
Security and Privacy Attacks with and against Machine
Learning

Author:
Zhao, Benjamin

Publication Date:
2021

DOI:
https://doi.org/10.26190/unsworks/2052

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/100142 in https://
unsworks.unsw.edu.au on 2024-04-18

http://dx.doi.org/https://doi.org/10.26190/unsworks/2052
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/100142
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Security and Privacy Attacks with and
against Machine Learning

Benjamin Zi Hao Zhao

A thesis in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Electrical Engineering and Telecommunications

Faculty of Engineering

The University of New South Wales

June 2021

Abstract

Both researchers and industry have increased their employ of machine learning in new
applications with the unfaltering march of the Digital Revolution. However, without com-
plete consideration of these rapid changes, undiscovered attack surfaces may remain open
that allow bad actors to breach the security of the system, or leak sensitive information.
In this work we shall investigate attacks with and against Machine Learning, starting in
the application space of authentication which has observed the adoption of ML, before
generalizing to any ML model application.

We shall explore a multitude of attacks from ML-assisted behavioral side-channel Attacks
against novel authentication systems, Random Input Attacks against the ML models of
biometrics, to Membership and Attribute inference attacks against ML models which
find employ in Authentication among a host of other sensitive applications. With any
proposed attack, there is an obligation to define mitigation strategies. This advancement
of knowledge in both attacks and defenses will make the ever-evolving landscape that is
our digital world more hardy to external threats. However, in the constant arms race of
security and privacy threats, the problem is far from complete, with iterative improvements
to be sought on both attacks and defenses. Having not yet attained the perfect defense,
they are currently flawed, paired with a tangible cost in either the usability or utility of
the application. The necessity of these defenses cannot be understated with a looming
threat of an attack, we also need to better understand the trade-o�s required, if they are
to be implemented.

Specifically, we shall describe our successful e�orts to rapidly recover a user’s secret from
observation resilient authentication schemes (ORAS), through behavioral side-channels.
Explore the surprising e�ectiveness of uniform random inputs in breaching the security of
behavioral biometric models. Dive deep into membership and attribute inference attacks
to highlight the infeasibility of attribute inference due to the inability to perform strong
membership inference, paired with a realigned definition of approximate attribute inference
to better reflect the privacy risks of an attribute inference attacker. Finally evaluating
the privacy-utility tradeo�s o�ered by di�erential privacy as a means to mitigate the prior
membership and attribute inference attacks.

iii

Acknowledgments

I would like to express my gratitude to my supervisors and mentors Hassan Asghar, Dali
Kaafar, you have o�ered me many opportunities to grow as a person, guided me through
unfamiliar territory, and have continually challenged me, allowing me to realize my com-
petency as researcher.

I would also like to thank the many other collaborators, researchers and fellow students
with whom I’ve been able to sit down and chat with, you have all assisted me on this
journey in your own unique way. I do hope that I was also able to impart my own
perspective on ideas and methods to your benefit.

There is no finite amount of thanks that will express my gratitude for all the people who
have stood by me through this journey. To my family, you have been my safety net,
financially and emotionally, supporting me through every step. And to my friends, a huge
thank you.

The work in this thesis has taken me around the world, and has created memories that
will be cherished for a lifetime. Thanks for all the great times everyone, and here’s to the
next challenge.

iv

Publications and Presentations

List of Publications

• Zhao, B.Z.H., Ikram, M., Asghar, H.J., Kaafar, M.A., Chaabane, A. and Thi-
lakarathna, K., 2019, July. A decade of mal-activity reporting: A retrospective
analysis of internet malicious activity blacklists. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security (pp. 193-205).

• Zhao, B.Z.H., Asghar, H.J., Bhaskar, R. and Kaafar, M.A., 2019, November. On
inferring training data attributes in machine learning models. Privacy Preserving
Machine Learning (PPML) 2019, An ACM CCS Workshop.

• Zhao, B.Z.H., Asghar, H.J. and Kaafar, M.A., 2020, February. On the Resilience
of Biometric Authentication Systems against Random Inputs. The Network and
Distributed System Security Symposium (NDSS) 2020.

• Zhao, B.Z.H., Asghar, H.J., Kaafar, M.A., Trevisan, F. and Yuan, H., 2020, Septem-
ber. Exploiting Behavioral Side Channels in Observation Resilient Cognitive Au-
thentication Schemes. ACM Transactions on Privacy and Security (TOPS), 24(1),
pp.1-33.

• Zhao, B.Z.H., Agrawal, A., Coburn, C., Asghar, H.J., Bhaskar, R., Kaafar, M.A.,
Webb, D., and Dickinson, P., 2021, September. On the (In)Feasibility of Attribute
Inference Attacks on Machine Learning Models. 6th IEEE European Symposium on
Security and Privacy 2021.

List of Presentations

Oral presentations:

• ACM ASIA Conference on Computer and Communications Security (AsiaCCS),
July 2019, Auckland, New Zealand.

• Privacy Preserving Machine Learning (PPML) an ACM CCS Workshop,
November 2019, London, United Kingdom.

v

• The Network and Distributed System Security Symposium (NDSS),
February 2020, San Diego, United States of America.

• The ACM Cloud Computing Security Workshop (CSSW) an ACM CCS Workshop,
November 2020, Virtual.

Poster presentations:

• Privacy Preserving Machine Learning (PPML) an ACM CCS Workshop,
November 2019, London, United Kingdom.

TPC Member/Reviewer

• PrivateNLP @ WSDM 2020

• PrivateNLP @ EMNLP 2020

• IEEE S&P 2021 Shadow PC

• Invited Reviewer for IEEE TIFS

• DPML @ ICLR 2021

• PrivateNLP @ NAACL 2021

vi

Contents

Abstract iii

Acknowledgments iv

Publications and Presentations v

Contents vii

List of Figures xiv

List of Tables xix

1 Introduction 1

2 Literature Review 10

2.1 Alternative authentication schemes to conventional password systems 11

2.1.1 Cognitive Authentication . 11

2.1.2 Biometrics Authentication . 13

2.1.3 Security Attacks on Cognitive Schemes 13

2.1.4 Measuring Biometrics . 16

2.2 Machine Learning . 19

2.2.1 Machine Learning Architectures . 19

vii

2.2.2 Security and Privacy Attacks on Machine Learning 22

2.3 Active Attacks . 23

2.3.1 Poisoning Attacks . 23

2.3.2 Backdoor Attacks . 23

2.4 Passive Attacks . 24

2.4.1 Adversarial Examples . 24

2.4.2 Transferability . 25

2.5 Privacy Attacks on Machine Learning . 25

2.5.1 Model attacks . 25

2.5.2 Inversion attacks . 26

2.5.3 Model Extraction . 26

2.6 Inference Attacks . 27

2.6.1 Membership Inference Attack . 28

2.6.2 Attribute Inference Attacks . 30

2.6.3 Positive applications of Inference Attacks 31

2.7 Di�erential Privacy . 32

3 Exploit Behavior 34

3.1 Introduction . 35

3.2 Background . 40

3.2.1 Observation Resilient Authentication Schemes 40

3.2.2 k-out-of-n ORAS . 41

3.2.3 k-out-of-n ORAS Chosen for Analysis 43

3.2.4 Other ORAS . 45

3.3 The Modulus Event and Associated Biases 45

3.3.1 Guessing a Modulus Event through Responses 46

viii

3.3.2 Weight Bias in a Modulus Event . 49

3.3.3 Biases in Specific ORAS . 52

3.4 Attack Algorithm and the Faulty Oracle . 54

3.5 Implementing the Attack Using Behavioral Side-Channel 60

3.5.1 Levels of Adversarial Strength . 61

3.5.2 User Study . 63

3.5.3 Features and Classifiers . 65

3.5.4 Modulus Event Side Channel . 67

3.6 Application to Other ORAS . 70

3.6.1 PassGrids . 71

3.6.2 Mod10 . 73

3.7 Related Work . 76

3.8 Conclusion . 77

4 Random Input 78

4.1 Introduction . 79

4.2 Background and Threat Model . 83

4.2.1 Biometric Authentication Systems 83

4.2.2 Biometric API: The Setting . 84

4.2.3 Threat Model and Assumptions . 85

4.3 Acceptance Region and Proposed Attack . 87

4.3.1 Motivation and Attack Overview . 87

4.3.2 Acceptance Region . 88

4.4 Evaluation on Biometric Systems . 93

4.4.1 The Biometric Datasets . 94

4.4.2 Evaluation Methodology . 96

ix

4.4.3 Machine Learning Classifiers . 98

4.4.4 Acceptance Region: Feature Vector API 99

4.4.5 Acceptance Rate: Raw Input API 104

4.5 Synthetic Dataset . 107

4.5.1 Simulating a Biometric Dataset . 107

4.5.2 E�ects of Feature Variance on Acceptance Region 108

4.5.3 On Distance Based Classifiers . 110

4.5.4 E�ects of Increasing Synthetic Users 111

4.6 Mitigation . 112

4.6.1 The Beta Distribution . 112

4.6.2 Feature Vectors from Raw Inputs as Negative Samples 114

4.7 Related Work . 114

4.8 Conclusion . 118

5 Membership and Attribute Inference 119

5.1 Introduction . 120

5.2 Formal Treatment of Membership and Attribute Inference Attacks 123

5.2.1 Notation and Definitions . 123

5.2.2 Formal Results: Relationship between Variants of Membership and
Attribute Inference . 128

5.3 Experimental Methodology . 135

5.3.1 Data and Machine Learning Models 135

5.3.2 MI and AI Adversaries . 136

5.3.3 Attack Methodology . 138

5.4 Membership Inference . 140

5.4.1 MI Attacks on Neural Networks . 140

x

5.4.2 Generalization to Other Machine Learning Models 149

5.5 Attribute Inference . 150

5.5.1 Attribute Inference Attacks . 151

5.5.2 Approximate Attribute Inference Attacks 153

5.5.3 AI, AAI and Relation to Overfitting 155

5.6 Related Work . 156

5.7 Conclusion . 159

6 Privacy - Utility Tradeo�s of Di�erential Privacy 160

6.1 Introduction . 161

6.2 Methodology . 164

6.2.1 Overview . 164

6.2.2 Di�erential Privacy . 165

6.2.3 ML Pipeline Stages for DP Noise Injection 165

6.2.4 DP-based ML Algorithms . 166

6.2.5 Privacy Attacks & Privacy Metrics 171

6.2.6 ML Utility Metrics . 173

6.3 Experimental Investigation . 174

6.3.1 Experimental Framework . 175

6.3.2 Experimental Datasets . 177

6.4 Experimental Results . 178

6.4.1 Privacy-Utility Tradeo� on Synthetic Data 178

6.4.2 Privacy-Utility Tradeo� on Real Data 184

6.5 Conclusion . 196

xi

7 Discussion, Future Works and Conclusion 198

7.1 Behavioral Side Channel Attacks . 198

7.2 Random Input Attacks . 200

7.3 Membership and Attribute Inference Attacks 202

7.4 Privacy - Utility tradeo�s of Di�erential Privacy 204

7.5 Security and Privacy Attacks . 206

7.6 Conclusion . 207

A Appendix: Exploit Behavior 208

A.1 Proof of Theorem 3.3.1 . 209

A.2 Proof of Lemma 3.3.2 . 209

A.3 Proof of Theorem 3.4.1 . 210

A.4 Feature Intuition . 211

A.4.1 Adversary Level 1 Feature Hypotheses 211

A.4.2 Adversary Level 2 Feature Hypotheses 212

A.4.3 Adversary Level 3 Feature Hypotheses 213

A.4.4 Adversary Level 4 Feature Hypotheses 214

B Appendix: Random Inputs 215

B.1 Mitigation ROC Plots . 216

B.2 DNN Estimator configuration. 216

C Appendix: Membership and Attribute Inference 219

C.1 Model Parameters . 220

C.1.1 Target Models . 220

C.1.2 MI Attack Configurations . 220

C.1.3 Local and Global White Box Inference Attacks [1] 223

xii

C.2 Additional Figures and Experimentation . 224

C.2.1 Additional Plots . 224

C.2.2 Validating the Indistinguishable Neighbor Assumption 225

C.2.3 Exact AI on a Single Missing feature 225

C.2.4 Tuning Attack Models for SMI . 227

C.3 Metrics, Balls and Siblings . 229

C.4 Relationship between Inference Notions . 232

C.5 Miscellaneous Results . 235

D Appendix: Privacy - Utility Tradeo�s 237

D.1 Machine Learning algorithm training configurations 238

D.2 Experimental Results for LossMI on Synthetic Data 238

D.3 Experimental Results for ConfAI on Synthetic Data 238

D.4 Experimental Results for LossMI on Real-world Data 239

D.5 Experimental Results for ConfAI on Real-world Data 239

D.6 Summaries of Experimental Results for LossMI , LossAI , ConfAI 239

References 245

xiii

List of Figures

2.1 Interaction between verifier and prover for a cognitive authentication round 12

2.2 Example ORAS Scheme, (n, k, l, d) = (8, 3, 4, 4) 12

2.3 Biometric sample process flow during biometrics authentication 14

3.1 The threat model under consideration. Adversary can also observe the
interaction between the user and the device. 41

3.2 Example ORAS Scheme, (n, k, l, d) = (8, 3, 4, 4) 43

3.3 The probability of the modulus and no-modulus events given a user response
against the number of secret items present in a challenge g when d = 2. The
probability of modulus event increases with increasing g. The left and right
hand columns respectively represent a user response of 0 and 1. 49

3.4 Probabilities of modulus and no-modulus events given di�erent response
values in k-out-of-n ORAS. The probabilities are given for di�erent val-
ues of g, showing the normalized probability for the event of the modulus
operation. The overall probabilities irrespective of g are given in the table. 53

3.5 The point di�erence between the kth and (k + 1)st ranked items versus
the points di�erence between (k ≠ 1)st and kth ranked, and (k + 1)st and
(k + 2)nd ranked items as a function of number of observed rounds. These
results are for a faulty oracle with 0.95 EER on BehavioCog. Clearly, after
around 280 (expected number of rounds to find the secret), there is growing
divergence between the scores of secret and decoy items, indicating increased
confidence in the top k items being the secret items. 61

3.6 Four Levels of adversary capabilities in recovering eye-tracking information,
Each level beyond L1 is provided with increasingly detailed location infor-
mation, from no location information (L2), sectors (L3), to specific items
(L4). 62

xiv

3.7 An image of the xy-coordinate (red dot) overlaid on a video feed. 65

3.8 The CDF of 1000 PassGrid user secrets found over a increasing number
of observations attained by an attacker, with varying degrees of modulus
information accuracy. We note that the square markers results eliminate
possible secrets with perfect oracles, instead of updating points. 73

3.9 The CDF of Mod10 user secrets found over a increasing number of obser-
vations attained by an attacker, with varying modulus oracle accuracy. . . . 75

4.1 The threat model and the two types of biometric API. 85

4.2 Example feature space separation by a linear boundary between two classes.
This demonstrates low FPR and FRR of test sample classification, yet al-
lows approximately 50% of the feature space to be accepted as positive.
. 88

4.3 The binned version IB of the unit interval I. Each bin is of width 1/B (B
not specified). The number of filled bins is – = 3, with a cut-o� of ‘n = 2. . 91

4.4 The histogram of feature values of one of the features in the Face Dataset
(cf. § 4.4.1). Here we have B = 100. The number of filled bins for the
target user is –+

i
= 35 (with 400 samples), and for the negative class (10

users; same number of total samples) it is –≠
i

= 50. A total of 24 bins are
not filled by any of the two classes, implying that (approximately) 0.24 of
the region for this feature is empty. 93

4.5 Individual user scatter of AR and FPR. In a majority of configurations,
there is no clear relationship between AR and FPR, with the exception of
the RBFSVM and DNN classifiers for face and voice authentication. 100

4.6 ROC curve versus the AR and RAR curves for all configurations. The EER
is shown as a dotted vertical blue line. The FRR, FPR, AR and RAR values
shown in the legend are evaluated at EER (FPR = FRR). The RAR is only
evaluated on the Touch and Face datasets. 101

4.7 A comparison between FPR, AR, four di�erent ML architectures. Trained
on synthetic data of 50 features of 50 user, of increasing variance within
features for a singular user, repeated 50 times. Note how the system level
AR and FPR remains unchanging, despite the isolated user’s AR increasing
substantially. 109

xv

4.8 A comparison between FPR, AR, four di�erent ML architectures. Trained
on synthetic data of 50 features of 50 user, of increasing variance within
features of all other users except a singular user, repeated 50 times. The
x-axis denotes the relative SD of the population compared with the isolated
user. 110

4.9 ROC Curves versus the AR curve for di�erent ML architectures, including
a cosine similarity distance-based classifier. Trained on synthetic data of 50
features of 50 user, with fixed mean and variance for features of all users,
repeated 50 times. 111

4.10 A comparison between FPR and AR of four di�erent ML architectures.
Trained on synthetic data of 50 features per user, with a variable number
of users, repeated 50 times. 112

5.1 Increasing AUC of various MI attacks with increasing Hamming distance of
original non-members from the training dataset on target models. Subplot
(f) compares the di�erence in attack AUC between MI attacks on CIFAR-
100 (CIFAR-20 can be found in Appendix C.2.1). 141

5.2 Histogram of distances of non-members from members in our training datasets.
This data distribution is consistent across all attacks. 143

5.3 Increasing AUC of various MI attacks with increasing Hamming distance
of synthetic non-members from the training dataset on target models. (f)
compares the di�erence in attack AUC between MI attacks on CIFAR-100
(CIFAR-20 can be found in Appendix C.2.1). 146

5.4 Increasing AUC of various MI adversaries with increasing Hamming dis-
tance of synthetic non-members from the training dataset on target mod-
els, with a separation of class labels depending on the size of the Decision
Region (DR), for the Purchase-20 dataset. 147

5.5 Increasing AUC of MI with increasing Hamming distance of original and
synthetic non-members from the training dataset on target models with var-
ious ML algorithms. Inset (f): Zoomed in view of small hamming distances.
. 150

5.6 Closer inspection of Hamming and Manhattan distance for select datasets
and MI attacks previously seen in Figure 5.3. Note at small distances from
the training vectors, the AUC is close to 0.5, suggesting a poor AI attack. . 153

6.1 Our instantiation of the proposed methodology, with the three possible
Stages that DP noise can be introduced in the ML pipeline to guarantee
data privacy, and performance metrics used to assess privacy-utility tradeo�.164

xvi

6.2 Accuracy Loss for each ML method used, when di�erent amount of DP noise
is applied at framework Stages 1, 2 or 3, and for synthetic dataset com-
plexities used. The underlying complexity of data vectors in each dataset
remains the same. 180

6.3 Advantage of ConfMI attack for each ML method, when di�erent amount of
DP noise is applied at Stages 1, 2 or 3, and for di�erent synthetic dataset
complexities. The underlying complexity of data vectors in each dataset
remains the same. 182

6.4 Advantage of LossAI attack for each ML method, for di�erent amount of DP
noise applied at Stage 1, 2, or 3, for di�erent synthetic dataset complexities.
The underlying complexity of data vectors in each dataset remains the same.183

6.5 Accuracy Loss for each of the ML methods used, when di�erent amount of
DP noise is applied at Stage 1, 2 or 3 of the framework, and for di�erent
real datasets used. We summarize the datasets by the number of classes used.187

6.6 Advantage of ConfMI attack for each ML method used, when di�erent
amount of DP noise is applied at Stage 1, 2 or 3 of the ML framework,
and for di�erent datasets used. We summarize the datasets by number of
classes used. 190

6.7 Advantage of LossAI attack for each ML method used, when di�erent
amount of DP noise is applied at S1, S2, and S3 of the framework, and for
di�erent datasets used. We summarize the datasets by number of classes
used. 192

6.8 Summary plot of ACL (y1-axis) and ConfMI advantage (y2-axis) vs. ‘
applied (x-axis), for each Stage. Each point, for a line of a given Stage, is
the mean across all results for di�erent ML methods and datasets. Shaded
colored areas signify 1 st. dev. around each mean. 195

B.1 Individual user scatter of AR and FPR after the addition of beta distributed
noise. A substantial proportion of users now exhibit an AR close to zero,
or below the AR = FPR. Unfortunately, this defense mechanism did not
completely minimize the AR of LINSVM for the Face authenticator. Nor
did this defense protect two outlying users in the RNDF voice authenticator.216

B.2 Beta-noise mitigation of AR, with additive negative training noise sampled
from a symmetric beta distribution around the mean of the user’s features.
The EER is marked on the diagrams as a vertical line. It is noted the plots
with RAR curves the additional Beta-noise is not su�cient in mitigating
RAR attacks. 217

xvii

B.3 Beta-noise mitigation of AR, with additional negative samples from the
RAR feature set. The EER is marked on the diagrams as a vertical line.
Addition RAR vectors were included as it was previously observed that beta
noise is su�cient in mitigating AR attacks, but not the RAR attack. 218

C.1 AUC of MI attacks on original and synthetic non-member vectors of the
CIFAR-20 dataset as a function of Manhattan distance. 225

C.2 Increasing AUC of MIA with increasing distance of synthetic non-members
from the training dataset, with a separation of class labels depending on
the size of the DR, for the Loc-30, Pur-2, 10, 20, 50, 100 datasets. . . . 226

C.3 Advantage of the GAN distinguisher in distinguishing between real and
perturbed vectors from the Purchase dataset at increasing distances. 226

C.4 AUC performance on Shadow MI tuned with additional close vectors (dot-
ted lines). The existing Shadow MI results (solid lines) have been mirrored
on 0.5 to allow for easier comparison pre and post tuning. 228

D.1 Advantage of LossMI attack for each of the ML methods used, when dif-
ferent amount of DP noise is applied at Stage 1, 2, 3 of the ML pipeline,
and for di�erent synthetic datasets. 240

D.2 Advantage of Zhao et al.’s Attribute inference attack (ConfAI) for each of
the ML methods used, when di�erent amount of DP noise is applied at
Stage 1, 2 and 3 of the ML pipeline, and for synthetic datasets used. 241

D.3 Advantage of LossMI attack for each of the ML methods, when di�erent
amount of DP noise is applied at Stage 1, 2, 3 of the pipeline, and for
di�erent real datasets. We summarize the datasets by the number of classes
used. 242

D.4 Advantage of Zhao et al.’s AI attack (ConfAI) for each ML method used,
when di�erent amount of DP noise is applied at Stage 1, 2 and 3 of the
pipeline, for di�erent real datasets. We summarize the datasets by the
number of classes used. 243

D.5 Summary plot of accuracy loss (y1-axis) and privacy advantage (y2-axis)
vs. ‘ applied (x-axis), for each pipeline Stage. Each point, for a line of a
given Stage, is the mean across all results we have for di�erent ML methods
and real-world datasets. Shaded colored areas signify 1 standard deviation
around each mean. 244

xviii

List of Tables

3.1 Modulo Bias in responses, 3 Secret Items, Binary weights. 47

3.2 Expected weights E(Xs) of secret items. 54

3.3 Point update for BC, FT, HB. A cell is divided into a upper and lower half,
representing the detection of a modulus and no-modulus respectively. 57

3.4 Experimentally derived rounds required to reveal full user secret given vary-
ing TPR and TNR of side-channel classifier, for the Modulus applied on
BehavioCog (900 Round Benchmark [2]). 58

3.5 Experimentally derived rounds required to reveal full user secret given vary-
ing TPR and TNR of side-channel classifier, for the Modulus applied on
FoxTail (16,290 Round Benchmark [3]), and HopperBlum. 59

3.6 User Contribution of Eye-tracking Samples 64

3.7 MRMR Rankings for features of modulus side channel classification. 66

3.8 Best adversary level classifier exploitation of the modulus operation infor-
mation. 68

3.9 Modulus detection accuracy separated on a per-user basis. It is observed
that in L1-3, the TNR is approximately equal between users. Under L4
however, there appears to be more variance in the performance of the clas-
sifier. Where no accuracy is reported for TPR, no positive user samples
exist. The total number of user positive and negative samples are noted in
the last row of the table. 70

3.10 Response and Modulus operation (mod performed shaded) of a given secret
digit and one time pad. 74

xix

4.1 Equal Error Rate and AR with and without the mitigation strategy. Green
(resp., red) shades highlight improvement (resp., deterioration) in FPR and
AR. Color intensity is proportional to degree of performance change. 113

4.2 Equal Error Rate and RAR with and without the mitigation strategy. The
AR values remain the same as in Table 4.1. —-RAR indicates RAR treated
with only — noise. RAR indicates the inclusion of both — noise and raw
random input samples. 113

5.1 Attribute Inference (Experiment 3) Advantage, where the adversary seeks
to infer the exact attributes. The results below are normalized when dealing
with ties. 152

5.2 Approximate AI Advantage (Definition 5.2.10), where the adversary seeks to
infer approximate attributes (– = 7.5 for Location and Purchase, – = 3.33
for CIFAR). Results with ties are normalized. 154

5.3 Approximate AI (Experiment 4) Advantage, where the Shadow adversary
seeks to infer approximate attributes (– = 7.5) from various states of gen-
eralized Purchase-100 Models, trained with di�erent amounts of data to
simulate the e�ect of overfitting. The results below are normalized when
dealing with ties. 155

6.1 DP-enabled ML methods used in each pipeline Stage. 167

6.2 Summary of datasets used in our experimental investigation, with respect
to the number of instances available, classes provided (or constructed), and
attributes available. 177

6.3 Given a constrained ACL, we show best attainable privacy guarantee (‘),
and the responsible DP-ML algorithm. 194

6.4 Given a constrained ‘, we show the smallest compromise in ACL, and the
responsible DP-ML algorithm. 195

C.1 Summary of training and testing accuracies, with MI AUC for all machine
learning classifiers. 221

C.2 Attribute Inference (Experiment 3) Advantage, where the adversary seeks to
infer the exact attribute, when a single most informative feature is missing.
The results below are normalized when dealing with ties. 227

xx

Chapter 1

Introduction

The world is in a constant state of change with innovations presenting themselves as the

next disrupting force to the inertia of the status quo. A generous number of services have

made a complete transition from a physical format to being entirely digital. With this,

we are at an intersection whereby our digital identity is equally valuable and important

as our physical identity. Elements of our physical identity, our names, looks, interest,

history also taking residence in the digital space. With the digitization of this basic

information, and the capture of information we previously did not even notice, there has

been a meteoric rise of machine learning to harness this data for making more intelligent

decisions. For example, recommending content/ads, predicting behaviors, or even tailoring

medical treatments. In particular, with the use of machine learning, in security sensitive

applications like authentication, and its’ application on private data, additional security,

and privacy risks are introduced that have not been previously understood. In this thesis,

we shall explore both security and privacy attacks with the assistance of, and against

machine learning models.

Thus we begin with protecting this sensitive information, to ensure that only the correct

people can access said information. Authenticating people is not a new problem, with the

three tenants of identification, What you Have, What you Know, What you Are, we can

prove if you are a claimed individual. What you Have, may simply be a bank card, a

1

CHAPTER 1. INTRODUCTION

license, or a key, a uniquely identifiable object that only you as an individual have access

to. What you Know, takes the form of information that is only available to you, like that

of a PIN, password, or your mother’s maiden name. What you Are, is intrinsic to you,

physical attributes that can be used to identify yourself, your face, fingerprint, or dental

records, however, this also includes peculiar quirks or behaviors that make you unique, for

example how you walk, talk or interact with objects.

These tenants have been the cornerstone of verifying an individual’s identity, however, a

fault point likes in the replicability of these identifiers for someone to impersonate you; The

easiest of which is What you Know. What you Know is peculiar as, often to demonstrate

What you Know, you would reveal to the verifier that you have this information. However,

the very process of demonstrating you have this information has revealed the information.

Which in the presence of a bad actor will take this information and use it to impersonate

you. By impersonating you, the bad actors have the power to directly impact your life,

such as stealing money, fraud, blackmail, and extortion, among others. Cybercrime as an

entity has been estimated to cost 3 Trillion dollars globally in 2015, with forecasts to rise

to 6 Trillion by 2021 [4].

A growing number of reported incidents indicate that this is no longer just a fictional

possibility [5], prompting widespread proposals for alternative authentication schemes.

One approach to alternative authentication schemes is to develop proof of knowledge

systems for humans that prove the information is known, without directly revealing this

information by relying on human cognition; These schemes are regarded as Observation

Resilient Authentication Schemes (ORAS).

An example of such a scheme is the Mod10 scheme [6]. The user has a 4-digit PIN as

the secret. The challenge consists of a random 4-digit number (communicated through a

covert channel). The user computes the modulo 10 sum of each of the four digits in the

secret with the corresponding digits in the challenge, submitting the 4-digit remainder as

their response. The use of the modulus operation is a common design element in many

ORAS (e.g. [2, 7–12]), as it makes them resilient to observation by reducing information

leakage as multiple possible secrets would yield the same final response.

2

In Chapter 3, we shall explore a subcategory of ORAS which often employs the modulus

operation, the so called k-out-of-n ORAS. In these schemes, the secret is a mutually agreed

upon set of items (between the user and the authentication service) of size k, selected from

a larger pool of n items. A challenge contains a random subset of these n items, which are

displayed on a device carried by the user. The cognitive function requires, the identification

of any of the k secret items that may be sampled. It is important to note that the device

itself does not store the user secret, and simply relays messages.

Di�erent realizations of these schemes exist based on how the cognitive function is con-

structed [2,7,9], among others. An advantage of these schemes is that their security can be

quantitatively analyzed by studying the mathematical properties of the cognitive function,

and the information leaked through challenge-response pairs. However, this mathematical

analysis only considers the records of challenge-response pairs, ignoring the interaction of

the user with the “relay” device. when mentally computing the cognitive function. Observ-

ing human behavior while interacting with the device is likely to reveal more information

about the secret, e.g., if the user dwells over a particular spot on the device’s screen.

These issues have been raised before [13,14]; however, there is no quantitative analysis of

how this human behavior can be exploited to compromise the secret. In Chapter 3, we

shall analyze how information obtained from user behavior while processing challenges in

a wide class of ORAS (one that employs a modulus operation) can compromise the user’s

secret. We show how this adversary can launch an attack on these schemes to obtain the

user secret after observing far fewer authentication rounds (number of challenge-response

pairs) than attacks that only consider challenge-response transcripts.

Departing from the identification tenant of What you Know, an increasing number of solu-

tions now allow users to authenticate with What you Are. Especially with the integration

of biometrics into popular consumer devices. Biometric authentication systems are gen-

erally based on either physiological biometrics such as fingerprints [15], face [16, 17], and

voice [18,19]), or behavioral biometrics such as touch [20] and gait [21], the latter typically

used for continuous and implicit authentication of users.

In Chapter 4 we shall consider a machine learning model trained on some user’s data

3

CHAPTER 1. INTRODUCTION

accessible as a black-box API for biometric authentication. Given an input (a biometric

sample), the model outputs either an accept or reject, as its decision for whether the input

belongs to the target user or not. Now imagine an attacker with access to the same API

who has never observed the target user’s inputs. The goal of the attacker is to impersonate

the user by finding any accepting input. What would the success probability of such an

attacker be?

These systems are mostly based on machine learning: a binary classifier is trained on the

target user’s data (positive class) and a subset of data from other users (negative class).

This process is used to validate the performance of the machine learning classifier and

hence the biometric system [2,21–29]. The resulting proportion of negative samples (other

users’ data) successfully gaining access (when they should have been rejected) produces

the false positive rate (FPR, also referred to as False Acceptance Rate).

The FPR seems to be a good indicator of the success probability of finding an accepting

sample. However, this assumes that the adversary is a human who submits samples using

the same human computer interface as other users, e.g., a smartphone camera in case

of face recognition. When the model is accessible via an API the adversary has more

freedom in crafting its samples. This may happen when the biometric service is hosted

on the cloud or within a secure enclave on the user’s device. In particular, the attacker

is free to sample uniform random inputs. It has previously been stated that the success

probability of such an attack is exponentially small [30] or it can be derived from the FPR

of the system [31,32].

In Chapter 4, we show to the contrary that uniform random inputs are accepted by

biometric systems with a probability that is often higher and independent of the FPR. A

simple toy example with a single feature can illustrate the reason for the e�cacy of the

attack. Consider a feature normalized within the interval [0, 1]. All of the target user’s

samples (the positive class) lie in the interval [0, 0.5) and the other users’ samples (the

negative class) lie in the interval (0.5, 1]. A “classifier” decides the decision boundary of

0.5, resulting in identically zero FRR and FPR. However, a random sample has a 50%

chance of being accepted by the biometric system. While an oversimplification, the success

4

of the attack shows that the FPR and FRR, metrics used for reporting the accuracy of

the classifier, cannot alone be used as proxies for assessing the security of the biometric

authentication system.

These authentication systems seek to protect our digital identities, and by revealing po-

tential weaknesses in their design, more robust iterations can be realized to better defend

against bad actors. A digital parallel of our own physical world has been quite the feat,

with the gradual recording and migration of information to machines. We can benefit

from this digital clone with technologies like Machine Learning when applied to this infor-

mation can optimize and produce tangible improvement to our daily lives. The ability to

monetize Machine learning as a service through low-cost APIs trained on private datasets

has accelerated the accessibility of machine learning in fields beyond technology, however,

this information is at its core is still private information.

Consequently, this has caught the attention of privacy researchers who have previously

shown that these models may leak information about the records in the training dataset

via membership inference (MI) attacks. In an MI attack, the adversary with API access to

the model can use the model’s responses on input records of his/her choice to infer whether

a target input was part of the training dataset or not. This can be a serious privacy breach

when the underlying dataset is sensitive, e.g., medical data, mobility traces, and financial

transactions [33,34]. Even the biometric models we will explore in Chapter 4 are vulnerable

to such inference attacks, placing our biometric data at risk.

To date, membership inference attacks have been the primary focus of studies that have

considered traits of the datasets and machine learning models that impact the attacks’

likelihood and accuracy [1, 33–36]. In Chapter 5 we focus on a related, and perhaps a

more likely attack in practice, where the adversary with partial background knowledge of

a target’s record seeks to complete its knowledge of the missing attributes by observing

the model’s responses. This attack is called model inversion [37,38], or in general attribute

inference (AI) [35]. Yeom et al. [35] provide a formal definition of an AI adversary and

argue that this adversary can infer the missing attribute values by using an MI adversary

as a subroutine.

5

CHAPTER 1. INTRODUCTION

Beyond providing a formal definition, Yeom et al. experimentally validate the success of

an AI attack on regression models, and conclude that more overfit models, have higher AI

attack success [35, §6.3]. In the process to replicate their results on classification models

(rather than regression models), where the adversary is given a partial record and its true

label, we obtain unexpected results in Chapter 5. We discover that even if the target

classification model is susceptible to MI attacks, AI attacks on the same model have a

negligible advantage. Furthermore, the results persist even for highly overfitted models.

We explore potential root causes in Chapter 5 and find that in order for AI attacks to be

successful, the underlying MI attack, when used as a subroutine, should be able to infer

membership in a stronger sense. Specifically, the MI attack should be able to distinguish

between a member of the training dataset and any non-members that are close to that

member. We call this, strong membership inference (SMI), parameterized by the distance

from the training dataset.

We formulate the notion of SMI, and prove that a successful MI attack does not necessarily

mean a successful SMI attack. Furthermore, we also formally show that a successful SMI

attack is essential for an AI attack. This result implies that even a standalone AI attack,

which does not use an MI attack as a subroutine, is bound to fail if SMI attacks are

unsuccessful. We shall experimentally validate these results by evaluating several proposed

MI attacks from the literature on several discrete and continuous datasets, and target

machine learning models, and show that while these attacks are successful in inferring

membership, they fall well short as an SMI attack, and consequently as an AI attack. On

the positive side (from an attacker’s point of view), we investigate a more relaxed notion

of attribute inference, called approximate attribute inference (AAI), where the adversary

is only tasked with finding attributes close to the target attributes, according to a given

distance metric. We show that while AI attacks are not applicable, AAI attacks perform

significantly better, and improve as the target model becomes more overfit. The AAI

notion is also a natural extension of the (exact) AI notion for continuous attributes which

has mostly been used in discrete settings [35].

While these Inference attack may appear to be devastating to the applicability of data

6

in machine learning models, there exists techniques that allow for defending against the

very inference attacks we have just described. Especially as companies monetizing ma-

chine learning models must comply with developing privacy regulations (e.g., EU and

USA regulations such as COPPA [39] and GDPR [40], and recently e-Privacy [41] and

CCPA [42]).

In order to preserve their models’ privacy while still maximizing their ability to produce

machine learning models that retain a high utility for their service, data-driven organi-

zations are turning towards privacy-preserving ML (PPML) techniques, building on the-

oretical frameworks of Di�erential Privacy [43, 44] (DP) and/or Federated Learning [45]

(FL). However, di�erentially private PPML methods often come with an intrinsic tradeo�

between utility (e.g., as captured by the accuracy of the model) and the privacy guarantees

o�ered by the technique applied to protect the private data.

A related initial investigation by [46] studies di�erent DP compositions, and how these

compositions can be applied to the training of a neural network or logistic regression

model. [46] reports on the impact these privacy mechanisms have on the model’s utility

and the e�ectiveness of inference attacks on the resulting models.

Taking inspiration from [46], and to move towards the goal of understanding the tradeo�

between privacy and utility of DP-enabled ML methods, we dive deeper into this problem

in Chapter 6, setting out to assess how this inherent tradeo� depends on the (1) ML

method used, (2) stage in the ML framework where the DP method is applied to protect

the data or model, and (3) complexity of training data in use with respect to classes and

attributes in the data.

In Chapter 6, we shall develop a comprehensive and systematic evaluation of a DP-enabled

ML framework that enables a privacy ML researcher to study the Utility-Privacy tradeo�

in depth for their data at hand. Our objective is to allow the selection of the best per-

forming method yielding the highest predictive accuracy while still ensuring a solid level of

privacy protection, by studying the di�erent stages where DP-based noise can be applied:

as an obfuscation to the input data, during model training, or at the model finalization by

7

CHAPTER 1. INTRODUCTION

perturbing the learned model parameters.

Our exploration will include recent DP implementations of classical ML methods such

as Naive Bayes, Logistic Regression, Random Forests, and Neural Networks, and will

empirically measure their ability to fend o� inference attacks we had previously explored in

Chapter 5, while also measuring the model’s core goal of providing accurate classifications.

Crucially, we establish this standard evaluation framework to ensure each of these DP

implementations are evaluated fairly.

We use both synthetic and real-world datasets to capture the aforementioned privacy

and utility tradeo�. Our use of a synthetic dataset enables us to isolate the e�ects of

DP noise, stages, and dataset complexity without the influence of data distributions.

However, not to discount the importance of standard real-world datasets, we shall also

perform our evaluation on a range of real data like CIFAR [47], Purchase [48], and the

Netflix dataset [49].

With our experimentation in Chapter 6, we will make the following observations. Most

notably, for a given amount of model utility, applying DP noise at stages later than

the input phase permits the addition of more DP noise, thus providing higher privacy

guarantees. This observation is consistent across all DP-ML algorithms. When considering

utility and privacy as the function of the DP noise, we identify an “inflection point” for

each function, an indicator of where the greatest change in utility and/or privacy will

occur for a given DP-ML method. We find that this point on privacy function is more

closely related to the Utility response, and the DP-ML method used, instead of DP privacy

guarantees, as expected from the amount of DP noise applied to the process. Also, the

data complexity of the dataset is unlikely to influence the inflection point of the utility or

the privacy function. Finally, when privacy or utility comes with constraints, we provide

recommendations for the best performing DP-ML method, and their expected utility and

privacy guarantees.

With the defense work of Chapter 6, we are able to find solace in an ability to defend

against attacks on our digital information, albeit at a cost to the performance of the

8

model’s performance. This leaves much room for improvement, particularly with the allure

of slicing through longstanding problems with new insights learned from large datasets.

But on the other side of the blade, it will also be shown that there is also room for

improvement in the formulation of attacks, an o�ensive, and a defensive arms race.

So in summary, in Chapter 2, a literature review of key background concepts will be

provided, with more focused and detailed reviews of related work reviewed within each

of the respective chapters. Chapter 3 will describe our successful e�orts to rapidly re-

cover a user’s secret from observation resilient authentication schemes (ORAS), through

behavioral side-channels. Next, Chapter 4 will explore the surprising e�ectiveness of uni-

form random inputs in breaching the security of behavioral biometric models. We then

transition to Chapter 5 where a deep dive of membership and attribute inference attacks

are undertaken to highlight the infeasibility of attribute inference due to the inability to

perform strong membership inference, paired with a realigned definition of approximate

attribute inference to better reflect the privacy risks of an attribute inference attacker.

We then explore the privacy - utility tradeo�s o�ered by di�erential privacy as a means

to mitigate the previous inference attacks in Chapter 6. Before concluding in Chapter 7

with a discussion of the work contained within this thesis, and avenues of future work.

9

CHAPTER 2. LITERATURE REVIEW

Chapter 2

Literature Review

This thesis presents the goal of developing, understanding, and defending security and

privacy attacks created with or against Machine Learning. We shall start our investigations

firmly in the realm of Authentication, before generalizing our attacks to a more general

setting. Nevertheless, at every stage, as we explore both attacks and defenses, we shall

continue to be mindful that there is an inherent trade-o� between the perfect security and

privacy of a system, and a system that is usable and fit for purpose. (i.e. achieving its

original task).

To begin our journey, we shall first review two types of authentication schemes proposed as

alternatives to conventional password systems, Cognitive schemes and Biometric schemes.

Due to the contrasting nature of Cognitive and Biometric schemes, we will separately

describe security attacks against Cognitive and Biometrics schemes. In cognitive scheme

attacks we will describe existing algebraic attacks, and behavioral side-channels in expos-

ing a user’s secret password. The following sections will provide background about the

validation techniques currently employed by biometric authentication schemes, followed

by the description of key ML architectures currently leveraged in biometrics. This will

be followed by an overview of literature about attacks that compromise the security and

privacy of ML models. We then finally discuss di�erential privacy as the gold standard in

protecting the privacy of data.

10

2.1. ALTERNATIVE AUTHENTICATION SCHEMES TO CONVENTIONAL
PASSWORD SYSTEMS

2.1 Alternative authentication schemes to conventional pass-

word systems

Let us now describe how Cognitive authentication and Biometric authentication schemes

are defined, and how they function to authenticate a user. Due to a focus on the security

and privacy issues about these alternative schemes, we will not detail their advantages and

disadvantages over conventional passwords. Additionally, we defer the formal definitions

of the respective schemes to Chapter 3 and 4.

2.1.1 Cognitive Authentication

Cognitive authentication schemes are similar to conventional passwords in the sense that

there is a shared “secret” between the user (prover) and authentication service provider

(verifier), but unlike passwords, this class of scheme leverages the cognitive abilities of the

user to prove knowledge of the secret without directly communicating the secret to the

verifier, formally known as a zero-knowledge proof. These secret objects take the form of

images, or symbols that can be visually displayed, for a given scheme there will be a fixed

number of pass-objects, of which a subsample acts as the shared secret between the user

and the service provider.

During registration, either the user selects their secret-objects, or the verifier assigns a

set of secret-objects to the user. For a login attempt, the verifier issues an authentication

challenge, a random subsample of pass-objects, some of which may the part of the user’s

secret, to the user. The user then takes the authentication challenge and knowledge

of their secret to mentally compute a predefined function for a response to return to

the verifier. Additional challenges may be issued to the user to lower the likelihood of

randomly guessing the response succeeding. Figure 2.1 displays this process between the

user and the verifier.

The attacks on cognitive schemes in the following section target a specific subtype of

11

CHAPTER 2. LITERATURE REVIEW

3URYHU9HULILHU
&KDOOHQJH��

5HVSRQVH�� �

Figure 2.1: Interaction between verifier and prover for a cognitive authentica-
tion round

schemes, therefore we explain in depth how this type of scheme works.

Consider the toy example in Figure 2.2, the pass-objects within this example are the

lettered tiles, from these 8 tiles, 3 have been selected as the user’s secret. During a login

challenge, a subset of these 8 tiles are sampled, in this toy example, the 4 tiles to the right

are conveniently sampled, assigned random values, and displayed on a screen. The user

recognizes that tiles C and G are secret tiles, and will mentally compute the function of

addition, with the modulus of 4, (1 + 3) mod 4 = 0, therefore the returned response is 0.

The reason for the modulus operation is to increase the number of valid tile combinations

to hide what the secret actually is. As far as an attacker knows, it is possible that only

tile D may have been the user’s secret.

$ %

() * +

'&

� �

� �

6HFUHW 6HFUHW

6HFUHW

6DPSOHG�&KDOOHQJH�

Figure 2.2: Example ORAS Scheme, (n, k, l, d) = (8, 3, 4, 4)

12

2.1. ALTERNATIVE AUTHENTICATION SCHEMES TO CONVENTIONAL
PASSWORD SYSTEMS

2.1.2 Biometrics Authentication

Biometrics is the term used to describe the measurement of human characteristics, there-

fore biometrics authentication is the utilization of human characteristic measurements to

verify the claimed identity of a user. Biometrics can be decomposed into two subcate-

gories: Physiological Biometrics and Behavioral Biometrics, whereby physiological char-

acteristics embody “what” they are, in physical features like fingerprints, facial structure,

iris patterns. Behavioral characteristics on the other hand capture “how” they conduct

themselves, with measurements like handwriting, walking (gait), voice recognition.

Like the cognitive scheme, biometrics also requires a registration phase whereby a user is

prompted to provide multiple biometric samples to train a ML model about the user, or

to serve as a reference template of the user. During the login process, a test biometric

sample is produced by the prover, this sample is provided to the ML model, or compared

to the template to decide the sample’s similarity to the registration samples. If the sample

is su�ciently similar to the registration samples it is deemed successful and the prover will

have been verified. Otherwise, the authentication attempt is rejected. The biometric sam-

ple will likely undergo feature extraction, where the biometric measurements have salient

features extracted, for example, fingerprints have minutiae extracted before determining

similarity.

Details about the verification method of proposed biometric schemes and examples of

machine learning models are detailed in Section 2.1.4, whilst Figure 2.3 shows a generic

process flow of the biometric samples. More details about specific instantiations of bio-

metrics; Specifically, Face, Voice, Gait, and Touch can be found in Chapter 3.

