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Abstract

The Landau-Lifshitz-Gilbert(LLG) equation is a partial differential equation describing

the motion of magnetic moments in a ferromagnetic material. In the theory of ferro-

magnetism, an important problem is to study noise-induced transitions between different

equilibrium states. Hence, the LLG equation needs to be modified in order to incorpo-

rate random fluctuations into the dynamics of the magnetisation. Including the noise

effects in the theory of evolution of magnetic moments requires a proper study of the

stochastic version of the LLG equation. The aim of this thesis is to lay foundation of

the theory of the stochastic LLG equation for magnetic nanowire of infinite length that

is widely used in physics to study the dynamics of the domain walls. The deterministic

version of this equation has been intensely studied in recent years due its importance for

fabrication of magnetic devices. It is customary to study the nanowire of infinite length.

This approach allows for relatively simple mathematical description and at the same time

provides a useful approximation of the wires of finite length.

Firstly, we propose a semi-discrete finite difference method to find approximate solu-

tions to the stochastic LLG equation on the real line. Then, we transform the discretised

equation into a partial differential equation with random coefficients, without the Itô

term, to prove the convergence of approximate solutions. We deduce the existence and

uniqueness of a global unique strong solution to the stochastic problem on the whole

real line. The main novelty of our approach is that we prove the existence of pathwise

solutions, unique for each given in advance trajectory of the noise.

Secondly, in order to solve numerically the stochastic LLG equation on real line, we

truncate the infinite line into a bounded interval. We consider the stochastic problem
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on a bounded interval [−L,L] with physically relevant homogeneous Neumann boundary

conditions and we show that when L tends to infinity, the solution of the problem on a

bounded interval converges to the solution of the original stochastic problem on real line.

We also provide pathwise error estimates depending on L.

Finally, in order to solve the stochastic LLG equation numerically we propose a fully-

discrete finite difference scheme based on the midpoint rule for the stochastic LLG equa-

tion on a bounded interval. We perform first numerical experiments which shows that the

fully-discrete solutions converge to the solution of the stochastic problem on a bounded

interval [−L,L] for vanishing discretisation parameters. Next, we implement a numerical

experiment which validates the convergence of the solution on a bounded interval [−L,L]

to the solution on real line when L is large enough.
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Chapter 1

Introduction

1.1 Physical background of the Landau-Lifshitz-Gilbert Equation

Landau and Lifshitz proposed in [37] a model for the dynamics of the magnetisation vector

u ∈ R3 of a ferromagnetic material occupying a region D in space at temperatures below

the Curie temperature. According to this model, at every point x ∈ D and every time

t ≥ 0 the vector u(t, x) has constant length and without loss of generality we can assume

that |u(t, x)| = 1. To every configuration {u(t, x)} of magnetisation vectors (spins),

Landau and Lifshitz associate the energy E(u) that in general is a rather complicated

expression including the exchange energy, stray energy, anisotropy energy and many

others. If at time t = 0 the energy of the spin configuration u0(x) = u(0, x) does not

minimise the energy functional E(u0) then, again according to Landau and Lifschitz, the

configuration will evolve following the dynamics given by the equation

∂u

∂t
= −u× ∂E

∂u
,

where u × v stands for the vector product in R3. Let us note here that in physical

literature a different notation is used:

Heff = −∂E
∂u

,

where Heff is the so-called effective field, see [16]. Gilbert [24] studied the Landau-Lifshitz

equation with a small dissipative term stabilising the equation. In fact, Gilbert considered
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a model that is now widely known as the so-called Landau-Lifshitz-Gilbert(LLG) equation

∂u

∂t
(t, x) = µu(t, x)×Heff (t, x)− λu(t, x)× (u(t, x)×Heff (t, x)) (1.1.1)

for t ≥ 0, x ∈ D where D ⊆ Rd(d = 1, 2, 3), µ 6= 0 and λ > 0 are constants. In fact, as

u(t, x) is on the unit sphere, we have
〈
u, ∂u

∂t

〉
= 0. Geometrically this means that we have

a sphere of radius 1 and ∂u
∂t

is in the tangent plane. The idea is to choose two orthogonal

vectors u×Heff and u×(u×Heff ) which form an orthogonal basis in the tangent plane.

In this project we follow Stoner and Wohlfarth [47] and consider the energy functional

consisting of the exchange energy only, in which case

E(u) =
1

2

∫
D

|∇u(x)|2dx and Heff = ∆u .

Then, the LLG equation takes the form

∂u

∂t
(t, x) = µu(t, x)×∆u(t, x)− λu(t, x)× (u(t, x)×∆u(t, x)). (1.1.2)

Following physical considerations, this equation must be supplanted with the homoge-

neous Neumann boundary conditions. We note that the other types of energy contribute

to the Heff with lower order differential operators (nonlocal in the case of stray energy).

Therefore, evolution of spins driven by the exchange energy only, while relatively simple,

is mathematically the most challenging.

When D ⊂ R3 is a bounded domain, the existence of weak solutions to (1.1.1) has

been studied by Visintin in [50] where all energy contibutions have been taken into ac-

count. Alouges and Soyeur [3] and Bertsch et.al. [9] have proved the existence of weak

solutions on a bounded three-dimensional domain where the effective field Heff contains

the exchange energy only. The existence of regular solutions in three-dimensional do-

mains is a challenging problem; the strongest results in this direction can be found in

[41].
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When the domain is unbounded, D = R, Zhou Yulin, Guo Boling and Tan Shaobin

[52] have proved global existence and uniqueness of solutions to (1.1.2). Furthermore,

Guo Boling and Min-Chun Hong [26] have proved global existence with small initial data

and uniqueness of solutions to (1.1.2) on R2. When D = R3, Carbou and Fabrie [15]

established the local in time existence, the global existence for small initial data and

uniqueness of solutions. Fuwa and Tsutsumi [22] have studied the local in time existence,

the global in time existence for small initial data and uniqueness of solutions to (1.1.2) by

a semi-discrete finite difference method. In fact, they extended the approach considered

by P.L. Sulem, C. Sulem and C. Bardos [48], who studied the Heisenberg equation, to

the case of LLG equation.

To solve numerically LLG equation (1.1.2), Weinan E and Xiao-Ping Wang [18] pro-

posed a method which preserves the length |u| = 1 of the numerical solution but there is

no guarantee that the scheme preserves energy bounds (see [21]). The discretisation of

scalar non-linear partial differential equations which preserves energy bounds has been

studied by Furihata [39] who verified the efficacity of this scheme. Based on this study,

Fuwa, Ishiwata and Tsutsumi proposed in [21] a finite difference scheme and established

error estimates for this problem. This scheme satisfies the length preserving property

|u| = 1 and preserves the energy bounds. A similar scheme has been considered in [4]

and [5] where the authors applied the finite element method to prove weak convergence

of numerical solutions to the LLG equation and studied the stability of this method.

1.2 The Stochastic Landau-Lifshitz-Gilbert Equation

An important problem in the theory of ferromagnetism is to describe noise-induced tran-

sitions between equilibrium states and the associated random movements of the domain

walls. Therefore, we need to include random fluctuations into the effective field and

to adjust correspondingly the LLG equation that will describe random dynamics of the

magnetisation vector u. The program to analyse noise-induced transitions was first for-

mulated by Néel [43] and further developped in [10] and [33]. In this dissertation, we add
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noise to the effective field following [6] and [11]. Therefore, the stochastic version of the

LLG equation considered is

du =
(
µu×Heff − λu× (u×Heff )

)
dt+ µ(u× g) ◦ dW (t), (1.2.1)

where g : D → R3 is a given bounded function, W is a real-valued Wiener process and

◦dW (t) stands for the Stratonovich differential. We remark that in the stochastic equation

(1.2.1) noise is ignored in the second term on the right hand side of the equation because

of the smallness of the parameter λ in physical problems (see [23],[34]). We note that the

stochastic term should be understood in the Stratonovich sense in order to accommodate

for the pathwise sphere constraint |u| = 1 (see [10], [35], [8]).

When D ⊂ R3 is a bounded domain, the existence of a weak martingale solution to

(1.2.1) has been studied in [11] using Faedo–Galerkin approximations. In [12], the authors

considered a similar equation on a bounded interval and proved the existence of a pathwise

unique and regular solution. For bounded domains D ⊂ R2, A. Hocquet proved the

existence of pathwise Struwe solutions in [32]. A convergent finite element discretisation

to (1.2.1) on a bounded domain is considered in [25]. The authors first transformed the

stochastic equation into a partial differential equation without the Itô term and then

proposed a convergent linear scheme to show the existence of weak martingale solutions.

Another finite element scheme has been proposed in [6]. We note that this is a non-

linear fully-discrete scheme based on the midpoint rule to ensure that numerical solutions

satisfy the sphere constraint. They use a different approach that works directly with the

Itô equation to prove convergence of numerical solutions to a weak martingale solution

for vanishing discretisation parameters. A new convergent time semi-discrete scheme for

(1.2.1) is proposed in [2] to prove the existence of a martingale solution. This scheme

is only linearly implicit and does not require the resolution of a non-linear problem at

each time step. In [7], the authors proposed an efficient non-linear solver which makes

the scheme proposed computationally more attractive. We note that other semi-implicit

numerical methods for the stochastic LLG equation have been proposed in [42]. In fact,
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there is a vast literature on numerical methods for stochastic linear and non-linear partial

differential equations including [29], [38] and [30].

When the domain is unbounded, D = Rd for any d > 0, an equation similar to

(1.2.1) has been studied in [27] using difference method. In this work, a very restrictive

assumption is made that noise is constant in x ∈ D. This assumption corresponds to

a choice of the function g in equation (1.2.1) to be constant across the domain D. The

authors established the existence of global weak solutions to the equation. When D = R,

they show that the Cauchy problem of this equation has a unique global smooth solution.

1.3 Problem at Issue

In recent years, there was an intense study of magnetic nanowires of infinite length,

especially of their travelling wave solutions, see for example [13, 14] and references therein.

Interest in such problems is driven by the desire to understand the dynamics of the domain

walls, the problem of utmost importance for fabrication of magnetic memories. While real

nonowires are of finite length, infinite nanowires offer useful approximation. In particular,

explicit formula for the travelling wave solutions can be found.

In this dissertation, we initiate systematic mathematical and numerical analysis of

the stochastic LLG equation (1.2.1) on the whole real line driven by the noise depending

on space and time. More precisely, the initial value problem with the stochastic Landau-

Lifshitz equation studied in this thesis takes the form

du = (µu×∆u− λu× (u×∆u)) dt+ µ(u× g) ◦ dW in R+ × R, (1.3.1)

u(0, x) = u0(x) x ∈ R, (1.3.2)

|u0(x)| = 1 x ∈ R, (1.3.3)

where u : R+ × R → R3 is the magnetisation of a ferromagnetic material, µ, λ > 0, the

given function g : R → R3 is bounded and W is a Wiener process defined on a certain

probability space. We note that this problem is posed on R with homogeneous Neumann
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boundary conditions at infinity. Furthermore, the driving noise can be multi-dimensional

but for simplicity of presentation we assume that it is one-dimensional.

Equation (1.3.1) belongs to a difficult class of the so-called critical problems. The

concept of criticality comes from physics and is not rigorously defined. We will adopt

here the understanding of this concept as introduced in [31]. The main idea is to zoom

in the solution by change of variables

uδ(t, x) = u
(
δbt, δcx

)
,

where b, c > 0. If, for δ → 0, the nonlinear part of the equation vanishes, while the linear

part and the noise remain unchanged, then we say that the problem is subcritical. If

the magnitude of the nonlinear part remains the same on small space-time scales, then

we say that the problem is critical, and finally it is supercritical, if the magnitude of the

nonlinear term grows to infinity for δ → 0. The subcritical case is the easiest one (that

does not mean that it is easy) and the critical case requires a more delicate analysis.

Differentianting uδ(t, x) = u
(
δbt, δb/2x

)
and plugging in equation (1.3.1), it is easy to

check that this equation is critical.

1.3.1 Different Concepts of Solution

In what follows, we define a global strong solution to (1.3.1)- (1.3.3). This solution is the

main object of study in this dissertation. In the literature, there are other concepts of

solution which are used when the strong solution is difficult to prove.

Definition 1.3.1. Let T ∈ (0,∞) be given. Let (Ω,F , (Ft) ,P) be a given probability

space endowed with a filtration (Ft) on which a one-dimensional Wiener process W

adapted to (Ft) is defined. We say that an (Ft)-adapted stochastic process u = {u(t); t ≤

T} taking values in L2
m for every m > 0, a strong solution to (3.1.1)-(3.1.3) for the time

interval [0, T ], if u satisfies (1)-(4) below:

(1) for every m > 0

u(·) ∈ C([0, T ], L2
m), P-a.s. ,
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(2) for every t ∈ [0, T ] and a.e. x ∈ R

|u(t, x)| = 1,

(3)

ess sup
t∈[0,T ]

|∇u(t)|2L2 +

∫ T

0

|∆u(t)|2L2 dt <∞, P-a.s. ,

(4) for every t ∈ [0, T ], the following equation holds in L2
m P-a.s.:

u(t) = u0 + µ

∫ t

0

u(s)×∆u(s)ds− λ
∫ t

0

u(s)× (u(s)×∆u(s)) ds

+ µ

∫ t

0

(u(s)× g) ◦ dW (s) . (1.3.4)

Moreover, if u is a strong solution on [0, T ] for all T ≥ 0, we say that u is a global strong

solution.

Next, we define a weak martingale solution to (1.3.1)- (1.3.3).

Definition 1.3.2. Given T ∈ (0,∞), we say that a tuple (Ω,F , (Ft)t∈[0,T ],P,W,u) is a

weak martingale solution to (1.3.1), for the time interval [0, T ], if there exists:

(a) a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with the filtration satisfying the

usual conditions,

(b) a one-dimensional (Ft)-adapted Wiener process W = (Wt)t∈[0,T ],

(c) a progressively measurable process u : [0, T ]× Ω→ L2
m

such that

(1) u(·, ω) ∈ C([0, T ], H−1) for P− a.s. ω ∈ Ω;

(2) E
[

ess supt∈[0,T ] |∇u(t)|2L2

]
<∞;

(3) |u(t, x)| = 1 for each t ∈ [0, T ], a.e.x, and P− a.s.;

(4) for every t ∈ [0, T ], for all ψ ∈ C∞0 , Pa.s.:

〈u(t), ψ〉L2
m

= 〈u0, ψ〉L2
m
− µ

∫ t

0

〈u×∇u,∇ψ〉L2
m
ds− λ

∫ t

0

〈u×∇u,∇ (u× ψ)〉L2
m
ds

+ µ

∫ t

0

〈u× g, ψ〉L2
m
◦ dW (s) .
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If (c) holds for any given in advance filtered probability space (Ω,F , (Ft)t∈[0,T ],P) and

any given in advance Wiener process defined on this space then we say that u is a weak

pathwise solution.

We note that a strong solution is a weak martingale solution and a weak pathwise

solution as well.

The definitions of operators, probability spaces, filtration, stochastic processes, Stratonovich

integral and the weighted space L2
m related to the stochastic problem above can be found

in Chapter 2.

1.4 Contributions

In this dissertation, we prove the existence and uniqueness of pathwise regular solutions to

the stochastic LLG equation (1.3.1)-(1.3.3) on real line, when the noise is space and time

dependent. We note that during our work on this project a similar result was obtained

by E. Gussetti and A. Hocquet in [28] for the stochastic LLG defined on the circle. They

prove the existence and uniqueness of pathwise solutions using the rough paths theory.

Their argument is much more complicated than ours but allows them to consider a more

general class of noises including fractional Brownian Motion. Our proof is considerably

simpler than all other proofs available in the literature. We directly prove the existence

and uniqueness of pathwise solutions using rather classical arguments and avoid the

arguments based on tightness of approximating measures and the Skorokhod theorem.

To this end we start from a semi-discrete finite difference method to find approximate

solutions to the stochastic problem (1.3.1)-(1.3.3) following the scheme considered in [3].

A modified version of the semi-discrete scheme is considered to show the existence of

approximate solutions. Uniqueness of the semi-discrete solutions is also proved. Then,

we transform the discretised stochastic equation into a partial differential equation with

random coefficients, where the Itô term vanishes, to prove the strong convergence of

the semi-discrete solution. We follow the paper by Goldys, Le and Tran [25] where the

same idea is used to prove the existence of a weak martingale solution on a bounded

three-dimensional domain. The crucial step in our argument is a new result about the
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continuous dependence of solutions to the stochastic LLG equation on the trajectories

of the driving Wiener process. In some sense, it is a counterpart of the rough paths

approach taken in [28]. Then, we derive uniform estimates and use the weak convergence

of approximating equations in the space L2 ((0, T )× Ω;L2
m), where L2

m stands for the

weighted L2-space. Finally, we deduce the existence of a global regular pathwise solution

to the stochastic problem (1.3.1)-(1.3.3) on the whole real line. Let us note that our

approach provides a natural starting point for numerical algorithms. We also note that

differently from [28] we need to choose carefully the functional spaces for the proofs of

uniform estimates and weak convergence because the initial condition is not an element

of L2(R).

Our second contribution in this dissertation is approximating the stochastic problem

(1.3.1)-(1.3.3) on the whole real line. In fact, we truncate the infinite domain R into a

bounded domain [−L,L] for L > 0, consider the stochastic problem (1.3.1)-(1.3.3) on this

bounded interval with physically relevant homogeneous Neumann boundary conditions,

and then show that when L→∞ the solution uL of the stochastic problem on a bounded

domain converges to the solution u of the original problem on R. In the course of

the proof, we also obtain pathwise estimates on the rate of convergence of solutions on

bounded intervals to solution on the whole real line.

Our next contribution is proposing a fully-discrete finite difference scheme for numer-

ical solution of the stochastic problem on a bounded domain [−L,L]. Following Fuwa

[21], we propose the fully-discrete scheme based on the midpoint rule to guarantee that

the numerical solution is always on the unit sphere. First, we carry out numerical ex-

periments to show numerically that the fully-discrete solutions converge to the solution

uL of the stochastic problem on a bounded interval [−L,L] for vanishing discretisation

parameters. Next, we perform an additional numerical experiment which validates the

convergence of uL to the solution u of the original problem on R when L→∞.

As a summary, the contributions of this dissertation are:

• Firstly, we prove the existence and uniqueness of a global regular pathwise solution

to the stochastic LLG equation on R by first proposing a semi-discrete finite differ-
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ence scheme and then proving the convergence of the finite difference solutions to

a global regular pathwise solution of the problem, Theorem 3.1.3.

• Secondly, we truncate the infinite domain R into a bounded domain [−L,L] and

consider the stochastic problem on this bounded interval with homogeneous Neu-

mann conditions at the boundaries. We show the convergence of the solution on a

bounded domain to the solution of the stochastic problem on R, Theorem 4.1.2.

• Thirdly, we propose a fully-discrete finite difference scheme to solve numerically

the stochastic problem on a bounded interval. We perform numerical experiments

to show convergence of the fully-discrete solutions to the solution of the stochastic

problem on R for vanishing discretisation parameters and a large domain [−L,L].

We note that our results cannot be extended to equations on Rd, for d ≥ 2. Indeed,

even the deterministic LLG equation has no H2-valued solutions for d ≥ 2; in fact,

solutions have singularities at which the gradient blows up to infinity. Analysis of such

problems in the stochastic case remains a very challenging open problem.

The dissertation consists of five chapters. Chapter 1 is the introduction. Chapter 2

reviews some important spaces and elementary formulas. The definitions of stochastic

integrals and Stratonovich differentials which are important for the rest of the dissertation

are also discussed in this chapter. It also reviews important function spaces on a lattice

and some discrete functions results which will be frequently used in the following chapters.

Chapter 3 is devoted to our first contribution. In this chapter, we propose a semi-

discrete finite difference scheme to find approximate solutions of (1.3.1)-(1.3.3). We prove

that the finite difference solutions converge to a global regular pathwise solution of the

stochastic LLG problem on the whole real line. Uniqueness of the global regular solution

is also proved.

In Chapter 4, we present our second contribution. For the aim of solving numerically

the stochastic problem (1.3.1)-(1.3.3) on the whole real line, we truncate the infinite do-

main into a bounded domain [−L,L]. We consider the problem on a bounded domain

10



with homogeneous Neumann boundary conditions and prove the convergence of the so-

lution uL on a bounded domain to the solution u of the original problem on R when L

tends to infinity.

In Chapter 5, we propose a fully-discrete finite difference scheme to solve numerically

the stochastic problem on a bounded domain [−L,L]. We perform numerical experiments

to show convergence of the fully-discrete finite difference solutions to the solution of the

original problem on R for vanishing discretisation parameters and for L large enough.
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Chapter 2

Preliminaries

2.1 Function Spaces

We start with the definition of the operators involved in the stochastic LLG equation.

Let U be an open subset of R and φ = (φ1, φ2, φ3) be an R3-valued function defined on

U . The gradient and Laplace operators acting on φ are respectively denoted as

∇φ :=

(
∂φ1

∂x
,
∂φ2

∂x
,
∂φ3

∂x

)
,

∆φ :=

(
∂2φ1

∂x2
,
∂2φ2

∂x2
,
∂2φ3

∂x2

)
,

if the derivatives exist in the weak sense.

We denote by | · |X the norm in a Banach space X. If X is a Hilbert space, we denote

by 〈·, ·〉X the inner product in X. When subscripts are omitted, | · | and 〈·, ·〉 refer to the

Euclidean norm and inner product in R3 respectively.

We also denote some standard spaces of functions defined on U as follows

• L∞(U) := {v : U → R3| ess supx∈U |v(x)| <∞},

• L2(U) := {v : U → R3|
∫
U
|v(x)|2dx <∞},

• H1(U) := {v : U → R3|
∫
U
|v(x)|2dx+

∫
U
|∇v(x)|2dx <∞},

• H2(U) := {v : U → R3|
∫
U
|v(x)|2dx+

∫
U
|∇v(x)|2dx+

∫
U
|∆v(x)|2dx <∞}.

The following well known fact will be important for Chapters 3 and 4.
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Lemma 2.1.1. Let L > 0 and ϕ ∈ H1(−L,L). Then

|ϕ|2L∞ ≤ k|ϕ|L2|ϕ|H1 ,

where

k = 2
√

2 max

(
1,

1

L

)
.

Proof. Consider first the case when ϕ ∈ H1(−1, 1) and ϕ(−1) = 0. Then,

|ϕ(x)|2 =

∣∣∣∣ ∫ x

−1

d

dt
ϕ2(t)dt

∣∣∣∣ =

∣∣∣∣ ∫ x

−1

2ϕ(t) · ∇ϕ(t)dt

∣∣∣∣ ≤ 2|ϕ|L2|∇ϕ|L2 .

Hence,

|ϕ|2L∞ ≤ 2|ϕ|L2|∇ϕ|L2 . (2.1.1)

The same result holds if ϕ(−1) 6= 0 but ϕ(1) = 0.

Next, we consider the case when ϕ ∈ H1(−1, 1) and ϕ(±1) 6= 0. Let

m(x) =


x+ 1, x ∈ [−1, 0],

1, x ∈ [0, 1],

and

m∗(x) =


1, x ∈ [−1, 0],

1− x, x ∈ [0, 1].

Using (2.1.1), we get

|mϕ|2L∞ ≤ 2|mϕ|L2 |∇(mϕ)|L2 ≤ 2
√

2|ϕ|L2|ϕ|H1

and

|m∗ϕ|2L∞ ≤ 2
√

2|ϕ|L2 |ϕ|H1 .
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Hence, for x ∈ [0, 1] we have

|ϕ(x)|2 = |mϕ(x)|2 ≤ 2
√

2|ϕ|L2|ϕ|H1

and for x ∈ [−1, 0]

|ϕ(x)|2 = |m∗ϕ(x)|2 ≤ 2
√

2|ϕ|L2 |ϕ|H1 .

Consequently,

|ϕ|2L∞ ≤ 2
√

2|ϕ|L2|ϕ|H1 . (2.1.2)

Finally, we consider the case when ϕ ∈ H1(−L,L) for some L > 0. We define

ψ(y) = ϕ(Ly), y ∈ [−1, 1].

Then ψ ∈ H1(−1, 1) and we have

|ψ|2L2 =

∫ 1

−1

|ψ(y)|2dy =

∫ 1

−1

|ϕ(Ly)|2dy =

∫ L

−L
|ϕ(x)|2 1

L
dx =

1

L
|ϕ|2L2 ,

|∇ψ|2L2 =

∫ 1

−1

|∇ψ(y)|2dy =

∫ 1

−1

|∇ϕ(Ly)|2dy =

∫ L

−L
L2|∇ϕ(x)|2 1

L
dx = L|∇ϕ|2L2 .

Therefore, using (2.1.2) we get

|ϕ|2L∞ = |ψ|2L∞ ≤ 2
√

2|ψ|L2|ψ|H1 ≤ 2
√

2

(
1√
L
|ϕ|L2

)(
1

L
|ϕ|2L2 + L|∇ϕ|2L2

) 1
2

≤ 2
√

2
1√
L

max

(
1√
L
,
√
L

)
|ϕ|L2|ϕ|H1

≤ 2
√

2 max

(
1

L
, 1

)
|ϕ|L2|ϕ|H1

and the lemma follows.

We define the following weighted spaces

L2
m(U) :=

{
v : U → R3|

∫
U

|v(x)|2ρm(x)dx <∞
}
,
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H1
m(U) :=

{
v : U → R3|

∫
U

|v(x)|2ρm(x)dx+

∫
U

|∇v(x)|2ρm(x)dx <∞
}
,

where ρm(x) = e−
|x|
m , m > 0.

We finish this section by the following compact embedding result.

Lemma 2.1.2. For every m > 0, the embedding

H1
m(R) ↪→ L2

m/2(R)

where ρm/2(x) = e−
2|x|
m is compact.

Proof. The lemma is well known but we were not able to locate a theorem in a suitable

form and we decided to provide an independent proof. Let

I : H1
m(R) ↪→ L2

m/2(R)

be the embedding operator: Iϕ = ϕ. It is easy to see that I is well defined and bounded.

For every n ≥ 1 we define a bounded operator

In : H1
m(R) ↪→ L2

m/2(R)

by the formula Inϕ = ϕI[−,n,n]. By Theorem 6.12 in [44] the lemma will follow if we can

prove that each operator In is compact and

lim
n→∞

‖In − I‖ = 0 . (2.1.3)

Let B be a unit ball in H1
m(R). Then the set

Bn = {Inϕ; ϕ ∈ B}

can be considered as a bounded closed subset of H1(−n, n). Therefore, by the Rellich-

Kondrachov theorem, see Theorem 6.3 in [1] we find that Bn is compact in L2 (−n, n),
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hence in L2
m/2(R) as well. We will show (2.1.3). Denote H = L2

m/2(R). For ϕ ∈ H1
m(R)

we have

|(In − I)ϕ|2H =

∫
|x|≥n
|ϕ|2ρm/2 dx

=

∫
|x|≥n
|ϕ|2

ρm/2
ρm

ρm dx

≤ e−n/m
∫
R
|ϕ|2ρm dx

≤ e−n/m|ϕ|H1
m(R) .

Therefore

‖In − I‖ ≤ e−n/m −→ 0 ,

and the proof is complete.

2.2 Elementary Formulas

We recall some cross product elementary properties which will be frequently used in the

following chapters. Let a,b and c be vectors in R3. Then

〈a, a× b〉 = 0, (2.2.1)

〈a, (a× b)× b〉 = −|a× b|2, (2.2.2)

a× (b× c) = 〈a, c〉b− 〈a,b〉c, (2.2.3)

|a× b|2 + 〈a,b〉2 = |a|2|b|2, (2.2.4)

〈a,b× c〉 = 〈b, c× a〉 = 〈c, a× b〉. (2.2.5)

Next, we state the Young inequality. If a, b ≥ 0 and p, q > 1 are real numbers such

that 1
p

+ 1
q

= 1, then

ab ≤ ap

p
+
bq

q
. (2.2.6)

Furthermore, we present the following Gronwall’s inequality which can be found in

[49].
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Lemma 2.2.1. Let α, β and u be real-valued positive functions defined on an interval

[a, b]. Assume that β and u are continuous. If α is non-decreasing and u satisfies the

integral inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds, ∀t ∈ [a, b],

then

u(t) ≤ α(t)e
∫ t
a β(s)ds, t ∈ [a, b]. (2.2.7)

2.3 Stochastic Analysis

We start by recalling the definition of a measurable space and a probability space.

Definition 2.3.1. Let Ω be a nonempty set and F be a collection of subsets of Ω. Then,

we call F a σ-algebra on Ω if the following properties hold:

• ∅ ∈ Ω,

• If F ∈ F , then F c ∈ F , where F c is the complement of F in Ω,

• If I1, I2, I3, ... ∈ F , then ∪∞i=1Ii ∈ F .

(Ω,F) is called a measurable space.

Definition 2.3.2. A probability measure P on a measurable space (Ω,F) is a function

on F taking values in [0, 1] such that

• P(∅) = 0, P(Ω) = 1,

• If {Ii} ⊂ F , then P(∪∞i=1Ii) ≤
∑∞

i=1 P(Ii),

• If {Ii} ⊂ F and Ii ∩ Ij = ∅ for i 6= j then P(∪∞i=1Ii) =
∑∞

i=1 P(Ii).

(Ω,F ,P) is called a probability space.

Remark 2.3.3. • A set A ⊂ F is called an event.

• P(A) is the probability of the event A.

• A property which is true except for an event of probability zero is said to hold

almost surely (abbreviated ”a.s.”).

We introduce next the Borel-Cantelli lemma which can be found in [20] and will be

used in Chapter 4. We start by the following definition.
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Definition 2.3.4. Let A1, ...., An, .... be events in a probability space. Then, the event

∩∞n=1 ∪∞m=n Am = {ω ∈ Ω |ω belongs to infinitely many of the An}

is called “An infinitely often” and abbreviated by “An i.o.”.

Lemma 2.3.5. If
∑∞

n=1 P(An) <∞, then P(An i.o.) = 0.

Now, we recall the definition of random variables and stochastic processes.

Definition 2.3.6. Let (Ω,F ,P) be a probability space. Let B be a real Banach space

endowed with the Borel σ-algebra B. A mapping X : Ω→ B is called a B-valued random

variable if for each B ∈ B, we have X−1(B) ∈ F .

Notation: We usually write X and not X(ω).

Definition 2.3.7. A collection {X(t), t ≥ 0} of B-valued random variables is called a

B-valued stochastic process.

Definition 2.3.8. An R-valued stochastic process W is called a Wiener process or Brow-

nian motion if

• W (0) = 0 a.s.

• W (t)−W (s) has normal distribution N (0, t− s) for all t ≥ s ≥ 0.

• for all 0 < t1 < t2 < ... < tn, the random variables W (t1),W (t2)−W (t1), ...,W (tn)−

W (tn−1) are independent.

Furthermore, we mention the Chebyshev’s inequality (see [20]) which will be impor-

tant in Chapters 3 and 4.

Lemma 2.3.9. If X is a random variable and 1 ≤ p <∞, then

P (|X| ≥ λ) ≤ 1

λp
E [|X|p]

for all λ > 0.

We will recall now the definition of a filtration.

Definition 2.3.10. An increasing family {Ft}t≥0 of σ-algebras such that Ft ⊂ F , t ≥ 0

is called a filtration on (Ω,F ,P).
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Definition 2.3.11. Let B be a separable Banach space and X = {X(t), t ≥ 0} be a

B-valued stochastic process. The process X is called adapted to the filtration {Ft}t≥0 if

for any t ≥ 0, the random variable X(t) is Ft-measurable.

Furthermore, we recall the general definition of a stopping time.

Definition 2.3.12. A random variable τ : Ω → [0,+∞] is called a stopping time with

respect to {Ft}t≥0 provided {τ ≤ t} ∈ Ft for all t ≥ 0.

We will recall briefly the basic properties of the Itô stochastic integral in the case of

processes taking values in Hilbert spaces in the case of one dimensional Wiener process.

For a more general and more detailed construction see for example [17]. In order to

introduce the Itô integral, we start by defining a step process. Let H be a real separable

Hilbert space.

Definition 2.3.13. Let X be an (Ft)-adapted stochastic process defined on a filtered

probability space (Ω,F , (Ft) ,P), taking values in H and such that E [|X(t)|2H] < ∞ for

all t ≤ T . We will say that X is a step process if there exists a partition P = {0 = t0 <

t1 < ... < tm = T} such that

X(t) ≡ Xk for tk ≤ t < tk+1 (k = 0, ...,m− 1).

Then, the Itô integral for a step process X is defined as follows.

Definition 2.3.14. LetX be a step process and letW be a one-dimensional (Ft)-adapted

Wiener process. Then,

∫ T

0

XdW =
m−1∑
k=0

Xk (W (tk+1)−W (tk))

is the Itô stochastic integral of X on the interval [0, T ].

Now, we will define the Itô integral for arbitrary adapted H-valued process such that

E
[ ∫ T

0

|X(t)|2H dt
]
<∞ .
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The class of such processes will be denoted by M 2
T (H). It is known, see [17] (Proposition

4.22), that for every X ∈M 2
T (H) there exists a sequence of bounded step processes Xn

such that

E
[ ∫ T

0

|X(t)−Xn(t)|2Hdt
]
→ 0 as n→∞. (2.3.1)

Theorem 2.3.15. Let X ∈ M 2
T (H) and let (Xn) be a sequence of step processes that

satisfy (2.3.1). Then,

E
[∣∣∣∣ ∫ T

0

XndW −
∫ T

0

XmdW

∣∣∣∣2
H

]
= E

[ ∫ T

0

|Xn −Xm|2H dt
]
→ 0 as n,m→∞.

For the L2-limit of stochastic integrals
∫ T

0
XndW we will use the notation of the Itô

integral: ∫ T

0

XdW := lim
n→∞

∫ T

0

XndW .

We will recall the definition of Itô processes.

Definition 2.3.16. Let H be a separable Hilbert space and W be a one-dimensional

Wiener process on (Ω,F ,P). An H-valued stochastic process {X(t)}t≥0 on (Ω,F ,P) is

called an Itô process if its paths are a.s. continuous and if it is represented as

X(t) = X(0) +

∫ t

0

y(s)ds+

∫ t

0

z(s)dW (s) (2.3.2)

where X(0) is F0-measurable, y and z are (Ft)-adapted, y is Bochner integrable and

z ∈M 2
T (H) for all T ≥ 0.

If {X(t)}t≥0 is an Itô process of the form (2.3.2), it can sometimes be written in the

following differential form

dX(t) = y(t)dt+ z(t)dW (t).

Throughout this dissertation, we will also use the relation between Stratonovich and

Itô differentials. We will recall this connection in the case of specific processes that are
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important in the dissertation. Let g ∈ L∞(R). Then, the mapping

G : L2(0, T ;L2
m(R))→ L2(0, T ;L2

m(R))

u 7→ u× g

is well defined and differentiable with

G′(u)h = G(h), u,h ∈ L2(0, T ;L2
m(R)).

