 + aiuiu

>
i −aiui

−aiui ai

]
, (4.3)

1Note that the optimal solution to (4.1) can be computed in closed-form.
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where ui = (Slw)−1Sw,li with (li) indexing the l-th row and i-th column of Sw and

ai = 1/(Sw,ii − S>w,liui) [43, 87].

Note that other sparse linear regression and classification algorithms, e.g., `1-norm

linear support vector machines, `1-norm regularized log-linear models, etc., have also

been experimented. However, the major drawback of these techniques is that they do

not have an explicit parameter that controls the number of features to be selected. The

trade-off parameter (regularization parameter) only controls the degree of sparseness.

One has to tune this parameter using cross-validation. Also `1 penalty methods often

lead to sub-optimal sparsity [152]. Hence, GSLDA, which makes use of greedy feature

selection and the number of features can be predefined, is applied. It would be of

interest to compare the proposed method with `1-norm induced sparse models [28].

The following paragraph explains how the GSLDA classifier is applied [87] as an

alternative feature selection method to classical Viola and Jones’ framework [140].

Here, an explanation of cascade classifiers is omitted. Interested readers should refer

to Chapter 2 for details. The proposed GSLDA based detection framework can be

summarized in Algorithm 3. The algorithm operates as follows. The set of selected

features is initialized to an empty set. The first step (lines 4 − 5 in Algorithm 3) is

to train weak classifiers, for example, decision stumps on Haar features.1 For each

Haar-like rectangle feature, the threshold that gives the minimal classification error is

pre-computed and stored in memory. In order to achieve maximum class separation,

the output of each decision stump is examined and the decision stump whose output

yields the maximum eigenvalue is sequentially added to the list (line 7, step (1)). The

process continues until the predefined condition is met (line 6).

4.2.2 Linear Discriminant Analysis on Asymmetric Data

In cascade classifiers, one would prefer to have a classifier that yields high detection

rates without introducing many false positives. In the Bayes sense, linear discriminant

classifiers are optimum for normal distributions with equal covariance matrices. How-

ever, due to its simplicity and robustness, linear discriminant classifiers have shown to

1 Note that any weak classifiers can be applied here. For the time being, decision stumps on Haar-
like features are shown as examples. Details of other weak classifiers, e.g., covariance features, will be
shown later.
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Algorithm 3 The training procedure for building a cascade of GSLDA object detector.
Input:

• A positive training set and a negative training set;

• A set of Haar-like rectangle features;

• DRmin: minimum acceptable detection rate per cascade level;

• FPmax: maximum acceptable false positive rate per cascade level;

• FPtarget: target overall false positive rate;

Initialize: i = 0; DRi = 1; FPi = 1;1

while FPtarget < FPi do2

i = i+ 1; fi = 1;3

foreach rectangle feature do4

Train a weak classifier, h1, h2, · · · , with the smallest error on the training set;5

while fi > FPmax do6

1. Add the best weak classifier that yields the maximum class separation;7

2. Lower classifier threshold, θ in (4.4),such that DRmin holds;8

3. Update classifier’s false positive rate, fi, using this classifier threshold;9

DRi+1 = DRi ×DRmin; FPi+1 = FPi × fi; and remove correctly classified negative10

samples from the training set;
if FPtarget < FPi then11

Evaluate the current cascaded classifier on the negative images and add misclassified12

samples into the negative training set;

Output: A cascade of classifiers for each cascade level i = 1, · · · ;

perform well not only for normal distributions with unequal covariance matrices but
also non-normal distributions. A linear discriminant classifier can be written as

F (x) =

{
+1 if

∑n
t=1 wtht(x) + θ ≥ 0;

−1 otherwise,
(4.4)

where h(·) defines a function which returns binary outcome, x is the input image
features and θ is an optimal threshold such that the minimum number of examples are
misclassified.

The asymmetric goal for training cascade classifiers can be written as a trade-off
between false acceptance rate ε1 and false rejection rate ε2 as

r = ε1 + µε2, (4.5)
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where µ is a trade-off parameter, representing an acceptable false rejection rate at the

cost of higher false acceptance rate. Various approaches have been proposed to deter-

mine this trade-off [12, 131, 140, 145]. The objective of LDA is to maximize the pro-

jected between-class covariance matrix (the distance between the mean of two classes)

and minimize the within-class covariance matrix. The choice of weight coefficients, w,

which satisfies the LDA objective is guaranteed to achieve this goal. Having large pro-

jected mean difference and small projected class variance indicates that the data can be

separated more easily and, hence, the asymmetric goal can also be achieve more easily.

On the other hand, AdaBoost minimizes symmetric exponential loss function that does

not guarantee high detection rates with few false positives [139]. The selected features

are therefore no longer optimal for the task of rejecting negative samples.

Another way to think of this is that AdaBoost sets initial positive and negative sam-

ple weights to 0.5/Np and 0.5/Nn (Np and Nn is the number of positive samples and

negative samples). The prior information about the number of samples in each class

is encoded only in the initial distribution of sample weights. The information grad-

ually phased out during subsequent weak learners’ training. In contrast, LDA takes

the number of samples in each class into consideration when solving the optimization

problem, i.e., the number of samples is used in calculating the between-class covari-

ance matrix (Sb). Hence, Sb is the weighted difference between class mean and sample

mean, which writes

Sb =
∑
ci

Nci(µci − x)(µci − x)>, (4.6)

where µci = N−1
ci

∑
j∈ci xj; x = N−1

∑
j xj; Nci is the number of samples in class ci

andN is the total number of samples. Taking into consideration the number of samples

in each class, Nci , minimizes the effect of imbalanced data sets.

In order to demonstrate this, an artificial data set similar to one used in Viola and

Jones [139] is generated. A strong classifier consisting of 4 linear classifiers is learned

and the results are shown in Figure 4.2. From the figure, it can be observed that the

first weak classifier (#1) selected by both algorithms are the same since it is the only

linear classifier with minimal error. AdaBoost then re-weights the samples and selects

the next classifier (#2) which has the smallest weighted error. From the figure, the

second weak classifier (#2) introduces more false positives to the final classifier. Since
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most positive samples are correctly classified, the positive samples’ weights are close

to zero. AdaBoost selects the next classifier (#3) which classifies all samples as nega-

tive. Therefore it is clear that all but the first weak classifier learned by AdaBoost are

poor because it tries to balance positive and negative errors. The final combination of

these classifiers are not able to produce high detection rates without introducing many

false positives. In contrast to AdaBoost, GSLDA selects the second and third weak

classifier (#2, #3) based on the maximum class separation criterion. Only the linear

classifier whose outputs yields the maximum distance between two classes is selected.

As a result, the selected linear classifiers introduce much less number of false positives

(Figure 4.2).

Viola and Jones [139] pointed out the limitation of AdaBoost in the context of

highly skewed data distribution and proposed a new variant of AdaBoost called Asym-

Boost which is experimentally shown to give a performance improvement over conven-

tional boosting. In brief, the sample weights are updated before each round of boosting

with the extra exponential term which causes the algorithm to gradually pay more at-

tention to positive samples in each round of boosting. The proposed scheme based on

LDA’s class-separability can be considered as an alternative classifier to AsymBoost

that also takes asymmetry information into consideration.

4.2.3 Boosted Greedy Sparse Linear Discriminant Analysis

Before introducing the concept of BGSLDA, an explanation of boosting algorithms

is briefly discussed. Boosting is one of the most popular learning algorithms. It was

originally designed for classification problems. It combines the output of many weak

classifiers to produce a single strong learner. A weak classifier is defined as a classifier

with classification accuracy on training sets greater than random guessing. There ex-

ist many variants of boosting algorithms, e.g., AdaBoost (minimizing the exponential

loss), GentleBoost (fitting regression function by weighted least square methods), Log-

itBoost (minimizing the logistic regression cost function) [38], LPBoost (minimizing

the hinge loss) [27, 63], etc. All of them rely on sample re-weighting and weighted ma-

jority voting. One of widely used boosting algorithms is AdaBoost [123]. AdaBoost

is a greedy algorithm that constructs an additive combination of weak classifiers such

that the exponential loss L(y, F (x)) = exp(−yF (x)) is minimized. Here x is the
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Figure 4.2: Two examples on toy data sets: (a) the AdaBoost classifier; (b) the GSLDA clas-
sifier (forward pass). ×’s and ◦’s represent positive and negative samples, respec-
tively. Weak classifiers are plotted as lines. The number on the line indicates the
order in which weak classifiers are selected. AdaBoost selects weak classifiers for
attempting to balance weighted positive and negative error. Notice that AdaBoost’s
third weak classifier classifies all samples as negative due to the very small pos-
itive sample weights. In contrast, GSLDA selects weak classifiers based on the
maximum class separation criterion. It can be seen that four weak classifiers of
GSLDA model the positives well and most of the negative are rejected.

labeled training examples and y is its label y ∈ {−1,+1}; F (x) is the final deci-

sion function where its sign predicts the class label. Each training sample receives a

weight ui that determines its significance for training the next weak classifier. In each

boosting iteration, the value of weak classifier’s weight coefficients, αt, is computed

and the sample weights are updated according to the exponential rule (4.7). AdaBoost

then selects a new hypothesis, h(·), that best classifies updated training samples with

minimal weighted classification error e. The final decision rule H(·) is a sign of the

linear combination of the selected weak classifiers weighted by their coefficients αt.

The classifier decision is given by

H(x) = sign
(
F (x)

)
= sign

( T∑
t=1

αtht(x)
)
,

88



4.2 Algorithms

where αt is a weight coefficient; ht(·) is a weak learner and T is the number of weak

classifiers.

In the previous section, the concept of GSLDA was introduced in the domain of ob-

ject detection. However, decision stumps used in GSLDA are learned only once to save

computation time. In other words, once learned, an optimal threshold, which gives

smallest classification error on training sets, remains unchanged during the GSLDA

training. This speeds up the training process as also shown in forward feature selection

of [145]. However, it limits the number of decision stumps available for the GSLDA

classifier to choose from. As a result, GSLDA fails to perform at its best. In order

to achieve the best performance from the GSLDA classifier, we propose to extend de-

cision stumps used in GSLDA training with sample re-weighting techniques used in

boosting methods. In other words, each training sample receives a weight and the new

set of decision stumps are trained according to these sample weights. The new classi-

fier is termed Boosted GSLDA (in short, BGSLDA). The BGSLDA cascade learning

algorithm is shown in Algorithm 4. Since the BGSLDA based object detection frame-

work has the same input/output as GSLDA based detection framework (Algorithm 3),

lines 2− 10 in Algorithm 3 are replaced with with Algorithm 4.

In Algorithm 4, the criterion used to select the best decision stump is similar to

the one applied in step (1) in Algorithm 3. Step (3) in Algorithm 4 is introduced in

order to speed up the GSLDA training process. By saying that, decision stumps with

a weighted error larger than emin + ε are removed. Here emin (smallest weighted error

from all selected hypotheses) = 1
2
− 1

2
βmax, ε is an arbitrarily small constant, βmax

(largest edge of all selected hypotheses) = maxj=1,2,··· ,t (
∑N

i=1 u
(t)
i yihj(xi)), N is the

number of samples, u(t)
i is the current weight of sample xi, yi is the class label of

sample xi and hj(xi) is the prediction of the training data xi using weak classifier hj .