2.1.3 Security Attacks on Cognitive Schemes

Cognitive schemes are designed from provably secure crypto-systems, however, the sim-

plification of the cryptographic scheme to be mentally processed by a human being allows

new attacks to be executed against the scheme. Cognitive schemes share a vital property

13

CHAPTER 2. LITERATURE REVIEW

)HDWXUH
([WUDFWLRQ

%LRPHWULF
6DPSOH

0RGHO
7UDLQLQJ

%LRPHWULF
0RGHO

)HDWXUH
([WUDFWLRQ

%LRPHWULF
6DPSOH

$XWKHQWLFDWLRQ
'HFLVLRQ

5HJLVWUDWLRQ

/RJLQ

Figure 2.3: Biometric sample process flow during biometrics authentication

with passwords, they can be easily replaced when compromised and do not contain the

same individual privacy risk as that of biometric templates. As such we regard attacks

against cognitive schemes as strictly a security breach. Inherently Cognitive schemes will

leak a small amount of information, but the scheme designer’s objective is to maximize

the number of observations before the secret needs to be renewed. The approaches below

provide methods to harness this leaked information to reconstruct the user’s secret. This

will be relevant in Chapter 3, as we adopt and augment such approaches with behavioral

side-channels to recover the secret with fewer observations.

2.1.3.1 Gaussian Elimination Attack

A Gaussian Elimination attack proposed by Asghar et al. [3] is an algebraic attack targeting

a subclass of cognitive authentication protocols that involve the summation of positionally

significant numerical weights, the positional information is dependent on the user’s secret,

and thus only the returning user would possess this information. The summed weights are

then reduced to a smaller response space, either by a static mapping or with a modulus op-

eration to increase the number of valid weight combinations that would produce the same

user response. The attack observes and records authentication challenges and creates a

system of linear equations which is dot produced with an unknown secret vector to produce

a vector of recorded responses. This attack however is unable to handle intentional noise

introduced to the response by the user, as is part of, and required by the Hopper-Blum

protocol [7], one instance of a Cognitive authentication scheme. Gaussian elimination fun-

14

2.1. ALTERNATIVE AUTHENTICATION SCHEMES TO CONVENTIONAL
PASSWORD SYSTEMS

damentally works on linear systems, thus when a non-linear transformation, like a static

mapping, is introduced within the cognitive function the number of observations greatly

increases, due to a need to linearize the mapping step.

2.1.3.2 Frequency Attack

The Frequency Attack, or also known as a counting attack is another algebraic attack

originally demonstrated by Yan et al. [50] and later generalized by Asghar et al. [9]. This

attack exploits a bias in the resulting responses of the non-linear mapping of the afore-

mentioned summed weights, the bias was such that the valid combination of secrets was

more likely to produce a specific final response, thus over a su�ciently large number of

observations a distinct separation between the secrets and non-secrets emerge. A mitiga-

tion strategy of the frequency attack is to modify the scheme parameters to increase the

likelihood of longer combinations appearing in the subsamples challenge, thereby increas-

ing the complexity of the attack by forcing counting in higher dimensions, and requiring

more observations.

2.1.3.3 Timing Attack

Cagalj et al.’s work of timing attacks [51] exploits the behavioral side channel of the time

required to complete a cognitive authentication challenge. In their attack, they identify

that users require less time to mentally compute and respond to a challenge involving

smaller PIN digits on a patented Mod10 scheme [6]. In addition to performing their

attacks on the Hopper-Blum protocol [7]. Their attack is evaluated on experimentally

obtained timing information, with which a table of weights for each possible secret item

is updated, allowing for the deduction of the most likely items that form the basis for

the target user’s real secret over a su�ciently large number of observations. Since this

attack, variations on the original Hopper-Blum protocol have been created to address

security flaws exposed in critical algebraic attacks [9, 52], and usability limitations [2].

Timing information o�ers just a single dimension for finding relationships between user

15

CHAPTER 2. LITERATURE REVIEW

behaviors and the user’s secret, as such there should exist additional unexplored human

behaviors that may leak information about the cognitive secret, as we shall further explore

in Chapter 3.

2.1.4 Measuring Biometrics

This thesis will contain a substantial amount of ML for capturing information from behav-

ioral side-channels (Chapter 3), to function as the core component in biometrics schemes

(Chapter 4). We shall provide a working overview of various ML techniques and proce-

dures with an emphasis on its use in Biometric systems. Therefore in this section, we will

describe metrics used in describing the performance of ML and the established validation

techniques of biometric authentication schemes, followed by detailing various Machine

Learning (ML) architectures. We shall defer discussion about direct attacks against ma-

chine learning models to Section 2.2.2, whereby these attacks are presented in a more

general setting.

2.1.4.1 Performance metrics of a classification model

A classification task involves accepting an unknown input signal and making a judgment

for which class the sample is more likely to originate from. In the case of one and two

class classification tasks, the sample can either be part of the positive class, or part of the

negative class. In the case of multi-class problems, there no longer a binary distinction,

instead, averages over all classes may be taken, or a loss function used to measure how

“close” the prediction is to the correct answer. The two most common measures of a

system’s performance are the True Positive Rate (TPR) and the False Positive Rate (FPR).

Whereby the TPR measures the proportion of positive samples that have been correctly

re-identified as positive, and the FPR is the proportion of negative samples which have

been incorrectly identified as positive samples.

The False Negative Rate (FNR) is the proportion of positive samples that have been

16

2.1. ALTERNATIVE AUTHENTICATION SCHEMES TO CONVENTIONAL
PASSWORD SYSTEMS

incorrectly labeled as negative and is closely related to the TPR, FNR = 1 - TPR. Similarly,

for the True Negative Rate, the proportion of negative samples correctly identified as

negative is related to the FPR, TNR = 1 - FPR.

When tuning the performance of a classifier, there is a trade-o� between maximizing the

TPR and minimizing the FPR, if the decision boundary is relaxed, more of the positive

class samples are likely to be correctly identified, increasing TPR; however, the same

relaxed boundary is more likely to accept negative samples, increasing the FPR. One means

of deciding the final configuration of a biometric classifier is by taking the Equal Error

Rate (EER), in which the FNR equals the FPR, thereby minimizing the errors of both the

positive and negative classes. Multi-class systems can have their hyper-parameters tuned

to minimize the aforementioned loss.

These metrics can be translated into real-world impacts on an authentication scheme’s

application. The TPR is a measure of the proportion that a returning user is correctly

identified, this is one measure of the scheme’s usability, as incorrectly rejecting a user will

cause frustration in its use. FPR on the other hand is a measure of incorrectly accepting

impostors, and therefore can be taken as a measure of security to prevent unauthorized

access.

2.1.4.2 Validation Techniques

A proposed biometric authentication scheme needs to be validated in o�ering the claimed

benefits, di�erent validation techniques are used in response to increasingly capable at-

tackers. We outline these validation techniques and relate them to the adversary the

schemes were designed to protect against. Providing a light overview in preparation for

Chapter 4.

Zero-E�ort Attack The Zero-E�ort Attack is a method of testing a biometric model

by taking samples from other enrolled users and subjecting a target user’s model to these

samples. The samples from the other users form the negative test set, with samples from

17

CHAPTER 2. LITERATURE REVIEW

the target user withheld from training in a testing/training split, creating the positive test

set. By comparing the model predictions with the ground truth of the test samples a TPR

and FPR can be obtained. The type of adversary the zero-e�ort attack simulates is an

attacker who has gained access to a secured device and simply performs an action with

no other knowledge of the user in an attempt to gain access.

This is the most commonly used validation technique, as the biometric is often used in

tandem with a physical token, such as the user’s smartphone or an identification card to

increase the di�culty of the attack. From the perspective of the scheme proposer, this

method of validation does not require a secondary round of experiments with simulated

adversaries to perform an informed attack on target users.

Shoulder-Surfer A Shoulder-Surfer attack provides an adversary with additional in-

formation about their target. The attacker is permitted to view a limited number of

authentication attempts to gleam either the password or information about how the bio-

metric was performed, before an attempt of replicating the target user’s sample. This

method of validation is typically used when a proposed biometric scheme is explicitly

claiming observation-resilience [2].

Skilled Adversary A skilled adversary is an attacker who has been trained in repli-

cating the biometric samples of a biometric modality, this type of adversary is commonly

found in signature and handwriting based authentication schemes [53,54]. A spoofed fin-

gerprint or face mask physical recreation would also be considered an attack by a skilled

adversary [55]. The performance metrics remain the same as the previous two methodolo-

gies, however, the quality of the negative test samples are increased, and thus increasingly

similar to the positive samples.

18

2.2. MACHINE LEARNING

2.2 Machine Learning

The core objective of Machine Learning is to learn trends or relationships about a data

domain, from a representative dataset sampled from said domain. We have seen its employ

in Biometric Authentication systems as an alternative to conventional password systems

and in an increasing number of applications that seek to harness the mountains of data

collected by governments and companies. In this section, we will provide an introduction

to a few di�erent machine learning architectures, finally reflecting. The subsequent section

will expand on the possibility of security and privacy attacks on Machine Learning, leading

us to the next sections where we expand on Active and Passive attacks against machine

learning models.

2.2.1 Machine Learning Architectures

Machine Learning is an umbrella term describing the capability of a “machine” to learn

trends from a dataset. The algorithm used by the machine to understand these trends de-

termines the complexity, training time, and performance of the model. This learning can

either be supervised or unsupervised. Supervised learners are provided the input data in

addition to the correct classification label to separate the provided classes. Unsupervised

learners, however, are only provided the input data with no label and are tasked to draw

relationships between clusters from within the dataset. Within the domain of authentica-

tion, a majority of schemes involve supervised learning, however, unsupervised models are

not unheard of [27, 56], instead finding greater application in identification from a group

of users. For the remainder of this review, we refer to supervised learning.

Distance-Based Learners A distance-based learner does not create an explicit model

from the training data in the same manner as the subsequent architectures, however is

still loosely regarded as ML. This learner maintains a template of the positive training

sample(s) and computes a similarity metric (distance) with the test sample, depending on

if the distance between the positive template and the test sample exceeds a predetermined

19

CHAPTER 2. LITERATURE REVIEW

threshold, the sample is accepted or rejected. Examples of distance functions in authen-

tication include Dynamic Time Warping (DTW) [2], Cosine Similarity [57] and Euclidean

Distance [58].

Instead of using a threshold, the model designer may leverage k Nearest Neighbors (kNN),

whereby the class of a test sample is determined by the majority label of the k nearest

training samples by distance. Distance based learners are considered for their simplicity

and transparent structures.

Naive Bayes The Naive Bayes classifier is a family of probabilistic classifiers that seeks

to model the conditional probability between a set of inputs and predetermine output

classes. The Naive Bayes family of classifiers are dubbed naive from the strong assumption

of independence between the features of the input.

P (y|x) = P (y)P (x|y)
P (x)

Trees The basic Decision Tree (DT) structure is used to separate samples into their

respective classes based on decisions about their feature values. With a single root node

decision on a feature value is made to mode left or right of the node to a lower leaf node,

at every subsequent node another division can be made to separate the leaf node into two

more leaf nodes, this is repeated until all samples and their classes are separated. If a

large number of leaves at the bottom of the tree exists the model may have overfitted to

the training data, and thus perform poorly on new unseen test data. As such a technique

known as pruning, or the removal of branches is performed as to not have overly specific

final nodes.

An ensemble version of the DT exists, known as Random Forests, this variant constructs

multiple decision trees (like that of a forest) by taking random subsamples of the training

dataset, known as bagging. The bagging decreases the likelihood of the trained model

overfitting to the training data and hence will perform more favorably on the testing data.

20

2.2. MACHINE LEARNING

A final decision is reached by the ensemble of DTs by taking the result with the highest

confidence, the label with the majority vote [58,59].

Support Vector Machines Support Vector Machines (SVM) are a type of ML model

which aims to construct a decision boundary between the class labels. It uses support

vectors, also known as the samples within the training set that is the closest to samples

of another class, to choose a position for constructing a boundary that maximizes the

distance of separation between the support vectors and the created decision boundary.

The shape of the decision boundary is dependent on the kernel chosen by the trainer, it

is often Linear, Radial, or Polynomial in nature. This choice of kernel should be informed

by the characteristics of the data to be classified, as a sub-optimal choice of kernel will

be unable to create a good separation of the data leading to large classification errors.

Depending on which side of the decision boundary a test sample lies, a classification is

made and returned [60, 61]. SVM has the ability for one-class classification, where the

decision is if a test sample falls within the single class or not [62,63].

Neural Networks [64] A Neural Network (NN) simulates the same neural processes

within the human brain for learning a given task. An input vector is transformed into

a series of hidden internal layers through weighted summations at each layer before pro-

ducing a final output. The weights of the summations are updated with training data fed

forwards through the network to minimize the error of it’s prediction on the output.

Deep Learning [65,66] has the same neural structure as a neural network, however, the

internal layers have a hierarchical structure, such that each progressive layer represents

an increasingly abstract set of features automatically derived from the input data. As

the abstracted internal layers of these networks represent unknown features that are auto-

matically derived, there exists a possibility that these learned features parallel secondary

information from within the dataset.

Federated Learning [67–69] takes the humble Neural network and distributes the learn-

ing task across multiple devices. By distributing the learning task, the resource demand

21

CHAPTER 2. LITERATURE REVIEW

on each individual device is reduced in comparison to if the model had been trained in a

centralized location. Federated learning is also appealing due to the removal of the need

to transmit and aggregate data at the central location for learning. This is an appealing

advantage from the perspective of privacy as the data does not need to leave the device,

instead, these devices only sending learned updates back to a global coordinator that

manages aggregates the updates from all the collaborating devices. Once all the updates

have been brought together, the global coordinator will transmit a final update back to

the devices to maintain an updated and consistent model.

2.2.2 Security and Privacy Attacks on Machine Learning

With biometric systems as an example, it can be said that one of the earliest attacks on

biometric systems involved skilled forgers reproducing signatures to fool a human being.

By fooling this human to accept an erroneous signature as correct, we have achieved a

security breach. We have observed the same objective of breaching security in machine

learning, an attack that results in an ML model performing incorrectly allowing a negative

sample to be accepted as a positive sample.

However, the alternative is also equally valid as an objective, that is to induce the clas-

sification of a positive input as negative. This alternate goal performs an e�ective denial

of service for the positive users of the system. Degrading the overall performance, and

rendering the service useless.

To date, there have been many attacks against Machine Learning proposed, with objectives

evolving beyond simple misclassification.

To better understand the relationships between the attacks we will group the attack into

either an active or passive attack depending on how it interacts with the model during the

attack. For each attack, we will also describe the objective, and how each of these attacks

are performed.

22

2.3. ACTIVE ATTACKS

2.3 Active Attacks

We regard active attacks against machine learning models as an attack that requires the

attacker to directly interfere with the training process of the model.

2.3.1 Poisoning Attacks

The objective of Poisoning attacks is to degrade the utility (predictive performance) of

a given model. By inserting poisoned samples into the training data, the model will

attempt to minimize the training loss to all samples included within its training dataset,

including the poisoned samples (which when learning on will increase the loss of the overall

objective).

Poisoning attacks are possible due the to model treating every sample of the training

dataset as equally important. We will remark that if the attacker has access to the entire

training dataset and can replace the entire dataset, the attack becomes trivial. However,

to avoid detection, while still degrading performance, the attacker must reduce the number

of poisoning samples needed to create the greatest change in the models’ behavior [70].

2.3.2 Backdoor Attacks

Like the poisoning attack, a backdoor attack seeks to “poison” the model with a strong

association between a pre-determined input (called a Trigger) and their desired output,

with little to no impact on the behavior of the model when this input is not present. The

input and output are dependent on the learning task, for example, in computer vision

tasks, the input to a model is an image, if a small, but specific set of pixels on this

image were replaced by the trigger, then the model would output the attacker’s label,

disregarding the content of the remaining image pixels [71]. Alternatively, consider a

Natural language processing task, whereby the input is text, and the output can be a

label of sentiment analysis, a translation, or question answering, by leveraging homograph

23

CHAPTER 2. LITERATURE REVIEW

replaced characters, or appended sentences as the trigger, the attacker can induce incorrect

predictions, translations and answers respectively [72].

2.4 Passive Attacks

In passive attacks, we have attacks that do not directly interfere with the training process

of a model, yet they are still able to compromise either the security or privacy of the

model.

2.4.1 Adversarial Examples

Adversarial examples consist of a small perturbation that may be added to a test sample

to cause the ML model to make a misclassification. These small perturbations can be

undetectable by humans, however create a substantial error within the model’s predic-

tion [73,74].

External to the authentication, adversarial examples have been applied to computer vision

models which leverage deep learning to perform a prediction task such as recognizing street

signs [75], or handwritten digits [76]. These adversarial examples have also been utilized

to fool facial recognition scanners with 3d-printed glasses containing perturbations [77],

directly compromising a biometric scheme’s security.

An there are a few possible attack objectives when finding adversarial examples. One

possible objective is to minimize the size of the permutation to maintain undetectability

by humans, for example, a stop sign that still looks like a stop sign to a human observer,

however, is interpreted as a right turn only sign by the model [75]. A second objective is the

targeted ability of the sample, originally the task was to simply produce a misclassification,

however, a more di�cult problem is to find a sample that still appears to a human in its

original form, however, the misclassification will produce a specific result. Under the

previous attack setting, the stop sign classified as anything but a stop sign would be

24

2.5. PRIVACY ATTACKS ON MACHINE LEARNING

considered a successful attack, however, in a targeted attack, the attack is only considered

successful if the stop sign is specifically interpreted as a specific predetermined target sign.

2.4.2 Transferability

Transferability is a property of the aforementioned adversarial examples, which observes

the ability to transfer an adversarial example that is successful in deceiving one ML model

to another ML model performing the same classification objective, creating another mis-

classification on the second model [76, 78]. Surprisingly, this transferability property has

also been shown to persist across di�erent architectures of ML models with the same clas-

sification objective [76]. The property implies that any developed attack on security has

the possibility of also possessing this property and should be evaluated against multiple

ML architectures. It has also been shown that a transferable adversarial example persists

in fooling a ML model whence recaptured through the physical domain [79].

2.5 Privacy Attacks on Machine Learning

We define privacy breaches in machine learning as the ability for an attacker to learn

information about the model and/or training data beyond its original trained intention.

The scope of the following attacks occurs post-training, as we assume an attacker is unlikely

to have modification access to the training dataset before training of the ML model. There

exists a taxonomy of the Security and Privacy e�orts in ML by Papernot et al, which

elaborates on both attacks and defenses [80]. However here we shall present the most

relevant topics to this thesis.

2.5.1 Model attacks

A model attack is capable of inferring information about the underlying training dataset,

beyond the intent of the ML model.

25

CHAPTER 2. LITERATURE REVIEW

One example of this attack is [81] by Ateniese et al., who were able to detect the presence

of biases within the training data of a ML model unrelated to the objective of the model.

They study two model objectives, the first, a speech-to-text recognition model, followed by

an internet packet type classifier. Multiple models are constructed however some models

were created with biases within their training datasets, the biases manifesting as if the

speech originates from a speaker with an Indian accent, and for the packet classifier,

the bias is if all packets originate from a specific destination, Google. The novelty of

this attack is that they do not observe the input/output relationship of the ML model,

instead, representing the learned parameters of the ML model, and using the parametric

representation of the model as an input to an attack model to determine if the bias is

present within the dataset.

2.5.2 Inversion attacks

An inversion attack is an attack that can recover sensitive information about an indi-

vidual’s training samples, provided partially known information about its target, and

confidence outputs from a target ML model. The work of Fredrikson et al. exploits deci-

sion trees trained to predict an attribute about extramarital relationships, this sensitive

attribute is recovered for individuals contained within the training dataset, with known

non-sensitive values. Additionally, they can reconstruct the facial images used for the

training of a facial recognition deep learner [37].

2.5.3 Model Extraction

Model extraction attack is one where an attacker, who is provided access to the ML to

perform classification tasks, given a series of carefully crafted input samples and the cor-

responding output labels and confidences, the attacker can “steal” the machine learning

model for their own use. Tramer et al. pioneers this attack [82], motivated by the devel-

opment of pay-per classification services with models trained on private datasets, stealing

the ML model would e�ectively deny revenue for the service provider. Whilst this is not

26

2.6. INFERENCE ATTACKS

a direct attack on privacy, the ability to steal the ML model allows for an unbounded

number of queries towards the ML model, breaching any imposed “privacy budget” on

query limitations.

2.6 Inference Attacks

Inference attacks shall be explored in depth in Chapter 5, as such we review di�erent

techniques to achieve these inference attacks. We will focus on providing an accessible high-

level interpretation of these attacks while providing formal definitions and implementation

details within Chapter 5.

Inference attacks are attacks that can infer additional information from a ML model that

would otherwise not be available in the intended use of the ML model. Within this category

of attacks, there are two distinct attack objectives, with an intertwined approach. These

are the Membership Inference attack and the Attribute Inference attack.

The Membership Inference attack seeks to infer the membership of a given input vec-

tor, specifically, if the given vector input has been used for learning during the model’s

training process. The privacy implications of a membership inference attack are subtle,

as it is often dependent on the context of the data. For example, if the training dataset

consists of data from a medical study, an attacker possessing information about a person,

through a membership inference attack can infer if they were part of this medical study,

if membership is detected, the attacker could infer if this person had a specific type of

disease.

On the other hand Attribute Inference attacks seek to leverage partial information about a

datapoint, and a model trained with the datapoint to reconstruct the missing information

the attacker did not possess about the datapoint. In this setting, the privacy implication

is clear. The attacker gains information in the form of datapoint attributes it previously

did not possess.

27

CHAPTER 2. LITERATURE REVIEW

With these considerations in mind, we journey through the di�erent methods of performing

Membership Inference and Attribute Inference, on the way highlighting existing similarities

between the two. Be wary that each approach will require a di�ering amount of information

or computation to succeed, which consequently results in di�ering attack e�ectiveness.

2.6.1 Membership Inference Attack

Recall that the overall objective of a Membership Inference attack is to determine if a

given vector was used in the training process of a model.

In all scenarios described below, even in a white-box attacker setting, the training data

strictly remains unknown to the attacker. If not the attack becomes trivial. This is in

contrast to the white box setting that may be observed in other attacks against ML,

specifically Poisoning and Backdoor attacks. The three examples we shall overview below

are black-box attacks, though it is noted that grey-box (partial knowledge of the model)

and white-box (full knowledge of the model) exist. In essence, white and grey-box attacks

have access to more information at their disposal for inferring membership, consequently,

we shall defer the details of one such white-box attack to Chapter 5.

2.6.1.1 Shadow Model Membership Inference (Shokri et al. [33])

The original inference attack is Shokri et al’s work on Membership Inference. In this

seminal work, Shokri et al.’s methodology [33] to achieve this attack is unique in that they

introduce the concept of “Shadow Models” that are trained locally with one shadow model

for each output label of the target model.

From each of these shadow models, the outputs are then provided to an additional attack

model which learns from the outputs of the local Shadow models in predicting if a given

sample was part of the original training dataset. By having additional shadow models,

the attacker can obtain prediction confidence values for every classification class, a value

that may not have been previously available from the targeted multi-class model. The

28

2.6. INFERENCE ATTACKS

intuition resulting in the success of the attack is with access to more confidence values,

the attack ML model can observe more subtle changes in the model confidence values to

learn about membership indicators.

The unfortunate downside of using Shadow Models is an upfront demand of training

data from the same distribution as the target model. However, this requirement can

be alleviated by the transfer of knowledge from an attack model trained on a di�ering

distribution to the target distribution [34]. Additionally, [34] further reduces the data and

computational demand of multiple shadow models (one for each class) by observing that

a local multi-class classifier can provide the same granularity of confidence information for

the attack model.

2.6.1.2 Loss Membership Inference [35]

Yeom et al. provide an alternative approach to Membership Inference while alleviating

the need for Shadow models and the attack model altogether. Instead, this approach uses

the loss of the predicted class (in classification) or predicted value (in regression) as a

singular indicator of the membership status of a vector. The intuition behind this attack

is that a vector used in the training process should produce a similar loss to the training

loss observed during the training process. Understandably, the true label of the vector is

required to compute this loss.

In practice, the attacker would use the training loss as a threshold for determining if a

vector’s loss makes it behave like a member or non-member.

2.6.1.3 Confidence Membership Inference [34]

Salem et al. [34] simplifies the approach even further compared to the Loss Membership

Inference attack [35]. In a setting where the model may not return the prediction proba-

bilities of every output class, or if the attacker does not have the ground truth class label

29

CHAPTER 2. LITERATURE REVIEW

to compute the loss with, this approach o�ers a viable method for performing membership

inference.

The method simply leverages the maximum confidence value returned by the model and

uses this value as a metric to gauge membership. The maximum confidence value will

always be returned for a model that only returns a single prediction class (the prediction

class returned will be the class with the highest confidence, and thus the highest prediction

returned). The exception to this is for models that only return labels, however, this is an

emerging area of research [83, 84]. The attack can leverage the maximum confidence for

membership based on the simple intuition that an input a model has previously seen before

(during training) will have already observed and learned the correct label, and will thus

make the same prediction with very high confidence. Therefore the expectation is that

members will have higher maximum confidence than non-members. In a practical attack,

the threshold between members and non-members can be found before attack time either

through a disjoint dataset of the same distribution or by transferring knowledge from a

dataset of a di�ering distribution.

2.6.2 Attribute Inference Attacks

The core subject of Yeom et al.’s work is the relationship between membership inference

and attribute inference and their joint reliance on overfitting. Yeom et al. demonstrate

changes in the e�ectiveness of both attacks with variations in the “fit” of the model.

Though we note that the attribute inference attack targets a regression model in [35]. As

we shall explore later in Chapter 5, this is not the case for classification models.

At a high level, attribute inference seeks to infer information about a partial vector with

access to a machine learning model.

The attribute inference attacks explored within this body of work are attribute inference

attacks with membership inference as a subroutine. Simply, membership inference is

evaluated on a set of all possible permutations of an input constructed from a partially

30

2.6. INFERENCE ATTACKS

known input vector. For example, consider a binary input vector of length 2 (b0, b1), if

provided with b1 = 1, then the two possible permutations of (b0, b1)|b1 = 1 is {(0, 1), (1, 1)}.

Membership inference is applied to both vectors, if one of the two vectors were part of

the training dataset, then this one alone would be successfully detected as the member,

whilst the other a non-member. From this, we can infer the member vector’s b0 attribute.

In practice, vectors will be longer, have more possible values (e.g. continuous variables),

more missing information (which in turn increases the search space), a vector’s Label

these factors including indirect factors of the “Fit” of the model, the Fairness of the model

will also have an impact on the ability for an attacker to recover both membership and

attribute information.

2.6.3 Positive applications of Inference Attacks

We have now reviewed various methods of inferring additional information from a machine

learning model that was not intended in its original application. However, finding this

information may also be beneficial for actors of justice that may seek to find if privacy and

data agreements have been breached. Specifically, consider a company collecting personal

information, or a data sharing agreement for a specific task A. However, the company

takes the data it has received and uses it for a loosely related task B (a real possibility in

the realm of Transfer Learning [85]). With access to the model of task B, an auditor could

determine if data had been used beyond its original purpose, despite the obscuring of the

exact record during the abstraction of rules from the training dataset. With an ability to

audit the use of data within models, strong evidence can be provided to litigate breaches

in data agreements.

There exist two such examples of auditing machine learning models. The auditing of Text

Generation systems [86] and Automatic Speech Recognition [87]. Both these works utilize

the shadow model and attack approach [33]. As previously stated [86] audits if a textual

record was used in the training of the text generation model; However, [87] has a diverging

objective, not only to infer the membership of a specific audio sample but to infer if any

31

CHAPTER 2. LITERATURE REVIEW

audio samples from a given user were used during the training process. The auditing of a

user was successful [87], unfortunately, the exact reason was not explored at length in this

work, though it is suggested that audio samples from a single user are su�ciently similar

for membership inference to perform user membership inference. We shall later provide

a concrete study as to why this approach works in Chapter 5, in essence, we prove the

current generation of membership inference attacks are unable to successfully distinguish

between two su�ciently similar samples, and stipulate that a strong membership inference

attacker would not su�er the indistinguishability of close vectors.

2.7 Di�erential Privacy

Without diving too deep into the definitions, Di�erential privacy (DP) mathematically

defines the protection o�ered in regards to the privacy of a single vector, whether that

is representative of an individual, or a single temporal event [43]. ‘-di�erential privacy

is defined such that two neighboring sets of data D and DÕ, di�ering by a single vector

are indistinguishable up to a limit as described by a privacy budget ‘. The output of a

mechanism M applied on each dataset should also be indistinguishable from each other,

up to our limit of ‘. In other words, if di�erential privacy is applied to a dataset, all

subsequent operations on this dataset still o�er the same privacy guarantees as before.

Alternatively, if di�erential privacy is applied during the learning process, or to a trained

model, the original dataset will still be o�ered the same privacy guarantees.

There have been numerous relaxations to this foundational definition of di�erential privacy,

of which more detail can be found in Chapter 6. However, in general, the relaxations

provide flexibility to allow for a small amount of error in its o�ered protection. This

flexibility decreases the aggressiveness of needing to protecting every data point, and thus

permits less di�erential private noise to be applied. This in turn retains more of the

original information of the dataset, and thus an increased utility from said data.

As a defense mechanism against the inference attacks of Section 2.6, with the added noise

32

2.7. DIFFERENTIAL PRIVACY

to the original datasets, an inference attacker cannot distinguish between the original and

the now perturbed vector.

33

CHAPTER 3. EXPLOIT BEHAVIOR

Chapter 3

Exploiting Behavioral Side

Channels in Observation Resilient

Cognitive Authentication Schemes

This chapter is adapted from work titled “Exploiting Behavioral Side Channels in Obser-

vation Resilient Cognitive Authentication Schemes”, published in the journal ACM Trans-

actions on Privacy and Security (TOPS), 24(1), pp.1-33, completed in conjunction with

Zhao, B.Z.H., Asghar, H.J., Kaafar, M.A., Trevisan, F. and Yuan, H.

Observation Resilient Authentication Schemes (ORAS) are a class of shared secret challenge-

response identification schemes where a user mentally computes the response via a cogni-

tive function to authenticate themself such that eavesdroppers cannot readily extract the

secret. Security evaluation of ORAS generally involves quantifying information leaked via

observed challenge-response pairs. However, little work has evaluated information leaked

via human behavior while interacting with these schemes. A common way to achieve ob-

servation resilience is by including a modulus operation in the cognitive function. This

minimizes the information leaked about the secret due to the many-to-one map from the

set of possible secrets to a given response. In this chapter, we show that user behavior

34

3.1. INTRODUCTION

can be used as a side-channel to obtain the secret in such ORAS. Specifically, the user’s

eye-movement patterns and associated timing information can deduce whether a modulus

operation was performed (a fundamental design element), to leak information about the

secret. We further show that the secret can still be retrieved if the deduction is erro-

neous, a more likely case in practice. We treat the vulnerability analytically, and propose

a generic attack algorithm that iteratively obtains the secret despite the “faulty” modulus

information. We demonstrate the attack on five ORAS, and show that the secret can

be retrieved with considerably less challenge-response pairs than non-side-channel attacks

(e.g., algebraic/statistical attacks). In particular, our attack is applicable on Mod10, a

one-time-pad based scheme, for which no non-side-channel attack exists. We field test our

attack with a small-scale eye-tracking user study.

3.1 Introduction

A longstanding issue with the prevailing methods of authenticating users via passwords

and PINs is their vulnerability to observation. The user secrets (password or PIN) is en-

tirely compromised after a single observation via, for instance, shoulder-surfing or a hidden

camera. A growing number of reported incidents indicate that this is not just a theoretical

vulnerability [5], prompting widespread proposals for alternative authentication schemes.

These include biometric authentication (fingerprint, iris, etc.) and one-time passwords,

either as standalone systems or in a multi-factor configuration alongside passwords. An-

other alternative is observation resilient challenge-response authentication schemes that

rely on human cognition. In such schemes, the verifier (service provider) prompts the

user to prove possession of a shared secret, through a series of challenges to whom the

user has to respond to by (mentally) computing some cognitive function. The cognitive

function is designed in a way that an eavesdropping adversary needs to observe multiple

challenge-response pairs to retrieve the secret. We call these schemes observation resilient

authentication schemes (ORAS).

An example of such schemes is the Mod10 scheme [6]. The user has a 4-digit PIN as the

35

CHAPTER 3. EXPLOIT BEHAVIOR

secret. The challenge consists of a random 4-digit number (communicated through a covert

channel). The user computes the modulo 10 sum of each of the four digits in the secret

with the corresponding digits in the challenge, and submits the 4-digit response. The use

of the modulus operation is a common design element in many ORAS (e.g. [2, 7–12]),

as it makes them resilient to observation by reducing information leakage. For instance,

the dot product of a random binary secret vector with a public binary vector, i.e., the

challenge, leaks more information about the secret compared to when the dot product is

reduced modulo 2 (only revealing its parity).

An interesting subcategory of ORAS which often employs the modulus operation is the

so called k-out-of-n ORAS. In these schemes, the secret is a mutually agreed upon set

of items (between the user and the service) of cardinality k, selected from a larger pool

of n items. A challenge contains a random subset of the n items, which is displayed on

a device carried by the user. The cognitive function requires, at least, the identification

of any of the k secret items. The device itself does not store the user secret, and simply

serves as an intermediary, relaying messages. Di�erent realizations of these schemes exist

based on how the cognitive function is constructed (which should be easy enough for the

user to perform mentally). Examples of such schemes include the Hopper and Blum (HB)

scheme [7], the (modified) FoxTail scheme (FT) [9], and BehavioCog (BC) [2], among

others (see Section 3.2.3 for scheme descriptions). An advantage of these schemes is that

their security can be quantitatively analyzed by studying the mathematical properties of

the cognitive function, and the information leaked through challenge-response pairs.

The security analysis accompanying the proposals of almost all ORAS, including k-out-of-

n variants, only considers “flat transcripts” of challenges-response pairs, ignoring entirely

the interaction of the user with the “relay” device during computation of the cognitive

function. Observing human behavior while interacting with the device is likely to reveal

more information about the secret, e.g., if the user dwells over a particular spot on the

device’s screen. These issues have been raised before [13, 14]; however there is no quan-

titative analysis of how such human behavior can be exploited to compromise the secret,

barring some work on timing attacks which exploits the variation in time taken by hu-

36

3.1. INTRODUCTION

mans when responding to challenges [51]. In this chapter, we analyze how information

obtained from user behavior while processing challenges in a wide class of ORAS (one

that employs a modulus operation) can compromise the user’s secret. In particular, we

consider an adversary which can not only observe challenge-response transcripts but also

user’s eye movements with varying accuracy. This information could be obtained through

pinhole cameras like those found on ATMs [5], and does not require an adversary to have

control of the device’s camera. We show how this adversary can launch an attack on

these schemes to obtain the user secret after observing far fewer authentication rounds

(number of challenge-response pairs) than attacks which only consider challenge-response

transcripts.

In more detail, the main contributions of this chapter are as follows:

• We analyze a wide class of ORAS in which the cognitive function involves a mod-

ulus operation. By using a generic k-out-of-n ORAS, we show in Section 3.3 that

certain responses are more likely a result of a modulus or a non-modulus operation.1

Furthermore, we show that knowing whether a modulus operation was performed or

not in a given challenge can leak information that can lead to quicker retrieval of

the secret.

• We propose an algorithm to obtain the user’s secret using possibly faulty information

about whether the modulus event has occurred or not in three proposed k-out-of-n

ORAS from the literature (BehavioCog, FoxTail and HB). By simulating varying de-

grees of information accuracy about the modulus event, we show that the resulting

attack retrieves the user secret in far fewer authentication rounds (challenge-response

pairs) than (e�cient) non-side-channel attacks, e.g., Gaussian elimination. For in-

stance, even with an imbalanced simulated accuracy of 1.0 in detecting the modulus,

and 0.6 in detecting non-modulus events, we can find the user’s secret in 280 rounds

for BehavioCog, 390 for FoxTail, and 909 for HB. This reduces to 474 rounds for

1e.g., consider the sum of two integers modulo 10. The sum 5 + 6 requires a modulus
operation, whereas 5 + 3 does not.

37

CHAPTER 3. EXPLOIT BEHAVIOR

BehavioCog, 666 for Foxtail, and 1555 for HB, when the latter is reduced to 0.35.

In comparison, e�cient algebraic attacks on these schemes (Gaussian elimination)

require 900 rounds for BehavioCog [2] and 16,290 rounds for FoxTail [9], whereas the

HB scheme does not have any e�cient attack and hence no bound on the number of

rounds. These results are shown in Section 3.4.

• In Section 3.5, we perform a small-scale eye-tracking user study with 11 users on

BehavioCog, as a field test to evaluate how a user’s eye-movement behavior dur-

ing challenges can potentially expose information about the secret by indicating a

modulus/no-modulus event. We identify and derive behavioral features from the eye-

movement side-channel, e.g. total challenge time, and duration of last fixation. Using

these features we train classifiers to predict the modulus and no-modulus events. We

use leave-one-user-out verification to demonstrate event-specific behavioral informa-

tion independent of users, and to avoid over-fitting user-specific behaviors.

• Continued in Section 3.5, we demonstrate real-world attack feasibility on k-out-of-

n ORAS by considering adversaries with varying technological capabilities. Four

adversarial levels are considered linked to the detail of information available; from

the coarsest—only timing information, to the finest—timing information dwelling

on a specific item. This information is obtainable with access to a camera directed

at the user’s face [88], a likely scenario with covert pinhole cameras already found

in instances of ATM skimming [5]. In comparison to the aforementioned e�cient

algebraic attacks, we can deduce user secrets in 435, 589, and 1,346 rounds in Be-

havioCog, FoxTail and HB, respectively.2

• Finally in Section 3.6, we demonstrate that our attacks are applicable to other ORAS

as well (not just k-out-of-n variants) as long as the cognitive function involves a mod-

ulus operation. Specifically, we evaluate the attack on PassGrids [11], a locations

and modulo arithmetic based scheme. We also implicate the Mod-10 scheme [6],

2These numbers of required rounds (reported in Section 3.5) are from accuracy levels
obtained via the user study. This is in contrast to the rounds required from simulated
accuracy levels (reported in Section 3.4) as mentioned before. See Section 3.5.4 for the
reason behind the discrepancies in the reported number of rounds.

38

3.1. INTRODUCTION

which is necessarily a one-time pad using a covert channel to communicate the pad.

Being a one-time pad, the scheme is secure against an unlimited number of authenti-

cation rounds observed. However, we show that the secret can be compromised with

knowledge of the modulus event (obtainable through user behavioral information).

With a 10% prediction error, it only takes an average of 36.1 rounds, to compromise

a 4-digit PIN in Mod-10.

Compared to algebraic attacks (which only require passive observation of challenge-response

pairs), behavioral side channels do require more e�ort from an attackers point of view.

However, obtaining the resolution of user’s eye movement information required in our at-

tacks is not di�cult given today’s technology, and the attack in practice can be launched

without much di�culty (e.g., by placing hidden cameras on frequently visited spots). Fur-

thermore, we show that even limited side-channel information such as time to respond to

challenges is enough to retrieve the user’s secret. This information can be obtained even

without hidden cameras. Our attacks suggest that the design of ORAS should explicitly

consider user behavior while executing the schemes, as a threat and source of information

leakage about the secret especially since these schemes are purported to be observation

resilient.

The rest of the chapter is laid out as follows: Section 3.2 summarizes what an Observation

Resilient Authentication Scheme is and how it functions. In Section 3.3, modulus-related

biases are mathematically analyzed. The proposal and simulation of algorithms to exploit

faulty oracle information is presented in Section 3.4. A realization of the attack is per-

formed with eye-movement side-channel information obtained from an eye-tracking user

study, to field-test an attacker’s capabilities in Section 3.5. Finally our extension of the

bias onto other authentication schemes is in Section 3.6.

39

CHAPTER 3. EXPLOIT BEHAVIOR

3.2 Background

3.2.1 Observation Resilient Authentication Schemes

A (human) authentication scheme is a shared secret challenge-response authentication

scheme consisting of a setup phase and an authentication phase. In the setup phase a

secret S is shared between the prover (user) and a verifier (the authentication service).

The authentication phase involves a series of challenges c from the verifier (displayed on

the user’s device) and responses r from the user, whereby the user mentally computes

a public function f of c and S, returning the response r to the verifier. We shall call

each challenge together with its corresponding response as a challenge-response pair or a

challenge-response round, interchangeably. After a specified number of challenge-response

rounds, the verifier accepts the user if the responses are correct; otherwise the user is

rejected.

Threat Model We consider an eavesdropping adversary who can observe the interac-

tions between the user and the server (during the authentication phase). Most prior work

models this as giving the adversary one or more challenge-response pairs from the authen-

tication phase. We extend this by also allowing the adversary to observe the interaction

between the user and its device during the authentication phase (Figure 3.1). The tran-

script of a challenge-response round is defined as this entire interaction: from challenge

receipt, user interaction with the device during computation of f , to response submission.

Observation Resilience A human authentication scheme is called observation resilient

(ORAS) if no adversary (probabilistic polynomial time algorithm) can extract the secret

with probability 1, after observing one or more challenge-response pairs. Note that this

definition merely states what qualifies for an ORAS and does not reflect on the security of

the ORAS. Indeed, an ORAS might only be secure for a few observations, before the secret

can be extracted. For an ORAS to be secure, the probability of finding the secret should be

small (or negligible) for a large number of challenge-response pairs. Since each challenge-

40

3.2. BACKGROUND

response pair leaks some information about the secret, the goal of the designer is to use the

ORAS for as many challenge-response rounds as possible before the adversary can extract

the secret with non-negligible probability. Note that password-based authentication is not

observation resilient under this definition, as the secret is recovered after one observation.

Challenge
Response

User (Prover) Server (Verifier)Device

Adversary

(a) (b)

Figure 3.1: The threat model under consideration. Adversary can also observe
the interaction between the user and the device.

3.2.2 k-out-of-n ORAS

In one class of ORAS the secret S is a random set of k items from a set of n (publicly

known) items3. The elements of S are called the secret items, and the remaining n ≠ k

items will be referred to as decoy items. We shall call these k-out-of-n ORAS. Di�erent

designs of these ORAS exist. In the following we focus on particular design elements which

are promising in terms of both resistance to known attacks and usability (especially if

employed in conjunction with other authentication factors such as behavioral biometrics).

These design elements are:

• Windowed Challenges: A challenge is constructed by randomly selecting l out of n

items. This can be visualized as a fixed window capable of enclosing l items. The set

of n items is randomly shu�ed each time, and the l items within the window are the

challenge items (hence the name). If the window size l is small, the user can recognize

3Examples of items are images [89–91] or emoticons [2, 9, 13].

41

CHAPTER 3. EXPLOIT BEHAVIOR

its secret items present in the challenge in a short amount of time. This is also

desirable for deployment as a small set can be easily displayed on the small screens

of smartphones [2]. However, if not designed carefully, these windowed challenges

may compromise security. For instance, the Undercover [89] scheme requires at least

one secret item to be present in all challenges. This results in an inherent bias,

with the secret items appearing more frequently than the decoy items. This bias

was exploited by Yan et al. [50] in a frequency analysis attack to extract the entire

set of secret items after only a small number of observations. Subsequently, Asghar

et al. [9] showed that if the windowed challenge of length l is sampled uniformly

at random from the set of all possible
!

n

l

"
challenges, then the above mentioned

frequency-based attack can be mitigated.

• Random Weights: Each of the l items in the challenge is associated with a random

integer, called its weight, from the set Zd, for a fixed integer d Ø 2. Note that for

each challenge the weights are randomly sampled anew.

• Modulus Operation: The function f , to be mentally computed by the user, involves

(at the minimum) summing the weights of the secret items present in the challenge

and a modulo d operation on the sum. Notice that by construction, a challenge

might not even contain any of the k secret items. We shall refer to it as the empty

event or empty case, borrowing the term from [2]. How the function f is computed

in an empty case depends on the scheme, as we shall discuss shortly.

Example 3.2.1. We illustrate a k-out-of-n ORAS that satisfies the above design re-

quirements. A windowed challenge can be represented by the n-element vector c whose

ith element is the weight of the ith item, if present in the challenge, and 0 otherwise.

With the same ordering, the secret can be represented as the binary vector s of Ham-

ming weight k. One possible cognitive function f is the dot product modulo d, i.e, the

response r is calculated as Èc, sÍ mod d. Consider the example in Figure 3.2, which has

a pool of n = 8 items, with k = 3 secret items. A random challenge of l = 4 items

has been sampled, with accompanying random values from Zd = Z4. The user computes

r = Èc, sÍ mod d =
=3

0 0 1 0 0 0 3 2
4

,
3

0 1 1 0 0 0 1 0
4>

42

3.2. BACKGROUND

mod 4 = 0. The scheme is observation resilient as there are multiple candidates for the

secret even after observing the challenge and this response. For example, the response 0

could have simply come from the weight of item D.

$ %

() * +

'&

� �

� �

6HFUHW 6HFUHW

6HFUHW

6DPSOHG�&KDOOHQJH�

Figure 3.2: Example ORAS Scheme, (n, k, l, d) = (8, 3, 4, 4)

3.2.3 k-out-of-n ORAS Chosen for Analysis

We introduce three previously proposed ORAS that fall in the category of k-out-of-n ORAS

described in Section 3.2.2. Note that with O(n) challenge-response pairs in Example 3.2.1,

the attacker can construct the secret using Gaussian elimination. The cognitive function in

the three protocols is designed to increase the challenge-response pairs required to recover

the secret through Gaussian elimination.

BehavioCog (BC) The BehavioCog [2] scheme is the same as in Example 3.2.1, except

that it requires the user to submit a random response r œ Zd in the case of an empty event

(i.e., when none of the secret items are in the challenge). With this modification, Gaussian

elimination requires O(dn) challenge-response pairs [2]. One set of proposed parameters

for the scheme is (n, k, l, d) = (180, 14, 30, 5) [2], which we shall use in our analysis. We

43

CHAPTER 3. EXPLOIT BEHAVIOR

remark that BehavioCog was proposed with a behavioral biometric component to minimize

authentication time. We disregard the biometric component and focus on the cognitive

scheme.

FoxTail (FT) We chose the FoxTail scheme proposed by Asghar et al. [9] as a fix to

secure the original FoxTail scheme [8] against a frequency attack [50]. The parameters

we use for the scheme are (n, k, l, d) = (180, 14, 30, 4) to allow for comparison between

schemes. The cognitive function involves an additional step after the modulo d = 4

operation: the user is required to respond with 0, if the result is 0 or 1, and respond with

1, if the result is 2 or 3. In the case of an empty event, the user simply returns the response

0. The resulting non-linear map means that Gaussian elimination through linearization

requires
!

n

2
"

+ n = O(n2) challenge-response pairs [3].

Hopper & Blum (HB) The HB protocol [7] is one of the earliest ORAS proposed.