In particular, G′(u)[G(u)] = G2(u). We will use the fact that for every adapted L2
m(R)-

valued process u such that

E
[ ∫ T

0

|u(t)|2L2
m(R) dt

]
<∞ ,

we have

∫ t

0

(Gu) ◦ dW (s) =
1

2

∫ t

0

G′(u)G(u)(s)ds+

∫ t

0

G(u)(s)dW (s), a.s. (2.3.3)

Now, we state a lemma which will be frequently used in the following chapters.

Lemma 2.3.17. Let {X(t)}t≥0 be an Itô process taking values in a Hilbert space H and

satisfying the stochastic differential

dX(t) = y(t)dt+ z(t)dW (t)

where y and z are such that
∫ T

0
|y(s)|2Hds <∞ and z ∈M 2

T (H) for all T ≥ 0. Then,

d
(
|X(t)|2H

)
=
(
2〈X(t), y(t)〉H + |z(t)|2H

)
dt+ 2 〈X(t), z(t)〉H dW (t).

We note that the above lemma is a special case of the Itô formula.

Next, we recall a special case of the Burkholder-Davis-Gundy(BDG) inequality that

will be used in the following chapters.
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Lemma 2.3.18. For every 1 ≤ p <∞, there exists a constant Cp > 0 such that for every

(Ft)-adapted stochastic process φ taking values in a separable Hilbert space H, we have

E
[

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

φ(s)dW (s)

∣∣∣∣p
H

]
≤ CpE

[(∫ T

0

|φ(s)|2Hds
) p

2
]
.

We finish this section by an important proposition which will be used in Chapter 3.

First, we define the spaces of progressively measurable processesHm := L2(Ω;L2(0, T ;L2
m))

and

H1
m :=

{
φ ∈ Hm| E

[ ∫ T

0

|∇φ(t)|2L2dt

]
<∞

}
,

H2
m :=

{
φ ∈ H1

m| E
[ ∫ T

0

|∆φ(t)|2L2dt

]
<∞

}
,

with the corresponding norms

|φ|2Hm = E
[ ∫ T

0

|φ(t)|2L2
m
dt

]
,

|φ|2H1
m

= |φ|2Hm + E
[ ∫ T

0

|∇φ(t)|2L2 dt

]
,

and

|φ|2H2
m

= |φ|2H1
m

+ E
[ ∫ T

0

|∆φ(t)|2L2 dt

]
.

The operator ∇ = IL2([0,T ]×Ω)⊗∇ is well defined onH1
m and the operator ∆ = IL2([0,T ]×Ω)⊗

∆ is well defined on H2
m. Next, we present the following proposition.

Proposition 2.3.19. If a sequence φn satisfies as n→∞

φn → φ and ∇φn → ψ

weakly in Hm, for φ, ψ ∈ Hm, then φ ∈ H1
m and ψ = ∇φ. In addition, if as n→∞

∆φn → ξ
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weakly in Hm, for ξ ∈ Hm, then φ ∈ H2
m and ξ = ∆φ.

Proof. The spaces H1
m and H2

m with their respective norms are Hilbert spaces that have

continuous embeddings into Hm. Therefore, if a sequence φn satisfies as n→∞

φn → φ and ∇φn → ψ

in norm in Hm, for φ, ψ ∈ Hm, then φ ∈ H1
m and ψ = ∇φ. If additionally

∆φn → ξ

in norm in Hm, for ξ ∈ Hm, then, φ ∈ H2
m and ξ = ∆φ. Since, by the Mazur Theorem,

see Theorem 2.5.16 in [40], convex subsets of the Hilbert space Hm×Hm are norm closed

if and only if they are weakly closed, the lemma follows.

2.4 Function Spaces on a Bounded Lattice

In this section, we consider 0 < L <∞. Given h > 0, let Xh be a discretization of [−L,L]

with the vertices xi = ih, i.e.

Xh = {ih|i = 0,±1, ...,±I},

with h = L
I
. Given k, T > 0, let Tk be a discretisation of [0, T ] with the vertices tn = nk,

i.e.

Tk = {nk|n = 0, 1, ..., N},

with k = T
N

.

For any v : Xh → R3, we define the functions τ±v : Xh → R3 by

τ+v(xi) := v(xi + h) for all − I ≤ i ≤ I − 1,

τ−v(xi) := v(xi − h) for all − (I − 1) ≤ i ≤ I.
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For any v : Xh → R3, we denote by D+ and D− the following finite difference operators

D+v(xi) :=
τ+v(xi)− v(xi)

h
for all − I ≤ i ≤ I − 1,

D−v(xi) :=
v(xi)− τ−v(xi)

h
for all − (I − 1) ≤ i ≤ I.

For any v : Xh → R3, we also denote by ∆̃ the following discretised Laplacian

∆̃v(xi) := D+D−v(xi) = D−D+v(xi)

=
τ+v(xi)− 2v(xi) + τ−v(xi)

h2
for all − (I − 1) ≤ i ≤ I − 1.

We recall below the definitions of some Lp-spaces of functions defined on the lattice

Xh:

•

L∞h (Xh) := {v : Xh → R3}

with the associated norm |v|L∞h := supxi∈Xh |v(xi)|,

• for 1 ≤ p <∞

Lph(Xh) := {v : Xh → R3}

with the associated norm |v|Lph :=
(
h
∑

xi∈Xh |v(xi)|p
) 1
p .

• In particular, for p = 2 we obtain a Hilbert space

L2
h(Xh) := {v : Xh → R3}

with the associated inner product 〈u,v〉L2
h

:= h
∑

xi∈Xh〈u(xi),v(xi)〉.

Furthermore, we present the following discrete Gronwall’s inequality which will be used

in Chapter 5.

Lemma 2.4.1. Let yn and gn be non-negative sequences and C a non-negative constant.

If

yn ≤ C +
n−1∑
k=0

gkyk for n ≥ 0,
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then

yn ≤ Ce
∑n−1
j=0 gj for n ≥ 0.

Proof. The lemma follows immediately from Theorem 5.1 on page 498 of [19]. It is enough

to define a discrete measure µ({k}) = gk.

2.5 Function Spaces on an Unbounded Lattice

In this section, we consider U = R. Given h > 0, let Zh be a discretization of R with the

vertices xi = ih, i.e.

Zh = {ih|i = 0,±1, ...}.

For any v : R→ Rn (n = 1, 3), we define the functions τ±v : R→ Rn by

τ±v(x) := v(x± h) for all x ∈ R.

For any v : R → Rn (n = 1, 3), we denote by D+ and D− the following finite difference

operators

D+v(x) :=
τ+v(x)− v(x)

h
for all x ∈ R,

D−v(x) :=
v(x)− τ−v(x)

h
for all x ∈ R.

For any v : R→ Rn (n = 1, 3), we also denote by ∆̃ the following discretised Laplacian

∆̃v(x) := D+D−v(x) = D−D+v(x)

=
τ+v(x)− 2v(x) + τ−v(x)

h2
for all x ∈ R.

We note that all the operators τ±, D± and ∆̃ depend on h but we omit h for simplicity

of notations. We will use the same notations for the restrictions of the operators τ±, D±

and ∆̃ acting on functions v : Zh → R3.

We recall below the definitions of Lp-spaces of functions defined on the lattice Zh:
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•

L∞h (Zh) :=

{
v : Zh → R3| sup

xi∈Zh
|v(xi)| <∞

}
with the associated norm |v|L∞h := supxi∈Zh |v(xi)|,

• for 1 ≤ p <∞

Lph(Zh) :=

{
v : Zh → R3| h

∑
xi∈Zh

|v(xi)|p <∞
}

with the associated norm |v|Lph :=
(
h
∑

xi∈Zh |v(xi)|p
) 1
p .

• In particular, for p = 2 we obtain a Hilbert space

L2
h(Zh) :=

{
v : Zh → R3| h

∑
xi∈Zh

|v(xi)|2 <∞
}

with the associated inner product 〈u,v〉L2
h

:= h
∑

xi∈Zh〈u(xi),v(xi)〉.

•

H1
h(Zh) :=

{
v : Zh → R3| |v|L2

h
+ |D+v|L2

h
<∞

}
with the associated norm |v|H1

h
:=
√
|v|2

L2
h

+ |D+v|2
L2
h
,

• for 1 ≤ p <∞ and m > 0

Lpm,h(Zh) :=

{
v : Zh → R3| h

∑
xi∈Zh

e−
|xi|
m |v(xi)|p <∞

}

with the associated norm |v|Lpm,h :=
(
h
∑

xi∈Zh e−
|xi|
m |v(xi)|p

) 1
p
.

• In particular, for p = 2

L2
m,h(Zh) :=

{
v : Zh → R3| h

∑
xi∈Zh

e−
|xi|
m |v(xi)|2 <∞

}

is a Hilbert space with the associated inner product

〈u,v〉L2
m,h

:= h
∑
xi∈Zh

e−
|xi|
m 〈u(xi),v(xi)〉.
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Furthermore, we will state the following result which will be used in Chapter 3.

Lemma 2.5.1. We define

ζm(xi) := e−
|xi|
2m =

√
ρm(xi), xi ∈ Zh.

For sufficiently large m, we have

|ζm(xi)|2 − |D−ζm(xi)|2 ≥ 0 (2.5.1)

for every i and h < 1.

Proof. By simple calculation, we get for α := 1
2m

|ζm(xi)|2 − |D−ζm(xi)|2 = e−2α|xi|
(

1−
(
e−α(|xi−h|−|xi|) − 1

)2

h2

)
.

For xi ≥ h, we have

|ζm(xi)|2 − |D−ζm(xi)|2 = e−2αxi

(
1−

(
eαh − 1

)2

h2α2
α2

)
.

By taking m sufficiently large, we get

|ζm(xi)|2 − |D−ζm(xi)|2 = e−2αxi(1− α2) +O(hα)

which implies (2.5.1). For xi < h, we have

|ζm(xi)|2 − |D−ζm(xi)|2 = e2αxi

(
1−

(
e−αh − 1

)2

h2α2
α2

)
.

By taking m sufficiently large, we get

|ζm(xi)|2 − |D−ζm(xi)|2 = e2αxi(1− α2) +O(hα)

which implies (2.5.1).
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Throughout this dissertation, we will frequently use the following result.

Lemma 2.5.2. For any two functions u : Zh → R3 and v : Zh → R , we have

|τ+u|Lph = |u|Lph = |τ−u|Lph , (2.5.2)

|D+u|Lph = |D−u|Lph , (2.5.3)∣∣(D+)2u
∣∣
Lph

= |∆̃u|Lph , (2.5.4)∣∣(τ+v)u
∣∣
Lph

=
∣∣v(τ−u)

∣∣
Lph
, (2.5.5)∣∣(τ+v)D+u

∣∣
Lph

= |vD−u|Lph , (2.5.6)

|D+vD+u|Lph = |D−vD−u|Lph (2.5.7)

for 1 ≤ p ≤ ∞.

Proof. We will prove (2.5.3) and all the other equalities follow in the same manner. For

1 ≤ p <∞, by simple calculations

|D+u|p
Lph

=
∑
xi∈Zh

h|D+u(xi)|p =
∑
xi∈Zh

h

∣∣∣∣τ+u(xi)− u(xi)

h

∣∣∣∣p
=
∑
xi∈Zh

h

∣∣∣∣u(xi)− τ−u(xi)

h

∣∣∣∣p =
∑
xi∈Zh

h|D−u(xi)|p = |D−u|p
Lph
.

For p =∞,

|D+u|L∞h = sup
xi∈Zh

∣∣∣∣τ+u(xi)− u(xi)

h

∣∣∣∣ = sup
xi∈Zh

∣∣∣∣u(xi)− τ−u(xi)

h

∣∣∣∣ = |D−u|L∞h .

Next, we state some lemmas which will be used throughout the rest of this dissertation.

Lemma 2.5.3. For any two functions u,v : R→ R3, we have for every x ∈ R

D+〈u(x),v(x)〉 = 〈D+u(x), τ+v(x)〉+ 〈u(x), D+v(x)〉

= 〈D+u(x),v(x)〉+ 〈τ+u(x), D+v(x)〉,
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D+(u× v)(x) = D+u(x)× τ+v(x) + u(x)×D+v(x)

= D+u(x)× v(x) + τ+u(x)×D+v(x).

The same equalities hold if we replace τ+ and D+ by τ− and D− respectively.

Proof. Simple calculation reveals the following

D+〈u(x),v(x)〉 =
1

h

(
〈τ+u(x), τ+v(x)〉 − 〈u(x),v(x)〉

)
=

1

h

(
〈τ+u(x)− u(x), τ+v(x)〉+ 〈u(x), τ+v(x)− v(x)〉

)
= 〈D+u(x), τ+v(x)〉+ 〈u(x), D+v(x)〉.

The remaining equalities can be obtained in the same manner.

Lemma 2.5.4. For any two functions u,v : Zh → R3 in L2
h, we have the discrete

integration by parts formula

〈u, D+v〉L2
h

= −〈D−u,v〉L2
h
.

Proof. It is clear that

〈u, D+v〉L2
h

=

〈
u,
τ+v − v

h

〉
L2
h

=

〈
u,
τ+v

h

〉
L2
h

−
〈
u,

v

h

〉
L2
h

=

〈
τ−u

h
,v

〉
L2
h

−
〈u

h
,v
〉
L2
h

= −
〈

u− τ−u

h
,v

〉
L2
h

= −〈D−u,v〉L2
h
.
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Lemma 2.5.5. For any function u : Zh → R3 such that |u| = 1, we have the following

relation

2〈u, ∆̃u〉+ |D+u|2 + |D−u|2 = 0.

Proof. From Lemma 2.5.3, we get

∆̃(|u|2) = D+
(
〈D−u,u〉+ 〈τ−u, D−u〉

)
=
〈

∆̃u,u
〉

+
〈
τ+D−u, D+u

〉
+
〈
D+τ−u, D−u

〉
+
〈
u, ∆̃u

〉
= 2

〈
u, ∆̃u

〉
+ |D+u|2 + |D−u|2.

Having |u| = 1, we deduce that ∆̃(|u|2) = 0 and the result follows.

The following lemma can be found in [51] (Inequality (11)).

Lemma 2.5.6. For every p ∈ [2,∞], any integer n ≥ 1 and any non-negative integer

k < n, there exists a constant K = K(p, k, n) independent of h such that for any function

u : Zh → R3 ∣∣(D+)ku
∣∣
Lph
≤ K |u|1−

(k+1
2−

1
p )

n

L2
h

∣∣(D+)nu
∣∣ k+1

2−
1
p

n

L2
h

.

For any f : R → R3, we will denote by fh : Zh → R3 the restriction of f to Zh. We

define from fh a piecewise constant function defined on the whole real line as follows. For

each x, let xi be such that x ∈ [xi, xi+1). Then,

rhf
h(x) = fh(xi).

The following lemma will be frequently used throughout this dissertation.

Lemma 2.5.7. (a) If f : R→ R3 is such that f ∈ H1(R) then fh ∈ L2
h(Zh).

(b) Let f : R→ R3 have the property

∫
R
|∇f(x)|2dx <∞ .
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Then,

lim
h→0

∫
R

∣∣rhfh(x)− f(x)
∣∣2 dx = 0 .

Proof. We start by proving part (a). Simple calculation reveals

|fh|2L2
h

=
∑
xi∈Zh

h|f(xi)|2

=
∑
xi∈Zh

h|f(xi)|2 −
∫
R
|f(x)|2dx+

∫
R
|f(x)|2dx

=
∑
xi∈Zh

∫ xi+1

xi

(|f(xi)|2 − |f(x)|2)dx+

∫
R
|f(x)|2dx

= −
∑
xi∈Zh

∫ xi+1

xi

(∫ x

xi

∇|f(s)|2ds
)
dx+

∫
R
|f(x)|2dx

= −
∑
xi∈Zh

∫ xi+1

xi

(
2

∫ x

xi

〈f(s),∇f(s)〉 ds
)
dx+

∫
R
|f(x)|2dx

≤ 2
∑
xi∈Zh

∫ xi+1

xi

(∫ xi+1

xi

|f(s)||∇f(s)|ds
)
dx+

∫
R
|f(x)|2dx

≤
∑
xi∈Zh

h

∫ xi+1

xi

|f(s)|2ds+
∑
xi∈Zh

h

∫ xi+1

xi

|∇f(s)|2ds+

∫
R
|f(x)|2dx

≤ h

∫
R
(|f(s)|2 + |∇f(s)|2)ds+

∫
R
|f(x)|2dx

≤ h|f |2H1 + |f |2L2

<∞.

Next, we prove part (b). We have,

∫
R

∣∣rhfh(x)− f(x)
∣∣2 dx =

∑
xi∈Zh

∫ xi+1

xi

|f(xi)− f(x)|2 dx

=
∑
xi∈Zh

∫ xi+1

xi

(∫ x

xi

∇f(s)ds

)2

dx

≤
∑
xi∈Zh

∫ xi+1

xi

(∫ xi+1

xi

|∇f(s)|ds
)2

dx

≤ h2
∑
xi∈Zh

∫ xi+1

xi

|∇f(s)|2ds
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≤ h2

∫
R
|∇f(s)|2ds.

Then, using the assumption on f we get

lim
h→0

∫
R

∣∣rhfh(x)− f(x)
∣∣2 dx = 0.

Throughout the rest of the thesis, we will use the notation C to refer to a generic

constant which may take different values at different occurences.

Now for vh : Zh → R3, we denote by ph the interpolation operator such that for each

x, let xi be such that x ∈ [xi, xi+1) and

phv
h(x) = vh(xi) +D+vh(xi)(x− xi).

We note that phv
h is continuous in R and that

∇phvh = rhD
+vh. (2.5.8)

We have with these operators the following proposition. We note that a similar proposi-

tion can be found in [36] (see Lemma 3.1, 3.2 (page 224-226)).

Proposition 2.5.8. (a) Assume that

|D+vh|L2
h
≤ C

where C is independent of h. If one of the interpolants phv
h, rhv

h converges strongly in

L2
m when h tends to 0, then the other one also converges strongly to the same limit.

(b) Assume that

|vh|L2
m,h

+ |D+vh|L2
h
≤ C
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where C is independent of h. If one of the interpolants phv
h, rhv

h converges weakly in

L2
m when h tends to 0, then the other one also converges weakly to the same limit.

Proof. First we prove (a). For any x ∈ [xi, xi+1), we have

phv
h(x)− rhvh(x) = D+vh(xi)(x− xi).

Then,

sup
xi≤x≤xi+1

|phvh(x)− rhvh(x)| ≤ h|D+vh(xi)|.

Therefore,

|phvh − rhvh|2L2
m

=

∫
R
|phvh(x)− rhvh(x)|2ρm(x)dx

=
∑
xi∈Zh

∫ xi+1

xi

|phvh(x)− rhvh(x)|2ρm(x)dx

≤ h2
∑
xi∈Zh

|D+vh(xi)|2
∫ xi+1

xi

ρm(x)dx

≤ h2|D+vh|2L2
h

≤ Ch2.

Consequently,

lim
h→0
|phvh − rhvh|2L2

m
= 0. (2.5.9)

Now, we assume that there exists v ∈ L2
m such that

lim
h→0
|phvh − v|L2

m
= 0. (2.5.10)

We have

|rhvh − v|L2
m
≤ |rhvh − phvh|L2

m
+ |phvh − v|L2

m
.

Hence, from (2.5.9) and (2.5.10) we get

lim
h→0
|rhvh − v|L2

m
= 0.
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Similarly, if there exists v ∈ L2
m such that

lim
h→0
|rhvh − v|L2

m
= 0,

we obtain

lim
h→0
|phvh − v|L2

m
= 0.

Next, we prove (b). We note that

|rhvh|2L2
m

=
∑
xi∈Zh

∫ xi+1

xi

|rhvh(x)|2ρm(x)dx

=
∑
xi∈Zh

|vh(xi)|2
∫ xi+1

xi

ρm(x)dx

≤ C|vh|2L2
m,h

≤ C.

Similarly,

|phvh|2L2
m

=
∑
xi∈Zh

∫ xi+1

xi

|phvh(x)|2ρm(x)dx

≤ 2
∑
xi∈Zh

∫ xi+1

xi

|vh(xi)|2ρm(x)dx+ 2
∑
xi∈Zh

∫ xi+1

xi

|D+vh(xi)|2|x− xi|2ρm(x)dx

≤ C
∑
xi∈Zh

|vh(xi)|2
∫ xi+1

xi

ρm(x)dx+ C
∑
xi∈Zh

|vh(xi+1)|2
∫ xi+1

xi

ρm(x)dx

≤ C|vh|2L2
m,h

≤ C.

We consider φ ∈ C∞c (R). Then,

lim
h→0
|rhφh − φ|L2

m
= 0.

35



Thus, we have

lim
h→0

〈
rhv

h,φ− rhφh
〉
L2
m

= 0, (2.5.11)

lim
h→0

〈
phv

h,φ− rhφh
〉
L2
m

= 0. (2.5.12)

Moreover,

〈rhvh − phvh, rhφh〉L2
m

=
∑
xi∈Zh

∫ xi+1

xi

〈
D+vh(xi)(x− xi),φh(xi)

〉
ρm(x)dx

≤ h
∑
xi∈Zh

|D+vh(xi)||φh(xi)|
∫ xi+1

xi

ρm(x)dx

≤ h2
∑
xi∈Zh

|D+vh(xi)||φh(xi)|ρm(xi)

≤ h2

2

∑
xi∈Zh

|D+vh(xi)|2ρm(xi) +
h2

2

∑
xi∈Zh

|φh(xi)|2ρm(xi)

≤ h

2

(
|D+vh|2L2

m,h
+ |φh|2L2

m,h

)
≤ h

2

(
|D+vh|2L2

h
+ |φh|2L2

m,h

)
.

Hence, 〈
rhv

h − phvh, rhφh
〉
L2
m
≤ Ch,

which implies

lim
h→0

〈
rhv

h − phvh, rhφh
〉
L2
m

= 0. (2.5.13)

Now, we assume that there exists v ∈ L2
m such that

lim
h→0

〈
rhv

h − v,φ
〉
L2
m

= 0. (2.5.14)

We have

〈phvh − v,φ〉L2
m

= 〈phvh − rhvh, rhφh〉L2
m

+ 〈phvh,φ− rhφh〉L2
m

+ 〈rhvh, rhφh − φ〉L2
m

+ 〈rhvh − v,φ〉L2
m
.
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Hence, from (2.5.11), (2.5.12), (2.5.13) and (2.5.14) we get

lim
h→0

〈
phv

h − v,φ
〉
L2
m

= 0.

Similarly, if there exists v ∈ L2
m such that

lim
h→0

〈
phv

h − v,φ
〉
L2
m

= 0,

we obtain

lim
h→0

〈
rhv

h − v,φ
〉
L2
m

= 0.

In what follows, we denote by Hm,h := L2(Ω;L2(0, T ;L2
m,h)) the space of progressively

measurable processes taking values in L2
m,h. The operator D± = IL2([0,T ]×Ω) ⊗D± is well

defined on Hm,h and the operator ∆̃ = IL2([0,T ]×Ω) ⊗ ∆̃ is well defined on Hm,h.

For m > 0 and h > 0, we define two operators

I ⊗ rh : Hm,h → Hm,

I ⊗ ph : Hm,h → Hm,

which will still be denoted by rh and ph for simplicity and will be used in Chapter 3.

Next, we state that we have the following proposition which can be proved similarly

to Proposition 2.5.8.

Proposition 2.5.9. (a) Assume that φh satisfies

E
[ ∫ T

0

|D+φh(t)|2L2
h
dt

]
≤ C

where C is independent of h. If one of the interpolants phφ
h, rhφ

h converges strongly in

Hm when h tends to 0, then the other one also converges strongly to the same limit.
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(b) Assume that φh satisfies

E
[ ∫ T

0

|φh(t)|2L2
m,h
dt

]
+ E

[ ∫ T

0

|D+φh(t)|2L2
h
dt

]
≤ C

where C is independent of h. If one of the interpolants phφ
h, rhφ

h converges weakly in

Hm when h tends to 0, then the other one also converges weakly to the same limit.
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Chapter 3

A Semi-Discrete Finite Difference Scheme on Real Line

3.1 Introduction

In this chapter, we employ a semi-discrete finite difference method to derive the existence

of global strong solutions to the stochastic LLG problem (1.3.1)-(1.3.3). We start to prove

the uniqueness of solutions. The proof of existence of solutions is long and complicated

and here we will sketch the main steps and their importance. We start with semi-discrete

finite difference approximations (3.3.1). We prove the existence and uniqueness of semi-

discrete solutions to equation (3.3.1). Then, we transform the discrete stochastic LLG

equation into a partial differential equation with random coefficients (3.6.1) (without the

Itô term). The resulting equation has time-differentiable solutions. Finally, we prove

uniform estimates which allow us to use the method of compactness in order to get the

limit when the discretisation parameter goes to zero. We emphasis that we apply method

of compactness to the random partial differential equation and therefore we do not have

to use method of martingale solution exploited in other papers ([11], [25]). We note that

the proof can’t be transferred to equations in multidimensional domains because uniform

estimates for Laplacian and fourth power norm of gradient can’t be obtained in higher

dimensions.

Let (Ω,F , (Ft) ,P) be a given probability space endowed with a filtration satisfying

the usual assumptions. Invoking the relation between Stratonovich and Itô differentials
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given in (2.3.3), problem (1.3.1)-(1.3.3) can be written as follows

du =

(
µu×∆u− λu× (u×∆u) +

µ2

2
(u× g)× g

)
dt+ µ(u× g)dW, (3.1.1)

u(0, x) = u0(x), (3.1.2)

|u0(x)| = 1. (3.1.3)

We assume that λ > 0 and µ 6= 0. We recall that a global strong solution of the problem

(3.1.1)-(3.1.3) is defined in Chapter 1.

Remark 3.1.1. (a) Definition 1.3.1 implies that for almost every t ≤ T and almost every

x ∈ R, we have ∇u(t, x) well defined. Then, by part (2) of the definition, we have

∇
(
|u(t, x)|2

)
= 0, (t, x)-a.e.,

which implies

〈u(t, x),∇u(t, x)〉 = 0, (t, x)-a.e.

In addition, we have

〈u(t, x),∆u(t, x)〉 = ∇
(
〈u(t, x),∇u(t, x)〉

)
− |∇u(t, x)|2 = −|∇u(t, x)|2, (t, x)-a.e.

(b) The elementary property (2.2.4) yields

|u(t, x)×∆u(t, x)|2 + 〈u(t, x),∆u(t, x)〉2 = |u(t, x)|2|∆u(t, x)|2.

Then, from Definition 1.3.1 and part (a) of this remark, we get

|u(t, x)×∆u(t, x)|2 + |∇u(t, x)|4 = |∆u(t, x)|2.

Integrating with respect to x and t, we deduce from the definition

∫ T

0

|∇u(t)|4L4 dt <∞ .
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Lemma 3.1.2. A process u is a strong solution of problem (3.1.1)-(3.1.3) if and only if

it satisfies conditions (1)-(3) of Definition 1.3.1 and

u(t) =u0 + λ

∫ t

0

∆u(s) ds+ µ

∫ t

0

u(s)×∆u(s) ds+ λ

∫ t

0

|∇u(s)|2u(s) ds

+
µ2

2

∫ t

0

(u(s)× g)× gds+ µ

∫ t

0

(u(s)× g)dW (s) . (3.1.4)

Proof. Using the elementary property (2.2.3) and Remark 3.1.1 (a) we deduce

u× (u×∆u) = 〈u,∆u〉u− 〈u,u〉∆u

= −|∇u|2u−∆u.

Thus (1.3.4) and (3.1.4) are equivalent.

The main theorem of this chapter is stated as follows.

Theorem 3.1.3. Assume that |u0(x)| = 1 for every x ∈ R, ∇u0 ∈ L2 and g ∈ H2. Then

there exists a unique global strong solution u to (3.1.1)-(3.1.3), such that for every p ≥ 1

E
[

ess sup
t∈[0,T ]

|∇u(t)|2pL2

]
+ E

[(∫ T

0

|∆u(t)|2L2dt

)p]
<∞ . (3.1.5)

Corollary 3.1.4. Under assumptions of Theorem 3.1.3, for every t > 0 we have

lim
|x|→∞

|∇u(t, x)| = 0 .

3.2 Uniqueness of Global Strong Solution

In this section, we prove the uniqueness of solutions to problem (3.1.1)-(3.1.3). We will

start with a more general result.

Theorem 3.2.1. Let u1 and u2 be two solutions of (3.1.1)-(3.1.3) on [0, T ] in the sense

of Definition 1.3.1, starting with u1(0) and u2(0), such that u1(0) − u2(0) ∈ L2. Then
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u1(t)− u2(t) ∈ L2 P-a.s. for every t ∈ [0, T ] and there exists a random variable CT such

that

|u1(t)− u2(t)|L2 ≤ CT |u1(0)− u2(0)|L2 , t ∈ [0, T ] .

Proof. In order to simplify notations, we will assume in the proof without loss of gener-

ality, that λ = µ = 1. Setting ū = u1 − u2 and using Lemma 3.1.2, we obtain

dū = (∆ū + u1 ×∆ū + ū×∆u2 + |∇u1|2ū + 〈∇u1 +∇u2,∇ū〉u2

+
1

2
(ū× g)× g)dt+ (ū× g)dW.

Multiplying by ζm(x) =
√
ρm(x) = e−

|x|
2m and then using Lemma 2.3.17, we get

1

2
d|ζmū|2L2 −

1

2
|ζmū× g|2L2dt =

(∫
R
〈ζmū, ζm∆ū〉 dx+

∫
R
〈ζmū, ζmu1 ×∆ū〉dx

+

∫
R
〈ζmū, ζmū×∆u2〉dx+

∫
R
〈ζmū, ζm|∇u1|2ū〉dx

+

∫
R
〈ζmū, ζmu2〉 〈∇u1 +∇u2,∇ū〉 dx

+
1

2

∫
R
〈ζmū, (ζmū× g)× g〉 dx

)
dt

+

∫
R
〈ζmū, ζmū× g〉dxdW.

Using (2.2.1) and (2.2.2), we find that

〈ζmū, ζmū× g〉 = 0

and

1

2

∫
R
〈ζmū, (ζmū× g)× g〉 dx = −1

2
|ζmū× g|2L2 .

Therefore, we obtain

1

2

d

dt
|ζmū|2L2 =

∫
R
〈ζmū, ζm∆ū〉dx+

∫
R
〈ζmū, ζmu1 ×∆ū〉dx

+

∫
R
〈ζmū, ζm|∇u1|2ū〉dx
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+

∫
R
〈ζmū, ζmu2〉 〈∇u1 +∇u2,∇ū〉 dx. (3.2.1)

We consider the first term on the right hand side,

∫
R
〈ζmū, ζm∆ū〉 dx =

∫
R

〈
ζ2
mū,∆ū

〉
dx = −

∫
R

〈
∇(ζ2

mū),∇ū
〉
dx

= −2

∫
R
〈ζmū,∇ζm∇ū〉 dx−

∫
R
|ζm∇ū|2dx.

For the second term on the right hand side, using (2.2.1) and (2.2.5) we have

∫
R
〈ζmū, ζmu1 ×∆ū〉 dx =

∫
R
〈∆ū, ζmū× ζmu1〉 dx

= −
∫
R

〈
∇ū,∇(ζ2

mū× u1)
〉
dx

= −2

∫
R
〈∇ū, ζm∇ζmū× u1〉 dx−

∫
R

〈
∇ū, ζ2

m∇ū× u1

〉
dx

−
∫
R

〈
∇ū, ζ2

mū×∇u1

〉
dx

= −2

∫
R
〈u1 ×∇ζm∇ū, ζmū〉 dx−

∫
R
〈∇u1 × ζm∇ū, ζmū〉 dx.

Consequently, we get from (3.2.1)

1

2

d

dt
|ζmū|2L2 + |ζm∇ū|2L2 = −2

∫
R
〈∇ζm∇ū, ζmū〉 dx

− 2

∫
R
〈u1 ×∇ζm∇ū, ζmū〉 dx

−
∫
R
〈∇u1 × ζm∇ū, ζmū〉 dx

+

∫
R
〈ζmū, ζmu2〉 〈∇u1 +∇u2,∇ū〉 dx

+

∫
R

〈
ζmū, ζm|∇u1|2ū

〉
dx.
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Integrating with respect to t and using part (2) of Definition 1.3.1 gives

1

2
|ζmū|2L2 −

1

2
|ζmū(0)|2L2 +

∫ t

0

|ζm∇ū|2L2ds ≤ 4

∫ t

0

|ζmū|L2 |∇ζm∇ū|L2ds

+

∫ t

0

|ζmū|L2|∇u1|L∞|ζm∇ū|L2ds

+

∫ t

0

|ζmū|L2 |∇(u1 + u2)|L∞ |ζm∇ū|L2ds

+

∫ t

0

|ζmū|2L2 |∇u1|2L∞ds.

Thus we get, using Young’s inequality (2.2.6) for p = q = 2,

1

2
|ζmū|2L2 −

1

2
|ζmū(0)|2L2 +

1

2

∫ t

0

|ζm∇ū|2L2ds ≤ 8

∫ t

0

|ζmū|2L2ds+
1

2

∫ t

0

|∇ζm∇ū|2L2ds

+

∫ t

0

|ζmū|2L2|∇u1|2L∞ds

+

∫ t

0

|ζmū|2L2

(
|∇u1|2L∞ + |∇u2|2L∞

)
ds

+

∫ t

0

|ζmū|2L2|∇u1|2L∞ds.

Consequently, we obtain

|ζmū|2L2 − |ζmū(0)|2L2 +

∫ t

0

|ζm∇ū|2L2ds−
∫ t

0

|∇ζm∇ū|2L2ds

≤ C

∫ t

0

|ζmū|2L2

(
1 + |∇u1|2L∞ + |∇u2|2L∞

)
ds.

Using the fact that |∇ζm| = 1
2m
|ζm| a.e. we find that for m > 1

∫ t

0

|ζm∇ū|2L2ds−
∫ t

0

|∇ζm∇ū|2L2ds =

∫ t

0

(
1− 1

4m2

)
|ζm∇ū|2L2ds ≥ 0,

and therefore

|ζmū|2L2 ≤ |ζmū(0)|2L2 + C

∫ t

0

|ζmū|2L2

(
1 + |∇u1|2L∞ + |∇u2|2L∞

)
ds . (3.2.2)
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Hence, using Lemma 2.1.1 we have P-a.s.