Given the set of decision stumps, GSLDA selects the stump that results in max-

imum class separation (step (4)). The sample weights can be updated using differ-

ent boosting algorithms (step (5)). In the experiment, AdaBoost re-weighting scheme

(BGSLDA - scheme 1) is used:

u
(t+1)
i =

u
(t)
i exp(−αtyiht(xi))

Z(t+1)
, (4.7)
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with
Z(t+1) =

∑
i

u
(t)
i exp(−αtyiht(xi)).

Here αt = 0.5 log((1−et)/(et)), et is the weighted error, Z(t+1) is a normalization fac-
tor chosen such that u(t+1)

i will be a probability distribution. We also use AsymBoost
[139] re-weighting scheme (BGSLDA - scheme 2).

u
(t+1)
i =

u
(t)
i exp(−αtyiht(xi)) exp(yi log

√
k)

Z(t+1)
, (4.8)

with
Z(t+1) =

∑
i

u
(t)
i exp(−αtyiht(xi)) exp(yi log

√
k).

Since BGSLDA based object detection framework has the same input/output as GSLDA
based detection framework, lines 2−10 in Algorithm 3 are replaced with Algorithm 4.

4.2.4 Training Time Complexity of BGSLDA

In order to analyze the complexity of the proposed system, one need to analyze the
complexity of boosting and GSLDA training. Let the number of training samples in
each cascade layer be N . For boosting, finding the optimal threshold of each fea-
ture needs O(N logN). Assume that the size of the feature set is M and the num-
ber of weak classifiers to be selected is T . The time complexity for training boost-
ing classifier is O(MTN logN). The time complexity for GSLDA forward pass is
O(NMT + MT 3). O(N) is the time complexity for finding mean and variance of
each features. O(T 2) is the time complexity for calculating correlation for each fea-
ture. Since there are M features and the number of weak classifiers to be selected is
T , the total time complexity for GSLDA is O(NMT + MT 3). Hence, the total time
complexity is O(MTN logN︸ ︷︷ ︸

weak classifier

+NMT +MT 3︸ ︷︷ ︸
GSLDA

). When N � T , most of the compu-

tation is spent on training weak classifiers. On the other hand, when T is large, most
of the computation time is spent on GSLDA calculation (finding the feature that max-
imizes class-separability criterion). For cascaded structure, The value of T can be set
to be small, i.e., the maximum number of weak classifiers in each cascade node. For
face detection using Haar-like features with cascade classifiers [140], N is 4, 916, M
is 160, 000 (24× 24 pixels patch) and T is usually less than 200.
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Algorithm 4 The training algorithm for building a cascade of BGSLDA object detec-
tor.

while FPtarget < FPi do1

i = i+ 1;2

fi = 1;3

while fi > FPmax do4

1. Normalize sample weights u;5

2. Train weak classifiers h(·) (e.g., decision stumps by finding an optimal6

threshold θ) using the training set and sample weights;
3. Remove those weak classifiers with weighted error larger than emax + ε7

(section 4.2.3);
4. Add the weak classifier whose output yields the maximum class separation;8

5. Update sample weights u in the AdaBoost manner (Eq. (4.7)) or AsymBoost9

manner (Eq. (4.8));
6. Lower threshold such that DRmin holds;10

7. Update fi using this threshold;11

DRi+1 = DRi ×DRmin;12

FPi+1 = FPi × fi; and remove those correctly classified negative samples from13

the training set;
if FPtarget < Fi then14

Evaluate the current cascaded classifier on the negative images and add15

misclassified samples into the negative training set;

For fast AdaBoost training of Haar-like rectangle features, the pre-computing tech-

nique similar to [145] is applied here.

4.3 Experiments

This section is organized as follows. Data sets used in this experiment, including how

the performance is analyzed, are described. Experiments and the parameters used are

then discussed. Finally, experimental results and analysis of different techniques are

presented.
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Figure 4.3: Random samples of face images used during training.

4.3.1 Face Detection with the GSLDA Classifier

Due to its efficiency, Haar-like rectangle features [140] have become a popular choice

as image features in the context of face detection. Similar to the work in Viola and

Jones [140], the weak learning algorithm known as decision stump and Haar-like rect-

angle features are used here due to their simplicity and efficiency. The following ex-

periments compare AdaBoost, FloatBoost (AdaBoost with backtrack mechanism) [67]

and GSLDA learning algorithms in their performances in the domain of face detection.

4.3.1.1 Performance on Single-node Classifiers

This experiment compares single strong classifier learned using AdaBoost, FloatBoost

and GSLDA algorithms in their classification performance. Data sets consist of three

training sets and two test sets. Each training set contains 2, 000 face examples and

2, 000 non-face examples (Table 4.1). Data sets consist of 10, 000 mirrored faces. The

faces were cropped and rescaled to images of size 24 × 24 pixels. For non-face ex-

amples, 10, 000 random non-face patches are selected from non-face images obtained

from the internet. Figure 4.3 shows a random sample of face training images.

Table 4.1: The size of training and test sets used on a single node classifier.

# data splits faces/split non-faces/split

Train 3 2000 2000

Test 2 2000 2000
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Figure 4.4: See text for details (best viewed in color). (a) A comparison of test error rates
between GSLDA and AdaBoost. (b) A comparison of false alarm rates on test sets
between GSLDA and AdaBoost. The detection rate on validated face sets is fixed
at 99%. (c) A comparison of train and test error rates between BGSLDA (scheme
1) and AdaBoost. (d) A comparison of false alarm rates on test sets between
BGSLDA (scheme 1) and AdaBoost.

For each experiment, three different classifiers are generated, each by selecting

two out of the three training sets and the remaining training set for validation. The

performance is measured by two different curves:- the test error rate and the classifier

learning goal (the false alarm error rate on test sets given that the detection rate on

validation sets is fixed at 99%). A 95% confidence interval of the true mean error rate
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is given by the t-distribution. In this experiment, two different approaches of GSLDA:
forward-pass GSLDA and dual-pass (forward+backward) GSLDA1 are tested. The
results are shown in Figure 4.4. The following observations can be made from these
curves. Having the same number of learned Haar-like rectangle features, GSLDA
achieves a comparable error rate to AdaBoost/FloatBoost on test sets (Figure 4.4(a)).
GSLDA seems to perform slightly better with less number of Haar-like features (<
100) while AdaBoost and FloatBoost seem to perform slightly better with more Haar-
like features (> 100). However, both classifiers perform almost similarly within 95%

confidence interval of the true error rate. This indicates that features selected using the
GSLDA classifier are as meaningful as features selected using AdaBoost/FloatBoost
classifiers. From the curve, GSLDA with bi-directional search yields better results than
GSLDA with forward search only. Figure 4.4(b) shows the false positive error rate on
test sets. From the figure, GSLDA, AdaBoost and FloatBoost achieve a comparable
false positive error rate on test sets. Similar to [67], FloatBoost has a slightly lower
error rate than AdaBoost.

4.3.1.2 Performance on Cascades of Strong Classifiers

In this experiment, 5, 000 mirrored faces from previous experiments are used. Non-
face samples used in each cascade layer are collected from false positives of the previ-
ous stages of the cascade (bootstrapping). The cascade training algorithm terminates
when there are not enough negative samples to bootstrap. For fair evaluation, both
techniques are trained with the same number of weak classifiers in each cascade. Note
that since dual pass GSLDA (forward+backward search) yields better solutions than
the forward search in the previous experiment, dual pass GSLDA classifier is used to
train a cascade of face detectors. The proposed face detector is tested on the low reso-
lution face database, MIT+CMU test sets. The database contains 130 images with 507

frontal faces. In this experiment, the scaling factor is set to 1.2 and window shifting
step to 1 pixel. The technique used for merging overlapping windows is similar to
[140]. Detections are considered true or false positives based on the area of overlap
with ground truth bounding boxes. To be considered a correct detection, there must be

1 Dual-pass GSLDA performs a backward elimination after the latest weak classifier is added by
forward-pass GSLDA. The process removes those previously added weak classifiers which have little
help in separating positive class from negative class.
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Figure 4.5: Comparison on MIT+CMU face test sets (a) with the same number of weak classi-
fiers in each cascade stage of AdaBoost and its variants. (b) with 99.5% detection
rate and 50% false positive rate in each cascade stage of AdaBoost and its variants.
BGSLDA (scheme 1) corresponds to the GSLDA classifier with decision stumps
being re-weighted using an AdaBoost scheme.

at least a 50% overlap between the predicted bounding box and ground truth bounding

box. Multiple detections of the same face in an image are considered false detections.

Figures 4.5(a) and 4.5(b) show a comparison between the Receiver Operating Char-

acteristic (ROC) curves produced by the GSLDA classifier, AdaBoost and FloatBoost.

In Figure 4.5(a), the number of weak classifiers in each cascade stage is predetermined

while in Figure 4.5(b), weak classifiers are added to the cascade until the predefined

objective is met. The ROC curves show that GSLDA outperforms AdaBoost at all false

positive rates. The observation is that by lowering the AdaBoost threshold (in order

to achieve high detection rates with moderate false positive rates), the classification

performance of AdaBoost is no longer optimal. Findings in this chapter are consistent

with the experimental results presented in [67, 139, 145].

Wu et al. [145] used LDA weights instead of weak classifiers’ weights provided

by the AdaBoost algorithm. [67] introduced a backtrack mechanism to remove unfa-

vorable weak classifiers (FloatBoost learning). The performance of AdaBoost+LDA,

FloatBoost and GSLDA is observed to be similar. Since Haar-like features and the cas-

cade structure similar to Viola and Jones [140] are used, it can be concluded that the
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Figure 4.6: Comparison of different approaches on MIT+CMU face test sets using Haar-like
features.

evaluation time of GSLDA face detectors is similar to that of AdaBoost face detectors.

Figure 4.6 compares the performance of LDA-based classifiers against asymmetric

boosting-based classifiers [110, 139]. For [139], the asymmetric parameter is set to 1.1

using cross-validation. For [110], the classifier is trained in an offline mode and the

asymmetric parameter is set to 2 using cross-validation. The number of weak classifiers

in each node was set to be the same in all classifiers. Based on experimental results,

the detection performance of GSLDA is similar to asymmetric AdaBoost. Since each

cascade node is trained with equal number of faces and non-faces, the performance

of [110] is very similar to [139]. Training each node with a different ratio of training

faces and training non-faces might produce different performance results between the

two versions of asymmetric boosting of [110] and [139].