The original proposal displays all n items to the user, with accompanying random bi-

nary weights. We modify the scheme to utilize windowed challenges, choosing parameters

(n, k, l, d) = (180, 14, 30, 2) (similar to BehavioCog). The protocol requires the user to

intentionally flip the response bit (note that d = 2) with a fixed probability ÷ < 0.5. The

windowless HB was subject to timing attacks with the noise parameter ÷ = 0.2 [51]; this

value is maintained through the remainder of this chapter.4 The HB protocol is based on

the NP-Hard problem of learning parity in the presence of noise (LPN).

Rounds and Sessions Each authentication session consists of multiple challenge-response

rounds. The number of rounds per session can be selected based on the success probabil-

ity of randomly guessing the response (without knowledge of the secret). One common

benchmark is 6-digit PIN, with a probability of randomly guessing the correct pin being

PRG = 10≠6 [2]. In BC (with the above parameters), the attacker can successfully guess

4We note that the timing attack from [51] is not applicable to the windowed HB pro-
tocol.

44

3.3. THE MODULUS EVENT AND ASSOCIATED BIASES

the response to a challenge with probability 0.256. Therefore, to achieve the security level

of 10≠6, 10 rounds are required in a session. Similarly for FT, the answer could be guessed

with probability 0.5, thus requiring 20 rounds per session for the same security level. In

HB protocol, the user is accepted if the fraction of wrong answers are at most ÷ [7]. For

÷ = 0.2, this gives 51 rounds for a security level of 10≠6. Since this number of rounds

is impractical, we lower the security level for HB to 10≠4, which gives us 34 rounds per

session. In the remainder of this chapter, we will mostly use the number of rounds instead

of sessions to discuss attacks, as the number of rounds within a session is ultimately at

the discretion of the scheme designer.

3.2.4 Other ORAS

While we use k-out-of-n ORAS as the basis for our analysis, the results are applicable to

other ORAS. More specifically, the results are applicable to any ORAS that uses a modulus

operation. In Section 3.6, we shall give examples of these ORAS and our behavioral side

channel attack on them.

3.3 The Modulus Event and Associated Biases

Given a challenge, we say that a modulus event occurs if the submitted response involves

a modulus operation. For k-out-of-n ORAS, this happens if the sum of the secret items in

a challenge is greater than d (otherwise the user does not need to reduce the sum modulo

d). In this section, using a generic k-out-of-n ORAS, we show that

1. Depending on the parameters and the cognitive function, there is an imbalance in

the likelihood of a modulus or a no-modulus event given di�erent response values,

e.g., a response of 0 is more likely to indicate a modulus event.

2. In a no-modulus event, the secret items have lower weights than the decoy items.

Likewise in a modulus-event, the reverse is true.

45

CHAPTER 3. EXPLOIT BEHAVIOR

The first of these observations will be used as one of the features to determine a modulus/non-

modulus event in our classifiers in Section 3.5. The second observation is the basis of our

algorithm to retrieve the secret in Section 3.4. While the response itself indicates if the

modulus event has occurred or not, user behavior while computing the function f leaks

further information about the event. This can be exploited by the adversary to increase

confidence in predicting the modulus/no-modulus event to retrieve the secret.

Since the function f is mentally computed by the user, the adversary cannot know if the

modulus event has occurred by simply looking at challenge-response pairs. However, user

behavior while computing f leaks information about these events.

In what follows, we mathematically demonstrate that given a generic k-out-of-n ORAS,

both above mentioned biases pertaining to the modulus event are linked to the (expected)

number of secret items present in a challenge. The lower the number, the bigger the bias.

Since this number is a function of the parameters (n, k, l), scheme designers need to choose

appropriate values of these parameters to ensure that the expected number of secret items

is large to minimize the biases.

3.3.1 Guessing a Modulus Event through Responses

Let us demonstrate this bias with the help of an example. Let G be the random variable

representing the number of secret items present in a challenge. Thus, G takes on values in

the set {0, 1, . . . , k}, where k is the total number of secrets items. Let g denote an instance

of G in a specific round of authentication.

Example 3.3.1. In Table 3.1, the number of secret item’s present in the challenge is

g = 3, and the responses are generated through the cognitive function in Example 3.2.1

with the modulus d = 2. Every combination of weights is equally probable (due to random

sampling of weights). It is evident from the table that when the response is 0, it is more

likely to be the result of having performed the modulus operation; whereas when the response

is 1, it is more likely to be due to the absence of the modulus operation.

46

3.3. THE MODULUS EVENT AND ASSOCIATED BIASES

Table 3.1: Modulo Bias in responses, 3 Secret Items, Binary weights.

Secret Weight 1 0 0 0 0 1 1 1 1
Secret Weight 2 0 0 1 1 0 0 1 1
Secret Weight 3 0 1 0 1 0 1 0 1
Modulus Event No No No Yes No Yes Yes Yes
Resulting Sum 0 1 1 2 1 2 2 3
User Response 0 1 1 0 1 0 0 1

We now generalize this to a generic ORAS. Let the random variable X denote the weight

of an item in a challenge. Since each weight is sampled from a random uniform distribution

over d,

Pr(X = x) = 1
d

, for all x œ {0, 1, . . . , d ≠ 1}.

Let Y be the random variable denoting the sum of the weights of the g secret items. Then

Y takes on values from the set

{0, 1, 2, . . . , (d ≠ 1)g}.

We would like to determine Pr(Y = y | g), from which we can determine the probability of a

modulus event by evaluating Pr(Y Ø d | g). To compute Pr(Y = y | g), we need to find the

number of di�erent ways g items with weights in Zd can be summed to produce y. This is

determined by the coe�cient of zy in the expansion of the polynomial (z0+z1+· · ·+zd≠1)g

[92, §1, pp. 23-24]. Alternatively, the probability can be evaluated without full expansion

of the generating function via the following equation [92, §1, p. 24]:

Pr(Y = y | g) = 1
dg

Ây/dÊÿ

s=0
(≠1)s

A
g

s

BA
y ≠ sd + g ≠ 1

g ≠ 1

B

. (3.1)

Note that a modulus operation is not required when Y = y < d, whose probability is given

by

Pr(Y < d | g) =
d≠1ÿ

y=0
Pr(Y = y | g). (3.2)

Similarly the probability that a modulus operation is required is

Pr(Y Ø d | g) =
(d≠1)gÿ

y=d

Pr(Y = y | g). (3.3)

Equation 3.1 is dependent on g; in turn the probability of g items appearing in a challenge

47

CHAPTER 3. EXPLOIT BEHAVIOR

is dependent on n, k, and l of the authentication scheme:

Pr(G = g) =
!

n≠k

l≠g

"!
k

g

"
!

n

l

" . (3.4)

In Figure 3.3, we plot the probabilities of the modulus and no-modulus event given di�erent

values of g calculated through Eqs. 3.2 and 3.3. We see that if g is small, the no-modulus

event is highly probable and a given response value might be biased towards a modulus or

a no-modulus event. While this bias does not directly reveal information about the user’s

secret items, it can be used as an indicator of a particular challenge involving a modulus

or a no-modulus event. And, as we shall show in the next section (Section 3.3.2), the

knowledge of a modulus/no-modulus event, in turn, leaks information about the user’s

secret. Thus, from a security point of view, it is desirable to minimize this bias. This

can be done by increasing the value of g, which makes the no-modulus event increasingly

unlikely to happen (irrespective of the response). Asymptotically, we have the following

result:

Theorem 3.3.1. As g æ Œ, the probability of the modulus event approaches one, i.e.,

Pr(Y Ø d) æ 1.

Proof. Please see Appendix A.1.

In practice, the likelihood of the no-modulus event vanishes much rapidly with an increas-

ing g. For instance, for the case of d = 2, the probability is 0.1875 with g = 5, 0.0107

with g = 10, and 0.0005 with g = 15. We remark that the number of items present in a

challenge g is a random variable dependent on the scheme parameters. Thus, to ensure the

responses do not exhibit a bias towards the modulus or no-modulus event, the expected

value of g needs to be high in an ORAS, which can be done by a combination of increasing

k or l, and/or decreasing n (c.f. Equation 2). We will return to this in Section 7.1.

48

3.3. THE MODULUS EVENT AND ASSOCIATED BIASES

Figure 3.3: The probability of the modulus and no-modulus events given a
user response against the number of secret items present in a challenge g
when d = 2. The probability of modulus event increases with increasing g.
The left and right hand columns respectively represent a user response of 0
and 1.

3.3.2 Weight Bias in a Modulus Event

We now show that given a modulus or a no-modulus event the expected weight of the secret

items is biased away from the expected weight of the decoy items. Thus, the knowledge of

a modulus/no-modulus event leaks information about the secret items. We will use this

observation in our algorithm to retrieve the secret in Section 3.4. For now, we demonstrate

this bias analytically using a generic k-out-of-n ORAS.

Recall that X denotes the weight of an item in a challenge. Clearly, the expected weight

of any item within a challenge is E[X] = (d ≠ 1)/2. Denote by Xs, the random weight of

a secret item. By construction, we have E[Xs] = E[X] = (d ≠ 1)/2. However, given the

knowledge of a no-modulus event, the conditional expectation might not be the same. To

see this, first note that

E[X] = E[Xs] = E[Xs | Y < d] Pr(Y < d)

+ E[Xs | Y Ø d] Pr(Y Ø d), (3.5)

where the conditional expectations are conditioned by no-modulus and modulus events,

respectively. Since Y denotes the additive weight of g secret items, we have

E[Xs] = 1
g

E[Y].

We first show that the expected weight of secret items is less than or equal to the expected

49

CHAPTER 3. EXPLOIT BEHAVIOR

weight of decoy items in a no-modulus event, i.e., E[Xs | Y < d] Æ E[X]. The following

lemma is used in the proof.

Lemma 3.3.2. Let g Ø 2 be an integer, and let p be a strictly positive function, i.e.,

p(i) > 0, for all i in the domain of p. Then, for all d Ø 1
1
g

dÿ

i=0
ip(i) <

d

2

dÿ

i=0
p(i).

Proof. See Appendix A.2.

Theorem 3.3.3. Let g Ø 1. Then

1. E[Xs | Y < d] = E[X], if g = 1.

2. E[Xs | Y < d] < E[X], if g Ø 2.

Proof. For part (1), when g = 1, only one secret item is present, thus it’s weight will be

uniformly sampled from 0 to d ≠ 1, and therefore in this case, E[Xs|Y < d] = E[X].

For part (2), we have

E[Xs | Y < d] = 1
g

E(Y | Y < d)

= 1
g

ÿ

y

y Pr(Y = y | Y < d)

= 1
g

ÿ

y

y
Pr(Y = y, Y < d)

Pr(Y < d)

= 1
g

d≠1ÿ

y=0
y

Pr(Y = y)
Pr(Y < d) .

Invoking Lemma 3.3.2:

E[Xs | Y < d] <
1

Pr(Y < d)
d ≠ 1

2

d≠1ÿ

y=0
Pr(Y = y)

= d ≠ 1
2

q
d≠1
y=0 P (Y = y)

q
d≠1
y=0 P (Y = y)

= E[X].

From this, it follows that expected weight of secret items is strictly greater than the

expected weight of decoy items in a modulus event. That is:

50

3.3. THE MODULUS EVENT AND ASSOCIATED BIASES

Corollary 3.3.3.1. E[Xs | Y Ø d] > E[X].

Proof. When Y Ø d, i.e., a modulus event, g is necessarily Ø 2. From Eq. 3.5 and

Theorem 3.3.3 part (2), we have

E[X] < E[X] Pr(Y < d) + E[Xs | Y Ø d] Pr(Y Ø d)

∆E[X](1 ≠ Pr(Y < d)) < E[Xs | Y Ø d] Pr(Y Ø d)

∆E[X] < E[Xs | Y Ø d]

Thus, given a modulus event, weights of the secret items tend to be higher than decoy

items. The reverse is true in a no-modulus event. We note that when g = 0, i.e., the

empty event, the expected weight of the secret items is undefined (since they do not exist

in the challenge).

Recall from Theorem 3.3.1 that as g increases, the probability of the no-modulus event

approaches zero. Therefore, increasing g should also minimize the weight bias. This is

demonstrated by the following corollary which shows that as g increases, the expected

weight of a secret item approaches the global expectation E[X].

Corollary 3.3.3.2. As g æ Œ, E[Xs | Y Ø d] æ E[X].

Proof. From Theorem 3.3.1, we have Pr(Y Ø d) æ 1 as g æ Œ. Consequently, Pr(Y <

d) æ 0. The result then follows from Eq. 3.5.

Thus, scheme designers can minimize any weight bias by increasing the parameters (k, l), or

decrease (n) to increase the expected value of g. Once again the above result is asymptotic,

and in practice, the bias in expected weights vanishes quickly by a moderate increase in

g since the probability of the no-modulus event decreases quickly. Unfortunately, the

three ORASes under focus, do not have a su�ciently large expected value of g and are

susceptible to revealing information about the secret items through this bias.

51

CHAPTER 3. EXPLOIT BEHAVIOR

3.3.3 Biases in Specific ORAS

We now highlight these biases in the three instances of ORAS: BehavioCog, FoxTail, and

HopperBlum. The cognitive functions in each of these schemes are slightly more involved

than a simple mod operation on the sum (e.g., response flipping in HB). Therefore, the

analytical results on the generic ORAS may not completely reflect the biases in these

schemes.

3.3.3.1 Guessing a Modulus Event through Responses

First consider the BehavioCog scheme with parameters (n, k, l, d) = (180, 14, 30, 5). Fig-

ure 3.4a shows the probability of a modulus and a no-modulus event given di�erent re-

sponse values broken down across di�erent values of g Ø 1. The inset table in the figure

shows the two probabilities irrespective of the value of g. Clearly, a higher response value

indicates that it is more likely a no-modulus event. In contrast, lower response values are

more likely to be a result of a modulus event. Not surprisingly, the probability of the

no-modulus event decreases with increasing g. Recall that in BehavioCog, the user enters

a random response in case of the empty event. However, the bias shown in the figure is

for g Ø 1. The inset table on the other hand shows includes the empty event as well, and

hence shows probabilities for all g.

The corresponding biases in the Foxtail and HB protocols are shown in Figures 3.4b and

3.4c, respectively. Recall that both Foxtail and HB have the response space {0, 1}. In

Foxtail the response is “rounded” after a mod 4 operation, and in HB it is flipped with a

fixed probability ÷ (which we fix to 0.2). In Foxtail, we see that the response 0 is more

likely to be from a non-modulus event, whereas the reverse is true of response 1. On

the other hand, both responses in HB are more likely due to a no-modulus event, with

response 1 being considerably more biased towards the no-modulus event. Thus, the bias

of a particular response towards a modulus event depends on the scheme parameters as

well as the cognitive function.

52

3.3. THE MODULUS EVENT AND ASSOCIATED BIASES

(a) BehavioCog Protocol (180, 14, 30, 5)

(b) Foxtail Protocol (180, 14, 30, 4)

(c) HopperBlum Protocol (180, 14, 30, 2)

Figure 3.4: Probabilities of modulus and no-modulus events given di�erent
response values in k-out-of-n ORAS. The probabilities are given for di�erent
values of g, showing the normalized probability for the event of the modulus
operation. The overall probabilities irrespective of g are given in the table.

3.3.3.2 Weight bias in a Modulus Event

Table 3.2 shows the expected weight of the secret item(s) given a modulus and a no-

modulus event for all three schemes. The expected weights are also shown against the

number of secret items present in the challenge. The case g = 1 obviously does not

53

CHAPTER 3. EXPLOIT BEHAVIOR

involve any modulus operation, and so the expected weight, in this case, is equal to the

overall expectation. This is shown in the table with the row labeled E[Xs]. In all three

protocols, the expected weights of the secret items given a no-modulus event are lower

than the overall expectation and decrease further as the number of secret items g increases.

However, this also means that the no-modulus event becomes almost unlikely to occur.

The expected weight of the secret items in a modulus event is higher for smaller values

of g and approaches the overall expectation as we increase g. Noting in Figure 3.4 that

higher values of g, say g Ø 4, the bias is less profound and is less likely to occur in a

challenge (with the given parameters).

Table 3.2: Expected weights E(Xs) of secret items.

E(Xs|Y, g) All g g=1 g=2 g=3 g=4 g=5 g=6 g=7 g=8 g=9
BC Y < d 1.20 2.00 1.33 1.00 0.80 0.67 0.57 0.50 0.44 0.40
d=5 Y Ø d 2.57 - 3.00 2.39 2.15 2.06 2.02 2.01 2.00 2.00

E[Xs] 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
FT Y < d 0.90 1.50 1.00 0.75 0.60 0.50 0.43 0.38 0.33 0.30
d=4 Y Ø d 1.98 - 2.33 1.84 1.64 1.56 1.52 1.51 1.50 1.50

E[Xs] 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
HB Y < d 0.30 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10
d=2 Y Ø d 0.82 - 1.00 0.75 0.64 0.58 0.54 0.53 0.51 0.51

E[Xs] 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

3.4 Attack Algorithm and the Faulty Oracle

In the previous section, we discussed how knowledge of the modulus or no-modulus event

leaks information about the secret. In this section, we will construct an attack algorithm

that retrieves the secret given access to an oracle that indicates a modulus or no-modulus

event. A “perfect” oracle, however, is unrealistic in practice where we expect some error in

our knowledge of the event. We therefore assume a faulty oracle which might erroneously

indicate a modulus event. We will analyze the performance of the attack algorithm against

varying accuracies of the faulty oracle.

More precisely we consider a faulty oracle, denoted Omod, which when given a challenge

(and any auxiliary information) as input, returns ≠1 if it guesses that the user has not

54

3.4. ATTACK ALGORITHM AND THE FAULTY ORACLE

performed the modulus operation (i.e., the no-modulus event is the positive class), and +1

otherwise. The oracle can make two types of errors; type 1 error is when the oracle outputs

≠1 when it is a modulus event, and a type 2 error is when the oracle outputs +1 when

in fact it is actually a no-modulus event. The true positive rate (TPR) is the probability

of correctly guessing the modulus event, and therefore, 1 ≠ TPR is the probability of type

1 error. Similarly, the true negative rate (TNR) is the probability of correctly guessing

the no-modulus event. Thus, 1 ≠ TNR is the probability of type 2 error. The oracle is

parameterized by these two probabilities and we denote this by O
TPR,TNR
mod .

Algorithm 1: Modulus Event Points Update
Input: Scheme parameters (n, k, l, d), number of challenges m, penalty vectors

(u0, . . . , ud≠1) where 0 = u0 Ø · · · Ø ud≠1, and (v0, . . . , vd≠1), where

v0 Æ · · · Æ vd≠1.

Output: A list of points (p1, p2, . . . , pn), with top k scores indicating secret items.

1 Initialize (p1, p2, . . . , pn) to all zeroes.

2 for j = 1 to m do

3 Observe challenge c containing items i and weights wt(i), auxiliary information

‘aux,’ and response r.

4 b Ω O
TPR,TNR
mod (c, aux).

5 if b = ≠1 (no-modulus event) then

6 for all items i such that wt(i) > r do

7 penalize pi Ω pi + uwt(i).

8 else

9 penalize pi Ω pi + vwt(i).

10 return (p1, p2, . . . , pn).

Algorithm 1 describes our algorithm to retrieve the secret with access to this faulty oracle,

which we call the Modulus Event Points Update algorithm. The algorithm maintains a

list of points (p1, . . . , pn) where pi denotes the points for item i. Initially, all items have

a score of 0. Upon receiving a challenge, the algorithm consults the faulty oracle. If

the faulty oracle detects a no-modulus event, then it penalizes all items whose weights are

greater than the response r (since such items would require a modulus event to produce the

55

CHAPTER 3. EXPLOIT BEHAVIOR

response r). Here items with higher weights are given higher penalties (as the expected

weight of secret items is lower in the no-modulus event). When the oracle detects a

modulus event, items with lower weights are given higher penalties as secret items are

expected to have higher weights in a modulus event. This is reflected in the construction

of the penalty vector (v0, . . . , vd≠1), where we have v0 Æ · · · Æ vd≠1. Note that in this case

items are penalized irrespective of the response. This is because an item with any weight

could have produced the response (since it is a composite of multiple weights reduced

modulo d.

Since the oracle is faulty, secret items may also get penalized. However, the decoy items

are penalized more with an increasing number of challenges, eventually leading to higher

scores for the secret items. To show this, we consider a special case of the algorithm and

show that the expected score of a secret item is higher than a decoy item with a large

enough m, i.e., number of challenge-response pairs. Specifically, we consider the penalty

vector (v0, . . . , vd≠1) to be all zeroes, i.e., no points update in case of the modulus event.

Our simulations show that not updating the points at all when a modulus event is detected

does indeed take the least number of samples to retrieve the secret.

Theorem 3.4.1. Let the penalty vector (v0, . . . , vd≠1) be all zeroes. Furthermore, let the

other penalty vector, i.e., (u0, . . . , ud≠1) be not identically zero. If TNR > 1 ≠ TPR, then

for su�ciently large m, the expected score of a secret item is more than the score of a

decoy item.

Proof. See Appendix A.3.

Obtaining an analytical estimate of the number of samples required to retrieve the secret

through the algorithm is di�cult. We therefore assess this through simulations. The

penalty vectors chosen satisfy the condition of the theorem above. In particular, we use

the penalty vector (u0, u1, . . . , ud≠1) = (≠1, ≠1, . . . , ≠1). With this penalty vector, the

point update follows the pattern shown in Table 3.3, for each of the three schemes. We

varied the TPR and TNR of the oracle between 0.6 and 1.0 with steps of 0.05. We

56

3.4. ATTACK ALGORITHM AND THE FAULTY ORACLE

Table 3.3: Point update for BC, FT, HB. A cell is divided into a upper and
lower half, representing the detection of a modulus and no-modulus respec-
tively.

(a) BC

r
w 0 1 2 3 4

0 0
0

0
-1

0
-1

0
-1

0
-1

1 0
0

0
0

0
-1

0
-1

0
-1

2 0
0

0
0

0
0

0
-1

0
-1

3 0
0

0
0

0
0

0
0

0
-1

4 0
0

0
0

0
0

0
0

0
0

(b) FT

r
w 0 1 2 3

0 0
0

0
0

0
-1

0
-1

1 0
0

0
0

0
0

0
0

(c) HB

r
w 0 1

0 0
0

0
-1

1 0
0

0
0

maintain the distinction between TPR and TNR to preserve the asymmetrical e�ects on

our algorithm resulting from each type of error. For each pair of TPR and TNR, we ran

1,000 simulations of the attack algorithm on each of the three schemes. Instead of giving

m, i.e., the number of challenges, as an algorithm input, we let it run until the top k items

are the secret items. Tables 3.4 and 3.5 contains the average number of rounds required

for all schemes.

We compare our results from Tables 3.4 and Table 3.5 to the samples required by best

performing e�cient algebraic attacks. For BehavioCog (in Table 3.4), the most e�cient

attack is Gaussian elimination, which finds the secret in 900 rounds [2]. For the FoxTail

protocol (In Table 3.5), linearization followed by Gaussian elimination requires 16,290

observations [3]. In terms of a number of sessions, this is 90 sessions for BehavoCog (10

rounds per session) and 815 for FoxTail (20 rounds per session). In comparison, there are

various ranges of accuracy levels for the faulty oracle which reduce the average number

of sessions required to obtain the secret. Taking a realistic example of (TPR, TNR) =

(1.0, 0.6), BehavioCog would only need 279.7 rounds (28 sessions), whilst FoxTail would

need 390.4 rounds (20 sessions), a substantially lower number of complete authentication

sessions. For the HB protocol (In Table 3.5), no known e�cient algebraic attack exists.

57

CHAPTER 3. EXPLOIT BEHAVIOR

Table 3.4: Experimentally derived rounds required to reveal full user secret
given varying TPR and TNR of side-channel classifier, for the Modulus applied
on BehavioCog (900 Round Benchmark [2]).

Modulus Accuracy (TPR)
1000 Iterations 1.0 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

N
on

-M
od

ul
us

A
cc

ur
ac

y
(T

N
R

)

B
eh

av
io

C
og

(B
C

)

1.0 165.978 262.996 345.960 451.254 565.272 678.194 823.412 982.746 1235.992
0.95 174.384 280.342 385.178 488.884 612.682 766.068 922.540 1120.090 1342.758
0.9 181.922 294.812 416.188 524.556 676.894 846.600 1025.982 1286.478 1580.582
0.85 193.792 320.708 459.760 594.082 776.850 971.874 1178.938 1483.118 1891.290
0.8 207.030 355.722 508.420 675.650 867.420 1077.646 1377.088 1761.734 2242.302
0.75 216.218 381.012 549.340 730.038 960.940 1227.158 1629.738 2094.498 2808.506
0.7 234.262 440.108 624.560 836.196 1115.732 1476.358 1949.384 2522.530 3340.990
0.65 258.334 475.660 685.860 989.504 1331.370 1754.882 2372.312 3243.770 4297.246
0.6 279.748 522.326 803.298 1157.238 1586.432 2203.824 2940.524 4112.454 5987.648
0.55 303.129 616.505 948.832 1348.100 1911.934 2778.192 3909.067 5627.870 8521.225
0.5 330.702 705.391 1126.371 1661.984 2392.133 3593.075 5396.283 8248.908 13557.03
0.45 369.793 829.916 1344.850 2093.507 3149.585 5070.656 7984.902 13339.76 25016.93
0.4 414.546 996.672 1683.427 2815.620 4455.89 7358.926 13297.78 25743.05 63722.74
0.35 473.636 1234.009 2218.427 3832.711 6882.528 12585.91 26499.93 74077.08 >200000

This is not surprising as the protocol is based on the NP-Hard problem of learning parity

with noise. For HB protocol, we require 909 rounds or approximately 27 sessions with

34 rounds per session (as discussed in Section 3.2.3). Thus, our attack shows an e�cient

attack based on side channel information.5

In comparison, Tables 3.4 and 3.5 shows that our attack algorithm with many di�erent

combinations of TPR-TNR far outperforms the aforementioned attacks. But, which com-

binations of TPR-TNR are fair and realistic? We see that if the TPR is high (close to

1), then our algorithm is less sensitive to decreasing TNR. This is somewhat evident from

Algorithm 1, and our choice of the penalty vector. A low TNR means that a no-modulus

event may be frequently misclassified as a modulus event. However, the algorithm never

penalizes items in such a case (due to the use of a zero penalty vector). This is also

due to the fact that in a no-modulus event, there is a large weight di�erential (as shown

previously). For binary classification tasks, it is always possible to trade the TNR with

diminishing FPR, as TPR and TNR are inversely related. The first few columns in the

table correspond to this regime, and we see that in most cases we significantly outperform

5We note that Cagalj et al. [51] propose a side channel attack on the original HB
protocol (without the window) which recovers the secret in 380 rounds. Unfortunately,
this attack is not applicable to the windowed variant.

58

3.4. ATTACK ALGORITHM AND THE FAULTY ORACLE

Table 3.5: Experimentally derived rounds required to reveal full user secret
given varying TPR and TNR of side-channel classifier, for the Modulus applied
on FoxTail (16,290 Round Benchmark [3]), and HopperBlum.

Modulus Accuracy (TPR)
1000 Iterations 1.0 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

N
on

-M
od

ul
us

A
cc

ur
ac

y
(T

N
R

)

Fo
xT

ai
l(

FT
)

1.0 234.099 361.049 462.091 590.253 716.030 851.755 996.776 1206.307 1431.352
0.95 245.924 384.369 512.155 631.904 779.754 929.230 1132.713 1325.878 1574.523
0.9 259.346 418.701 555.846 696.247 846.392 1039.581 1275.197 1514.627 1826.617
0.85 275.493 450.995 591.611 751.928 945.971 1155.384 1412.938 1694.107 2061.644
0.8 289.746 474.639 657.124 846.583 1073.885 1341.471 1625.042 2034.259 2407.814
0.75 309.022 518.628 719.507 942.644 1184.645 1527.110 1873.568 2395.379 2942.497
0.7 337.233 570.886 807.810 1076.267 1376.793 1780.750 2223.255 2780.624 3536.249
0.65 360.027 654.276 903.714 1222.030 1561.489 2110.796 2593.069 3363.440 4372.477
0.6 390.420 719.669 1027.850 1420.807 1857.157 2491.812 3303.234 4271.355 5663.664
0.55 425.797 817.616 1211.947 1673.944 2309.427 3092.693 4160.624 5502.299 7751.852
0.5 466.579 928.206 1432.573 2044.601 2804.419 3836.378 5499.969 7662.418 11093.98
0.45 519.760 1112.707 1724.578 2495.029 3612.860 5179.980 7484.748 11356.39 17528.47
0.4 581.398 1302.668 2123.358 3243.961 4803.101 7302.969 11542.69 18748.54 33004.62
0.35 665.757 1592.206 2786.819 4429.673 7045.669 11521.79 19765.98 38068.37 83833.69

H
op

pe
rB

lu
m

(H
B

)

1.0 538.108 643.254 759.623 912.669 1056.444 1233.634 1448.241 1702.210 2011.441
0.95 574.626 684.327 809.546 972.457 1144.787 1350.292 1616.565 1896.063 2251.269
0.9 601.860 734.153 871.632 1041.118 1280.526 1502.996 1810.434 2120.654 2562.250
0.85 636.235 780.374 957.234 1137.184 1364.196 1663.844 2056.685 2485.285 3047.063
0.8 674.237 833.574 1031.503 1271.620 1537.344 1922.406 2356.007 2886.691 3512.182
0.75 712.093 908.231 1129.152 1388.736 1757.375 2152.616 2687.703 3351.902 4257.354
0.7 784.420 1000.224 1230.416 1580.273 1964.927 2466.244 3146.388 4113.707 5272.378
0.65 852.850 1066.540 1383.679 1789.643 2253.984 2906.097 3840.653 4946.336 6689.905
0.6 908.848 1181.096 1574.578 2081.068 2654.442 3515.377 4805.121 6448.616 8940.049
0.55 983.286 1333.104 1812.558 2402.852 3259.621 4408.826 5955.009 8593.798 12597.03
0.5 1087.780 1495.170 2119.745 2964.009 4068.224 5571.716 8035.144 12339.58 19706.51
0.45 1225.173 1763.995 2510.148 3626.290 5112.787 7750.267 11859.26 19966.72 35981.45
0.4 1356.933 2056.374 3105.767 4595.770 7067.243 11288.44 19362.25 37558.86 91942.35
0.35 1554.770 2544.067 3914.772 6296.296 10456.32 18819.72 38944.80 102742.2 >200000

algebraic attacks.

On the other hand, in the case of BehavioCog, if both TPR and TNR are less than 0.8

then the performance of the side-channel classifier degrades in comparison to Gaussian

elimination. However, in general, the classifier can be trained to favor the TNR over

TPR, or vice versa, by varying the threshold. This means that we can fix the threshold

to favor a high TPR, say 0.95 or 1.0, sacrificing the TNR as a result but still be able to

outperform Gaussian elimination in terms of the number of rounds required to retrieve the

secret, as is evident from the table (the first two columns under BC). Indeed, as we shall

show in Section 3.5.4, we can train the classifier on data from our user study to achieve a

TPR of 1.0 and a TNR of 0.38, and still able to obtain the secret after 435 rounds, less

than half the number required via Gaussian elimination.

59

CHAPTER 3. EXPLOIT BEHAVIOR

Increasing Confidence The results in Tables 3.4 and 3.5 show the average minimum

number of rounds required before the first k items are the user’s secret items. While, these

numbers can be used as a reference on how many challenge-response pairs are required to

find the secret via Algorithm 1 with high probability, the attacker can use a better strategy

to increase its confidence on the first k items being the secret items. The idea is to rank

items after each round according to their scores, and keeping track of the point di�erences

between the neighbors of the kth ranked item. More precisely, let item(i) denote the item

ranked i in the current round, where 1 Æ i Æ n (ties can be broken according to the initial

order on the items). Note that the item ranked i might change over successive rounds.

The attacker updates the (absolute) di�erence in points of the following pairs of items:

(item(k ≠1), item(k)), (item(k), item(k +1)), and (item(k +1), item(k +2)). Let us denote

these three point di�erences by di�k≠1,k, di�k,k+1 and di�k+1,k+2, respectively. For the first

few rounds, the attacker cannot distinguish between these three. For a given (TPR, TNR),

once the number of rounds passes the mark given in Tables 3.4 and 3.5, di�k,k+1 starts

deviating away from di�k≠1,k and di�k+1,k+2. The more rounds the attacker observes, the

more di�k,k+1 deviates away from the two. Thus, the attacker can increase its confidence

that the top k are indeed the secret items by setting a threshold for the gap between

di�k≠1,k with respect to di�k≠1,k and di�k+1,k+2. Figure 3.5 shows this for BehavioCog

with (TPR, TNR) = (0.95, 0.95). We can see a divergence in the score di�erences after

around 280 rounds, consistent with our simulated rounds required for this configuration

(cf. Table 3.4).

3.5 Implementing the Attack Using Behavioral Side-Channel

In this section, we show that certain user behavior patterns while processing challenges can

provide information about the modulus event. More specifically, we target the user’s eye-

movement together with the associated timing information. An eavesdropping adversary’s

ability to accurately guess the modulus event depends on the resolution of behavioral in-

formation available. We model this as adversaries with varying strength (Section 3.5.1);

60

3.5. IMPLEMENTING THE ATTACK USING BEHAVIORAL SIDE-CHANNEL

Figure 3.5: The point di�erence between the kth and (k + 1)st ranked items
versus the points di�erence between (k ≠ 1)st and kth ranked, and (k + 1)st
and (k + 2)nd ranked items as a function of number of observed rounds. These
results are for a faulty oracle with 0.95 EER on BehavioCog. Clearly, after
around 280 (expected number of rounds to find the secret), there is growing
divergence between the scores of secret and decoy items, indicating increased
confidence in the top k items being the secret items.

from the weakest adversary with access to only meta information to the strongest adver-

sary with high-resolution eye movement to screen mapping. We then identify potentially

revealing behavior patterns through a user study by collecting data from an eye-tracker

(Section 3.5.2). Following this, we identify features corresponding to these behavior pat-

terns which are then used as input to machine learning classifiers (Section 3.5.3) to predict

the modulus event (thus instantiating the faulty oracle of the previous section). The data

from the user study is used to train and test the classifiers, and the resulting accuracy

levels (TPR and TNR) are used as instances of the faulty oracle in the aforementioned

attack algorithm.

3.5.1 Levels of Adversarial Strength

We define four di�erent levels of adversaries di�ering by the resolution of behavioral in-

formation available to them. These levels are outlined below with real-world examples.

Figure 3.6 illustrates them pictorially. We assume each adversary can access the challenge

and responses in addition to the behavioral information.

• Level 1 (L1): An adversary with access to the challenge duration, i.e., time till user

61

CHAPTER 3. EXPLOIT BEHAVIOR

77RWDO

&
KD
OOH
QJ
H�
6W
DU
W

6X
EP

LW�
5
HV
SR
QV
H�)XOO�6FUHHQ�/RFDWLRQ�FHUWDLQW\�LQ�UHG

+DOI�6FUHHQ�/RFDWLRQ�FHUWDLQW\�LQ�UHG

/HYHO���$GYHUVDU\

/HYHO���$GYHUVDU\/HYHO���$GYHUVDU\

7LPH

6&$1':(// ':(// 6&$1� ':(//
7LPH

,WHP�/RFDWLRQ�FHUWDLQW\�LQ�UHG

/HYHO���$GYHUVDU\

7LPH

7LPH

&
KD
OOH
QJ
H�
6W
DU
W

6X
EP

LW�
5
HV
SR
QV
H�

6X
EP

LW�
5
HV
SR
QV
H�

&
KD
OOH
QJ
H�
6W
DU
W

6&$1':(// ':(// 6&$1� ':(// 6&$1':(// ':(// 6&$1� ':(//

6X
EP

LW�
5
HV
SR
QV
H�

&
KD
OOH
QJ
H�
6W
DU
W

Figure 3.6: Four Levels of adversary capabilities in recovering eye-tracking
information, Each level beyond L1 is provided with increasingly detailed loca-
tion information, from no location information (L2), sectors (L3), to specific
items (L4).

submits response. Examples include monitoring Internet tra�c or the screen itself.

• Level 2 (L2): An adversary with further access to user dwell times, i.e., when the

eye is stationary. This information can be obtained via a hidden camera facing the

user, e.g., a pinhole camera mounted on an ATM, or a general surveillance camera.

The resulting video feed of the user’s eyes can be used to determine still positions

through pupil detection and its lack of movement.

• Level 3 (L3): An adversary with further access to rudimentary positional information

of dwells, e.g., lower half of the screen, top-left quadrant. This information can

again be obtained via a hidden camera recording the user’s face. Furthermore, we

assume that the attacker has access to video-oculography to estimate gaze and to

extract positional information from either the geometric model or appearance of the

eyes [88,93–95].

• Level 4 (L4): An adversary with further access to item-specific positional information

of dwells. We assume the attacker employs a hidden camera to record a video of the

user’s face. The attacker has access to highly accurate video-oculography [88, 93–

62

3.5. IMPLEMENTING THE ATTACK USING BEHAVIORAL SIDE-CHANNEL

95] to estimate item specific positional information (as compared to coarse-grained

positions in L3).

Note: A webcam or the front camera of a smartphone or a laptop, are also possible

examples of a hidden camera considered for adversary levels 2 to 4. However, it can be

argued that the user’s device is already compromised if an attacker has access to the

in-device camera, and hence the protection provided by an ORAS might be superfluous.

Therefore, we discard this as a possible attack vector, and instead consider o�-device

hidden cameras, examples of which are given above.

3.5.2 User Study

We recruited 11 postgraduate research students, in the 24-26 age range of mixed gender

(6 males, 5 females) as participants in the eye-tracking experiment who were asked to

process challenges from the BehavioCog scheme (specifically, the cognitive component

in [2]) with parameters (n, l, k, d) = (180, 30, 14, 5). The users were given training, and

trial attempts to help them remember their secrets and to familiarize themselves with the

scheme, followed by computing several random challenges. The position of their gaze, and

field of view are recorded with a pair of SMI Eye Tracking Glasses (ETG2).6 From all

challenges attempted by the users, we sampled those that had correct responses such that

there were roughly the same number of instances of g œ {0, 1, 2, 3} secret items. This

represented 81.4% of possible challenges within BehavioCog, resulting in a total of 64

challenge samples. A full breakdown of user samples with respect to the number of secrets

present g, and whether they had performed a modulus operation is shown in Table 3.6.

The data from the study included (a) a recorded video of each challenge, (b) and an

associated list of xy-coordinates. We performed a manual mapping process to link an

xy-coordinate to a challenge item in the video. The task was partially automated by

overlaying the timestamped xy-coordinate as a red dot on the corresponding frame of

6https://www.smivision.com/eye-tracking/products/mobile-eye-tracking

63

https://www.smivision.com/eye-tracking/products/mobile-eye-tracking

CHAPTER 3. EXPLOIT BEHAVIOR

Table 3.6: User Contribution of Eye-tracking Samples

64 Samples User 1 2 3 4 5 6 7 8 9 10 11 Total

Number
of
Secrets

0 Secrets 2 1 1 0 1 3 2 1 0 2 1 14
1 Secrets 1 2 2 1 2 1 1 1 0 2 2 15
2 Secrets 2 2 2 2 0 2 2 1 2 1 2 18
3 Secrets 2 1 1 3 0 1 2 0 3 3 1 17

Modulus
Status

Empty 2 1 1 0 1 3 2 1 0 2 1 14
No Mod 3 4 4 3 2 3 5 2 3 3 4 36
Mod 2 1 1 3 0 1 0 0 2 3 1 14

the video feed, as shown in Figure 3.7. The SMI eyetracker software provides its own

classification of eye movement as either “Saccade” (rapid eye movement or scan), “Visual

Intake” (low eye movement or dwell), and “Blink.” The mapped item over which the

user’s focus is positioned corresponds to segments of visual intake separated by saccades

or blinks. We noticed that the SMI software classification is highly sensitive to even

the smallest eye movements, whereby if a user shifts their focus on di�erent parts of the

same item, a saccade may be registered. An attacker may not have the same luxury of

information. So we treat sequential periods of visual intake separated by a saccade or

blink of the same item as a continuous dwell on an item. The mapping of positional

information to challenge items enables us to produce detailed information available to L3

and L4 adversaries. However, for less capable adversaries (L1 and L2) such positional

information is not required.

3.5.2.1 Ethics Consideration

The participants were recruited via university mailing lists and posters, and were informed

about why and how their data was to be used. Their consent for the collection of eye-

tracking data was obtained, with monetary compensation provided to the participant at

the completion of the experiment. Ethics approval for the conduct of the experiment

and analysis of the data was obtained from our ethics review board prior to user recruit-

ment. The recordings of our participant interactions may contain potentially identifiable

information (fingerprints, skin tone), thus after the mapping of focal xy-coordinates and

64

3.5. IMPLEMENTING THE ATTACK USING BEHAVIORAL SIDE-CHANNEL

Figure 3.7: An image of the xy-coordinate (red dot) overlaid on a video feed.

challenge items, the recordings were encrypted at rest.

3.5.3 Features and Classifiers

From the eye-tracker study, we identified several features, e.g., minimum dwell time, num-

ber of vertical transitions (between the two screen halves). Features are categorized ac-

cording to their availability to the four adversarial levels. Justifications and the hypotheses

behind the choice of these features, i.e., how they intuitively reveal information about the

modulus/no-modulus event, are included in Appendix A.4. The features are also listed

in Table 3.7. Due to the small sample size, providing all features to a machine learning

classifier is not recommended (due to the curse of dimensionality [96]). Thus features

were ranked using the minimal-redundancy-maximal-relevance (mRMR) score [97]. The

mRMR algorithm seeks to rank features to maximize the information gain provided by

a feature for the task of separating the sample classes. The algorithm also accounts for

65

CHAPTER 3. EXPLOIT BEHAVIOR

redundant features; otherwise multiple similar features would be ranked highly, ignoring

the fact that each subsequent feature would provide little new information. Table 3.7

details the feature rankings in ascending order of information gained.

Table 3.7: MRMR Rankings for features of modulus side channel classification.

Adversary Level L1 L2 L3 L4

E
ng

in
ee

re
d

Fe
at

ur
es

Le
ve

l1 Total Time of authentication 1 1 1 1
Mean Challenge Weight 2 3 3 3
User Challenge Response 3 5 5 5

Le
ve

l2

Minimum Dwell Time 6 7 11
10th Percentile Dwell Time 8 10 16
Maximum Dwell Time 10 14 20
90th Percentile Dwell Time 12 16 22
Mean Dwell Time 11 15 21
STD Dwell Time 15 19 25
Number of Dwells 13 17 23
Time to end from longest Dwell 14 18 24
Dwell Consistency 2 2 2
Duration of First Fixation 7 9 15
Duration of Last Fixation 9 12 18
Longest Dwell Consistency 4 4 4

Le
ve

l3

Vertical Transitions (Even) 6 10
Vertical Transitions 8 13
Horizontal Transitions 11 17
Time to end from screen bottom 13 19

Le
ve

l4

Number of largest revisits 8
Number of unvisited items 14
Longest repeating sequence 7
Weight of 1st Longest Dwell 6
Weight of 2nd Longest Dwell 9
Weight of 3rd Longest Dwell 12

A comprehensive selection of classification algorithms was tested from the Python machine

learning library scikit-learn [98]. Specifically, we use Support Vector Machines (linear

and radial kernel), Naive Bayes, AdaBoost and Random Forest classifiers. Each algorithm

was tested on an increasing number of features for each adversary level, as determined by

the mRMR algorithm. Each of our classifiers are used in a two-class configuration for the

modulus/no-modulus event.

We adopt leave-one-user-out verification as the most rigorous form of model validation,

allowing the demonstration of generic behaviors irrespective of user. The method is a

66

3.5. IMPLEMENTING THE ATTACK USING BEHAVIORAL SIDE-CHANNEL

proactive assurance against overfitting; with the low number of available training samples,

the inclusion of any user specific samples would risk the trained model learning user-

specific behavior instead of generic behaviors across the entire group of users. This also

represents a realistic attack scenario whereby the attacker has no prior knowledge of the

target user.

As previously observed in our simulations (Table 3.5), the performance of the attack

algorithms is disproportionately sensitive to the accuracy of detecting one class over the

other (modulus event accuracies are more important than the no-modulus accuracy). Each

of the classifiers return a prediction probability score for each class label. By default, a

threshold is set to 50%, a sample is classified as belonging to the first class if the score

returned by the classifier is 50% or above. We can favor either class by altering this

threshold to tighten or loosen the conditions for being classified into the first class, thus

controlling the trade-o� between TPR and TNR.

The best performing classifier (algorithm, features, threshold), is then found by using the

TPR and TNR values in the faulty oracle in the points update algorithm and simulating

challenge-response rounds in the scheme. The simulation is repeated 1,000 times to obtain

an average number of rounds. The classifier with the lowest number of rounds to resolve

the secret, is chosen. This process is then repeated for all adversarial levels. We note that

a single global threshold is used across every testing sample, irrespective of the validation

fold. To obtain a single value of the pair (TPR, TNR), we aggregate the test samples

from each fold into a set. We acknowledge the low number of test samples prevents us

from directly attacking a user, instead having to adopt challenge-response simulations.

Additionally with a larger test group of users, more data can be leveraged to train better

performing machine learning models.

3.5.4 Modulus Event Side Channel

After training and testing classifiers on the ranked features, the results of the simulations

with the classifiers as faulty oracles (given by corresponding TPR and TNR) are presented

67

CHAPTER 3. EXPLOIT BEHAVIOR

in Table 3.8. With only one feature, i.e., “Total Time”, the AdaBoost classifier was

able to obtain a (no-mod, mod) accuracy of (0.38, 1.0). Unfortunately, the additional

features provided to the classifier in adversarial levels L2 and L3 did not improve our

algorithm performance further; Until L4, where the naive Bayes classifier is able to achieve

an accuracy of (0.4, 1.0) with 7 features. Note that we did not change the threshold over

the default 0.5 by a large degree to obtain a TPR of 1.0. The results for the higher level

adversaries do not show a significant improvement over lower level adversaries. But this

may be due to our limited field study. Since these accuracy levels are dependent on the

data from the user study, a larger user study might reflect better on the influence of other

features in classification accuracy. On the other hand, a Level 1 adversary with only the

total time of the challenge can su�ciently separate the modulus and the non-modulus

challenges, demonstrating the practicality of our attack and the need to consider user

behavior when designing ORAS.

Table 3.8: Best adversary level classifier exploitation of the modulus operation
information.