CT :=

∫ T

0

(1 + |∇u1|2L∞ + |∇u2|2L∞)ds

≤ C

∫ T

0

(1 + |∇u1|2H1 + |∇u2|2H1)ds

≤ C

∫ T

0

(1 + |∇u1|2L2 + |∆u1|2L2 + |∇u2|2L2 + |∆u2|2L2)ds

≤ CT + CT ess sup
t∈[0,T ]

|∇u1|2L2 + C

∫ T

0

|∆u1|2L2ds+ CT ess sup
t∈[0,T ]

|∇u2|2L2 + C

∫ T

0

|∆u2|2L2ds

<∞.

Then, using Lemma 2.2.1, we obtain from (3.2.2)

|ζmū|2L2 ≤ |ζmū(0)|2L2eC
∫ t
0 (1+|∇u1|2L∞+|∇u2|2L∞ )ds

≤ CT |ζmū(0)|2L2 . (3.2.3)

Finally, by taking m to ∞, we deduce using the Monotone Convergence Theorem

|u1(t)− u2(t)|2L2 ≤ CT |u1(0)− u2(0)|2L2 , t ∈ [0, T ] ,

and the result follows.

Corollary 3.2.2. Let u1 and u2 be two solutions of (3.1.1)-(3.1.3) on [0, T ] in the sense

of Definition 1.3.1, such that u1(0) = u2(0). Then u1(t) = u2(t) in L2
m P-a.s. for every

t ∈ [0, T ].

Proof. The result follows from the theorem above. More precisely, it follows from (3.2.3).

3.3 The Semi-Discrete Finite Difference Scheme

In this section, we design a semi-discrete finite difference method to find approximate

solutions to (3.1.1)-(3.1.3). More precisely, we prove in the following sections that the

finite difference solutions converge to a global strong solution of (3.1.1)-(3.1.3).
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We assume that g and u0 satisfy the conditions in Theorem 3.1.3. We recall that

gh : Zh → R3 is the restriction of g to Zh. Our first aim is to prove the existence and

uniqueness of solution uh : R+ × Zh → R3 to the following problem

duh =

(
µuh × ∆̃uh − λuh × (uh × ∆̃uh) +

µ2

2
(uh × gh)× gh

)
dt+ µ(uh × gh)dW,

(3.3.1)

uh(0, xi) = u0(xi), (3.3.2)

|u0(xi)| = 1. (3.3.3)

A global strong solution of the problem (3.3.1)-(3.3.3) is defined as follows.

Definition 3.3.1. Given T ∈ (0,∞), we call an (Ft)-adapted stochastic process uh =

{uh(t); t ≤ T} taking values in L2
m,h for every m > 0, a strong solution to (3.3.1)-(3.3.3)

for the time interval [0, T ], if uh satisfies (1)-(4) below:

(1) for every m > 0

uh(·) ∈ C([0, T ], L2
m,h), P-a.s.,

(2) for every t ∈ [0, T ] and xi ∈ Zh

|uh(t, xi)| = 1,

(3)

E
[

sup
t∈[0,T ]

∣∣D+uh(t)
∣∣2
L2
h

]
<∞ ,

(4) the following equation holds P-a.s. for all t ∈ [0, T ] in L2
m,h:

uh(t) = u0 + µ

∫ t

0

uh(s)× ∆̃uh(s)ds− λ
∫ t

0

uh(s)×
(
uh(s)× ∆̃uh(s)

)
ds

+
µ2

2

∫ t

0

(
uh(s)× gh

)
× ghds+ µ

∫ t

0

(
uh(s)× gh

)
dW (s). (3.3.4)

Moreover, if uh is a strong solution on [0, T ] for all T ≥ 0, we say that uh is a global

strong solution.
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We note that in equation (3.3.4) the first three integrals are Bochner integrals in the

space L2
m,h and the last one is the Itô integral in L2

m,h.

Remark 3.3.2. By definition of the discrete Laplacian ∆̃, part (3) of Definition 3.3.1

immediately yields

E
[ ∫ T

0

∣∣∣∆̃uh(t)
∣∣∣2
L2
h

dt

]
<∞.

3.3.1 Uniqueness of Semi-Discrete Solution

In the subsection, we assume the existence of a global strong solution to (3.3.1)-(3.3.3)

and we prove its uniqueness.

Lemma 3.3.3. Let uh1 and uh2 be two solutions of (3.3.1)-(3.3.3) on [0, T ] in the sense of

Definition 3.3.1, such that uh1(0) = uh2(0). Then uh1(t) = uh2(t) in L2
m,h P-a.s. for every

t ∈ [0, T ].

Proof. The proof is similar to the proof of Theorem 3.2.1. In order to simplify notations,

we will assume in the proof without loss of generality, that λ = µ = 1. Setting uh =

uh1 − uh2 , then using part (2) of Definition 3.3.1, (2.2.3) and Lemma 2.5.5, one has

duh =

(
∆̃uh + uh1 × ∆̃uh + uh × ∆̃uh2 +

1

2
|D+uh1 |2uh +

1

2

〈
D+uh1 +D+uh2 , D

+uh
〉

uh2

+
1

2
|D−uh1 |2uh +

1

2

〈
D−uh1 +D−uh2 , D

−uh
〉

uh2 +
1

2
(uh × gh)× gh

)
dt

+ (uh × gh)dW,

uh(0) = 0 .

Multiplying by ζm(xi) =
√
ρm(xi) = e−

|xi|
2m , then by using Lemma 2.3.17 and the elemen-

tary property (2.2.1), we obtain

1

2

d

dt

∣∣∣ζmuh
∣∣∣2
L2
h

− 1

2

∣∣∣ζmuh × gh
∣∣∣2
L2
h

=
〈
ζmuh, ζm∆̃uh

〉
L2
h

+
〈
ζmuh, ζmuh1 × ∆̃uh

〉
L2
h

+
1

2

〈
ζmuh, ζmuh|D+uh1 |2

〉
L2
h

+
1

2

〈
ζmuh, ζmuh2

〈
D+uh1 +D+uh2 , D

+uh
〉〉

L2
h
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+
1

2

〈
ζmuh, ζmuh|D−uh1 |2

〉
L2
h

+
1

2

〈
ζmuh, ζmuh2

〈
D−uh1 +D−uh2 , D

−uh
〉〉

L2
h

+
1

2

〈
ζmūh, (ζmuh × gh)× gh

〉
L2
h

. (3.3.5)

We consider the first term on the right hand side, using Lemmas 2.5.2, 2.5.3 and 2.5.4

we get

〈
ζmuh, ζm∆̃uh

〉
L2
h

=
〈
ζ2
muh, ∆̃uh

〉
L2
h

= −
〈
D+(ζ2

muh), D+uh
〉
L2
h

= −
〈
D+(ζ2

m)uh, D+uh
〉
L2
h

−
〈
τ+ζ2

mD
+uh, D+uh

〉
L2
h

= −
〈
ζmuh, D+ζmD

+uh
〉
L2
h

−
〈
τ+ζmuh, D+ζmD

+uh
〉
L2
h

− |ζmD−uh|2L2
h
.

For the second term on the right hand side, using Lemmas 2.5.3, 2.5.4 and properties

(2.2.1), (2.2.5) we have

〈
ζmuh, ζmuh1 × ∆̃uh

〉
L2
h

=
〈

∆̃uh, ζmuh × ζmuh1

〉
L2
h

= −
〈
D+uh, D+(ζ2

muh × uh1)
〉
L2
h

= −
〈
D+uh, D+(ζ2

m)uh × τ+uh1

〉
L2
h

−
〈
D+uh, τ+ζ2

mD
+uh × τ+uh1

〉
L2
h

−
〈
D+uh, ζ2

muh ×D+uh1

〉
L2
h

= −
〈
D+uh, ζmD

+ζmuh × τ+uh1

〉
L2
h

−
〈
D+uh, τ+ζmD

+ζmuh × τ+uh1

〉
L2
h

−
〈
D+uh, τ+ζ2

mD
+uh × τ+uh1

〉
L2
h

−
〈
D+uh, ζ2

muh ×D+uh1

〉
L2
h

= −
〈
τ+uh1 ×D+ζmD

+uh, ζmuh
〉
L2
h

−
〈
τ+uh1 ×D+ζmD

+uh, τ+ζmuh
〉
L2
h

−
〈
D+uh1 × ζmD+uh, ζmuh

〉
L2
h

.
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Consequently, we get from (3.3.5)

1

2

d

dt

∣∣∣ζmuh
∣∣∣2
L2
h

− 1

2

∣∣∣ζmuh × gh
∣∣∣2
L2
h

+
∣∣∣ζmD−uh

∣∣∣2
L2
h

= −
〈
ζmuh, D+ζmD

+uh
〉
L2
h

−
〈
τ+ζmuh, D+ζmD

+uh
〉
L2
h

−
〈
τ+uh1 ×D+ζmD

+uh, ζmuh
〉
L2
h

−
〈
τ+uh1 ×D+ζmD

+uh, τ+ζmuh
〉
L2
h

−
〈
D+uh1 × ζmD+uh, ζmuh

〉
L2
h

+
1

2

〈
ζmuh, ζmuh|D+uh1 |2

〉
L2
h

+
1

2

〈
ζmuh, ζmuh2

〈
D+uh1 +D+uh2 , D

+uh
〉〉

L2
h

+
1

2

〈
ζmuh, ζmuh|D−uh1 |2

〉
L2
h

+
1

2

〈
ζmuh, ζmuh2

〈
D−uh1 +D−uh2 , D

−uh
〉〉

L2
h

+
1

2

〈
ζmūh, (ζmuh × gh)× gh

〉
L2
h

.

Then, using (2.2.2)

1

2

d

dt

∣∣∣ζmuh
∣∣∣2
L2
h

+
∣∣∣ζmD−uh

∣∣∣2
L2
h

= −
〈
ζmuh, D+ζmD

+uh
〉
L2
h

−
〈
τ+ζmuh, D+ζmD

+uh
〉
L2
h

−
〈
τ+uh1 ×D+ζmD

+uh, ζmuh
〉
L2
h

−
〈
τ+uh1 ×D+ζmD

+uh, τ+ζmuh
〉
L2
h

−
〈
D+uh1 × ζmD+uh, ζmuh

〉
L2
h

+
1

2

〈
ζmuh, ζmuh|D+uh1 |2

〉
L2
h

+
1

2

〈
ζmuh, ζmuh2

〈
D+uh1 +D+uh2 , D

+uh
〉〉

L2
h

+
1

2

〈
ζmuh, ζmuh|D−uh1 |2

〉
L2
h

+
1

2

〈
ζmuh, ζmuh2

〈
D−uh1 +D−uh2 , D

−uh
〉〉

L2
h

.

Integrating with respect to t, using Lemma 2.5.2, part (2) of Definition 3.3.1 and the fact

that for v : Zh → R3

|(τ±ζm)v|L2
h
≤ C|ζmv|L2

h
,

we get

1

2

∣∣∣ζmuh
∣∣∣2
L2
h

+

∫ t

0

∣∣∣ζmD−uh
∣∣∣2
L2
h

ds ≤ C

∫ t

0

∣∣∣ζmuh
∣∣∣
L2
h

∣∣∣D−ζmD−uh
∣∣∣
L2
h

ds
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+ C

∫ t

0

∣∣∣ζmuh
∣∣∣
L2
h

∣∣D+uh1
∣∣
L∞h

∣∣∣ζmD−uh
∣∣∣
L2
h

ds

+ C

∫ t

0

∣∣∣ζmuh
∣∣∣
L2
h

∣∣D+(uh1 + uh2)
∣∣
L∞h

∣∣∣ζmD−uh
∣∣∣
L2
h

ds

+ C

∫ t

0

∣∣∣ζmuh
∣∣∣2
L2
h

∣∣D+uh1
∣∣2
L∞h

ds.

Thus, using Young’s inequality (2.2.6) for p = q = 2, we obtain

1

2

∣∣∣ζmuh
∣∣∣2
L2
h

+
1

2

∫ t

0

∣∣∣ζmD−uh
∣∣∣2
L2
h

ds ≤ C

∫ t

0

∣∣∣ζmuh
∣∣∣2
L2
h

ds+
1

2

∫ t

0

∣∣∣D−ζmD−uh
∣∣∣2
L2
h

ds

+ C

∫ t

0

∣∣∣ζmuh
∣∣∣2
L2
h

∣∣D+uh1
∣∣2
L∞h

ds

+ C

∫ t

0

∣∣∣ζmuh
∣∣∣2
L2
h

(∣∣D+uh1
∣∣2
L∞h

+
∣∣D+uh2

∣∣2
L∞h

)
ds

+ C

∫ t

0

∣∣∣ζmuh
∣∣∣2
L2
h

∣∣D+uh1
∣∣2
L∞h

ds.

Consequently, we have

∣∣∣ζmuh
∣∣∣2
L2
h

+

∫ t

0

∣∣∣ζmD−uh
∣∣∣2
L2
h

ds−
∫ t

0

∣∣∣D−ζmD−uh
∣∣∣2
L2
h

ds

≤ C

∫ t

0

∣∣∣ζmuh
∣∣∣2
L2
h

(
1 +

∣∣D+uh1
∣∣2
L∞h

+
∣∣D+uh2

∣∣2
L∞h

)
ds.

Using Lemma 2.5.1, we have

∫ t

0

∣∣∣ζmD−uh
∣∣∣2
L2
h

ds−
∫ t

0

∣∣∣D−ζmD−uh
∣∣∣2
L2
h

ds ≥ 0

for m sufficiently large. Therefore

∣∣∣ζmuh
∣∣∣2
L2
h

≤ C

∫ t

0

∣∣∣ζmuh
∣∣∣2
L2
h

(
1 +

∣∣D+uh1
∣∣2
L∞h

+
∣∣D+uh2

∣∣2
L∞h

)
ds .

Then, using Lemma 2.5.6

∣∣∣ζmuh
∣∣∣2
L2
h

≤ C

∫ t

0

∣∣∣ζmuh
∣∣∣2
L2
h

(
1 +

∣∣D+uh1
∣∣
L2
h

∣∣∣∆̃uh1

∣∣∣
L2
h

+
∣∣D+uh2

∣∣
L2
h

∣∣∣∆̃uh2

∣∣∣
L2
h

)
ds .
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By Definition 3.3.1 and Remark 3.3.2, we have that

1 +
∣∣D+uh1

∣∣
L2
h

∣∣∣∆̃uh1

∣∣∣
L2
h

+
∣∣D+uh2

∣∣
L2
h

∣∣∣∆̃uh2

∣∣∣
L2
h

∈ L1(0, T )

P-a.s.. Then, using Gronwall’s inequality (2.2.7), we obtain
∣∣∣ζmuh(t)

∣∣∣
L2
h

= 0 for every

t ≥ 0 as uh : [0, T ]→ L2
m,h is continuous and the lemma follows.

3.3.2 A Modified Version of Semi-Discrete Scheme

Let R > 0, we define a cutoff function ψ ∈ C2(R) such that

ψ(r) =

 1 if r ∈ [0, R]

0 if r ∈ (−∞,−1] ∪ [R + 1,∞).

We define the following space

Eh := {v : Zh → R3| |D+v|2L2
h

+ |v|2L∞h <∞},

with the norm |v|Eh :=
√
|D+v|2

L2
h

+ |v|2L∞h . The space Eh endowed with the norm | · |Eh
is a Banach space.

We will consider a modified version of problem (3.3.1)-(3.3.3):

duh,R =

(
µψ
(∣∣uh,R∣∣

Eh

)
uh,R × ∆̃uh,R − λψ

(∣∣uh,R∣∣
Eh

)
uh,R × (uh,R × ∆̃uh,R)

+
µ2

2
(uh,R × gh)× gh

)
dt+ µ(uh,R × gh)dW, (3.3.6)

uh,R(0, xi) = u0(xi), (3.3.7)

|u0(xi)| = 1. (3.3.8)

A global strong solution of problem (3.3.6)-(3.3.8) is defined as follows.

Definition 3.3.4. Given T,R ∈ (0,∞), we call an (Ft)-adapted stochastic process uh,R =

{uh,R(t); t ≤ T} taking values in L2
m,h for every m > 0, a strong solution to (3.3.6)-(3.3.8)

for the time interval [0, T ], if uh,R satisfies (1)-(3) below:
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(1) for every m > 0

uh,R(·) ∈ C([0, T ];L2
m,h), P-a.s,

(2) for every t ∈ [0, T ] and xi ∈ Zh

|uh,R(t, xi)| = 1,

(3) for every t ∈ [0, T ], the following equation holds in L2
m,h P-a.s.:

uh,R(t) = u0 + µ

∫ t

0

ψ
(∣∣uh,R∣∣

Eh

)
uh,R(s)× ∆̃uh,R(s)ds

− λ
∫ t

0

ψ
(∣∣uh,R∣∣

Eh

)
uh,R(s)×

(
uh,R(s)× ∆̃uh,R(s)

)
ds

+
µ2

2

∫ t

0

(
uh,R(s)× gh

)
× ghds+ µ

∫ t

0

(
uh,R(s)× gh

)
dW (s). (3.3.9)

Moreover, if uh,R is a strong solution on [0, T ] for all T ≥ 0, we say that uh,R is a global

strong solution.

For every h > 0 and v ∈ Eh, we define the maps

IR,1h (v) := ψ (|v|Eh) v × ∆̃v,

IR,2h (v) := ψ (|v|Eh) v × (v × ∆̃v),

Jh(v) := (v × gh)× gh.

The next lemma will be used to prove the unique solvability of the semi-discrete scheme

(3.3.6)-(3.3.8).

Lemma 3.3.5. Assume that gh ∈ L2
h. Then, for every h > 0, the following holds

• the mappings IR,kh : Eh → Eh, k = 1, 2 are Lipshitz.

• the mapping Jh : Eh → Eh defines a linear bounded operator on Eh.
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Proof. Let us prove that the map IR,1h is Lipshitz. For v1, v2 ∈ Eh

∣∣∣IR,1h (v1)− IR,1h (v2)
∣∣∣2
Eh

=

∣∣∣∣ψ (|v1|Eh) v1 × ∆̃v1 − ψ (|v2|Eh) v2 × ∆̃v2

∣∣∣∣2
Eh

=

∣∣∣∣ψ (|v1|Eh) v1 ×
1

h2
(τ+v1 − 2v1 + τ−v1)

− ψ (|v2|Eh) v2 ×
1

h2
(τ+v2 − 2v2 + τ−v2)

∣∣∣∣2
Eh

=
1

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ+v1 + ψ (|v1|Eh) v1 × τ−v1

− ψ (|v2|Eh) v2 × τ+v2 − ψ (|v2|Eh) v2 × τ−v2

∣∣∣∣2
Eh

≤ 2

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ+v1 − ψ (|v2|Eh) v2 × τ+v2

∣∣∣∣2
Eh

+
2

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ−v1 − ψ (|v2|Eh) v2 × τ−v2

∣∣∣∣2
Eh

.

We estimate now the first term on the right hand side, the last term follows in the same

way. Since ψ ∈ C2, we can assume without loss of generality that |ψ′(r)| ≤ 1. Elementary

calculations reveal

1. If |v1|Eh ≤ R and |v2|Eh ≤ R, then using Lemmas 2.5.2 and 2.5.3 we get

2

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ+v1 − ψ (|v2|Eh) v2 × τ+v2

∣∣∣∣2
Eh

=
2

h4

∣∣v1 × τ+v1 − v2 × τ+v2

∣∣2
Eh

≤ 4

h4

∣∣(v1 − v2)× τ+v1

∣∣2
Eh

+
4

h4

∣∣v2 × (τ+v1 − τ+v2)
∣∣2
Eh

≤ 8

h4

∣∣D+(v1 − v2)
∣∣2
L2
h

|v1|2L∞h +
8

h4
|v1 − v2|2L∞h

∣∣D+v1

∣∣2
L2
h

+
4

h4
|v1 − v2|2L∞h |v1|2L∞h

+
8

h4

∣∣D+(v1 − v2)
∣∣2
L2
h

|v2|2L∞h +
8

h4
|v1 − v2|2L∞h

∣∣D+v2

∣∣2
L2
h

+
4

h4
|v1 − v2|2L∞h |v2|2L∞h

≤ C

h4
R2
∣∣D+(v1 − v2)

∣∣2
L2
h

+
C

h4
R2 |v1 − v2|2L∞h

≤ C

h4
R2 |v1 − v2|2Eh .
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2. If |v1|Eh ≤ R and R ≤ |v2|Eh ≤ (R + 1) then, by using the same argument as in

case 1., we have

2

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ+v1 − ψ (|v2|Eh) v2 × τ+v2

∣∣∣∣2
Eh

=
2

h4

∣∣∣∣(ψ (|v1|Eh)− ψ (|v2|Eh))v1 × τ+v1 + ψ (|v2|Eh) (v1 × τ+v1 − v2 × τ+v2)

∣∣∣∣2
Eh

≤ 4

h4

∣∣∣∣(ψ (|v1|Eh)− ψ (|v2|Eh))v1 × τ+v1

∣∣∣∣2
Eh

+
4

h4

∣∣∣∣ψ (|v2|Eh) (v1 × τ+v1 − v2 × τ+v2)

∣∣∣∣2
Eh

≤ 4

h4

∣∣ψ (|v1|Eh)− ψ (|v2|Eh
)
|2
∣∣v1 × τ+v1

∣∣2
Eh

+
4

h4

∣∣v1 × τ+v1 − v2 × τ+v2

∣∣2
Eh

≤ 4

h4
|ψ (|v1|Eh)− ψ (|v2|Eh) |2|v1|2L∞h |v1|2Eh +

C

h4
R2|v1 − v2|2Eh

≤ 4

h4
R4 sup

r
|ψ′(r)|2

∣∣∣∣|v1|Eh − |v2|Eh

∣∣∣∣2 +
C

h4
R2|v1 − v2|2Eh

≤ C

h4
R2(R2 + 1)|v1 − v2|2Eh .

3. If |v1|Eh ≤ R and |v2|Eh ≥ (R + 1), then
(
noting that ψ (|v2|Eh) = 0

)
2

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ+v1 − ψ (|v2|Eh) v2 × τ+v2

∣∣∣∣2
Eh

=
2

h4

∣∣∣∣(ψ (|v1|Eh)− ψ (|v2|Eh))v1 × τ+v1

∣∣∣∣2
Eh

≤ 2

h4

∣∣∣∣ψ (|v1|Eh)− ψ (|v2|Eh)

∣∣∣∣2 ∣∣v1 × τ+v1

∣∣2
Eh

≤ C

h4
R4 sup

r
|ψ′(r)|2

∣∣∣∣|v1|Eh − |v2|Eh

∣∣∣∣2
≤ C

h4
R4|v1 − v2|2Eh .

4. If R ≤ |v1|Eh ≤ (R + 1) and R ≤ |v2|Eh ≤ (R + 1), then

2

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ+v1 − ψ (|v2|Eh) v2 × τ+v2

∣∣∣∣2
Eh

2

h4

∣∣∣∣(ψ (|v1|Eh)− ψ (|v2|Eh))v1 × τ+v1 + ψ (|v2|Eh) (v1 × τ+v1 − v2 × τ+v2)

∣∣∣∣2
Eh
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≤ 4

h4

∣∣(ψ (|v1|Eh)− ψ (|v2|Eh))v1 × τ+v1

∣∣2
Eh

+
4

h4

∣∣v1 × τ+v1 − v2 × τ+v2

∣∣2
Eh

≤ 4

h4
|ψ (|v1|Eh)− ψ (|v2|Eh) |2|v1|2L∞h |v1|2Eh +

C

h4
(R + 1)2|v1 − v2|2Eh

≤ C

h4
((R + 1)4 + (R + 1)2)|v1 − v2|2Eh .

5. If R ≤ |v1|Eh ≤ (R + 1) and |v2|Eh ≥ (R + 1), then

2

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ+v1 − ψ (|v2|Eh) v2 × τ+v2

∣∣∣∣2
Eh

=
2

h4

∣∣∣∣(ψ (|v1|Eh)− ψ (|v2|Eh))v1 × τ+v1

∣∣∣∣2
Eh

≤ 2

h4
(R + 1)4 |ψ (|v1|Eh)− ψ (|v2|Eh)|2

≤ C

h4
(R + 1)4|v1 − v2|2Eh .

6. If |v1|Eh ≥ (R + 1) and |v2|Eh ≥ (R + 1), then

2

h4

∣∣∣∣ψ (|v1|Eh) v1 × τ+v1 − ψ (|v2|Eh) v2 × τ+v2

∣∣∣∣2
Eh

= 0.

We deduce that the map IR,1h is Lipshitz on Eh. The proof for IR,2h follows in the same

manner.

Next, let us prove that

|Jh(v)|2Eh ≤ C|v|2Eh .

In fact, using Lemmas 2.5.2, 2.5.3 and 2.5.6 we obtain

|Jh(v)|2Eh = |(v × gh)× gh|2Eh

= |(v × gh)× gh|2L∞h +
∣∣D+

(
(v × gh)× gh

)∣∣2
L2
h

≤ |gh|4L∞h |v|
2
L∞h

+ C|gh|4L∞h |D
+v|2L2

h
+ C|gh|2L∞h |D

+gh|2L2
h
|v|2L∞h

≤ C|gh|2L2
h
|D+gh|2L2

h
|v|2L∞h + C|gh|2L2

h
|D+gh|2L2

h
|D+v|2L2

h
+ C|gh|L2

h
|D+gh|3L2

h
|v|2L∞h

≤ C|v|2Eh .
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For T > 0, let Eh(T ) denote the Banach space of Eh-valued processes v such that the

process v(·, x) is progressively measurable for every x ∈ Zh and

|v|2Eh(T ) := E

[
sup
t∈[0,T ]

|v(t)|2Eh

]
<∞.

For every v ∈ Eh(T ), we define the process

M(v)(t, xi) :=

∫ t

0

v(s, xi)× gh(xi) dW (s), xi ∈ Zh, t ≥ 0.

In the sequel, we will use frequently the following obvious fact. Assume that v ∈ Eh(T ).

Then, P-a.s.

D+

(∫ t

0

v(s) dW (s)

)
=

∫ t

0

D+v(s) dW (s), t ≤ T . (3.3.10)

The lemma that follows will be used to prove the unique solvability of (3.3.6)-(3.3.8).

Lemma 3.3.6. Let h > 0 be fixed. We assume that gh ∈ L2
h. Then M(v) ∈ Eh(T ) for

every v ∈ Eh(T ). Moreover, there exists C = C(h) > 0 such that for every v ∈ Eh(T )

E

[
sup
t∈[0,T ]

|M(v)(t)|2H1
h

]
≤ TC|v|2Eh(T ). (3.3.11)

Hence the mapping M : Eh(T )→ Eh(T ) defines a linear bounded operator.

Proof. We first note that, by definition of one-dimensional Itô integrals, the process

M(v)(·, xi) is progressively measurable for every xi ∈ Zh. Next, we note that Lemma

2.5.6 gives

|v|L∞h ≤ C|v|H1
h

for all v ∈ H1
h,

(which implies H1
h is continuously embedded into Eh). Thus it suffices to prove (3.3.11).

Using Lemma 2.3.18 we obtain

E
[

sup
t∈[0,T ]

∣∣M(v)(t)
∣∣2
L2
h

]
= E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

v(s)× ghdW (s)

∣∣∣∣2
L2
h

]
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≤ CE
[ ∫ T

0

|v(s)× gh|2L2
h
ds

]
≤ CT |gh|2L2

h
E
[

sup
t∈[0,T ]

|v(s)|2L∞h

]
< CT |v|2Eh(T ).

Moreover, using (3.3.10) and Lemmas 2.5.2, 2.5.3, 2.5.6 and 2.3.18, we find that

E
[

sup
t∈[0,T ]

∣∣D+M(v)(t)
∣∣2
L2
h

]
= E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

D+(v(s)× gh)dW (s)

∣∣∣∣2
L2
h

]
≤ CE

[ ∫ T

0

|D+(v(s)× gh)|2L2
h
ds

]
≤ 2CE

[ ∫ T

0

|D+v(s)× τ+gh|2L2
h
ds

]
+ 2CE

[ ∫ T

0

|v(s)×D+gh|2L2
h
ds

]
≤ 2C|gh|2L∞h E

[ ∫ T

0

|D+v(s)|2L2
h
ds

]
+ 2C|D+gh|2L2

h
E
[ ∫ T

0

|v(s)|2L∞h ds
]

≤ CT (|gh|2L∞h + |D+gh|2L2
h
)E
[

sup
t∈[0,T ]

|v(s)|2Eh

]
≤ CT (|gh|L2

h
|D+gh|L2

h
+ |D+gh|2L2

h
)E
[

sup
t∈[0,T ]

|v(s)|2Eh

]
< CT |v|2Eh(T ).

Therefore

E
[

sup
t∈[0,T ]

∣∣M(v)(t)
∣∣2
H1
h

]
= E

[
sup
t∈[0,T ]

∣∣M(v)(t)
∣∣2
L2
h

]
+ E

[
sup
t∈[0,T ]

∣∣D+M(v)(t)
∣∣2
L2
h

]
≤ CT |v|2Eh(T ).

This completes the proof of the lemma.

Now, we prove the existence of a global unique strong solution to (3.3.6)-(3.3.8).
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Lemma 3.3.7. Let h > 0 and T > 0 be fixed and assume that uh(0) ∈ Eh and gh ∈ L2
h.

Then, for every R > 0, there exists a global unique strong solution uh,R of equation (3.3.6)

belonging to Eh(T ).

Proof. In order to simplify notations, we assume in the proof without loss of generality

that λ = µ = 1. For v ∈ Eh(T ), we define the mapping H

H(v)(t) := u0 +

∫ t

0

ψ
(
|v(s)|Eh

)
v(s)× ∆̃v(s)ds

−
∫ t

0

ψ
(
|v(s)|Eh

)
v(s)×

(
v(s)× ∆̃v(s)

)
ds

+
1

2

∫ t

0

(
v(s)× gh

)
× gh ds+

∫ t

0

v(s)× gh dW (s)

= u0 +

∫ t

0

IR,1h (v(s)) ds−
∫ t

0

IR,2h (v(s)) ds+
1

2

∫ t

0

Jh(v(s)) ds+M(v)(t)

for t ∈ [0, T ]. First, we prove that H : Eh(T ) → Eh(T ). Let v ∈ Eh(T ). Clearly, the

process t→ H(v)(t, x) is progressively measurable for every x ∈ Zh. We will prove that

E
[

sup
t∈[0,T ]

|H(v)(t)|2Eh

]
<∞. (3.3.12)

By Lemma 3.3.5 we have

∣∣∣IR,kh (v)
∣∣∣
Eh
≤ CR (1 + |v|Eh) , k = 1, 2 ,

and

|Jh(v)|Eh ≤ C|v|Eh .

Therefore,

|H(v)(t)|Eh ≤ |u0|Eh + C

∫ t

0

(1 + |v(s)|Eh) ds+ |M(v)(t)|Eh ,
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hence, invoking Lemma 3.3.6 we obtain

E
[

sup
t∈[0,T ]

|H(v)(t)|2Eh

]
≤ C |u0|2Eh + CT 2 + CT 2E

[
sup
t∈[0,T ]

|v(t)|2Eh

]

and (3.3.12) follows. We deduce that H : Eh(T )→ Eh(T ).

Next, we prove that the mapping H is a contraction in Eh(T ) for T small enough.

More precisely, for a fixed R > |u0|Eh , we will prove that for T small enough there exists

C ∈ (0, 1) such that for v1,v2 ∈ Eh(T )

|H(v1)−H(v2)|2Eh(T ) ≤ C|v1 − v2|2Eh(T ).

In fact, using Lemmas 3.3.5 and 3.3.6 we have

|H(v1)−H(v2)|2Eh(T )

≤ C

∣∣∣∣ ∫ t

0

IR,1h (v1(s))− IR,1h (v2(s))ds

∣∣∣∣2
Eh(T )

+ C

∣∣∣∣ ∫ t

0

IR,2h (v1(s))− IR,2h (v2(s))ds

∣∣∣∣2
Eh(T )

+ C

∣∣∣∣ ∫ t

0

Jh(v1(s))− Jh(v2(s))ds

∣∣∣∣2
Eh(T )

+ C

∣∣∣∣M(v1)(t)−M(v2)(t)

∣∣∣∣2
Eh(T )

≤ CE
[ ∫ T

0

∣∣∣∣IR,1h (v1(s))− IR,1h (v2(s))

∣∣∣∣2
Eh

ds

]
+ CE

[ ∫ T

0

∣∣∣∣IR,2h (v1(s))− IR,2h (v2(s))

∣∣∣∣2
Eh

ds

]
+ CE

[ ∫ T

0

∣∣∣∣Jh(v1(s))− Jh(v2(s))

∣∣∣∣2
Eh

ds

]
+ CE

[
sup
t∈[0,T ]

∣∣∣∣M(v1)(t)−M(v2)(t)

∣∣∣∣2
Eh

]
≤ CT |v1 − v2|2Eh(T ).

We deduce that the mapping H is a contraction in Eh(T ) for T small enough.

From Banach fixed point theorem applied to the mapping H : Eh(T ) → Eh(T ), the

lemma follows for T small enough and then for any T > 0 by standard argument. This

completes the proof of the lemma.

3.3.3 A Priori Estimates

In this subsection, we introduce and prove some uniform estimates which will be used to

prove the solvability of (3.3.1)-(3.3.3).
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Lemma 3.3.8. Let uh,R be the solution of equation (3.3.6). Assume that |uh(0, xi)| = 1

for all xi ∈ Zh, D+uh(0) ∈ L2
h and gh ∈ L2

h. Then, for every t ∈ [0, T ] and all xi ∈ Zh,

we have

|uh,R(t, xi)| = 1. (3.3.13)

Moreover, for 1 ≤ p < ∞ and T ∈ (0,∞), there exists a constant C which does not

depend on R but may depend on |g|H1, p, |∇u0|L2 and T such that

E
[

sup
t∈[0,T ]

|D+uh,R(t)|2p
L2
h

]
≤ C. (3.3.14)

Proof. In order to simplify notations, we assume in the proof without loss of generality,

that λ = µ = 1. First, we prove (3.3.13). Using Lemma 2.3.17, (2.2.1) and (2.2.2), we

get from equation (3.3.6)

1

2
d
(
|uh,R(t)|2

)
− 1

2

∣∣uh,R(t)× gh
∣∣2dt

= ψ
(
|uh,R(t)|Eh

) 〈
uh,R(t),uh,R(t)× ∆̃uh,R(t)

〉
dt

− ψ
(
|uh,R(t)|Eh

) 〈
uh(t),uh,R(t)×

(
uh,R(t)× ∆̃uh,R(t)

)〉
dt

+
1

2

〈
uh,R(t),

(
uh,R(t)× gh

)
× gh

〉
dt+

〈
uh,R(t),uh,R(t)× gh

〉
dW (t)

= −1

2

∣∣uh,R(t)× gh
∣∣2dt

for t ∈ [0, T ]. It follows that

d
(
|uh,R(t)|2

)
= 0.