Note that GSLDA not only performs better than AdaBoost but it is also much sim-

pler. The weak classifier learning (decision stumps) is performed only once for the

given set of samples (unlike AdaBoost or FloatBoost where weak classifiers have to

be re-trained in each boosting iteration). GSLDA sequentially selects decision stump

whose output yields the maximum eigenvalue. The process continues until the stop-

ping criteria are met. Note that given the decision stumps selected by GSLDA, any

linear classifiers can be used to calculate the weight coefficients. Based on preliminary
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Figure 4.7: First seven Haar-like rectangle features selected from the first layer of different
classifiers. The value below each Haar-like rectangle features indicates the nor-
malized feature weight. AdaBoost and FloatBoost have the same Haar-like rectan-
gle features in the first layer. For AdaBoost and FloatBoost, the value corresponds
to the normalized α where α is computed from log((1 − et)/et) and et is the
weighted error. For LDA, the value corresponds to the normalized w such that for
input vector x and a class label y, w>x leads to maximum separation between two
classes.

experiments, using linear SVM (maximizing the minimum margin) instead of LDA

also gives a very similar result to GSLDA detector. The authors believe that using one

objective criterion for feature selection and another criterion for classifier construction

would provide a classifier with more flexibility than using the same criterion to select

features and train weight coefficients. This finding was originally advocated in Wu et

al. [145]. Experimental results in this chapter are consistent with experimental results

reported in Wu et al. [145]. This finding opens up many more possibilities in combin-

ing various feature selection techniques with many existing classification techniques.

We believe that a better and faster object detector can be built with careful design and

experiments.

Haar-like rectangle features selected in the first cascade layer of different classifiers
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Table 4.2: A summary of training time, the number of nodes and evaluation time of different
classifiers. The number of cascade nodes and total weak classifiers were obtained
from the classifier trained to achieve a detection rate of 99.5% and a maximum false
positive rate of 50% in each cascade node. The average number of Haar-like rectan-
gles evaluated was obtained from evaluating the trained classifier on MIT+CMU test
sets. Dual-pass classifiers (forward+backward), e.g., FloatBoost, GSLDA (dual-
pass) take longer time to train than one-pass classifiers.

Method Training time ] stages ] weak Avg. ] Haar
classifiers features eval.

AdaBoost [140] 3 hours 22 1771 23.9

FloatBoost [67] 3+ hours 22 1532 23.3

AdaBoost+LDA [145] 3 hours 22 1436 22.3

GSLDA 16+ hours 24 2985 36.0

BGSLDA (scheme 1) 16+ hours 23 1696 24.2

AsymBoost [139] 3 hours 22 1650 22.6

AsymBoost+LDA [145] 3 hours 22 1542 21.5

BGSLDA (scheme 2) 16+ hours 23 1621 24.9

are shown in Figure 4.7. Note that all classifiers select Haar-like features that cover the

area around the eyes and forehead. Table 4.2 compares the two cascade classifiers in

terms of the number of weak classifiers and the average number of Haar-like rectangle

features evaluated per detection window. Comparing GSLDA with AdaBoost, GSLDA

has more weak classifiers and takes longer time to evaluate than AdaBoost. Unlike in

AdaBoost, where training samples are reweighed in each boosting iteration, GSLDA

does not update sample weights. In the proposed algorithm, weak classifiers (e.g., de-

cision stumps) are learned only once, i.e., for decision stump, the threshold is trained

once in the beginning. Once learned, the threshold parameter remains unchanged. This

is different from AdaBoost where the threshold parameter is re-learned so that the weak

classifier would yield minimal weighted misclassification error. Hence, the number of

decision stumps available for training GSLDA is much smaller than the number of

decision stumps used in training AdaBoost classifiers. In other words, AdaBoost can
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choose a more powerful/meaningful decision stump during each boosting iteration. In-
terestingly, GSLDA outperforms AdaBoost. This indicates that the classifier trained to
maximize class separation might be more suitable in the domain where the distribution
of positive and negative samples is highly skewed. In the next section, experiments are
conducted on BGSLDA.

4.3.2 Face Detection with the BGSLDA Classifier

The following experiment compares BGSLDA and different boosting learning algo-
rithms in their performances for face detection. BGSLDA (weight scheme 1) corre-
sponds to GSLDA with decision stumps being re-weighted using the AdaBoost scheme
while BGSLDA (weight scheme 2) corresponds to GSLDA with decision stumps being
re-weighted using the AsymBoost scheme (for highly skewed sample distributions).
AsymBoost used in this experiment is from [139]. However, any asymmetric boosting
approach can be applied here, e.g., [35, 63].

4.3.2.1 Performance on Single-node Classifiers

The experimental setup is similar to the one described in previous section. Results
are shown in Figure 4.4. The following conclusions can be made from Figure 4.4(c).
Given the same number of weak classifiers, BGSLDA always achieves a lower gen-
eralization error rate than FloatBoost. However, in terms of training error, FloatBoost
achieves a lower training error rate than BGSLDA. This may be explained as Float-
Boost has a faster convergence rate than BGSLDA. From the figure, FloatBoost only
achieves lower training error rate than BGSLDA when the number of Haar-like rectan-
gle features is larger than 50. Figure 4.4(d) shows the false alarm error rate. The false
positive The false positive error rates of both classifiers are very similar.

4.3.2.2 Performance on Cascades of Strong Classifiers

The experimental setup and evaluation techniques used here are similar to the one de-
scribed in Section 4.3.1.1. The results are shown in Figure 4.5. Figure 4.5(a) shows
a comparison between the ROC curves produced by BGSLDA (scheme 1) and Float-
Boost trained with the same number of weak classifiers in each cascade. Both ROC
curves show that the BGSLDA classifier outperforms both AdaBoost, FloatBoost [67]
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Figure 4.8: Face detection examples using the BGSLDA (scheme 1) detector on MIT+CMU
test sets. The scaling factor is set to 1.2 and a window shifting step is set to 1 pixel.
The technique used for merging overlapping windows is similar to [140].

and AdaBoost+LDA [145]. Figure 4.5(b) shows a comparison between the ROC

curves of different classifiers when the number of weak classifiers in each cascade

stage is no longer predetermined. At each stage, weak classifiers are added until the

predefined objective is met. Again, BGSLDA significantly outperforms other evalu-

ated classifiers. Figure 4.8 demonstrates some face detection results on the proposed

BGSLDA (scheme 1) detector.

In the next experiment, the performance of BGSLDA (scheme 2) is compared with

other classifiers using the asymmetric weight updating rule [139]. In other words,

the asymmetric multiplier exp( 1
N
yi log

√
k) is applied to every sample before each

round of weak classifier training. The results are shown in Figure 4.9. Figure 4.9(a)

shows a comparison between the ROC curves trained with the same number of weak

classifiers in each cascade stage. Figure 4.9(b) shows the ROC curves trained with

99.5% detection rate and 50% false positive rate criteria. From both figures, BGSLDA

(scheme 2) outperforms other classifiers evaluated. BGSLDA (scheme 2) also out-

performs BGSLDA (scheme 1). This indicates that asymmetric loss might be more

suitable in domains where the distribution of positive examples and negative examples

is highly imbalanced. Note that the performance gain between BGSLDA (scheme 1)
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Figure 4.9: A comparison of various approaches on MIT+CMU test sets (a) with the same
number of weak classifiers in each cascade stage on AsymBoost and its variants.
(b) with 99.5% detection rate and 50% false positive rate in each cascade stage
on AsymBoost and its variants. BGSLDA (scheme 2) corresponds to the GSLDA
classifier with decision stumps being re-weighted using an AsymBoost scheme.

and BGSLDA (scheme 2) is quite small compared with the performance gain between

AdaBoost and AsymBoost. Since LDA takes the number of samples of each class into

consideration when solving the optimization problem, it is possible that this reduces

the performance gap between BGSLDA (scheme 1) and BGSLDA (scheme 2).

Table 4.2 indicates that the proposed BGSLDA (scheme 1) performs at a speed

comparable to AdaBoost, i.e., AdaBoost requires 23.9 Haar-like features on average

during evaluation while the proposed approach requires 24.2 Haar-like features on av-

erage. However, compared with AdaBoost+LDA, the performance gain of BGSLDA

comes at a slightly higher cost during evaluation time (9% increase from AdaBoost+LDA

classifier to BGSLDA (scheme 1) classifier). In terms of cascade training time, on a

desktop with an Intel CoreTM 2 Duo CPU T7300 with 4GB RAM, the total training

time is less than one day. A breakdown of GSLDA training time is given in Table 4.3.

As mentioned in Cooke and Peake [23], a more general technique for generating

discriminating hyper-planes is to define the total within-class covariance matrix as

Sw =
∑

xi∈C1
(xi − µ1)(xi − µ1)> + γ

∑
xi∈C2

(xi − µ2)(xi − µ2)>, (4.9)
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Figure 4.10: A comparison of BGSLDA with a different value of γ in (4.9).

where µ1 is the mean of class 1 and µ2 is the mean of class 2. The weighting pa-

rameter γ controls the weighted classification error. Experiments were conducted on

BGSLDA (scheme 1) with a different value of γ, namely γ ∈ {0.1, 0.5, 1.0, 2.0, 10.0}.

All the other experiment settings remain the same as described in the previous section.

The results are shown in Figure 4.10. Based on ROC curves, it can be seen that all

configurations of BGSLDA classifiers outperform the AdaBoost classifier at all false

positive rates. Setting γ = 1 gives the highest detection rates when the number of false

positives is larger than 200. Setting γ = 0.5 performs best when the number of false

positives is very small.

Table 4.3: A breakdown of CPU time of proposed approaches.

Process Time

Weak classifier training 1h 20m
GSLDA feature selection 12h 40m
Bootstrapping 1h 50m
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4.3.3 Pedestrian Detection with GSLDA Classifiers

In this section, the proposed algorithm is applied to pedestrian detection, which is
considered a more difficult problem than face detection.

4.3.3.1 Pedestrian Detection on Daimler-Chrysler Data Sets with Haar-like Fea-
tures

In this experiment, the proposed approach is evaluated on Daimler-Chrysler pedestrian
data sets [89]. Data sets contain a set of extracted pedestrian and non-pedestrian sam-
ples which are scaled to size 18× 36 pixels. Data sets consist of three training sets and
two test sets. Each training set contains 4, 800 pedestrian examples and 5, 000 non-
pedestrian examples. Performance on test sets is analyzed similarly to the techniques
described in Munder and Gavrila [89]. For each experiment, three different classifiers
are generated. Testing all three classifiers on two test sets yields six different ROC
curves. A 95% confidence interval of the true mean detection rate is given by the t-
distribution. Two experiments are conducted using Haar-like features trained with two
different classifiers: AdaBoost and GSLDA. The experimental setup is similar to the
previous experiments.

Figure 4.11(a) shows detection results of different classifiers. Again, the ROC
curves show that LDA classifier outperforms the AdaBoost classifier at all false posi-
tive rates. Clearly these curves are consistent with those on face data sets.

4.3.3.2 Pedestrian Detection on INRIA Data Sets with Covariance Features

Next, GSLDA is evaluated on INRIA pedestrian data sets. INRIA data sets [24] con-
sists of one training set and one test set. The training set contains 2, 416 mirrored
pedestrian examples and 1, 200 non-pedestrian images. The pedestrian samples were
obtained from manually labeling images taken at various time of the days and various
locations. The pedestrian samples are mostly in standing position. A border of 8 pixels
is added to the sample in order to preserve contour information. All samples are scaled
to size 64 × 128 pixels. The test set contains 1, 176 mirrored pedestrian examples
extracted from 288 images and 453 non-pedestrian test images.