Adver. No-Mod Mod Rounds Classifier # Features,
Level Acc. Acc. required used Threshold
L1 0.38 1.00 435.04 Adaboost 1, 0.51
L2 0.38 1.00 435.04 Adaboost 1, 0.51
L3 0.38 1.00 435.04 Adaboost 1, 0.51
L4 0.40 1.00 411.89 Naive Bayes 7, 0.59

With these oracle accuracies, our simulations show that it will take approximately 435

observations on average for a L1-L3 adversary, and 412 for L4 adversary to find the user’s

secret. This is half of the rounds needed by the Gaussian elimination attack (900 rounds)

in the BehavioCog scheme [2]. By extending these simulations to the FoxTail and Hop-

perBlum schemes, we observe 589 and 1,346 rounds, respectively, for an L4 adversary, and

618 and 1,415 rounds, respectively, for L1-L3 adversaries. Recall that the linearisation/-

Gaussian elimination attack on Foxtail requires 16,290 rounds, whereas the HB protocol

has no e�cient algebraic or statistical attack.

Finally, comparing the number of rounds in Table 3.8 against the numbers reported in

68

3.5. IMPLEMENTING THE ATTACK USING BEHAVIORAL SIDE-CHANNEL

Table 3.5, we see that the number of rounds required by the best classifier via the user

study is larger than the simulated attacks. However, we reiterate that this is due to the

best accuracy level through our limited user study, which is not indicative of the best

accuracy level achievable in practice. With a larger user study we would expect to obtain

better accuracy levels, matching those in Table 3.5, e.g., (TPR, TNR) = (1.0, 0.6), and

thus retrieving the secret in a smaller number of rounds.

Attack Performance without Timing Information It may appear from the lack

of improvement in L2 and L3 adversaries’ performance that the eye movement related

features do not show any gain over simply timing based information. This is particularly

problematic from an attacker’s point-of-view as scheme designers can easily mask timing

information by mandating a minimum time before the user can submit a response in

each authentication round. However, the eye movement features are also fairly accurate

indicators of the modulus/no-modulus event. To demonstrate this, an experiment with

the Total Time feature excluded from the feature set. With only a Naive Bayes classifier,

we are able to obtain (TPR, TNR) = (1.0, 0.38) with the second ranked feature (Dwell

Consistency) at a threshold of 0.76. This o�ers performance equivalent to the adversaries

L1-L3 in Table 3.8. This feature is part of the feature set of adversaries L2 to L4, and

hence demonstrates that observing eye movement patterns can successfully retrieve the

secret.

Per-User Accuracy Rate Until now we have reported system-wide accuracies to de-

termine an attacker’s performance. Since the dataset is small, we are interested in how

the modulus detection accuracy varies between users, to see if the system-wide values

are good representatives. We therefore report modulus detection accuracies for each user

within our study for the four selected configurations (corresponding to adversary levels

noted in Table 3.8). These are shown in Table 3.9.

First, we see that for all users against all adversary levels, we achieve a TPR of 1.0. In

case of TNR, against adversary levels L1-L3, 7 out of the 11 users are within ±0.2 of the

69

CHAPTER 3. EXPLOIT BEHAVIOR

Table 3.9: Modulus detection accuracy separated on a per-user basis. It is
observed that in L1-3, the TNR is approximately equal between users. Under
L4 however, there appears to be more variance in the performance of the
classifier. Where no accuracy is reported for TPR, no positive user samples
exist. The total number of user positive and negative samples are noted in the
last row of the table.

User 1 2 3 4 5 6 7 8 9 10 11
Adv. TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR
L1 0.4 1 0.0 1 0.6 1 0.333 1 0.333 - 0.333 1 0.286 - 0.667 - 0.667 1 0.4 1 0.4 1
L2 0.4 1 0.0 1 0.6 1 0.333 1 0.333 - 0.333 1 0.286 - 0.667 - 0.667 1 0.4 1 0.4 1
L3 0.4 1 0.0 1 0.6 1 0.333 1 0.333 - 0.333 1 0.286 - 0.667 - 0.667 1 0.4 1 0.4 1
L4 0.2 1 0.4 1 0.2 1 0.0 1 0.0 - 0.833 1 0.714 - 0.333 - 0.333 1 0.2 1 0.6 1
Total 5 2 5 1 5 1 3 3 3 0 6 1 7 0 3 0 3 2 5 3 5 1

system wide TNR of 0.38 (cf. Table 3.8). Three other users have TNRs between 0.6 and

0.667, slightly o� the mark from the system TNR. One user, however, is an outlier with

a TNR of 0.0. On the other hand, again, 7 out of 11 users against adversary level 4 are

within ±0.2 of the system TNR of 0.4. However, the outliers in this case are further adrift,

with 2 of the users exhibiting a TNR of 0.0, and 2 others showing a TNR of more than

0.714. Note, that higher than average TNR is not a problem from the attack’s perspective,

as this would require fewer observations before the secret can be retrieved (cf. Tables 3.4

and 3.5). Thus, we can conclude that the system-wide performance of the attack is mostly

representative of its performance per-user: the attack can be carried out against most

users in the system, with TNR of most users being close to the system-wide TNR. This

indicates that the classifiers are unlikely to have overfit. The exception being the outliers

who exhibit a TNR of 0.0. The prevalence of such users in the general population would

require a larger study, which we leave as future work.

3.6 Application to Other ORAS

In this section, we show that the attack is applicable to other ORAS which do not fit

the description of k-out-of-n ORAS, as long as they contain a modulus operation. We

use two such ORAS: PassGrids [11] and Mod10 [6], and present slightly modified point

update algorithms tailored to these schemes. Both PassGrids and Mod10 use a modulus

of d = 10, and due to their fundamentally di�erent construction from k-out-of-n ORAS,

not all side-channel features previously used are relevant (e.g., no items to gaze at in

70

3.6. APPLICATION TO OTHER ORAS

Mod10). Coarse timing information, however, is still relevant, due to the problem size

e�ect as studied by LeFevre, Sadesky, and Bisanz. [99]. The problem size e�ect observes

relatively slower latency (timing) on arithmetic problems with sums greater than 10. For

PassGrids and Mod10 with a modular operator of d = 10, slower latency then is a close

indicator of the modulus/no-modulus event. Thus, we may think of the faulty oracles in

the attack algorithms on these schemes being initiated by classifiers that use such timing

related information to classify modulus/no-modulus events. Throughout this section we

will use symmetrical oracle accuracies despite our earlier observation of an asymmetrical

response to classifier errors, this is to provide simpler performance references of hypothet-

ical attackers.

These schemes can be configured with secrets of variable length. For example, a PIN

can be 4 or 6 digits in length. Each secret digit and the challenge cognitive function

are independent of the other secret digits. As such, we assume our attacker is capable

of obtaining oracle information for each sequential challenge (pass-item/digit) and has

knowledge of when a challenge (pin digit entry) starts and stops. This notion was not

applicable for the previous schemes of BehavioCog, FoxTail, and HopperBlum, as the

secret items collectively produce a single final response. We remark that while we do have

oracle information about the individual digits, we do not stop updating points on any

digit until all digits are ranked highest, i.e., the complete secret has been found.

3.6.1 PassGrids

The PassGrids system [11] consists of a series of schemes that are modifications of the

commonplace PIN authentication systems. The schemes are designed to be resistant to

observation. We consider the version of their scheme called “PGx+4.” This scheme is im-

plemented on a 6◊6 grid with 36 possible locations. A challenge consists of an assignment

of a random digit {0, . . . , 9} to each of the 36 locations. The digits are generated so that

each appears an approximately equal number of times, i.e., 3-4 times. The user’s secret is

a set of four tuples of the form: (i, xi, yi), where i is a random location, xi œ {1, . . . , 9} and

71

CHAPTER 3. EXPLOIT BEHAVIOR

yi œ {0, . . . , 9}. For each secret tuple s, given the challenge c, the response is computed

as ri = f(s, c) = cixi + yi mod 10, where ci is the digit corresponding to location i in the

challenge. The secret space is thus of size 36 · 9 · 10 = 3240 for a 1-length secret, and

consequently a 4-length secret would have (3240)!
(3240≠4)! ¥ 246.6 possible secrets. This scheme

o�ers a degree of observation resilience (<10 observations). Once again, we see that the

modulus operation is used to provide observation resilience.
Algorithm 2: PassGrid Points Update
Input: Number of challenges m; A set of secrets S where s œ S is a tuple (i, x, y),

where i is one of 36 locations, x œ {1, . . . , 9} and y œ {0, . . . , 9}; size of S as

n = 36 ◊ 9 ◊ 10.

Output: A list of points (p1, p2, . . . , pn), with top score indicating the target secret.

1 Initialize (p1, p2, . . . , pn) to all zeroes.

2 for j = 1 to m do

3 Observe challenge c, auxiliary information ‘aux,’ and response r.

4 b Ω O
TPR,TNR
mod (c, aux).

5 if f(s, c) ”= r, for s œ S then

6 penalize s by 10

7 else

8 if b = ≠1 (no-modulus event) & (f(s, c) Ø 10) or b = +1 (modulus event)

& (f(s, c) < 10) then

9 penalize s by 3

10 return (p1, p2, . . . , pn).

We implemented the PGx+4 scheme and ran our attack algorithm, Algorithm 2, on it.

The attack algorithm is a point update algorithm that penalizes locations and operands

(xi’s and yi’s) that do not agree with the challenge response. We also to a lesser extent

penalize secrets that do agree with the response but do not agree with the modulus oracle.

The algorithm is shown for a 1-length secret for clarity, but can simply be extended to a

4-length secret by parallel execution.

We selected a point update vector of 10 for secrets that conflict with the response and 3 for

72

3.6. APPLICATION TO OTHER ORAS

Figure 3.8: The CDF of 1000 PassGrid user secrets found over a increasing
number of observations attained by an attacker, with varying degrees of mod-
ulus information accuracy. We note that the square markers results eliminate
possible secrets with perfect oracles, instead of updating points.

secrets that conflict with the modulus oracle. While we have chosen 10 and 3, as long as

the first value is larger than the second, the performance will fall within the performance

bounds from the direct elimination of secrets (perfect knowledge).

Figure 3.8 displays a CDF on the percentage of 1000 PassGrids that is found after a

given number of observations. This demonstrates the modulus information can be used

to enhance an attack on this scheme.

3.6.2 Mod10

The Mod10 method [6,51] is a patented method proposed as an alternative to commonplace

PIN authentication. The scheme combines each of the digits in the user’s PIN with a one

time pad (OTP) communicated through a protected channel. More specifically, for the

ith PIN digit si œ {0, . . . , 9}, the verifier covertly communicates an OTP oi œ {0, . . . , 9}.

The user responds with ri = si + oi mod 10. It follows that each of the digits is equally

likely to be the secret even after observing the response ri.

We consider the e�ect of the faulty modulus oracle in obtaining the user’s PIN. The

knowledge of a modulus event divides the response space, as seen in Table 3.10. This

knowledge reduces the number of possible secret pin digits which could be combined with

73

CHAPTER 3. EXPLOIT BEHAVIOR

Table 3.10: Response and Modulus operation (mod performed shaded) of a
given secret digit and one time pad.

Response User Secret Digit
of Sum 0 1 2 3 4 5 6 7 8 9

O
ne

T
im

e
Pa

d
di

gi
t

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

an unknown random OTP to produce the given response. The user’s 4-digit secret PIN

can be found by updating points to reward secret digits that agree with the response, and

the mod-oracle, for each of the 4 secret digits. The algorithm for one PIN digit is shown

in Algorithm 3, which can be extended in a modular way to all 4 digits. In the case of a

no-modulus event, all secret digits less than or equal to the response r are rewarded (since

digits greater than r would require a modulus operation regardless of the OTP). More

precisely, since it is a no-modulus event, we necessarily have si + oi = ri (even without

reducing the result modulo 10). If si > ri, then this implies oi < 0, a contradiction. Hence,

si Æ ri. Thus, we reward the points p0 to pr in the algorithm. On the other hand, in case

of the modulus event, all secret digits greater than the response ri are rewarded. This

follows from the fact that in a modulus event, we necessarily have oi + si = ri + 10. Since,

oi Æ 9, this gives us ri + 10 Æ 9 + si, and hence si Ø ri + 1. Therefore, all points pr+1 to

p9 are rewarded in the algorithm. By simulating users on the Mod10 scheme, and using

symmetrical oracle accuracies (same TPR and TNR for no-modulus/modulus events) we

can find the PIN in (Mod Accuracy, Average Rounds): (1.0, 24.4), (0.9, 36.1), (0.8, 60.20),

(0.7, 118.37), (0.6, 409.76). This result is also visually displayed in Figure 3.9.

We note that Cagalj et al. [51] demonstrate timing attacks on the same scheme, exploiting

the di�erences in the user’s cognitive load in the addition of the one time pad to their

74

3.6. APPLICATION TO OTHER ORAS

Algorithm 3: Mod10 Points Update
Input: m responses.

Output: A list of points (p0, p1, . . . , p9), with top score indicating the target secret

digit.

1 Initialize (p0, p1, . . . , p9) to all zeroes.

2 for j = 1 to m do

3 Observe auxiliary information ‘aux,’ and response r.

4 b Ω O
TPR,TNR
mod (c, aux).

5 if b = ≠1 (no-modulus event) then

6 reward (p0, . . . , pr)

7 else

8 reward (pr+1, . . . , p9)

9 return (p0, p1, . . . , p9).

Figure 3.9: The CDF of Mod10 user secrets found over a increasing number of
observations attained by an attacker, with varying modulus oracle accuracy.

secret digit. They are able to reduce the entropy of the unknown pin digit by 0.5 bits over

an observation, and e�ectively reducing the candidate size of the pin digit from 10 to 6

(with 90% confidence) over 90 observations. However, their attack does not retrieve the

entire secret.

75

CHAPTER 3. EXPLOIT BEHAVIOR

3.7 Related Work

We focus on related work on side-channel attacks on ORAS as well as password and PIN

authentication schemes. The most related work to ours is the timing attack from Cagalj

et al. [51] who exploit coarse-grained timing information as a side channel. Coarse-grained

means that the timing information is limited to the overall time taken to respond to a

challenge. They exploit the fact that a user’s time to respond to a challenge is directly pro-

portional to the cognitive load (which varies due to randomized weights in the challenge).

They demonstrate the susceptibility of the (full) HB protocol and the Mod10 scheme to

their timing attack. In contrast, we exploit further information (features other than the

total time taken) obtainable via observing the user’s eye movement patterns coupled with

the observation that a modulus event indicates a high cognitive-load challenge. As a result,

our attack is applicable to a broader class of k-out-of-n ORAS (as well as other ORAS

that use a modulus operation). Note that the simple timing attack from [51] does not

apply to the windowed HB protocol considered in this chapter.

To the best of our knowledge, this is the only work that explores side-channel attacks on

ORAS. However, there are numerous studies on side-channel attacks on PIN and password-

based schemes, which we summarize next.

Kune and Kim present a side-channel attack that extracts the user’s PIN by observing

the time taken as the finger travels between PIN digits on the keypad [100]. This timing

information enables the attacker to derive the distance traveled, and thus infer potential

key pairs the user was moving between. With the key pairs, the attacker reduces the

possible space of secrets, to eventually find the user’s secret. The attack from [101] uses the

position of the phone during PIN entry to determine the location of the secret digit using

gyroscope information. The smudge attack [102] is able to infer a user’s pass-pattern from

the oily residue remaining on the screen from the user’s finger when in contact with the

screen. We note that the challenge-response pairs in the authentication systems considered

in this thesis are already assumed to be known to the attacker, and as a result, these side

channel attacks are not applicable to our case.

76

3.8. CONCLUSION

There has also been some work on using hidden and/or on-device cameras to steal a user’s

PIN entry. The work in [103] shows how an attacker can use computer vision to determine

the exact digit or keyboard letter pressed through a distant camera even if the angle is not

optimal (directly facing the screen). Likewise, [104] shows a similar attacker capability

who has access to a front facing camera feed of the user, to identify which digit was pressed

on an on-screen number pad. They observe that the user (in one-handed operation) may

tilt the phone, and consequently the camera to press a digit in a particular location. Thus

if the location can be derived from the position of a stationary reference (e.g. the user’s

face) on the camera feed, so can the secret digit. Our work in this chapter relates to

these two works in terms of using a camera recording to detect eye movement patterns;

however, as discussed before, the task of retrieving the secret in our case is more involved

(as opposed to mere detection of password letters entered).

3.8 Conclusion

We have investigated and successfully exploited the modulus event present in existing

observation resilient schemes. We have shown that proposed schemes are vulnerable to

eye-movement based side-channel information which indicates the occurrence of the mod

events. Through this chapter, we have presented the algorithms to exploit the weight

bias in the modulus event, with an attempt at leveraging timing and positional focus

found in a user’s unconscious behavior in solving the authentication challenges. With the

algorithm independent to the side-channel, we speculate there may exist other behavioral

features that can be measured and utilized to better improve the overall attack. The

development of algorithms to exploit cognitive schemes that involve the modulus like

PassGrids or Mod10 demonstrate the value of this leaked information. In this chapter,

through analysis, we are able to derive why these side-channels leak information about

the secret, present remedies to reduce the amount of information released in observation-

resilient authentication schemes, and serves to inform future scheme designers.

77

CHAPTER 4. RANDOM INPUT

Chapter 4

On the Resilience of Biometric

Authentication Systems against

Random Inputs

This chapter is adapted from work titled “On the Resilience of Biometric Authentication

Systems against Random Inputs”, published in the Network and Distributed System Secu-

rity Symposium (NDSS) 2020, completed in conjunction with Zhao, B.Z.H., Asghar, H.J.

and Kaafar, M.A.

Moving beyond the ORAS of the previous chapter, we assess the security of machine

learning based biometric authentication systems against an attacker who submits uniform

random inputs, either as feature vectors or raw inputs, in order to find an accepting sample

of a target user. Unlike Chapter 3, we do not seek to recover the biometric template of

the target user, instead only trick the model to gain access. The average false positive

rate (FPR) of the system, i.e., the rate at which an impostor is incorrectly accepted as

the legitimate user, may be interpreted as a measure of the success probability of such an

attack. However, we show that the success rate is often higher than the FPR. In particular,

for one reconstructed biometric system with an average FPR of 0.03, the success rate was as

78

4.1. INTRODUCTION

high as 0.78. This has implications for the security of the system, as an attacker with only

the knowledge of the length of the feature space can impersonate the user with less than

2 attempts on average. We provide detailed analysis of why the attack is successful and

validate our results using four di�erent biometric modalities and four di�erent machine

learning classifiers. Finally, we propose mitigation techniques that render such attacks

ine�ective, with little to no e�ect on the accuracy of the system.

4.1 Introduction

Consider a machine learning model trained on some user’s data accessible as a black-box

API for biometric authentication. Given an input (a biometric sample), the model outputs

a binary decision, i.e., accept or reject, as its prediction for whether the input belongs to

the target user or not. Now imagine an attacker with access to the same API who has

never observed the target user’s inputs. The goal of the attacker is to impersonate the

user by finding an accepting sample (input). What is the success probability of such an

attacker?

Biometric authentication systems are generally based on either physiological biometrics

such as fingerprints [15], face [16, 17], and voice [18, 19]), or behavioral biometrics such

as touch [20] and gait [21], the latter category generally used for continuous and implicit

authentication of users. These systems are mostly based on machine learning: a binary

classifier is trained on the target user’s data (positive class) and a subset of data from other

users (negative class). This process is used to validate the performance of the machine

learning classifier and hence the biometric system [2, 21–29]. The resulting proportion of

negative samples (other users’ data) successfully gaining access (when they should have

been rejected) produces the false positive rate (FPR, also referred as False Acceptance

Rate). The target user’s model is also verified for their own samples, establishing the false

reject rate (FRR). The parameters of the model can be adjusted to obtain the equal error

rate (EER) at which point the FPR equals FRR.

79

CHAPTER 4. RANDOM INPUT

Returning to our question, the FPR seems to be a good indicator of the success probability

of finding an accepting sample. However, this implicitly assumes that the adversary is a

human who submits samples using the same human computer interface as other users, e.g.,

a smartphone camera in case of face recognition. When the model is accessible via an API

the adversary has more freedom in choosing its probing samples. This may happen when

the biometric service is hosted on the cloud (online setting) or within a secure enclave

on the user’s device (local setting). In particular, the attacker is free to sample uniform

random inputs. It has previously been stated that the success probability of such an attack

is exponentially small [30] or it can be derived from the FPR of the system [31,32].1

In this chapter, we show that uniform random inputs are accepted by biometric systems

with a probability that is often higher and independent of the FPR. Moreover, this applies

to the setting where the API to the biometric system can be queried using feature vectors

after processing raw input as well as at the raw input level. A simple toy example with a

single feature can illustrate the reason for the e�cacy of the attack. Suppose the feature is

normalized within the interval [0, 1]. All of the target user’s samples (the positive class) lie

in the interval [0, 0.5) and the other users’ samples (the negative class) lie in the interval

(0.5, 1]. A “classifier” decides the decision boundary of 0.5, resulting in identically zero

FRR and FPR. However, a random sample has a 50% chance of being accepted by the

biometric system.2 The success of the attack shows that the FPR and FRR, metrics used

for reporting the accuracy of the classifier, cannot alone be used as proxies for assessing

the security of the biometric authentication system.

Our main contributions are as follows:

• We theoretically and experimentally show that in machine learning-based biometric

1We note that these observations are made for distance-based authentication algorithms
and not machine-learning model based algorithms. See Sections 4.5.3 and 4.7 for more
details.

2This example is an oversimplification. In practice, the training data is almost never
nicely separated between the two classes. Also, in higher dimensions, one expects expo-
nentially small volume covered by samples from the positive and negative classes as is
explained in Section 4.3.

80

4.1. INTRODUCTION

authentication systems, the acceptance region, defined as the region in feature space

where the feature vectors are accepted by the classifier, is significantly larger than

the true positive region, i.e., the region where the target users samples lie. Moreover,

this is true even in higher dimensions, where the true positive region tends to be

exponentially small [105].

• As a consequence of the above, we show that an attacker who has access to a bio-

metric system via a black-box feature vector API, can find an accepting sample by

simply generating random inputs, at a rate which in many cases is higher than im-

plicated by the FPR. For instance, the success probability of the attack is as high as

0.78 for one of the systems whose EER is only 0.03. The attack requires minimum

knowledge of the system: the attacker only needs to know the length of the input

feature vector, and permissible range of each feature value (if not normalized).

• We show that the success rate of a random input attack can also be higher than

FPR if the attacker can only access the API at the raw input level (before feature

extraction). For instance, on one system with an EER of 0.05, the success rate was

0.12. We show that the exponentially small region spanned by these raw random

inputs rarely overlaps with the true positive region of any user in the system, owing to

the success probability of the attack. Once again the attack only requires minimum

knowledge of the system, i.e., the range of values taken by each raw input.

• To analyze real-world applicability of the attack, we reconstruct four biometric au-

thentication schemes. Two of them are physiological, i.e., face recognition [17] and

voice authentication [18]. The other two use behavioral traits, i.e., gait authentica-

tion [106], and touch (swipes) authentication [20,107]. For each of these modalities,

we use four di�erent classifiers to construct the corresponding biometric system. The

classifiers are linear support vector machines (SVM), radial SVM, random forests,

and deep neural networks. For each of these systems, we ensure that our implemen-

tation has comparable performance to the reference.

• Our experimental evaluations show that the average acceptance region is higher than

the EER in 9 out of 16 authentication configurations (classifier-modality pairs), and

81

CHAPTER 4. RANDOM INPUT

only one in the remaining 7 has the (measured) average acceptance region of zero.

Moreover, for some users, this discrepancy is even higher. For example, in one user

model (voice authentication using random forests) the success rate of the random

(feature) input is 0.55, when the model’s EER is only 0.03, consistent with the

system average EER of 0.03.

• We propose mitigation techniques for both the random feature vector and raw input

attacks. For the former, we propose the inclusion of beta-distributed noise in the

training data, which “tightens” the acceptance region around the true positive region.

For the latter, we add feature vectors extracted from a sample of raw inputs in the

training data. Both strategies have minimal impact on the FPR and TPR of the

system. The mitigation strategy renders the acceptance region to virtually 0 for 6

of the 16 authentication configurations, and for 15 out of 16, makes it lower than

FPR. For reproducibility, we have made our codebase public.3

We note that a key di�erence in the use of machine learning in biometric authentication as

compared to its use in other areas (e.g., predicting likelihood of diseases through a health-

care dataset) is that the system should only output its decision: accept or reject [108], and

not the detailed confidence values, i.e., confidence of the accept or reject decision. This

makes our setting di�erent from membership inference attacks where it is assumed that

the model returns a prediction vector, where each element is the confidence (probability)

that the associated class is the likely label of the input sample [33, 34]. In other words,

less information is leaked in biometric authentication. Confidence vectors can potentially

allow an adversary to find an accepting sample by using a hill climbing approach [31], for

instance.

3Our code is available at: https://imathatguy.github.io/Acceptance-Region

82

https://imathatguy.github.io/Acceptance-Region

4.2. BACKGROUND AND THREAT MODEL

4.2 Background and Threat Model

4.2.1 Biometric Authentication Systems

The use of machine learning for authentication is a binary classification problem.4 The

positive class is the target user class, and the negative class is the class of one or more other

users. The target user’s data for training is obtained during the registration or enrollment

phase. For the negative class, the usual process is to use the data of a subset of other

users enrolled in the system [2, 21–29,110]. Following best machine learning practice, the

data (from both classes) is split into a training and test set. The model is learned over the

training set, and the performance of the classifier, its misclassification rate, is evaluated

on the test set.

A raw biometric sample is usually processed to extract relevant features such as fingerprint

minutiae or frequency energy components of speech. This defines the feature space for

classification. As noted earlier, the security of the biometric system is evaluated via the

misclassification rates of the underlying classifier. Two types of error can arise. A type

1 error is when a positive sample (target user sample) has been erroneously classified as

negative, which forms the false reject rate (FRR). Type 2 error occurs when a negative

sample (from other users) has been misclassified as a positive sample, resulting in the false

positive rate (FPR). By tuning the parameters of the classifier, an equal error rate (EER)

can be determined which is the rate at which FRR equals FPR. One can also evaluate

the performance of the classifier through the receiver operator characteristic (ROC) curve,

which shows the full relationship between FRR and FPR as the classifier parameters are

varied.

Once a biometric system is set up, i.e., classifier trained, the system takes as input a

biometric sample and outputs accept or reject. In a continuous authentication setting,

4We note that sometimes a discrimination model [109] may also be considered where
the goal is to identify the test sample as belonging to one of n users registered in the
system. Our focus is on the authentication model. Also, see Section 7.2.

83

CHAPTER 4. RANDOM INPUT

where the user is continually being authenticated in the background, the biometric system

requires a continuous stream of user raw inputs. It has been shown that in continuous

authentication systems the performance improves if the decisions is made on the average

feature vector from a set of feature vectors [107,111,112].

4.2.2 Biometric API: The Setting

We consider the setting where the biometric system can be accessed via an API. More

specifically, the API can be queried by submitting a biometric sample. The response is

a binary accept/reject decision.5 The biometric system could be local, in which case the

system is implemented in a secure enclave (a trusted computing module), or cloud-based

(online), in which the decision part of the system resides in a remote server. We consider

two types of APIs. The first type requires raw biometric samples, e.g., the input image in

the case of face recognition. The second type accepts a feature vector, implying that the

feature extraction phase is carried out before the API query. This might be desirable for

the following reasons.

• Often the raw input is rather large. For instance, in the case of face recognition,

without compression, an image will need every pixel’s RGB information to be sent to

the server for feature extraction and authentication. In the case of an image of pixel size

60 ◊ 60, this would require approximately 10.8 KB of data. If the feature extraction

was o�oaded to the user device, it would produce a 512 length feature embedding,

which can take as little as 512 bytes. This also applies to continuous authentication

which inherently requires a continual stream of user raw inputs. But often decisions

are only made on an average of a set of feature vectors [107,111,112]. In such systems,

only sending the resultant extracted average feature vector to the cloud also reduces

communication cost.

5For continuous authentication systems, we assume that the decision is returned after
a fixed number of one or more biometric samples.

84

4.2. BACKGROUND AND THREAT MODEL

• Recent studies have shown that raw sensory inputs can often be used to track users [113].

Thus, they convey more information than what is simply required for authentication. In

this sense, extracting features at the client side serves as an information minimization

mechanism, only sending the relevant information (extracted feature vectors) to the

server to minimize privacy loss.

• Since the machine learning algorithm only compares samples in the feature space, only

the feature representation of the template is stored in the system. In this case, it makes

sense to do feature extraction prior to querying the system.

From now onwards, when referring to a biometric API we shall assume the feature vector

based API as the default. We shall explicitly state when the discourse changes to raw

inputs. Figure 4.1 illustrates the two APIs.

User Interface API Secure Enclave /
Cloud

The
Model

User/OS Space

Feature
Extractor

API Secure Enclave /
Cloud

The
Model

Features

Raw
InputSensors

User
Input

User Interface

Sensors
User
Input

Raw
Input

Raw Input API

Feature Vector API
Attack Surface

Figure 4.1: The threat model and the two types of biometric API.

4.2.3 Threat Model and Assumptions

We consider an adversary who has access to the API to a biometric system trained with

the data of a target user whom the adversary wishes to impersonate. More specifically, the

85

CHAPTER 4. RANDOM INPUT

adversary wishes to find an accepting sample, i.e., a feature vector for which the system

returns “accept.” In the case of the raw input API, the adversary is assumed to be in search

for a raw input that results in an accepting sample after feature extraction. We assume

that the adversary has the means to bypass the end user interface, e.g., touchscreen or

phone camera, and can thus programmatically submit input samples. There are a number

of ways in which this is possible.

In the online setting, a mis-configured API may provide the adversary access to the au-

thentication pipeline. In the local setting, if the feature extractor is contained within a

secure environment, raw sensory information must be passed to this protected feature ex-

traction process. To achieve this an attacker may construct their own samples through OS

utilities. An example is the Monkey Runner [114] on Android, a tool allowing developers

to run a sequence of predefined inputs for product development and testing. Additionally,

prior work [115] has shown the possibility of compromising the hardware contained within

a mobile device, e.g., a compromised digitizer can inject additional touch events.

Outside of literature, it is di�cult to know the exact implementation of real-world systems.

However, taking face recognition as an example, we believe our system architecture is

similar to real world facial authentication schemes, drawing parallels to pending patent

US15/864,232 [116]. Additionally, there are API services dedicated to hosting di�erent

components of the facial recognition pipeline. Clarifai, for example, hosts machine learning

models dedicated to the extraction of face embeddings within an uploaded image [117]. A

developer could then use any number of Machine Learning as a Service (MLaaS) providers

to perform the final authentication step, without needing to pay premiums associated with

an end-to-end facial recognition product.

We make the following assumptions about the biometric API.

• The input feature length, i.e., the number of features used by the model, is public

knowledge.

• Each feature in the feature space is min-max normalized. Thus, each feature takes

86

4.3. ACCEPTANCE REGION AND PROPOSED ATTACK

value in the real interval [0, 1]. This is merely for convenience of analysis. Absent this,

the attacker can still assume plausible universal bounds for all features in the feature

space.

• The attacker knows the identifier related to the user, e.g., the username, he/she wishes

to impersonate.

Beyond this, we do not assume the attacker to have any knowledge of the underlying

biometric system including the biometric modality, the classifier being used, the target

user’s past samples, or any other dataset which would allow the attacker to infer population

distribution of the feature space of the given modality.

4.3 Acceptance Region and Proposed Attack

4.3.1 Motivation and Attack Overview

Given a feature space, machine learning classifiers learn the region where feature vectors

are classified as positive features and the region where vectors are classified as negative

features. We call the former, the acceptance region and the latter the rejection region.

Even though the acceptance region is learnt through the data from the target user, it

does not necessarily tightly surround the region covered by the target user’s samples.

Leaving aside the fact that this is desirable so as to not make the model “overfitted” to

the training data, this implies that even vectors that do not follow the distribution of the

target user’s samples, may be accepted. In fact, these vectors may bear no resemblance

to any positive or negative samples from the dataset. Consider a toy example, where the

feature space consists of only two vectors. The two-dimensional plane in Figure 4.2 shows

the distribution of the positive and negative samples in the training and testing datasets.

A linear classifier may learn the acceptance and rejection regions split via the decision

boundary shown in the figure. This decision boundary divides the two dimensional feature

space in half. Even though there is a small overlap between the positive and negative

87

CHAPTER 4. RANDOM INPUT

classes, when evaluated against the negative and positive samples from the dataset there

would be an acceptably low false positive rate. However, if we construct a vector by

uniformly sampling the two features from the interval [0, 1], with probability 1/2 it will

be an accepting sample. If this model could be queried through an API, an attacker is

expected to find an accepting sample in two attempts. Arguably, such a system is insecure.

Figure 4.2 illustrates that the acceptance region can be larger than the region covered by

the target user’s samples. However, in the same example, the area covered by the target

user’s samples is also quite high, e.g., the convex hull of the samples. As we discuss next,

in higher dimensions, the area covered by the positive and negative examples is expected

to be concentrated in an exponentially small region [105]. However, the acceptance region

does not necessarily follow the same trend.

Figure 4.2: Example feature space separation by a linear boundary between
two classes. This demonstrates low FPR and FRR of test sample classification,
yet allows approximately 50% of the feature space to be accepted as positive.

4.3.2 Acceptance Region

Notations. Let I := [0, 1] denote the unit interval [0, 1], and let In := [0, 1]n denote

the n-dimensional unit cube with one vertex at the origin. The unit cube represents the

feature space with each (min-max normalized) feature taking values in I. Let f denote

a model, i.e., an output of a machine learning algorithm (classifier) trained on a dataset

D = {(xi, yi)}iœ[m], where each xi is a feature vector and yi œ {+1, ≠1} its label. The

label +1 indicates the positive class (target user) and ≠1 the negative class (one or more

88

4.3. ACCEPTANCE REGION AND PROPOSED ATTACK

other users of the authentication system). We may denote a positive example in x œ D by

x+, and any negative example by x≠. The model f takes feature vectors x œ In as input

and outputs a predicted label ŷ œ {+1, ≠1}.

Definitions. Acceptance region of a model f is defined as

Af := {x œ In : f(x) = +1}, (4.1)

The n-dimensional volume of Af is denoted Voln(Af). The definition of acceptance region

is analogous to the notion of decision regions in decision theory [118, §1.5]. We will often

misuse the word acceptance region to mean both the region or the volume covered by the

region where there is no fear of ambiguity. Let FRR and FPR be evaluated on the training

dataset D.6 Let x Ω$ In denote sampling a feature vector x uniformly at random from In.

In a random input attack, the adversary samples x Ω$ In and gives it as input to f . The

attack is successful if f(x) = +1. The success probability of a random guess is defined as

Pr[f(x) = +1 : x Ω$ In]. (4.2)

Since the n-volume of the unit cube is 1, we immediately see that the above probability

is exactly Voln(Af). Thus, we shall use the volume of the acceptance region as a direct

measure of the success probability of random guess. Finally, we define the rejection region

as In
≠ Af . It follows that the volume of the rejection region is 1 ≠ Voln(Af).

Existence Results. Our first observation is that even if the FPR of a model is zero,

its acceptance region can still be non-zero. Note that this is not evident from the fact

that there are positive examples in the training dataset D: the dataset is finite and there

are an infinite number of vectors in In, and hence the probability of picking these finite

positive examples is zero.

Proposition 4.3.1. There exists a dataset D and a classifier with output f such that

FRR = FPR = 0, and Voln(Af) > 0.

Proof. Assume a dataset D that is linearly separable. This means that there exists a

6In practice, the FRR and FPR are evaluated against a subset of D called a holdout
or testing dataset.

89

CHAPTER 4. RANDOM INPUT

hyperplane denoted H(x) such that for any positive example x+
œ D, we have H(x+) > 0

and for any negative example in D we have H(x≠) < 0. Consider the perceptron as an

example of a classifier which constructs a linear model: fw,b(x) = +1 if Èw, xÍ + b >

0, and ≠1 otherwise. Since the data is linearly separable, the perceptron convergence

theorem states that the perceptron learning algorithm will find a solution, i.e., a separating

hyperplane [119]. Intersecting this hyperplane Èw, xÍ + b = 0 with the unit cube creates

two sectors. The sector where fw,b(x) = +1 is exactly the acceptance region Afw,b
. The

n-volume of Afw,b
cannot be zero, since otherwise it is one of the sides of the unit cube

with dimension less than n, implying that all points Èw, xÍ + b > 0 lie outside the unit

cube. A contradiction, since FRR = 0 (there is at least one positive example).

A non-zero acceptance region is not necessarily a threat. Of practical concern is a non-

negligible volume. Indeed, the volume may be negligible requiring a large number of queries

to f before an accepting sample is produced. The following result shows that there are

cases in which the acceptance region can be non-negligible.

Proposition 4.3.2. There exists a dataset D and a classifier with output f such that

FRR = FPR = 0, and Voln(Af) Ø 1/2.

Proof. Consider again the perceptron as an example of a classifier. Let D be a dataset

such that for all positive examples x+, we have x+
1 > 0.5, and for all negative examples

x≠
1 < 0.5. The rest of the features may take any value in I. The resulting data is linearly

separable by the (n ≠ 1 dimensional) hyperplane x1 ≠ 0.5 = 0. Initialize the perceptron

learning algorithm with w1 = 1, wi = 0 for all 2 Æ i Æ n, and b = ≠0.5. The algorithm

then trivially stops with this hyperplane. Clearly, with this hyperplane, we have FRR = 0,

FPR = 0, and the acceptance region is 1/2.

The above examples illustrate the high probability of success of the random input attack

due to a non-negligible acceptance region. However, the example used is contrived. In

practice, datasets with a “nice” distribution as above are seldom encountered, and the

model is more likely to exhibit non-zero generalization error (a tradeo� between FRR and

90

4.3. ACCEPTANCE REGION AND PROPOSED ATTACK

FPR). Also, in practice, more sophisticated classifiers such as the support vector machine

or deep neural networks are used instead of the perceptron. However, we shall demonstrate

that the issue persists in real datasets and classifiers used in practice. We remark that we

are interested in the case when Voln(Af) > FPR, since arguably it is misleading to use

the FPR as a measure of security of such an authentication system. This could happen

even when the FPR is non-zero. When and why would this case occur? We explain this

in the following.

Real Data and High Dimensions. We first discretize the feature space. For a given

positive integer B, let IB denote the binned (or discrete) version of the interval I partitioned

into B equally sized bins. Clearly, each bin is of width 1/B. Let In

B
denote the discretized

feature space. Given a set of feature values from I, we say that a bin in IB is filled if

there are > ‘n feature values falling in that bin, where ‘n is a cuto� to filter outliers. The

number of filled bins is denoted by –. Clearly – Æ B. See Figure 4.3.

0 1
‘n = 2Fr

eq
ue

nc
y

Bins
Figure 4.3: The binned version IB of the unit interval I. Each bin is of width
1/B (B not specified). The number of filled bins is – = 3, with a cut-o� of
‘n = 2.

For the ith feature, let –+
i

denote the number of bins filled by all positive examples in D.

We define:

R+ := 1
Bn

nŸ

i=1
–+

i

as the volume of the true positive region. We define –≠
i

and R≠ analogously as the volume

of the true negative region. Let c œ [0, 1] be a constant. If each of the –+
i

’s is at most cB,

then we see that R+ = c≠n. For instance, if c Æ 1/2, then R+
Æ 2≠n. In other words, the

volume of the region spanned by the user’s own samples is exponentially small as compared

to the volume of the unit cube. In practice, the user’s data is expected to be normally

91

CHAPTER 4. RANDOM INPUT

distributed across each feature, implying that the –+
i

’s are much smaller than B/2, which

makes the above volume a loose upper bound. The same is true of the –≠
i

’s. Figure 4.4

shows the filled bins from one of the features in the Face Dataset (see Section 4.4.1).

For the same dataset, the average true positive region is 5.781 ◊ 10≠98 (with a standard

deviation of ±2.074 ◊ 10≠96) and the average true negative region is 1.302 ◊ 10≠55 (with a

standard deviation of ±2.172 ◊ 10≠54) computed over 10,000 iterations considering a 80%

sample of the target user’s data, and a balanced sample of other users.7

We thus expect a random vector from In to be outside the region spanned by the target

user with overwhelming probability. Thus, if a classifier defines an acceptance region

tightly surrounding the target user’s data, the volume of the acceptance region will be

negligible, and hence the random input attack will not be a threat. However, as we shall

show in the next sections, this is not the case in practice.

Factors A�ecting Acceptance Region. We list a few factors which a�ect the volume

of the acceptance region.

• One reason for a high acceptance region is that the classifier is not penalized for clas-

sifying empty space in the feature space as either positive or negative. For instance,

consider Figure 4.4. There is significant empty space for the feature depicted in the

figure: none of the positive or negative samples have the projected feature value in

this space. A classifier is generally trained with an objective to minimize the mis-

classification rate or a loss function (where, for instance, there is an asymmetrical

penalty between true positives and false positives) [118]. These functions take input

from the dataset D. Thus, empty regions in the feature space which do not have

examples in D can be classified as either of the two classes without being penalized

during training, resulting in a non-negligible acceptance region.

7We compute the true positive and negative region by only considering the minimum
and maximum feature values covered by each user for each feature with binning equal to
the floating point precision of the system. Thus, this is a conservative estimate of the true
positive region.

92

4.4. EVALUATION ON BIOMETRIC SYSTEMS

• The acceptance region is also expected to be big if there is high variance in the

feature values taken by the positive examples. In this case, the –+
i

’s will be much

closer to B, resulting in a non-negligible volume R+.

• On the other hand, the acceptance region is likely to be small if the variances of the

feature values in the negative examples are high. The classifier, in order to minimize

the FPR, will then increase the region where samples are rejected, which would in

turn make the acceptance region closer in volume to the true positive region.

Figure 4.4: The histogram of feature values of one of the features in the Face
Dataset (cf. § 4.4.1). Here we have B = 100. The number of filled bins for the
target user is –+

i
= 35 (with 400 samples), and for the negative class (10 users;

same number of total samples) it is –≠
i

= 50. A total of 24 bins are not filled
by any of the two classes, implying that (approximately) 0.24 of the region for
this feature is empty.

We empirically verify these observations in Section 4.5. The last observation also hints at a

possible method to tighten the acceptance region around the region spanned by the target

user: generate random noise around the target user’s vectors and treat it as belonging

to the negative class. We demonstrate the e�ectiveness of this method in Section 4.6.

Jumping ahead, if the noise is generated from an appropriate distribution, this will have

minimal impact on the FRR and FPR of the model.

4.4 Evaluation on Biometric Systems

To evaluate the issue of acceptance region on real-world biometric systems, we chose four

di�erent modalities: gait, touch, face, and voice. The last two modalities are used as

93

CHAPTER 4. RANDOM INPUT

examples of user authentication at the point of entry into a secured system, whilst gait

and touch are often used in continuous authentication systems [120]. We first describe

the four biometric datasets, followed by our evaluation methodology, the machine learning

algorithms used, and finally our results and observations.

4.4.1 The Biometric Datasets

4.4.1.1 Activity Type (Gait) Dataset

The activity type dataset [121], which we will refer to as the “gait” dataset, was collected

for human activity recognition. Specifically, its aim is to provide a dataset for determining

if a user is sitting, laying down, walking, running, walking upstairs or downstairs, etc.

However, as the dataset retains the unique identifiers for users per biometric record, we

re-purpose the dataset for authentication. This dataset contains 30 users, with an average

of 343 ± 35 (mean ± SD) biometric samples per user, there is an equal number of activity

type samples for each user. For the purpose of authentication, we do not isolate a specific

type of activity. Instead, we include them as values of an additional feature. The activity

type feature increases the total number of features to 562. We will refer to these features as

engineered features as they are manually defined (e.g., by an expert) as opposed to latent

features extracted from a pre-trained neural network for the face and voice datasets.

4.4.1.2 Touch Dataset

The UMDAA-02 Touch Dataset [20] is a challenge dataset to provide data for researchers

to perform baseline evaluations of new touch-based authentication systems. Data was

collected from 35 users, with an average of 3667 ± 3012 swipes per user. This dataset

was collected by lending mobile devices to the participants over a prolonged period of

time. The uncontrolled nature of the collection produces a dataset that accurately reflects

swipe interactions with constant and regular use of the device. This dataset contains

every touch interaction performed by the user including taps. In a pre-processing step,

94

4.4. EVALUATION ON BIOMETRIC SYSTEMS

we only consider sequences with more than 5 data points as swipes. Additionally, we set

four binary features to indicate the direction of the swipe, determined from the dominant

vertical and horizontal displacement. We retained all other features in [20] bar inter-stroke

time, as we wished to treat each swipe independently, without chronological order. We

substitute this feature with half-time of the stroke. This produces a total of 27 engineered

touch features.

4.4.1.3 Face Dataset

FaceNet [17] proposes a system based on neural networks that can e�ectively learn embed-

dings (feature vectors) that represent uniquely identifiable facial information from images.

Unlike engineered features, these embeddings may not be directly explainable as they are

automatically extracted by the underlying neural network. This neural network can be

trained from any dataset containing the labeled faces of individuals. There are many

sources from which we can obtain face datasets, CASIA-WebFace [16], VGGFace2 [122]

and Labeled Faces in the Wild (LFW) [123] are examples of such datasets. However,

with a pre-trained model, we can conserve the time and resources required to re-train the

network. The source code for FaceNet [124] contains two pre-trained models available for

public use (at the time of writing): one trained on CASIA-WebFace, and another trained

on VGGFace2. We opt to use a model pre-trained on VGGFace28 , while retaining CASIA-

WebFace as our dataset for classifier training. We choose to use di�erent datasets for the

training of the embeddings and the classifiers to simulate the exposure of the model to

never before seen data. Our face dataset is a subset of CASIA-WebFace containing only

the top 100 identities with the largest number of face images (producing 447 ± 103 images

per individual). This model produces 512 latent features from input images of pixel size

160x160 which have been centered and aligned. Recall that face alignment involves finding

a bounding box on the face of an image, before cropping and resizing to the requested

dimensions.

8(20180402-114759) is the identifier of pre-trained model used.

95

CHAPTER 4. RANDOM INPUT

4.4.1.4 Speaker Verification (Utterances)

VoxCeleb [18], and VoxCeleb2 [19] are corpuses of spoken recordings by celebrities in

online media. These recordings are text-independent, i.e., the phrase uttered by the user

is not predetermined. Text-independent speaker verification schemes depart from text-

dependent verification schemes in which the individual is bound to repeat a pre-determined

speech content. Thus, the task of text-independent verification (or identification) is to

distinguish how the user speaks as an individual, instead of how the user utters a specific

phrase. The former objective is an arguably harder task. Despite the increased di�culty,

researchers have trained neural networks to convert speaker utterances into a set of latent

features representing how individuals speak. These works have also released their models

to the public, increasing the accessibility of speaker verification to developers. We opt to

use the pre-trained model of VoxCeleb [18], with utterances from VoxCeleb2 [19]. From

VoxCeleb2, we only use the test portion of the dataset, which contains 118 Users with an

average of 406 ± 87 utterances. VoxCeleb was trained as a Siamese neural network [125]

for one-shot comparison between two audio samples. A Siamese network consists of two

identical branches that produce two equal size outputs from two independent inputs for

distance comparison. To fit the pre-trained model into our evaluation of ML-based models,

we extract embeddings from one of the twin networks and disregard the second branch.