Then, by integrating with respect to t, we obtain

|uh,R(t, xi)| = |u0(xi)| = 1

for every t ∈ [0, T ] and all xi ∈ Zh.

60



Next we prove (3.3.14). Applying D+ to the discrete equation (3.3.6), we have

dD+uh,R = ψ
(
|uh,R|Eh

)
D+

(
uh,R × ∆̃uh,R

)
dt

− ψ
(
|uh,R|Eh

)
D+

(
uh,R × (uh,R × ∆̃uh,R)

)
dt

+
1

2
D+

(
(uh,R × gh)× gh

)
dt+D+

(
uh,R × gh

)
dW.

Then, by using Lemma 2.3.17, we get at every xi ∈ Zh

d|D+uh,R|2 = 2ψ
(
|uh,R|Eh

) 〈
D+uh,R, D+(uh,R × ∆̃uh,R)

〉
dt

− 2ψ
(
|uh,R|Eh

) 〈
D+uh,R, D+

(
uh,R × (uh,R × ∆̃uh,R)

)〉
dt

+
〈
D+uh,R, D+

(
(uh,R × gh)× gh

)〉
dt+ 2

〈
D+uh,R, D+(uh,R × gh)

〉
dW

+ |D+(uh,R × gh)|2dt.

Hence, by taking the summation over xi ∈ Zh, multiplying by h, using (2.2.1), (2.2.2)

and Lemma 2.5.4, we obtain

d|D+uh,R|2L2
h

= 2ψ
(
|uh,R|Eh

) 〈
∆̃uh,R,uh,R × (uh,R × ∆̃uh,R)

〉
L2
h

dt

+
〈
D+uh,R, D+

(
(uh,R × gh)× gh

)〉
L2
h

dt

+ 2
〈
D+uh,R, D+(uh,R × gh)

〉
L2
h

dW +
∣∣D+(uh,R × gh)

∣∣2
L2
h

dt

= −2ψ
(
|uh,R|Eh

) ∣∣∣uh,R × ∆̃uh,R
∣∣∣2
L2
h

dt

+
〈
D+uh,R, D+

(
(uh,R × gh)× gh

)〉
L2
h

dt

+ 2
〈
D+uh,R, D+(uh,R × gh)

〉
L2
h

dW +
∣∣D+(uh,R × gh)

∣∣2
L2
h

dt.

Then for t ∈ [0, T ],

|D+uh,R(t)|2L2
h
− |D+u0|2L2

h
+ 2

∫ t

0

ψ
(
|uh,R(s)|Eh

) ∣∣∣uh,R(s)× ∆̃uh,R(s)
∣∣∣2
L2
h

ds

=

∫ t

0

〈
D+uh,R(s), D+

(
(uh,R(s)× gh)× gh

)〉
L2
h

ds

+ 2

∫ t

0

〈
D+uh,R(s), D+(uh,R(s)× gh)

〉
L2
h

dW (s)
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+

∫ t

0

∣∣D+(uh,R(s)× gh)
∣∣2
L2
h

ds. (3.3.15)

Since

2

∫ t

0

ψ
(
|uh,R(s)|Eh

) ∣∣∣uh,R(s)× ∆̃uh,R(s)
∣∣∣2
L2
h

ds ≥ 0,

we get

|D+uh,R(t)|2L2
h

≤ |D+u0|2L2
h

+

∫ t

0

∣∣D+uh,R(s)
∣∣
L2
h

∣∣D+
(
(uh,R(s)× gh)× gh

)∣∣
L2
h

ds

+ 2

∣∣∣∣∫ t

0

〈
D+uh,R(s), D+(uh,R(s)× gh)

〉
L2
h

dW (s)

∣∣∣∣+

∫ t

0

∣∣D+(uh,R(s)× gh)
∣∣2
L2
h

ds

≤ |D+u0|2L2
h

+ C

∫ t

0

(∣∣D+uh,R(s)
∣∣2
L2
h

+ |D+(uh,R(s)× gh)|2L2
h

+
∣∣D+

(
(uh,R(s)× gh)× gh

)∣∣2
L2
h

)
ds

+ 2

∣∣∣∣∫ t

0

〈
D+uh,R(s), D+(uh,R(s)× gh)

〉
L2
h

dW (s)

∣∣∣∣ . (3.3.16)

The middle term in the integrand of the first integral on the right hand side can be

estimated by using the product rule (Lemma 2.5.3), Lemma 2.5.6 and (3.3.13) as follows

∣∣D+(uh,R × gh)
∣∣2
L2
h

≤ 2|D+uh,R × τ+gh|2L2
h

+ 2|uh,R ×D+gh|2L2
h

≤ 2|D+uh,R|2L2
h
|gh|2L∞h + 2|D+gh|2L2

h

≤ 2K|D+uh,R|2L2
h
|gh|L2

h
|D+gh|L2

h
+ 2|D+gh|2L2

h

≤ K|D+uh,R|2L2
h
|gh|2L2

h
+K|D+uh,R|2L2

h
|D+gh|2L2

h
+ 2|D+gh|2L2

h

≤ C|D+uh,R|2L2
h

+ C (3.3.17)

where the constants depend only on |g|H1 but not on R. Similarly, we can show that

∣∣D+((uh,R × gh)× gh)
∣∣2
L2
h

≤ C|D+uh,R|2L2
h

+ C.

62



Hence, it follows from (3.3.16) that

|D+uh,R(t)|2L2
h
≤ |D+u0|2L2

h
+ Ct+ C

∫ t

0

|D+uh,R(s)|2L2
h
ds

+ C

∣∣∣∣∫ t

0

〈
D+uh,R(s), D+(uh,R(s)× gh)

〉
L2
h

dW (s)

∣∣∣∣ .
By raising both sides to the power p and using the following Jensen’s inequality

(
n∑
i=1

ai

)q

≤ nq−1

n∑
i=1

aqi , q ≥ 1, n = 1, 2, 3, ...., (3.3.18)

we deduce

|D+uh,R(t)|2p
L2
h
≤ C + C

(∫ t

0

|D+uh,R(s)|2L2
h
ds

)p
+ C

∣∣∣∣∫ t

0

〈
D+uh,R(s), D+(uh,R(s)× gh)

〉
L2
h

dW (s)

∣∣∣∣p
≤ C + C

∫ t

0

|D+uh,R(s)|2p
L2
h
ds

+ C

∣∣∣∣∫ t

0

〈
D+uh,R(s), D+(uh,R(s)× gh)

〉
L2
h

dW (s)

∣∣∣∣p
where in the last step we used Hölder’s inequality. The constants depend on |g|H1 , p,

|∇u0|L2 and T . Therefore,

E
[

sup
s∈[0,t]

|D+uh,R(s)|2p
L2
h

]
≤ C + C

∫ t

0

E
[
|D+uh,R(s)|2p

L2
h

]
ds

+ CE
[

sup
s∈[0,t]

∣∣∣∣ ∫ s

0

〈
D+uh,R(τ), D+(uh,R(τ)× gh)

〉
L2
h

dW (τ)

∣∣∣∣p]
≤ C + C

∫ t

0

E
[
|D+uh,R(s)|2p

L2
h

]
ds

+ CE
[(∫ t

0

∣∣∣∣ 〈D+uh,R(s), D+(uh,R(s)× gh)
〉
L2
h

∣∣∣∣2ds) p
2
]

where in the last step we used the BDG inequality (Lemma 2.3.18). It follows from

(3.3.17) that
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E
[

sup
s∈[0,t]

|D+uh,R(s)|2p
L2
h

]
≤ C + C

∫ t

0

E
[
|D+uh,R(s)|2p

L2
h

]
ds+ CE

[(∫ t

0

(
|D+uh,R(s)|2L2

h
+ |D+uh,R(s)|4L2

h

)
ds

) p
2
]

≤ C + C

∫ t

0

E
[
|D+uh,R(s)|2p

L2
h

]
ds+ CE

[(∫ t

0

(
1 + |D+uh,R(s)|4L2

h

)
ds

) p
2
]

≤ C + C

∫ t

0

E
[
|D+uh,R(s)|2p

L2
h

]
ds+ C(T ) + CE

[(∫ t

0

|D+uh,R(s)|4L2
h
ds

) p
2
]

(3.3.19)

for p ≥ 2 where in the last step we used Jensen’s inequality (3.3.18). Next, Hölder’s

inequality implies

E
[(∫ t

0

|D+uh,R(s)|4L2
h
ds

) p
2
]
≤ C(T )E

[ ∫ t

0

∣∣D+uh,R(s)
∣∣2p
L2
h

ds

]
≤ C(T )

∫ t

0

E
[ ∣∣D+uh,R(s)

∣∣2p
L2
h

]
ds. (3.3.20)

Hence, inequalities (3.3.19) and (3.3.20) yield

E
[

sup
s∈[0,t]

∣∣D+uh,R(s)
∣∣2p
L2
h

]
≤ C + C

∫ t

0

E
[ ∣∣D+uh,R(s)

∣∣2p
L2
h

]
ds

≤ C + C

∫ t

0

E
[

sup
τ∈[0,s]

∣∣D+uh,R(τ)
∣∣2p
L2
h

]
ds.

Then, by using Gronwall’s inequality (2.2.7), we obtain for p ≥ 2

E
[

sup
s∈[0,t]

∣∣D+uh,R(s)
∣∣2p
L2
h

]
≤ C

where the constant depend on |g|H1 , p, |∇u0|L2 and T but not on R. Finally, the

inequality a ≤ 1+a2

2
implies the result for p ≥ 1 and the proof of (3.3.14) is complete.

Remark 3.3.9. By definition of the discrete Laplacian ∆̃ Lemma 3.3.8 immediately yields

E
[(∫ T

0

∣∣∣∆̃uh,R(t)
∣∣∣2
L2
h

dt

)p ]
≤ C
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where C is independent of R but depends on h, T , p, gh and uh(0).

3.3.4 Existence of Semi-Discrete Solutions

In this subsection, we prove the existence of solutions to (3.3.1)-(3.3.3). For fixed h, T > 0

and for every R > 0, we define the stopping time τR as follows

τR := inf
{

0 ≤ t ≤ T | |uh,R(t)|Eh ≥ R
}
.

We note that if |uh,R(t)|Eh < R for every 0 ≤ t ≤ T , then τR = T .

In fact, we aim to prove the following lemma.

Lemma 3.3.10. Let h > 0 and T > 0 be fixed and assume that |uh(0, x)| = 1 for all

x ∈ Zh, D+uh(0) ∈ L2
h and gh ∈ L2

h. Then, there exists a global unique strong solution

uh of equation (3.3.1) belonging to Eh(T ).

Proof. We consider uh,R1 and uh,R2 two elements of the sequence (uh,R)R such that R1 <

R2. We denote σR := min(τR1 , τR2). For all t ≤ σR, we have that

ψ
(∣∣uh,R1

∣∣
Eh

)
= ψ

(∣∣uh,R2
∣∣
Eh

)
= 1,

hence uh,R1 and uh,R2 verify respectively

duh,R1 =

(
µuh,R1 × ∆̃uh,R1 − λuh,R1 ×

(
uh,R1 × ∆̃uh,R1

)
+
µ2

2

(
uh,R1 × gh

)
× gh

)
dt

+ µ
(
uh,R1 × gh

)
dW,

duh,R2 =

(
µuh,R2 × ∆̃uh,R2 − λuh,R2 ×

(
uh,R2 × ∆̃uh,R2

)
+
µ2

2

(
uh,R2 × gh

)
× gh

)
dt

+ µ
(
uh,R2 × gh

)
dW.

Using Lemma 3.3.3, we deduce that uh,R1(t) = uh,R2(t) for all t ≤ σR. Consequently,

since R1 < R2 we get

τR1 ≤ τR2 , (3.3.21)
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which means that σR = τR1 . Indeed, assume that σR = τR2 < τR1 . By continuity, for t

less than σR and sufficiently close to σR,

R1 <
∣∣uh,R1(t)

∣∣
Eh
<
∣∣uh,R1(τR2)

∣∣
Eh

=
∣∣uh,R2(τR2)

∣∣
Eh

= R2.

This contradicts the definition of τR1 .

Since {τR} is non-decreasing and bounded above by T , the stopping time

τ∞ := lim
R→∞

τR

is well defined. Using Lemma 2.3.9 and (3.3.14), we have

P(τ∞ < T ) = P
(

lim
R→∞

τR < T
)

= lim
R→∞

P
(
τR < T

)
= lim

R→∞
P
(

sup
0≤t≤T

|uh,R(t)|2Eh > R2

)
= lim

R→∞
P
(

sup
0≤t≤T

|D+uh,R(t)|2L2
h
> R2 − 1

)
≤ lim

R→∞

1

R2 − 1
E
[

sup
0≤t≤T

|D+uh,R(t)|2L2
h

]
≤ lim

R→∞

C

R2 − 1

= 0

with C independent of R. Hence, τ∞ = T P-a.s.

We define a stochastic process uh = {uh(t)} such that uh(t) = uh,R(t) for all t ≤ τR.

Since limR→∞ τ
R = T , the process uh = {uh(t); t ≤ T} is well defined. Moreover, by

the definition of τR and uh,R, the process uh satisfies the following equation for every

t ∈ [0, T ]

duh(t) =

(
µuh(t)× ∆̃uh(t)− λuh(t)×

(
uh(t)× ∆̃uh(t)

)
+
µ2

2

(
uh(t)× gh

)
× gh

)
dt

+ µ
(
uh(t)× gh

)
dW

and the lemma follows.
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3.4 A Priori Estimates

In this section, we introduce and prove some uniform estimates which will be used to

prove the main result of this chapter, Theorem 3.1.3.

Lemma 3.4.1. Assume that |uh(0, xi)| = 1 for all xi ∈ Zh, D+uh(0) ∈ L2
h and gh ∈ L2

h.

Then, for every t ∈ [0, T ] and all xi ∈ Zh, we have

|uh(t, xi)| = 1. (3.4.1)

Moreover, for 1 ≤ p < ∞ and T ∈ (0,∞), there exists a constant C which does not

depend on h but may depend on |g|H1, p, |∇u0|L2 and T such that

E
[

sup
t∈[0,T ]

∣∣D+uh(t)
∣∣2p
L2
h

]
≤ C, (3.4.2)

E
[(∫ T

0

∣∣∣∆̃uh(t)
∣∣∣2
L2
h

dt

)p]
≤ C. (3.4.3)

Proof. The proof for (3.4.1) and (3.4.2) follows in the same manner as proving Lemma

3.3.8 by considering ψ
(∣∣uh,R∣∣

Eh

)
= 1 and replacing uh,R by uh. In fact, following the

same reasoning, we can see that the constant in (3.3.14) is independent of h. Next, we

prove (3.4.3). By using (3.4.1) and the elementary property (2.2.4), we have

|∆̃uh|2 = |uh × ∆̃uh|2 +
〈
uh, ∆̃uh

〉2

.

Then, from Lemma 2.5.5 we deduce

|∆̃uh|2 ≤ |uh × ∆̃uh|2 +
1

2
|D+uh|4 +

1

2
|D−uh|4.

Applying summation over x ∈ Zh, multiplying by h and using Lemma 2.5.2 we get

|∆̃uh|2L2
h
≤ |uh × ∆̃uh|2L2

h
+ |D+uh|4L4

h
.
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Integrating with respect to t ∈ [0, T ], raising to the power p and applying expectation

E
[(∫ T

0

∣∣∣∆̃uh(t)
∣∣∣2
L2
h

dt

)p]
≤ E

[(∫ T

0

∣∣∣uh(t)× ∆̃uh(t)
∣∣∣2
L2
h

dt

)p]
+ E

[(∫ T

0

∣∣D+uh(t)
∣∣4
L4
h

dt

)p]
≤ B1 +B2. (3.4.4)

In order to estimate B1, we proceed from (3.3.15) by considering ψ
(∣∣uh,R∣∣

Eh

)
= 1

and replacing uh,R by uh and write down the same inequalities but with
∫ t

0
|uh(s) ×

∆̃uh(s)|2
L2
h
ds instead of |D+uh(t)|2

L2
h

on the left hand side. In fact, we have for any

t ∈ [0, T ]

E
[(∫ t

0

∣∣∣uh(s)× ∆̃uh(s)
∣∣∣2
L2
h

ds

)p]
≤ C + C

∫ t

0

E
[

sup
τ∈[0,s]

∣∣D+uh(τ)
∣∣2p
L2
h

]
ds.

From (3.4.2), we deduce for any t ∈ [0, T ]

E
[(∫ t

0

∣∣∣uh(s)× ∆̃uh(s)
∣∣∣2
L2
h

ds

)p]
≤ C (3.4.5)

where the constant C depends on |g|H1 , p, |∇u0|L2 and T but not on h. Now, we estimate

B2. We know that

|D+uh|4L4
h
≤ |D+uh|2L∞h |D

+uh|2L2
h
. (3.4.6)

From Lemma 2.5.6, for the discrete function D+uh, we have

|D+uh|L∞h ≤ K
∣∣D+uh

∣∣ 12
L2
h

∣∣(D+)2uh
∣∣ 12
L2
h

.

From Lemma 2.5.2, we notice that |(D+)2uh|L2
h

= |∆̃uh|L2
h
. Then, from (3.4.6)

|D+uh|4L4
h
≤ K2

∣∣D+uh
∣∣3
L2
h

|∆̃uh|L2
h

≤ Cε
∣∣D+uh

∣∣6
L2
h

+ ε|∆̃uh|2L2
h
.
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Integrating with respect to time, raising to the power p and using the inequality (a+b)p ≤

2p−1(ap + bp), for a, b ≥ 0 and p ≥ 1, we get

(∫ T

0

∣∣D+uh(t)
∣∣4
L4
h

dt

)p
≤
(
Cε

∫ T

0

∣∣D+uh(t)
∣∣6
L2
h

dt+ ε

∫ T

0

∣∣∣∆̃uh(t)
∣∣∣2
L2
h

dt

)p
≤ CεT

p sup
t∈[0,T ]

∣∣D+uh(t)
∣∣6p
L2
h

+ ε

(∫ T

0

∣∣∣∆̃uh(t)
∣∣∣2
L2
h

dt

)p
.

Hence,

E
[(∫ T

0

∣∣D+uh(t)
∣∣4
L4
h

dt

)p]
≤ CεT

pE
[

sup
t∈[0,T ]

∣∣D+uh(t)
∣∣6p
L2
h

]
+ εE

[(∫ T

0

∣∣∣∆̃uh(t)
∣∣∣2
L2
h

dt

)p]
.

Consequently, using (3.4.2) and (3.4.5), we deduce from (3.4.4)

E
[(∫ T

0

∣∣∣∆̃uh(t)
∣∣∣2
L2
h

dt

)p]
≤ CεE

[(∫ T

0

∣∣∣uh(t)× ∆̃uh(t)
∣∣∣2
L2
h

dt

)p]
+ CεT

pE
[

sup
t∈[0,T ]

∣∣D+uh(t)
∣∣6p
L2
h

]
≤ C (3.4.7)

where the constant C may depend on |g|H1 , p, |∇u0|L2 and T but not on h. Then, the

proof of (3.4.3) is complete.

3.5 Some Technical Results

In this section, we prove some properties of a transformation which will be used in the

next section to define a new variable mh.

In the following, we define G : L2
m → L2

m by

Gφ := φ× g ∀φ ∈ L2
m

and since G : L2
m → L2

m is bounded, we can define the operator etG : L2
m → L2

m by

etG =
∞∑
k=0

tk

k!
Gk, t ≥ 0.
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We recall that gh is the restriction of the given function g to Zh. We note that the first

lemma and parts of the second lemma are proved in [25] but we reproduce the proof for

completeness.

Lemma 3.5.1. Assume that gh ∈ L∞h . We define Gh : L2
m,h → L2

m,h by

Ghφ := φ× gh ∀φ ∈ L2
m,h.

Then, Gh is well defined and for any φ,ψ ∈ L2
m,h,

G∗h = −Gh, (3.5.1)

φ×Ghψ =
〈
φ,gh

〉
ψ − 〈φ,ψ〉gh, (3.5.2)

φ×G2
hψ =

〈
φ,gh

〉
Ghψ −Ghφ×Ghψ, (3.5.3)

Ghφ×G2
hψ = −G2

hφ×Ghψ, (3.5.4)

G2n+1
h φ = (−1)nGhφ n ≥ 0, (3.5.5)

G2n+2
h φ = (−1)nG2

hφ n ≥ 0. (3.5.6)

Assume further that |gh| = 1, we have

Ghφ×Ghψ =
〈
gh,φ×ψ

〉
gh = G2

hφ×G2
hψ. (3.5.7)

Proof. We start by proving (3.5.1). By using (2.2.5), we have for φ,ψ ∈ L2
m,h

〈Ghφ,ψ〉 =
〈
φ× gh,ψ

〉
=
〈
gh ×ψ,φ

〉
= −

〈
φ,ψ × gh

〉
= −〈φ,Ghψ〉 .

Next, we prove (3.5.2). Using (2.2.3), we get

φ×Ghψ = φ×
(
ψ × gh

)
=
〈
φ,gh

〉
ψ − 〈φ,ψ〉gh.
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Now, we prove (3.5.3). Using (3.5.2), we obtain

φ×G2
hψ =

〈
φ,gh

〉
Ghψ − 〈φ,Ghψ〉gh. (3.5.8)

We know that, using (2.2.1) and (2.2.3),

Ghψ×Ghφ = Ghψ×
(
φ× gh

)
=
〈
Ghψ,g

h
〉
φ−〈Ghψ,φ〉gh = −〈Ghψ,φ〉gh. (3.5.9)

Then, we get from (3.5.8)

φ×G2
hψ =

〈
φ,gh

〉
Ghψ −Ghφ×Ghψ.

We continue by proving (3.5.4). From (3.5.3), we have using (2.2.1)

Ghφ×G2
hψ =

〈
Ghφ,g

h
〉

Ghψ −G2
hφ×Ghψ = −G2

hφ×Ghψ.

Let us prove (3.5.5) by induction. it is clear that (3.5.5) is true for n = 0. We assume

that it holds for n and we prove that it holds for n+ 1. In fact,

G2n+3
h φ = G2

hG
2n+1
h φ = (−1)nG3

hφ = (−1)n+1Ghφ.

Similarly, we can prove (3.5.6). Finally, we prove (3.5.7). From (3.5.9) and using (2.2.5),

we have

Ghφ×Ghψ = 〈Ghψ,φ〉gh =
〈
ψ × gh,φ

〉
gh =

〈
gh,φ×ψ

〉
gh. (3.5.10)

Using successfully (2.2.3), (2.2.1) and (2.2.5), we get

G2
hφ×G2

hψ = G2
hφ×

(
Ghψ × gh

)
=
〈
G2
hφ,g

h
〉

Ghψ −
〈
G2
hφ,Ghψ

〉
gh

= −
〈
Ghφ× gh,Ghψ

〉
gh =

〈
Ghφ×Ghψ,g

h
〉

gh.
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Then from (3.5.10), using the assumption |gh| = 1, we obtain

G2
hφ×G2

hψ =
〈
gh,φ×ψ

〉
|gh|2gh =

〈
gh,φ×ψ

〉
gh.

Thus, the proof of (3.5.7) is completed.

Since Gh : L2
m,h → L2

m,h is bounded, we can define the operator etGh : L2
m,h → L2

m,h

by the formula

etGh =
∞∑
k=0

tk

k!
Gk
h, t ≥ 0 .

Lemma 3.5.2. For any t ∈ R and φ,ψ ∈ L2
m,h,

etGhφ = φ+ sin(t)Ghφ+ (1− cos(t)) G2
hφ, (3.5.11)

e−tGhetGh(φ) = φ, (3.5.12)

etGhGhφ = Ghe
tGhφ, (3.5.13)

etGh(φ×ψ) = etGhφ× etGhψ. (3.5.14)

Proof. First, we prove (3.5.11). We get using Taylor’s expansion, (3.5.5) and (3.5.6)

etGhφ =
∞∑
n=0

tn

n!
Gn
hφ

= φ+
∞∑
k=0

t2k+1

(2k + 1)!
G2k+1
h φ+

∞∑
k=0

t2k+2

(2k + 2)!
G2k+2
h φ

= φ+
∞∑
k=0

t2k+1

(2k + 1)!
(−1)kGhφ+

∞∑
k=0

t2k+2

(2k + 2)!
(−1)kG2

hφ

= φ+ sin(t)Ghφ+ (1− cos(t))G2
hφ.

Next, we prove (3.5.12). We have from (3.5.11) and (3.5.6)

e−tGhetGh(φ) = e−tGh
(
φ+ sin(t)Ghφ+ (1− cos(t)) G2

hφ
)

= φ− sin(t)Ghφ+ (1− cos(t)) G2
hφ+ sin(t)Ghφ− sin2(t)G2

hφ

+ sin(t) (1− cos(t)) G3
hφ+ (1− cos(t)) G2

hφ− sin(t) (1− cos(t)) G3
hφ
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+ (1− cos(t))2 G4
hφ

= φ+ 2 (1− cos(t)) G2
hφ− sin2(t)G2

hφ− (1− cos(t))2 G2
hφ

= φ.

We continue by proving (3.5.13). Using (3.5.11), we get

etGhGhφ = Ghφ+ sin(t)G2
hφ+ (1− cos(t)) G3

hφ

= Gh

(
φ+ sin(t)Ghφ+ (1− cos(t)) G2

hφ
)

= Ghe
tGhφ.

Finally, we prove (3.5.14). if gh(xi) = 0, then using (3.5.11) we get that (3.5.14) holds.

Now, if gh(xi) 6= 0, we consider

gh1(xi) =
gh(xi)

|gh(xi)|
,

Gh,1φ := φ× gh1 ,

s = |gh(xi)|t.

We start by proving

esGh,1(φ×ψ) = esGh,1φ× esGh,1ψ. (3.5.15)

Using (3.5.11), we have

esGh,1φ× esGh,1ψ = φ×ψ + sin(s) (φ×Gh,1ψ + Gh,1φ×ψ)

+ (1− cos(s))
(
φ×G2

h,1ψ + G2
h,1φ×ψ

)
+ sin(s) (1− cos(s))

(
Gh,1φ×G2

h,1ψ + G2
h,1φ×Gh,1ψ

)
+ sin2(s)Gh,1φ×Gh,1ψ + (1− cos(s))2 G2

h,1φ×G2
h,1ψ

:= φ×ψ +N1 + ...+N5.
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Using (2.2.3), we have that N1 = sin(s)Gh,1 (φ×ψ). From (3.5.4), we get that N3 = 0.

Finally, using (3.5.3) and (3.5.7) we have

N2 +N4 +N5

= (1− cos(s))
(〈
φ,gh1

〉
Gh,1ψ −Gh,1φ×Gh,1ψ −

〈
ψ,gh1

〉
Gh,1φ+ Gh,1ψ ×Gh,1φ

)
+ sin2(s)Gh,1φ×Gh,1ψ + (1− cos(s))2 Gh,1φ×Gh,1ψ

= (1− cos(s))
(〈
φ,gh1

〉
Gh,1ψ − 2Gh,1φ×Gh,1ψ −

〈
ψ,gh1

〉
Gh,1φ

)
+ 2Gh,1φ×Gh,1ψ − 2 cos(s)Gh,1φ×Gh,1ψ

= (1− cos(s))
(〈
φ,gh1

〉
Gh,1ψ −

〈
ψ,gh1

〉
Gh,1φ

)
= − (1− cos(s)) Gh,1

(〈
gh1 ,ψ

〉
φ−

〈
gh1 ,φ

〉
ψ
)

= − (1− cos(s)) Gh,1

(
gh1×

(
φ×ψ ))

= (1− cos(s)) G2
h,1 (φ×ψ) .

Therefore,

esGh,1φ× esGh,1ψ = φ×ψ + sin(s)Gh,1 (φ×ψ) + (1− cos(s)) G2
h,1 (φ×ψ) .

Using (3.5.11), the proof of (3.5.15) is complete. We know that

esGh,1(φ×ψ) =
∞∑
k=0

sk

k!
Gk
h,1(φ×ψ) =

∞∑
k=0

|gh(xi)|ktk

k!
Gk
h(φ×ψ)

1

|gh(xi)|k

=
∞∑
k=0

tk

k!
Gk
h(φ×ψ) = etGh(φ×ψ).

Similarly, we have

esGh,1φ× esGh,1ψ = etGhφ× etGhψ.

We deduce that

etGh(φ×ψ) = etGhφ× etGhψ

which completes the proof of the lemma.
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Lemma 3.5.3. For any t ∈ R and φ ∈ L2
m,h, we have

|etGhφ| = |φ|. (3.5.16)

Proof. By using (3.5.11) and (3.5.1), we have

|etGhφ|2 =
〈
φ+ sin(t)Ghφ+ (1− cos(t)) G2

hφ,φ+ sin(t)Ghφ+ (1− cos(t)) G2
hφ
〉

= |φ|2 + 2 (1− cos(t))
〈
φ,G2

hφ
〉
− sin2(t)

〈
φ,G2

hφ
〉

+ (1− cos(t))2 〈φ,G4
hφ
〉
.

From (3.5.6), we get

|etGhφ|2 = |φ|2 + 2 (1− cos(t))
〈
φ,G2

hφ
〉
−
(
1− cos2(t)

) 〈
φ,G2

hφ
〉

−
(
1− 2 cos(t) + cos2(t)

) 〈
φ,G2

hφ
〉

= |φ|2.

We note that Lemmas 3.5.1, 3.5.2 and 3.5.3 holds for G : L2
m → L2

m as well.

In the proof of existence of strong solutions, we will use the following results for the

operators Gh and etGh .

Lemma 3.5.4. For any φ ∈ L2
m,h, we have

−∆̃Ghφ+ Gh∆̃φ = −Cφ

with

Cφ = φ× ∆̃gh +D+φ×D+gh +D−φ×D−gh.
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Proof. Simple calculation reveals, using Lemma 2.5.3

−∆̃Ghφ+ Gh∆̃φ = −D−D+(φ× gh) + ∆̃φ× gh

= −D−(D+φ× τ+gh + φ×D+gh) + ∆̃φ× gh

= −(∆̃φ× gh +D+φ×D+gh +D−φ×D−gh + φ× ∆̃gh) + ∆̃φ× gh

= −Cφ.

Lemma 3.5.5. For any t ∈ R and φ ∈ L2
m,h, we have

C̃(t, e−tGhφ) = −∆̃e−tGhφ+ e−tGh∆̃φ

where

C̃(t,φ) = e−tGh (sin(t)C + (1− cos(t)) (GhC + CGh))φ

= e−tGhC0(t,φ).

The operator C is defined in Lemma 3.5.4.

Proof. We consider φ̃ = e−tGhφ and then by using the definition of C̃, we get

C̃(t, e−tGhφ) = C̃(t, φ̃)

= e−tGh (sin(t)C + (1− cos(t)) (GhC + CGh)) φ̃.

Using Lemma 3.5.4, we obtain

C̃(t, e−tGhφ) = sin(t)e−tGh∆̃Ghφ̃− sin(t)e−tGhGh∆̃φ̃

+ (1− cos(t))e−tGhGh∆̃Ghφ̃− (1− cos(t))e−tGhG2
h∆̃φ̃

+ (1− cos(t))e−tGh∆̃G2
hφ̃− (1− cos(t))e−tGhGh∆̃Ghφ̃

= sin(t)e−tGh∆̃Ghφ̃− sin(t)e−tGhGh∆̃φ̃

+ (1− cos(t))e−tGh∆̃G2
hφ̃− (1− cos(t))e−tGhG2

h∆̃φ̃.
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By simple calculation, we get

C̃(t, e−tGhφ) = e−tGh∆̃
(
I + sin(t)Gh + (1− cos(t))G2

h

)
φ̃

− e−tGh
(
I + sin(t)Gh + (1− cos(t))G2

h

)
∆̃φ̃.

Then, by using (3.5.11) and (3.5.12)

C̃(t, e−tGhφ) = e−tGh∆̃(etGhφ̃)− e−tGh(etGh∆̃φ̃)

= e−tGh∆̃(etGhe−tGhφ)− e−tGh(etGh∆̃e−tGhφ)

= e−tGh∆̃φ− ∆̃e−tGhφ.

3.6 Equivalence of Approximate Solutions

In this section, we benefit from the operator Gh defined in the above section to define a

new process mh from uh. Let

mh(t) := e−W (t)Ghuh(t) ∀t ∈ [0, T ].

We note that with this new variable, the differential dW (t) vanishes in the equation

satisfied by mh. In the following, we introduce the equation satisfied by mh so that uh

is a solution to (3.3.1).

Lemma 3.6.1. If mh(t) satisfies

dmh

dt
= µmh × ∆̃mh − λmh × (mh × ∆̃mh) + F (W,mh), Pa.s. (3.6.1)

where

F (W (t),mh(t)) = µmh × C̃
(
W (t),mh(t)

)
− λmh ×

(
mh × C̃

(
W (t),mh(t)

))
.
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Then, uh(t) = eW (t)Ghmh(t) satisfies (3.3.1) Pa.s. and mh(t) is the unique solution of

equation (3.6.1).

Proof. In order to simplify notations, we will assume in the proof without loss of gener-

ality, that λ = µ = 1. Using Itô formula for uh = eW (t)Ghmh (see [17]), we get

uh(t) = uh(0)+

∫ t

0

Ghe
W (s)Ghmh(s)dW (s)+

∫ t

0

(
eW (s)Gh

dmh

dt
+

1

2
G2
he
W (s)Ghmh(s)

)
ds.

Then,

uh(t) = uh(0) +

∫ t

0

Ghe
W (s)Ghmh(s)dW (s) +

∫ t

0

eW (s)Gh

(
mh(s)× ∆̃mh(s)

)
ds

−
∫ t

0

eW (s)Gh

(
mh(s)×

(
mh(s)× ∆̃mh(s)

))
ds+

∫ t

0

eW (s)GhF
(
W (s),mh(s)

)
ds

+
1

2

∫ t

0

G2
he
W (s)Ghmh(s)ds.

From the definition of F , we obtain

uh(t) = uh(0)+
1

2

∫ t

0

G2
hu

h(s)ds+

∫ t

0

Ghu
h(s)dW (s)+

∫ t

0

(T1 + T2 + T3 + T4) ds (3.6.2)

with

T1 = eW (s)Gh

(
mh(s)× ∆̃mh(s)

)
T2 = eW (s)Gh

(
mh(s)× C̃

(
W (s),mh(s)

))
T3 = −eW (s)Gh

(
mh(s)×

(
mh(s)× ∆̃mh(s)

))
T4 = −eW (s)Gh

(
mh(s)×

(
mh(s)× C̃

(
W (s),mh(s)

)))
,

where C̃ is defined in Lemma 3.5.5. By using (3.5.12), (3.5.14) and the definition mh(t) =

e−W (t)Ghuh(t), we obtain

T2 = eW (s)Gh

(
e−W (s)Ghuh(s)× C̃

(
W (s), e−W (s)Ghuh(s)

))
= uh(s)× eW (s)GhC̃

(
W (s), e−W (s)Ghuh(s)

)
.
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From Lemma 3.5.5, we get

T2 = uh(s)× eW (s)Gh

(
−∆̃e−W (s)Ghuh(s) + e−W (s)Gh∆̃uh(s)

)
.