Since Haar-like features perform poorly on these data sets, covariance features are
applied instead of Haar-like features [100, 135]. However, decision stump can not be
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Figure 4.11: A performance comparison on pedestrian detection on (a) Daimler-Chrysler
pedestrian data sets [89] and (b) INRIA data sets [24].

directly applied since the algorithm is not applicable to multi-dimensional data. To

overcome this problem, an approach similar to the one proposed in previous chapter is

applied here. A multi-dimensional data is projected onto a 1D space using LDA. Deci-

sion stumps are then applied as weak classifiers. Note that this training technique is dif-

ferent from the one proposed in Chapter 3. Chapter 3 applied AdaBoost with weighted

linear discriminant analysis (WLDA) as weak classifiers. The major drawback of the

technique proposed in Chapter 3 is a slow training time. Since each training sample is

assigned a weight, weak classifiers (WLDA) need to be trained T times, where T is the

number of boosting iterations. In this experiment, weak classifiers (LDA) are trained

only once and their projected results are stored into a memory. Because most of the

training time in Chapter 3 is used to train WLDA, the new technique requires only 1
T

training time. After, multi-dimensional covariance features are projected onto a 1D

space using LDA, decision stumps are trained on these 1D features. In other words,

line 4 and 5 in Algorithm 3 are replaced with Algorithm 5.

In this experiment, a set of over-complete rectangular covariance filters is gener-

ated. We subsample the over-complete set in order to keep a manageable set for the

training phase. The set contains approximately 45, 675 covariance filters. In each

stage, weak classifiers are added until the predefined objective is met. The minimum

104



4.4 Conclusion

Algorithm 5 The algorithm for training multi-dimensional features.

foreach multi-dimensional feature do1

1. Calculate the projection vector with LDA and project the multi-dimensional2

feature to 1D space;
2. Train decision stump classifiers to find an optimal threshold θ using positive and3

negative training set;

detection rate is set to 99.5% and the maximum false positive rate is set to 35% in each

stage. The cascade threshold value is then adjusted such that the cascade rejects 50%

negative samples on training sets. Each stage is trained with 2, 416 pedestrian samples

and 2, 500 non-pedestrian samples. The negative samples used in each stage of the

cascades are collected from false positives of the previous stages of the cascades.

Figure 4.11(b) shows a comparison of covariance based human detectors using

AdaBoost and GSLDA. The ROC curve is generated by adding one cascade level at a

time. From the curve, the GSLDA classifier outperforms the AdaBoost classifier at all

false positive rates. The results seem to be consistent with our results reported earlier

on face detection. On a closer observation, the simplified technique performs very

similar to existing covariance techniques [100, 135] at low false positive rates (lower

than 10−5). This method, however, seems to perform poorly at high false positive

rates. Nonetheless, most real-world applications often focus on low false detections.

Compared to boosted covariance features, the training time of cascade classifiers is

reduced from weeks to days on a standard PC.

Some detection results on INRIA test sets are shown in Figure 4.12. Note that

multiple scanning windows are merged using the simple technique similar to [100].

4.4 Conclusion

In this chapter, an alternative approach for visual object detection is proposed. The

core of the new framework is greedy sparse linear discriminant analysis (GSLDA)

[87], which aims to maximize the class-separation criterion. On various data sets for

face detection and pedestrian detection, GSLDA outperforms AdaBoost when the dis-

tribution of positive and negative samples is highly skewed. To further improve the
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Figure 4.12: Pedestrian detection examples on INRIA test sets. The classifier is trained on
INRIA training sets.

detection result, a boosted version GSLDA (BGSLDA) is proposed. BGSLDA com-
bines boosting re-weighting scheme with GSLDA algorithm. Extensive experimental
results reveal that the performance of BGSLDA is better than that of AdaBoost at a
similar computation cost.

Although offline object detectors have performed remarkably well. One major
drawback of offline techniques is that a complete set of training data has to be collected
beforehand. In addition, once learned, an offline detector can not make use of newly
arriving data. In the next chapter, an effective and efficient framework for learning an
adaptive GSLDA model is proposed. The proposed approach could provide a better
alternative to online boosting in the context of visual object detection.
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5
Incremental Training using Online

Sparse Eigen-decomposition

5.1 Introduction

Object detection problems can be formulated as a classification task where a sliding

window technique is used to scan the entire image and locate interested objects [24,

104, 140]. Viola and Jones [140] proposed an efficient detection algorithm based on the

AdaBoost cascade. Their detector is the first highly-accurate real-time face detector.

The authors trained classifier on data sets with a few thousand faces and a large number

of negative non-faces. During the training procedure, negative samples are gradually

bootstrapped and added to the training set of the boosting classifiers in the next stage.

This method yields a very low false alarm rate. A large number of faces are used

to cover different face appearances and poses. As a result, the computation cost and

memory requirements of training the AdaBoost detector are unacceptably high. The

authors spent weeks to train a model with 6, 060 features (weak learners) on a face
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training set of 4, 916.

To speed up the training time bottleneck, several approaches have been proposed.

Pham and Cham [109] reduced the training time of weak learners by approximating

the decision stumps with class-conditional Gaussian distributions. Wu et al. [145] in-

troduced a fast implementation of the AdaBoost method and proposed forward feature

selection for fast training. Xiao et al. [146] applied distributed learning to learn their

proposed dynamic cascade framework. They used over 30 desktop computers for par-

allel training. The authors managed to train a face detector on the training set with

500, 000 positive samples and 10 billion negative samples in under 7 hours. However,

these techniques are not applicable to some real-world applications where a complete

set of training samples is often not given in advance. Re-training the model each time

new data arrive would increase the time complexity by the factor of N , where N is

the number of newly arrived samples. Hence, developing an efficient adaptive object

detector has become an urgent issue for many applications of object detection in di-

verse and changing environments. To alleviate this problem, a few online incremental

learning algorithms have been proposed for this purpose.

Online learning was first introduced in computational learning community. Since

boosting is one of classifiers that have been successfully applied to many machine

learning tasks, there has been considerable interest in applying boosting techniques

on problems that require online learning. An online version of the boosting classi-

fiers was proposed in [99]. The algorithm works by minimizing the classification error

while updating the weak classifiers online. Grabner and Bischof [45] later applied

online boosting to object detection and visual tracking. They proposed an online fea-

ture selection method, where a group of selectors is initialized randomly, each with

its own feature pool. By interchanging weak learners based on lowest classification

error, the algorithm would be able to capture the change in pattern induced by new

samples. Huang et al. [54] proposed an incremental learning algorithm that adjusts a

boosted classifier with domain-partitioning weak hypotheses to online samples. They

showed that by incremental learning with few difficult unseen faces (e.g., faces with

sun glasses or extreme illumination), the performance of the online detector is now sig-

nificantly improved. Parag et al. [105] proposed an online boosting algorithm where

the parameters of the weak classifiers are updated using weighted linear regressor to

minimize the weighted least square error. Liu and Yu [71] proposed a gradient-based
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feature selection approach where the parameters of the weak classifiers are updated

using gradient descent to minimize weighted least square error. Nonetheless, most of

these proposed techniques concentrated on the application of visual tracking or object

classification with small training sets and few online data sets. Hence, to date, it re-

mains unknown whether there is any improvement in object detection by continuously

updating existing models with a sufficiently large training sample set. This challenge

will be revealed in Section 5.3.2.2.

Recently, Moghaddam et al. [87] presented a technique that combines the greedy

approach with the efficient block matrix inverse formula. The proposed technique,

termed greedy sparse linear discriminant analysis (GSLDA), speeds up the calcula-

tion time by 1000× compared with globally optimal solutions found by branch-and-

bound search. GSLDA was applied to object detection task in previous chapter and

showed very convincing results. GSLDA face detector outperforms AdaBoost based

face detector due to the nature of the training data (the distribution of face and non-face

samples is highly imbalanced). The objective of this chapter is to design an efficient

incremental greedy sparse LDA algorithm that can accommodate new data efficiently

while preserving a promising classification performance.

Unlike classical LDA where a lot of online learning techniques have been designed

and proposed [103, 151, 154], there are very few works on online learning algorithm

for sparse LDA. One of the difficulties is due to the fact that the sparse LDA problem

is non-convex and NP-hard. It is not straightforward to design an incremental solution

for sparse LDA. In this chapter, an algorithm, that efficiently learns and updates the

sparse LDA classifier, is designed. The proposed online sparse LDA classifier not

only incorporates new data efficiency but also yields an improvement in classification

accuracy as new data become available. In brief, the approach proposed in Chapter 4

has been extended with an efficient online update schemes. The proposed method

modifies weights of linear discriminant functions to adapt to new data sets. This update

process generalizes the weights of linear discriminant functions and result in accuracy

improvements on test set.

The key contributions of this chapter can be summarized as follows.

• An efficient incremental greedy sparse LDA classifier for training an object de-

tector in an incremental fashion is proposed. The online algorithm integrates
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the GSLDA based feature selection with our adaptation schemes for updating

weights of linear discriminant functions and the linear classifier threshold. The

proposed updating algorithm is very efficient since weak learners are neither

replaced nor discarded in updating phase.

• A learning technique similar to semi-supervised learning, where the classifier

makes use of the unlabeled data in conjunction with a small amount of labeled

data, is adopted. As demonstrated in experiment section, the proposed online

detector is able to adapt to changes in pose, view angle and illumination not

captured by the set of initial training data. Compared to the initial classifier,

the updated classifier shows a significant improvement in classification perfor-

mance.

• Finally, extensive experiments have been conducted on several data sets that

have been used in the literature. The experimental results confirm that incre-

mental learning with online samples is beneficial to the initial classifier. The

proposed algorithm can efficiently update the classifier when the new instance

is inserted while achieving comparable classification accuracy to the batch algo-

rithm1. These findings indicate that online learning plays a crucial role in object

detection, especially when the initial number of training samples is small. Note

that when trained with few positive samples, the detector often under-performs

since it fails to capture the appearance variations of the target objects. By apply-

ing the proposed online technique, the classification performance can be further

improved at the cost of a minor increase in training time.

The rest of the chapter is organized as follows. Section 5.2 proposes the new on-

line GSLDA object detector. The results of numerous experiments are presented in

Section 5.3. The chapter is concluded in Section 5.4.

5.2 Online Learning of GSLDA Classifiers

For ease of exposition, the symbols and their denotations used in this chapter are

summarized in table 5.1. An introduction to Linear discriminant analysis (LDA) and

1We use the terms “batch learning” and “offline (batch) learning” interchangeably in this chapter.
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Table 5.1: Notation

Notation Description

C1, C2 Class 1 (positive class), class 2 (negative class)
N Number of training samples in each classifier

(cascade layer)
N1, N2 The number of training samples in first and second class,

respectively
M The size of the feature sets (for decision stumps, this is

also equal to the number of weak learners)
T The number of features to be selected
X Data matrix
x The new instance being inserted
m̄ The global mean of the training samples

m1,m2 The mean (centroid) of the first and second class,
respectively

Σ1,Σ2 The covariance of the first and second class
µ1, µ2 The projected mean of the first and second class
σ1, σ2 The projected covariance of the first and second class
Sb, S̃b Between-class scatter matrix and its updated value

after the new instance x has been inserted
Sw, S̃w Within-class scatter matrix and its updated value
w Weights of linear discriminant functions (also referred

to as weak learners’ coefficients in the context)
w0 The linear classifier threshold

greedy sparse linear discriminant analysis (GSLDA) can be found in Chapters 3 and 4.