The 1024-length embedding is then used as the feature vector within our evaluation.

4.4.2 Evaluation Methodology

In our creation of biometric models for each user, we seek to obtain the baseline perfor-

mance of the model with respect to the ability of negative user samples gaining access (i.e.

FPR), and the measured Acceptance Region (AR). We use the following methodology to

evaluate these metrics for each dataset and each classification algorithm.

1. We min-max normalize each extracted feature over the entire dataset between 0-1.

2. We partition the dataset into a (70, 30%) split for training and testing sets, respec-

96

4.4. EVALUATION ON BIOMETRIC SYSTEMS

tively.

3. For both training and testing samples, we further sample an equal number of negative

samples from every other user such that the total number of negative samples are

approximately equal to the number of samples from the target user, representing the

positive class, i.e., the positive and negative classes are balanced.

4. Using the balanced training set from step 3, we train a two-class classifier defining

the target user set as the positive class, and all remaining users as negative.

5. We test the trained model using the balanced testing set from step 3. This establishes

the FRR and FPR of the system.

6. We uniformly sample one million vectors from In, where n is the dimension of the

extracted features. Testing the set of vectors against the model measures the accep-

tance region (AR).

7. We record the confidence values of the test prediction for the user’s positive test

samples, other users’ negative test samples, and the uniformly sampled vectors.

These confidence values produce ROC curves for FRR, FPR, and AR.

8. Repeat steps 3-7 by iterating through every user in the dataset as the target user.

Remark 4.4.1. In general, the decision regions (accept and reject in the case of authen-

tication) learned by the classifiers can be quite complex [126]. Hence, it is di�cult to

determine them analytically, despite the availability of learned model parameters. We in-

stead use a Monte Carlo method by sampling random feature vectors from In where each

feature value is sampled uniformly at random from I. With enough samples (one million

used in our experiments, and averaged over 50 repetitions), the fraction of random sam-

ples accepted by the classifier serves as an estimate of the acceptance region as defined by

Eq. 4.2 due to the law of large numbers.

Remark 4.4.2. Our evaluation of the biometric systems is using the mock attacker model

(samples from the negative class modeled as belonging to an attacker) as it is commonly

used [127]. We acknowledge that there are other attack models such as excluding the data of

97

CHAPTER 4. RANDOM INPUT

the attacker from the training set [127]. Having the attacker data included in the training

dataset, as in the mock attacker model, yields better EER. On the other hand, it is also

likely to lower the AR of the system, due to increased variance in the negative training

dataset. Thus, the use of this model does not inflate our results.

Remark 4.4.3. We have used balanced datasets in our experiments, i.e., the number of

positive and negative samples being the same. It is true that a balanced dataset is not ideal

for minimizing AR; more negative samples may reduce the acceptance region. However,

an unbalanced dataset, e.g., more negative samples than positive samples, may be biased

towards the negative class, resulting in misleadingly high accuracy [127, 128]. A balanced

dataset yields the best EER without being biased towards the positive or negative class.

4.4.3 Machine Learning Classifiers

Our initial hypothesis (Section 4.3) stipulates that AR is related to the training data

distribution, and not necessarily to any weakness of the classifiers learning from the data.

To demonstrate this distinction, we elected four di�erent machine learning algorithms:

Support Vector Machines (SVM) with a linear kernel (LinSVM), SVM with a radial basis

function kernel (RBFSVM), Random Forests (RNDF), and Deep Neural Networks (DNN).

Briefly, SVM uses the training data to construct a decision boundary that maximizes the

distance between the closest points of di�erent classes (known as support vectors). The

shape of this boundary is dictated by the kernel used; we test both a linear and a radial

kernel. Random Forests is an aggregation of multiple decision tree learners formally known

as an ensemble method. Multiple learners in the aggregation are created through bagging,

whereby the training dataset is split into multiple subsets, each subset training a distinct

decision tree. The decisions from the multiple models are then aggregated to produce the

random forest’s final decision. DNNs are a class of machine learning models that contain

hidden layers between an input and an output layer; each layer containing neurons that

activate as a function of previous layers. Specifically, we implement a convolutional neural

network with hidden layers leading to a final layer of our two classes, accept and reject.

All four of these machine learning models are trained as supervised learners. As such, we

98

4.4. EVALUATION ON BIOMETRIC SYSTEMS

provide the ground truth labels to the model during training.

The linear SVM was trained with C = 104, and default values included within Scikit-learn’s

Python library for the remaining parameters [98]. For radial SVM we also used C = 104

while keeping the remaining parameters as default. The Random Forests classifier was

configured with 100 estimators. DNNs were trained with TensorFlow Estimators [129] with

a varying number of internal layers depending on the dataset. The exact configurations

are noted in Appendix B.2.

Remark 4.4.4. We reiterate that our trained models are reconstructions of past works.

However, we endeavor that our models recreate error rates similar to the originally reported

values on the same dataset. On Mahbub et al.’s touch dataset [20], the authors achieved

0.22 EER with a RNDF classifier, by averaging 16 swipes for a single authentication

session. We are able to achieve a comparable EER of 0.21 on RNDF without averaging.

For face authentication, we evaluate a subset of CASIA-Webface, consequently, there is

no direct comparison. The original Facenet accuracy in verifying pairs of LFW [123]

faces is 98.87% [17], but our adoption of model-based authentication is closer to [130],

unfortunately, the authors have fixed a threshold for 0 FPR without reporting their TPR.

Nagrani, Chung, and Zisserman’s voice authenticator [18] reports an EER of 0.078 on a

neural network. Our classifiers achieve EERs of 0.03, 0.02, 0.04, and 0.12, which are

within range of this benchmark. Our gait authenticator is the exception, it has not been

evaluated for authentication with its mixture of activity types. However, a review of gait

authentication schemes can be found at [131].

4.4.4 Acceptance Region: Feature Vector API

In this section, we evaluate the acceptance region (AR) by comparing it against FPR for

all 16 authentication configurations (four datasets and four classifiers). In particular, we

display ROC curves showing the trade-o� between FPR and FRR against the acceptance

region (AR) curve as the model thresholds are varied. These results are averaged over

all users. While this gives an average picture of the disparity between AR and FPR, it

99

CHAPTER 4. RANDOM INPUT

(a) Gait (b) Touch

(c) Face (d) Voice

Figure 4.5: Individual user scatter of AR and FPR. In a majority of configura-
tions, there is no clear relationship between AR and FPR, with the exception
of the RBFSVM and DNN classifiers for face and voice authentication.

does not highlight that for some users AR may be substantially higher than FPR, and

vice versa. In such a case, the average AR might be misleading. Thus, we also show

scattered plots showing per-user AR and FPR, where the FPR is evaluated at EER. The

per-user results have been averaged over 50 repetitions to remove any bias resulting from

the sampled/generated vectors. The individual user AR versus FPR scatter plots are

shown in Figure 4.5, and the (average) AR curves against the ROC curves are shown in

Figure 4.6.

Remark 4.4.5. EER is computed in a best e�ort manner, with only 100 discretized thresh-

old values, to mitigate the storage demands of the 1M uniformly random vectors measuring

AR. Unfortunately, there are some instances whereby the FRR and FPR do not match ex-

actly, as the threshold step induces a large change in both FRR and FPR. Only 1/16

classifiers exhibit an FPR-FRR discrepancy greater than 1%.

100

4.4. EVALUATION ON BIOMETRIC SYSTEMS

(a) Gait Average ROC

(b) Touch Average ROC

(c) Face Average ROC

(d) Voice Average ROC

Figure 4.6: ROC curve versus the AR and RAR curves for all configurations.
The EER is shown as a dotted vertical blue line. The FRR, FPR, AR and
RAR values shown in the legend are evaluated at EER (FPR = FRR). The
RAR is only evaluated on the Touch and Face datasets.

101

CHAPTER 4. RANDOM INPUT

4.4.4.1 Gait Authentication

Figure 4.5a shows AR against FPR of every user in the activity type (gait) dataset. Recall

that in this figure FPR is evaluated at EER. The dotted straight line is the line where AR

equals FPR (or ERR). We note that there is a significant proportion of users for which AR

is greater than FPR, even when the latter is reasonably low. For instance, in some cases,

AR is close to 1.0 when the FPR is around 0.2. Thus, a random input attack on systems

trained for these target users will be successful at a rate significantly higher than what

is suggested by FPR. We also note that the two SVM classifiers have higher instances of

users for whom AR surpasses FPR. Figure 4.6a shows the AR curve averaged across all

users against the FPR and FRR curves for all four classifiers. We can see that AR is

higher than the ERR (represented by the dotted vertical line) for the two SVM classifiers.

For the remaining two classifiers, AR is lower than EER. However, by looking at the AR

curve for RNDF, we see that the AR curve is well above the FPR curve when FRR Æ 0.3.

This can be especially problematic if the threshold is set so as to minimize false rejection

at the expense of false positives. We also note that the AR curve for DNN closely follows

the FPR curve, which may suggest that the AR is not as problematic for this classifier.

However, by looking at Figure 4.5a, we see that this is misleading since for some users the

AR is significantly higher than FPR, making them vulnerable to random input attacks.

Also, note that the AR generally decreases as the threshold is changed at the expense of

FRR. However, except for RNDF, the AR for the other three classifiers is significantly

higher than zero even for FRR values close to 1.

4.4.4.2 Touch (Swipe) Authentication

The touch authenticator has the highest EER of all four biometric modalities. Very few

users attained an EER lower than 0.2 as seen in Figure 4.5b. This is mainly because

we consider the setting where the classification decision is being made after each input

sample. Previous work has shown EER to improve if the decision is made on an average

vector of a few samples some work [2, 107, 111]. Nevertheless, since our focus is on AR,

102

4.4. EVALUATION ON BIOMETRIC SYSTEMS

we stick to the per-sample decision setting. Figure 4.5b shows that more than half of the

users have ARs larger than FPR, and in some cases where the FPR is fairly low (say 0.2),

the AR is higher than 0.5. Unlike gait authentication where the RNDF classifier had ARs

less than FPR for the majority of the users, all four algorithms for touch authentication

display high vulnerability to the AR based random input attack. When viewing average

results in Figure 4.6b, we observe the average AR curve to be very ‘flat’ for both SVM

classifiers and DNN. This indicates that AR for these classifiers remains mostly unchanged

even if the threshold is moved closer to the extremes. RNDF once again is the exception,

with the AR curve approaching 0 as the threshold is increased.

4.4.4.3 Face Authentication

Figure 4.5c shows that AR is either lower or comparable to FPR for RBFSVM and DNN.

Thus, the FPR serves as a good measure of AR in these systems. However, AR for most

users is significantly higher than FPR for LinSVM and RNDF. This is true even though

the EER of these systems is comparable to the other two as seen in Figure 4.6c. For

LINSVM, we have an average AR of 0.15 compared to an EER of 0.05. For RNDF, the

situation is worse with the AR reaching 0.78 against an EER of 0.03. We also note that

while the AR is equal to FPR for DNN, its value of 0.10 is still worrisome to be resistant

to the random input attack. The relatively high FPR for DNN as compared to RBFSVM

is likely due to a limited set of training data available in training the neural network.

4.4.4.4 Voice Authentication

Figure 4.5d shows that once again LinSVM and RNDF have a significant proportion of

users with AR higher than FPR, whereas for both RBFSVM and DNN the AR of users is

comparable to FPR. Looking at the average ARs in Figure 4.6d, we see that interestingly

RNDF exhibits an average AR of 0.01 well below the ERR of 0.04. The average suppresses

the fact that there is one user in the system with an AR close to 1.0 even with an EER of

approximately 0.1, and two other users with an AR of 0.5 and 0.3 for which the EER is

103

CHAPTER 4. RANDOM INPUT

significantly below 0.1. Thus these specific users are more susceptible to the random input

attack. Only LinSVM has an average AR (0.08) higher than EER (0.03). The average AR

of DNN is lower than EER (0.11), but it is still significantly high (0.08). For RBFSVM

we have an average AR close to 0.

Observations

In almost every configuration, we can observe that the average AR is either higher than

the FPR or at best comparable to it. Furthermore, for some users, the AR is higher than

FPR even though the average over all users may not reflect this trend. This demonstrates

that an attacker with no prior knowledge of the system can launch an attack against it via

the feature vector API. Moreover, for both the linear and radial SVM kernels, and some

instances of the DNN classifier, we observe a relatively flat AR curve as the threshold

is varied, unlike the gradual convergence to 1 experienced by the FPR and FRR curves.

These classifiers thus have a substantial acceptance region that accept samples as positives

irrespective of the threshold. Random Forests is the only classifier where the AR curve

shows significant drop as the threshold is varied. Random forests sub-divide the training

dataset in a process called bagging, where each sub-division is used to train one tree within

the forest. With di�erent subsets of data, di�erent training data points will be closer to

di�erent empty regions in feature space, thus producing varied predictions. Because the

prediction confidence of RNDF is computed from the proportion of trees agreeing with a

prediction, the lack of consensus within the ensemble of trees for the empty space may be

the reason for the non-flat AR curve.

4.4.5 Acceptance Rate: Raw Input API

The results from the feature vector API are not necessarily reflective of the success rate

of a random input attack via the raw input API. One reason for this is that the feature

vectors extracted from raw inputs may or may not span the entire feature space, and as a

consequence the entire acceptance region. For this reason, we use the term raw acceptance

104

4.4. EVALUATION ON BIOMETRIC SYSTEMS

rate (RAR) to evaluate the probability of successfully finding an accepting sample via raw

random inputs. To evaluate RAR, we select the touch and face biometric datasets. The

raw input of the touch authenticator is a time-series, whereas for the face authentication

system it is an image.

4.4.5.1 Raw Touch Inputs

We used a continuous auto-regressive process (CAR) [132] to generate random time-series.

We opted for CAR due to the extremely high likelihood of time-series values having a

dependence on previous values. This time-series was then min-max scaled to approximate

sensor bounds. For example the x-position has a maximum and minimum value of 1980

and 0 respectively, as dictated by the number of pixels on a smartphone screen. Both the

duration and length of the time-series were randomly sampled from reasonable bounds: 0.5

to 2.0 seconds and 30 to 200 data-points, respectively. The time-series was subsequently

parsed by the same feature extraction process as a legitimate time-series, and the outputs

scaled on a feature min-max scale previously fit on real user data. In total, we generate

100,000 time-series, which are used to measure RAR over 50 repetitions of the experiment.

The results of our experiments are shown in Figure 4.6b, with the curve labeled RAR

showing the raw acceptance rate as the threshold of each of the classifiers is changed. As

we can see, the RAR is large and comparable to AR. This seems to indicate that the region

spanned by random inputs covers the acceptance region. However, on closer examination,

this happens to be false. The average volume covered by the true positive region for the

touch dataset (cf. Section 4.3) is less than 1.289 ◊ 10≠4
± 5.462 ◊ 10≠4, yet the volume

occupied by the feature vectors extracted from raw inputs is less than 2.609◊10≠6. This is

significantly smaller than the AR for all four classifiers. We will return to this observation

shortly.

105

CHAPTER 4. RANDOM INPUT

4.4.5.2 Raw Face Inputs

We generated 100,000 images of size 160x160 pixels, with uniformly sampled RGB values.

Feature embeddings were then extracted from the generated images with the pre-trained

Facenet model (cf. Section 4.4.1.3). This set of 100,000 raw input vectors, was parsed by

a min-max scaler fitted to real user data. We did not align the noisy images, as there is no

facial information within the image to align. Note that alignment is normally used in face

authentication to detect facial boundaries within an image. Again, we aggregate results

over 50 repetitions to remove any potential biases.

The results from these raw inputs are shown in Figure 4.6c. We note that the RAR curve

behaves much more similar to the FPR curve than what was previously observed for raw

touch inputs. Also, in the particular example of RBFSVM, we obtain a RAR of 0.09 which

is significantly higher than the AR (0.01) at an equal error rate. We again computed the

true positive region and found that the average is 6.562 ◊ 10≠94
± 6.521 ◊ 10≠93. However,

the volume covered by the raw inputs (after feature extraction) is only 4.670 ◊ 10≠390,

which is negligible compared to the ARs (0.15, 0.01, 0.78, and 0.10 for all four classifiers).

Additional analysis shows that only one other user’s feature space overlapped with the

space of raw inputs, with an overlapped area of 8.317 ◊ 10≠407, many orders of magnitude

smaller than both the positive users and the raw feature space itself.

Observations

The threat of a random input attack via raw random inputs is also high, and in some

cases greater than the FPR. However, the region spanned by the feature vectors from

these raw inputs is exponentially small and hence does not span the acceptance region.

Furthermore, the region also does not coincide with any true positive region. This implies

that raw inputs may result in a high raw acceptance rate due to the fact that the training

data does not have representative vectors in the region spanned by raw inputs. We shall

return to this observation when we discuss mitigation strategies in Section 4.6.

106

4.5. SYNTHETIC DATASET

4.5 Synthetic Dataset

The analysis in the previous section was limited in the sense that we could not isolate

the reasons behind the discrepancy between AR and FPR. Indeed, we saw that for some

configurations (dataset-classifier pairs), the AR curve nicely followed the FPR curve, e.g.,

the face dataset and DNN (Figure 4.5c), whereas for others this was not the case. In order

to better understand the factors a�ecting AR, in this section, we attempt to empirically

verify the hypothesized factors a�ecting the acceptance region outlined in Section 4.3.

Namely, high feature variance in a target user’s samples is likely to increase AR, and low

feature variance in the user samples in the negative class is expected to result in high

AR. In both these cases, we expect to achieve a reasonably low EER, but AR may still

be significantly greater than FPR. Moreover, if these factors are indeed true, we expect

to see similar behavior across all classifiers. To test this we create a synthetic model of a

biometric dataset.

4.5.1 Simulating a Biometric Dataset

Let N (µ, ‡2), denote the normal distribution with mean µ and standard deviation ‡. We

assume each feature to be normally distributed across all users with slight variations in

mean and standard deviation across all features and users. More specifically, our method-

ology for generating the synthetic dataset is as follows.

1. We model the mean of all n features taking values in the unit interval I as a nor-

mally distributed random variable N (µmn, ‡2
mn) = N (0.5, 0.12). Similarly we model

the standard deviation of all n features as another normally distributed random vari-

able N (µvar, ‡2
var) = N (0.1, 0.072).

2. For each feature i œ [n], we first sample µi Ω N (µmn, ‡2
mn) and ‡i Ω N (µvar, ‡2

var).

The resulting normal distribution N (µi, ‡2
i
) serves as the population distribution of the

mean of the feature i.

107

CHAPTER 4. RANDOM INPUT

3. For each user u, we sample the mean µu,i Ω N (µi, ‡2
i
). The variance ‡2

u,i
is chosen as

the control variable. User u’s samples for the ith feature are generated as i.i.d. random

variables N (µu,i, ‡2
u,i

), which serves as user u’s distribution for the ith feature.

We evaluate the same four types of ML architectures, LinSVM, RBFSVM, RNDF, and

DNN. Due to the large number of potential configurations, we evaluate the model perfor-

mance at a fixed threshold of 0.5. For the experiments, we choose 50 (synthetic) users,

with 50 features in the feature space. Each experimental run is repeated 50 times to reduce

any potential biases arising from the random process.

4.5.2 E�ects of Feature Variance on Acceptance Region

A machine learning model aims to include as many positive samples within the positive

region and as many negative samples in the negative region as possible. Given our use

of a balanced dataset, neither is favored. As such it is speculated that if elements of the

dataset are more varied, the machine learner will learn a boundary encompassing a larger

region, which will result in a larger AR.

4.5.2.1 Variable Isolated User Variance and Fixed Population Variance

We first treat one out of the 50 users as an outlier, which we call the isolated user. The

variance ‡2
u,i

is fixed at (0.2)2 for all other users u and for all features i œ [n]. We

vary the variance ‡utgt,i of the isolated user utgt from 0.05 to 0.35 in increments of 0.05.

Figure 4.7 plots the user’s standard deviation (‡utgt,i) relative to the fixed population

standard deviation (‡u,i) of 0.2. It is clear the overall AR, FRR, and FPR of the users

are not a�ected by changing feature variance of a single user, despite the isolated user’s

samples included as part of training and testing data of other users. Conversely, when

viewing the AR, FRR, and FPR of the isolated user, we observe a slight increase in FRR

and FPR as the relative variance increases. This is due to the positive samples being spread

out due to increased variance in the isolated user’s samples. However, this is accompanied

108

4.5. SYNTHETIC DATASET

by a substantially large increase in the acceptance region of this user, approaching 1, i.e.,

the entire feature space. Furthermore, this trend is visible for all four classifiers.

Figure 4.7: A comparison between FPR, AR, four di�erent ML architectures.
Trained on synthetic data of 50 features of 50 user, of increasing variance
within features for a singular user, repeated 50 times. Note how the sys-
tem level AR and FPR remains unchanging, despite the isolated user’s AR
increasing substantially.

4.5.2.2 Fixed Isolated User Variance and Variable Population Variance

In this experiment, we fix the variance ‡2
utgt,i

of the isolated user (utgt) at (0.2)2. The

‡2
u,i

of the remaining population is sampled from a normal distribution ‡u,i Ω N (µi, ‡2
i
).

Where µi and ‡i is sampled from the following distributions N (µmn, ‡2
mn) = N (µmn, 0.052)

and N (µvar, ‡2
var) = N (0.03, 0.022), respectively. µmn is varied between 0.05 and 0.35 in

increments on 0.05 This sampling permits a small amount of variation between features.

The results are shown in Figure 4.8. Inspecting the average AR, FRR, and FPR of the

system, it is evident there is a continual increase of all 3 metrics as the relative variance

increases. This increase is expected as the majority of users’ feature values have high

variance, presenting an increasingly di�cult problem for the machine learner to reduce

misclassification errors. However, in all four classifiers, the average AR curve is either

comparable or lower than the FPR curve as the relative variance increases. For the isolated

user, we see that when the relative variance of all other users is lower than this user (to

the left), the AR is significantly higher even though the FPR and FRR are minimal in all

four classifiers. This shows that less variance in the population samples will result in a

high AR, as the classifier need not tighten AR around the true positive region, due to lack

of high variance negative samples. On the other hand, AR of the isolated user decreases

109

CHAPTER 4. RANDOM INPUT

as the relative variance of the population increases.

Figure 4.8: A comparison between FPR, AR, four di�erent ML architectures.
Trained on synthetic data of 50 features of 50 user, of increasing variance
within features of all other users except a singular user, repeated 50 times. The
x-axis denotes the relative SD of the population compared with the isolated
user.

4.5.3 On Distance Based Classifiers

As noted earlier, it has been stated that random inputs are ine�ective against distance-

based classification algorithms [30]. This is in contrast to the machine learning based

algorithms evaluated in this chapter. We take a brief interlude to experimentally eval-

uate this claim on the cosine similarity distance-based classifier. We sample 50 fea-

tures with means distributed as N (µmn, ‡2
mn) = N (0.2, 0.052) and variance distributed

as N (µvar, ‡2
var) = N (0.03, 0.022). Cosine similarity is computed between two vectors of

the same length. As our positive training data contains more than one training sample,

we use the average of these samples as the representative template of the user [112]. We

use a fixed number of 50 users, with the experiment repeated 50 times. Recall that our

evaluation at each threshold is best-e�ort; we use 1,000 threshold bins for the evaluation

of the cosine similarity classifier, since the FRR and FPR rapidly change over a small

range of thresholds.

Figure 4.9 displays three classical machine learning algorithms of linear SVM, radial SVM,

and random forests, alongside a distance-based cosine similarity classifier. It is clear from

the figure, that the AR is near zero for cosine similarity, unlike the other classifiers using the

same synthetic dataset. This, however, comes at the cost of higher EER. This suggests that

distance-based classifiers are e�ective in minimizing the AR of model, but at the expense

110

4.5. SYNTHETIC DATASET

of accuracy in the system. We leave further investigation of distance-based classifiers as

future work.

Figure 4.9: ROC Curves versus the AR curve for di�erent ML architectures,
including a cosine similarity distance-based classifier. Trained on synthetic
data of 50 features of 50 user, with fixed mean and variance for features of all
users, repeated 50 times.

4.5.4 E�ects of Increasing Synthetic Users

The real-world datasets used in Section 4.4 have a variable number of users. Our binary

classification task aggregates negative user samples into a negative class, resulting in dis-

tributions and variances of the negative class which depend on the number of users in the

datasets. Thus, in this test, we investigate the impact on TPR, FPR, and AR by varying

the number of users in the dataset. We use the synthetic dataset configured in the same

manner as in Section 4.5.3. We increase the number of users within the synthetic dataset,

from 25 to 150, in increments of 25. Note that the split between positive and negative

samples is still balanced (see Remark 4.4.3).

In Figure 4.10, we observe that with the addition of more users, there is a slight increase

in the FPR. This is expected as the likelihood of user features being similar between any

two users will increase with more users in the population. As the training of the classifier

uses samples from other users as a negative class, the increased number of negative users

slightly lowers the AR of the classifier, with an increased variation of the negative training

set (from additional users) covering more of the feature space. However, both these changes

are relatively minor despite the multi-fold increase in the number of users. Thus, the AR

of the classifiers remains relatively stable with an increasing number of users.

111

CHAPTER 4. RANDOM INPUT

Figure 4.10: A comparison between FPR and AR of four di�erent ML archi-
tectures. Trained on synthetic data of 50 features per user, with a variable
number of users, repeated 50 times.

4.6 Mitigation

In the previous section, we validated that higher variance in the samples in the negative

class as compared to the variance of samples from the target user class reduces AR. The

data from the negative class is obtained from real user samples, and therefore scheme

designers cannot control the variance. However, this gives us a simple idea to minimize

AR: generate noise vectors around the target user’s vectors and treat them as part of the

negative class for training the model. This will result in the tightening of the acceptance

region around the true positive region. We remark that the noise generated is independent

of the negative training samples.

4.6.1 The Beta Distribution

More specifically, we generate additional negative training samples by sampling noisy

vectors where each feature value is sampled from a beta distribution. We generate samples

equal to the number of samples in the positive class. Thus creating a dataset with a third of

the samples as positive, another third as negative samples from other users, and finally the

remaining third of feature vectors treated as negative samples from the beta distribution

dependent on the positive user. The procedure is as follows. For the ith feature, let

µi denote the mean value for the given target user. We use the beta distribution with

parameters –i = |0.5 ≠ µi| + 0.5 and —i = 0.5. We denote the resulting beta distribution

112

4.6. MITIGATION

by Be(–i, —i). Then a noisy sample x is constructed by sampling its ith element xi from

the distribution Be(–i, —i) if µi Æ 0.5, and from 1 ≠ Be(–i, —i) otherwise. The two cases

ensure that we add symmetric noise as the mean moves over to either side of 0.5.

Table 4.1: Equal Error Rate and AR with and without the mitigation strategy.
Green (resp., red) shades highlight improvement (resp., deterioration) in FPR
and AR. Color intensity is proportional to degree of performance change.

Linear SVM Radial Svm Random Forest Deep Neural Network
Biometric Normal Mitigation Normal Mitigation Normal Mitigation Normal Mitigation
Modality FPR AR FPR AR FPR AR FPR AR FPR AR FPR AR FPR AR FPR AR
Gait 0.160 0.24 0.160 0.04 0.140 0.18 0.140 0.04 0.09 0.03 0.09 0.00 0.215 0.20 0.170 0.00
Touch 0.325 0.49 0.340 0.01 0.265 0.41 0.265 0.03 0.21 0.23 0.21 0.00 0.325 0.30 0.375 0.00
Face 0.050 0.15 0.065 0.11 0.040 0.01 0.040 0.01 0.03 0.78 0.03 0.00 0.095 0.10 0.065 0.04
Voice 0.030 0.08 0.030 0.06 0.020 0.00 0.020 0.00 0.04 0.01 0.04 0.00 0.115 0.08 0.090 0.02

Results on AR. In Table 4.1, we show the resulting FPR and AR after the addition of

beta noise at the equal error rate. The detailed ROC curves are shown in Figure B.2 in

Appendix B.1. In every configuration (classifier-dataset pairs), we see a significant decrease

in AR. The AR is now lower than FPR in every configuration. In 14 out of 16 cases, the

AR is Æ 0.04. The two exceptions are LinSVM (with face and voice datasets). We

further see that in 13 out of 16 instances the FPR either remains unchanged or improves!

The 3 instances where the FPR degrades are LinSVM with face and face datasets both by

+0.015, and DNN with Touch where the di�erence is +0.05. Thus, adding beta distributed

noise does indeed decrease the AR with minimal impact on FPR. This agrees with our

postulate that high AR was likely due to loose decision boundaries drawn by the classifier,

and the addition of beta noise tightens this around the true positive region. Figure B.1 in

Appendix B.1 displays individual user FPRs and ARs.

Table 4.2: Equal Error Rate and RAR with and without the mitigation strat-
egy. The AR values remain the same as in Table 4.1. —-RAR indicates RAR
treated with only — noise. RAR indicates the inclusion of both — noise and
raw random input samples.

Linear SVM Radial Svm Random Forest Deep Neural Network
Biometric Normal Mitigation Normal Mitigation Normal Mitigation Normal Mitigation
Modality FPR RAR FPR —-RAR RAR FPR RAR FPR —-RAR RAR FPR RAR FPR —-RAR RAR FPR RAR FPR —-RAR RAR
Touch Raw 0.325 0.45 0.345 0.44 0.00 0.265 0.40 0.265 0.36 0.01 0.21 0.18 0.215 0.05 0.00 0.325 0.32 0.38 0.26 0.00
Face Raw 0.050 0.12 0.075 0.14 0.00 0.040 0.09 0.040 0.09 0.00 0.03 0.02 0.030 0.01 0.00 0.095 0.10 0.07 0.06 0.03

Results on RAR. Interestingly, beta distributed noise only marginally reduces the raw

113

CHAPTER 4. RANDOM INPUT

acceptance rate as can be seen in Table 4.2 (columns labeled —-RAR). The reason for

this lies in the volume of the region spanned by random raw inputs. We previously saw

in Section 4.4.5 that it was (a) exponentially small and (b) many orders of magnitude

smaller than the true positive region. Thus, it is unlikely that beta distributed noise will

lie in this region to aid the model to label them as negative samples. Consequently, we

sought another means to mitigate this attack surface.

4.6.2 Feature Vectors from Raw Inputs as Negative Samples

Our mitigation strategy to reduce RAR is to include a subset of raw input vectors in

the training process, whose cardinality is equal to the number of positive user samples in

the training dataset. The training dataset now contains 1/4th each of raw input vectors,

beta-noise, positive samples, and samples from other users.

Results on AR and RAR. Table 4.2 shows that the mitigation strategy reduces the

RAR to less than or equal to 0.03 in all instances (columns labeled RAR). The resulting

FPR is marginally higher than the FPR from only beta-distributed noise in some cases

(Table 4.1). Thus, the inclusion of beta-distributed noise in conjunction with a subset of

raw inputs in the training data reduces both AR and RAR with minimal impact on FPR

and FRR.

4.7 Related Work

There are several mentions of attacks similar to the random input attack discussed in this

chapter. Pagnin et al. [30] define a blind brute-force attack on biometric systems where the

attacker submits random inputs to find an accepting sample. The inputs are n-element

vectors whose elements are integers in the set {0, 1, . . . , q ≠ 1}. The authors conclude that

the probability of success of this attack is exponential in n, assuming that the authen-

tication is done via a distance function (discarding any vector outside the ball of radius

114

4.7. RELATED WORK

determined by the system threshold). They concluded that a blind brute force attack is

not e�ective in recovering an accepting sample. While this may apply to distance-based

matching, the same conclusion cannot be made about machine learning based algorithms

whose decision functions are more involved. Indeed, we have shown that the acceptance

region for machine learning classifiers is not exponentially small. It has also been argued

that the success rate of random input attacks can be determined by the false positive rate

(FPR), at least in the case of fingerprint and face authentication [31,32]. We have shown

that for sophisticated machine learning classifiers this conclusion is not true, and random

input attacks in many instances succeed at a rate higher than FPR. A more involved

method is hill-climbing [31,133] which seeks an accepting sample via exploiting the confi-

dence scores returned by the matching algorithm. The authentication systems considered

in this chapter do not return confidence scores.

Serwadda and Phoha [61] use a robotic finger and population statistics of touch behavior on

smartphones to launch a physical attack on touch-based biometric authentication systems.

Their attack reduces the accuracy of the system by increasing the EER. In contrast, our

work does not assume any knowledge of population biometric statistics, e.g., the population

distribution of feature space. It is an interesting area of work to investigate whether a

robotic finger can be programmed to generate raw inputs used in our attack.

Garcia et al. [108] use explainable-AI techniques [130] to construct queries (feature vectors)

to find an accepting sample in machine learning based biometric authentication systems.

On a system with 0 FPR, they show that their attack is successful in breaching the system

with up to 93% success rate. However, their attack is more involved: it requires the

construction of a seed dataset containing representative accepting and rejecting samples

of a user set chosen by the adversary. This dataset trains a neural network as a substitute

to the classifier of the authentication system. The adversary then uses explainable AI

techniques to obtain an accepting sample of a target user (not in the seed dataset) in

as few queries as possible, by updating the substitute network. The authors also report

a random feature vector attack, however, the attack is only successful on one out of 16

victims. The random feature vector is constructed by sampling each feature value via a

115

CHAPTER 4. RANDOM INPUT

normal distribution (distribution parameters not stated), unlike the uniform distribution

in our case. We also note that they propose including images with randomly perturbed

pixels as a counter-measure to defend against the aforementioned random input attack.

This is di�erent from our proposed beta-distributed noise mitigation technique, as it is

agnostic to the underlying biometric modality.

The frog-boiling attack [134,135] studies the impact of gradual variations in training data

samples to manipulate the classifier decision boundary. In this work we do not consider the

adversary with access to the training process, nor do we evaluate models with an iterative

update process. If this threat model is considered for the problem addressed in this chapter,

then an adversary may seek to maximize the acceptance region of a model by gradually

poisoning the training dataset. As we have demonstrated in Section 4.5, the relative

variance between the user’s data and population dataset directly impacts AR. Thus the

manipulation of a user’s training samples to be more varied would be e�ective in increasing

the AR. Likewise, in our mitigation technique, we have shown that beta-distributed noise is

e�ective in the minimization of AR. However, an adversary might poison the training data

by labeling beta noise as positive samples resulting in a maximization of the acceptance

region to near 100% of the feature space.

Our work is di�erent from another line of work that targets machine learning models

in general. For instance, the work in [75] shows an evasion attack where the adversary,

through only blackbox access to a neural network, forces the classifier to misclassify an

input by slightly perturbing the input even though the perturbed sample is perceptually

similar to the original sample, e.g., noisy images. The attack can be applicable to the

authentication setting as well. However, it relies on the confidence values (probability vec-

tors) returned by the classifier, which is not the case in authentication. Similarly, the work

in [82] shows how to steal a machine learning model, i.e., retrieve its undisclosed parame-

ters, which only returns class labels (accept/reject decision in the case of authentication).

They describe several techniques including the Lowd and Meek attack [136] to retrieve a

model su�ciently similar to the target model. The machine learning models considered in

their attack are for applications di�erent from authentication where one expects to find

116

4.7. RELATED WORK

an accepting sample with negligible probability.

There are also proposals to defend against the above mentioned evasion attacks. The goal

is to make the classifiers robust against adversarial inputs in the sense that classification is

constant within a ball of a certain radius around each input [137,138]. Madry et al. [137]

propose a theoretical framework that formalizes defense against adversarial attacks by

including adversarially perturbed samples in the loss function of DNNs. They show that

it is possible to train DNNs robust against a wide range of adversarial input attacks.

Cao and Gong [139] propose another defense where given a test input, random points

within a hypercube surrounding the input are sampled, and the majority label returned

by the already trained DNN is assigned to the test input. Randomized smoothing [138]

creates a separate classifier from any classifier such that its prediction within a Gaussian

noise region (ball) around any input is constant, and consequently less likely to produce

an erroneous prediction. We note that in evasion attacks there is a notion of nearness,

i.e., the adversary is given an input and seeks to add a small amount of noise such that

the resultant erroneously labeled input is close to the original input. In contrast, in our

case, the random input need not be close to the target user’s samples or even follow

the same distribution. Furthermore, we have shown that even a conservative estimate

of the true positive region is negligible in comparison to the entirety of the feature space

(Section 4.3.2). Thus, it is unclear whether such defenses apply to uniform random inputs,

as opposed to random perturbations of inputs.

Membership inference attacks [33, 34] attempt to determine if a record obtained by an

adversary was part of the original training data of the model. Whilst this attack does not

compromise the security of the model, it breaches the privacy of the individual records.

These attacks create a shadow model [33] to mimic the behavior of the target model.

Salem et al. [34] construct a shadow model using only positive class samples and negative

noise generated via uniformly random feature vectors. However, it is hypothesized that

these random samples belong to non-members, i.e., the negative class [34, §V.B]. We have

shown that a large portion of these random inputs may also belong to the positive class.

Finally, we point to other works in literature analyzing the security of biometric authenti-

117

CHAPTER 4. RANDOM INPUT

cation systems. Sugrim et al. [128] survey and evaluate a range of performance metrics used

in biometric authentication schemes. They seek to motivate scheme designers to leverage

robust metrics to provide a complete description of the system, including a proposal of

the new metric: Frequency Count Score (FCS). The FCS metric shows a distribution of

scores of legitimate and unauthorized users, identifying the overlap between the two distri-

butions which helps to select the appropriate threshold for the classification decision. The

FCS, however, is dependent on the negative class or samples of other users, which does

not include random inputs. The work in [140] investigates the accuracy of authentication

systems reported on a small number of participants when evaluated over an increasing

number of users. The authors suggest that the performance limits of a system with a

small number of participants should be evaluated iteratively by increasing the participant

count until the performance degrades below a tolerable limit.

4.8 Conclusion

It is important to assess the security of biometric authentication systems against random

input attacks akin to the security of passwords against random guess attacks. We have

demonstrated that without intentionally including random inputs as part of the training

process of the underlying machine learning algorithm, the authentication system is likely to

be susceptible to random input attacks at a rate higher than indicated by EER. Absent any

other detection mechanism, e.g., liveliness detection, this renders the system vulnerable.

The mitigation measures proposed in this chapter can be adopted to defend against such

attacks.

118

Chapter 5

On the (In)Feasibility of Attribute

Inference Attacks on Machine

Learning Models

This chapter is adapted from work titled “On the (In)Feasibility of Attribute Inference

Attacks on Machine Learning Models”, accepted in the 6th IEEE European Symposium

on Security and Privacy 2021, completed in conjunction with Zhao, B.Z.H., Agrawal, A.,

Coburn, C., Asghar, H.J., Bhaskar, R., Kaafar, M.A., Webb, D., and Dickinson, P.

With an increase in low-cost machine learning APIs, advanced machine learning models

may be trained on private datasets and monetized by providing them as a service. In

addition, an ease of use has allowed the deployment of models in an increasing number

of domains, including Biometric Authentication models, which we observed in Chapter 4.

However, privacy researchers have demonstrated that these models may leak information

about records in the training dataset via membership inference attacks. In this chapter,

we take a closer look at another inference attack reported in literature, called attribute

inference, whereby an attacker tries to infer missing attributes of a partially known record

used in the training dataset by accessing the machine learning model as an API. We

119

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

show that even if a classification model succumbs to membership inference attacks, it

is unlikely to be susceptible to attribute inference attacks. We demonstrate that this is

because membership inference attacks fail to distinguish a member from a nearby non-

member. We call the ability of an attacker to distinguish the two (similar) vectors as

strong membership inference. We show that membership inference attacks cannot infer

membership in this strong setting, and hence inferring attributes is infeasible. However,

under a relaxed notion of attribute inference, called approximate attribute inference, we

show that it is possible to infer attributes close to the true attributes. We verify our

results on three publicly available datasets, five membership, and three attribute inference

attacks reported in literature.

5.1 Introduction

The introduction of low-cost machine learning APIs from Google, Microsoft, Amazon,

IBM, etc., has enabled many companies to monetize advanced machine learning models

trained on private datasets by exposing them as a service. This also caught the attention

privacy researchers who have shown that these models may leak information about the

records in the training dataset via membership inference (MI) attacks. In an MI attack,

the adversary (for instance, a user of the service) with API access to the model, can use the

model’s responses (class labels and probability/confidence of each label) on input records

of his/her choice to infer whether a target input was part of the training dataset or not.

This can be a serious privacy breach when the underlying dataset is sensitive, e.g., medical

data, mobility traces and financial transactions [33,34].

To date, membership inference attacks have been the primary focus of studies that have

contemplated on traits of the datasets and machine learning models that impact the

attacks’ likelihood and accuracy [1, 33–36]. Our focus is on a related, and perhaps a

more likely attack in practice, where the adversary with partial background knowledge of

a target’s record seeks to complete its knowledge of the missing attributes by observing

the model’s responses. This attack is called model inversion [37,38], or in general attribute

120

5.1. INTRODUCTION

inference (AI) [35]. Yeom et al. [35] provide a formal definition of an AI adversary, and

argue that this adversary can infer the missing attribute values by using an MI adversary

as a subroutine. More precisely, for a missing attribute with t possible values, the AI

adversary constructs t di�erent input (feature) vectors, gives them as input to the MI

adversary, and outputs the attribute value which corresponds to the vector that the MI

adversary deems to be in the training dataset.

Beyond providing a formal definition, Yeom et al. experimentally validate the success of an

AI attack on regression models, and conclude that the more overfit the model, the higher

the success of the AI attack [35, §6.3]. Seeking to replicate their results on classification

models (rather than regression models), where the adversary is given a partial record

and its true label, our results in this chapter turn out to be di�erent. We show that

even if the target classification model is susceptible to MI attacks, AI attacks on the

same model have negligible advantage. Furthermore, the results persist even for highly

overfitted models. We explore the reasons behind this failure, and find that in order for

AI attacks to be successful, the underlying MI attack, used as a subroutine, should be

able to infer membership in a stronger sense. More precisely, the MI attack should be able

to distinguish between a member of the training dataset and any non-members that are

close to that member, according to a suitable distance metric (we consider several such

distance metrics based on the nature of the dataset). We call this, strong membership

inference (SMI), parameterized by the distance from the training dataset.

We formulate the notion of SMI, and prove that a successful MI attack does not necessarily

mean a successful SMI attack. Furthermore, we also formally show that a successful SMI

attack is essential for an AI attack. This result implies that even a standalone AI attack,

which does not use an MI attack as a subroutine, is bound to fail if SMI attacks are

unsuccessful. We experimentally validate these results by evaluating several proposed

MI attacks from the literature on several discrete and continuous datasets, and target

machine learning models, and show that while these attacks are successful in inferring

membership, they fall well short as an SMI attack, and consequently as an AI attack. On

the positive side (from an attacker’s point of view), we investigate a more relaxed notion

121

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

of attribute inference, called approximate attribute inference (AAI), where the adversary

is only tasked with finding attributes close to the target attributes, according to a given

distance metric. We show that while AI attacks are not applicable, AAI attacks perform

significantly better, and improve as the target model becomes more overfit. The AAI

notion is also a natural extension of the (exact) AI notion for continuous attributes which

has mostly been used in discrete settings [35].

In more detail, our main contributions are as follows.

• We provide a formal treatment of membership, attribute, and approximate attribute

inference attacks, and propose a new definition of strong membership inference

(SMI), building on the work from [35] on the definitions of MI and AI in Section 5.2.

We formally prove that an SMI adversary is strictly stronger than an MI adversary

(Theorem 5.2.1), and that SMI is necessary for AI (Theorem 5.2.2).

• We experimentally validate our theoretical findings through an extensive set of exper-

iments involving five MI attacks, three black-box and two white-box, from [1,33–35],

eight datasets (constructed from 3 main binary and continuous datasets), and several

target machine learning models (neural networks, support vector machines, logistic

regression, and random forests) (cf. Section 5.3). Our results in Section 5.4 vali-

date our formal separation and show that while these attacks are successful to infer

membership, they are ine�ective in inferring membership at distances close to the

training dataset (SMI).

• In Section 5.5, we further construct 3 AI attacks using the MI attacks of [33, 35]

and [34] as a subroutine, and show via experiments that these attacks are not e�ective

in inferring attributes, even if we increase the overfitting levels of the target model.

On the other hand, we show that our constructed AI attacks can approximately infer

attributes (AAI), with the advantage increasing as the level of overfit of the target

model increases.

• Our other key findings include explanation behind the seemingly contradictory con-

clusions about AI attacks on regression models [35] and classification models (our

122

5.2. FORMAL TREATMENT OF MEMBERSHIP AND ATTRIBUTE INFERENCE
ATTACKS

focus) in Section 5.5.1. We also show that the success of an MI attack is dependent

on the class label of the vector; if the corresponding class occupies an overwhelm-

ingly large portion of the feature space, then training records belonging to this class

are harder to distinguish from non-members (cf. Section 5.4.1.3). This gives one

plausible reason why MI attacks have always performed poorly on target models for

binary classification problems [33,34].

5.2 Formal Treatment of Membership and Attribute Infer-

ence Attacks

In this section, we formally introduce the privacy notions of strong membership inference

(SMI), and recap the notions of membership, attribute and approximate attribute infer-

ence. In order to define them, we need rigorous definitions of a distance metric on the

feature space, missing (features) attributes of a feature vector and its relation to distance,

and how the probability distribution on the feature space behaves around feature vec-

tors. We first define these concepts in the next section followed by privacy definitions in

Section 5.2.2.

5.2.1 Notation and Definitions

Feature Space. Let D denote a subset of the real space R. We assume the feature

space to be Dm, where each point x œ Dm is called a feature vector consisting of m

elements/features. We assume the output space to be Y = Rú. Let D be a distribution

over Dm. The training dataset X is defined as a multiset of n elements drawn i.i.d. from Dm

with distribution D. Each x œ X is accompanied by its true label y œ Y . We denote this

mapping by c, which we call the target concept following standard terminology [141,142].