Using (3.5.12)

T2 = −uh(s)× eW (s)Gh

(
∆̃e−W (s)Ghuh(s)

)
+ uh(s)× ∆̃uh(s)

= −T1 + uh(s)× ∆̃uh(s).

Consequently,

T1 + T2 = uh(s)× ∆̃uh(s).

Similarly, we have

T3 + T4 = −uh(s)×
(
uh(s)× ∆̃uh(s)

)
.

Finally, we obtain from (3.6.2)

uh(t) = uh(0) +

∫ t

0

uh(s)× ∆̃uh(s)ds−
∫ t

0

uh(s)×
(
uh(s)× ∆̃uh(s)

)
ds

+
1

2

∫ t

0

G2
hu

h(s)ds+

∫ t

0

Ghu
h(s)dW (s).

In addtition, if we consider two solutions mh
1 and mh

2 to (3.6.1), then since e−W (t)Gh is

an isometry there exist two solutions uh1 and uh2 to (3.3.1). In fact, Lemma 3.3.3 implies

the uniqueness of mh which completes the proof.

3.7 Uniform Estimates

In this section, we introduce and prove some uniform estimates for mh which will be used

to prove the main result of this chapter, Theorem 3.1.3.

Lemma 3.7.1. Assume that |uh(0, xi)| = 1 for all xi ∈ Zh, D+uh(0) ∈ L2
h and gh ∈ L2

h.

For every t ∈ [0, T ] and all xi ∈ Zh, we have

∣∣mh(t, xi)
∣∣ = 1. (3.7.1)

79



Moreover, for T ∈ (0,∞) there exists a deterministic constant C which does not depend

on h but which may depend on |g|H2, |∇u0|L2 and T such that P-a.s.

sup
t∈[0,T ]

∣∣D+mh(t)
∣∣2
L2
h

≤ C, (3.7.2)∫ T

0

∣∣∣∆̃mh(t)
∣∣∣2
L2
h

dt ≤ C. (3.7.3)

Proof. In order to simplify notations, we assume in the proof without loss of generality,

that λ = µ = 1. We first prove (3.7.1). From (3.4.1), the definition mh(t) = e−W (t)Ghuh(t)

and using (3.5.12), we obtain ∣∣eW (t)Ghmh(t)
∣∣ = 1.

Then, using (3.5.16) we get ∣∣mh(t, xi)
∣∣ = 1,

for every t ∈ [0, T ] and all xi ∈ Zh and (3.7.1) follows.

Next we prove (3.7.2). Applying D+ to the discrete equation (3.6.1), we have

d

dt
D+mh = D+

(
mh × ∆̃mh

)
−D+

(
mh ×

(
mh × ∆̃mh

))
+D+

(
mh × C̃

(
W (t),mh

))
−D+

(
mh ×

(
mh × C̃

(
W (t),mh

)))
.

Multiplying by D+mh

d

dt

∣∣D+mh
∣∣2 =

〈
D+

(
mh × ∆̃mh

)
, D+mh

〉
−
〈
D+

(
mh ×

(
mh × ∆̃mh

))
, D+mh

〉
+
〈
D+

(
mh × C̃

(
W (t),mh

))
, D+mh

〉
−
〈
D+

(
mh ×

(
mh × C̃

(
W (t),mh

)))
, D+mh

〉
.

Hence, by taking the summation over xi ∈ Zh, multiplying by h, using (2.2.1), (2.2.2)

and Lemma 2.5.4, we obtain

d

dt

∣∣D+mh
∣∣2
L2
h

= −
∣∣∣mh × ∆̃mh

∣∣∣2
L2
h

+ S1 + S2 (3.7.4)
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with

S1 =
〈
D+

(
mh × C̃

(
W (t),mh

))
, D+mh

〉
L2
h

S2 = −
〈
D+

(
mh ×

(
mh × C̃

(
W (t),mh

)))
, D+mh

〉
L2
h

.

Using Lemma 2.5.4 and the elementary property (2.2.5)

S1 = −
〈
mh × C̃

(
W (t),mh

)
, ∆̃mh

〉
L2
h

= −
〈
C̃
(
W (t),mh

)
, ∆̃mh ×mh

〉
L2
h

=
〈
C̃
(
W (t),mh

)
,mh × ∆̃mh

〉
L2
h

≤
∣∣∣C̃(W (t),mh)

∣∣∣
L2
h

∣∣∣mh × ∆̃mh
∣∣∣
L2
h

≤ Cε

∣∣∣C̃ (W (t),mh
)∣∣∣2
L2
h

+ ε
∣∣∣mh × ∆̃mh

∣∣∣2
L2
h

.

Similarly, for S2 using (3.7.1) we get

S2 =
〈
mh ×

(
mh × C̃

(
W (t),mh

))
, ∆̃mh

〉
L2
h

=
〈
mh × C̃

(
W (t),mh

)
, ∆̃mh ×mh

〉
L2
h

= −
〈
mh × C̃

(
W (t),mh

)
,mh × ∆̃mh

〉
L2
h

≤
∣∣∣mh × C̃

(
W (t),mh

)∣∣∣
L2
h

∣∣∣mh × ∆̃mh
∣∣∣
L2
h

≤
∣∣∣C̃ (W (t),mh

)∣∣∣
L2
h

∣∣∣mh × ∆̃mh
∣∣∣
L2
h

≤ Cε

∣∣∣C̃ (W (t),mh
)∣∣∣2
L2
h

+ ε
∣∣∣mh × ∆̃mh

∣∣∣2
L2
h

.

Then, from (3.7.4)

d

dt

∣∣D+mh
∣∣2
L2
h

+ Cε

∣∣∣mh × ∆̃mh
∣∣∣2
L2
h

≤ Cε

∣∣∣C̃ (W (t),mh
)∣∣∣2
L2
h

.
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Integrating with respect to t and applying sups∈[0,t] for t ∈ [0, T ]

sup
s∈[0,t]

∣∣D+mh(s)
∣∣2
L2
h

+ Cε

∫ t

0

∣∣∣mh(s)× ∆̃mh(s)
∣∣∣2
L2
h

ds ≤
∣∣D+mh

0

∣∣2
L2
h

+ Cε

∫ t

0

∣∣∣C̃ (W (s),mh(s)
)∣∣∣2
L2
h

ds.

(3.7.5)

We proceed with the last term on the right hand side. From the definition of C̃ and

property (3.5.16), we obtain

∫ t

0

∣∣∣C̃ (W (s),mh(s)
)∣∣∣2
L2
h

ds

=

∫ t

0

∣∣e−W (s)Gh (sinW (s)C + (1− cosW (s))(CGh + GhC)) mh(s)
∣∣2
L2
h

ds

=

∫ t

0

∣∣(sinW (s)C + (1− cosW (s))(CGh + GhC)) mh(s)
∣∣2
L2
h

ds.

From the definition of C in Lemma 3.5.4∫ t

0

∣∣∣C̃ (W (s),mh(s)
)∣∣∣2
L2
h

ds

≤ C

∫ t

0

∣∣∣sinW (s)
(
mh × ∆̃gh +D+mh ×D+gh +D−mh ×D−gh

)∣∣∣2
L2
h

ds

+ C

∫ t

0

∣∣∣(1− cosW (s))
(
Ghm

h × ∆̃gh +D+Ghm
h ×D+gh +D−Ghm

h ×D−gh
)∣∣∣2

L2
h

ds

+ C

∫ t

0

∣∣∣(1− cosW (s))
(
Gh

(
mh × ∆̃gh +D+mh ×D+gh +D−mh ×D−gh

))∣∣∣2
L2
h

ds.

Consequently, using (3.7.1), the definition of the operator Gh and Lemma 2.5.2

∫ t

0

∣∣∣C̃ (W (s),mh(s)
)∣∣∣2
L2
h

ds

≤ CT
(
|∆̃gh|2L2

h
+ |gh|2L2

h
+ |gh|2L∞h |∆̃gh|2L2

h
+ |D+gh|2L∞h |D

+gh|2L2
h

)
+ C

(
|gh|2L∞h |D

+gh|2L∞h + |D+gh|2L∞h
)∫ t

0

∣∣D+mh(s)
∣∣2
L2
h

ds.
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From Lemma 2.5.6, we have

∫ t

0

∣∣∣C̃ (W (s),mh(s)
)∣∣∣2
L2
h

ds

≤ CT
(
|∆̃gh|2L2

h
+ |gh|2L2

h
+K2|gh|L2

h
|D+gh|L2

h
|∆̃gh|2L2

h
+K2|D+gh|3L2

h
|∆̃gh|L2

h

)
+ C

(
K4|gh|L2

h
|D+gh|2L2

h
|∆̃gh|L2

h
+K2|D+gh|L2

h
|∆̃gh|L2

h

)∫ t

0

∣∣D+mh(s)
∣∣2
L2
h

ds. (3.7.6)

Then, from (3.7.5) we obtain

sup
s∈[0,t]

∣∣D+mh(s)
∣∣2
L2
h

+ Cε

∫ t

0

∣∣∣mh(s)× ∆̃mh(s)
∣∣∣2
L2
h

ds

≤
∣∣D+mh(0)

∣∣2
L2
h

+ Cε (T, |g|H2) + Cε (|g|H2)

∫ t

0

sup
r∈[0,s]

∣∣D+mh(r)
∣∣2
L2
h

ds. (3.7.7)

Since

Cε

∫ t

0

∣∣∣mh(s)× ∆̃mh(s)
∣∣∣2
L2
h

ds ≥ 0,

we get by using Gronwall’s inequality (2.2.7)

sup
s∈[0,t]

∣∣D+mh(s)
∣∣2
L2
h

≤
(∣∣D+mh(0)

∣∣2
L2
h

+ Cε (T, |g|H2)
)
eCε(|g|H2)T

which completes the proof of (3.7.2).

Finally, we prove (3.7.3). By using (3.7.1) and the elementary property (2.2.4), we

have ∣∣∣∆̃mh
∣∣∣2 =

∣∣∣mh × ∆̃mh
∣∣∣2 +

〈
mh, ∆̃mh

〉2

.

Then, from Lemma 2.5.5 we deduce

∣∣∣∆̃mh
∣∣∣2 ≤ ∣∣∣mh × ∆̃mh

∣∣∣2 +
1

2

∣∣D+mh
∣∣4 +

1

2

∣∣D−mh
∣∣4 .
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Applying summation over x ∈ Zh, multiplying by h, using Lemma 2.5.2 and then inte-

grating with respect to t we get

∫ T

0

∣∣∣∆̃mh
∣∣∣2
L2
h

dt ≤
∫ T

0

∣∣∣mh × ∆̃mh
∣∣∣2
L2
h

dt+

∫ T

0

∣∣D+mh
∣∣4
L4
h

dt. (3.7.8)

From (3.7.7) and using (3.7.2), we obtain

∫ T

0

∣∣∣mh × ∆̃mh
∣∣∣2
L2
h

dt ≤ C (|∇u0|L2 , |g|H2 , T ) .

Now for the second term on the right hand side of (3.7.8), using Lemma 2.5.6 for the

discrete function D+mh and Lemma 2.5.2, we have

∣∣D+mh
∣∣4
L4
h

≤
∣∣D+mh

∣∣2
L∞h

∣∣D+mh
∣∣2
L2
h

≤ K2
∣∣D+mh

∣∣3
L2
h

∣∣∣∆̃mh
∣∣∣
L2
h

≤ Cε
∣∣D+mh

∣∣6
L2
h

+ ε
∣∣∣∆̃mh

∣∣∣2
L2
h

.

Consequently, using (3.7.2) we get from (3.7.8)

∫ T

0

∣∣∣∆̃mh
∣∣∣2
L2
h

dt ≤ Cε (|∇u0|L2 , |g|H2 , T )

which completes the proof of (3.7.3).

Lemma 3.7.2. Assume that |uh(0, xi)| = 1 for all xi ∈ Zh, D+uh(0) ∈ L2
h and gh ∈

L2
h. Let W1(·),W2(·) be two trajectories of the Wiener process and let mh

1 , mh
2 be the

corresponding solutions of equation (3.6.1). Then, there exists a constant C which does

not depend on h but which may depend on |g|H2, |∇u0|L2 and T such that

sup
t∈[0,T ]

∣∣mh
1(t)−mh

2(t)
∣∣
L2
h

≤ C sup
t∈[0,T ]

|W1(t)−W2(t)| .
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Proof. In order to simplify notations, we assume in the proof without loss of generality,

that λ = µ = 1. Using (2.2.3) and (3.7.1), we have

dmh

dt
= mh × ∆̃mh −

〈
mh, ∆̃mh

〉
mh + ∆̃mh

+ mh × C̃
(
W (t),mh(t)

)
−
〈
mh, C̃

(
W (t),mh(t)

)〉
mh + C̃

(
W (t),mh(t)

)
.

From Lemma 2.5.5, we get

dmh

dt
= mh × ∆̃mh +

1

2

∣∣D+mh
∣∣2 mh +

1

2

∣∣D−mh
∣∣2 mh + ∆̃mh

+ mh × C̃
(
W (t),mh(t)

)
−
〈
mh, C̃

(
W (t),mh(t)

)〉
mh + C̃

(
W (t),mh(t)

)
.

We denote mh := mh
1 −mh

2 . Substracting equations for mh
1 and mh

2 we obtain

dmh

dt
= ∆̃mh + mh × ∆̃mh

1 + mh
2 × ∆̃mh

+
1

2

∣∣D+mh
1

∣∣2 mh +
1

2

〈
D+mh, D+mh

1 +D+mh
2

〉
mh

2

+
1

2

∣∣D−mh
1

∣∣2 mh +
1

2

〈
D−mh, D−mh

1 +D−mh
2

〉
mh

2

+ mh × C̃
(
W1,m

h
1

)
+ mh

2 ×
(
C̃
(
W1,m

h
1

)
− C̃

(
W2,m

h
1

))
+ mh

2 × C̃
(
W2,mh

)
−
〈
mh

1 , C̃
(
W1,m

h
1

)〉
mh −

〈
mh, C̃

(
W1,m

h
1

)〉
mh

2

−
〈
mh

2 , C̃
(
W1,m

h
1

)
− C̃

(
W2,m

h
1

)〉
mh

2 −
〈
mh

2 , C̃
(
W2,mh

)〉
mh

2

+
(
C̃(W1,m

h
1)− C̃

(
W2,m

h
1

))
+ C̃

(
W2,mh

)
.

Multiplying by mh and using (2.2.1)

1

2

d|mh|2

dt
=
〈
mh, ∆̃mh

〉
+
〈
mh,mh

2 × ∆̃mh
〉

+
1

2

∣∣∣mh

∣∣∣2 ∣∣D+mh
1

∣∣2 +
1

2

〈
mh,mh

2

〉〈
D+mh, D+mh

1 +D+mh
2

〉
+

1

2

∣∣∣mh

∣∣∣2 ∣∣D−mh
1

∣∣2 +
1

2

〈
mh,mh

2

〉〈
D−mh, D−mh

1 +D−mh
2

〉
+
〈
mh,mh

2 ×
(
C̃(W1,m

h
1)− C̃(W2,m

h
1)
)〉
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+
〈
mh,mh

2 × C̃
(
W2,mh

)〉
−
∣∣∣mh

∣∣∣2 〈mh
1 , C̃(W1,m

h
1)
〉
−
〈
mh,mh

2

〉〈
mh, C̃(W1,m

h
1)
〉

−
〈
mh,mh

2

〉〈
mh

2 , C̃(W1,m
h
1)− C̃(W2,m

h
1)
〉

−
〈
mh,mh

2

〉〈
mh

2 , C̃
(
W2,mh

)〉
+
〈
mh,

(
C̃(W1,m

h
1)− C̃(W2,m

h
1)
)〉

+
〈
mh, C̃

(
W2,mh

)〉
. (3.7.9)

Multiplying by h, taking summation over xi ∈ Zh and using Lemma 2.5.4 we get for the

first term on the right hand side

〈
mh, ∆̃mh

〉
L2
h

= −
〈
D+mh, D+mh

〉
L2
h

= −
∣∣∣D+mh

∣∣∣2
L2
h

.

For the second term on the right hand side of (3.7.9), using Lemmas 2.5.3, 2.5.4 and the

elementary property (2.2.1) we have

〈
mh,mh

2 × ∆̃mh
〉
L2
h

=
〈
mh, D−

(
mh

2 ×D+mh
)〉

L2
h

−
〈
mh, D−mh

2 ×D−mh
〉
L2
h

= −
〈
D+mh,mh

2 ×D+mh
〉
L2
h

−
〈
mh, D−mh

2 ×D−mh
〉
L2
h

= −
〈
mh, D−mh

2 ×D−mh
〉
L2
h

.

Then, from (3.7.9)

1

2

d

dt

∣∣∣mh

∣∣∣2
L2
h

+
∣∣∣D+mh

∣∣∣2
L2
h

= −
〈
mh, D−mh

2 ×D−mh
〉
L2
h

+
1

2

∑
h
∣∣∣mh

∣∣∣2 ∣∣D+mh
1

∣∣2
+

1

2

∑
h
〈
mh,mh

2

〉〈
D+mh, D+mh

1 +D+mh
2

〉
+

1

2

∑
h
∣∣∣mh

∣∣∣2 ∣∣D−mh
1

∣∣2
+

1

2

∑
h
〈
mh,mh

2

〉〈
D−mh, D−mh

1 +D−mh
2

〉
+
〈
mh,mh

2 ×
(
C̃(W1,m

h
1)− C̃(W2,m

h
1)
)〉

L2
h

+
〈
mh,mh

2 × C̃
(
W2,mh

)〉
L2
h

86



−
∑

h
∣∣∣mh

∣∣∣2 〈mh
1 , C̃(W1,m

h
1)
〉

−
∑

h
〈
mh,mh

2

〉〈
mh, C̃(W1,m

h
1)
〉

−
∑

h
〈
mh,mh

2

〉〈
mh

2 , C̃(W1,m
h
1)− C̃(W2,m

h
1)
〉

−
∑

h
〈
mh,mh

2

〉〈
mh

2 , C̃
(
W2,mh

)〉
+
〈
mh,

(
C̃(W1,m

h
1)− C̃(W2,m

h
1)
)〉

L2
h

+
〈
mh, C̃

(
W2,mh

)〉
L2
h

.

We integrate with respect to t to obtain

1

2

∣∣∣mh

∣∣∣2
L2
h

+

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

=
13∑
i=1

Ti. (3.7.10)

We will estimate each term Ti separately. For T1, using Lemma 2.5.6 and Young’s in-

equality (2.2.6) for p = 4 and q = 4
3

we have

T1 = −
∫ t

0

〈
mh, D−mh

2 ×D−mh
〉
L2
h

ds

≤
∫ t

0

∣∣∣mh

∣∣∣
L∞h

∣∣D+mh
2

∣∣
L2
h

∣∣∣D+mh

∣∣∣
L2
h

≤ K

∫ t

0

∣∣∣mh

∣∣∣ 12
L2
h

∣∣∣D+mh

∣∣∣ 32
L2
h

∣∣D+mh
2

∣∣
L2
h

ds

≤ Cε

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

∣∣D+mh
2

∣∣4
L2
h

ds+ ε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds.

For T2, using Lemma 2.5.6

T2 =
1

2

∫ t

0

∑
h
∣∣∣mh

∣∣∣2 ∣∣D+mh
1

∣∣2 ds ≤ C

∫ t

0

∣∣∣mh

∣∣∣2
L∞h

∣∣D+mh
1

∣∣2
L2
h

ds

≤ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣D+mh

∣∣∣
L2
h

∣∣D+mh
1

∣∣2
L2
h

ds

≤ Cε

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

∣∣D+mh
1

∣∣4
L2
h

ds+ ε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds.
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For T3, using (3.7.1), Lemma 2.5.6 and Young’s inequality (2.2.6) for p = 4 and q = 4
3

T3 =
1

2

∫ t

0

∑
h
〈
mh,mh

2

〉〈
D+mh, D+mh

1 +D+mh
2

〉
ds

≤ C

∫ t

0

∣∣∣mh

∣∣∣
L∞h

∣∣∣D+mh

∣∣∣
L2
h

∣∣D+mh
1 +D+mh

2

∣∣
L2
h

ds

≤ C

∫ t

0

∣∣∣mh

∣∣∣ 12
L2
h

∣∣∣D+mh

∣∣∣ 32
L2
h

(∣∣D+mh
1

∣∣
L2
h

+
∣∣D+mh

2

∣∣
L2
h

)
ds

≤ Cε

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

(∣∣D+mh
1

∣∣4
L2
h

+
∣∣D+mh

2

∣∣4
L2
h

)
ds+ ε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds.

For T4 and T5, using the same reasoning we get

T4 =
1

2

∫ t

0

∑
h
∣∣∣mh

∣∣∣2 ∣∣D−mh
1

∣∣2 ds ≤ Cε

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

∣∣D+mh
1

∣∣4
L2
h

ds+ ε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds,

T5 =
1

2

∫ t

0

∑
h
〈
mh,mh

2

〉〈
D−mh, D−mh

1 +D−mh
2

〉
ds

≤ Cε

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

(∣∣D+mh
1

∣∣4
L2
h

+
∣∣D+mh

2

∣∣4
L2
h

)
ds+ ε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds.

We continue by estimating T6, using (3.7.1) we obtain

T6 =

∫ t

0

〈
mh,mh

2 ×
(
C̃(W1,m

h
1)− C̃(W2,m

h
1)
)〉

L2
h

ds

≤
∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣C̃(W1,m
h
1)− C̃(W2,m

h
1)
∣∣∣
L2
h

ds

≤ C

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

ds+ C

∫ t

0

∣∣∣C̃(W1,m
h
1)− C̃(W2,m

h
1)
∣∣∣2
L2
h

ds.

For T7, using (3.7.1) we have

T7 =

∫ t

0

〈
mh,mh

2 × C̃(W2,mh)
〉
L2
h

ds ≤
∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣C̃(W2,mh)
∣∣∣
L2
h

ds.

For term T8, using (3.7.1)

T8 = −
∫ t

0

∑
h
∣∣∣mh

∣∣∣2 〈mh
1 , C̃(W1,m

h
1)
〉
ds

≤
∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣∣C̃(W1,m
h
1)
∣∣∣
L2
h

ds.
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Using the same resoning, we have for T9

T9 = −
∫ t

0

∑
h
〈
mh,mh

2

〉〈
mh, C̃(W1,m

h
1)
〉
ds ≤

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣∣C̃(W1,m
h
1)
∣∣∣
L2
h

ds.

Now, for T10 using (3.7.1)

T10 = −
∫ t

0

∑
h
〈
mh,mh

2

〉〈
mh

2 , C̃(W1,m
h
1)− C̃(W2,m

h
1)
〉
ds

≤
∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣C̃(W1,m
h
1)− C̃(W2,m

h
1)
∣∣∣
L2
h

ds

≤ C

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

ds+ C

∫ t

0

∣∣∣C̃(W1,m
h
1)− C̃(W2,m

h
1)
∣∣∣2
L2
h

ds.

For T11,

T11 = −
∫ t

0

∑
h
〈
mh,mh

2

〉〈
mh

2 , C̃(W2,mh)
〉
ds ≤

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣C̃(W2,mh)
∣∣∣
L2
h

ds.

For T12,

T12 =

∫ t

0

〈
mh,

(
C̃(W1,m

h
1)− C̃(W2,m

h
1)
)〉

L2
h

ds

≤
∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣C̃(W1,m
h
1)− C̃(W2,m

h
1)
∣∣∣
L2
h

ds

≤ C

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

ds+ C

∫ t

0

∣∣∣C̃(W1,m
h
1)− C̃(W2,m

h
1)
∣∣∣2
L2
h

ds.

Finally, for T13 we get

T13 =

∫ t

0

〈
mh, C̃(W2,mh)

〉
L2
h

ds ≤
∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣C̃(W2,mh)
∣∣∣
L2
h

ds.

Combining all the above and applying sups∈[0,t] for t ∈ [0, T ], we obtain from (3.7.10)

sup
s∈[0,t]

∣∣∣mh

∣∣∣2
L2
h

+ Cε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds ≤ Cε

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

(∣∣D+mh
1

∣∣4
L2
h

+
∣∣D+mh

2

∣∣4
L2
h

+ 1
)
ds

+ C(S1 + S2 + S3) (3.7.11)
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with

S1 =

∫ t

0

∣∣∣C̃(W1,m
h
1)− C̃(W2,m

h
1)
∣∣∣2
L2
h

ds

S2 =

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣C̃(W2,mh
)∣∣∣

L2
h

ds

S3 =

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣∣C̃(W1,m
h
1)
∣∣∣
L2
h

ds.

We proceed by estimating Si(i = 1, 2, 3). For S1, we have

S1 =

∫ t

0

∣∣∣C̃(W1,m
h
1)− C̃(W2,m

h
1)
∣∣∣2
L2
h

ds

=

∫ t

0

∣∣e−W1GhC0(W1,m
h
1)− e−W2GhC0(W2,m

h
1)
∣∣2
L2
h

ds

=

∫ t

0

∣∣(e−W1Gh − e−W2Gh
)
C0(W2,m

h
1) + e−W1Gh

(
C0(W1,m

h
1)−C0(W2,m

h
1)
)∣∣2
L2
h

ds

≤ C(S4 + S5)

with C0 defined in Lemma 3.5.5 and

S4 =

∫ t

0

∣∣(e−W1Gh − e−W2Gh
)
C0(W2,m

h
1)
∣∣2
L2
h

ds

S5 =

∫ t

0

∣∣e−W1Gh
(
C0(W1,m

h
1)−C0(W2,m

h
1)
)∣∣2
L2
h

ds.

We have from (3.5.11) and the definition of the operator Gh

S4 =

∫ t

0

∣∣∣∣(sinW2 − sinW1)Gh

(
C0(W2,m

h
1)
)

+ (cosW2 − cosW1)G2
h

(
C0(W2,m

h
1)
) ∣∣∣∣2

L2
h

ds

≤ C

∫ t

0

∣∣∣∣(sinW2 − sinW1)Gh

(
C0(W2,m

h
1)
) ∣∣∣∣2

L2
h

ds

+ C

∫ t

0

∣∣∣∣(cosW2 − cosW1)G2
h

(
C0(W2,m

h
1)
) ∣∣∣∣2

L2
h

ds

≤ C sup
s∈[0,t]

|W2 −W1|2(|gh|2L∞h + |gh|4L∞h )

∫ t

0

∣∣C0(W2,m
h
1)
∣∣2
L2
h

ds.
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We estimate
∫ t

0
|C0(W2,m

h
1)|2

L2
h
ds in the same resoning as (3.7.6) is done, then by using

(3.7.2) and Lemma 2.5.6 we get

S4 ≤ C sup
s∈[0,t]

|W2 −W1|2(K2|gh|L2
h
|D+gh|L2

h
+K4|gh|2L2

h
|D+gh|2L2

h
)C(|∇u0|L2 , T, |g|H2)

≤ C(|∇u0|L2 , T, |g|H2) sup
s∈[0,t]

|W2 −W1|2.

Now, using (3.5.16) we obtain for S5

S5 =

∫ t

0

∣∣∣∣e−W1Gh
(
C0(W1,m

h
1)−C0(W2,m

h
1)
) ∣∣∣∣2

L2
h

ds

=

∫ t

0

∣∣∣∣C0(W1,m
h
1)−C0(W2,m

h
1)

∣∣∣∣2
L2
h

ds

=

∫ t

0

∣∣∣∣(sinW1 − sinW2)Cmh
1 + (cosW2 − cosW1)(CGh + GhC)mh

1

∣∣∣∣2
L2
h

ds

≤ C

∫ t

0

∣∣∣∣(sinW1 − sinW2)Cmh
1

∣∣∣∣2
L2
h

ds

+ C

∫ t

0

∣∣∣∣(cosW2 − cosW1)(CGh + GhC)mh
1

∣∣∣∣2
L2
h

ds

≤ C sup
s∈[0,t]

|W1 −W2|2
∫ t

0

∣∣∣∣Cmh
1

∣∣∣∣2
L2
h

ds+ C sup
s∈[0,t]

|W2 −W1|2
∫ t

0

∣∣∣∣(CGh + GhC)mh
1

∣∣∣∣2
L2
h

ds

≤ C(|∇u0|L2 , T, |g|H2) sup
s∈[0,t]

|W1 −W2|2

where the last inequality is obtained in the same reasoning as (3.7.6) is done. Combining

the above, we get

S1 ≤ C(|∇u0|L2 , T, |g|H2) sup
s∈[0,t]

|W1 −W2|2.

Using (3.5.16) and Lemma 2.5.2, we continue by estimating S2

S2 =

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣C̃(W2,mh
)∣∣∣

L2
h

ds

=

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣e−W2GhC0

(
W2,mh

)∣∣∣
L2
h

ds

=

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣( sinW2C + (1− cosW2)(CGh + GhC)
)
mh

∣∣∣
L2
h

ds
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≤ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣Cmh

∣∣∣
L2
h

ds+ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣(CGh + GhC)mh

∣∣∣
L2
h

ds

≤ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh × ∆̃gh +D+mh ×D+gh +D−mh ×D−gh
∣∣∣
L2
h

ds

+ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣Ghmh × ∆̃gh +D+Ghmh ×D+gh +D−Ghmh ×D−gh
∣∣∣
L2
h

ds

+ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣Gh

(
mh × ∆̃gh +D+mh ×D+gh +D−mh ×D−gh

)∣∣∣
L2
h

ds

≤ C

(
|∆̃gh|L2

h
+ |gh|L∞h |∆̃gh|L2

h
+ |D+gh|L∞h |D

+gh|L2
h

)∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

ds

+ C

(
|D+gh|L∞h + |gh|L∞h |D

+gh|L∞h

)∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣D+mh

∣∣∣
L2
h

ds.

Then, using Lemma 2.5.6 and Young’s inequality (2.2.6) for p = 4 and q = 4
3

we get

S2 ≤ Cε (|g|H2)

∫ t

0

∣∣∣mh

∣∣∣ 32
L2
h

∣∣∣D+mh

∣∣∣ 12
L2
h

ds+ Cε (|g|H2)

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

ds+ ε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds

≤ Cε (|g|H2)

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

ds+ ε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds.

For S3, using (3.5.16) and (3.7.1) we have

S3 =

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣∣C̃(W1,m
h
1)
∣∣∣
L2
h

ds

=

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣C0(W1,m
h
1)
∣∣
L2
h

ds

=

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣(sinW1C + (1− cosW1)(CGh + GhC)) mh
1

∣∣
L2
h

ds

≤ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣∣mh
1 × ∆̃gh +D+mh

1 ×D+gh +D−mh
1 ×D−gh

∣∣∣
L2
h

ds

+ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣∣Ghm
h
1 × ∆̃gh +D+Ghm

h
1 ×D+gh +D−Ghm

h
1 ×D−gh

∣∣∣
L2
h

ds

+ C

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣∣Gh

(
mh

1 × ∆̃gh +D+mh
1 ×D+gh +D−mh

1 ×D−gh
)∣∣∣

L2
h

ds

≤ C

(
|∆̃gh|L2

h
+ |gh|L∞h |∆̃gh|L2

h
+ |D+gh|L2

h
|D+gh|L∞h

)∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

ds

+ C

(
|D+gh|L∞h + |gh|L∞h |D

+gh|L∞h

)∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

∣∣D+mh
1

∣∣
L2
h

ds.
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Then, using (3.7.2), Lemma 2.5.6 and Young’s inequality (2.2.6) for p = 4 and q = 4
3

we

deduce

S3 ≤ C(|∇u0|L2 , T, |g|H2)

∫ t

0

∣∣∣mh

∣∣∣
L2
h

∣∣∣mh

∣∣∣
L∞h

ds

≤ C(|∇u0|L2 , T, |g|H2)

∫ t

0

∣∣∣mh

∣∣∣ 32
L2
h

∣∣∣D+mh

∣∣∣ 12
L2
h

ds

≤ Cε(|∇u0|L2 , T, |g|H2)

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

ds+ ε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds.

Finally, combining all the estimates for Si(i = 1, 2, 3) and using (3.7.2), we get from

(3.7.11)

sup
s∈[0,t]

∣∣∣mh

∣∣∣2
L2
h

+ Cε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds

≤ Cε(|∇u0|L2 , T, |g|H2)

∫ t

0

∣∣∣mh

∣∣∣2
L2
h

ds+ C(|∇u0|L2 , T, |g|H2) sup
s∈[0,t]

|W1 −W2|2

≤ Cε(|∇u0|L2 , T, |g|H2)

∫ t

0

sup
r∈[0,s]

∣∣∣mh(r)
∣∣∣2
L2
h

ds+ C(|∇u0|L2 , T, |g|H2) sup
s∈[0,t]

|W1 −W2|2.

From the fact that

Cε

∫ t

0

∣∣∣D+mh

∣∣∣2
L2
h

ds ≥ 0,

we obtain using Gronwall’s inequality (2.2.7)

sup
s∈[0,t]

∣∣∣mh(s)
∣∣∣2
L2
h

≤ C(|∇u0|L2 , T, |g|H2)eCε(|∇u0|L2 ,T,|g|H2 ) sup
s∈[0,t]

|W1 −W2|2

and the proof is now complete.

3.8 Proof of the Main Theorem

In this section, we will prove the main theorem of this chapter, Theorem 3.1.3. We recall

that the operators rh and ph are defined in Chapter 2. In what follows, we will repeatedly

use the simple fact that for any functions vh, wh : Zh → R3

rh
(
vh ×wh

)
= rhv

h × rhwh.
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We start by proving the following lemmas.

Lemma 3.8.1. Assume that |u0| = 1, ∇u0 ∈ L2 and g ∈ H2. Then, for T ∈ (0,∞),

there exists a constant C which does not depend on h but may depend on |g|H2, |∇u0|L2

and T such that P-a.s.

∫ T

0

∣∣phmh(t)
∣∣2
L2
m
dt ≤ C, (3.8.1)∫ T

0

∣∣∇phmh(t)
∣∣2
L2 dt ≤ C, (3.8.2)∫ T

0

∣∣∣∣ ddtphmh(t)

∣∣∣∣2
L2

dt ≤ C. (3.8.3)

Proof. In order to simplify notations, we assume in the proof without loss of generality,

that λ = µ = 1. First we prove (3.8.1). Using (3.7.1), we have

∫ T

0

∣∣phmh(t)
∣∣2
L2
m
dt =

∫ T

0

∑
xi∈Zh

∫ xi+1

xi

∣∣mh(t, xi) +D+mh(t, xi)(x− xi)
∣∣2 ρm(x)dxdt

≤ C

∫ T

0

∑
xi∈Zh

∫ xi+1

xi

∣∣mh(t, xi)
∣∣2 ρm(x)dxdt

+ C

∫ T

0

∑
xi∈Zh

∫ xi+1

xi

∣∣mh(t, xi+1)−mh(t, xi)
∣∣2 ρm(x)dxdt

≤ C

∫ T

0

∫
R
ρm(x)dxdt

≤ C(T ).