The major challenge of GSLDA object detectors in real-world applications is that

a complete set of training samples is often not given in advance. As new data arrive,

the between-class and within-class scatter matrices, Sb and Sw, will change accord-

ingly. In offline GSLDA, the value of both matrices would have to be recomputed

from scratch. However, this approach is unacceptable due to its heavy computation
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and storage requirements. First, the cost of computing both matrices grows with the

number of training samples. As a result, the algorithm will run slower and slower as

time progresses. Second, the offline (batch) approach uses the entire set of training

data for each update. In other words, the previous training data needs to be stored for

the retraining purpose.

In order to overcome these drawbacks, an online learning algorithm, termed online

greedy sparse LDA (OGSLDA), is proposed. The OGSLDA algorithm consists of two

phases: the initial offline learning phase and the incremental learning phase. The train-

ing procedure in the initial phase is similar to the offline GSLDA algorithm outlined

in Chapter 4. Here it is assumed that the number of training samples available ini-

tially is adequate and well represents the true density. In the second phase, the learned

covariance matrices are updated in an incremental manner.

It is important to point out that many incremental LDA-like approximated algo-

rithms have been proposed in [56, 103, 151]. Ye et al. proposed an efficient LDA-based

incremental dimension reduction algorithm which applied matrix decomposition and

matrix updating techniques for memory and computation efficiency [151]. Kim et al.

proposed an incremental LDA by applying the concept of the sufficient spanning set

approximation in each update step [56]. However, the authors did not find any of

the existing LDA-like algorithms appropriate to our problems. Based on preliminary

experiments, the projection matrix determined in subspace often gives worse discrim-

inant power than that from full space. This might be due to their dimension reduction

algorithms which reduced between-class and within-class scatter matrices to a much

smaller size. The proposed online GSLDA guarantees to build the same between-class

and within-class scatter matrices as offline (batch) GSLDA given the same training

data. The reason why one needs not worry about large dimensions is because applying

sparse LDA in the initial phase already reduces the number of dimensions one has to

deal with. Hence, given the same set of features, the accuracy of the proposed online

GSLDA is better than the existing incremental LDA-like approximated algorithms.

The only expensive computation left in the proposed algorithm is eigen-analysis. In

order to avoid the high computation complexity of continuously solving generalized

eigen-decomposition, the efficient matrix inversion updating techniques based on in-

verse Sherman-Morrison formula is applied. As a result, the proposed incremental

algorithm is very robust and efficient.
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This section begins by proposing an efficient approach to incrementally update

both within-class and between-class scatter matrices as new observations arrive. Then,

an approach used to update the classifier threshold is described. Finally, the storage

and training time complexity of the proposed method are analyzed.

5.2.1 Incremental Update of Between-class and Within-class Ma-
trices

Since GSLDA assumes Gaussian distribution, the incremental update of class mean

and class covariance can be computed very quickly. The techniques used to update

both matrices can be easily derived. The procedure proceeds in three steps:

1. Updating between-class scatter matrix, Sb;

2. Updating within-class scatter matrix, Sw;

3. Updating inverse of within-class scatter matrix, S−1
w .

5.2.1.1 Updating Between-class Scatter Matrix:

For 2 classes, (C1 and C2), Sb can be written as,

Sb =
N1N2

N
(m1 −m2)(m1 −m2)>. (5.1)

The expression can be interpreted as the scatter of class 1 with respect to the scatter

of class 2. Let x be a new instance being inserted. The updated m̃1 and m̃2 can be

calculated from

m̃1 =

{
m1 + x−m1

N1+1
if x ∈ C1;

m1 otherwise,

m̃2 =

{
m2 if x ∈ C1;

m2 + x−m2

N2+1
otherwise.

(5.2)
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5.2.1.2 Updating Within-class Scatter Matrix:

The covariance of a random vector X is a square matrix Σ where Σ = E[(X −
E[X])(X − E[X])>]. Given the new instance x, the updated covariance matrix is

given by

Σ̃ = ([X,x]− m̃1>)([X,x]− m̃1>)>. (5.3)

Here m̃ is an updated mean after new instance has been inserted and 1 is a column

vector with each entry being 1. Its dimensionality should be clear from the context.

Note that in (5.3), the constant term is left out since it makes no difference to the final

solution.

[X,x]− m̃1> = [X,x]−m1> + m1> − m̃1>

= [X −m1>,x−m]− (m̃−m)1>.

Substitute the above expression into (5.3) and let u = x−m and v = m̃−m,

Σ̃ = ([X −m1>,u]− v1>)([X −m1>,u]− v1>)>

= ([X −m1>,u][X −m1>,u]> − [X −m1>,u](v1>)>

− (v1>)[X −m1>,u]> + (v1>)(v1>)>

= Σ + uu> − [X −m1>,u]1v>

− v([X −m1>,u]1)> + (N + 1)vv>

= Σ + uu> − (Nm−Nm + u)v>

− v(Nm−Nm + u)> + (N + 1)vv>

= Σ + uu> − uv> − vu> + (N + 1)vv>

= Σ + (u− v)(u− v)> +Nvv>

= Σ + (x− m̃)(x− m̃)> +N(m̃−m)(m̃−m)>. (5.4)

Note that X1 = m1>1 = Nm. Next, we consider updating within-class scatter

matrix. Let x be a new instance being inserted. The updated matrix, S̃w, can be

calculated from

S̃w =

{
Σ̃1 + Σ2 if x ∈ C1;

Σ1 + Σ̃2 otherwise.
(5.5)
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5.2.1.3 Updating Inverse of Within-class Scatter Matrix:

As mentioned in Moghaddam et al. that the computational complexity of 2-class GSLDA
relies heavily on the calculating of within-class scatter matrix inversion [87]. In order
to update the matrix inversion efficiently, the technique known as inverse Sherman-
Morrison decomposition, proposed by Sherman and Morrison [128], can be applied
here. Let Σ be the square matrix of size M ×M which can be written as

Σ = Σ0 + p1q
>
1 + p2q

>
2 . (5.6)

Here Σ0 is assumed to be nonsingular and p1,p2, q1, q2 ∈ RM . The inverse of Σ is
given by

Σ−1 = Σ−1
0 − Σ−1

0 UD−1V>Σ−1
0 (5.7)

where D−1 =

[
r−1

1 0
0 r−1

2

]
, U =

[
p1 p2 −

q1Σ−1
0 p2

r1
p1

]
, V =

[
q1 q2 −

q>2Σ−1
0 p1

r1
q1

]
,

r1 = 1 + q1Σ−1
0 p1,

r2 = 1 +

(
q2 −

q>2 Σ−1
0 p1

r1

q1

)>
Σ−1

0 p2.

The updated inverse of within-class scatter matrix can be written as

S̃−1
w = S−1

w − S−1
w UD−1V S−1

w (5.8)

where p1 = q1 = x− m̃, p2 = Nc(m̃−m) and q2 = m̃−m (from (5.4) and (5.6)).

5.2.2 Updating Weak Learners’ Coefficients and Threshold

Given the updated within-class matrix, S̃−1
w , and between-class matrix, S̃b, the updated

weights of linear discriminant functions can now be calculated from matrix-vector
multiplication using (3.5). To complete the linear classifier, the threshold w0 has to be
obtained. Three criteria can be adopted.

The first criterion is to apply the optimal Bayesian classifier in the projected space.
In other words, the selected threshold should be the value in which the one-dimensional
distribution functions in the projected lines are equal. The mean and variance in the
transformed space can be calculated as

µc = w>mc, σc = w>Σcw. (5.9)
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Let X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), the optimal threshold is calculated as the

point in which the one-dimensional density function of two classes are equal. Let

log Pr(x1) = log Pr(x2). After some algebraic expansions and simplifications, the

expression can be written in the second-order polynomial,

ax2 + bx+ c = 0

where a = − 1
2σ2

1
+ 1

2σ2
2
, b = µ1

σ2
1
− µ2

σ2
2

and c =
µ22
2σ2

2
+ log(σ2) − µ21

2σ2
1

+ log(σ1). The

quadratics have two roots,

x =
−b±

√
b2 − 4ac

2a
.

In the implementation, the threshold, w0, is chosen to be the value between the two

class means,

w0 = x where µ1 < x < µ2. (5.10)

The second criterion is to choose the threshold which yields high detection rate

with moderate false alarm rate. This asymmetric criterion is often adopted in cascade

framework [140]. Let φ(Z) = 1√
2π

∫ Z
−∞ exp(−1

2
u2)du be the cumulative distribution

function (CDF) of the standard normal random variable Z. IfX ∼ N(µ1, σ
2
1), the CDF

ofX is φ(Z) where Z = X−µ1
σ1

. Let the miss rate by p, the threshold which yields 1−p
detection rate can be calculated as

w0 = µ1 + Zσ1 = µ1 + φ−1(p)σ1. (5.11)

The last criterion is to set the threshold to be the projected mean of the negative

classes. This threshold helps us ensure the target asymmetric learning goal (moderate

(50%) false positive rate with high detection rate). The threshold for the last criterion

is

w0 = µ2. (5.12)

The above three threshold updating rules might look oversimple. However, Rueda

[122] performed a few numerical simulations on multi-dimensional normally distributed

classes and real-life data taken form UCI machine learning repository. It was reported
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that selecting threshold using the simple approach as (5.10) often leads to smaller clas-

sification error than the traditional Fisher’s approach.

Unlike many online boosting algorithms which modify the parameters of the weak

learners to adapt to new data sets. For example, in Grabner and Bischof [45], the pa-

rameters of the weak learners are updated using Kalman filtering; Parag et al. [105]

updated the parameters using linear regression; Liu and Yu [71] updated the param-

eter using gradient descent, etc. The authors have found that extreme care has to be

taken when one considers updating weak learners’ parameters for application of object

detection. Artificial asymmetric data is generated to demonstrate this. The authors

train two different incremental linear weak classifiers with different parameter updat-

ing schemes:

1. Incrementally update the model based on Gaussian distribution similar to Grab-

ner and Bischof [45].

2. Incrementally update linear coefficients and intercept to minimize least square

error (LSE) using linear regression similar to Parag et al. [105] (uniform sample

weights are assumed here).