Thus, for each x œ X, c(x) denotes is true label. The term label is used generically; it may

be discrete, denoting di�erent classes, or it may be continuous, denoting the confidence

or probability score for the di�erent classes. The support of distribution D is defined as

123

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

supp(D) = {x œ Dm
| px > 0}, where px is PrD(x) if Dm is discrete and fD(x) if Dm

is continuous, f being the probability density function. The notation a Ω$ A indicates

sampling an element a from some set A uniformly at random. The notation x Ω D

denotes sampling a feature vector according to the distribution D. Similarly, the notation

X Ω D
n denotes sampling a multiset of n feature vectors (training set) drawn i.i.d. from

D.

Machine Learning Models. A machine learning model hX trained on X, takes as input

x œ Dm and outputs a label y œ Y . Let L : Y ◊ Y æ R denote a loss function. The

training loss of h, denoted, Ltr(h), determines how much h di�ers from c on all x œ X.

Similarly we define the test loss of h by Ltest(h), which is evaluated by computing h(x)

and c(x) over the distribution D. For instance, if Y is discrete, then L can be the 0-1 loss

function, which evaluates to L(h(x), c(x)) = 0, if h(x) = c(x), and 1 otherwise [35]. The

generalization error of h is defined as

err(h) = Ltr(h) ≠ Ltest(h). (5.1)

The exact form of the loss function L depends on the learning problem. More specifically,

it depends on the nature of Y . If the learning problem is that of classification among k

di�erent classes, which is our focus, we have |Y | = k. The true label of a sample x is then

a k-element vector y œ Y with 1 in the position corresponding to the true class, and 0

in all other places. A classifier hX however, may output a vector yÕ
œ Y such that each

element yi œ [0, 1] and ÎyÕ
Î1 = 1.

Metrics. The notions of SMI and AAI, informally introduced in the introduction, are

based on the ability to distinguish nearby vectors in the feature space. The notion of

“nearness” is based on a distance metric on the feature space Dm. The examples of

metrics used in this chapter are Hamming distance dH for binary datasets, i.e., over the

domain Dm = {0, 1}
m, and Manhattan distance dM for normalized continuous datasets,

i.e., over Dm = [≠1, 1]m. In general, our results generalize to any conserving metric (See

Appendix C.3). The following defines the distance of a non-member vector from the

training dataset.

124

5.2. FORMAL TREATMENT OF MEMBERSHIP AND ATTRIBUTE INFERENCE
ATTACKS

Definition 5.2.1 (Distance and Neighbors). Let d be a (conserving) metric on Dm. Let r

be a positive real number and let x œ Dm. The set of r-neighbors of x is the r-ball centered

at x defined as

Bd(x, r) = {xÕ
œ Dm

| d(x, xÕ) Æ r}.

A member of Bd(x, r) is called an r-neighbor of x. The distance of a vector x œ Dm from a

set X ™ Dm is defined as minxÕœX d(x, xÕ). We call xÕ the nearest neighbor of x in X.

For attribute inference, we define the notion of a vector with missing attributes as portion:

Definition 5.2.2 (Portions). We introduce a special symbol ú called star, and define

Dú = D fi {ú}. Let S be a subset of indexes from [m], which we call the set of unknown

features. We define the map „S : Dm
æ Dúm, which given as input a feature vector x

outputs a vector xú, such that xú
i

= ú for each i œ S and xú
i

= xi for all i /œ S. We call

xú = „S(x) a portion of x under S, or simply a portion of x if reference to the set S

is not relevant. The set of features that are masked, i.e., replaced by ú, in „S(x) will be

called the unknown part of xú.

Definition 5.2.3 (Siblings). Define the set:

�S(x) = {xÕ
œ Dm

| „S(x) = „S(xÕ)},

then �S(x) is called the set of siblings of x under S, and any member of the set a sibling

of x under S. Note that x is also a sibling of itself.

For attribute inference, the algorithm will be given a portion xú = „S(x), such that the

feature corresponding to the set S will be missing (unknown). The set �S(x) contains all

vectors which could possibly have the portion xú, including the original vector x. These

are the possible candidates of the portion, and the algorithm would need to distinguish

them from x. In Appendix C.3, we show that given a vector x, all of its possible portions

with i unknown features are within a ball whose radius can be determined through i.

This result is useful to show the link between attribute inference and strong membership

inference, as we shall see later.

In some of our inference definitions, we would need to sample vectors in the vicinity of

125

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

some feature vector x. Depending on the distribution D, it may well be the case that the

vectors around x have a negligible probability of being sampled as feature vectors. Thus,

the adversary may simply be able to infer non-membership by checking which vector is

not likely to be sampled under D [35]. To overcome this technical issue, we assume that

the distribution D is such that there is at least one vector within a small radius around

x which is assigned a similar probability as x. This is made precise by the following

definitions.

Definition 5.2.4 (Induced Distribution). Let Z be a set of feature vectors. Define ZD =

supp(D) fl Z. We say that a vector z is sampled from Z according to the distribution

induced by D if the resulting random variable has probability mass function pzq
zÕœZD

pzÕ
or

the probability density function pzs
ZD

fD(zÕ)dzÕ in the continuous case.

Note that the probabilities are only defined if ZD is non-empty. We shall always assume

this to be the case.

Definition 5.2.5 (Indistinguishable Neighbor Assumption). Let r > 0, and let d be a

metric. Let x Ω D. Let xÕ be sampled from Bd(x, r) according to the distribution induced

by D. Let A be any algorithm (distinguisher) taking as input a feature vector x and a

distribution D, which outputs 1 if x Ω D and 0, otherwise. Let b Ω$ {0, 1}. Let A be

given x, if b = 1 and xÕ, if b = 0. Then

Pr[A(x, D) = 1] ≠ Pr[A(xÕ, D) = 1] Æ ‘(r). (5.2)

We call ‘(r), the r-neighbor distinguishability advantage, and assume it to be negligible for

small r.

The above assumption states around any vector x, there are some vectors sampled ac-

cording to the distribution induced by D that are indistinguishable from x under D. Note

that this does not apply to all neighbors of x (which may be out of distribution). Put

in other words, it states that around any vector x, there are neighborhood vectors which

have similar probability of being sampled under D. It is easy to see why this assumption

should hold on datasets with continuous attributes, as minor changes in the attributes

126

5.2. FORMAL TREATMENT OF MEMBERSHIP AND ATTRIBUTE INFERENCE
ATTACKS

would hardly be o�-distribution. We argue that this is also a plausible assumption for dis-

crete datasets. For instance, consider the Purchase (shopping transactions) dataset [48],

which records the items bought by customers; 1 if the corresponding item is purchased

by the customer and 0, otherwise. Given any vector x, a nearby vector where a few item

purchases have been removed can barely be considered an anomaly. Further note that

the ability to distinguish increases, the further we move from the original vector, since

now there are other vectors likely to be sampled through the induced distribution which

are starkly di�erent from x, i.e., at greater distance from x. Hence, the advantage ‘(r) is

defined as a function of r. To experimentally validate our claim, we trained a generative

adversarial network (GAN) on the Purchase dataset to see if it can distinguish between

original and nearby vectors. The results shown in Appendix C.2.2 are in agreement with

our assumption.

Decision Regions. Our final definition in this section is that of decision regions, i.e.,

regions in the feature space assigned to a given class. We shall show later that performance

of membership inference is linked to the volume of decision regions. Let k Ø 2 be the

number of classes.

Definition 5.2.6. Given a classifier hX , for each class j œ [k], we define its decision

region (DR) as

Rj = {x œ Dm : hX(x) = j} (5.3)

This is analogous to the definition of acceptance region in [143]. Similar to [143], we

sample a large number of feature vectors from Dm uniformly at random, and use the

fraction of vectors labelled j by hX to estimate the fractional volume of the decision

region Rj . Overloading notation, we shall use decision region to mean both the region

and its fractional volume. A class is said to dominate another class if the DR of the former

is larger than the DR of the latter. The class with the largest DR shall be called the most

dominant class.

127

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

5.2.2 Formal Results: Relationship between Variants of Membership

and Attribute Inference

Membership Inference. Our first definition is that of membership inference which is

derived from the definition in [35].

Experiment 1 (Membership Inference (MI) [35]). Let A be the adversary, let X Ω D
n

be the input dataset.

1. Construct model hX .

2. Sample b Ω$ {0, 1}.

3. If b = 0, sample x Ω D.

4. Else if b = 1, sample x Ω$ X.

5. A receives x, c(x) and oracle access to hX .

6. A announces bÕ
œ {0, 1}. If bÕ = b, output 1, else output 0.

Using the True Label. Note that in addition to the vector x, its true label c(x) is

also given to the adversary. This then allows the adversary to compute the loss function

L(hX(x), c(x)) from the output of the model hX . This is considered for instance in [35],

the shadow model technique in [33] and the shadow model variants of membership infer-

ence attacks in [34]. However, note that the true label is not necessarily required as is

demonstrated in one of the attacks in [34] which only uses the knowledge of the input

sample and the prediction returned by hX . In this case, the adversary simply ignores the

true label c(x). The same is true in all the other experiments (definitions) to follow.

Let ExpMI(A, h, n, D) denote the output of the above experiment.

Definition 5.2.7 (Membership Inference Advantage). The membership inference advan-

tage of A on the classifier h, i.e., AdvMI(A, h, n, D), is defined as

Pr[bÕ = 1 | b = 1] ≠ Pr[bÕ = 1 | b = 0]

= Pr[bÕ = 0 | b = 0] ≠ Pr[bÕ = 0 | b = 1]

128

5.2. FORMAL TREATMENT OF MEMBERSHIP AND ATTRIBUTE INFERENCE
ATTACKS

It is the thesis of this chapter that an MI adversary with a significant advantage in dis-

tinguishing between members and non-members is due to the fact that non-members are

at a significant distance away from member vectors. If on the other hand a non-member

vector is close to a member vector, then the adversary may not be able to distinguish

between the two. We therefore present another definition of membership inference, called

strong membership inference (SMI) defined next. The definition challenges the adversary

to distinguish between two neighboring feature vectors. The closeness of the two vectors is

controlled by the parameter r in the definition. We show later why such a strong inference

attacker is a better starting point for constructing an attribute inference attacker in the

spirit of [35].

Experiment 2 (r-Strong Membership Inference (SMI)). Let A be the adversary, let

X Ω D
n be the input dataset, let d be a (conserving) metric, and let r > 0 be a real

number.

1. Construct model hX .

2. Sample b Ω$ {0, 1}.

3. Sample x0 Ω$ X.

4. If b = 0, sample x from Bd(x0, r) according to the distribution induced by D (cf.

Definition 5.2.4).

5. Else if b = 1, x = x0.

6. A receives x, c(x) and oracle access to hX .

7. A announces bÕ
œ {0, 1}. If bÕ = b, output 1, else output 0.

Definition 5.2.8 (Strong Membership Inference Advantage). The SMI advantage of A

on the classifier h, i.e., AdvSMI(A, h, r, n, D), is defined as

Pr[bÕ = 1 | b = 1] ≠ Pr[bÕ = 1 | b = 0]

= Pr[bÕ = 0 | b = 0] ≠ Pr[bÕ = 0 | b = 1]

129

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

Relationship between MI and SMI. SMI is the same as MI if r is large enough to

encompass all feature vectors in the support of D. Otherwise, the next theorem shows

that the two definitions are not equivalent.

Theorem 5.2.1. There exists a domain Dm, a distribution D on the domain, an r > 0,

a dataset X Ω D
n, a classifier h, and an algorithm A such that an MI adversary gains

non-negligible advantage using A whereas an SMI adversary has 0 advantage using the

same algorithm.

Proof. See Appendix C.4.

The proof of the above result essentially constructs a dataset such that the output of

the classifier is constant around any vector x in the dataset. In a real-world dataset,

this implies that we assume the output of the classifier to be nearly constant around any

feature vector x, thus making it hard for an SMI attack to distinguish non-members in

the vicinity of members. We shall later show that this assumption holds for real-world

datasets and classifiers.

Attribute Inference. We first start with the definition of attribute inference derived

from [35].

Experiment 3 (Attribute Inference (AI) [35]). Let A be the adversary, let X Ω D
n be

the input dataset, and let S be a subset of [m] with cardinality mÕ such that 1 Æ mÕ < m.

1. Construct model hX .

2. Sample b Ω$ {0, 1}.

3. If b = 0, sample x Ω D.

4. Else if b = 1, sample x Ω$ X.

5. Let xú = „S(x) be a portion of x.

6. A receives xú, c(x) and oracle access to hX .

130

5.2. FORMAL TREATMENT OF MEMBERSHIP AND ATTRIBUTE INFERENCE
ATTACKS

7. A announces xÕ
œ Dm. If xÕ = x output 1, else output 0.

Definition 5.2.9 (Attribute Inference Advantage). The AI advantage of A on the clas-

sifier h, i.e., AdvAI(A, hX , mÕ, n, D), is defined as

Pr[ExpAI(A, hX , mÕ, n, D) = 1 | b = 1]

≠ Pr[ExpAI(A, hX , mÕ, n, D) = 1 | b = 0].

The above definition mirrors the one from [35]. However, the attribute inference covered

in [35] is more general; it considers arbitrary background knowledge about x, and not

necessarily a portion. The version that we consider is called the model inversion attack [35,

38]. We remark that the above definition is by no means the standard definition of AI.

We refer the reader to Section 5.6 for a discussion on other definitions of AI proposed in

literature.

Inferring through the Distribution vs the Model. Note that these definitions pur-

posely define advantage as the di�erence between inferring through the distribution alone

versus inferring via access to the model. For instance, one way to infer the missing features

is to exploit statistical correlations between the observed features and the label. But notice

that this can be done directly through knowledge of the distribution, irrespective of access

to the model. The AI advantage will therefore be negligible for such a strategy. Hence,

the definitions only define an AI attack as advantageous if it can infer more through the

model as opposed to through statistical trends of the feature vectors. The same applies

to approximate attribute inference to be defined shortly. See Section 5.6 for further dis-

cussion on this point. Correlations can indeed be a privacy issue if the distribution is not

known to the attacker. But this definition is outside the scope of this thesis, where we

consider the distribution to be known by the attack algorithm.

Relationship between AI and SMI. It is easy to see how an AI adversary can use

an SMI adversary to infer attributes. Given a portion xú = „S(x), the AI adversary uses

the size of S, i.e., mÕ, to choose an r according to Corollary C.3.1.1, in Appendix C.3,

and then runs the SMI adversary with input r and each possible sibling of the vector x

131

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

(Even though the set S is not explicitly given to the AI adversary, it is implicit from the

portion). Whenever, the SMI adversary outputs 1, i.e., predicts the corresponding vector

to be a member, our AI adversary outputs that vector as its guess for x. Thus SMI ∆ AI.

In the other direction, the following theorem shows that AI implies SMI, or in other words

¬SMI ∆ ¬AI. Therefore, if an SMI adversary has negligible advantage, then we cannot

hope to find an AI adversary with significant advantage.

Theorem 5.2.2. Let A be an AI adversary with advantage ”. Then there exists an

SMI adversary B with advantage ” + ‘(r), assuming ‘(r), the r-neighbor distinguishability

advantage, is negligible for small r.

Proof. Consider an SMI adversary B which is given x. SMI chooses a random index,

or alternatively, a random index set S of cardinality 1. The adversary B constructs

xú = „S(x) and gives it to A. Upon receiving xÕ from A, the adversary B checks if

xÕ = x. If yes, it returns 1. Else it returns 0. The advantage of adversary B is

Pr[bÕ = 1 | b = 1] ≠ Pr[bÕ = 1 | b = 0]

= Pr[ExpAI(A, hX , 1, n, D) = 1 | b = 1]

≠ Pr[Expú
AI(A, hX , 1, n, D) = 1 | b = 0], (5.4)

where Pr[Expú
AI(A, hX , 1, n, D) = 1 | b = 0] denotes the version of Experiment 4, where

x Ω D in Step 3 is replaced with x0 Ω$ X, x Ω Bd(x0, r), according to the distribution

induced by D. From Eq. 5.2 for any algorithm C, we see that:

Pr[ExpAI(A, hX , 1, n, D) = 1 | b = 0]

≠ Pr[Expú
AI(A, hX , 1, n, D) = 1 | b = 0]

Æ Pr[C(x, D) = 1] ≠ Pr[C(xÕ, D) = 1] Æ ‘(r),

where ‘(r) is the r-neighbor distinguishability advantage. Thus, Eq. 5.4 becomes

Pr[bÕ = 1 | b = 1] ≠ Pr[bÕ = 1 | b = 0]

Æ Pr[ExpAI(A, hX , 1, n, D) = 1 | b = 1]

≠ Pr[ExpAI(A, hX , 1, n, D) = 1 | b = 0] + ‘(r)

= ” + ‘(r).

132

5.2. FORMAL TREATMENT OF MEMBERSHIP AND ATTRIBUTE INFERENCE
ATTACKS

Under the indistinguishable neighbor assumption 5.2.5, we assume ‘(r) to be negligible

for small r.

Theorem 2, together with the previous result, shows that SMI … AI, provided the r-

neighbor distinguishability assumption holds. If ‘(r) is large, then the advantage does

not translate, as now the neighbor vector (sampled from the induced distribution) does

not follow the distribution D expected by the AI algorithm A in Experiment 4. This

observation is mirrored by our experiments where we show that constructing an attacker

that can exactly predict the missing values of a portion of a member vector with high

probability is highly unlikely. Since this equivalence is under the r-neighbor distinguisha-

bility assumption, SMI is not identical to the notion of AI. This is true in particular for

datasets where the assumption fails to hold. For instance, a location dataset with sparse

locations. However, the assumption should hold for most real-world datasets, such as the

ones considered in this chapter. We remark that in its raw form the definition may be

overly strict for continuous attributes. To overcome this, in our experiments we apply bin-

ning, and flag any continuous attribute value as correctly identified if it falls in the correct

bin (See Section 5.5.1 for the CIFAR dataset). Even with this judicious interpretation

of the definition, our experimental results show that the adversary does not have much

advantage in predicting the missing attributes. This leads to the definition of approximate

AI, that requires the attacker to predict the missing values only “approximately close” to

a member vector.

Experiment 4 (Approximate Attribute Inference (AAI)). Let A be the adversary, let

X Ω D
n be the input dataset, let S be a subset of [m] with cardinality mÕ such that

1 Æ mÕ < m, and let – Ø 0 be a distance parameter.

1. Construct model hX .

2. Sample b Ω$ {0, 1}.

3. If b = 0, sample x Ω D.

4. Else if b = 1, sample x Ω$ X.

133

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

5. Let xú = „S(x) be a portion of x.

6. A receives xú and oracle access to hX .

7. A announces xÕ
œ Dm. If d(xÕ, x) Æ – output 1, else 0.

Definition 5.2.10 (Approx. Attribute Inference Advantage). The AAI advantage of A

on the classifier h, i.e., AdvAI(A, hX , mÕ, n, –, D), is defined as

Pr[ExpAI(A, hX , mÕ, n, –, D) = 1 | b = 1]

≠ Pr[ExpAI(A, hX , mÕ, n, –, D) = 1 | b = 0].

Note that with – = 0, Experiment 3 becomes a special case of Experiment 4. It is easy to

see that AI ∆ AAI, but the converse is not necessarily true.

Depending on the distance metric, the AAI advantage definition can have di�erent inter-

pretations. For instance, if the distance metric is Euclidean distance, then this captures

the notion of mean squared error. Similarly, the Manhattan distance metric gives the

absolute error interpretation. The parameter – should be set carefully to avoid degener-

ate cases, e.g., if – is set too small, then an adversary whose guess is always slightly o�

– would be deemed less advantageous than an adversary with only one guess within –

and the remaining deviating significantly from –. For our experiments, we set – as the

distance of a random guess from the target vector.

Computing Advantages in Practice. As most prior work on membership inference

uses the Area Under the Curve (AUC) of a Receiver Operating Characteristics (ROC)

curve as a measure of aggregated classification performance of the MI attacker (viewed

as a binary classifier), we use the same metric in our experiments in Section 5.3. In

Appendix C.5, we show how our advantage definitions 5.2.7 and 5.2.8 are related to the

AUC statistic. For the evaluation of AI and AAI attacks we employ the advantage metrics

defined in Definitions 5.2.9 and 5.2.10.

134

5.3. EXPERIMENTAL METHODOLOGY

5.3 Experimental Methodology

In this section, we describe the datasets, instances of MI and AI attacks used, and how we

carry out membership and attribute inference attacks in our experiments in Sections 5.4

and 5.5. We first evaluate the performance of several MI attacks in terms of MI advan-

tage (Definition 5.2.7) with increasing distance of the challenge vectors from the training

set (Section 5.4). We then evaluate the performance of AI attacks in terms of AI ad-

vantage (Definition 5.2.9) which use MI attacks as a subroutine (Section 5.5.1). Finally,

we study the performance of the same AI attacks in the sense of approximate attribute

inference (Definition 5.2.10). These experiments demonstrate the shortcomings of MI and

AI definitions and the need for our newly proposed definitions, i.e., SMI and AAI.

5.3.1 Data and Machine Learning Models

We evaluate MI and AI attacks on three di�erent datasets: (a) Location: a social net-

work locations check-in dataset obtained from Foursquare [144], (b) Purchase: a shopping

transactions dataset [48], and (c) CIFAR an image dataset [47]. These datasets have pre-

viously been used to demonstrate MI [33,34,46] and AI attacks [46]. The first two datasets

are binary, with 467 binary features in Location and 599 in Purchase, whereas the CIFAR

dataset was processed, using principal component analysis (PCA), to yield 50 continuous

features normalized between ≠1 and 1 [46]. We applied k-means clustering to obtain class

labels in both the Location and Purchase datasets. The number of classes in the Location

dataset is 30 and for the Purchase dataset, we create 5 variants di�ering in the number

of classes (2, 10, 20, 50, 100), as is done in [34]. Finally, the CIFAR dataset contains 100

class labels for the images, with an additional set of 20 labels which are a superset of the

100 classes, e.g. the label “flowers” is the superset of orchids, poppies, roses, sunflowers,

and tulips. We call the two datasets CIFAR-100 and CIFAR-20.

We predominantly explore the neural network as our target model. However, later in

Section 5.4.2, we show that our observations generalize to Logistic Regression, Support

135

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

Vector Machine, and Random Forest classifiers. The exact configurations of these models

for each experiment are detailed in Appendix C.1.

5.3.2 MI and AI Adversaries

We use five MI attacks from literature as examples of an MI adversary (Definition 5.2.7),

and three AI attacks as examples of an AI adversary (Definition 5.2.9).

5.3.2.1 MI Attacks

Our MI attacks include three black-box attacks: the shadow model based attack from

Shokri et al. [33], the attack from Yeom et al. based on prediction loss [35], and the attack

from Salem et al. based on maximum prediction confidence [34], and two variants (local

and global) of a white-box attack from Nasr et al. [1]. Recall that in an MI attack, the

attacker is given a member or a non-member vector with optionally its true label, and is

asked to infer membership.

Shadow MI [33]. This attack trains a machine learning model, called an attack model,

to discern membership of a given vector from the prediction output vector (confidence of

every class label). This attack model leverages outputs from shadow models which are

trained with a disjoint dataset to mirror the behaviour of the target model.

Loss MI [35]. This attack eliminates the high computational cost of training shadow and

attack models by evaluating the prediction loss of a vector on the target model directly.

This attack, in practice, may use the target model training loss as a loss threshold to

determine membership.

Conf MI [34]. Conf MI, short for Confidence, is even simpler than Loss MI; instead

of computing the prediction loss, the attack simple uses the confidence value of the most

likely label. With less information available to the attack, it performs worse than both

136

5.3. EXPERIMENTAL METHODOLOGY

Loss MI and Shadow MI (as we shall see in Section 5.4). However, it is arguably a more

practical attack, requiring less information.

Local White Box (WB) and Global White Box (WB) MI [1]. The three previous

attacks are all black-box attacks with little to no information about the target model, and

only API access to the model. An alternative form of MI attack is a white-box member-

ship inference attack, which in a federated setting, may o�er additional information for an

adversary to launch an MI attack. Despite the federated setting, we suspect any observa-

tions we perform on the black-box setting should be reflected in a white-box setting. Nasr

et al. attack [1] is a standalone attack targeting federated machine learning models in a

white-box setting. The white-box setting lends additional hidden layer information and

intermediate model states from the training process to better inform the attack model.

This information includes the final layer gradients, outputs and the true label, obtained

from intermediate and final states of the target model.

The federated setting consists of multiple parties, each training models independently

and contributing parameters to a central server. The server aggregates these parameters

before sending the results back to each party to replace their individual model. Two

di�erent attacks are tested: the Global WB MI attack, where the attacker has server level

information and attacks each of the parties individually (in the case of a Malicious MLaaS

provider); and the Local WB MI attack whereby the attacker is an external or contributing

party attacking the server or MLaaS provider.

5.3.2.2 Attribute Inference (AI) Attacks

We use three AI attacks as examples of an AI adversary. All three attacks use an MI attack

as a subroutine as mentioned in Section 5.2. We, therefore, use the same names for them

as the underlying MI attacks. Briefly, our general procedure to evaluate an AI attack is as

follows. Given a portion xú = „S(x) for a set S of unknown features (cf. Definition 5.2.2),

we first construct all siblings of x (cf. Definition 5.2.3), by trying all possible permutations

of the missing attribute(s), i.e., features. We then give each sibling as input to the MI

137

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

attack. From the set of siblings, the vector with the highest membership confidence from

the underlying MI attack is deemed the original vector x, and thus its attributes identified

as the missing attributes.

Shadow AI. The basis of this attack is to use the attack model from Shadow MI [33]

for AI. While the MI version of the attack only uses the final decision (member or non-

member), in the AI attack, we use the prediction confidence from the attack model to

gauge which vector is most likely the original vector, and thus infer attributes.

Loss AI [35]. This attack follows the original proposal from Yeom et al. to use the

training loss as the deciding factor for attribute inference. Given all siblings, the vector

that achieves the prediction loss (from the target model) closest to the training loss, is

flagged as the original vector.

Conf AI [145]. Recall that Conf MI [34] uses the single largest prediction confidence of

the vector to deduce its membership. We repeat the same process, and flag the highest

confidence vector (prediction confidence from the target model) from all siblings as the

original vector.

Note. Although both Local WB and Global WB MI attacks can also be used to perform

AI, we opted against, as they are computationally more demanding than other attacks.

Fortunately, as we shall show, Local WB and Global WB MI attacks show similar trends

as the other 3 MI attacks we use as subroutines for AI.

5.3.3 Attack Methodology

Prior to inference, we must first train a target model on a given dataset. To do so we

split the dataset into training and testing sets. We describe the exact training/testing

data split, the architecture of the neural network, and other hyper-parameters in Ap-

pendix C.1. These models have been tuned to replicate models observed in prior works.

The training set is used to train the target model, and the prediction accuracy of the target

138

5.3. EXPERIMENTAL METHODOLOGY

model is evaluated on the testing set. We tune our target models to produce prediction

accuracies comparable to [33] (exact attack accuracy values are reported in Table C.1 in

Appendix C.1). From the training and testing sets we then sample 1000 vectors each to

serve as our member and non-member sets. With the target model prepared, we take the

following steps to launch MI and AI attacks.

MI. For MI, we obtain AUCs by evaluating the member and non-member subsets with

either the MI attack model (for Shadow, Local WB and Global WB MI), or the target

model (for Loss and Conf MI) for a membership confidence score.

AI. For AI, we take our set of member and non-members, and then use the top most

informative features according to the Minimal Redundancy Maximal Relevance (mRMR)

criterion [97]. Intuitively, the informative features are likely to have more influence on

the classifier’s output. This also follows previous work [35, 146] where it is shown that

informative features, i.e., those with more influence, have a positive impact on attribute

inference, albeit the results apply for Boolean and binary variables. Thus, the use of most

informative features increases the likelihood of an AI attack. The set of most informative

features forms the set S of unknown features. For each vector, we then create its portion

based on S, and generate all siblings of the vector, only one of which is the original

vector with the target attribute values. With this set of siblings, for each member and

non-member vector, we perform an MI attack. This produces a measure of membership

confidence (either as attack model probability, prediction loss, or prediction confidence, c.f.

Section 5.3.2.2). From this measure, the sibling with the highest membership confidence is

regarded as the correct vector, and consequently containing the correct missing attributes.

For AI, we regard the attack as a success when the recovered sibling is exactly equal to the

original vector (Experiment 3). For AAI, we regard the attack a success when the recovered

sibling is within a given – distance away from the correct attributes (Experiment 4).

139

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

5.4 Membership Inference

We first show results from MI attacks highlighting the need for our definition of strong

membership inference (SMI) (Experiment 2). Two key findings are:

• MI attacks perform better if the non-members are at a greater distance from the

training dataset. This observation is crucial for attribute inference, as we shall see

in the next section.

• MI attack performance is not uniform across all classes in the dataset. In fact, it is

inversely related to the dominance of the class, i.e., the decision region of the class

(Definition 5.3).

5.4.1 MI Attacks on Neural Networks

We first inspect the performance of the five MI attacks (See Section 5.3.2.1) on members

and non-member vectors from the original dataset as a function of their distance from the

training dataset (Definition 5.2.1). We observe that the vectors in the original dataset are

quite far away from each other, consequently lacking MI performance information at small

distances. Thus we follow this analysis with MI performance on synthetically generated

vectors, to illustrate a complete picture of MI performance as a function of distance from

the training dataset (Section 5.4.1.2). We also explore the relationship between MI attack

performance and the decision region of a class (Section 5.4.1.3).

5.4.1.1 MI Performance on the Original Dataset as a Function of Distance

After training the target model, we compute the distance of each non-member vector from

the training set. Recall from Section 5.2, we use Hamming distance dH for Location and

Purchase datasets (which are binary), and Manhattan distance dM for the continuous

(normalized) CIFAR datasets. The vectors are then grouped according to their distance

140

5.4. MEMBERSHIP INFERENCE

from the training dataset (the distance is 0 for members). We then calculate AUC for

each distance by taking the membership score of each vector in this distance group as the

negative class, and all member vectors as the positive class. This test is repeated 50 times

(10 for the WB MI attacks due to computational resource limitations), and the AUC is

computed on the aggregation of all confidence values (Figure 5.1).

(a) Conf MI (b) Loss MI

(c) Shadow MI (d) Local WB MI

(e) Global WB MI (f) CIFAR-100

Figure 5.1: Increasing AUC of various MI attacks with increasing Hamming
distance of original non-members from the training dataset on target models.
Subplot (f) compares the di�erence in attack AUC between MI attacks on
CIFAR-100 (CIFAR-20 can be found in Appendix C.2.1).

141

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

Results. From Figs. 5.1a to 5.1e, we observe that for the Location dataset the AUC

improves as the distance of non-members from the training dataset increases in all five

MI attacks, with the AUC being closer to random guess (0.5) for non-members closest to

the training dataset. From the same figures, we can see that this trend is less obvious for

the Purchase datasets. This is mainly because non-members in the Purchase datasets are

at a greater distance from the training dataset. The same observation can be made for

CIFAR-100 in Figure 5.1f (results for CIFAR-20 are in Appendix C.2.1). This gives a first

indication that SMI (Experiment 2) is less successful than MI (Experiment 1).

An issue with the results in Figure 5.1 is that there is a lack of vectors close to and

farthest away from the training datasets. This is evident from the distribution of distances

displayed in Figure 5.2. Observe that there is little data available when we attempt to

inspect AUC for distances close to the original dataset. As the non-members in the original

Purchase datasets do not provide a full picture of how the MI performance behaves across

all distances, and hence MI performance, in the next section, we generate synthetic vectors

allowing us to control the distance (Hamming or Manhattan) from the training dataset

providing a more complete picture.

A few other observations are worth highlighting:

• Consistent with what has been previously reported on MI attacks, the attack ac-

curacy improves on target models with a greater number of classes [33, 34]. Higher

number of classes is also linked to a higher degree of overfitness (Table C.1).

• The AUC performance of the Loss and Conf MI attacks is almost identical. Recall

that Conf MI uses the maximum confidence value of the prediction, while Loss MI

uses the prediction loss. Note that the prediction loss for a classification model is

simply the loss between the confidence of the true label and 1. Given that a (good)

target model is likely to predict the correct label of the vector, it follows that, most

of the times, the maximum prediction confidence (as used in Conf MI) will be equal

to the confidence used to compute the loss in Loss MI.

142

5.4. MEMBERSHIP INFERENCE

(a) Hamming distance (b) Manhattan distance

Figure 5.2: Histogram of distances of non-members from members in our
training datasets. This data distribution is consistent across all attacks.

• Some of the AUCs exhibit peaks; an increase as the distance from the training

dataset increases followed by a decrease. This is due to the decision regions (DR)

learnt by the classifiers. We shall elaborate on this in Sections 5.4.1.2 and 5.4.1.3.

• Another peculiar observation is that some of the AUCs drop below 0.5, meaning that

the strategy employed by the corresponding MI attack predicts flips and applies more

to non-members than to members. The potential reason behind this is the same as

the observation above which we shall explain in Section 5.4.1.3.

Observation 1. In the MI attacks reported in literature, the distance of non-members

from the training dataset is large. In general, an MI attack is more likely to accurately

predict a non-member, the greater its distance from the training dataset.

5.4.1.2 MI Performance on Synthetic Non-Members as a Function of Distance

Ideally, synthetic vectors should follow the original data distribution. Unfortunately, this

would not yield vectors close to the training dataset as can be seen from Figure 5.2.

To circumvent this, we take existing vectors and create synthetic vectors by flipping or

perturbing some of the features. This creates synthetic vectors that are deliberately o�-

manifold, but still close to a training vector, where the majority of unaltered features

still follow the original data distribution, while allowing us to control distance from the

training dataset.

143

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

To generate synthetic vectors for the binary datasets (Location and Purchase), we (a)

randomly select a member of the training set, (b) randomly select features to invert, (c)

and vary the number of features and generate 5 non-members for each distance group,

ranging from Hamming distance 1 to, 467 for Location, and 599 for Purchase. For CIFAR

datasets, we define Manhattan distance groups at increments of 0.05 from the training

dataset, starting from 0.05 to 5. We then produce non-members by randomly selecting

features and adding additive perturbations to the feature values of the original vector.

The process is repeated 5 times for each Manhattan distance group. The entire process

is repeated for all selected 1000 member vectors for each dataset. The distance to the

training dataset is recomputed for all non-members, to cater for the event that the nearest

neighbor of a non-member in the training dataset has changed. The vectors thus generated

are non-members, with the same label as the original member, unless, by chance, any of

them collides with a member, in which case we discard it. We also ensure that the nearest

neighbor in the dataset of the newly generated vector is of the same label as the base

member vector, if not, this generated vector is discarded.

Results. The AUCs of the five MI attacks are displayed in Figure 5.3. For all five

attacks, we observe that the AUC is close to 0.5 for vectors close to the training dataset,

and starts improving as the distance from training dataset increases. It is also evident that

the higher the number of classes, the steeper the improvement in AUC as the Hamming

distance increases for the Location and Purchase datasets. This is more obvious through

the magnified Figure 5.6, where we show AUC of the Conf MI attack on the Location,

Purchase and CIFAR datasets at smaller distances from the datasets. The AUC is below

0.6 for Hamming distances of less than 5 and Manhattan distance of less than 0.2. This

implies that the MI attack is not successful enough in the stronger sense, i.e., in the sense

of SMI (Definition 5.2.8). This has implications for attribute inference, as we shall see in

Section 5.5.

On datasets with higher number of classes, the AUCs of Loss MI (Figure 5.3b), Local

WB (Figure 5.3d) and Global WB (Figure 5.3e) MI, show little change after a certain

distance, even if the distance of non-members from the training dataset increases. On

144

5.4. MEMBERSHIP INFERENCE

the other hand, on the Purchase datasets, for smaller number of classes (2, 10 and 20),

Conf (Figure 5.3a), Loss (Figure 5.3b) and Shadow (Figure 5.3c) MI attacks observe an

increase in AUC followed by a decrease. For the 10 and 20 class variants, we see a second

incline in the AUC performance of Shadow MI around a Hamming distance of 250. The

reason for this is that at certain distances a non-member vector xÕ with a class label j,

might be in the decision region of another class, even when the nearest neighbor of xÕ in

the dataset has the class label j. We elaborate this in the next section. Interestingly,

in Figure 5.3f, the AUC curves of Conf and Loss MI diverge as the Manhattan distance

from the training dataset grows greater than 0.7-0.8. This is because at larger Manhattan

distance, the target model starts giving incorrect label predictions. The Loss MI attack

detects this (as it computes loss with the predicted confidence). On the other hand,

Conf MI only uses the highest confidence. It is therefore unable to detect this, showing

worse performance. Finally, we note that a few of the AUC lines are ragged, especially at

distances furthest away from the datasets. This is exhibited by attack model based MI

attacks (Shadow, Local and Global WB). This is because the underlying attack models

have less exposure to vectors at large distances as a result of the data distribution (c.f.

Figure 5.2a, corresponding to distances where the AUC lines becomes ragged). The AUC

curves of Loss and Conf MI are smooth throughout.

Observation 2. The existing success of MI is a consequence of most non-member vectors

being very di�erent to members in terms of distance. For non-member vectors very close

to members, the MI attacks perform similar to a random guess (0.5 AUC), and hence fail

in the sense of SMI. Thus, the incumbent definition of MI does not capture the behavior of

an MI adversary for non-members at distances close to the training data, i.e., SMI, which

is essential for launching attribute inference attacks (Theorem 5.2.2).

5.4.1.3 MI performance on Synthetic Non-Members as a Function of Class

Label and Distance

The results thus far have been averaged over members and non-members from all classes.

However, as we shall show, the performance of the MI attacks is not consistent over all

145

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

(a) Conf MI (b) Loss MI

(c) Shadow MI (d) Local WB MI

(e) Global WB MI (f) CIFAR-100

Figure 5.3: Increasing AUC of various MI attacks with increasing Hamming
distance of synthetic non-members from the training dataset on target models.
(f) compares the di�erence in attack AUC between MI attacks on CIFAR-100
(CIFAR-20 can be found in Appendix C.2.1).

classes. In fact, the more dominant a class, i.e., the larger the decision region (DR) of

the class (Definition 5.2.6), the less likely it is to be susceptible to membership inference.

We empirically measure the decision region of a given class by sampling one million vec-

tors from the feature space by sampling each feature uniformly at random within feature

bounds (see feature bounds in Section 5.3.1). A similar approach had been adopted in [143]

146

5.4. MEMBERSHIP INFERENCE

(a) Conf MI (b) Loss MI (c) Shadow MI

(d) Local WB MI (e) Global WB MI

Figure 5.4: Increasing AUC of various MI adversaries with increasing Ham-
ming distance of synthetic non-members from the training dataset on target
models, with a separation of class labels depending on the size of the Decision
Region (DR), for the Purchase-20 dataset.

for binary classification (C.f. Chapter 4).

For per-class analysis, we train the target model and generate the synthetic vectors as

before, except that now not only do we group synthetic vectors by the distance from the

training dataset, but also according to the class label of the nearest training dataset vector.

Due to space restrictions, we only show results for the Purchase-20 dataset. Results from

the other datasets are in agreement with the conclusions drawn here, and are presented in

Appendix C.2.1. In the figures, we highlight the AUC performance of the most dominant

(largest DR) and least dominant (smallest DR) classes.

Results. Each plot in Figure 5.4 has 4 salient features. A blue line representing the mean

AUC of all classes, an accompanying blue shaded area representing 2 standard deviations

of AUC between classes, a green and blue line representing the class with the smallest DR,

and the largest DR, respectively. From Figure 5.4, we observe that across all MI attacks,

the AUC of the most dominant class is well below the average. In particular, at distances

close to the dataset.

147

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

This can be explained as follows. Near the dataset, a non-member vector with class label

j (which is also the label of its nearest neighbor in the dataset) is likely to lie in the

decision region Rj of class j. As we move away from the dataset, by varying the distance,

the corresponding non-member vectors shift further away from the spot in the decision

region occupied by their nearest neighbors in the dataset. At certain distance, depending

on the target or attack model, the decision region changes to a decision region occupied

by a di�erent class, even though the nearest neighbor still has the class label j. These

non-members are then likely to be misclassified as member vectors of another class, since

they lie deep in the decision region of another class. This phenomenon is particularly

true if one class overwhelmingly dominates other classes, thus occupying the bulk of the

decision region. In this case, the attack will not be able to distinguish between members

and non-members from the dominating class.

This is most evident from the results on the 2-Purchase dataset (Figure C.2a-e in Ap-

pendix C.2.1), in which one of the two classes overwhelmingly dominates the other class

(a DR of almost 1). The AUC performance of the dominant class is poor, whereas it is

high for the other class, bringing the average AUC close to 0.5. This partly explains why

the reported performance of MI attacks on 2-Purchase has always been comparatively

poorer in the literature [33, 34]. The per-class analysis on the remaining binary datasets

is in Appendix C.2.1.

Observation 3. If a class overwhelmingly dominates other classes, i.e., occupies a sig-

nificant portion of the decision region in the feature space, then it is least susceptible to

MI and SMI. An MI or SMI attack is unable to e�ciently distinguish between members

and non-members from this class.

Tuning Attack Models for SMI. It may be argued that these MI attacks are not

specifically trained to distinguish between members and nearby (synthetic) non-members,

which may explain their poor performance in terms of SMI. We performed additional

experiments where we tuned the training process of these attack models to further include

nearby synthetic non-members. We observe even with tuning, the attack model is unable

148

5.4. MEMBERSHIP INFERENCE

to achieve SMI. Details appear in Appendix C.2.4.

5.4.2 Generalization to Other Machine Learning Models

In this section, we demonstrate that the previous observations are not just limited to neural

networks, and generalize to other machine learning models as well. More specifically, we

use Logistic Regression (LR), Support Vector Machines (SVM) and Random Forests (RF)

classifiers as the target classification models. Since our observations are consistent across

all MI attacks, we only evaluate the Conf MI attack as it requires the least amount of

information about the target model, making it the most portable attack between di�erent

machine learning target models.

Results. Figs. 5.5a, 5.5c, 5.5e display the AUCs on the original non-members from the

datasets. We see that, in general, they exhibit the same as the neural network: the

AUC improves as the distance of non-members from the dataset increases, with the AUC

performance closer to 0.5 near the dataset. This trend in the AUCs is more prominent

on the synthetic non-members shown in Figs 5.5b, 5.5d, 5.5f. An interesting observation

is that the AUC of the RF model is very high even for non-member vectors close to the

dataset, across all datasets. The main reason for this is that the RF model in general is

more overfitted than the other models (see Table C.1 of Appendix C.1). This may seem to

suggest that it is possible to launch a successful SMI attack on an RF-based target model.

However, if we zoom into distances close to the training dataset, i.e., inset Figure 5.5f, we

see that the AUC is close to 0.5 for Hamming distance Æ 2. Thus, it is still di�cult to

launch an SMI attack for small distances.

Observation 4. The observation that an MI attack is unable to distinguish between mem-

bers and nearby non-members (strong membership inference) is consistent across di�erent

machine learning target models.

149

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

(a) LR Original (b) LR Synthetic

(c) SVM Original (d) SVM Synthetic

(e) RF Original (f) RF Synthetic

Figure 5.5: Increasing AUC of MI with increasing Hamming distance of orig-
inal and synthetic non-members from the training dataset on target models
with various ML algorithms. Inset (f): Zoomed in view of small hamming
distances.

5.5 Attribute Inference

In this section, we first present the results of our experiments using the three attribute

inference (AI) attacks described in Section 5.3.2.2. We show that all three AI attacks have

negligible advantage in inferring the missing attributes of a target vector. On the other

hand, for the same three attacks, we show that approximate attribute inference attack

(AAI) advantage (Definition 5.2.10) is significant, thereby suggesting that these attacks

can approximately guess the missing attributes with a probability better than a random

guess. We only focus on neural networks as the target model, since we have already shown

that the results generalize to other machine learning models. We also study the e�ect of

150

5.5. ATTRIBUTE INFERENCE

overfitting on the success advantage of both AI and AIA attacks in the last subsection.

5.5.1 Attribute Inference Attacks

To perform AI experiments (Experiment 3), we train the model exactly as described in

Section 5.3.3. We then (a) randomly select a member of the training set, or a non-member

(from the testing set), (b) we mask a select number of most informative feature values as

determined by mRMR [97] on the entire dataset to create the set S of unknown features

(15 binary features for Location and Purchase; 5 continuous features for CIFAR datasets),

(c) and generate all possible siblings of the vector under S (2 value bins per feature for

Location and Purchase, and up to 10 value bins per feature for CIFAR). We then evaluate

the AI attacks by giving each of the generated siblings to the underlying MI attack, and

flagging those siblings that the corresponding MI attack identifies as a member vector.

Again, the decision to use the most informative features from mRMR is to improve the

likelihood of success for AI, as di�erences in the most informative features are likely to have

the largest influence on the output of the classification model. We determine the AI attack

to be successful, if the original member vector is in this set of flagged siblings. If there are

more than one flagged sibling (excluding the original vector), we treat it as a tie and regard

the attack as only partially successful. We add a fraction (determined by the number of

ties) to its success count. For instance, 1/100 if there is a tie between 100 candidates. We

then compute the AI advantage as the di�erence in the success counts between members,

and non-members divided by the total counts of the tested members and non-members,

respectively. We note that we also performed Experiment 3 on a single missing feature (as

is done in other works [35,46]). The results are shown in Appendix. C.2.3. For this section,

we focus on the expanded number of missing features, which is a more general case. The

results for single feature AI, as we shall see, are only slightly better than multiple missing

features.

Results. Across all attacks, we observe negligible AI advantages irrespective of the dataset

and the attack (see Table 5.1). Moreover, the advantages are also very low for more

151

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

Table 5.1: Attribute Inference (Experiment 3) Advantage, where the adversary
seeks to infer the exact attributes. The results below are normalized when
dealing with ties.

AI Loc-30 Pur-2 Pur-10 Pur-20 Pur-50 Pur-100 CIF-20 CIF-100
Conf 7.78E-4 1.38E-5 -3.69E-4 2.16E-4 2.00E-3 1.65E-3 -3.32E-7 4.14E-7
Loss 7.76E-4 -9.79E-5 5.57E-3 6.69E-3 4.59E-3 5.09E-3 3.33E-4 7.80E-4

Shadow 8.00E-4 -2.00E-4 2.17E-3 2.63E-3 4.10E-3 4.20E-3 2.26E-4 7.99E-4

overfitted target models (Location-30, Purchase-50, Purchase-100). This suggests that

an AI attack is di�cult to launch, even though the same target model and datasets are

susceptible to MI attacks. Our conclusion runs counter to the results from Yeom et al. on

the success of attribute inference [35], who demonstrate that on regression problems, a Loss

AI attack can successfully infer attributes (using Loss MI attack as a subroutine), and the

more overfit the target model, the more successful the attack. But this is easily reconciled

by noting that our results apply to the classification problem, where the true label given to

the attacker is discrete (class label). This is in contrast to the regression problem, where

the true label (response) is a continuous value. The latter provides more information to

the attack algorithm, which can be employed to launch a loss-based attack, i.e., Loss AI.