Next, we prove (3.8.2). Using property (2.5.8), we get

∫ T

0

∣∣∇phmh(t)
∣∣2
L2 dt =

∫ T

0

∣∣rhD+mh(t)
∣∣2
L2 dt =

∫ T

0

∣∣D+mh(t)
∣∣2
L2
h

dt

≤ T sup
t∈[0,T ]

∣∣D+mh(t)
∣∣2
L2
h

≤ C(|∇u0|L2 , T, |g|H2)

where the last step follows from (3.7.2).
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Finally, we prove (3.8.3). Using (3.7.1), we have

∫ T

0

∣∣∣∣ ddtphmh(t)

∣∣∣∣2
L2

dt

=

∫ T

0

∑
xi∈Zh

∫ xi+1

xi

∣∣∣∣ ddt (mh(t, xi) +D+mh(t, xi)(x− xi)
)∣∣∣∣2 dxdt

≤ C

∫ T

0

∣∣∣∣ ddtmh(t)

∣∣∣∣2
L2
h

dt

≤ C

∫ T

0

∣∣∣∣mh × ∆̃mh −mh × (mh × ∆̃mh)

+ mh × C̃
(
W,mh

)
−mh ×

(
mh × C̃

(
W,mh

)) ∣∣∣∣2
L2
h

dt

≤ C

∫ T

0

∣∣∣∆̃mh
∣∣∣2
L2
h

dt+ C

∫ T

0

∣∣∣C̃ (W,mh
)∣∣∣2
L2
h

dt

≤ C(|∇u0|L2 , T, |g|H2)

where the last step follows from (3.7.6), (3.7.2) and (3.7.3). The proof is now complete.

Lemma 3.8.2. There exists a sequence (hn)n≥0 and m ∈ L2(0, T ;L2
m) such that as

hn → 0, ∫ T

0

∣∣rhnmhn(t, ω)−m(t, ω)
∣∣2
L2
m
dt→ 0

for every ω.

Proof. Using Lemmas 2.1.2 and 3.8.1, we get that for every fixed ω there exists hn(ω)

and m0 ∈ L2(0, T ;L2
m′) such that as hn → 0

∫ T

0

∣∣phnmhn(t, ω)−m0(t, ω)
∣∣2
L2
m′
dt→ 0

where m′ = m
2

. In what follows, m′ will be denoted by m. Using Proposition 2.5.8, we

obtain that for every fixed ω and the corresponding trajectory of the Wiener process
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W (ω), there exists hn(ω) and m0 ∈ L2(0, T ;L2
m) such that as hn → 0

∫ T

0

∣∣rhnmhn(t, ω)−m0(t, ω)
∣∣2
L2
m
dt→ 0.

Since C0([0, T ]) is a separable Banach space and P(W (·) ∈ B) = 1 for every ball B in

C0([0, T ]), see for example the seminal work [46], we can find a countable set {ωk, k ≥ 1}

such that the corresponding trajectories t → W (t, ωk) form a dense set in C0([0, T ]).

Then, for every fixed {ωk} and the corresponding trajectory of the Wiener process W (ωk),

there exists hkn := hn(ωk) and m0 ∈ L2(0, T ;L2
m) such that as hkn → 0

∫ T

0

∣∣∣rhknmhkn(t, ωk)−m0(t, ωk)
∣∣∣2
L2
m

dt→ 0

for every k ≥ 1. From the diagonal procedure, we can find a subsequence hn independent

of k such that for every k ≥ 1

lim
n→∞

hn(ωk) = 0

and ∫ T

0

∣∣rhnmhn(t, ωk)−m0(t, ωk)
∣∣2
L2
m
dt→ 0. (3.8.4)

Next, we fix ω and a sequence ωk such that when k →∞,

sup
t∈[0,T ]

|W (t, ωk)−W (t, ω)| → 0.

Then, for n, l ≥ 0

∫ T

0

∣∣rhnmhn(t, ω)− rhlmhl(t, ω)
∣∣2
L2
m
dt

≤
∫ T

0

∣∣rhnmhn(t, ω)− rhnmhn(t, ωk)
∣∣2
L2
m
dt+

∫ T

0

∣∣rhnmhn(t, ωk)− rhlmhl(t, ωk)
∣∣2
L2
m
dt

+

∫ T

0

∣∣rhlmhl(t, ωk)− rhlmhl(t, ω)
∣∣2
L2
m
dt. (3.8.5)
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Using Lemma 3.7.2, we have that for ε > 0 there exists f0 > 0 such that for n, l ≥ f0

∫ T

0

∣∣rhnmhn(t, ω)− rhnmhn(t, ωk)
∣∣2
L2
m
dt ≤ T sup

t∈[0,T ]

∣∣rhnmhn(t, ω)− rhnmhn(t, ωk)
∣∣2
L2
m

≤ CT sup
t∈[0,T ]

|W (t, ω)−W (t, ωk)|2

≤ ε

2
,

and

∫ T

0

∣∣rhlmhl(t, ω)− rhlmhl(t, ωk)
∣∣2
L2
m
dt ≤ T sup

t∈[0,T ]

∣∣rhlmhl(t, ω)− rhlmhl(t, ωk)
∣∣2
L2
m

≤ CT sup
t∈[0,T ]

|W (t, ω)−W (t, ωk)|2

≤ ε

2
.

Therefore, from (3.8.5) and using (3.8.4), we obtain

lim sup
hn,hl→0

∫ T

0

∣∣rhnmhn(t, ω)− rhlmhl(t, ω)
∣∣2
L2
m
dt

≤ ε+ lim sup
hn,hl→0

∫ T

0

∣∣rhnmhn(t, ωk)− rhlmhl(t, ωk)
∣∣2
L2
m
dt

≤ ε.

Since ε is arbitrary, we get

lim
hn,hl→0

∫ T

0

∣∣rhnmhn(t, ω)− rhlmhl(t, ω)
∣∣2
L2
m
dt = 0.

Consequently, {rhnmhn} is a Cauchy sequence in a complete space L2(0, T ;L2
m). Hence,

there exists m ∈ L2(0, T ;L2
m) such that

lim
hn→0

∫ T

0

∣∣rhnmhn(t, ω)−m(t, ω)
∣∣2
L2
m
dt = 0

for every ω and the result follows.
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Lemma 3.8.3. There exists a sequence (hn)n≥0 and u ∈ Hm such that as hn → 0,

E
[ ∫ T

0

∣∣rhnuhn(t)− u(t)
∣∣2
L2
m
dt

]
→ 0

where uhn(t) = eW (t)Ghnmhn(t) and u(t) = eW (t)Gm(t). We note that uhn(t) satisfies

(3.3.1). In addition,

|u(ω, t, x)| = 1 dP dt dx a.e.

Proof. We have that, using Lemma 3.5.3 applied on G : L2
m → L2

m

E
[ ∫ T

0

∣∣rhnuhn(t)− u(t)
∣∣2
L2
m
dt

]
= E

[ ∫ T

0

∣∣rhneW (t)Ghnmhn(t)− eW (t)Gm(t)
∣∣2
L2
m
dt

]
≤ CE

[ ∫ T

0

∣∣rhneW (t)Ghnmhn(t)− eW (t)Grhnm
hn(t)

∣∣2
L2
m
dt

]
+ CE

[ ∫ T

0

∣∣eW (t)Grhnm
hn(t)− eW (t)Gm(t)

∣∣2
L2
m
dt

]
≤ CE

[ ∫ T

0

∣∣rhneW (t)Ghnmhn(t)− eW (t)Grhnm
hn(t)

∣∣2
L2
m
dt

]
+ CE

[ ∫ T

0

∣∣rhnmhn(t)−m(t)
∣∣2
L2
m
dt

]
≤ A1 + A2. (3.8.6)

For A1, by using (3.5.11) we get

A1 = E
[ ∫ T

0

∣∣ sinW (t)
(
rhnGhnm

hn(t)−Grhnm
hn(t)

)
+ (1− cosW (t))

(
rhnG

2
hnm

hn(t)−G2rhnm
hn(t)

) ∣∣2
L2
m
dt

]
≤ CE

[ ∫ T

0

∣∣rhnGhnm
hn(t)−Grhnm

hn(t)
∣∣2
L2
m
dt

]
+ CE

[ ∫ T

0

∣∣rhnG2
hnm

hn(t))−G2rhnm
hn(t)

∣∣2
L2
m
dt

]
≤ CE

[ ∫ T

0

∣∣rhnmhn(t)× (rhng
hn − g)

∣∣2
L2
m
dt

]
+ CE

[ ∫ T

0

∣∣ (rhnmhn(t)× rhnghn
)
× (rhng

hn − g)
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+
(
rhnm

hn(t)× (rhng
hn − g)

)
× g
∣∣2
L2
m
dt

]
≤ CE

[ ∫ T

0

∣∣rhnmhn(t)× (rhng
hn − g)

∣∣2
L2
m
dt

]
+ CE

[ ∫ T

0

∣∣(rhnmhn(t)× rhnghn
)
× (rhng

hn − g)
∣∣2
L2
m
dt

]
+ CE

[ ∫ T

0

∣∣(rhnmhn(t)× (rhng
hn − g)

)
× g
∣∣2
L2
m
dt

]
.

Then, using (3.7.1) we obtain

A1 ≤ CT |rhnghn − g|2L2 + CT |rhnghn|2L∞|rhnghn − g|2L2 + CT |g|2L∞|rhnghn − g|2L2 .

From the assumption g ∈ H1, we get using Lemma 2.5.7

lim
hn→0

A1 = 0.

On the other hand, we have from Lemma 3.8.2

lim
hn→0

A2 = 0.

Then, (3.8.6) implies

lim
hn→0

E
[ ∫ T

0

∣∣rhnuhn(t)− u(t)
∣∣2
L2
m
dt

]
= 0. (3.8.7)

Furthermore, from Lemma 3.6.1 we get that uhn satisfies (3.3.1). Next, using (3.8.7), we

can find a sequence (rhnu
hn) such that as hn → 0,

rhnu
hn → u in Hm

rhnu
hn(ω, t, x)→ u(ω, t, x) dP dt dx a.e.

Since |rhnuhn(ω, t, x)| = |u(ω, t, x)| dP dt dx a.e. and from (3.4.1) the lemma follows.
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Lemma 3.8.4. There exists a sequence (hn)n≥0 and u ∈ Hm such that as hn → 0,

rhnu
hn → u strongly in Hm and dP dt dx-a.e., (3.8.8)

rhn∆̃uhn →∆u weakly in Hm. (3.8.9)

Proof. The first convergence (3.8.8) follows from Lemma 3.8.3 and the existence of an

a.e. converging subsequence follows. Next we prove (3.8.9). From (3.8.8) and Proposition

2.5.9, we get that as hn → 0

phnu
hn → u strongly in Hm.

From Lemma 3.4.1, we also find that there exists v ∈ Hm such that as hn → 0

rhnD
+uhn = ∇phnu

hn → v weakly in Hm. (3.8.10)

Therefore, from Proposition 2.3.19

u ∈ H1
m and v = ∇u.

Next, we have from Lemma 3.4.1 that there exists w ∈ Hm such that as hn → 0

rhn∆̃uhn = rhn(D+D−uhn) = ∇(phnD
−uhn)→ w weakly in Hm.

It follows from (3.8.10) that as hn → 0

rhnD
−uhn → v weakly in Hm,

then using Proposition 2.5.9, we have as hn → 0

phnD
−uhn → v = ∇u weakly in Hm.
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Therefore, from Proposition 2.3.19

u ∈ H2
m and w = ∆u

then the lemma follows.

Lemma 3.8.5. There exists a sequence (hn)n≥0 such that we have as hn → 0,

∫ t

0

rhnu
hn(s)× rhn∆̃uhn(s)ds→

∫ t

0

u(s)×∆u(s)ds, (3.8.11)∫ t

0

rhnu
hn(s)×

(
rhnu

hn(s)× rhn∆̃uhn(s)
)
ds→

∫ t

0

u(s)× (u(s)×∆u(s)) ds (3.8.12)

weakly in Hm.

Proof. First, we prove (3.8.11). We have for φ ∈ Hm, using (2.2.5)

〈
rhnu

hn × rhn∆̃uhn , φ
〉
Hm

=
〈

(rhnu
hn − u)× rhn∆̃uhn , φ

〉
Hm

+
〈
u× rhn∆̃uhn , φ

〉
Hm

=
〈
φ× (rhnu

hn − u), rhn∆̃uhn
〉
Hm

+
〈
φ× u, rhn∆̃uhn

〉
Hm

= I1 + I2.

For I1, we have

I1 ≤ E
[ ∫ T

0

∣∣φ× (rhnu
hn − u)

∣∣
L2
m

∣∣∣rhn∆̃uhn
∣∣∣
L2
m

dt

]
≤ E

[(∫ T

0

∣∣φ× (rhnu
hn − u)

∣∣2
L2
m
dt

) 1
2
(∫ T

0

∣∣∣rhn∆̃uhn
∣∣∣2
L2
m

dt

) 1
2
]

≤ E
[ ∫ T

0

∫
R
|φ|2|rhnuhn − u|2ρmdxdt

] 1
2

E
[ ∫ T

0

∣∣∣rhn∆̃uhn
∣∣∣2
L2
m

dt

] 1
2

.

Using Lemma 3.4.1, we get that

I1 ≤ CE
[ ∫ T

0

∫
R
|φ|2|rhnuhn − u|2ρmdxdt

] 1
2

.
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By Lemma 3.8.3, we can find a sequence (rhnu
hn) such that as hn → 0

rhnu
hn → u in Hm

rhnu
hn(ω, t, x)→ u(ω, t, x) dP dt dx a.e.

Since |rhnuhn(ω, t, x)| = |u(ω, t, x)| dP dt dx a.e., the dominated convergence theorem

yields

I1 → 0.

For I2, as φ× u ∈ Hm and using (3.8.9) we obtain as hn → 0

I2 → 〈φ× u,∆u〉Hm .

We deduce using (2.2.5) that as hn → 0

〈
rhnu

hn × rhn∆̃uhn , φ
〉
Hm
→ 〈u×∆u, φ〉Hm (3.8.13)

which implies (3.8.11). Next, we prove (3.8.12). Let Yn := rhnu
hn × rhn∆̃uhn and Y :=

u×∆u. We have for φ ∈ Hm, using (2.2.5)

〈
rhnu

hn × Yn, φ
〉
Hm

=
〈
(rhnu

hn − u)× Yn, φ
〉
Hm

+ 〈u× Yn, φ〉Hm

=
〈
φ× (rhnu

hn − u), Yn
〉
Hm

+ 〈φ× u, Yn〉Hm

= J1 + J2.

For J1, following the same resoning as I1 and using Lemma 3.4.1, we get

J1 → 0.

For J2, as φ× u ∈ Hm, using (3.8.13) and (2.2.5) we obtain as hn → 0

J2 → 〈u× (u×∆u), φ〉Hm
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which implies (3.8.12).

Lemma 3.8.6. Assume g ∈ H1. We have as hn → 0,

∫ t

0

(rhnu
hn × rhnghn)× rhnghnds→

∫ t

0

(u(s)× g)× g ds (3.8.14)∫ t

0

rhnu
hn(s)× rhnghndW (s)→

∫ t

0

u(s)× g dW (s) (3.8.15)

strongly in Hm.

Proof. First we prove (3.8.14). We have

E
[ ∫ T

0

∣∣∣∣ ∫ t

0

(
(rhnu

hn(s)× rhnghn)× rhnghn − (u(s)× g)× g
)
ds

∣∣∣∣2
L2
m

]
≤ TE

[ ∫ T

0

∣∣(rhnuhn(s)× rhnghn
)
× rhnghn − (u(s)× g)× g

∣∣2
L2
m
ds

]
≤ CTE

[ ∫ T

0

∣∣(rhnuhn(s)× (rhng
hn − g)

)
× rhnghn

∣∣2
L2
m
ds

]
+ CTE

[ ∫ T

0

∣∣(rhnuhn(s)× g
)
× (rhng

hn − g)
∣∣2
L2
m
ds

]
+ CTE

[ ∫ T

0

∣∣((rhnuhn(s)− u(s)
)
× g
)
× g
∣∣2
L2
m
ds

]
.

Then, using Lemma 3.4.1

E
[ ∫ T

0

∣∣∣∣ ∫ t

0

((
rhnu

hn(s)× rhnghn
)
× rhnghn − (u(s)× g)× g

)
ds

∣∣∣∣2
L2
m

]
≤ CT 2|rhnghn − g|2L2

m
|rhnghn|2L∞ + CT 2|rhnghn − g|2L2

m
|g|2L∞

+ CTE
[ ∫ T

0

∫
R
|rhnuhn − u|2|g|4ρmdxds

]
.

Hence, by Lemma 2.5.7 and from Lemma 3.8.4 the dominated convergence theorem yields

as hn → 0,

E
[ ∫ T

0

∣∣∣∣ ∫ t

0

((
rhnu

hn(s)× rhnghn
)
× rhnghn − (u(s)× g)× g

)
ds

∣∣∣∣2
L2
m

]
→ 0.
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Next, we prove (3.8.15). Using Lemma 3.4.1, we have

E
[ ∫ T

0

∣∣∣∣ ∫ t

0

(
rhnu

hn(s)× rhnghn − u(s)× g
)
dW (s)

∣∣∣∣2
L2
m

]
≤ CTE

[ ∫ T

0

∣∣rhnuhn(s)× rhnghn − u(s)× g
∣∣2
L2
m
ds

]
≤ CTE

[ ∫ T

0

∣∣rhnuhn(s)× (rhng
hn − g) +

(
rhnu

hn(s)− u(s)
)
× g
∣∣2
L2
m
ds

]
≤ CTE

[ ∫ T

0

∣∣rhnuhn(s)× (rhng
hn − g)

∣∣2
L2
m
ds

]
+ CTE

[ ∫ T

0

∣∣(rhnuhn(s)− u(s)
)
× g
∣∣2
L2
m
ds

]
≤ CT 2|rhnghn − g|2L2

m
+ CTE

[ ∫ T

0

∫
R
|rhnuhn − u|2|g|2ρmdxds

]
.

Then, using Lemma 2.5.7 and from Lemma 3.8.4 the dominated convergence theorem

yields that as hn → 0,

E
[ ∫ T

0

∣∣∣∣ ∫ t

0

(
rhnu

hn(s)× rhnghn − u(s)× g
)
dW (s)

∣∣∣∣2
L2
m

]
→ 0.

Now, we are ready to prove the main result of this chapter, Theorem 3.1.3.

Proof of Theorem 3.1.3: We have for φ ∈ Hm

〈
rhnu

hn , φ
〉
Hm

= 〈u0, φ〉Hm + µ

〈∫ t

0

rhnu
hn × rhn∆̃uhnds, φ

〉
Hm

− λ
〈∫ t

0

rhnu
hn ×

(
rhnu

hn × rhn∆̃uhn
)
ds, φ

〉
Hm

+
µ2

2

〈∫ t

0

(rhnu
hn × rhnghn)× rhnghnds, φ

〉
Hm

+ µ

〈∫ t

0

(rhnu
hn × rhnghn)dW (s), φ

〉
Hm

.
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Taking the limit when hn → 0, we obtain from Lemmas 3.8.3, 3.8.5 and 3.8.6 that for

every φ ∈ Hm

〈u, φ〉Hm = 〈u0, φ〉Hm + µ

〈∫ t

0

u×∆u ds, φ

〉
Hm
− λ

〈∫ t

0

u× (u×∆u) ds, φ

〉
Hm

+
µ2

2

〈∫ t

0

(u× g)× g ds, φ

〉
Hm

+ µ

〈∫ t

0

(u× g) dW (s), φ

〉
Hm

.

Equivalently, we have dP dt dx− a.e.

u(t) =u0 + µ

∫ t

0

u(s)×∆u(s) ds− λ
∫ t

0

u(s)× (u(s)×∆u(s)) ds

+
µ2

2

∫ t

0

(u(s)× g)× g ds+ µ

∫ t

0

(u(s)× g) dW (s). (3.8.16)

By (3.8.11), we have

E
[ ∫ T

0

|u×∆u|2L2
m
dt

]
<∞

then the process

t→
∫ t

0

u×∆u ds

taking values in L2
m is continuous P-a.s. Using (3.8.12) and (3.8.14) we show by similar

arguments, that the L2
m-valued processes

t→
∫ t

0

u× (u×∆u) ds and t→
∫ t

0

(u× g)× g ds

are continuous P-a.s. The L2
m-valued process

Mt =

∫ t

0

(u× g) dW (s)

is by (3.8.15) a square-integrable martingale hence has a continuous modification by

Theorem 4.27 in [17]. Therefore, there exists an L2
m-continuous version of the process

uh and the property (1) of Definition 1.3.1 holds. Next, property (2) of Definition 1.3.1

follows from Lemma 3.4.1 and (3.8.8). Furthermore, from Lemma 3.4.1 we can find that
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there exists v ∈ L2(Ω;L∞(0, T ;L2)) such that as hn → 0

rhnD
+uhn → v weak? in L2(Ω;L∞(0, T ;L2)), (3.8.17)

hence (for a subsequence still denoted as hn)

rhnD
+uhn → v weakly in Hm.

Therefore, there exists v ∈ Hm such that as hn → 0

rhnD
+uhn → v weakly in Hm.

From the proof of Lemma 3.8.4, we have that v = ∇u. Then, (3.8.17) implies

E
[

sup
t∈[0,T ]

|∇u(t)|2L2

]
<∞.

Similarly, using Lemma 3.4.1 we can find that there exists w ∈ L2(Ω;L2(0, T ;L2)) such

that as hn → 0

rhn∆̃uhn → w weak? in L2(Ω;L2(0, T ;L2)). (3.8.18)

Hence, there exists w ∈ Hm such that as hn → 0

rhn∆̃uhn → w weakly in Hm.

From Lemma 3.8.4, we have that w = ∆u. Then, (3.8.18) implies

E
[ ∫ T

0

|∆u(t)|2L2 dt

]
<∞

and property (3) of Definition 1.3.1 is satisfied. Finally, property (4) follows from (3.8.16)

and the fact that each term of the equation is in L2
m.
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Remark 3.8.7. In fact, inspection of the proof of the theorem shows that the process

u− u0 has a continuous modification in L2(R).
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Chapter 4

Reduction of the Whole Real Line to a Bounded Interval

4.1 Introduction

Throughout the rest of this dissertation, we aim to solve numerically the one-dimensional

stochastic problem (3.1.1)-(3.1.3). We recall that this problem is posed on R with ho-

mogeneous Neumann boundary conditions at infinity. In order to solve (3.1.1)-(3.1.3)

numerically, a truncation of the domain R to some bounded domain is necessary. This

also requires boundary conditions for u. In this chapter, we truncate the infinite domain

to a bounded domain [−L,L] and we employ physically relevant Neumann boundary con-

ditions for u. Then, we prove that when the domain [−L,L] is large enough the solution

uL of the problem on this bounded domain approximates the solution u of the original

problem on R.

We truncate the domain R into a bounded domain [−L,L] and impose homogeneous

Neumann boundary conditions. In this case, the stochastic LLG equation takes the form

duL =

(
µuL ×∆uL − λuL ×

(
uL ×∆uL

)
+
µ2

2

(
uL × g

)
× g

)
dt

+ µ
(
uL × g

)
dW on (0, T )× (−L,L), (4.1.1)

uL(0, x) = uL0 (x), x ∈ [−L,L], (4.1.2)

|uL0 (x)| = 1, x ∈ [−L,L], (4.1.3)

∂uL

∂x
(t,±L) = 0, t ∈ (0, T ], (4.1.4)
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where uL : [0, T ]× [−L,L]→ R3.

The existence and uniqueness of solutions to this equation and their regularity was

proved in [12]. The folowing result summarises Theorems 3.1, 4.1 and 5.2 in [12].

Theorem 4.1.1. Let uL0 denote the function u0 restricted to the interval [−L,L]. Assume

that |u0(x)| = 1 for x ∈ R, ∇u0 ∈ L2(R) and g ∈ W 1,∞(R). Then equation (4.1.1) has

a unique strong solution uL, such that

|uL(t, x)| = 1 (4.1.5)

for all t ∈ [0, T ] and x ∈ [−L,L]. Moreover, for every p ≥ 1

E
[

sup
t∈[0,T ]

|∇uL(t)|2pL2(−L,L)

]
+ E

[(∫ T

0

|∆uL(t)|2L2(−L,L) dt

)p ]
<∞ . (4.1.6)

We note that (3.1.5) where the whole real line is considered confer estimate (4.1.6)

obtained in [12].

The main theorem of this chapter is stated as follows.

Theorem 4.1.2. Let u : [0, T ]× R→ R3 be the unique global strong solution to (3.1.1)-

(3.1.3). Assume that |u0(x)| = 1 for all x ∈ R, ∇u0 ∈ L2(R) and g ∈ W 1,∞(R)∩H2(R).

Then, for every sequence (Ln)n≥0 such that

∞∑
n=1

1

Lpn
<∞ (4.1.7)

for 1 ≤ p <∞, we have for every m > 1

lim
n→∞

(
sup
t∈[0,T ]

∫ L

−L
|u(t, x)− uLn(t, x)|2 ρm(x) dx

)
= 0 P-a.s..

for every L > 0. Moreover, for a fixed α > 0 small enough and every m > 1, there exists

a random variable C independent of n and such that

sup
t∈[0,T ]

∫ L

−L
|u(t, x)− uLn(t, x)|2ρm(x)dx ≤ Ce−

αLn
2m .
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4.2 A Priori Estimates

In this section, we will improve a priori estimates in (4.1.6). They will be used in the

next section to prove Theorem 4.1.2. In the following, we denote Dl := (−l, l) for any

l > 0.

Lemma 4.2.1. Let u0 and g satisfy the assumptions of Theorem 4.1.2. Suppose that

L ≥ 1 and let uL be the corresponding solution to equation (4.1.1). Then, for every

T > 0 and p ≥ 1

E
[

sup
t∈[0,T ]

|∇uL|2pL2(DL)

]
≤ C, (4.2.1)

E
[(∫ T

0

|∆uL|2L2(DL)ds

)p]
≤ C, (4.2.2)

with C depending only on |∇u0|L2 , |g|H1, T and p but not on L.

Proof. We assume in the proof, without loss of generality, that λ = µ = 1. First, we

prove (4.2.1). Applying ∇ to (4.1.1), we get

d∇uL = ∇(uL ×∆uL)dt−∇ (uL × (uL ×∆uL)) dt+
1

2
∇ ((uL × g)× g) dt

+∇
(
uL × g

)
dW.

Then, by using Lemma 2.3.17, we obtain for every x ∈ DL

d
∣∣∇uL

∣∣2 = 2
〈
∇uL,∇

(
uL ×∆uL

)〉
dt− 2

〈
∇uL,∇

(
uL ×

(
uL ×∆uL

))〉
dt

+
〈
∇uL,∇

((
uL × g

)
× g
)〉
dt+ 2

〈
∇uL,∇

(
uL × g

)〉
dW +

∣∣∇(uL × g
)∣∣2dt.

Integrating with respect to x ∈ DL, we obtain

d
(∣∣∇uL

∣∣2
L2(DL)

)
=

(
2

∫ L

−L

〈
∇uL,∇

(
uL ×∆uL

)〉
dx

)
dt

−
(

2

∫ L

−L

〈
∇uL,∇

(
uL ×

(
uL ×∆uL

))〉
dx

)
dt
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+

(∫ L

−L

〈
∇uL,∇

((
uL × g

)
× g
)〉
dx

)
dt

+

(
2

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dx

)
dW +

∣∣∇(uL × g
)∣∣2
L2(DL)

dt.

Using integration by parts and the elementary properties (2.2.1) and (2.2.2), we get

d
(∣∣∇uL

∣∣2
L2(DL)

)
=

(
2

∫ L

−L

〈
∆uL,uL ×

(
uL ×∆uL

)〉
dx

)
dt

+

(∫ L

−L

〈
∇uL,∇

((
uL × g

)
× g
)〉
dx

)
dt

+

(
2

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dx

)
dW +

∣∣∇(uL × g
)∣∣2
L2(DL)

dt

= −2 |uL ×∆uL|2L2(DL) dt+

(∫ L

−L

〈
∇uL,∇

((
uL × g

)
× g
)〉
dx

)
dt

+

(
2

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dx

)
dW +

∣∣∇(uL × g
)∣∣2
L2(DL)

dt.

We obtain for all t ∈ [0, T ],

∣∣∇uL(t)
∣∣2
L2(DL)

−
∣∣∇u0

∣∣2
L2(DL)

+ 2

∫ t

0

∣∣uL ×∆uL
∣∣2
L2(DL)

ds

=

∫ t

0

∫ L

−L

〈
∇uL,∇

((
uL × g

)
× g
)〉
dxds+ 2

∫ t

0

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dxdW (s)

+

∫ t

0

∣∣∇(uL × g
)∣∣2
L2(DL)

ds. (4.2.3)

Since

2

∫ t

0

∣∣uL ×∆uL
∣∣2
L2(DL)

ds ≥ 0,

we get

∣∣∇uL(t)
∣∣2
L2(DL)

≤
∣∣∇u0

∣∣2
L2(DL)

+

∫ t

0

|∇uL|L2(DL)|∇
((

uL × g
)
× g
)
|L2(DL)ds

+ 2

∣∣∣∣∫ t

0

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dxdW (s)

∣∣∣∣+

∫ t

0

∣∣∇(uL × g
)∣∣2
L2(DL)

ds

≤
∣∣∇u0

∣∣2
L2(DL)

+ C

∫ t

0

(
|∇uL|2L2(DL) +

∣∣∇(uL × g
)∣∣2
L2(DL)

+ |∇
((

uL × g
)
× g
)
|2L2(DL)

)
ds
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+ 2

∣∣∣∣∫ t

0

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dxdW (s)

∣∣∣∣ . (4.2.4)

The middle term in the integrand of the first integral on the right hand side can be

estimated by using (4.1.5) as follows

∣∣∇(uL × g
)∣∣2
L2(DL)

≤ 2
∣∣∇uL × g

∣∣2
L2(DL)

+ 2
∣∣uL ×∇g

∣∣2
L2(DL)

≤ 2
∣∣∇uL

∣∣2
L2(DL)

|g|2L∞(DL) + 2
∣∣∇g

∣∣2
L2(DL)

≤ C
∣∣∇uL

∣∣2
L2(DL)

+ C (4.2.5)

where the constants depend only on |g|H1 . Similarly, we can show that

∣∣∇((uL × g
)
× g
)∣∣2
L2(DL)

≤ C
∣∣∇uL

∣∣2
L2(DL)

+ C.

Hence, it follows from (4.2.4) that

∣∣∇uL(t)
∣∣2
L2(DL)

≤
∣∣∇u0

∣∣2
L2(DL)

+ Ct+ C

∫ t

0

|∇uL|2L2(DL)ds

+ C

∣∣∣∣∫ t

0

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dxdW (s)

∣∣∣∣ .
By raising both sides to the power p and using Jensen’s inequality (3.3.18), we deduce

∣∣∇uL(t)
∣∣2p
L2(DL)

≤ C + C

(∫ t

0

|∇uL|2L2(DL)ds

)p
+ C

∣∣∣∣∫ t

0

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dxdW (s)

∣∣∣∣p
≤ C + C

∫ t

0

|∇uL|2pL2(DL)ds

+ C

∣∣∣∣∫ t

0

∫ L

−L

〈
∇uL,∇

(
uL × g

)〉
dxdW (s)

∣∣∣∣p

where in the last step we used Hölder’s inequality. The constants depend on |∇u0|L2 , |g|H1 ,

T and p. Therefore,
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E
[

sup
s∈[0,t]

∣∣∇uL(s)
∣∣2p
L2(DL)

]
≤ C + C

∫ t

0

E
[
|∇uL(s)|2pL2(DL)

]
ds

+ CE
[

sup
s∈[0,t]

∣∣∣∣∫ s

0

∫ L

−L

〈
∇uL(τ),∇

(
uL(τ)× g

)〉
dxdW (τ)

∣∣∣∣p ]
≤ C + C

∫ t

0

E
[
|∇uL(s)|2pL2(DL)

]
ds

+ CE
[(∫ t

0

∣∣∣∣∫ L

−L

〈
∇uL(s),∇

(
uL(s)× g

)〉
dx

∣∣∣∣2 ds
) p

2 ]

where in the last step we used the BDG inequality (Lemma 2.3.18). It follows from (4.2.5)

that

E
[

sup
s∈[0,t]

∣∣∇uL(s)
∣∣2p
L2(DL)

]
≤ C + C

∫ t

0

E
[
|∇uL(s)|2pL2(DL)

]
ds+ CE

[(∫ t

0

(
|∇uL(s)|2L2(DL) + |∇uL(s)|4L2(DL)

)
ds

) p
2
]

≤ C + C

∫ t

0

E
[
|∇uL(s)|2pL2(DL)

]
ds+ CE

[(∫ t

0

(
1 + |∇uL(s)|4L2(DL)

)
ds

) p
2
]

≤ C + C

∫ t

0

E
[
|∇uL(s)|2pL2(DL)

]
ds+ C(T ) + CE

[(∫ t

0

|∇uL(s)|4L2(DL)ds

) p
2
]

(4.2.6)

for p ≥ 2 where in the last step we used Jensen’s inequality (3.3.18). Next, Hölder’s

inequality implies

E

[(∫ t

0

|∇uL(s)|4L2(DL)ds

) p
2
]
≤ C(T )E

[ ∫ t

0

|∇uL(s)|2pL2(DL)ds

]
≤ C(T )

∫ t

0

E
[
|∇uL(s)|2pL2(DL)

]
ds. (4.2.7)

Hence, inequalities (4.2.6) and (4.2.7) yield

E
[

sup
s∈[0,t]

∣∣∇uL(s)
∣∣2p
L2(DL)

]
≤ C + C

∫ t

0

E
[
|∇uL(s)|2pL2(DL)

]
ds

≤ C + C

∫ t

0

E
[

sup
τ∈[0,s]

|∇uL(τ)|2pL2(DL)

]
ds.
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Then, by using Gronwall’s inequality (2.2.7), we obtain for p ≥ 2

E
[

sup
s∈[0,t]

∣∣∇uL(s)
∣∣2p
L2(DL)

]
≤ C

where the constant depends on |∇u0|L2 , |g|H1 , T and p but not on L. Finally, the in-

equality a ≤ 1+a2

2
implies the result for p ≥ 1 and the proof of (4.2.1) is complete.