In this experiment, each weak learner represents a linear function with different coef-

ficients (slopes). Each weak learner has one updatable parameter, i.e., linear classifier

threshold (intercept). The authors apply the GSLDA algorithm and select the weak

learner with minimal classification error. Based on the selected weak learner, new

samples are continuously inserted and the linear classifier threshold is updated. Fig-

ure 5.1 plots 9 different linear classifier thresholds. Top row shows the linear classifier

with no parameter updating. Middle row shows the linear classifier with Gaussian

updating rule. Bottom row shows the linear classifier using the linear regression algo-

rithm. The first column shows the classifier thresholds on the initial training set. The

middle and last columns show the classifier thresholds with new data being inserted. It

is obvious that the top two classifier thresholds (no update and Gaussian) perform very

similarly. LSE seems to perform worse when more new data are inserted. The reason

may be attributed to the asymmetry of the data 1. Based on these observations, param-

eter updating algorithms play a crucial role in the overall accuracy. The performance

1The regressor works very well when the data are linearly separable.
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Figure 5.1: Toy data sets. ×’s and ◦’s represent positive and negative samples, respectively.
Top row: No update. The parameters of weak learners do not get updated. Mid-
dle row: Gaussian model. Linear classifier threshold is calculated from updated
mean and variance (using (5.10)). Bottom row: Least square error. Linear clas-
sifier threshold is updated using linear regression. The leftmost column shows the
classifier thresholds on the initial training set (50 positive and 50 negative training
points). The middle column shows the classifier thresholds with 25 new positive
and 25 new negative points inserted. The rightmost column shows the thresholds
with 50 new positive and 50 new negative inserted. Due to the asymmetry of the
data distributions, updating the parameters of the weak learners could result in
performance deterioration.

of weak learners can be significantly weaken if parameters are not updated properly.

In this chapter, only the GSLDA model is updated while weak learners’ parameters are

remained fixed.

The online GSLDA framework is summarized in Algorithm 6. Note that only a

forward search of GSLDA algorithms is adopted here. In Chapter 4, it was shown

that forward selection plus backward elimination improve the detection performance

slightly but with extra computation.
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Algorithm 6 Online GSLDA Algorithm
Given:

• The initial set of weak learners {hi; i ∈ [1, T ]} trained using offline GSLDA on small initial
data;

Input:

• New training datum I and its corresponding class label y ∈ {1, 2};

• The current between-class covariance matrix, Sb;

• The inverse of within-class covariance matrix, S−1w ;

Classify the new datum I using the given weak learners, x = [h1(I), h2(I), · · · , hT (I)];1

Update Sb with x using (5.1) and (5.2);2

Update S−1w using (5.8);3

Recalculate weak learners’ coefficients, w, using (3.5);4

Update classifier threshold, w0, based on node learning goal ((5.10) for minimal classification5

error, min( (5.11) , (5.12) ) for asymmetric node learning goal (see Section 5.2.2);
Output:

• The updated between-class covariance matrix, S̃b;

• The updated inverse of within-class covariance matrix, S̃−1w ;

• The updated weak learners’ coefficients, w̃;

• The classifier threshold, w̃0

5.2.2.1 Incremental Learning Computational Complexity

Since the initial training of online GSLDA is the same as offline GSLDA, the time

complexity of offline GSLDA is briefly explained here. Let us assume decision stumps

are chosen as our weak learners. Let the number of training samples be N. Finding

an optimal threshold of each feature needs O(N logN ). Assume that the size of the

feature set isM . The time complexity for training weak learner isO(MN logN). Dur-

ing GSLDA learning, one needs to find mean O(N), variance O(N) and correlation

O(T 2) for each feature. Since there are M features and the number of weak learners

to be selected is T , the total time complexity for offline GSLDA is O(MN logN +

MNT +MT 3).

Given the selected set of weak learners, the time complexity of online GSLDA

when new instance is inserted can be calculated as follows. Since the number of weak
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learners is T , the total time complexity to calculate x in Step 1 is O(T ). It also takes

O(T ) to update the class mean in Step 2. In step 3, calculating U , V , r1, r2 take

O(T 2). In this step, the order in which one calculates the matrix-matrix multiplica-

tion affects the overall efficiency. Since the problem only involves with a small matrix

chain multiplication, it is possible to go through each possible order and pick the most

efficient one. For (5.7), matrix-matrix multiplication is performed in the following or-

der (((Σ−1
0 U)D−1)(V>Σ−1

0 )). The number of operations required to compute (Σ−1
0 U)

is O(T × T × 2), ((Σ−1
0 U)D−1) is O(T × 2 × 2), (V>Σ−1

0 ) is O(2 × T × T ) and

(((Σ−1
0 U)D−1)(V>Σ−1

0 )) is O(T × 2× T ). Hence, the complexity of updating matrix

inversion is still in the order of O(T 2). Since the size of within-class matrix is T × T ,

the matrix-vector multiplication in Step 4 takes O(T 2). Updating classifier threshold

in Step 5 takes O(T 2) for the first criterion (First, the projected mean and covariance

are computed: O(T ) and O(T 2 + T ), respectively. Then, the closed-form second-

degree polynomial is calculated). The second criterion in Step 5 takes O(T 2) (Again,

the time complexity of projected mean and covariance is O(T ) and O(T 2 + T )). The

third criterion in Step 5 takes O(T ) (Here only the dot product of two vectors has

to calculated.). Hence, the time complexity of Step 5 is at most O(T 2). Therefore,

the total time complexity for online GSLDA with the insertion of a new instance is

at most O(N0M logN0 +N0MT +MT 3︸ ︷︷ ︸
Offline

+ T 2︸︷︷︸
Online

). Here N0 is the number of initial

training samples which assumed to be small. Note that the speed-up of online GSLDA

over offline (batch) GSLDA is noticeable, i.e., O(NT 2)︸ ︷︷ ︸
Online

� O(N2 logN)︸ ︷︷ ︸
Batch

, when more

instances are inserted into the training set (N � N0).

In terms of memory usage, between-class scatter matrix takes up O(2T ). The

inverse of within-class scatter matrix occupies O(T 2). For the first and second criteria

in Step 5, the covariance matrices of Σ1 and Σ2 take up O(2T 2). Hence, the extra

memory requirements for online GSLDA are at most O(3T 2 + 2T ). Given that the

selected number of weak classifiers in each cascade layer is often small (T < 200), the

time and memory complexity of online GSLDA is almost negligible.
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5.3 Experiments

This section is organized as follows. The data sets used in this experiment, including

how the performance is analyzed, are described. Experiments and the parameters used

are then discussed. Finally, experimental results and analysis of different techniques

are presented.

5.3.1 USPS Digits Classification
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Figure 5.2: Top: A classification error rate between offline GSLDA and online GSLDA on
16 × 16 pixels USPS digits data sets [115]. The number of initial training data
for online GSLDA is (a) 30%, (b) 50%, (c) 70% of the available training data. All
experiments, except offline (batch) GSLDA (trained with full training sets), are run
10 times. The mean of the errors are plotted. Bottom: A classification error rate
between online GSLDA and online boosting [99]. The number of initial training
data is (d) 30%, (e) 50%, (f) 70% of the available training data. All experiments
are run 10 times.
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Figure 5.3: A comparison of classification error rate and computation cost between online
GSLDA and offline (batch) GSLDA on 16×16 pixels USPS digits data sets [115].
The number of nonzero components of the feature coefficients (`0 norm) is set to
25 (a,b) and 100 (c,d).

Online GSLDA is compared against offline (batch) GSLDA for classification of

16× 16 pixels USPS digits ‘3’ and ‘5’. Data sets consist of 406 training instances and

418 test instances for the digit ‘3’, 361 training instances and 355 test instances for

digit ‘5’ [115]. The raw intensity value is used as the features. Hence, the total number

of features is 256. For batch learning, greedy approach is applied to sequentially select

feature which yields maximal class separation (forward search). The performance of

the classifier on the given test set is evaluated and the error rate is measured [87]. For

online learning, the authors randomly select 30/50/70 percent training samples as the
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training set. Incremental updating is performed with the remaining training instances

being inserted one at a time. Decision stumps are used as the weak learners for both

classifiers. All experiments, except offline (batch) GSLDA (trained with full training

sets), are run 10 times. The mean of the classification errors are plotted.

Figures 5.2(a), 5.2(b) and 5.2(c) show the achieved classification error rates by of-

fline (batch) GSLDA and online GSLDA. In the figures, the horizontal axis shows the

`0 norm of the feature coefficients, i.e., the number of weak classifiers, and the vertical

axis indicates the classification error rate on test data. Based on our observations, the

error rate decreases when more training instances are used. It is important to point out

that in this experiment the error rate of online GSLDA is quite close to that by offline

(batch) GSLDA. The authors also train the offline GSLDA classifier with 30%, 50%

and 70% training data. It was observed that error rates of GSLDA (30% training data)

increase when the number of dimensions increases. This is not surprising since it is

quite common for a classifier to overfit with large dimensions and small sample size.

The performance of online GSLDA is compared with online boosting proposed in Oza

and Russell [99]. For each weak classifier, a model is built by estimating the univari-

ate normal distribution with weighted mean and variance for digits ‘3’ and ‘5’. The

authors update the weak classifier by incrementally updating the mean and variance

using weighted version of (5.2) and (5.3). The results of online boosting are shown

in Figures 5.2(d), 5.2(e) and 5.2(f). The test error of online boosting decreases as the

initial number of training samples increases. It can be observed that the performance

of online boosting is remarkably worse than the performance of online GSLDA.

Figures 5.3(a) and 5.3(c) shows the achieved classification error rates by offline

(batch) GSLDA and online GSLDA with 25 and 100 dimensions (features). In the fig-

ure, the horizontal axis shows the portion of training data instances and the vertical axis

indicates the classification error rate. It can be observed that the error rate decreases

when more and more training data instances are involved. Online GSLDA not only

performs well on these data sets but it is also very efficient. Figures 5.3(b) and 5.3(d)

show a comparison of the computation cost between offline (batch) GSLDA and online

GSLDA. As can be seen, the execution time of online GSLDA is significantly smaller

than that of offline (batch) GSLDA as the number of training samples grows.
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5.3.2 Frontal Face Detection

Due to its efficiency, Haar-like rectangle features [140] have become a popular choice

as image features in the context of face detection. Similar to the work in Viola and

Jones [140], the weak learning algorithm known as decision stumps and Haar-like

rectangle features are used here due to their simplicity and efficiency. The following

experiments compare offline GSLDA and online GSLDA learning algorithm.

5.3.2.1 Performance on Single-node Classifiers

Two experiments are conducted in this section. The first experiment compares sin-

gle strong classifier learned using AdaBoost [140], AsymBoost [139], offline GSLDA

[101] and the proposed online GSLDA. The data sets consist of 1, 000 mirrored face

examples (Figure 5.6) and 10, 000 bootstrapped non-face examples. The face were

cropped and rescaled to images of size 24 × 24 pixels. For non-face examples, 1, 000

random non-face patches are initially selected from non-face images. The other 9, 000

non-face patches are added to the initial pool of training data by bootstrapping1.

Three offline face detectors are trained using AdaBoost, AsymBoost and GSLDA.

Each classifier consists of 200 weak classifiers. The classifiers are tested on a chal-

lenged face videos, David Ross indoor data sets and trellis data sets2, which are pub-

licly available on the internet. Both videos contain large lighting variation, cast shad-

ows, unknown camera motion, and tilted face with in-plane and out-of-plane rotation.

The first video contains 761 frames of a person moving from a dark to a bright area.