The link to overfitting merits further exploration, and we defer this to Section 5.5.3.

A closer look at the Location dataset sheds more light on the reasons behind the failure of

the AI attack. Previously, in Section 5.4.1.2, we observed that the performance of the Loss

MI attack on the Location dataset reaches AUC greater than Ø 0.7, significantly higher

than other datasets. In Figure 5.6a we focus on the Loss MI attack on non-members at

Hamming distances 1 to 15 from the dataset. We can see that the AUC reaches 0.7 at

Hamming distance 10 but remains close to 0.5 between distance 1 to 3. Thus, while the

Loss MI attack should easily be able to discard siblings of the original vector at Hamming

distances greater than 10, it fails at closer distances and thereby resulting in an overall

negligible advantage for the corresponding AI attack. The same reasoning applies to the

CIFAR-100 dataset (Figure 5.6b), although under Manhattan distance.

Observation 5. It is di�cult to infer (exact) attributes of a target vector in the train-

ing dataset from a machine learning model trained for a classification task, even if it is

152

5.5. ATTRIBUTE INFERENCE

susceptible to membership inference.

(a) Loss MI - Location and Purchase,
15 hamming distance.

(b) CIFAR-100, zoomed to 0.5 Man-
hattan distance.

Figure 5.6: Closer inspection of Hamming and Manhattan distance for select
datasets and MI attacks previously seen in Figure 5.3. Note at small distances
from the training vectors, the AUC is close to 0.5, suggesting a poor AI attack.

5.5.2 Approximate Attribute Inference Attacks

Since an MI attack starts performing better as the distance of non-member vectors from the

dataset increases, this suggests that the relaxed notion of approximate attribute inference

(AAI) defined in Experiment 4 may be realizable in practice. Recall that an AAI adversary

is given a portion xú of a vector x, and is asked to return a vector xÕ such that d(x, xÕ) Æ –,

where the parameter – determines closeness to the exact attributes. In this section, we

evaluate AAI attacks. These are essentially AI attacks, but the success is determined by

the parameter –. To set an appropriate value of –, we need to take into account any

algorithm that randomly guesses the missing features without even using the output of

the classifier. Over all challenge vectors, the average distance of the guessed vectors from

the target vectors will approach the expected distance of a vector xÕ from x whose missing

features are randomly generated. We therefore set – equivalent to this expected distance.

This means that any algorithm that successfully guesses more the missing features within

an – distance of the target vector is non-trivial. Note that guessing missing features

trivially due to correlations in the data distribution is already covered by the way our

AAI definition is constructed, i.e., learning via the model versus via the distribution.

Thus, for the Location and Purchase datasets, where we have 15 unknown features, we

153

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

set – = 7.5, and for the CIFAR dataset, with 5 unknown continuous features (normalized

between ≠1 and 1), we set – = 3.33, which is the average distance of a random guess from

the original values (See Appendix C.5).

Table 5.2: Approximate AI Advantage (Definition 5.2.10), where the adversary
seeks to infer approximate attributes (– = 7.5 for Location and Purchase,
– = 3.33 for CIFAR). Results with ties are normalized.

AAI Loc-30 Pur-2 Pur-10 Pur-20 Pur-50 Pur-100 CIF-20 CIF-100
Conf 0.1609 0.0366 0.0516 0.0502 0.0958 0.1307 -0.0004 0.0016
Loss 0.1030 0.0125 0.0516 0.0541 0.0789 0.1012 0.0300 0.0325

Shadow 0.0554 0.0054 0.0067 0.0149 0.0766 0.0964 0.0339 0.0445

Results. Table 5.2 shows the AAI advantage (Definition 5.2.10) of the three AI attacks

on all datasets. Overall, the AAI advantage is considerably higher than the AI advan-

tage (from Table 5.1), reaching up to 0.1609 for the Loss AI attack on the Location

dataset. However, the advantage obtained is still lower than the theoretical maximum

of 1. Furthermore, the advantage is higher for more overfitted datasets, i.e., Location,

Purchase-50, Purchase-100, and CIFAR-100. This indicates that increasingly the level of

overfitting may improve the attack accuracy, which we shall explore in the next section.

Interestingly, Shadow AI either performs worse or comparable to Conf AI and Loss AI,

even though the latter attacks have less information available to them. The advantages

seen in Table 5.2 exceed AI with one missing feature (See Appendix C.2.3), despite the

increased inference di�culty, with more missing features.

Like Yeom et al. [35], our current evaluation, regards the measure of success as an adver-

sary’s ability to infer attributes with a single guess, reported as an average over multiple

vectors; However, we acknowledge there are additional measures of success. For example

top-k, whereby an attacker has the opportunity to submit their top k guesses.

Observation 6. It is possible to infer attributes approximately close to their true val-

ues with a success rate significantly greater than random guess when the target model is

susceptible to membership inference.

154

5.5. ATTRIBUTE INFERENCE

5.5.3 AI, AAI and Relation to Overfitting

In both AI and AAI attacks, we observed greater advantage on more overfitted target

models. To explore this further, we focus on the Purchase-100 dataset and the Shadow

AI attack. We define the overfitting level of a model as the generalization error (GE) as

defined in Eq. 5.1. To alter GE, and hence the degree of overfitting, we vary the amount of

training data, while maintaining proportional splits between training and testing sets. As

we increase the training data size from 20,000 (20K) to 200,000 (200K), the generalization

error decreases from 0.368 down to 0.193 as shown in Table 5.3.

Table 5.3: Approximate AI (Experiment 4) Advantage, where the Shadow
adversary seeks to infer approximate attributes (– = 7.5) from various states
of generalized Purchase-100 Models, trained with di�erent amounts of data
to simulate the e�ect of overfitting. The results below are normalized when
dealing with ties.

Dataset Size 20K 40K 60K 80K 100K 150K 200K
Overfitting 0.368 0.301 0.271 0.251 0.237 0.211 0.193
Shadow AI 0.0024 0.0046 0.0021 0.0052 0.0040 0.0049 0.0033

Shadow AAI 0.118 0.098 0.096 0.078 0.066 0.046 0.026

Results. From the “Shadow AI” row of Table 5.3, we can see that increasing the overfit-

ting level has little to no impact on the AI advantage (the Shadow AI result in Table 5.1

corresponds to a dataset size of 40K). Returning to the comparison with the findings of

Yeom et al. on the e�ectiveness of AI on regression tasks in Section 5.5.1, our results

indicate that for a classification problem, AI remains ine�ective even if we increase the

degree of overfit. On the other hand, there is a positive correlation between overfitting

level and the AAI advantage, evident from the row labeled “Shadow AAI” in Table 5.3.

As the overfitting level increases from 0.193 up to 0.368, the AAI advantage improves from

0.026 to 0.118.

Observation 7. The more overfitted a target classification model, the more susceptible it

is to approximate attribute inference. On the other hand, attribute inference remains hard

even with increased overfitting levels.

155

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

5.6 Related Work

The three black-box MI attacks evaluated in this Chapter were proposed by Shokri et

al. [33], Salem et al. [34] and Yeom et al. [35]. All three works have used a split of

a real dataset into training and testing sets, and demonstrated the e�ectiveness of MI

using the testing sets. We have shown that most vectors in the testing set, i.e., non-

members, are expected to be far from the training set, which explains why the relationship

of MI performance to distance from members was not identified in these works. We have

also shown that our results apply in the white-box setting, by evaluating the MI attacks

from Nasr et al. [1], who proposed passive and active white box attacks targeting both

standalone and federated models. Of course, the research on MI is not limited to these

works. For instance, in [147] black and white box MI attacks are evaluated on generative

adversarial networks; in [148] a new MI attack is proposed based on the loss-based MI

attack from Yeom et al., and in [36] the authors show that even if MI attacks are ine�ective

as a whole on a dataset, they have disparate e�ectiveness on di�erent sub-groups in the

dataset. We have already demonstrated that our observations generalize to other MI

attacks and models, since the underlying principle remains the same, i.e., ML models are

less susceptible to strong membership inference in the classification setting.

The central theme of this Chapter is on the feasibility of attribute inference, also known

as model inversion [37, 38, 149, 150]. A criticism of these works on model inversion is

that they essentially exploit the correlation between the attributes and the true label,

to infer the missing attributes [33]. Finding such correlations is the very purpose of

the learning task, and therefore, the missing attributes would be learned regardless of

whether the challenge vector is a member or a non-member [33]. The model inversion or

attribute inference definition from Yeom et al. [35] avoids this issue by defining the AI

advantage as the di�erence between inferring attributes with the model and without the

model (i.e., through the distribution). Indeed, our definitions of AI and AAI use the same

approach, based on their work. Yeom et al. [35] are also the first to formally relate MI

attacks to AI attacks. They also formalize the role of overfitting to the e�ectiveness of MI

and AI attacks, a link which was previously experimentally identified and demonstrated

156

5.6. RELATED WORK

in [33, 34]. As mentioned previously, they demonstrate that AI attacks are feasible on

regression problems, with the accuracy of the attacks improving with the level of overfit.

Although the AI attack performance is not as significant as the MI attack, it is still quite

substantial reaching an advantage of up to 0.5 on one of the datasets [35]. We have

shown that for classification problems, only approximate attribute inference seems to be

feasible. Apart from [35], Jayamaran and Evans [46] have also experimentally evaluated

attribute inference attacks on classification models. Even though the goal of their analysis

is to evaluate privacy leakage from classification models treated with di�erential privacy,

their results with lower privacy (higher values of the privacy parameter ‘ [44]) can be

considered as closer to the non-private setting. These results also show low AI advantages

as compared to MI attacks, although the authors do not delve into the reasons.

Another related area is the investigation of factors e�ecting membership inference. Sablay-

rolles et al. [151] seek the optimal strategy for membership inference and find that such

a strategy depends only on the loss function, implying that, asymptotically, knowledge of

the model parameters (white box setting) does not provide any benefits over black box

access. However, their treatment does not explore distance-based impact on membership

inference as is done in our work. Long et al. [152] explore the performance of membership

inference focused on training data records which are more vulnerable, in contrast to look-

ing at membership inference performance as an aggregate over the entire training dataset.

They find that records which have fewer neighbors are more vulnerable, as their presence

or absence has more influence on the model’s output. They also state that it is di�cult

for an MI attack to distinguish between a member and its non-member neighbors. Un-

like [152], we formally prove the distinction between MI and SMI, and how this separation

negatively impacts AI (and AAI) on classification models.

On the definitional side, Wu et al. [146] present an initial formal definition of attribute

inference as the di�erence in inferring from the output of the model versus through the

distribution (without access to the model). The definition from Yeom et al. [35], which

is the basis of our related definition, follows the same line of thinking. In addition to

membership and attribute inference, Melis et al. [153] also consider property inference,

157

CHAPTER 5. MEMBERSHIP AND ATTRIBUTE INFERENCE

which is a property of a subset of training points within a class but not true of the entire

class. They show that it is possible to infer properties that are independent of what

characterizes the class through unintended learning by the machine learning algorithm.

Unlike membership or attribute inference which is tied to individual data points, their

property inference relates to multiple training points (subsets).

This is similar to other attacks on machine learning models, such as model extraction [82],

which apply to the entire model itself and not necessarily to individuals in the training

dataset. In a model extraction attack, unknown parameters of the model are retrieved to

construct similarly behaving models (hence stealing the model in a proprietary sense). On

the defense side, it has been demonstrated that MI and AI attacks can be mitigated by

the use of di�erential privacy [44,46,154], although, this comes at a potential loss in util-

ity [46,150,155]. Our findings on the infeasibility of AI attacks indicate that we may only

need protection against (the weaker) approximate attribute inference, for which tailored

di�erentially private learning algorithms can be constructed o�ering better utility. This

is particularly useful for applications where membership inference is less of a concern, or

may even be desirable. A case in point being machine learning auditors, based on member-

ship inference attacks, to prevent unauthorized use of personal data [86,87]. Additionally

only evaluating defenses against AI may mask potential privacy leakage though AIA, an

arguably simpler attack and thus a more di�cult task to defend.

Finally Adversarial examples are vectors with applied perturbations close to the original

target that result in large variations in the model’s behavior, commonly observed as a

mis-prediction [156]. In the setting of MI or AI, given an adversarial example of a vector

within the training dataset, the large di�erence between the behavior of the known and

adversarial example would allow for their distinction. However, as Long et al. [152] state,

the majority of the neighborhood around the vector would have a minimal di�erence on

the model output; with the adversarial example behaving as an exception, rather than

the norm. Though combative methods have been developed to train models robust to

adversarial examples [157], we speculate that robust adversarial models will only have

a minor positive impact on the mitigation of the MI/AI attack, as robust models should

158

5.7. CONCLUSION

preserve the regular behavior of the model, to only mitigate the behavior of the adversarial

examples. Though this warrants further investigation.

5.7 Conclusion

Our results show that it is infeasible for an attacker to correctly infer missing attributes

of a target individual whose data is used to train a machine learning model for a clas-

sification problem owing to the inability of membership inference attacks to distinguish

between members and nearby non-members. For applications, where the privacy concern

is attribute inference, and not membership inference, defense mechanisms tailored to pro-

tect against approximate attribute inference can be constructed. As a future direction, it

will be interesting to explore whether the approximate attribute inference attacks men-

tioned in this chapter can be improved to infer missing attributes as close as possible to

the original attributes.

159

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

Chapter 6

Not one but many Tradeo�s:

Privacy Vs. Utility in

Di�erentially Private Machine

Learning

This chapter is an extended version from work titled “Not one but many Tradeo�s: Pri-

vacy Vs. Utility in Di�erentially Private Machine Learning”, accepted in the 2020 ACM

SIGSAC Conference on Cloud Computing Security (CCSW’20), completed in conjunction

with Zhao, B.Z.H., Kaafar, M.A., and Kourtellis, N.

As seen in the Chapter 4, machine learning models are vulnerable to security attacks, from

Chapter 5, models continue to be vulnerable to privacy attacks. However, this has not

dissuaded data holders from seeking to protect their user’s privacy, whilst still maximizing

their ability to produce machine models with high quality predictions. In this chapter,

we empirically evaluate various implementations of di�erential privacy (DP) and measure

their ability to fend o� real-world privacy attacks, in addition to measuring their core

goal of providing accurate classifications. We establish an evaluation framework to ensure

160

6.1. INTRODUCTION

each of these implementations are fairly evaluated. Our selection of DP implementations

adds DP noise at di�erent positions within the framework, either at the point of data

collection/release, during updates while training of the model, or after training by per-

turbing learned model parameters. We evaluate each implementation across a range of

privacy budgets, and datasets, each implementation providing the same mathematical pri-

vacy guarantees. By measuring the models’ resistance to real world attacks of membership

and attribute inference, and their classification accuracy. we determine which implemen-

tations provide the most desirable tradeo� between privacy and utility. We found that the

number of classes of a given dataset is unlikely to influence where the privacy and utility

tradeo� occurs. Additionally, in the scenario that high privacy constraints are required,

perturbing input training data does not trade o� as much utility, as compared to noise

added later in the ML process.

6.1 Introduction

Advanced machine learning (ML) techniques enable accurate data analytics for various ap-

plication domains. This promoted the commercial deployment of ML as a service (o�ered

by data giants, such as Google and Amazon) which allows data-driven businesses to train

models on sensitive data while o�ering third party (paid) access to these models. Although

commercially attractive, these services can be vulnerable to model theft and privacy in-

fringements potentially not compliant with developing privacy regulations (e.g., EU and

USA regulations such as COPPA [39] and GDPR [40], and most recently e-Privacy [41]

and CCPA [42]). To preserve their models’ privacy while still maximizing their ability

to produce ML and deep learning (DL) models that have high utility for their services,

data-driven organizations are turning towards leveraging privacy-preserving ML (PPML)

techniques, building on theoretical frameworks of Di�erential Privacy [43,44] (DP) and/or

Federated Learning [45] (FL). However, di�erentially private PPML methods often come

with an intrinsic tradeo� between utility (e.g., as captured by the accuracy of the model)

and the privacy guarantees o�ered by the technique applied to protect user data.

161

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

A recent initial investigation in [46] studies di�erent DP compositions, and how these

compositions can be applied to the training of a neural network or logistic regression

model. [46] reports on the impact these privacy mechanisms have on the model’s utility,

and the e�ectiveness of inference attacks on the resulting models. Inspired by [46], and

towards the goal of understanding the tradeo� between privacy and utility of DP-enabled

ML methods, we dive deeper into this problem and, in this study, we set to assess how

this inherent tradeo� depends on the (1) ML method used, (2) stage in the ML framework

where the DP method is applied to protect the data or model, and (3) complexity of

training data in use with respect to classes and attributes in the data.

We develop a comprehensive and systematic evaluation of a DP-enabled ML framework

that enables a privacy ML researcher to study the Utility-Privacy tradeo� in depth for their

data at hand. Our objective is to allow the selection of the best performing method yielding

the highest predictive accuracy while still ensuring a solid level of privacy protection, by

studying the di�erent stages where DP-based noise can be applied: as an obfuscation

to the input data, during model training, or at the model finalization by perturbing the

learned model parameters. Equally important, the study’s objective is to inform privacy

ML researchers what privacy threshold to apply in their framework, and what are the

privacy guarantees expected from the selected setup, vs. the utility of the chosen ML

method.

We study various recent DP implementations of classical ML and DL methods such as

Naive Bayes, Logistic Regression, Random Forests, and Neural Networks, and empirically

measure their ability to fend o� black-box privacy attacks that may be practically launched

in the real-world, while also measuring the model’s core goal of providing accurate clas-

sifications. Crucially, we establish this standard evaluation framework to ensure each of

these DP implementations are evaluated fairly.

In particular, we study and test how ML performance and privacy are impacted when

DP noise is added at di�erent stages of the ML pipeline: Stage (1) by adding noise to

the input data before the ML/DL training phase. Stage (2) where DP noise is added

during model updates, i.e. while training the selected model. Stage (3) after the model

162

6.1. INTRODUCTION

training is performed, by perturbing learned model parameters. We evaluate each DP-

enabled ML implementation across a range of privacy budgets, each instance providing

the same mathematical privacy guarantees. We measure di�erent metrics to capture the

aforementioned tradeo�: privacy o�ered to the model and data (resistance to membership

and attribute inference attacks) and model utility (classification accuracy).

We use both synthetic and real-world datasets to capture the aforementioned privacy and

utility tradeo�. Our use of a synthetic dataset enables us to isolate the e�ects of DP noise,

stages, and dataset complexity without the influence of data distributions. However, not

to discount the importance of standard real-world datasets, we also perform our evaluation

on a range of real data like CIFAR [47], Purchase [48], and the Netflix dataset [49] in which

we provide the same pre-processing treatment as Purchase [48].

With our experimentation, we make the following observations. Most notably, for a given

amount of model utility, applying DP noise at stages later than the input phase permits

the addition of more DP noise, thus providing higher privacy guarantees. This observation

is consistent across all DP-ML algorithms.

When considering utility and privacy as a function of the DP noise, we identify an “inflec-

tion point” for each function, an indicator of where the greatest change in utility and/or

privacy will occur for a given DP-ML method. We find that this point on privacy function

is more closely related to the Utility response, and the DP-ML method used, instead of

DP privacy guarantees, as expected from the amount of DP noise applied to the process.

Also, the data complexity of the dataset is unlikely to influence the inflection point of the

utility or the privacy function. Finally, when privacy or utility comes with constraints,

we provide recommendations for the best performing DP-ML method, and their expected

utility and privacy guarantees.

We contribute our open sourced framework1 for reproducibility purposes, as well as for

other researchers to build on it and study privacy and utility thresholds of newly proposed

DP-ML methods.

1Source code available at https://github.com/PrivateUtility/PrivateUtility

163

https://github.com/PrivateUtility/PrivateUtility

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

Training Dataset (X, y)

1 Record

ML

Model

F(X)=y

Parameter Update

ε-DP Noise

STAGE 1 (S1)

Data Collection
STAGE 2 (S2)

ML Model Training

ε-DP Noise

(X, y)

F’(X)(X’, y)

STAGE 3 (S3)

Model Finalization

ε-DP Noise

F(X’)

F’(X)

or
or

F(X)

or

MODEL EVALUATION

Utility (U) vs. Privacy (P)

P: Membership

Inference Attacks

P: Attribute

Inference Attacks

U: ML Model

Accuracy (Loss)

F’(X)

F(X’)

Figure 6.1: Our instantiation of the proposed methodology, with the three pos-
sible Stages that DP noise can be introduced in the ML pipeline to guarantee
data privacy, and performance metrics used to assess privacy-utility tradeo�.

6.2 Methodology

6.2.1 Overview

In this Section, we provide details of the building blocks needed to study the privacy-utility

tradeo� as a comprehensive and modular methodology. Our methodology encompasses

the following:

• DP noise definitions (Section 6.2.2)

• Stages of the ML pipeline at which DP noise is added (Section 6.2.3)

• ML algorithms that are DP-enabled (Section 6.2.4)

• Privacy metrics, assessed with privacy attacks on data (Section 6.2.5)

• ML utility metrics (Section 6.2.6)

In this chapter, we provide an instantiation of this methodology (Figure 6.1) to evaluate

the privacy-utility tradeo� in DP-enabled ML algorithms. Next, we cover details for each

of these building blocks, and in Section 6.3, we provide details of their implementation.

164

6.2. METHODOLOGY

Note that our methodology can be extended to account for other considerations in the

privacy-utility tradeo� analysis. This could include Resource metrics (e.g. required com-

putational resources for training ML models) or various datasets characteristics in use.

6.2.2 Di�erential Privacy

Di�erential privacy (DP) mathematically defines the protection o�ered in regards to the

privacy of a single data vector, whether that is representative of an individual, or a single

temporal event [43]. The ‘-di�erential privacy is defined such that two neighboring sets of

data D and DÕ, di�ering by a single vector are indistinguishable up to a limit as described

by a privacy budget ‘. The output of a mechanism M applied on each dataset should also

be indistinguishable from each other, up to our limit of ‘. In other words:

Pr[M(D) œ S] Æ Pr[M(DÕ) œ S] ú e‘ (6.1)

Many di�erentially private ML algorithms support relaxations of the DP definition. There

are two main relevant relaxations of ‘-DP: (‘, ”)-DP [44], and (–, ‘)-DP (Renyi-DP) [158].

Both relaxations provide eased requirements for DP while preserving properties such as

composition and core privacy guarantees.

We will not be using these relaxations in this chapter, however, we note they are reducible

to (‘)-DP, the focus definition in this thesis. In fact, (‘, ”)-DP [44] is equivalent to (‘)-

DP, when ” = 0, and (–, ‘)-DP [158] is reduced to ‘-DP when – = inf. Also, the authors

in [159], given a set of assumptions, derive the upper bound of ‘-di�erential privacy as

p/‘, where p is the dataset dimensionality.

6.2.3 ML Pipeline Stages for DP Noise Injection

As noted by [46], there are three general positions in which DP noise can be applied to

a ML task, to preserve the privacy of the data used, or the model built. These three

positions of entry in the ML pipeline are visualized in Figure 6.1. To make the next

observations more concrete, let the function F map the training dataset X to class labels

165

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

y, that is, F(X) = y. Then, the goal of the ML model is to approximately learn this

relationship between dataset and labels as best as possible. Next, we discuss each of these

three Stages:

Stage 1 (S1): Before the learning process. During the collection or release of data (X),

and before aggregation at the server, if local DP noise is applied on every data record, the

data (X’) are protected before being used in a ML pipeline. Alternatively, when releasing

a dataset to the public domain, the owner can train a data generator to create a synthetic

dataset containing the same data semantics as the real data, but with the synthetic data

governed by the rules of DP. Consequently, the F(X’) model learned is DP-enabled.

Stage 2 (S2): During the learning process. In this stage, each step of the model update is

restricted as to not excessively alter the model with the added DP noise (F Õ(X)), and thus

compromise the privacy of a given batch of records. The classic example for this Stage is

the Tensorflow Privacy, which deploys a DP stochastic gradient descent algorithm [154].

Stage 3 (S3): After the learning process. After the data modeling has finished, the

learned parameters of the model can be perturbed, by adding DP noise on them (F Õ(X))

to remove dependencies between learned parameters and training data.

6.2.4 DP-based ML Algorithms

A literature review on existing ML methods that provide DP protection to the data

or model revealed that various realizations can be loosely divided into the three Stages

outlined above. We identified four key ML classification algorithms of interest: Naive

Bayes (NB), Logistic Regression (LR), Random Forests (RF), and Neural Networks (NN).

Next, we describe the approach used by each one in learning on data in a supervised

setting, while applying DP noise in each Stage. We remark that [46] focused primarily on

di�erent DP compositions for NN and LR, both leveraging empirical risk minimization in

the learning process, and loosely mapping to our S2 and S3 Stages, respectively. However,

they did not o�er direct comparisons of these ML algorithms across all Stages, as we do.

166

6.2. METHODOLOGY

Table 6.1: DP-enabled ML methods used in each pipeline Stage.

Stage where DP noise is applied
ML Method S1 S2 S3

Naive Bayes X X
Logistic Regression X X
Random Forests X X
Neural Network X X

In fact, we compare these and other DP-based ML methods, summarized in Table 6.1, as

applicable in each Stage.

6.2.4.1 S1: Manipulation of Laplacian Noise

At this stage, we apply DP Laplacian noise [113] directly on the dataset, and thus, this

process is independent of the ML algorithm used in subsequent steps of the framework. As

a result of this independence, we can employ all four ML algorithms, in their non-private

versions, on the modified, DP data. In particular, DP is provided by the addition of noise

to every vector in the dataset. Laplacian noise is independently sampled for every feature

value, of every data vector from the distribution Lap(0, —i), where —i = Si

‘/p
, and Si is the

value range of the ith feature [113] (Algorithm 4).
Algorithm 4: Direct addition of DP noise to dataset before ML.
Input: Training Dataset X, where x := {x0, ..., xi, ..., xp}

Result: Di�erentially private Training Dataset X Õ

1 for x in X do

2 xÕ = x + b; where b := {b0, ..., bi, ..., bp}; bi œ Lap(0, —i)

3 Proceed with learning task F on X Õ.

Adding DP noise in S1 is ML independent and permits more flexibility, as any ML or DL

method can be employed after S1 for training. The application of noise is dependent on

data types and their complexity with respect to features and values allowed.

Remark 6.2.1. DP noise is applied with the assumption that features are independent

from each other, meaning a maximal amount of noise must be applied to each feature to

167

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

ensure DP. With knowledge of feature dependence, hypothetically less noise can be applied

to the dependent features as there is less uniquely identifying information between the

dependent features.

6.2.4.2 S2: DP-based Random Forests

Random Forests (RF) [160] are an ensemble of decision trees produced through bagging

(bootstrap aggregation), whereby the training dataset is resampled from the training data

to introduce dataset variability in the training of each tree. By applying feature random-

ization, a restriction in the number of features available to a tree when splitting a leaf

node, the RF is able to produce an ensemble of varied trees each with its own decision,

from which the final classification decision is made (for example majority vote). Di�er-

entially private random forests with Smooth Sensitivity [161] create conventional random

forests, but instead of retaining the exact frequencies of data under each subsequent branch

from the leaf, only the majority label is retained after the application of an exponential

mechanism dependent on the privacy budget available (Algorithm 5):
Algorithm 5: DP-based RF with Smooth Sensitivity [161].
Input: Boosted and Bagged Training Dataset X

Result: Di�erentially private decision tree T Õ

1 Compute T , a regular tree from X;

2 for each node within the tree do

3 retain Majority Label from datapoint frequencies through exponential

mechanism [161];
4 Return T Õ to the Forest;

Remark 6.2.2. Computing the confidence of a prediction from the RF has been compli-

cated due to the omission of distributions in the leaf nodes of trees. It is however possible

to compute a confidence value from the majority voting aggregation of predictions of trees

within the RF.

168

6.2. METHODOLOGY

6.2.4.3 S2: DP-based Neural Networks

Neural Networks (NN) are designed to mimic the functionality observed within brains [162].

They contain multiple layers of neurons (some hidden) that are activated depending on

the activation of neurons in the previous layer. The influence of a previous layer’s neurons

on the current neuron varies depending on a weight or parameter value learned during the

training phase. The very final layer is often a decision layer that corresponds to each of

the classes present in the classification problem. The degree of activation of this last layer

is analogous to the confidence of the class prediction.

The approach employed by Tensorflow-Privacy’s [154] implementation of DP-enabled NN

involves the use of a DP stochastic gradient descent (SGD) algorithm. The SGD algorithm

seeks to find network parameters ◊ to learn function F . The DP-based SGD first clips

or limits the size of gradient update, to not be heavily impacted by one batch of data.

Additional noise is added to the updated gradient depending on the values of ‘, and batch

sensitivity (Algorithm 6):
Algorithm 6: DP-based Stochastic Gradient Decent [154].
Input: Training Dataset X

Result: Di�erentially private parameters ◊Õ

1 ◊Õ
Ω RAND, initialize the parameters randomly;

2 for batch t œ T do

3 compute gradient �◊, clip gradients �◊, add DP-noise b

4 ◊Õ = ◊Õ + �◊ + b

5 Complete F
Õ learning task with ◊Õ.

6.2.4.4 S3: DP-based Naive Bayes

The Naive Bayes (NB) [163] classification algorithm learns probabilistic distributions of

the output classes informed by the input feature values. The algorithm is considered

“naive”, as it assumes independence between features. The distributions are learned di-

rectly from the training dataset. The simple formulation of the model enables the Naive

169

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

Bayes classifiers to both be trained, and to make predictions relatively quickly.

IBM NB [164] implements an (‘)-DP NB, originally by [165]. The approach adds noise to

the learned distributions that relate the input feature to the output decision. Algorithm 7

shows the Laplacian noise addition to the mean and standard deviation (µ, ‡) computed

from training dataset X. A more complete algorithm for handling both categorical and

continuous data can be found in [165].
Algorithm 7: DP-based Naive Bayes provided by IBM [164].
Input: Training Dataset X

Result: Di�erentially private model distributions ◊Õ

1 Compute (µ, ‡) from X;

2 for i in features do

3 Compute scaling factor S(µ,i) and S(‡,i) from feature mean µi, feature STD ‡i,

and ‘;

4 µÕ
i

= µi + bi; where bi œ Lap(0, S(µ,i));

5 ‡Õ
i

= ‡i + bi; where bi œ Lap(0, S(‡,i));

6 Compute output priors P (y|x) from (µÕ, ‡Õ);

6.2.4.5 S3: DP-based Logistic Regression

The Logistic Regression (LR) [166] algorithm employs the logistic function (sigmoid func-

tion) to model the probability of a binary outcome (binary classification) with the input

feature vector. In the multi-class setting, every output class has an independent logistic

function predicting the binary objective of the specific class (or not). The final classi-

fication is an aggregation of these independent functions. DP-based LR [167] works by

adding Laplacian noise proportional to the Sensitivity of the feature and ‘ to the objec-

tive function of the model (loss function). After the noise addition, F
Õ can be evaluated

(Algorithm 8):

Remark 6.2.3. We regard the minimization of the objective function on the noisy objective

function of LR as Stage 3, as the DP noise is applied with access to the entire set of data,

170

6.2. METHODOLOGY

Algorithm 8: DP-based Logistic Regression by IBM [164].
Input: Training Dataset X

Result: Di�erentially private objective function J
Õ

1 Compute (µ, ‡) from X; J
Õ = J + b;

2 where b œ Lap(0, —); specific details on — available in [164]

and the noise is not dependent on any partial split of the data.

6.2.5 Privacy Attacks & Privacy Metrics

Traditionally, privacy has been measured with theoretical metrics such as information

leakage [168, 169] and mutual information [170]. However, recent privacy attacks such

as membership inference (MI) [33–35] and attribute inference (AI) [35, 145] have been

introduced [46] as alternatives to measure the privacy risk of ML models.

In this work, we quantify the privacy o�ered by the implementation of DP, through the

e�ectiveness of these two well-known privacy attacks (MI and AI). The threat model

adopted by these attacks falls under the category of black-box attacks, with an adversary

only having access to the input and output of the ML model. In fact, for the current

generation of MI attacks [33–35], only one query is required for the vector in question

(disregarding queries needed to train an attack model), whereas AI attacks need multiple

queries, one for any possible value in the unknown attribute.

6.2.5.1 Membership Inference Attack

MI attack [33–35] defines an attacker that tries to determine if a specific data record has

been included within the training data of a given ML model, or not. The attack objective

is related to the definition of DP, as according to DP, two datasets with or without an

‘ proportion of records should be indistinguishable from each other. Of course, this is

problematic if a privacy ML practitioner is seeking to maintain the confidentiality of their

training data or to adhere to privacy regulations governing the data used in training. In

171

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

literature, there are three realizations of the MI attack [33–35]. In this work, we focus on

attacks described by Salem et al. [34] (ConfMI) and Yeom et al. [35] (LossMI).

ConfMI [34] attack works on the premise that a ML model is more confident about a

prediction on an input vector it has previously encountered (in the training set), than an

input vector it has not previously encountered (in the testing set). Thus, a vector with

higher prediction confidence on any class label is more likely to be a member vector. A

threshold can be found from a similarly distributed dataset to make a final distinction if

an input is a member or non-member. Indeed, this attacker does not know the vector’s

classification truth, and the prediction confidence is a single value of the most probable

class, irrespective of if it is the correct prediction.

LossMI [35] attack is similar to ConfMI . However, they use prediction loss, requiring the

true label of the input vector. Additionally, instead of finding a threshold from a similar

data distribution, the model training loss is assumed known and used as the threshold.

The additional information needed makes the LossMI attack more di�cult to perform

than ConfMI , but more e�ective.

Remark 6.2.4. If a classifier does not directly return a value of training loss from the

training process, we compute the training loss as the average loss across the training

dataset.

6.2.5.2 Attribute Inference Attack

AI attack is an extension of the MI attack, however, instead of only determining if a

record is included within the training set, the adversary seeks to recover the exact value

of a missing attribute that could be masked due to its sensitivity (e.g., the diagnosis for

the type of cancer of an individual). In particular, if a record vector has a dimensionality

of n (i.e., n features), the adversary is assumed to have n ≠ 1 true features of the original

record. Their objective is to infer the nth feature’s sensitive value. In general, AI attacks

are more di�cult to mount than MI attacks due to the requirements of the attacker.

172

6.2. METHODOLOGY

The first method of AI (LossAI) follows work by [35] and [46] in evaluating every binned

permutation of a vector and its unknown attribute, and selecting the value that produces

a loss closest to the model’s training loss. The second attack (ConfAI) follows work

by [145] and [34], by selecting the vector permutation that produces the highest model

confidence as the most likely real attribute.

To date, many implementations of the AI attack (e.g., as in [46]) bin numerical features for

a binary evaluation. In this work, we go beyond the state-of-art and increase the number

of allowable (binned) values in the inference of a vector’s attribute, from two bins up to a

maximum of 10 bins, depending on the unique values of an attribute. For instance, if an

attribute is binary, two bins are required. A numerical feature with 6 distinct values will

require 6 bins, and a continuous feature will be binned into 10 value bins.

6.2.5.3 Measuring Privacy Leaks: Adversary Advantage

The adversary advantage can be described as the improvement of a privacy attack observed

on a set of input vectors that were included in the training set, as opposed to not being

included in the training set. The rate at which the privacy attack succeeds on the positive

class (member vectors) is the True Positive Rate (TPR), while the rate at which privacy

attack is incorrectly predicted on the negative class (non-members) is the False Positive

Rate (FPR). As such, the advantage can be formulated as ADV = TPR ≠ FPR. A

rigorous definition of the advantage is provided in [35]. It is clear novel attacks, and their

advantage can be added to our framework. Here, we measure the impact of the four

aforementioned attacks.

6.2.6 ML Utility Metrics

The objective of ML is to learn trends from a training dataset, and then predict the label

of a previously unseen input instance. To evaluate the e�ectiveness of a trained model,

predictions are made on a holdout set (not used in training), said predictions are then

173

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

compared to known true labels. The proportion of the holdout set that is correctly re-

predicted as the true labels represents the accuracy (ACC) of the trained model: ACC =

ncorrect/nholdout.

Accuracy is a simple measure of ML prediction performance. Other commonly used metrics

are AUC, Precision, Recall, or F-Score. Also, new metrics such as model fairness [171] and

minimization of computational processes [172, 173] can be important in a privacy-utility

tradeo�. All such utility metrics can be added to our framework.

We focus on Accuracy Loss (ACL), defined as the ratio of performance lost when DP

is applied to the ML process (m), in comparison to an equivalent ML model trained with

no DP applied (i.e., ‘ = inf):

Accuracy Loss (ACL) = 1 ≠
ACC(m,‘)

ACC(m,‘=inf)
(6.2)

6.3 Experimental Investigation

In this section, we detail how the methodology introduced earlier is instantiated2 to ex-

perimentally investigate the tradeo� between ML model performance with respect to pre-

diction, vs. privacy guarantees provided to data used to train said model. In particular,

with our experimentation, we are interested in answering questions of:

1. What is the inflection point in the tradeo� between ML model accuracy and privacy

leak? Is this inflection point consistent across various types of privacy attacks?

2. Does the stage of the DP-enabled ML framework in which the DP noise is applied

impact this inflection point?

3. Is there a ML method that outperforms others at both prediction and privacy guar-

antees, consistently across datasets?

2Our code and data is provided at https://github.com/PrivateUtility/
PrivateUtility

174

https://github.com/PrivateUtility/PrivateUtility
https://github.com/PrivateUtility/PrivateUtility

6.3. EXPERIMENTAL INVESTIGATION

We seek to empirically identify important parameters that a�ect the manifestation of

this privacy-utility tradeo�. To this end, in Section 6.3.1, we detail the experimental

procedures that vary the DP noise amount (‘), where it is applied in the framework

(Stages), di�erent DP-ML algorithms implemented, and metrics used. Then, we describe

the training datasets used, both synthetic and real (Section 6.3.2), providing details on

the number of classes and type of attributes (continuous, binary). In the next Section 6.4,

we present our experimental results and extract key takeaway messages.

6.3.1 Experimental Framework

First, we detail implementations of DP-ML methods used, as well as metrics to assess

ML performance and privacy when DP noise is applied. We note that Section 6.2 already

provided details for the privacy attacks and ML methods used. Then, we outline the

common steps shared between all evaluations of the DP-ML methods. We bootstrapped

our framework implementation from [174], but make the following crucial extensions:

• Accommodate the new ML algorithms to run in this framework,

• Adapt code to improve framework resource consumption,

• Add implementation of MI attack proposed by Salem et al. [34],

• Add implementation of AI attack proposed by Zhao et al. [145] (c.f. Chapter 5),

• Adapt AI attack of Yeom et al. [35] to support multiple bin values instead of only

binary,

• Add synthetic data generation for tradeo� & benchmark studies.

6.3.1.1 Machine & Deep Learning Methods

We used implementations of ML algorithms explained in Section 6.2.4 readily available

online. Tensorflow-Privacy [154] has code in [175]. DP Random Forests [161] has code

175

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

in [176]. We emphasize the modifications done to DP RF , as it did not adhere to standard

function calls of sk-learn [177] APIs. IBM Naive Bayes and IBM Logistic Regression [164]

have code in [178].

6.3.1.2 Performance Metrics & Privacy Budget

In our experiments with the various ML methods and datasets, we measure di�erent

performance metrics. For prediction performance of a trained model, we measure Accuracy

Loss (ACL) (See Section 6.2.6), We perform four MI and AI attacks (See Section 6.2.5),

to quantify privacy leaks. Finally, in order to vary the amount of DP noise applied in each

framework Stage and in each ML method, we use di�erent values for the privacy budget

‘ = {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000}.

6.3.1.3 Experimental Steps

To perform the evaluation for: 1) a given dataset, on 2) a DP-based ML method, with

3) a privacy budget ‘, we first sample from the dataset two sets of 10,000 samples each,

forming our training and testing sets. Then, we train the ML model with the training set.

In the case of S1 DP noise, we apply noise to the training set prior to the model training.

Model training configurations can be found Appendix D.1.

Each model’s prediction accuracy is obtained on the unseen testing set. With a trained

model, the ConfMI , LossMI , ConfAI , and LossAI attacks are performed. In MI attacks,

the training set constitutes the membership set, whilst the testing set is the non-member

test set. In AI attacks, we consider up to 10 unique values for the unknown protected

attribute (whilst accounting for continuous features). The attack is repeated on 20 di�erent

attributes, randomly selected to be the protected attribute. Then, the entire training and

attack process is repeated 5 (10) times for synthetic (real) data, with training and testing

sets sampled anew, to reduce the impact of biases arising from the data or DP noise.

176

6.3. EXPERIMENTAL INVESTIGATION

6.3.2 Experimental Datasets

6.3.2.1 Synthetic Data

We generated data by uniformly sampling 100k vectors from a normalized feature space

of 50 features. From these 100k vectors, we apply k-means clustering onto the dataset

to artificially create labels of 2, 5, 10, 20, 50, 100, and 200 classes. This results in 7

di�erent datasets of a varying number of classes, however, they all contain the same

vectors originally sampled.

6.3.2.2 Real-World Data

We used three real datasets to study the tradeo� in our DP-enabled framework (summary

in Table 6.2):

Table 6.2: Summary of datasets used in our experimental investigation, with
respect to the number of instances available, classes provided (or constructed),
and attributes available.

Dataset Instances Classes Attributes

Synthetic 100,000 2, 5, 10, 20, 50, 100, 200 50

CIFAR [47] 50,000 20, 100 50

Purchase [48] 200,000 2, 10, 20, 50, 100 599

Netflix [49] 100,000 2, 10, 20, 50, 100 1000

CIFAR-100 [47]: The CIFAR dataset consists of 50k tiny images of various objects,

that can be labeled according to 100 types. They can also be re-classified under 20 type

super-classes. This dataset has been pre-processed with principal component analysis as

in [46], to extract 50 key features to represent each of the images.

Purchase [48]: The Purchase dataset contains 200k user records of item purchases made

from a set of 599 products. The values are binary, indicating if users had or not bought

one of the 599 items. We perform a similar pre-processing step as in [33], by encoding a

single user’s transaction history as a binary vector, followed by the k-means clustering of

177

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

users into purchaser groups. We consider label complexities of k = {2, 10, 20, 50, 100}.

Netflix Prize [49]: The Netflix dataset was first released in 2006 and contains ratings

(from 1 to 5) by viewers on the Netflix platform for movies they watched. This dataset

was also used in [35]. However, insu�cient pre-processing details were provided for us to

replicate their exact dataset. Therefore, we performed the following steps: (1) Sample

the user ratings of the top 1000 rated (based on the number of ratings, not rating score)

movies within the dataset. (2) Every user has their ratings assembled into a feature vector,

with unrated movies filled in with a zero value. (3) If a user has not rated any of the 1000

most popular movies, the user is excluded from the dataset. (4) Then, we apply k-means

clustering (as in Purchase) to obtain viewer groupings of k = {2, 10, 20, 50, 100}.

6.4 Experimental Results

In this section, we present our results for di�erent experiments using our evaluation frame-

work, to answer the questions posed in Section 6.3. We first analyze results with synthetic

data, while controlling class complexity, and extract generalized patterns related to the

privacy-utility tradeo�. We shall compare these patterns with results on real data to assess

how the tradeo� manifests on real-world datasets.

6.4.1 Privacy-Utility Tradeo� on Synthetic Data

We perform experiments on controlled, synthetic datasets to discover generalizable prop-

erties that can be drawn regarding the privacy-utility tradeo�. The synthetic dataset

allows us to remove the e�ect of data-specific biases (in a controlled manner), that may

otherwise be present in the real data.

178

6.4. EXPERIMENTAL RESULTS

6.4.1.1 ML accuracy vs. DP noise

In Figure 6.2, we analyze ACL and its inflection point for the di�erent ML algorithms,

while varying class complexity, amount of DP noise, and the stage at which it is applied.

When applying large amounts of DP noise (i.e., small ‘) at the input stage (Stage 1), we

observe that the ACL is equivalent to a random guess irrespective of the ML algorithm in

use. It is not until ‘=10 (≥100 for NN) that the ML algorithm is capable of outperforming

a random guess.

In Stage 2, RF struggles to learn the task even at high values of ‘ (the ACL never

reaches 0). However, both RF and NN exhibit a notable inflection point at ‘=1 and

10, respectively.

Finally, at Stage 3, the inflection point for NB occurs at ‘=0.01, while the first inflection

point for LR occurs at ‘=0.1.

When we compare ML performance across Stages, we observe that from S1 to S3, there

is an increasing amount of DP noise that can be applied to the ML method, before the

accuracy of the system is reduced to a random guess.

Notably, given that the synthetic dataset is generated with the same underlying data

vectors but with di�erent class complexities, we observe that the inflection point occurs

at about the same value of ‘, irrespective of the number of classes.

While this inflection point does not vary across class complexities, the complexity of each

dataset has a direct impact on the maximum ACL (due to the random guess).

6.4.1.2 Membership Inference Attacks vs. DP noise

In Figure 6.3, we analyze the results on ConfMI attack (similar results for LossMI are

in Figure D.1 in Appendix D.2). We first analyze the inflection point of the privacy

advantage of the attacker, for each of the framework stages, followed by an analysis on

179

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure 6.2: Accuracy Loss for each ML method used, when di�erent amount
of DP noise is applied at framework Stages 1, 2 or 3, and for synthetic dataset
complexities used. The underlying complexity of data vectors in each dataset
remains the same.

the class complexity.

Across all ML methods in Stage 1, there is a clear inflection point at ‘=100, where an

attacker until this point has an advantage. It is interesting to note that in comparison to

the ACL, the ConfMI advantage reaches zero before the accuracy is completely diminished.

180

6.4. EXPERIMENTAL RESULTS

In Stage 2, the absolute advantage is rather small, resulting in a seemingly high variance.

Finally, in Stage 3, the inflection points for NB and LR occur at ‘=1≥10 and ‘=10≥100,

respectively. We note that the gradient of decreasing ConfMI advantage (i.e., while ‘ is

decreasing), is similar between S1 and S3, while the inflection points in S3 occur at smaller

‘ values than S1.

Across Stages, we note that for ML methods in S2, the ConfMI struggles with very low

advantages, in comparison to S1 and S3. Similar to what was observed in ACL, the class

complexity appears to have little e�ect on the inflection point of the ConfMI attack.

However, where the attack is e�ective, a higher class complexity is more vulnerable to

ConfMI attack.