Next, we prove (4.2.2). By using the elementary property (2.2.4) and from (4.1.5),

we have

|∆uL|2 = |uL ×∆uL|2 + 〈uL,∆uL〉2 .

Then, by using 〈uL,∆uL〉 = −
∣∣∇uL

∣∣2, we deduce

|∆uL|2 = |uL ×∆uL|2 +
∣∣∇uL

∣∣4.
Integrating with respect to x ∈ DL, we get

∣∣∆uL
∣∣2
L2(DL)

=
∣∣uL ×∆uL

∣∣2
L2(DL)

+
∣∣∇uL

∣∣4
L4(DL)

.

Integrating with respect to t ∈ [0, T ], raising to the power p and applying expectation we

obtain

E
[(∫ T

0

∣∣∆uL
∣∣2
L2(DL)

ds

)p]
≤ CE

[(∫ T

0

∣∣uL ×∆uL
∣∣2
L2(DL)

ds

)p]
+ CE

[(∫ T

0

∣∣∇uL
∣∣4
L4(DL)

ds

)p]
≤ S1 + S2 (4.2.8)

where the constants depend only on p. In order to estimate S1, we proceed from

(4.2.3) and write down the same inequalities but with
∫ t

0
|uL × ∆uL|2L2(DL)ds instead

of |∇uL(t)|2L2(DL) on the left hand side. In fact, we have

E
[(∫ t

0

∣∣uL ×∆uL
∣∣2
L2(DL)

ds

)p]
≤ C + C

∫ t

0

E
[

sup
r∈[0,s]

∣∣∇uL(r)
∣∣2p
L2(DL)

]
ds.
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From (4.2.1), we deduce

E
[(∫ t

0

∣∣uL ×∆uL
∣∣2
L2(DL)

ds

)p]
≤ C (4.2.9)

where the constant C depends only on |∇u0|L2 , |g|H1 , T and p but not on L. Now, we

estimate S2. We know that

∣∣∇uL
∣∣4
L4(DL)

≤
∣∣∇uL

∣∣2
L∞(DL)

∣∣∇uL
∣∣2
L2(DL)

. (4.2.10)

Since L ≥ 1, Lemma 2.1.1 yields

∣∣∇uL
∣∣2
L∞(DL)

≤ 2
√

2
∣∣∇uL

∣∣
L2(DL)

(∣∣∇uL
∣∣2
L2(DL)

+
∣∣∆uL

∣∣2
L2(DL)

)1/2

≤ 2
√

2
∣∣∇uL

∣∣
L2(DL)

(∣∣∇uL
∣∣
L2(DL)

+
∣∣∆uL

∣∣
L2(DL)

)
.

Then, from (4.2.10) we get

∣∣∇uL
∣∣4
L4(DL)

≤ 2
√

2
∣∣∇uL

∣∣4
L2(DL)

+ 2
√

2
∣∣∇uL

∣∣3
L2(DL)

∣∣∆uL
∣∣
L2(DL)

≤ 2
√

2
∣∣∇uL

∣∣4
L2(DL)

+ Cε
∣∣∇uL

∣∣6
L2(DL)

+ ε
∣∣∆uL

∣∣2
L2(DL)

.

Integrating with respect to time, raising to the power p and using Jensen’s inequality

(3.3.18), we get for ε ∈ (0, 1)

(∫ T

0

∣∣∇uL
∣∣4
L4(DL)

ds

)p
≤
(

2
√

2

∫ T

0

∣∣∇uL
∣∣4
L2(DL)

ds+ Cε

∫ T

0

∣∣∇uL
∣∣6
L2(DL)

ds

+ ε

∫ T

0

∣∣∆uL
∣∣2
L2(DL)

ds

)p
≤ C sup

t∈[0,T ]

∣∣∇uL(t)
∣∣4p
L2(DL)

+ Cε sup
t∈[0,T ]

∣∣∇uL(t)
∣∣6p
L2(DL)

+ ε

(∫ T

0

∣∣∆uL
∣∣2
L2(DL)

ds

)p
.
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Hence,

E
[(∫ T

0

∣∣∇uL
∣∣4
L4(DL)

ds

)p]
≤ CE

[
sup
t∈[0,T ]

∣∣∇uL(t)
∣∣4p
L2(DL)

]
+ CεE

[
sup
t∈[0,T ]

∣∣∇uL(t)
∣∣6p
L2(DL)

]
+ εE

[(∫ T

0

∣∣∆uL
∣∣2
L2(DL)

ds

)p]
≤ C + εE

[(∫ T

0

∣∣∆uL
∣∣2
L2(DL)

ds

)p]
(4.2.11)

where in the last step we used (4.2.1). Then, inequalities (4.2.8), (4.2.9) and (4.2.11)

yield (4.2.2) where the constant C depends only on |∇u0|L2 , |g|H1 , T and p but not on

L. This completes the proof of the lemma.

4.3 Proof of the Main Theorem

We are ready now to prove the main result of this chapter, Theorem 4.1.2. We assume

in the proof without loss of generality, that λ = µ = 1. We consider a sequence (Ln)n≥0

verifying assumption (4.1.7) and denote L+
n := Ln + 1. We consider φn : R→ [0, 1] such

that φn ∈ C∞c (R) and

φn(x) =


1 x ∈ DLn ,

0 x ≥ (Ln + 1) or x ≤ −(Ln + 1).

We multiply (3.1.1) by φn, use the elementary property (2.2.3) and property (2) in Defi-

nition 1.3.1 to get

d(uφn) =

(
φnu×∆u− φn 〈u,∆u〉u + φn∆u +

1

2
φn(u× g)× g

)
dt+ φn

(
u× g

)
dW.

Furthermore, by using (2.2.3) and (4.1.5), we obtain from equation (4.1.1) on DL+
n

duL+
n

=

(
uL+

n
×∆uL+

n
−
〈
uL+

n
,∆uL+

n

〉
uL+

n
+ ∆uL+

n
+

1

2

(
uL+

n
× g
)
× g

)
dt

+
(
uL+

n
× g
)
dW.
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In the following, we denote

ū := uφn − uL+
n
.

Substracting the two equations above and using 〈u,∆u〉 = −
∣∣∇u

∣∣2, we get

dū =

(
ū×∆u + uL+

n
×∆ū + uL+

n
×∆(u− uφn) +

∣∣∇u
∣∣2ū

+
〈
∇ū,∇u +∇uL+

n

〉
uL+

n
+
〈
∇(u− uφn),∇u +∇uL+

n

〉
uL+

n

+ (φn − 1)∆u + ∆(u− uφn) + ∆ū +
1

2
((ū× g)× g)

)
dt

+ (ū× g)dW, ∀x ∈ DL+
n
.

Multiplying both sides by ζm(x) = e−
|x|
2m , using Lemma 2.3.17 and the elementary prop-

erty (2.2.1) we get

1

2

d

dt
|ζmū|2 =

1

2
|ζmū× g|2

+ 〈ζmū, ζm∆ū〉+ 〈ζmū, (φn − 1)ζm∆u〉+ 〈ζmū, ζm∆(u− uφn)〉

+
〈
ζmū, ζmuL+

n
×∆ū

〉
+
〈
ζmū, ζmuL+

n
×∆(u− uφn)

〉
+ 〈ζmū, ζmū〉

∣∣∇u
∣∣2 +

〈
ζmū,

〈
∇ū,∇u +∇uL+

n

〉
ζmuL+

n

〉
+
〈
ζmū,

〈
∇(u− uφn),∇u +∇uL+

n

〉
ζmuL+

n

〉
+

1

2
〈ζmū, (ζmū× g)× g〉 .

(4.3.1)

For the second term on the right hand side of (4.3.1), using the fact that ∇ū(±L+
n ) = 0,

we obtain

∫ L+
n

−L+
n

〈ζmū, ζm∆ū〉 dx =

∫ L+
n

−L+
n

〈
ζ2
mū,∆ū

〉
dx = −

∫ L+
n

−L+
n

〈
∇(ζ2

mū),∇ū
〉
dx

= −2

∫ L+
n

−L+
n

〈ζmū,∇ζm∇ū〉 dx−
∫ L+

n

−L+
n

|ζm∇ū|2 dx. (4.3.2)
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For the fifth term on the right hand side of (4.3.1), using elementary properties (2.2.1),

(2.2.5) and the fact that ∇ū(±L+
n ) = 0 we get

∫ L+
n

−L+
n

〈
ζmū, ζmuL+

n
×∆ū

〉
dx

=

∫ L+
n

−L+
n

〈
∆ū, ζmū× ζmuL+

n

〉
dx

= −
∫ L+

n

−L+
n

〈
∇ū,∇(ζ2

mū× uL+
n

)
〉
dx

= −2

∫ L+
n

−L+
n

〈
∇ū, ζm∇ζmū× uL+

n

〉
dx−

∫ L+
n

−L+
n

〈
∇ū, ζ2

m∇ū× uL+
n

〉
dx

−
∫ L+

n

−L+
n

〈
∇ū, ζ2

mū×∇uL+
n

〉
dx

= −2

∫ L+
n

−L+
n

〈
uL+

n
×∇ζm∇ū, ζmū

〉
dx−

∫ L+
n

−L+
n

〈
∇uL+

n
× ζm∇ū, ζmū

〉
dx. (4.3.3)

Integrating both sides of (4.3.1) with respect to x ∈ DL+
n

, using (4.3.2) and (4.3.3) we

get

1

2

d

dt
|ζmū|2L2(D

L+
n

) +
∣∣ζm∇ū

∣∣2
L2(D

L+
n

)

=
1

2

∫ L+
n

−L+
n

|ζmū× g|2dx− 2

∫ L+
n

−L+
n

〈ζmū,∇ζm∇ū〉 dx− 2

∫ L+
n

−L+
n

〈
uL+

n
×∇ζm∇ū, ζmū

〉
dx

−
∫ L+

n

−L+
n

〈
∇uL+

n
× ζm∇ū, ζmū

〉
dx+

∫ L+
n

−L+
n

〈ζmū, (φn − 1)ζm∆u〉 dx

+

∫ L+
n

−L+
n

〈ζmū, ζm∆(u− uφn)〉 dx+

∫ L+
n

−L+
n

〈
ζmū, ζmuL+

n
×∆(u− uφn)

〉
dx

+

∫ L+
n

−L+
n

〈ζmū, ζmū〉
∣∣∇u

∣∣2dx+

∫ L+
n

−L+
n

〈
ζmū,

〈
∇ū,∇u +∇uL+

n

〉
ζmuL+

n

〉
dx

+

∫ L+
n

−L+
n

〈
ζmū,

〈
∇(u− uφn),∇u +∇uL+

n

〉
ζmuL+

n

〉
dx+

1

2

∫ L+
n

−L+
n

〈ζmū, (ζmū× g)× g〉 dx.

(4.3.4)

We integrate with respect to t to obtain

1

2
|ζmū|2L2(D

L+
n

) +

∫ t

0

∣∣ζm∇ū
∣∣2
L2(D

L+
n

)
ds =

1

2
|ζmū(0)|2L2(D

L+
n

) +
11∑
k=1

Nk .
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We note first that, using the elementary property (2.2.2), we have N1 +N11 = 0. We will

estimate each term Nk(k = 2, ..., 10) separately. For N2,

N2(t) = −2

∫ t

0

∫ L+
n

−L+
n

〈ζmū,∇ζm∇ū〉 dxds

≤ 2

∫ t

0

|ζmū|L2(D
L+
n

)|∇ζm∇ū|L2(D
L+
n

)ds

≤ C

∫ t

0

|ζmū|2L2(D
L+
n

)ds+
1

4

∫ t

0

|∇ζm∇ū|2L2(D
L+
n

)ds.

For N3, using (4.1.5) we obtain

N3(t) = −2

∫ t

0

∫ L+
n

−L+
n

〈
uL+

n
×∇ζm∇ū, ζmū

〉
dxds

≤ 2

∫ t

0

|ζmū|L2(D
L+
n

)|∇ζm∇ū|L2(D
L+
n

)ds

≤ C

∫ t

0

|ζmū|2L2(D
L+
n

)ds+
1

4

∫ t

0

|∇ζm∇ū|2L2(D
L+
n

)ds.

For N4, using Lemma 2.1.1 we get

N4(t) = −
∫ t

0

∫ L+
n

−L+
n

〈
∇uL+

n
× ζm∇ū, ζmū

〉
dxds

≤
∫ t

0

|ζmū|L∞(D
L+
n

)

∣∣ζm∇ū
∣∣
L2(D

L+
n

)

∣∣∇uL+
n

∣∣
L2(D

L+
n

)
ds

≤ C

∫ t

0

|ζmū|
1
2

L2(D
L+
n

)

(
|ζmū|2L2(D

L+
n

) + |∇ζmū + ζm∇ū|2L2(D
L+
n

)

) 1
4

∣∣ζm∇ū
∣∣
L2(D

L+
n

)

∣∣∇uL+
n

∣∣
L2(D

L+
n

)
ds

≤ C

∫ t

0

|ζmū|
1
2

L2(D
L+
n

)

(
|ζmū|

1
2

L2(D
L+
n

) + |∇ζmū|
1
2

L2(D
L+
n

) + |ζm∇ū|
1
2

L2(D
L+
n

)

)
∣∣ζm∇ū

∣∣
L2(D

L+
n

)

∣∣∇uL+
n

∣∣
L2(D

L+
n

)
ds.

Let us recall that |∇ζm| = 1
2m
|ζm|. Then, using Young’s inequality (2.2.6) for p = 4 and

q = 4
3

we obtain

N4 ≤ Cm

∫ t

0

|ζmū|L2(D
L+
n

)

∣∣ζm∇ū
∣∣
L2(D

L+
n

)

∣∣∇uL+
n

∣∣
L2(D

L+
n

)
ds
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+ C

∫ t

0

|ζmū|
1
2

L2(D
L+
n

)|ζm∇ū|
3
2

L2(D
L+
n

)

∣∣∇uL+
n

∣∣
L2(D

L+
n

)
ds

≤ Cm

∫ t

0

|ζmū|2L2(D
L+
n

)

(∣∣∇uL+
n

∣∣2
L2(D

L+
n

)
+
∣∣∇uL+

n

∣∣4
L2(D

L+
n

)

)
ds

+
1

8

∫ t

0

|ζm∇ū|2L2(D
L+
n

)ds.

For N5,

N5(t) =

∫ t

0

∫ L+
n

−L+
n

〈ζmū, (φn − 1)ζm∆u〉 dxds

≤
∫ t

0

|ζmū|L2(D
L+
n

) |(φn − 1)ζm∆u|L2(D
L+
n

) ds

≤ 1

2

∫ t

0

∫ L+
n

−L+
n

|ζmū|2dxds+
1

2

∫ t

0

∫ L+
n

−L+
n

(φn − 1)2ζ2
m

∣∣∆u
∣∣2dxds

≤ C

∫ t

0

|ζmū|2L2(D
L+
n

)ds+ C

∫ t

0

∫ −Ln
−L+

n

(φn − 1)2ζ2
m

∣∣∆u
∣∣2dxds

+ C

∫ t

0

∫ L+
n

Ln

(φn − 1)2ζ2
m

∣∣∆u
∣∣2dxds.

For N6,

N6(t) =

∫ t

0

∫ L+
n

−L+
n

〈ζmū, ζm∆(u− uφn)〉 dxds

≤
∫ t

0

|ζmū|L2(D
L+
n

)|ζm∆(u− uφn)|L2(D
L+
n

)ds

≤ C

∫ t

0

|ζmū|2L2(D
L+
n

)ds+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∆u−∆uφn − 2∇u∇φn − u∆φn
∣∣2dxds

+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∆u−∆uφn − 2∇u∇φn − u∆φn
∣∣2dxds.

Now we estimate N7, using (4.1.5) we get

N7(t) =

∫ t

0

∫ L+
n

−L+
n

〈
ζmū, ζmuL+

n
×∆(u− uφn)

〉
dxds

≤
∫ t

0

|ζmū|L2(D
L+
n

)|ζm∆(u− uφn)|L2(D
L+
n

)ds

≤ C

∫ t

0

|ζmū|2L2(D
L+
n

)ds+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∆u−∆uφn − 2∇u∇φn − u∆φn
∣∣2dxds
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+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∆u−∆uφn − 2∇u∇φn − u∆φn
∣∣2dxds.

For N8, using Lemma 2.1.1 and the same resoning as N4, we get

∫ t

0

∫ L+
n

−L+
n

〈ζmū, ζmū〉
∣∣∇u

∣∣2dxds
≤
∫ t

0

|ζmū|2L∞(D
L+
n

)

∣∣∇u
∣∣2
L2(D

L+
n

)
ds

≤ 2
√

2

∫ t

0

|ζmū|L2(D
L+
n

)

(
|ζmū|2L2(D

L+
n

) +
∣∣∇ζmū + ζm∇ū

∣∣2
L2(D

L+
n

)

) 1
2 ∣∣∇u

∣∣2
L2(D

L+
n

)
ds

≤ 2
√

2

∫ t

0

|ζmū|L2(D
L+
n

)

(
|ζmū|L2(D

L+
n

) +
∣∣∇ζmū

∣∣
L2(D

L+
n

)
+
∣∣ζm∇ū

∣∣
L2(D

L+
n

)

) ∣∣∇u
∣∣2
L2(D

L+
n

)
ds

≤ Cm

∫ t

0

|ζmū|2L2(D
L+
n

)

∣∣∇u
∣∣2
L2(D

L+
n

)
ds+ C

∫ t

0

|ζmū|L2(D
L+
n

)

∣∣ζm∇ū
∣∣
L2(D

L+
n

)

∣∣∇u
∣∣2
L2(D

L+
n

)
ds

≤ Cm

∫ t

0

|ζmū|2L2(D
L+
n

)

(∣∣∇u
∣∣2
L2(D

L+
n

)
+
∣∣∇u

∣∣4
L2(D

L+
n

)

)
ds+

1

8

∫ t

0

|ζm∇ū|2L2(D
L+
n

)ds.

For N9, using (4.1.5) we get following the same reasoning as N4

∫ t

0

∫ L+
n

−L+
n

〈
ζmū,

〈
∇ū,∇u +∇uL+

n

〉
ζmuL+

n

〉
dxds

≤
∫ t

0

|ζmū|L∞(D
L+
n

)

∣∣ζm∇ū
∣∣
L2(D

L+
n

)

∣∣∇u +∇uL+
n

∣∣
L2(D

L+
n

)
ds

≤ Cm

∫ t

0

|ζmū|L2(D
L+
n

)

∣∣ζm∇ū
∣∣
L2(D

L+
n

)

∣∣∇u +∇uL+
n

∣∣
L2(D

L+
n

)
ds

+ C

∫ t

0

|ζmū|
1
2

L2(D
L+
n

)

∣∣ζm∇ū
∣∣ 32
L2(D

L+
n

)

∣∣∇u +∇uL+
n

∣∣
L2(D

L+
n

)
ds

≤ Cm

∫ t

0

|ζmū|2L2(D
L+
n

)

(∣∣∇u
∣∣2
L2(D

L+
n

)
+
∣∣∇u

∣∣4
L2(D

L+
n

)
+
∣∣∇uL+

n

∣∣2
L2(D

L+
n

)
+
∣∣∇uL+

n

∣∣4
L2(D

L+
n

)

)
ds

+
1

4

∫ t

0

|ζm∇ū|2L2(D
L+
n

)ds.

Finally we estimate N10, using (4.1.5) we obtain

N10(t) =

∫ t

0

∫ L+
n

−L+
n

〈
ζmū,

〈
∇(u− uφn),∇u +∇uL+

n

〉
ζmuL+

n

〉
dxds

≤
∫ t

0

|ζmū|L2(D
L+
n

)

∣∣〈ζm∇(u− uφn),∇u +∇uL+
n

〉∣∣
L2(D

L+
n

)
ds
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≤ 1

2

∫ t

0

∫ L+
n

−L+
n

|ζmū|2dxds+
1

2

∫ t

0

∫ L+
n

−L+
n

ζ2
m

∣∣∇(u− uφn)
∣∣2∣∣∇u +∇uL+

n

∣∣2dxds
≤ C

∫ t

0

|ζmū|2L2(D
L+
n

)ds

+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∇u−∇uφn − u∇φn
∣∣2∣∣∇u +∇uL+

n

∣∣2dxds
+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∇u−∇uφn − u∇φn
∣∣2∣∣∇u +∇uL+

n

∣∣2dxds.
Then, combining all the above and applying sups∈[0,t] for any t ∈ [0, T ] we obtain

sup
s∈[0,t]

|ζmū(s)|2L2(D
L+
n

) +

∫ t

0

∣∣ζm∇ū
∣∣2
L2(D

L+
n

)
ds−

∫ t

0

∣∣∇ζm∇ū
∣∣2
L2(D

L+
n

)
ds

≤ |ζmū(0)|2L2(D
L+
n

)

+ C

∫ t

0

∫ −Ln
−L+

n

(φn − 1)2ζ2
m

∣∣∆u
∣∣2dxds+ C

∫ t

0

∫ L+
n

Ln

(φn − 1)2ζ2
m

∣∣∆u
∣∣2dxds

+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∆u−∆uφn − 2∇u∇φn − u∆φn
∣∣2dxds

+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∆u−∆uφn − 2∇u∇φn − u∆φn
∣∣2dxds

+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∇u−∇uφn − u∇φn
∣∣2 (∣∣∇u

∣∣2 +
∣∣∇uL+

n

∣∣2) dxds
+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∇u−∇uφn − u∇φn
∣∣2 (∣∣∇u

∣∣2 +
∣∣∇uL+

n

∣∣2) dxds
+ C

∫ t

0

|ζmū|2L2(D
L+
n

)(
1 +

∣∣∇u
∣∣2
L2(D

L+
n

)
+
∣∣∇u

∣∣4
L2(D

L+
n

)
+
∣∣∇uL+

n

∣∣2
L2(D

L+
n

)
+
∣∣∇uL+

n

∣∣4
L2(D

L+
n

)

)
ds. (4.3.5)

Since, for m > 1,

∫ t

0

∣∣ζm∇ū
∣∣2
L2(D

L+
n

)
ds−

∫ t

0

∣∣∇ζm∇ū
∣∣2
L2(D

L+
n

)
ds =

∫ t

0

(
1− 1

4m2

)∣∣ζm∇ū
∣∣2
L2(D

L+
n

)
ds ≥ 0,

(4.3.5) and Gronwall’s inequality (2.2.7) yield

sup
s∈[0,t]

|ζmū(s)|2L2(D
L+
n

)
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≤
(
|ζmū(0)|2L2(D

L+
n

) + C

∫ t

0

∫ −Ln
−L+

n

(φn − 1)2ζ2
m

∣∣∆u
∣∣2dxds

+ C

∫ t

0

∫ L+
n

Ln

(φn − 1)2ζ2
m

∣∣∆u
∣∣2dxds

+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∆u−∆uφn − 2∇u∇φn − u∆φn
∣∣2dxds

+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∆u−∆uφn − 2∇u∇φn − u∆φn
∣∣2dxds

+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∇u−∇uφn − u∇φn
∣∣2 (∣∣∇u

∣∣2 +
∣∣∇uL+

n

∣∣2) dxds
+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∇u−∇uφn − u∇φn
∣∣2 (∣∣∇u

∣∣2 +
∣∣∇uL+

n

∣∣2) dxds)eµLn (t)

with µLn(t) = C

∫ t

0

(
1+
∣∣∇u

∣∣2
L2(D

L+
n

)
+
∣∣∇u

∣∣4
L2(D

L+
n

)
+
∣∣∇uL+

n

∣∣2
L2(D

L+
n

)
+
∣∣∇uL+

n

∣∣4
L2(D

L+
n

)

)
ds.

Consequently, we have

sup
s∈[0,t]

|ζmū|2L2(D
L+
n

) ≤
(
C

∫ −Ln
−L+

n

|ζm|2dx+ C

∫ L+
n

Ln

|ζm|2dx

+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∆u
∣∣2dxds+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∆u
∣∣2dxds

+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∇u∇φn
∣∣2dxds+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∆φn∣∣2dxds
+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∇u∇φn
∣∣2dxds+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∆φn∣∣2dxds
+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∇u
∣∣4dxds+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∇uL+
n

∣∣4dxds
+ C

∫ t

0

∫ −Ln
−L+

n

ζ2
m

∣∣∇φn∣∣2∣∣∇uL+
n

∣∣2dxds
+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∇u
∣∣4dxds+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∇uL+
n

∣∣4dxds
+ C

∫ t

0

∫ L+
n

Ln

ζ2
m

∣∣∇φn∣∣2∣∣∇uL+
n

∣∣2dxds)eµLn (t). (4.3.6)

Then, as e−
|x|
m ≤ e−

Ln
m for −L+

n ≤ x ≤ −Ln and Ln ≤ x ≤ L+
n , we obtain

sup
s∈[0,t]

|ζmū|2L2(D
L+
n

) ≤ e−
Ln
m XLne

µLn (t) (4.3.7)
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with

XLn = C + C

∫ t

0

∫ −Ln
−L+

n

∣∣∆u
∣∣2dxds+ C

∫ t

0

∫ L+
n

Ln

∣∣∆u
∣∣2dxds

+ C

∫ t

0

∫ −Ln
−L+

n

∣∣∇u∇φn
∣∣2dxds+ C

∫ t

0

∫ −Ln
−L+

n

∣∣∆φn∣∣2dxds
+ C

∫ t

0

∫ L+
n

Ln

∣∣∇u∇φn
∣∣2dxds+ C

∫ t

0

∫ L+
n

Ln

∣∣∆φn∣∣2dxds
+ C

∫ t

0

∫ −Ln
−L+

n

∣∣∇u
∣∣4dxds+ C

∫ t

0

∫ −Ln
−L+

n

∣∣∇uL+
n

∣∣4dxds
+ C

∫ t

0

∫ −Ln
−L+

n

∣∣∇φn∣∣2∣∣∇uL+
n

∣∣2dxds
+ C

∫ t

0

∫ L+
n

Ln

∣∣∇u
∣∣4dxds+ C

∫ t

0

∫ L+
n

Ln

∣∣∇uL+
n

∣∣4dxds
+ C

∫ t

0

∫ L+
n

Ln

∣∣∇φn∣∣2∣∣∇uL+
n

∣∣2dxds.
Next, for α ∈ (0, 1) and β = 1 − α

2
, we denote An := e−

βLn
2m XLn and Bn := e−

βLn
2m eµLn (t).

Then, from (4.3.7) we get

sup
s∈[0,t]

|ζmū|2L2(D
L+
n

) ≤ e−
αLn
2m AnBn. (4.3.8)

We have, for ε > 0 ∑
n

P (An > ε) =
∑
n

P(XLn > εe
βLn
2m ).

Using Lemma 2.3.9, we get for 1 ≤ p <∞

∑
n

P(An > ε) ≤
∑
n

1

εp
e−

βpLn
2m E

[
Xp
Ln

]
.
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From Theorem 3.1.3 and Lemma 4.2.1 we obtain

∑
n

P(An > ε) ≤ C
1

εp

∑
n

e−
pβLn
2m

≤ C
1

εp

∑
n

(
1

1 + βLn
2m

)p
≤ C

(
2m

βε

)p∑
n

1

Lpn
.

Then, from condition (4.1.7) ∑
n

P(An > ε) <∞.

Consequently, Lemma 2.3.5 gives

P ({An > ε} i.o.) = 0, for every ε > 0

which means that

lim
n→∞

An = 0, P-a.s. (4.3.9)

On the other hand, using Lemma 2.3.9, Theorem 3.1.3 and Lemma 4.2.1 we have for any

ε > 0 and 1 ≤ p <∞ ∑
n

P
(
µLn
Ln

> ε

)
≤
∑
n

1

εpLpn
E
[
µpLn
]

≤ C

εp

∞∑
n=1

1

Lpn
<∞ ,

hence, by Lemma 2.3.5 again we obtain

lim
n→∞

µLn
Ln

= 0, P-a.s..

We deduce that

sup
n≥1

Bn = sup
n≥1

[
e−Ln( β

2m
− 1
Ln

µLn )
]
<∞, P-a.s.. (4.3.10)
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Finally, we deduce from (4.3.8), (4.3.9) and (4.3.10) that there exists a finite random

variable C, such that

sup
s∈[0,t]

|ζmū|2L2(D
L+
n

) ≤ Ce−
αLn
2m .

In particular,

lim
n→∞

(
sup
s∈[0,t]

|ζmū|2L2(D
L+
n

)

)
= 0 P-a.s..

Then, we obtain

sup
s∈[0,t]

∫ L+
n

−L+
n

|ζm(uφn − uL+
n

)|2dx ≤ Ce−
αLn
2m

and

lim
n→∞

(
sup
s∈[0,t]

∫ L+
n

−L+
n

|ζm(uφn − uL+
n

)|2dx
)

= 0 P-a.s..

Therefore, we get

sup
s∈[0,t]

∫ Ln

−Ln
|u− uL+

n
|2ρm(x)dx ≤ Ce−

αLn
2m

and

lim
n→∞

(
sup
s∈[0,t]

∫ Ln

−Ln
|u− uL+

n
|2ρm(x)dx

)
= 0 P-a.s..

Consequently, we conclude that

lim
n→∞

(
sup
s∈[0,t]

∫ L

−L
|u(s, x)− uLn(s, x)|2ρm(x)dx

)
= 0 P-a.s.

for any L > 0. Moreover, for a fixed α > 0 small enough, there exists a random variable

C independent of n and such that

sup
s∈[0,t]

∫ L

−L
|u(s, x)− uLn(s, x)|2ρm(x)dx ≤ Ce−

αLn
2m ,

completing the proof of Theorem 4.1.2.

Corollary 4.3.1. Assume that for a certain 1 ≤ p <∞,

∞∑
n=1

1

Lpn
<∞ .
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Then, for every L > 0 and r ≥ 2

lim
n→∞

E
[

sup
t∈[0,T ]

|u(t)− uLn(t)|rL2
m(DL)

]
= 0 .

Proof. For every r ≥ 2, we have

|u(t)− uLn(t)|rL2
m(DL) =

(∫ L

−L
|u(t, x)− uLn(t, x)|2ρm(x)dx

) r
2

≤ 2r
(∫ L

−L
ρm(x)dx

) r
2

≤ 2r
∣∣∣2m− 2me−

L
m

∣∣∣ r2
≤ 2

3r
2 m

r
2 .

Hence, the corollary follows from Theorem 4.1.2 and the Dominated Convergence Theo-

rem.
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Chapter 5

A Fully-Discrete Finite Difference Scheme on a Bounded Domain

5.1 Introduction

In this chapter, we solve numerically the reduced problem (4.1.1)-(4.1.4). In fact, we

design a fully-discrete finite difference scheme to find approximate solutions and we carry

out numerical experiments supporting the conjecture that the finite difference solutions

converge to the solution of the reduced problem (4.1.1)-(4.1.4) for vanishing discretisa-

tion parameters. In addition, we perform a numerical experiment which validate the

theoretical result in the previous chapter.

In the following, we recall that Tk and Xh are defined in Chapter 2 (section 2.4). For

any v : Tk × Xh → R3, we denote

vni := v(tn, xi), −I ≤ i ≤ I, 0 ≤ n ≤ N,

v
n+1/2
i :=

vn+1
i + vni

2
, −I ≤ i ≤ I, 0 ≤ n ≤ N − 1,

vn := v(tn, ·), 0 ≤ n ≤ N,

vn+1/2 :=
vn+1 + vn

2
, 0 ≤ n ≤ N − 1.

Let Uk,h : Tk × Xh → R3 and gh : Xh → R3 such that

gh(xi) = g(xi), −(I − 1) ≤ i ≤ I − 1,

gh(x−I) = gh(x−I+1),

gh(xI) = gh(xI−1).
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Note that in this case we have

D−gh(xI) = D+gh(x−I) = 0.

Let uh0 : Xh → R3 be defined by

uh0(xi) = uh(0, xi), −(I − 1) ≤ i ≤ I − 1, (5.1.1)

uh0(x−I) = uh0(x−I+1), (5.1.2)

uh0(xI) = uh0(xI−1). (5.1.3)

In what follows, we denote

Un
i :=

(
Uk,h

)n
i
, −I ≤ i ≤ I, 0 ≤ n ≤ N,

W n := W (tn), 0 ≤ n ≤ N.

We propose the following fully-discrete finite difference scheme for problem (4.1.1)-

(4.1.4):

Un+1
i −Un

i = µkU
n+1/2
i × ∆̃Un+1

i − λkUn+1/2
i × (U

n+1/2
i × ∆̃Un+1

i )

+ µ
(
U
n+1/2
i × gh

)
(W n+1 −W n), −(I − 1) ≤ i ≤ (I − 1), 0 ≤ n ≤ N − 1,

(5.1.4)

U0
i = uh0(ih), −I ≤ i ≤ I, (5.1.5)

D−Un
I = D+Un

−I = 0, 0 ≤ n ≤ N, (5.1.6)

|uh0(ih)| = 1, −I ≤ i ≤ I. (5.1.7)

We note that we consider the average U
n+1/2
i in the fully-discrete equation (5.1.4) to

guarantee that the sphere restriction |Un
i | = 1 is preserved.

In the deterministic case, this type of scheme was studied by Fuwa, Ishiwata and

Tsutsumi in [21] . In our case, where the stochastic term appears, modifications in the
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scheme are needed and they are similar to the modifications made for the finite element

method considered in [6].

5.2 The Fully-Discrete Finite Difference Scheme

In this section, we prove the unique solvability of the fully-discrete scheme (5.1.4)-(5.1.7).

We note that (5.1.4) is equivalent to

Un+1
i = uh0 + µk

n∑
m=0

U
m+1/2
i × ∆̃Um+1

i − λk
n∑

m=0

U
m+1/2
i × (U

m+1/2
i × ∆̃Um+1

i )

+ µ
n∑

m=0

(
U
m+1/2
i × gh

)
(Wm+1 −Wm).

We define the following space

Eh,k =
{
v : Tk × Xh → R3 | D−vnI = D+vn−I = 0, ∀ 0 ≤ n ≤ N

}
,

with the norm

|v|Eh,k := sup
0≤n≤N

sup
−I≤i≤I

|v(tn, xi)|.

The space Eh,k endowed with the norm | · |Eh,k is a Banach space.

For every h, k > 0, we define the maps Ish,k : Eh,k → Eh,k, s = 1, 2 and Jh,k : Eh,k →

Eh,k by

(
I1
h,k(v)

)n
i

:= µk

n∑
m=0

v
m+1/2
i × ∆̃vm+1

i ,

(
I2
h,k(v)

)n
i

:= λk

n∑
m=0

v
m+1/2
i × (v

m+1/2
i × ∆̃vm+1

i ),

(Jh,k(v))ni := µ
n∑

m=0

(
v
m+1/2
i × gh

) (
Wm+1 −Wm

)
,

for all i = {−I, ..., I}, n = {0, ...N} and for all v ∈ Eh,k. For completness of the definition

of these maps, for every v ∈ Eh,k, we extend the function v as follows

vnI+1 = vnI , vn−I−1 = vn−I , 0 ≤ n ≤ N,
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vN+1
i = vNi , −I − 1 ≤ i ≤ I + 1,

and we extend W as follows

WN+1 = WN .