Since the first few video frames has very low contrast (almost impossible to see faces),

the first 100 frames are ignored. The second video contains 501 frames of a person

moving underneath a trellis with large illumination change and cast shadows.

In this experiment, the scanning window technique is used to locate faces. The

scaling factor is set to 1.2 and window shifting step is set to 1. The patch with highest

classification score is classified as faces. In other words, there is only one selected face

in each frame. The criteria similar to the one used in PASCAL VOC Challenge [142]

is adopted here. Detections are considered true or false positives based on the area of

overlap with ground truth bounding boxes. To be considered a correct detection, the

1We incrementally construct new non-face samples using a trained classifier of [140].
2http://www.cs.toronto.edu/˜dross/ivt/
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Figure 5.4: Detection examples of offline AdaBoost based frontal face detector [140] (Top
row), AsymBoost based face detector [139] (Second row), GSLDA based face
detector [101] (Third row) and our proposed OGSLDA face detector (Last row).
All detectors are trained initially with 1, 000 faces and 10, 000 non-faces. Online
GSLDA is incrementally updated with patches classified as faces from the previous
video frames. The first video (David indoor) contains 761 frames of a person
moving from a dark to a bright area undergoing large lighting and pose changes
(frames 150, 250, 350, 409, 450, 494 and 592). The second video (trellis) contains
501 frames of a person moving underneath a trellis with large illumination change
(frames 50, 85, 182, 231, 287, 386 and 457).

area of overlap between the predicted bounding box, Bp, and ground truth bounding
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Table 5.2: A Performance comparison of four different frontal face detectors on David indoor
and trellis test videos

detection rate
indoor sequence trellis sequence

AdaBoost [140] 57.8% 35.3%

AsymBoost [139] 68.7% 37.5%

GSLDA [101] 70.3% 48.5%

The proposed OGSLDA 83.1% 62.1%

box, Bgt, must exceed 50% by the formula:

area(Bp ∩Bgt)

area(Bp ∪Bgt)
> 50%.

For online GSLDA, predicted faces in previous frames are used to update the GSLDA

model. Note that the updated sample could contain both true positives (faces) and false

positives (misclassified non-faces). After the update process, the classifier predicts a

single patch with highest classification score in the next frame as the face patch. This

learning technique is similar to semi-supervised learning where the classifier makes

use of the unlabeled data in conjunction with a small amount of labeled data. Note that

unlike the work in Grabner and Bischof [45], where both positive and negative patches

are used to incrementally update the model, only positive patches are used here.

Table 5.2 compares four face detectors in terms of their performance. From the

table, the performance of AdaBoost face detector is the worst. This is not surprising

since the distributions of training data are highly skewed (1, 000 faces and 10, 000 non-

faces). Viola and Jones also pointed out this limitation [139]. Face detectors trained

using AsymBoost and GSLDA perform quite similar on the first video. The results

are consistent with those reported in Chapter 4. Experimental results show that online

GSLDA performs best. Based on the observation, incrementally updating GSLDA

model improves the detection results significantly at small increase in computation

time. Figure 5.4 compares the empirical results between offline GSLDA and the pro-

posed online GSLDA.
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Figure 5.5: A comparison of ROC curves between offline and online GSLDA on David Ross
indoor data sets (left) and trellis data sets (right). Note that online GSLDA outper-
forms offline GSLDA since the online GSLDA model is updated with predicted
faces from previous frames.

Figure 5.6: Random samples of face images used during training.

Finally, the Receiver Operating Characteristic (ROC) curves between the offline

GSLDA model (1, 000 faces and 10, 000 non-faces) and the online GSLDA model

(initially trained with 1, 000 faces and 10, 000 non-faces + updated with 661 patches

classified as faces) are compared. In this experiment, the scaling factor is set to 1.2

and window stepping size is set to 1. The techniques used for merging overlapping

windows are similar to Viola and Jones [140]. Detections are considered true or false

positives based on the area overlap with ground truth bounding boxes. The classifier

threshold is adjusted and the ROC curves are plotted in Figure 5.5. Clearly, updating

the trained model with relevant training data increases the overall performance of the

classifiers.

In the next experiment, the performance of single strong classifiers, learned us-
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Table 5.3: The size of training and test sets used in the experiment.

# data splits faces/split non-faces/split

Train 3 2000 2000

Test 2 2000 2000

ing offline GSLDA and online GSLDA on frontal faces database, is compared. The

database consists of 10, 000 mirrored faces. The faces were cropped and rescaled to

images of size 24×24 pixels. For non-face examples, 10,000 random non-face patches

are selected from non-face images obtained from the internet. The collected patches

are split into three training sets and two test sets. Each set contains 2,000 face examples

and 2,000 non-face examples (Table 5.3). For each experiment, three different classi-

fiers are generated, each by selecting two out of three training sets and the remaining

training set for validation.

In this experiment, 30, 50 and 100 weak learners of Haar-like features are trained.

The performance is measured by the test error rate. The results are shown in Fig-

ure 5.7. The following observations can be made from these curves. The error of both

classifiers drops as the number of training samples increases. The error rate of offline

(batch) GSLDA drops at a slightly faster rate than online GSLDA. This is not surpris-

ing. For offline (batch) learning, the previous set of training samples along with a new

sample are used to update the decision stumps every time a new sample is inserted.

For each update, GSLDA throws away previously selected weak classifiers and rese-

lects the new 30, 50 and 100 weak classifiers. As a result, the training process is time

consuming and requires a large amount of storage. In contrast, online GSLDA relies

on the initial trained decision stumps. The new instance does not update the trained

decision stumps but the between-class and within-class scatter matrices. The process

is suboptimal compared to offline (batch) GSLDA. However, the slight increase in per-

formance of offline (batch) GSLDA over online GSLDA (0.7% drop in test error rate

for 100 weak classifiers) comes at a much higher storage cost and significantly higher

computation time.
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Figure 5.7: A comparison of classification error rates between offline (batch) GSLDA and on-
line GSLDA. The number of weak learners (decision stumps on Haar-like features)
in each experiment is (a) 30, (b) 50, (c) 100. The error of both classifiers drops as
the number of training samples increases.

5.3.2.2 Performance on Cascades of Strong Classifiers

In this experiment, mirrored faces from previous experiment are used for batch learning
and online learning. The number of initial positive samples used in each experiment is
varied. 500 faces, 1, 000 faces and 5, 000 faces are used to initially train a face detector.
In each experiment, four different cascaded detectors are trained. The first cascaded
detector is the same as in Viola and Jones [140] i.e., face data sets used in each cascade
stage are the same while the non-face samples used in each cascade layer are collected
from false positives of the previous stages of the cascade (bootstrapping). The cascade
training algorithm terminates when there are not enough negative samples to bootstrap.

The second, third and forth face detectors are trained initially with the technique
similar to the first cascaded detector. However, the second cascaded face detector
is incrementally updated with new negative examples collected from false positives
of the previous stages of cascade. The third cascaded face detector is incrementally
updated with 5, 000 unseen faces. The final face detector is incrementally updated
with both false positives from previous stages and unseen faces. For each face detector,
weak classifiers are added to the cascade until the predefined objective is met. In this
experiment, the minimum detection rate in each cascade stage is set to 99% and the
maximum false positive rate is set to 50%.

The performance of face detectors is evaluated on MIT+CMU frontal face test sets.
The complete set contains 130 images with 507 frontal faces. In this experiment, the
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Figure 5.8: A performance comparison on MIT+CMU face test sets. The four detectors are
trained using (a) 500 faces, (b) 1, 000 faces and (c) 5, 000 and 10, 000 mirrored
faces. Note that online GSLDA outperforms offline GSLDA since the online
GSLDA model is updated with an additional 5, 000 faces.
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Figure 5.9: A training time comparison between GSLDA and online GSLDA. The first and
second GSLDA detectors are trained with 5, 000 faces and 5, 000 non-faces, and
10, 000 faces and 10, 000 non-faces, respectively. Online GSLDA is initially
trained with 5, 000 faces and 5, 000 non-faces and updated with one million new
patches. Notice that there is a slight increase in training time even though 200×
more training samples have been inserted.

scaling factor is set to 1.2 and window shifting step is set to 1 pixel. The techniques
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used for merging overlapping windows is similar to [140]. Detections are considered

true or false positives based on the area of overlap with ground truth bounding boxes.

To be considered a correct detection, the area of overlap between the predicted bound-

ing box and ground truth bounding box must exceed 50%. Multiple detections of the

same face in an image are considered false detections.

Figure 5.8 shows ROC curves of the proposed approach with a different number

of initial training data (500, 1, 000 and 5, 000 faces). To train online GSLDA, we first

train offline GSLDA and update the offline detector using an additional 5, 000 faces or

one million negative patches. We use offline GSLDA as the baseline in our compar-

isons. Figure 5.8(a) shows that online GSLDA outperforms GSLDA at all false pos-

itive rates when initially trained with 500 faces. Incrementally updating the GSLDA

model with unseen faces (+5000 faces) yields a better result than updating the model

with new false positives from previous stages of the cascade (+106 negative patches).

The online classifier performs best when updated with both new positive and negative

patches. Figure 5.8(b) shows a comparison when the number of initial training sam-

ples have been increased to 1000 faces. The performance gap between GSLDA and

online GSLDA is now smaller. The performance of both GSLDA and online GSLDA

(+106 negative patches) is observed to be very similar. This indicates that the cascade

learning framework proposed by Viola and Jones might have already incorporated the

benefit of massive negative patches. Incremental learning with new negative instances

do not seem to improve the performance of cascaded detectors any further. Another

way to explain experimental results is to use the concept of linear asymmetric classifier

(LAC) proposed in Wu et al. [145]. In Wu et al., the asymmetric node learning goal is

expressed as

maximize
w,w0

Prx∼(m1,Σ1)

{
w>x ≥ w0

}
, (5.13)

subject to Pry∼(m2,Σ2)

{
w>y ≤ w0

}
= β.

Since the problem has no closed-form solution, the authors developed an approximate

solution when β = 0.5. To find a closed-form solution, the authors assumed that w>x

is Gaussian for any w, class C2 distribution is symmetric and the median value of the

class C2 distribution is close to its mean. The direction w can then be approximated
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by

maximize
w 6=0

w>(m1 −m2)√
w>Σ1w

. (5.14)

From their objective functions, the only difference between FDA (3.5) and LAC (5.14)
is that the pooled covariance matrix of FDA, Σ1 + Σ2, is replaced by the covariance
matrix of class C1, Σ1. In other words, when train the classifier with the asymmet-
ric node learning goal for the cascade learning framework, the variance of negative
classes becomes less relevant. In contrast, new instances of positive classes affect both
the numerator and denominator in (5.14). Hence, it is easier to notice the performance
improvement when new positive instances are inserted. Experimental results are con-
sistent with their derivations.