It is clear that I1
h,k(v) and I2

h,k(v) belongs to Eh,k if v belongs to Eh,k. The same property

also holds for Jh,k due to the fact that D−gh(xI) = D+gh(x−I) = 0.

The next lemma will be used to prove the unique solvability of the fully-discrete

scheme (5.1.4)-(5.1.7).

Lemma 5.2.1. Assume g ∈ L∞(R). For every h, k ∈ [0, 1], the following holds

• the mappings Ish,k : Eh,k → Eh,k, s = 1, 2 are locally Lipshitz.

• the mapping Jh,k : Eh,k → Eh,k is Lipshitz in the following sense: there exists a

random variable C := C(T ) ≥ 0 such that E[Cp] <∞ for every p > 0 and

|Jh,k(v)− Jh,k(w)|Eh,k ≤ C |v −w|Eh,k , v,w ∈ Eh,k .

Proof. Consider v,w ∈ BR, a ball centered at 0 having radius R in Eh,k. Let us prove

that the map I1
h,k is locally Lipshitz. We have

∣∣I1
h,k(v)− I1

h,k(w)
∣∣
Eh,k

= sup
0≤n≤N

sup
−I≤i≤I

∣∣∣∣∣µk
n∑

m=0

(
v
m+1/2
i × ∆̃vm+1

i −w
m+1/2
i × ∆̃wm+1

i

)∣∣∣∣∣
≤ µk sup

0≤n≤N
sup
−I≤i≤I

n∑
m=0

∣∣∣vm+1/2
i × ∆̃vm+1

i −w
m+1/2
i × ∆̃wm+1

i

∣∣∣
≤ 2µT sup

0≤n≤N
sup
−I≤i≤I

∣∣∣vn+1/2
i × ∆̃vn+1

i −w
n+1/2
i × ∆̃wn+1

i

∣∣∣ .
(5.2.1)

We know that

∣∣∣∣vn+1/2
i × ∆̃vn+1

i −w
n+1/2
i × ∆̃wn+1

i

∣∣∣∣
=

1

h2

∣∣∣∣vn+1/2
i ×

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

)
−w

n+1/2
i ×

(
wn+1
i+1 − 2wn+1

i + wn+1
i−1

) ∣∣∣∣
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=
1

h2

∣∣∣∣12vn+1
i × vn+1

i+1 +
1

2
vni × vn+1

i+1 − vni × vn+1
i +

1

2
vn+1
i × vn+1

i−1 +
1

2
vni × vn+1

i−1

− 1

2
wn+1
i ×wn+1

i+1 −
1

2
wn
i ×wn+1

i+1 + wn
i ×wn+1

i − 1

2
wn+1
i ×wn+1

i−1 −
1

2
wn
i ×wn+1

i−1

∣∣∣∣
=

1

h2

∣∣∣∣12 (vn+1
i −wn+1

i

)
× vn+1

i+1 +
1

2
wn+1
i ×

(
vn+1
i+1 −wn+1

i+1

)
+

1

2
(vni −wn

i )× vn+1
i+1 +

1

2
wn
i ×

(
vn+1
i+1 −wn+1

i+1

)
− (vni −wn

i )× vn+1
i −wn

i ×
(
vn+1
i −wn+1

i

)
+

1

2

(
vn+1
i −wn+1

i

)
× vn+1

i−1 +
1

2
wn+1
i ×

(
vn+1
i−1 −wn+1

i−1

)
+

1

2
(vni −wn

i )× vn+1
i−1 +

1

2
wn
i ×

(
vn+1
i−1 −wn+1

i−1

) ∣∣∣∣
≤ 1

2h2

∣∣vn+1
i −wn+1

i

∣∣ ∣∣vn+1
i+1

∣∣+
1

2h2

∣∣wn+1
i

∣∣ ∣∣vn+1
i+1 −wn+1

i+1

∣∣
+

1

2h2
|vni −wn

i |
∣∣vn+1

i+1

∣∣+
1

2h2
|wn

i |
∣∣vn+1

i+1 −wn+1
i+1

∣∣
+

1

h2
|vni −wn

i |
∣∣vn+1

i

∣∣+
1

h2
|wn

i |
∣∣vn+1

i −wn+1
i

∣∣
+

1

2h2

∣∣vn+1
i −wn+1

i

∣∣ ∣∣vn+1
i−1

∣∣+
1

2h2

∣∣wn+1
i

∣∣ ∣∣vn+1
i−1 −wn+1

i−1

∣∣
+

1

2h2
|vni −wn

i |
∣∣vn+1

i−1

∣∣+
1

2h2
|wn

i |
∣∣vn+1

i−1 −wn+1
i−1

∣∣ .
Then, from (5.2.1) we deduce

∣∣I1
h,k(v)− I1

h,k(w)
∣∣
Eh,k
≤ CµTR

h2
|v −w|Eh,k . (5.2.2)

Similarly, we can prove that

∣∣I2
h,k(v)− I2

h,k(w)
∣∣
Eh,k
≤ CλTR2

h2
|v −w|Eh,k . (5.2.3)

Finally, let us prove that Jh,k is Lipshitz. We have

|Jh,k(v)− Jh,k(w)|Eh,k = sup
0≤n≤N

sup
−I≤i≤I

∣∣∣∣∣µ
n∑

m=0

(
(v

m+1/2
i −w

m+1/2
i )× gh

)
(Wm+1 −Wm)

∣∣∣∣∣
≤ µ sup

0≤n≤N
sup
−I≤i≤I

n∑
m=0

∣∣∣(vm+1/2
i −w

m+1/2
i )× gh

∣∣∣ ∣∣Wm+1 −Wm
∣∣
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≤ µ(N + 1)|g|L∞(R) sup
0≤n≤N

sup
−I≤i≤I

∣∣∣vn+1/2
i −w

n+1/2
i

∣∣∣ sup
0≤n≤N

(2|W n|)

≤ 1

2
µ(N + 1)|g|L∞(R) sup

0≤n≤N
sup
−I≤i≤I

∣∣vn+1
i −wn+1

i

∣∣ sup
0≤n≤N

(2|W n|)

+
1

2
µ(N + 1)|g|L∞(R) sup

0≤n≤N
sup
−I≤i≤I

|vni −wn
i | sup

0≤n≤N
(2|W n|)

≤ µ(N + 1)|g|L∞(R) sup
0≤n≤N

sup
−I≤i≤I

|vni −wn
i | sup

0≤n≤N
(2|W n|) .

(5.2.4)

We will use the Law of Iterated Logarithm for Brownian motion (see Theorem 1.9 on p.

56 of [45]),

lim sup
t→0

|W (t)|√
2t log log(1

t
)

= 1.

Equivalently, for t sufficiently small, there exists a random variable C such that

|W (t)| ≤ C

√
2t log log

(1

t

)
P-a.s. Then, from (5.2.4) we get

|Jh,k(v)− Jh,k(w)|Eh,k ≤ Cµ(N + 1)|g|L∞(R)

√
T log log

( 1

T

)
|v −w|Eh,k (5.2.5)

P-a.s.

In the next lemma, we prove the existence of a global solution to (5.1.4)-(5.1.7).

Lemma 5.2.2. Assume g ∈ L∞(R). Let R > 1 be fixed and let BR be a ball centered at

0 having radius R in Eh,k. Then, for every h, k ∈ [0, 1] and T > 0, there exists a unique

solution (Un
i ), 0 ≤ n ≤ N,−I ≤ i ≤ I to (5.1.4)-(5.1.7) in BR P-a.s..

Proof. In order to simplify notations, we assume in the proof without loss of generality,

that λ = µ = 1. We consider the mapping H : Eh,k → Eh,k defined by

H(v) = uh0 + I1
h,k(v)− I2

h,k(v) + Jh,k(v), ∀v ∈ Eh,k.
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It is clear that H : Eh,k → Eh,k due to (5.1.2)-(5.1.3) .

First, we prove that H : BR → BR. For v ∈ BR, we deduce from (5.2.2), (5.2.3) and

(5.2.5) that

|H(v)|Eh,k ≤ |H(v)−H(0)|Eh,k + |H(0)|Eh,k

≤ |uh0 |Eh,k + |I1
h,k(v)|Eh,k + |I2

h,k(v)|Eh,k + |Jh,k(v)|Eh,k

≤ 1 +
∣∣I1
h,k(v)− I1

h,k(0)
∣∣
Eh,k

+
∣∣I2
h,k(v)− I2

h,k(v)
∣∣
Eh,k

+ |Jh,k(v)− Jh,k(0)|Eh,k

≤ 1 +

(
CTR(R + 1)

h2
+ C(N + 1)|g|L∞(R)

√
T log log

( 1

T

))
|v|Eh,k

≤ 1 +

(
CTR(R + 1)

h2
+ C(N + 1)|g|L∞(R)

√
T log log

( 1

T

))
R.

Hence, for T sufficiently small (recalling R > 1)

|H(v)|Eh,k ≤ R.

Next, we prove that H is a contraction in BR for T sufficiently small. For any v,w ∈ BR,

we have

|H(v)−H(w)|Eh,k

≤
∣∣I1
h,k(v)− I1

h,k(w)
∣∣
Eh,k

+
∣∣I2
h,k(v)− I2

h,k(w)
∣∣
Eh,k

+ |Jh,k(v)− Jh,k(w)|Eh,k

≤

(
CR(R + 1)

h2
T + C(N + 1)|g|L∞(R)

√
T log log

( 1

T

))
|v −w|Eh,k

≤ c |v −w|Eh,k

with c ∈ (0, 1) if T is sufficiently small. We deduce that the mapping H is a contraction

in BR for T sufficiently small. From Banach fixed point theorem, we obtain that for every

h, k ∈ [0, 1], there exists a unique solution (Un
i ), 0 ≤ n ≤ N,−I ≤ i ≤ I to (5.1.4)-(5.1.7)

in BR P-a.s., for T sufficiently small.
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Next, multiplying (5.1.4) by
(
Un+1
i + Un

i

)
and by using the elementary property

(2.2.1), we obtain

〈
Un+1
i −Un

i ,U
n+1
i + Un

i

〉
= 0, ∀i ∈ {−(I − 1), ..., I − 1}, ∀n ∈ {0, ..., N − 1},

with tN = T where T is sufficiently small, which means that

|Un+1
i | = |Un

i |, ∀i ∈ {−(I − 1), ..., I − 1}, ∀n ∈ {0, ..., N − 1}.

Consequently,

|Un
i | = 1, ∀i ∈ {−I, ..., I}, ∀n ∈ {1, ..., N},

for every tn ∈ [0, T ] with T sufficiently small and all xi ∈ [−L,L]. Then, since |Uk,h(T, ih)| =

1 for every −I ≤ i ≤ I, we can repeat the same calculation as above with initial condi-

tion Uk,h(T ) where T is sufficiently small. Then, we obtain that for each h, k ∈ [0, 1] and

T > 0, there exists a unique solution Un
i in BR P-a.s. and the lemma follows.

5.3 A Priori Estimates

In this section, we introduce and prove some uniform estimates which are important to

prove order of convergence of the fully-discrete solutions to the solution of the reduced

problem (4.1.1)-(4.1.4). We note that the proof of convergence order is subject to further

study. In fact, the analysis using Taylor’s expansion requires some estimates of higher

order derivatives of the solution. These estimates should be uniform with respect to the

discretisation parameters and this couldn’t be achieved at this stage.

Lemma 5.3.1. Suppose that |u0| = 1, ∇u0 ∈ L2(R) and g ∈ H2(R). If {Un
i }−I≤i≤I,0≤n≤N

is the solution to (5.1.4)-(5.1.7) then

(1) |Un
i | = 1 for all −I ≤ i ≤ I and all 1 ≤ n ≤ N ,

(2)

E
[

sup
1≤n≤N

∣∣D+Un
∣∣2
L2
h

]
+ λE

[
k

N−1∑
n=0

∣∣∣Un+1/2 × ∆̃Un+1
∣∣∣2
L2
h

]
≤ C,
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where C is a constant which does not depend on h and k but may depend on |∇u0|L2,

|g|H2 and T .

Proof. In order to simplify notations, we assume in the proof without loss of generality,

that λ = µ = 1. We note that in this proof, 〈·, ·〉L2
h

and |·|L2
h

are the inner product and

norm in L2
h(Xh). The corresponding inner product and norm in L2

h(Zh) will be clearly

written with Zh.

First, part (1) is proved above in Lemma 5.2.2.

Next, we prove part (2). We multiply (5.1.4) by −∆̃Un+1
i ,

−
〈
Un+1
i −Un

i , ∆̃Un+1
i

〉
= −k

〈
U
n+1/2
i × ∆̃Un+1

i , ∆̃Un+1
i

〉
+ k

〈
U
n+1/2
i × (U

n+1/2
i × ∆̃Un+1

i ), ∆̃Un+1
i

〉
−
〈
U
n+1/2
i × gh, ∆̃Un+1

i

〉
(W n+1 −W n). (5.3.1)

We extend the grid Xh to Zh and, for all n = 0, ..., N , extend Un to Zh by

Un
i = Un

I and Un
−i = Un

−I for all i > I.

This yields

D+Un
i = D−Un

i = ∆̃Un
i = 0 for all |i| ≥ I. (5.3.2)

By multiplying both sides of (5.3.1) by h, summing over i from −I to I and using (2.2.1),

we obtain

−
〈
Un+1 −Un, ∆̃Un+1

〉
L2
h

= k
〈
Un+1/2 × (Un+1/2 × ∆̃Un+1), ∆̃Un+1

〉
L2
h

−
〈
Un+1/2 × gh, ∆̃Un+1

〉
L2
h

(W n+1 −W n). (5.3.3)
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For the term on the left hand side, using (5.3.2), Lemma 2.5.4 and the equality 2〈a, a−b〉 =

|a|2 − |b|2 + |a− b|2 for a, b ∈ R3, we derive

−
〈
Un+1 −Un, ∆̃Un+1

〉
L2
h

= −
〈
Un+1 −Un, ∆̃Un+1

〉
L2
h(Zh)

=
〈
D+Un+1 −D+Un, D+Un+1

〉
L2
h(Zh)

=
〈
D+Un+1 −D+Un, D+Un+1

〉
L2
h

=
1

2

I∑
i=−I

h
(
|D+Un+1

i |2 − |D+Un
i |2 + |D+Un+1

i −D+Un
i |2
)

=
1

2

(
|D+Un+1|2L2

h
− |D+Un|2L2

h
+ |D+Un+1 −D+Un|2L2

h

)
.

For the first term on the right hand side of (5.3.3), we have using (2.2.2)

k
〈
Un+1/2 ×

(
Un+1/2 × ∆̃Un+1

)
, ∆̃Un+1

〉
L2
h

= −k
∣∣∣Un+1/2 × ∆̃Un+1

∣∣∣2
L2
h

.

Combining and taking summation over m from 0 to n, we obtain from (5.3.3)

1

2

(
|D+Un+1|2L2

h
− |D+U0|2L2

h
+

n∑
m=0

|D+Um+1 −D+Um|2L2
h

)
+ k

n∑
m=0

∣∣∣Um+1/2 × ∆̃Um+1
∣∣∣2
L2
h

= −
n∑

m=0

〈
Um+1/2 × gh, ∆̃Um+1

〉
L2
h

(Wm+1 −Wm). (5.3.4)

We proceed with the term on the right hand side. Using (5.3.2), Lemmas 2.5.4, 2.5.3 and

the elementary property (2.2.1) we get

−
n∑

m=0

〈
Um+1/2 × gh, ∆̃Um+1

〉
L2
h

(Wm+1 −Wm)

= −
n∑

m=0

〈
Um+1/2 × gh, ∆̃Um+1

〉
L2
h(Zh)

(Wm+1 −Wm)

=
n∑

m=0

〈
D+

(
Um+1/2 × gh

)
, D+Um+1

〉
L2
h(Zh)

(Wm+1 −Wm)
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=
n∑

m=0

〈
D+

(
Um+1/2 × gh

)
, D+Um+1

〉
L2
h

(Wm+1 −Wm)

=
n∑

m=0

〈
D+Um+1/2 × τ+gh, D+Um+1

〉
L2
h

(Wm+1 −Wm)

+
n∑

m=0

〈
Um+1/2 ×D+gh, D+Um+1

〉
L2
h

(Wm+1 −Wm)

=
1

2

n∑
m=0

〈
D+Um × τ+gh, D+Um+1

〉
L2
h

(Wm+1 −Wm)

+
n∑

m=0

〈
Um+1/2 ×D+gh, D+Um+1

〉
L2
h

(Wm+1 −Wm)

= M1 +M2. (5.3.5)

Now, we estimate M1. Using the elementary property (2.2.1), we obtain

M1 =
1

2

n∑
m=0

〈
D+Um × τ+gh, D+Um+1

〉
L2
h

(Wm+1 −Wm)

=
1

2

n∑
m=0

〈
D+Um × τ+gh, D+Um+1 −D+Um

〉
L2
h

(Wm+1 −Wm).

Then,

|M1| ≤
1

8

n∑
m=0

∣∣D+Um+1 −D+Um
∣∣2
L2
h

+
1

2
|gh|2L∞h

n∑
m=0

∣∣D+Um
∣∣2
L2
h

(Wm+1 −Wm)2. (5.3.6)

Furthermore, for the term M2 we get

M2 =
1

2

n∑
m=0

〈
(Um+1 + Um)×D+gh, D+Um+1

〉
L2
h

(Wm+1 −Wm)

=
1

2

n∑
m=0

〈
(Um+1 −Um)×D+gh, D+Um+1

〉
L2
h

(Wm+1 −Wm)

+
n∑

m=0

〈
Um ×D+gh, D+Um+1

〉
L2
h

(Wm+1 −Wm)

=
1

2

n∑
m=0

〈
(Um+1 −Um)×D+gh, D+(Um+1 −Um)

〉
L2
h

(Wm+1 −Wm)

+
1

2

n∑
m=0

〈
(Um+1 −Um)×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm)
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+
n∑

m=0

〈
Um ×D+gh, D+(Um+1 −Um)

〉
L2
h

(Wm+1 −Wm)

+
n∑

m=0

〈
Um ×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm).

Then, using part (1) of the lemma

|M2| ≤
1

16

n∑
m=0

∣∣D+Um+1 −D+Um
∣∣2
L2
h

+
n∑

m=0

(Wm+1 −Wm)2|D+gh|2L2
h
|Um+1 −Um|2L∞h

+
1

8

n∑
m=0

|Um+1 −Um|2L2
h

+
1

2

n∑
m=0

(Wm+1 −Wm)2|D+gh|2L∞h |D
+Um|2L2

h

+
1

16

n∑
m=0

∣∣D+Um+1 −D+Um
∣∣2
L2
h

+ 4
n∑

m=0

(Wm+1 −Wm)2|D+gh|2L2
h

+

∣∣∣∣∣
n∑

m=0

〈
Um ×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm)

∣∣∣∣∣
≤ 1

8

n∑
m=0

∣∣D+Um+1 −D+Um
∣∣2
L2
h

+
1

8

n∑
m=0

|Um+1 −Um|2L2
h

+

∣∣∣∣∣
n∑

m=0

〈
Um ×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm)

∣∣∣∣∣
+ C

n∑
m=0

(Wm+1 −Wm)2
(
|D+gh|2L2

h
+ |D+gh|2L∞h |D

+Um|2L2
h

)
. (5.3.7)

We need to control |Um+1 −Um|L2
h
. We multiply (5.1.4) by Um+1 −Um to obtain

∣∣Um+1
i −Um

i

∣∣2 = k
〈
U
m+1/2
i × ∆̃Um+1

i ,Um+1
i −Um

i

〉
− k

〈
U
m+1/2
i ×

(
U
m+1/2
i × ∆̃Um+1

i

)
,Um+1

i −Um
i

〉
+
〈
U
m+1/2
i × gh,Um+1

i −Um
i

〉
(Wm+1 −Wm).

Multiplying by h and taking summation over i from −I to I, we obtain

∣∣Um+1 −Um
∣∣2
L2
h

= k
〈
Um+1/2 × ∆̃Um+1,Um+1 −Um

〉
L2
h

− k
〈
Um+1/2 ×

(
Um+1/2 × ∆̃Um+1

)
,Um+1 −Um

〉
L2
h
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+
〈
Um+1/2 × gh,Um+1 −Um

〉
L2
h

(Wm+1 −Wm)

≤ 1

6

∣∣Um+1 −Um
∣∣2
L2
h

+
3

2
k2
∣∣∣Um+1/2 × ∆̃Um+1

∣∣∣2
L2
h

+
1

6

∣∣Um+1 −Um
∣∣2
L2
h

+
3

2
k2
∣∣Um+1/2

∣∣2
L∞h

∣∣∣Um+1/2 × ∆̃Um+1
∣∣∣2
L2
h

+
1

6

∣∣Um+1 −Um
∣∣2
L2
h

+
3

2

∣∣Um+1/2 × gh
∣∣2
L2
h

(Wm+1 −Wm)2.

Then, we get using part (1) of the lemma

∣∣Um+1 −Um
∣∣2
L2
h

≤ Ck2
∣∣∣Um+1/2 × ∆̃Um+1

∣∣∣2
L2
h

+ C
∣∣Um+1/2 × gh

∣∣2
L2
h

(Wm+1 −Wm)2.

This inequality, (5.3.7) and part (1) of the lemma yield

|M2| ≤
1

8

n∑
m=0

∣∣D+Um+1 −D+Um
∣∣2
L2
h

+ Ck2

n∑
m=0

∣∣∣Um+1/2 × ∆̃Um+1
∣∣∣2
L2
h

+

∣∣∣∣∣
n∑

m=0

〈
Um ×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm)

∣∣∣∣∣
+ C

n∑
m=0

(Wm+1 −Wm)2
(∣∣gh∣∣2

L2
h

+ |D+gh|2L2
h

+ |D+gh|2L∞h |D
+Um|2L2

h

)
. (5.3.8)

It follows from (5.3.4), (5.3.5), (5.3.6) and (5.3.8),

1

2
|D+Un+1|2L2

h
− 1

2
|D+U0|2L2

h
+

1

4

n∑
m=0

∣∣D+Um+1 −D+Um
∣∣2
L2
h

+ (1− Ck)k
n∑

m=0

∣∣∣Um+1/2 × ∆̃Um+1
∣∣∣2
L2
h

≤ C
(∣∣gh∣∣2

L2
h

+ |D+gh|2L2
h

) n∑
m=0

(Wm+1 −Wm)2

+ C
(
|gh|2L∞h + |D+gh|2L∞h

) n∑
m=0

(Wm+1 −Wm)2
∣∣D+Um

∣∣2
L2
h

+

∣∣∣∣∣
n∑

m=0

〈
Um ×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm)

∣∣∣∣∣ .
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Applying sup0≤n≤N−1 and expectation, we get

1

2
E
[

sup
0≤n≤N−1

|D+Un+1|2L2
h

]
+

1

4
E
[N−1∑
n=0

∣∣D+(Un+1 −Un)
∣∣2
L2
h

]

+ (1− Ck)E
[N−1∑
n=0

k
∣∣∣Un+1/2 × ∆̃Un+1

∣∣∣2
L2
h

]

≤ C|D+U0|2L2
h

+ C
(
|gh|2L2

h
+ |D+gh|2L2

h

)
E
[N−1∑
n=0

(W n+1 −W n)2

]

+ C
(
|D+gh|2L∞h + |gh|2L∞h

)
E
[N−1∑
n=0

(W n+1 −W n)2
∣∣D+Un

∣∣2
L2
h

]

+ E
[

sup
0≤n≤N−1

∣∣∣∣∣
n∑

m=0

〈
Um ×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm)

∣∣∣∣∣
]
. (5.3.9)

We proceed with the last term. We define from Un, 0 ≤ n ≤ N, a piecewise constant

function defined on [0, T ] as follows. For each t, let tn be such that t ∈ [tn, tn+1). Then,

rkU(t, ·) = U(tn, ·) = Un.

Consequently, we have

〈
Um ×D+gh, D+Um

〉
L2
h

=
〈
rkU(t)×D+gh, rkD

+U(t)
〉
L2
h

for t ∈ [tm, tm+1). Then,

n∑
m=0

〈
Um ×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm)

=
n∑

m=0

∫ tm+1

tm

〈
Um ×D+gh, D+Um

〉
L2
h

dW (t)

=

∫ tn+1

0

〈
rkU(t)×D+gh, rkD

+U(t)
〉
L2
h

dW (t).

Using Lemma 2.3.18 and part (1) of this lemma, we get

E
[

sup
0≤n≤N−1

∣∣∣∣∣
n∑

m=0

〈
Um ×D+gh, D+Um

〉
L2
h

(Wm+1 −Wm)

∣∣∣∣∣
]
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= E
[

sup
0≤n≤N−1

∣∣∣∣∫ tn+1

0

〈
rkU(t)×D+gh, rkD

+U(t)
〉
L2
h

dW (t)

∣∣∣∣ ]
≤ CE

[(∫ T

0

∣∣∣〈rkU(t)×D+gh, rkD
+U(t)

〉
L2
h

∣∣∣2 dt) 1
2
]

≤ CE
[
1 +

∫ T

0

∣∣∣〈rkU(t)×D+gh, rkD
+U(t)

〉
L2
h

∣∣∣2 dt]
≤ C + CE

[∫ T

0

∣∣D+gh
∣∣2
L2
h

∣∣rkD+U(t)
∣∣2
L2
h

dt

]
≤ C + C

∣∣D+gh
∣∣2
L2
h

E
[∫ T

0

∣∣rkD+U(t)
∣∣2
L2
h

dt

]
≤ C + C

∣∣D+gh
∣∣2
L2
h

E

[
N−1∑
n=0

∫ tn+1

tn

∣∣D+Un
∣∣2
L2
h

dt

]

≤ C + C
∣∣D+gh

∣∣2
L2
h

E

[
N−1∑
n=0

k
∣∣D+Un

∣∣2
L2
h

]

≤ C + C
∣∣D+gh

∣∣2
L2
h

k
N−1∑
n=0

E
[

sup
0≤r≤n

|D+Ur|2L2
h

]
.

We deduce from (5.3.9) that, for k sufficiently small so that (1− Ck) > 0,

1

2
E
[

sup
0≤n≤N−1

|D+Un+1|2L2
h

]
+

1

4
E
[N−1∑
n=0

∣∣D+(Un+1 −Un)
∣∣2
L2
h

]

+ (1− Ck)E
[N−1∑
n=0

k
∣∣∣Un+1/2 × ∆̃Un+1

∣∣∣2
L2
h

]

≤ C + C|D+U0|2L2
h

+ C
(
|gh|2L2

h
+ |D+gh|2L2

h

)
E
[N−1∑
n=0

(W n+1 −W n)2

]

+ C
(
|D+gh|2L∞h + |gh|2L∞h

)
E
[N−1∑
n=0

(W n+1 −W n)2
∣∣D+Un

∣∣2
L2
h

]

+ C
∣∣D+gh

∣∣2
L2
h

k

N−1∑
n=0

E
[

sup
0≤r≤n

|D+Ur|2L2
h

]
. (5.3.10)

We know that

E
[
(W n+1 −W n)2

∣∣D+Un
∣∣2
L2
h

]
= E

[
E
[
(W n+1 −W n)2

∣∣D+Un
∣∣2
L2
h

∣∣∣∣Ftn]]
= E

[ ∣∣D+Un
∣∣2
L2
h

E
[
(W n+1 −W n)2

∣∣Ftn] ]
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= kE
[ ∣∣D+Un

∣∣2
L2
h

]
,

and for k sufficiently small so that (1− Ck) > 0,

(1− Ck)E
[N−1∑
n=0

k
∣∣∣Un+1/2 × ∆̃Un+1

∣∣∣2
L2
h

]
≥ 0,

consequently, we deduce from (5.3.10)

E
[

sup
1≤n≤N

|D+Un|2L2
h

]
≤ C + C|D+U0|2L2

h
+ C

(
|gh|2L2

h
+ |D+gh|2L2

h

)
T

+ C
(
|D+gh|2L2

h
+ |D+gh|2L∞h + |gh|2L∞h

)
k

N−1∑
n=0

E
[

sup
0≤r≤n

|D+Ur|2L2
h

]
.

Finally, using Lemma 2.4.1 we obtain

E
[

sup
1≤n≤N

|D+Un|2L2
h

]
≤
(
C + C|D+U0|2L2

h
+ CT

(
|gh|2L2

h
+ |D+gh|2L2

h

))
e
CT

(
|D+gh|2

L2
h

+|D+gh|2
L∞
h

+|gh|2
L∞
h

)

= C (|∇u0|L2 , |g|H2 , T )

where in the last step we used Theorem 2 on page 6 of [51].

We note that from (5.3.10), for k sufficiently small so that (1− Ck) > 0, we deduce

E
[N−1∑
n=0

k
∣∣∣Un+1/2 × ∆̃Un+1

∣∣∣2
L2
h

]
≤ C (|∇u0|L2 , |g|H2 , T )

and the lemma follows.

5.4 Numerical Experiments

In this section, we carry out numerical experiments to solve the one-dimensional stochastic

problem (3.1.1)-(3.1.3).

In the first two experiments, we show convergence of the solution of (5.1.4)-(5.1.7)

to the solution of (4.1.1)-(4.1.4) when h and k tends to zero. We solve an example of
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the stochastic LLG equation (4.1.1) on the domain D = [−1, 1]. We consider the initial

condition u0 =
(
sin(e−|x|), cos(e−|x|), 0

)
and the function g is given by g = (e−|x|, 0, 0).

We set the values for the parameters in (5.1.4) as λ = 1
12

and µ = 1
8
.

In the following experiments, we consider T = 1 and we generate for each time step

k a discrete Brownian path by:

Wk(tn+1)−Wk(tn) ∼ N (0, k) for all n = 0, ..., N − 1.

We approximate any expected value by the average of A discrete Brownian paths. In our

experiments, we choose A = 50.

We compute Un
i by using the following algorithm:

1. Set n = 0. Choose U0
i = uh0(ih).

2. Find Un
i satisfying the stochastic equation (5.1.4).

3. Set n = n+ 1, and return to step 2 if n ≤ N − 1. Stop if n = N .

We note that the procedure of calculating Un+1 from Un is implicit and nonlinear. We

employ a fixed point algorithm in the experiments and choose the tolerance to be 10−6.

Experiment 1: To observe convergence of the numerical method when h tends to

zero, we solve with N = 8000 and h =
1

I
where I = 5, 10, 20, 40, 80. Since the exact

solution of problem (3.1.1)-(3.1.3) is unknown, we compute a reference solution U(t, x)

by solving this problem when L = 1 but with a finer mesh size by considering I = 160

and N = 16000. For each value of h, the domain D is uniformly partitioned into intervals

of size h. We note that

E2
k,h := E

[
sup

0≤n≤N
|Un − Un|2L2

h(−1,1)

]
.

We plot in Figure 5.1 the error E2
k,h for different values of h. The figure shows a clear

convergence of the method when h tends to zero. In Figure 5.2, we plot the logarithm

of the error E2
k,h with respect to the logarithm of different values of h. The figure shows

that the rate of convergence with respect to h is 2.
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Experiment 2: We observe convergence of the numerical method when k tends to

zero. In fact, we solve with h =
1

I
where I = 20 and N = 500, 1000, 2000, 4000, 8000.

We choose h that big because we assume that we have the condition on the parameters h

and k considered in the deterministic case (see [21]) since we still do not have the study

for the stochastic case. We note that the reference solution U(t, x) is the one considered

in the first experiment. For each value of k, the domain [0, T ] is uniformly partitioned

into intervals of size k. We plot in Figure 5.3 the error E2
k,h for different values of k. The

figure shows convergence of the numerical method when k tends to zero. We note that

the value of the error for the smallest k is 0.0001329. In Figure 5.4, we plot the logarithm

of the error E2
k,h with respect to the logarithm of different values of k and the figure shows

that the rate of convergence with respect to k is the same as the rate for h and is equal

to 2. In fact, our numerical results are consistent with the analytical results proved in

[21] for the deterministic case. We note that the stochastic case is still under study.

In the last two experiments, we show convergence of the solution of (4.1.1)-(4.1.4) on

a bounded domain [−L,L] to the solution of (3.1.1)-(3.1.3) on the whole real line when

L is large enough. The function g is considered as above and the initial condition is

u0 = (sin(x), cos(x), 0). We note that u0 should satisfy the conditions in Lemma 4.2.1

on R but in the experiments it is enough that it satisfies the conditions on a bounded

domain. We set the values for the parameters λ and µ as previously. We note that we

choose the tolerance to be 10−12. In the following experiments, we compute a reference

solution U(t, x) by solving this problem when L = 100 but with a finer mesh size by

considering k = 0.0005 and h = 0.025.

Experiment 3: To observe convergence when L → ∞, we fix k and h to be equal to

0.001 and 0.05 respectively. We note that

E2
k,h := E

[
sup

0≤n≤N
|Un − Un|2L2

h(−20,20)

]
.

We solve with L = 5, 10, 20, 40, 80 and compute the error in the interval [−20, 20]. It is

clear that when L increases, the errors decrease. However, we observe that the difference
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Figure 5.1: Plot of error E2
k,h.

in errors between L = 40 and L = 80 is not clear. Indeed, the error for L = 80 does

not reduce much because of large h. This is confirmed when we compute the error with

L = 80 and h = 0.025. We present in Table 5.1, the error E2
k,h for different values of L.

We note that, when necessary, we extend the solutions by their values at the endpoints.

The error values show a clear convergence of the method.

Experiment 4: To observe more data, we fix again k and h to be equal to 0.001 and

0.05 respectively. We solve with L = 73, 73.5, 74, 74.5, ..., 79, 79.5. We note that

E2
k,h := E

[
sup

0≤n≤N
|Un − Un|2L2

h(−76,76)

]
.

We present in Table 5.2, the error E2
k,h for different values of L. The table shows conver-

gence of the method.
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Figure 5.2: Plot of log(E2
k,h).

Figure 5.3: Plot of error E2
k,h.

148



Figure 5.4: Plot of log(E2
k,h).

Table 5.1: Error E2
k,h

L Error
5 6.0699e+01

10 4.5071e+01

20 1.0522e−01

40 3.9200e−09

80 (h=0.05) 3.9199e−09

80 (h=0.025) 4.3412e−10
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Table 5.2: Error E2
k,h

L Error
74 7.2135
74.5 4.0969
75 1.8761
75.5 0.6051
76 0.1052
76.5 0.0097
77 0.0005
77.5 1.2952e−05

78 1.5951e−07

78.5 2.6251e−09

79 2.6243e−09

79.5 2.6241e−09
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