The number of initial training faces is further increased to 5, 000. All face detec-
tors now seem to perform very similar to each other. The authors conjecture that this
is the best performance that the proposed cascaded detector with the provided train-
ing set can achieve on MIT+CMU test sets. Experimental results of face detectors
trained with 10, 000 faces and 10, 000 non-faces seem to support this assumption (Fig-
ure 5.8(c)). To further improve the performance, different cascade algorithms, e.g.,
the Soft Cascade [12], WaldBoost [130], multi exit classifiers [111], etc. and a com-
bination with other types of features, e.g., edge orientation histograms (EOHs) [65],
covariance features [126], etc., can also be experimented. Figure 5.9 shows a compar-
ison of the computation cost between offline (batch) GSLDA and online GSLDA. The
horizontal axis shows the number of weak learners (decision stumps) and the vertical
axis indicates the training time in minutes. From the figure, online learning is much
faster than training the batch GSLDA classifier as the number of weak learners grows.
On average, the proposed online classifier takes less than 1.5 millisecond to update
a strong classifier of 200 weak learners on standard off-the-shelf PC with the use of
GNU scientific library (GSL)1.

5.4 Conclusion

In this chapter, an efficient online object detection algorithm is proposed. Unlike many
existing algorithms which applied boosting approach, the proposed framework makes

1http://www.gnu.org/software/gsl/
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5.4 Conclusion

use of greedy sparse linear discriminant analysis (GSLDA) based feature selection
which aims to maximize the class-separation criterion. Experimental results demon-
strate that the proposed incremental algorithm does not only perform comparable to the
offline (batch) GSLDA algorithm but is also much more efficient. On USPS digits data
sets, the proposed online algorithm with decision stumps weak learners outperforms
online boosting with class-conditional Gaussian distributions. Extensive experiments
on face detections reveal that it is always beneficial to incrementally train the detector
with online samples.
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6
Conclusions and Future works

6.1 Summary

Several factors have contributed to the effectiveness and efficiency of our proposed
approaches. We briefly summarize each one of them in this section.

• Discriminative feature descriptors. In our preliminary experiments, we have
observed that feature descriptors play a vital role in the overall performance of
object detectors. For example, Haar-like features perform well on frontal faces
but perform poorly for the task of human detection. We redesign our feature
representations using covariance features. With this new design, our visual de-
scriptors yield improved detection performance.

• Coarse-to-fine heuristics (Two-layer). By applying two-layer with heteroge-
neous features, we have demonstrated that we can arrange features in a com-
putationally feasible combination without compromising accuracy.

• Training a classifier with an objective based on imbalanced data sets. A lot of
research had overlooked the importance of imbalanced data sets. In our experi-
ments, we have found performance improvement when we take this factor into
consideration through the use of LDA criterion.
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• Large objects’ variations and online learning. In object detection, there are

usually large variations due to visual appearances, object poses, illuminations

and camera motions. AdaBoost often overfit and gives poor performance when

there exists a large overlapping between object classes, e.g., a mix of frontal,

tilted and profile faces. By making use of unlabeled data in conjunction with

a small amount of labeled data, our online detector is able to adapt to these

changes.

In particular, we have advanced the state-of-the-art real-time object detection in fol-

lowing ways. Chapter 3 proposed two fast and robust pedestrian detection approaches.

We integrated multi-dimensional covariance features with weighted Fisher Linear Dis-

criminant Analysis for AdaBoost training. In order to speed up the computation time,

a cascaded architecture was adopted [140]. All experiments were conducted on INRIA

[24] and Daimler-Chrysler [89] benchmark data sets to allow direct comparison with

previous works. Based on experimental results, our first approach had shown to give

high detection performance at a low false positive rate. Comparing with techniques us-

ing linear SVM classifier, the proposed approach outperformed all systems evaluated.

When compared with non-linear SVM systems, the system was shown to perform very

similar to covariance features with Gaussian SVM and slightly inferior compared to

HOG with quadratic SVM. However, the computation time of HOG with quadratic

SVM was much higher than our proposed technique.

The second approach attempted to combine the efficiency of Haar-like features

with the discriminative power of covariance features to further accelerate the speed of

pedestrian detectors. Experiments showed that by combining Haar-like and covariance

features, we speeded up the conventional covariance detector [136] by an order of

magnitude in detection time without compromising the detection performance.

Prior to our work, only boosting based approaches had demonstrated robust real-

time object detection. Chapter 4 proposed an alternative approach to train visual object

detector. The core of the proposed approach is Greedy Sparse Linear Discriminant

Analysis (GSLDA) [87], which aims to maximize the class-separation criterion. On

various data sets for face detection and pedestrian detection, we had shown that the

proposed approach outperformed AdaBoost when the distribution of positive and neg-

ative samples was highly skewed. One limitation of GSLDA is that a weak classifier
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is not updated during feature selection. To overcome this drawback and further im-

prove the detection result, we proposed a BGSLDA, which sequentially updates weak

classifiers using boosting re-weighting scheme. Our extensive experimental results

showed that the performance of BGSLDA is better than that of AdaBoost at a similar

computation cost.

Chapter 5 proposed an efficient online object detection algorithm. Unlike many

existing algorithms which applied boosting approach, our framework makes use of

GSLDA based feature selection which aims to maximize the class-separation crite-

rion. Our experimental results showed that our incremental algorithm did not only

perform comparable to batch GSLDA algorithm but was also much more efficient. On

USPS handwritten digit data sets, our online algorithm, with decision stumps as weak

learners, outperformed online boosting with class-conditional Gaussian distributions.

Our extensive experiments on face detections revealed that it is always beneficial to

incrementally train the detector with online samples.

6.2 Future Works

There are several research areas that can be a continuation of this work. Some potential

future works include:

6.2.1 Cascade Design

An approach that can optimally build a cascade classifier may be a future topic. In

Chapter 2, we have discussed several approaches that can be applied to improve the

performance of original cascade classifiers. In many works, finding better choices

of threshold values and propagating scores from previous classifiers often lead to a

substantial performance improvement [12, 111, 146]. We think that an approach based

on these existing works would be a prime candidate for designing a better cascade

structure.

Another interesting research direction is to design a cascade classifier which can

detect multiple-view objects or classes, e.g., multi-view face detector and multi-view

human detector.

137



6. CONCLUSIONS AND FUTURE WORKS

6.2.2 Strong Classifier Learning

In this thesis, we have shown that an alternative cost function, e.g., least square loss, is

less prone to imbalanced training data. However, other cost function may also have a

positive impact on the performance. A new cost function should be carefully designed

such that it is less sensitive to imbalanced data sets. Also, the new cost function should

introduce minimal number of parameters.

The new approach should also be computationally feasible for large data sets. One

simple approach to handling large data sets is an approach similar to FilterBoost [15].

Unlike traditional boosting, FilterBoost avoids maintaining a distribution over a train-

ing set. The algorithm uses a rejection sampling mechanism to deal with large data

sets. Data is drawn from an infinitely large source called an oracle. The filter receives

a sample from the oracle and accepts it with some probability. Sampling continues un-

til small data sets are constructed, at which time the best weak learner can be selected.

The new algorithm should also be robust to noise and overfitting. The idea similar

to BrownBoost [36], where the classifier will give up on examples that are repeatedly

misclassified, could also be applied. Note that traditional AdaBoost focuses on exam-

ples that are repeatedly misclassified. Hence, it does not perform well on noisy data

sets.

6.2.3 Weak Classifier Learning

Decision stumps with Haar-like features have shown to work extremely well for frontal

faces. However, having a single feature in a weak classifier might not be discriminative

enough to separate difficult objects. Joint features, similar to Mita et al. [85], can be

applied to further improve the performance of object detections. Another possibility is

to make use of shared features between multiple classes in a weak classifier.

6.2.4 Haar-like Features

Learning an over-complete dictionary for sparse representation has proven to be very

effective for signal reconstruction and classification. Numerous algorithms have been

proposed for the design of dictionaries, including predefined and adaptive ones. Prede-

fined dictionaries include an over-complete wavelet [76], Discrete Cosine Transform

138



6.2 Future Works

[114], Fourier Transform [14], etc. For frontal face detection, an over-complete Haar-
like wavelet has proven to be very effective and efficient. Viola and Jones selected
the best set of features from a pool of over-complete Haar-like wavelets. However,
predefined dictionaries have several disadvantages. First, the over-complete set grows
exponentially with the resolution of object patches. Table 6.1 illustrates the number
of different visual features versus the patch resolution. Searching for the best feature
(finding the best weak classifier) can be problematic and time consuming due to a large
set of possible features. Secondly, selected features, e.g., Haar-like wavelet, may not
be optimal for detecting some objects, e.g., human or vehicles. An exhaustive search
over all possible features, e.g., HoG [24], EOHs [65], Edgelets [144], LBP [96], Co-
variance [136], is extremely expensive and almost infeasible. These issues raise several
questions whether one can generalize optimal features without exhaustively searching
the entire set of features, e.g., an automatic approach to train features that best separate
objects from non-objects.

Recently, adaptive dictionary learning algorithms have been shown to achieve supe-
rior performance in several image processing applications, including de-noising [32],
image compression [18] and super resolution [149]. There is a large body of literature
related to sparse dictionary [2, 60, 66, 75, 98, 108]. By building adaptive features, one
can explore a trade-off between sparsity and feature extraction time. It would also be
interesting to apply this idea to integral image of faces (instead of raw face images)
and verify excellent results of Haar-like features on frontal face detection.

Other direction of ongoing works may also include the search for new heuristic
features for general object detection.

Table 6.1: A comparison between the number of rectangle features (ratio of 1:1, 1:2 and 2:1)
[157], the number of Haar-like features (5 basic types) [140] and the number of
rotated Haar-like features [68] with a given patch size (pixels × pixels).

Patch size # Rectangles # Haar-like features # Rotated Haar-like
16× 16 3, 264 28, 288 42, 436
20× 20 6, 300 68, 460 106, 790
24× 24 10, 800 141, 600 207, 930
32× 32 25, 344 444, 576 688, 064
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6.2.5 Massive Training Data

Since the choice of good training samples plays an important role in the generalization
ability of cascade classifiers, the classifier should be designed to handle massive train-
ing data sets without compromising training time. One possible extension is to sample
the representative training set from a large set of data and use them to train a classifier,
e.g. weight trimming [38] and FilterBoost [15]. Another extension can be in the area
of semi-supervised learning, where unlabeled data is incorporated into the learning
process. Semi-supervised learning provides a principled way of incorporating prior
knowledge and has been shown to outperform supervised learning model. Some of the
well known approaches include EM with generative mixture models [93], self-training
[118], co-training [11], transductive support vector machines [138], and graph-based
methods [7, 8].

6.2.6 Bootstrapping

As more negative samples are rejected, it becomes harder to generate false positives
for training subsequent boosted classifiers. At the moment, negative samples are first
generated randomly from a large set of non-object images. The trained cascade is then
used to filter all true negatives, leaving only false positives to train the next boosted
classifier. The problem is, as more classifiers are trained, it becomes harder to generate
a new set of false positive and the bootstrap time can be very large. In other words, the
training time itself for feature selection and classifier construction becomes negligible
compared to the bootstrapping time. Presumably, high bootstrapping time could be due
to the fact that (1) training background images do not contain enough difficult image
patches (2) training background images do not well represent background patches of
test images. In this situation, it is unclear whether one should stop the training process
or continue training with more complex background images. In the future, a different
strategy to generate false positives may be invented to avoid this problem.
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