6.4.1.3 Attribute Inference Attacks vs. DP noise

In Figure 6.4, we analyze the results on LossAI attack (similar results for ConfAI are in

Figure D.2 in Appendix D.3). We study the inflection point of the attack for each stage

and across stages, and across class complexity.

Across S1, there is an inflection point in the attack e�ectiveness at ‘=10≥100. We note

that the absolute advantage of the attack di�ers depending on the ML algorithm used.

For S2, RF has inflection point at ‘=1, while NN at ‘¥100. Interestingly, we note that in

S2, while RF was observed to have di�culty learning the task (i.e., high ACL at di�erent ‘

values), it is still vulnerable to expose attributes of the training data under LossAI attack.

Lastly, for S3, NB has inflection point at ‘=0.1, while LR at ‘¥100.

The LossAI attack does not perform well against S2:NN and S3:LR. Interestingly, they

both rely on a Stochastic Gradient Descent approach to learn the classification task.

However, adding noise at stages S2 and S3 seem to have a bigger impact on the inflection

points of NN and LR than when adding noise at Stage S1.

Again, we observe that number of classes does not impact the position of the inflection

point for a given DP ML technique.

181

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure 6.3: Advantage of ConfMI attack for each ML method, when dif-
ferent amount of DP noise is applied at Stages 1, 2 or 3, and for di�erent
synthetic dataset complexities. The underlying complexity of data vectors in
each dataset remains the same.

6.4.1.4 Summary of Results on Synthetic Data

We saw evidence of a measurable inflection point and the tradeo� between the utility and

privacy, as measured by MI and AI attacks. The observable ‘ value in which this inflection

182

6.4. EXPERIMENTAL RESULTS

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure 6.4: Advantage of LossAI attack for each ML method, for di�erent
amount of DP noise applied at Stage 1, 2, or 3, for di�erent synthetic dataset
complexities. The underlying complexity of data vectors in each dataset re-
mains the same.

occurs, is largely dependent on the Stage in which the DP noise is applied, and to a much

lesser extent on the algorithm used. Between ACL and privacy advantage results, class

complexity has little impact on where the tradeo� is observed.

183

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

6.4.2 Privacy-Utility Tradeo� on Real Data

Here, we present an analysis of results on real data, highlighting pattern similarities and

di�erences compared to the synthetic data.

6.4.2.1 ML accuracy vs. DP noise

Next, we analyze the ACL on real data in a similar fashion as with the synthetic data,

but grouping results of all datasets by class complexity (number of classes) to facilitate

comparison. We discuss model performance at each stage and across stages, and the

impact of class complexity on ACL.

Stage 1 (S1): When the DP noise is applied in S1, i.e., directly on the dataset, in

Figures 6.5(a-d), we observe similar trends with ACL in synthetic data. However, ACL

remains high until ‘ increases to ≥100. Up to that point, the modeling process is unable

to learn the dataset rules, and the ACL is indicative of random guesses from the model,

and this is true regardless of the model used.

Also, when the smallest amount of DP noise (i.e., ‘=1000) is applied, we find that LR

performs the best and achieves the lowest ACL (0<ACL <0.1) among the four ML meth-

ods. NB is also found to perform well at this noise level, even though its ACL is higher

(0.2<ACL <0.4). RF achieves a wider range of ACL (0.1<ACL <0.7), which indicates

a high dependence on the complexity of the dataset. Specifically, datasets with many

classes (50 or 100) do not allow RF to achieve high accuracy when a minimal amount

of DP noise is applied (high ‘). Finally, NN performs the worst, since its ACL is high

(0.4<ACL <0.7), regardless of dataset complexity.

Stage 2 (S2): Interestingly, as seen in Figure 6.5(e,f), when the DP noise is applied at

S2, i.e., during model training, we notice that ACL is at its highest until ‘¥1 for RF , and

‘¥10 for NN . In particular, we observe that the accuracy of both models is generally low,

and also highly depended on the dataset used (0.1<ACL <0.9). However, it seems that

184

6.4. EXPERIMENTAL RESULTS

NN is more e�ective than RF in modeling the data at hand, when very low DP noise is

applied (i.e., ‘=1000).

Stage 3 (S3): When the DP noise is applied at S3, i.e., after the model was trained

but before it is used, we see (Figure 6.5(g,h)) the ACL at its highest until ‘¥0.1 for NB,

and ‘¥1≥10 for LR. When this inflection point is passed, and NB is applied, the lowest

ACL ¥0 is achieved, and this performance is consistent across all datasets and class

complexities. Alternatively, LR achieves low ACL only for low class complexity datasets.

This association of the inflection point with class complexity is an exception to the norm

and only evident with S3: LR. This e�ect is more pronounced when viewing the synthetic

dataset (c.f., Figure 6.2(h)).

Remark 6.4.1. We observe that ACL drops below 0.0 in S1: LR and S3: NB, indicating

a model accuracy higher than if no privacy was applied. It is likely that the small amounts

of DP noise applied have assisted in generalizing the model to predict better on unseen

data. However, as the DP noise continues to increase, a diminished model performance

returns. These may be interesting cases where a practitioner can seek to obtain smaller ‘

at no cost to model performance.

Dataset class complexity: Generally, we know that datasets with high class complex-

ity are harder to model with ML methods, and thus, their accuracy achieved would be

expected to be low, in presence of no DP noise. Indeed, in the above experimentation,

we notice that in several occasions, datasets with 50 or 100 classes are di�cult to model

with high accuracy and high DP noise. When small amount of DP noise is applied on

low-complexity datasets with 2, 10 or even 20 classes, and especially in S1 and S3, the

tested ML methods perform fairly well, with low ACL.

Comparing ML Performance Across DP-ML framework

Stages: To o�er stronger protection guarantees for the given data, more DP noise must

be added on the data (i.e., move towards the left hand-side of the aforementioned plots).

When adding more noise, it appears that the ACL is a�ected in a similar fashion, for any

ML method used, and regardless of the Stage at which we apply the noise, or dataset class

185

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

complexity. There is an amount of DP noise that when it is added, it obscures much of the

data variability, and consequently increases the ACL of each trained model. Interestingly,

as identified earlier at the analysis of results from each Stage, and even on the results with

synthetic data, this inflection point moves to higher levels of DP noise (i.e., lower values

of ‘), as the noise is added in later Stages in the framework. In particular, we notice that

the ACL is drastically reduced when:

Stage 1: Inflection point of ‘ > 100

Stage 2: Inflection point of ‘ > 1 ≥ 10

Stage 3: Inflection point of ‘ > 0.1 ≥ 1

Furthermore, it appears that the various models perform di�erently depending on the

Stage the DP noise is applied. NB is more e�ective when used at S3 than S1, as for

the same amount of DP noise, the model accuracy is better (i.e., ACL is lower). For

similar reasons, LR is more e�ective when used at S3. However, if the DP-enabled ML

framework requires consistent ML performance (i.e., low ACL) across datasets of di�erent

class complexities (i.e., 2-100 classes), then DP noise may need to be applied at S1. RF

and NN perform better across all datasets when low noise is applied at S1.

6.4.2.2 Membership Inference Attacks vs. DP noise

Next, we analyze the advantage of an attacker when mounting ConfMI attack, in a similar

fashion as with the synthetic data, but grouping results of all real datasets by class com-

plexity. We discuss the e�ectiveness of ConfMI attack on individual models per stage and

across stages, and the impact of class complexity on the attack. Finally, we also compare

the two MI attacks, ConfMI and LossMI .

Stage 1 (S1): When DP is applied at S1, we notice that ConfMI performance is generally

low and close to zero, up to ‘¥100 for NB and LR, in Figures 6.6(a-d). For RF , the

inflection point is higher (≥500), indicating that RF may be more resilient to such MI

attacks, for lower DP noise levels. In contrast, NN shows a non-zero advantage from ‘¥10

186

6.4. EXPERIMENTAL RESULTS

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure 6.5: Accuracy Loss for each of the ML methods used, when di�erent
amount of DP noise is applied at Stage 1, 2 or 3 of the framework, and for
di�erent real datasets used. We summarize the datasets by the number of
classes used.

and on. Moving from left to right in the ‘-axis, and until these thresholds are reached,

the ConfMI attacker does not gain any privacy advantage from discerning if data records

were being included in the training dataset of the given model or not.

Stage 2 (S2): When DP noise is applied at S2, the ConfMI advantage is low until ‘¥0.5

187

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

for RF , and for any ‘ for NN , in Figures 6.6(e,f). In general, the e�ectiveness of this

attack on models built with DP noise added at this Stage is low. In particular, we observe

that for the NN , the attacker’s advantage is overall low (ConfMI <0.008), regardless of

the amount of DP noise applied, and for RF , ConfMI <0.025. Surprisingly, RF allows an

attacker to learn relatively more on a dataset with lower class complexity, in contrast to

NN and previous observations made in [33] and [34].

Stage 3 (S3): When DP is applied at S3, ConfMI advantage increases when ‘>1 for

NB, and ‘>100 for LR, in Figure 6.6(g,h). This means that when NB is trained, datasets

with high class complexity are more vulnerable than with LR.

Interestingly, all aforementioned results demonstrate similar patterns with the results on

synthetic data (i.e., Figure 6.3 and 6.6), apart from RF built with noise applied in S2, as

commented earlier.

Comparing ConfMI Across DP-ML framework Stages: As expected, when adding

less DP noise in the framework (depending on the Stage at which it is applied), this impacts

the e�ectiveness of a ConfMI attacker. In particular, when the inflection points below are

reached, the attacker has a non-zero advantage.

Stage 1: Inflection point of ‘>10≥500

Stage 2: Inflection point of ‘>0.5

Stage 3: Inflection point of ‘>1≥100

Additionally, for the same amount of DP noise, di�erent ML methods allow the attacker to

learn di�erent amounts of private information (i.e., which instances of data are members

of the training set). For example, NB allows the attacker to learn up to 10x more when

the DP is applied in S3 than in S1. LR however allows similar privacy leaks, regardless

of whether the DP noise is applied in S1 or S3. In addition, the increase in the attacker’s

advantage happens at the same inflection point for LR, whereas for NB, this happens in

lower ‘ values for S3 than for S1.

188

6.4. EXPERIMENTAL RESULTS

Finally, when DP is applied in S2, there is 10x less privacy leakage than S1, regardless of

whether it is RF or NN that is used.

Comparing ConfMI and LossMI attacks: Next, we look into the di�erences between

ConfMI and LossMI (for brevity, the results for LossMI are shown in Figure D.3 in

Appendix D.4). In the LossMI attack, the advantage of the attacker is found to be

generally higher than in ConfMI attack. In particular, during S1, and while training NB,

the LossMI reaches up to 4x higher advantages than ConfMI . Similarly, while training

RF and NN , LossMI attack can reach up to 2x and 7x higher advantages than with

the ConfMI , respectively. Interestingly, LR leads to similar advantage scores in both MI

attacks. Further, in S2, and while training RF and NN , the LossMI attacker can reach

up to 12x and 4x higher advantage than ConfMI , respectively. Finally, in S3, both NB

and LR lead to similar advantage scores in both attacks.

We also observe that in LossMI , the inflection point where the attack is useful (i.e.,

advantage is non-zero) becomes more clear per Stage, compared to ConfMI . Like ConfMI ,

there is also a clear shift to lower levels of ‘ while applying noise to later Stages:

Stage 1: Inflection point of ‘>100

Stage 2: Inflection point of ‘>1≥100

Stage 3: Inflection point of ‘>5≥10

6.4.2.3 Attribute Inference Attacks vs. DP noise

Next, we analyze the results of LossAI attack on real data, in a similar fashion as with the

synthetic data, but again, grouping results of all real datasets by class. Again, we discuss

the attack’s e�ectiveness on each stage and across stages, and how class complexity is an

influencing factor. Finally, we also compare the two AI attacks, ConfAI and LossAI .

Stage 1 (S1): From Figures 6.7(a-d), we observe that for many of the models, and for

the di�erent datasets and class complexities, the LossAI advantage is very low or even

189

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure 6.6: Advantage of ConfMI attack for each ML method used, when
di�erent amount of DP noise is applied at Stage 1, 2 or 3 of the ML framework,
and for di�erent datasets used. We summarize the datasets by number of
classes used.

negative, which points to failed attack for leaking private information on the attributes

of member data vectors in comparison to non-members. Thus, the attacker can achieves

greater attack success when a vector has been excluded from the training dataset than

when kept within. Therefore, this attack is not very e�ective when executed on a DP-

190

6.4. EXPERIMENTAL RESULTS

enabled ML framework that has trained models while injecting DP noise at S1, i.e., before

any ML training. Out of the four models trained, NN would potentially leak the most,

when the DP noise is low (‘>100). Interestingly, the adversary’s advantage would still be

6x lower than in ConfMI and 50x lower than in LossMI .

Stage 2 (S2): When DP noise is added at S2, from Figures 6.7(e,f), we observe that RF

allows the LossAI attacker to observe successful leaks when ‘>1, but the privacy risk is

still 10x lower than ConfMI and 100x lower than LossMI . Furthermore, training the NN

model with DP noise leads the attacker to negative advantage.

Stage 3 (S3): Similarly with S2, in S3, a LossAI attacker can leak information about

attributes of the data, when NB is trained, and above an inflection point of ‘>5 (Fig-

ure 6.7(g,h)). This advantage is 8x lower than ConfMI and 10x lower than LossMI . Also,

training LR with DP noise added at S3 leads again to negative advantage.

Comparing LossAI Across DP-ML framework Stages: Examining this attack

across Stages, for di�erent ML methods, we observe the following. NB allows the attacker

a superior ability to leak more private information when DP noise is applied in S3. LR

does not provide the attacker an advantage to leak information in either S1 or S3. In fact,

if DP is applied at S3, the attacker will make 3x more errors (false positives) than S1,

while trying to infer values of attributes. RF allows the attacker to leak more information

if DP is applied at S2 in comparison to S1. Finally, NN is more robust against AI attacks

when DP noise is applied at S2, in comparison to S1 which allows some information on

attributes to leak at low amounts of DP noise. Again, we notice a clear shift of the

inflection point to lower levels of ‘ as previously seen in the MI attacks:

Stage 1: Inflection point of ‘>100

Stage 2: Inflection point of ‘>1≥100

Stage 3: Inflection point of ‘>5

Comparing LossAI and ConfAI attacks: Now, we highlight di�erences between

LossAI and ConfAI , an AI attack presented by Zhao et al. [145] (ConfAI results are

191

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure 6.7: Advantage of LossAI attack for each ML method used, when
di�erent amount of DP noise is applied at S1, S2, and S3 of the framework,
and for di�erent datasets used. We summarize the datasets by number of
classes used.

in Figure D.4 in Appendix D.5). Across all stages, for both LossAI and ConfAI , the

absolute advantage between members and non-members is very small, with LossAI , in

general, marginally producing larger variances, with similar trends observed across di�er-

ent amounts of DP noise. An exception is S3: NB, whereby ConfAI is able to achieve the

largest advantage of 3% for 100 classes (up to 10x better than LossAI). It is expected that

192

6.4. EXPERIMENTAL RESULTS

LossAI surpasses the performance of ConfAI as it has additional access to the training

loss, and the prediction confidence of the correct label, whilst ConfAI has only access

to the maximum prediction confidence irrespective of if the prediction class is correct.

Finally, we observe that in both LossAI and ConfAI , the inflection points (i.e., when

advantage is non-zero) are approximately the same across all Stages, with the exception

of ConfAI on S2, which does not have the same pronounced inflection, as observed in

LossAI .

Comparing MI and AI attacks: In general, we observe that AI attacks are less success-

ful in leaking information about the data than MI attacks. This is based on the advantages

computed in the two MI attacks (LossMI and ConfMI) that are mostly positive and of

higher values than the two AI attacks (LossAI and ConfAI) values achieved, which were

mostly zero or negative. This is to be expected, since an AI attack is an objectively more

demanding attack with more potential for producing an incorrect result with the need to

predict the exact value, instead of a binary membership/non-membership decision. It is

also more di�cult to be carried out in practice, due to the prerequisite knowledge the

attacker should have of all but 1 attribute values.

6.4.2.4 DP-based ML under Constrained ACL or ‘

An ML practitioner may wish to apply the most e�ective ML approach while considering

constraints for either the ACL or ‘.

ACL-bounded recommendations: We now determine which DP-based ML algorithm

o�ers the best privacy guarantees (‘), when a practitioner’s accuracy requirements are

constrained. Specifically, we consider when the ACL cannot exceed a pre-determined

threshold. To find the corresponding privacy o�ered (‘) and the associated ML technique,

we linearly interpolate the empirical trend of ACL and ‘. Then, we find the value of ‘

closest to the bounded ACL, for all ML methods tested. Finally, we report the lowest ‘,

and the corresponding ML method.

193

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

We display results for ACL constraints in Table 6.3. We observe that NB with DP noise

applied in S3 is a prevalent option that can o�er good accuracy for datasets with various

class complexities. Only NN in S1 is a viable option for a binary class dataset, when the

ACL requirement is very low (e.g., 0.01).

Table 6.3: Given a constrained ACL, we show best attainable privacy guaran-
tee (‘), and the responsible DP-ML algorithm.

2 Classes 10 Classes 20 Classes 50 Classes 100 Classes
ACL ‘ DP-ML ‘ DP-ML ‘ DP-ML ‘ DP-ML ‘ DP-ML
0.01 50.00 S1-NN 16.52 S3-NB 38.11 S3-NB 31.71 S3-NB 30.17 S3-NB
0.02 47.23 S3-NB 14.18 S3-NB 35.99 S3-NB 30.01 S3-NB 28.61 S3-NB
0.05 37.62 S3-NB 9.47 S3-NB 29.61 S3-NB 24.89 S3-NB 23.92 S3-NB
0.10 21.61 S3-NB 7.31 S3-NB 18.99 S3-NB 16.37 S3-NB 16.10 S3-NB
0.20 7.70 S3-NB 4.52 S3-NB 8.16 S3-NB 8.32 S3-NB 8.52 S3-NB
0.30 0.50 S2-RF 3.48 S3-NB 4.99 S3-NB 5.64 S3-NB 6.08 S3-NB

‘-bounded recommendations: We now determine which DP-based ML algorithm o�ers

the least accuracy loss, when a practitioner’s privacy guarantee has been mandated. We

use a similar interpolation technique.The results in Table 6.4 show that methods such

as RF , NN and LR with DP noise applied in S1 are better options when high privacy

constraints are required.

However, they lead to high ACL, which renders the models useless. When the privacy

requirement can be relaxed, and the noise is applied in S2 or S3, then NB is a better

option for maintaining ML accuracy, this remains true for datasets with low or high class

complexity.

6.4.2.5 Summary of Findings

In Figure 6.8, we summarize the findings from di�erent experimental setups, for ACL and

for ConfMI attack metric (similar plots for the other privacy metrics are in Figure D.5

in Appendix D.6). In this summary figure, the tradeo� between ACL and protection

against privacy leaks emerges more clearly. From this figure, and based on all previous

explorations with respect to ACL and the four privacy attacks (ConfMI , LossMI , LossAI

194

6.4. EXPERIMENTAL RESULTS

Table 6.4: Given a constrained ‘, we show the smallest compromise in ACL,
and the responsible DP-ML algorithm.

2 Classes 10 Classes 20 Classes 50 Classes 100 Classes
‘ ACL DP-ML ACL DP-ML ACL DP-ML ACL DP-ML ACL DP-ML
0.01 0.312 S1-RF 0.804 S1-NN 0.863 S1-NN 0.950 S1-NN 0.958 S1-NN
0.10 0.313 S1-RF 0.802 S1-NN 0.858 S1-LR 0.949 S1-NN 0.952 S3-NB
1.0 0.224 S2-RF 0.540 S3-NB 0.634 S3-NB 0.717 S3-NB 0.727 S3-NB
10 0.136 S3-NB 0.038 S3-NB 0.142 S3-NB 0.137 S3-NB 0.139 S3-NB
100 0.001 S3-NB -0.141 S3-NB -0.055 S3-NB -0.124 S3-NB -0.135 S3-NB
1000 -0.001 S3-NB -0.127 S3-NB -0.042 S3-NB -0.109 S3-NB -0.121 S3-NB

Figure 6.8: Summary plot of ACL (y1-axis) and ConfMI advantage (y2-axis)
vs. ‘ applied (x-axis), for each Stage. Each point, for a line of a given Stage,
is the mean across all results for di�erent ML methods and datasets. Shaded
colored areas signify 1 st. dev. around each mean.

and ConfAI), we summarize our key takeaways:

1. For a given amount of DP noise applied, ML models predict better (i.e., have good

accuracy and low ACL), when the noise is inserted at a later Stage (e.g., S2 or S3

than S1) [Section 6.4.2.1].

2. To achieve reduced privacy leaks (lower attack advantages are better) with least

amount of DP noise, this must be added in earlier Stages in the framework (S1 > S2

> S3) [Section 6.4.2.2 & 6.4.2.3]. Unfortunately, this comes with a penalty of worse

ML prediction (accuracy) [Section 6.4.2.1]. Consequently:

3. The performance of current state-of-art MI and AI attacks is directly related

to the prediction accuracy of the DP-ML model used. The inflection points of ACL

195

CHAPTER 6. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

and privacy advantage for each DP-ML method correspond to approximately the

same amount of DP noise.

4. The amount of DP noise added to a given DP-ML method does not influence

the inflection point of a privacy attack (both MI and AI); instead, the inflection of

attack success is dependent on the DP-ML method used and framework Stage the

noise is applied (as noted in Takeaway 2).

5. The data complexity is unlikely to a�ect the inflection point of ACL [Section 6.4.2.1],

or attack advantage [Section 6.4.2.2 and 6.4.2.3]. The inflection observed for each

complexity is similar, for a given DP-ML method. We do, however, corroborate

the known result that higher class complexity (more classes) lead to higher privacy

leaks [33,34], except for S2:RF .

6. When investigating the tradeo� over a wide range of ACL and ‘ constraints, we

observe that S3:NB is the superior performing DP-ML method.

7. Evaluating the privacy-utility tradeo� with synthetic [Section 6.4.1] and real-world

data [Section 6.4.2] yields similarities in trends and takeaways. There is potential for

a dataset-agnostic approach to estimate inflection points for similarly classed data.

6.5 Conclusion

Privacy-preserving machine learning (ML) methods come with the inherent tradeo� be-

tween model utility achieved and privacy o�ered by the technique applied to protect the

data. Our main contribution in this chapter is the proposal of a practical evaluation frame-

work that enables a privacy ML researcher to study this tradeo� in depth for their data,

and make data-driven decisions on where to apply Di�erentially Private (DP) noise inside

their ML framework to protect their data and model, while achieving the best possible

ML accuracy.

We identify three such Stages in the DP-enabled ML framework where DP-based noise

can be added: 1) directly at the data collection, 2) during model training, or 3) at model

196

6.5. CONCLUSION

finalization. We allow the practitioner to apply di�erent amounts of noise based on the

privacy guarantees they have, and at the di�erent stages in the framework, and study the

aforementioned tradeo� between the utility of the model trained, and the privacy of the

data or model achieved, using four well-known privacy attacks.

We use our framework to comprehensively evaluate various implementations of DP-based

ML algorithms, and measure their ability to fend o� real-world privacy attacks, in addition

to measuring their core goal of providing accurate classifications. We evaluate each imple-

mentation across a range of privacy budgets, and datasets, each implementation providing

the same mathematical privacy guarantees. By measuring the models’ resistance to real

world attacks of membership and attribute inference, and their classification accuracy, we

determine which methods provide the most desirable tradeo� between privacy and utility.

Building on our results, we provide recommendations to a privacy ML researcher on how

to select appropriate, DP-based ML methods, based on the data complexity at hand, and

privacy guarantees and utility needs.

197

CHAPTER 7. DISCUSSION, FUTURE WORKS AND CONCLUSION

Chapter 7

Discussion, Future Works and

Conclusion

In this section, we critically analyze the works that have been presented in the Technical

chapters. We shall discuss the limitations and potential future works for each of the

chapters, in addition to avenues in the general context of security and privacy attacks

within this thesis. Finally, we shall provide concluding remarks.

7.1 Behavioral Side Channel Attacks

We begin by highlighting the limitations of Chapter 3. For k-out-of-n ORAS, one way

to reduce the e�cacy of the proposed side-channel attack is to increase the expected

number of secrets present in the challenge as we have previously shown in Section 3.3.2.

Unfortunately, this comes at a substantial cost to usability, since the only way to increase

the number of secrets (without introducing statistical vulnerabilities [50]) is to either

increase the number of secret items k or the window size l. Both increase the cognitive

load on the user by requiring more secrets to recognize and more computations to perform.

Decreasing the number of total items n is not desirable either as it reduces the password

198

7.1. BEHAVIORAL SIDE CHANNEL ATTACKS

space making it susceptible to a brute-force attack.

As some of our features are directly related to timing information (e.g., total time of

authentication), enforcing a minimum time before response submission, as suggested pre-

viously [51], may increase the di�culty of detecting the modulus event. This mitigation

technique is also applicable to the PassGrids and Mod10 schemes (which are not k-out-of-n

ORAS). However, this is ine�ective against some of the other features used in our attack

to detect the module event, e.g., dwell consistency. Thus, eye movement patterns can still

reveal side channel information even with this mitigation technique.

Since we only had a low number of user samples available from the user study, we restricted

ourselves to simple classifiers to produce a fair model. We acknowledge that additional user

samples would allow more sophisticated classifiers (e.g. neural networks) to be trained,

producing an improved side-channel classifier, and thus faster compromise of the user se-

cret. Additionally, a more representative sample of the population may yield more diverse

results in both timing and eye-tracking based features, as a majority of our participants

were young, research students highly capable of doing basic mental mathematics.

While our attacks do not deem the ORAS considered in Chapter 3 completely insecure,

they show that the security of these schemes is greatly reduced under side-channel attacks

in terms of the number of rounds a secret can be used before renewal. We have argued that

a scheme’s claim to being observation resilient should be evaluated against side-channel

attacks as well. In the case of BehavioCog and FoxTail, we have less than halved the

“safe” number of rounds for these schemes. On other schemes, such as the HB protocol

and Mod10 our attacks have shown a stronger result. The former does not have an e�cient

algebraic/statistical attack, and the latter by definition is immune to any algebraic attacks

(being an OTP-based scheme).

For several reasons, we did not pursue more intuitive attacks based on eye movement

patterns, such as following the user’s gaze and directly labeling items with higher dwell

times as possible secret items. The main di�culty is in simulating a given accuracy level

of an oracle which predicts an item being a secret or a decoy item. To simulate a given

199

CHAPTER 7. DISCUSSION, FUTURE WORKS AND CONCLUSION

oracle accuracy level, we would need to first determine how it translates to the empty

challenge event, i.e., when there are no secret items present in a challenge. Moreover, if

it is not an empty challenge event, we need to determine how the oracle accuracy relates

to the number of secret items present in the challenge, the dwell times for each of the

secret/decoy items in the challenge, and the fact that the user sometimes does not dwell

on the secret items at all (we found through our user study that some users would never

dwell over any particular item, secret or decoy when computing the response). Thus, while

we could assume an oracle that predicts each of the l items present in the challenge as

being a secret/decoy item with a given accuracy level, such an oracle would be relying

on a lot more assumptions that need to be justified. In comparison, the modulus event

is a single binary event tied to the entire challenge. A larger user study would indicate

whether such direct eye-gaze attacks are viable or not, by relying on empirical data rather

than simulated oracles. Due to our limited user study, we were not able to do so.

Lastly, we remark that another advantage of the modulus-based attack over direct eye-

gaze attacks is that it delineates the attack algorithm from the actual side-channel being

used. Eye movement patterns may not be the only source of side channel information. It

could be possible that third party trackers on a device with access to any one of the many

device sensors, may utilize this data and establish additional side-channel to expose the

user’s secret. This is an interesting avenue for future work.

7.2 Random Input Attacks

Chapter 4 proposes an additional criterion to assess the security of biometric systems,

namely their resilience to random inputs. The work has implications for biometric template

protection [179], where a target template resides on a remote server and the attacker’s goal

is to steal the template. In such a setting, obtaining an accepting sample may be enough

for an attacker, as it serves as an approximation to the biometric template. Chapter 4

shows that the attacker might be able to find an approximation to the template via random

input attacks if the system AR is not tested. Conversely, once the AR is reduced below

200

7.2. RANDOM INPUT ATTACKS

FPR (e.g., via adding beta distributed noise), then one can safely use FPR as the baseline

probability of success of finding an approximation.

We have assumed that the input to the classifier, in particular, the length of the input is

publicly known. In practice, this may not be the case. For instance, in face recognition, a

captured image would be of a set size unknown to the attacker. Likewise, the number of

features in the (latent) feature space may also be unknown. However, we do not consider

this as a serious limitation, as the input length is rarely considered sensitive to be kept

secret. In any case, the security of the system should not be reliant on keeping this

information secret following Kerckho�s’s well known principle.

We note various detection mechanisms exist to protect the front-end of biometric systems.

For example, spoofing detection [180] is an active area in detecting speaker style transfer

[181]. Detection of replay attacks is also leveraged to ensure the raw captured biometric

is not reused, for example, audio recordings [182]. There is also liveliness detection, which

seeks to determine if the biometric that is presented is characteristic of a real person and

not a recreation, e.g., face masks remain relatively static and unmoving compared to a

real face [183]. Our attack surface applies once the front-end has been bypassed. Our

mitigation measures can thus be used in conjunction with these detection mechanisms

to thwart random input attacks. Being generic, our mitigation measures also work for

systems that do not have defense measures similar to liveness detection.

Once an accepting sample via the feature vector API has been found, it may be possible

to obtain an input that results in this sample (after feature extraction), as demonstrated

by Garcia et al. with the training of an auto-encoder for both feature extraction and the

regeneration of the input image [108].

We have focused on authentication as a binary classification problem, largely because of

its widespread use in biometric authentication [2,22–29,109]. However, authentication has

also been framed as a one-class classification problem [109, 184] or as multi-class classifi-

cation [109], e.g., in a discrimination model, as noted earlier. In one-class classification,

only samples from the target user are used to create the template, and the goal is to

201

CHAPTER 7. DISCUSSION, FUTURE WORKS AND CONCLUSION

detect outliers. If this is achieved like distance-based classifiers, then as we have seen in

Section 4.5.3, and as previously indicated in [30], the AR is expected to be small. In

the multi-class setting, each of the n users is treated as a di�erent class. This increase

in classes is expected to proportionally lower the AR. However, whether this behavior

is observed on real world data requires additional experimentation. We remark that as

observed in Section 4.5.2, AR is highly dependent on the relative variance of the positive

user and the negative user features. This may lead to the possibility of larger AR for some

of the users, consequently leading to a higher risk of attack for these users. We leave a

thorough investigation of the one-class and multi-class settings as future work.

Our focus was biometric authentication systems, however, this could be extended to other

authentication settings. Already it has spurred additional work in Device Authentica-

tion [185], Garcia et al. generate a random input as a starting point, and produce ad-

versarial perturbations for the random input to increase the e�ectiveness of the random

attack. Though they did highlight that adversarial training techniques o�ered provide

some mitigation to the random attack in Device Authentication.

7.3 Membership and Attribute Inference Attacks

The three black-box membership inference attacks evaluated in Chapter 5 were proposed

by Shokri et al. [33], Salem et al. [34] and Yeom et al. [35]. We have also shown that

our results apply in the white-box setting, by evaluating the membership inference at-

tacks from Nasr et al. [1], who proposed passive and active white box attacks targeting

both standalone and federated models. Of course, the research on membership inference

is not limited to only these approaches or classification models. For instance, in [147]

black and white box membership inference attacks are evaluated on generative adversarial

networks; in [148] a new membership inference attack is proposed based on the loss-based

membership inference attack from Yeom et al., and in [36] the authors show that even if

membership inference attacks are ine�ective as a whole on a dataset, they have disparate

e�ects on di�erent sub-groups in the dataset. While we have demonstrated that our

202

7.3. MEMBERSHIP AND ATTRIBUTE INFERENCE ATTACKS

observations generalize to numerous membership inference attacks and models, since the

underlying principle remains the same, i.e., ML models are less susceptible to strong mem-

bership inference in the classification setting. It would be valuable to definitively confirm

if our observations hold for non-classification models, or standalone attribute inference

attacks.

We had observed that strong membership inference, and thus attribute inference could

not be e�ectively achieved using current attack methodologies. Thus in this area, there is

work to be done in improving the performance of these attacks. Additionally, the attribute

inference attack method remains as attribute inference with membership inference as a

sub-routine, it is possible to perform attribute inference directly, as a standalone process

without membership inference. The closest to a standalone attribute inference attack is

the model inversion attacks [149], though this exploits the learned forward relationships

between attributes and the output class, instead of exploiting model memorization.

One open element of the membership and attribute inference attacks that was raised was

our ability to defend against such attacks. A defense through di�erential privacy was

evaluated in Chapter 6, however, the privacy-utility tradeo� leaves much to be desired.

Nonetheless, in Chapter 5, it was observed that the most dominant class is the least

vulnerable to the inference attacks. There is potential in incorporating the proportion of

the feature space occupied by each class label as an additional objective in the training

process, to force the equal representation of every class in the feature space. This could be

interpreted as a means of promoting Fairness [36,171], however, the existing definitions of

fairness, seek to promote equality in the prediction outcomes, instead of the feature space

itself.

Defense mechanisms have been developed to train models robust to adversarial exam-

ples [157]. Recall that adversarial examples are vectors with applied perturbations close

to the original input vector that create large variations in the model’s behavior, often man-

ifesting as a mis-prediction [156]. When performing membership and attribute inference,

a larger di�erence between the behavior of the known (member) and adversarial example

(non-member) would allow for their distinction. Unfortunately, as Long et al. [152] state,

203

CHAPTER 7. DISCUSSION, FUTURE WORKS AND CONCLUSION

the majority of the neighborhood around the vector would have a minimal di�erence on

the model output; with the adversarial example behaving as an exception, rather than

the norm. Due to the infrequency of adversarial examples, We hypothesize that these

robust adversarial models will only have a minor positive impact on the mitigation of the

inference attacks, as robust models seek to preserve the regular behavior of the model,

only mitigating the behavior of the adversarial examples. Though this warrants further

investigation.

7.4 Privacy - Utility tradeo�s of Di�erential Privacy

In Chapter 6, we had presented a comprehensive empirical study on the inherent tradeo�

between utility and privacy when applying DP on ML algorithms. We investigated four,

state of art DP-enabled ML and DL algorithms currently available in the literature, and

evaluated the aforementioned tradeo� in each ML method, using four privacy inference at-

tacks and one utility metric. We performed this investigation using both synthetic datasets

and three commonly used real datasets of varying class and attribute complexity. Finally,

we extracted from this experimentation various lessons and o�ered recommendations to

interested privacy ML researchers.

During this evaluation with our framework, we limited the number of experimental con-

figurations, to make the problem tractable with comparable results. However, even with

these results, numerous potential experimental variants can still be investigated in the

future with our framework.

DP variants: Chapter 6 considers only ‘-DP. However, as previously mentioned in

Section 6.2.2, there is an increasing number of DP compositions and relaxations, such

as (‘, ”)-DP and (–, ‘)-DP. Interestingly, these DP relaxations are relatively recent, and

many of the DP-enabled ML algorithms available in the literature that we used, are still

using the original ‘-DP. Future work should address how to adapt such algorithms to

support newer DP relaxations, but should also enable ML practitioners to fairly compare

204

7.4. PRIVACY - UTILITY TRADEOFFS OF DIFFERENTIAL PRIVACY

these methods. For this, one would need to establish an equivalence between the various

DP options available. In fact, in the future, even a simple evaluation of how a varying ”

in (‘, ”)-DP impacts the resulting ACL and privacy metrics would be highly informative.

Local vs. Global DP: The boundary of trusted and non-trusted entities is becoming

increasingly blurred. On one hand, ML model holders seek to protect their models’ privacy

and user data. On the other, privacy advocates argue even the model holders should not

be trusted entities. There is a notion of trust in the DP ML pipeline: Local DP is when DP

is applied very close to data generation without considering information or context about

the entire system. Instead, Global DP does not need to tradeo� as much utility for the

same mathematical guarantees: with a global system view, it can make more intelligent

decisions on how to apply DP noise. In our framework, Local DP loosely corresponds to

inserting DP noise in S1, with ML training receiving DP-protected data, whereas Global

DP corresponds to DP noise applied in S2 or S3, with the model having unfettered access

to unprotected data.

Utility metrics: We focused on the accuracy (loss) of a DP-enabled ML model with

respect to its non-private counterpart. However, as mentioned in Section 6.2.6, more

metrics can be employed to assess the change in utility of a trained DP-enabled ML model,

such as precision, recall, F1 measure, etc. Furthermore, model Fairness [171] is another

metric of particular interest given the increased public scrutiny of ML model fairness in

the context of well established anti-discriminatory legal frameworks across the globe.

Privacy metrics: There was a missed opportunity to evaluate the privacy-utility tradeo�

with the Approximate Attribute Inference attack defined in Chapter 5. Like [46], the

resulting privacy advantage observed from the attribute inference attacks is minute, though

still su�ciently large for trends to be observed. Additionally, it would not be advisable

to evaluate the strong membership inference attack, as similar to the attribute inference

attack, the methods used would produce a very small advantage for analysis. In essence,

future evaluations with the framework should consider Membership Inference (Def 5.2.7)

and Approximate Attribute Inference (Def 5.2.10).

205

CHAPTER 7. DISCUSSION, FUTURE WORKS AND CONCLUSION

Computation Cost: Each ML model requires computational resources (CPU, memory)

while being trained. We anticipate that when DP noise is added at di�erent Stages

in the framework, di�erent resources are required to make the data DP-enabled, or to

train the model in a DP fashion, or modify the learned model later in a DP fashion.

Consequently, another potential aspect of the privacy-utility tradeo� to be studied is the

resource overhead and its relation to the amount of DP noise, and the framework Stage

it is added.

7.5 Security and Privacy Attacks

Beyond the specific examples presented for each of the chapters, we now reflect on these

attacks and how they may be applied in the real world. From the deconstruction of

cybersecurity attacks, it has been observed that significant breaches are often complex,

harnessing multiple attack vectors to realize the attacker’s goal. While in this thesis we

have focused on individual attacks, it has not yet been realized as to how an attacker

may collate and exploit multiple attacks simultaneously. For example, the e�ectiveness

of an active attack, such as model poisoning or backdoor attack could be amplified when

combined with additional information obtained from passive inference attacks on the same

model.

Finally, in all our investigated attacks, we have attempted to create an analog of real world

systems on which we would target our attacks. In every instance, our replica systems are

made to mirror their real world counterpart as closely as possible. Unfortunately, due

to either the use of these models in the private domain, without disclosure or access to

its inner workings; or a lack of use due to the emergent nature of the system, several

assumptions about these systems have been made. However, not to discount the value

of understanding how and why these attacks are possible, in the future, we would like to

extend and evaluate these attacks against real world systems.

206

7.6. CONCLUSION

7.6 Conclusion

From the numerous works of research collated here in this Thesis, it is clear that emerging

technologies, with and without machine learning may be vulnerable to security and privacy

attacks. Without extensive consideration of these risks, the forward march of technological

innovation would not be built on a strong foundation, creating points of exposure that

could lead to irreversible damage to individuals and companies. Conventional cybersecu-

rity attacks, like a data breach, can start with a simple phishing attack, to obtain login

credentials and gain unauthorized access to a system. As we have shown in our attacks

against alternate authentication schemes, rushing into new technologies like observation

resilient schemes, or biometrics, without understanding the full extent of the risks of the

human factor, or even a simple random attack, may leave the system vulnerable. In addi-

tion to security attacks, our investigation into membership and attribute inference attacks

has shown that the existing threat of membership inference may be overstated (in a strong

sense), but attribute inference does not account for the possibility of the attacker obtaining

an approximate amount of information. We have not yet experienced a full scale attack

against commercial machine learning models, but if data breaches in a conventional sense

are used as a reference point, there will be a non-negligible financial and reputation cost

to the model holders. Not to mention in a time where digital proficiency is on the rise,

people’s attention is being drawn to data rights and privacy, additional breaches in the

privacy of their data could continue to erode trust in these established systems. Finally,

with legislation across the world patching deficiencies in data governance, privacy mindful

applications that still o�er utility will become increasingly important. This thesis, like

many others that have preceded and will follow, is not the golden bullet in absolving se-

curity and privacy risks, however by revealing attacks, we can work towards defenses and

strategies that make these risks more tolerable.

207

APPENDIX A. APPENDIX: EXPLOIT BEHAVIOR

Appendix A

Supplementary material for

Chapter 3 - Exploiting Behavioral

Side Channels in Observation

Resilient Cognitive Authentication

Schemes

208

A.1 Proof of Theorem 3.3.1

Proof.

Pr(Y < d | g) =
d≠1ÿ

y=0
Pr(Y = y | g),

= 1
dg

d≠1ÿ

y=0

Ây/dÊÿ

s=0
(≠1)s

A
g

s

BA
y ≠ sd + g ≠ 1

g ≠ 1

B

,

Since 0 Æ y < d, we have Ây/dÊ = 0. Thus, s = 0, and we get

Pr(Y < d | g) = 1
dg

d≠1ÿ

y=0

A
y + g ≠ 1

g ≠ 1

B

,

= 1
dg

A
0 + g ≠ 1

g ≠ 1

B

+ 1
dg

A
1 + g ≠ 1

g ≠ 1

B

+ · · ·

+ 1
dg

A
d ≠ 1 + g ≠ 1

g ≠ 1

B

= 1
0!dg

+ g

1!dg
+ g(g + 1)

2!dg
+ · · ·

+ g(g + 1) · · · (g + d + 1)
(d ≠ 1)!dg

As g æ Œ, we see that each polynomial numerator is o(dg). Thus, Pr(Y < d | g) æ 0. Or

equivalently, Pr(Y Ø d | g) æ 1.

A.2 Proof of Lemma 3.3.2

Proof. First let g = 2. The proof is by induction on d Ø 1. First let d = 1. Then since

p(0) > 0,
1
2

1ÿ

i=0
ip(i) = 1

2 · 0 · p(0) + 1
2 · 1 · p(1)

<
1
2 · 1 · p(0) + 1

2 · 1 · p(1).

= 1
2

1ÿ

i=0
p(i).

Thus, the statement is true for d = 1. Now assume the statement holds for d = r, then
1
2

r+1ÿ

i=0
ip(i) = 1

2

rÿ

i=0
ip(i) + r + 1

2 p(r + 1)

APPENDIX A. APPENDIX: EXPLOIT BEHAVIOR

<
r

2

rÿ

i=0
p(i) + r + 1

2 p(r + 1)

<
r + 1

2

r+1ÿ

i=0
p(i),

which completes the proof for g = 2. For g > 2, observe that
1
g

dÿ

i=0
ip(i) <

d

2

dÿ

i=0
p(i),

and hence the lemma is true for all g Ø 2.

A.3 Proof of Theorem 3.4.1

Proof. Let i œ [n] be a secret item and let j œ [n], j ”= i be a decoy item. Let ÷(i) and

÷(j) denote the number of times the two items appear in m challenges. Let ÷+(i) and

÷≠(i) denote the number of times the secret item i appears in the modulus and no-modulus

events, respectively. First, for su�ciently large m, we see that both ÷(i) and ÷(j) approach

their expected value, and therefore

÷(i) ¥ ÷(j) = ÷+(j) + ÷≠(j).

Next, note that due to step 6 in the algorithm, the secret item never gets penalized in

case the oracle correctly identifies the no-modulus event (the secret item if present cannot

have weight more than the response r). Therefore, we are looking at the instances where

the oracle wrongly labels a modulus challenge as a no-modulus challenge. The probability

of a particular response in this case is 1/d. Since the secret item’s weight is randomly

generated, the probability that its weight is greater than r = i is given by (d ≠ 1 ≠ i)/d.

Therefore, the expected points update is given by
1
d2

d≠1ÿ

i=0
(d ≠ 1 ≠ i)ui.

Denote the above by u. Then, the expected score of a secret item i in m challenges is

given by

210

A.4. FEATURE INTUITION

(1 ≠ TPR) · ÷+(i) · u Æ (1 ≠ TPR) · ÷(i) · u

¥ (1 ≠ TPR) · ÷(j) · u

= (1 ≠ TPR) · ÷≠(j) · u

+ (1 ≠ TPR) · ÷+(j) · u

< TNR · ÷≠(j) · u

+ (1 ≠ TPR) · ÷+(j) · u,

which is the expected score of the decoy item j in m challenges.

A.4 Feature Intuition

Recall that the Dwell is period of user visual intake of a specific item, characterized by

lowered rapid eye movement.

A.4.1 Adversary Level 1 Feature Hypotheses

a) Total Time: A challenge requiring a modulus operation involves more mental op-

erations (size-e�ect-problem [99]), and should require more time.

b) Mean Challenge Weight: The expected value of individual weights is uniform,

however collectively challenge may have a bias in the item weights. E.g. there are

more higher weights, potentially providing information about the modulus event.

c) Challenge Response: As previously noted, there exists a small bias in the proba-

bility of a modulus occurring dependent on the final submitted response. This may

be useful for informing the classifier.

211

APPENDIX A. APPENDIX: EXPLOIT BEHAVIOR

A.4.2 Adversary Level 2 Feature Hypotheses

a) Min Dwell Time: The shortest time spent viewing an image can be indicative

of the user’s confidence that a secret image has been located. This value should

be shorter when secret items are present. Alternatively this value may be short for

when a user retrieves weights from a low number of secret for mental computation

(e.g. 1 secret requires no computation). However, a user quickly scanning in the

challenge may also exhibit a short min time, which can be managed by considering

the 20th percentile.

b) Max Dwell Time: The longest time spent viewing an image may be indicative of

the time that a user spends stationary to compute the challenge result. A more di�-

cult arithmetic problem should incite a larger cognitive load and hence require more

time. Like min dwell time, the longest dwell may reflect instances of user distraction

for an extended period of time, hence the consideration of the 80th percentile of dwell

times.

c) Mean Dwell Time: If there are more secret images, with more math, the user may

spend more time processing the challenge (Feature 1.a). But, the verification time

of each image may be shorter as they skim over the challenge once again to retrieve

item weights for mental computation.

d) STD Dwell Time: It is observed that users are more likely to double check the

challenge if a low number secrets are present. Spending more time on specific un-

certain images, should result in a larger time deviation.

e) Number of Dwells: The number of dwell positions should be indicative of the

extent of scans and checks for secrets in the challenge. A challenge with more

secrets may prompt additional checks, producing more dwells.

f) Time from longest stationary till end: A challenge with a secret present, should

have the user stop and (mentally) compute a result. After the pause, they will submit

their response. This is an attempt to isolate the period of time in which the user

should be computing their response, and indicative of the problem di�culty.

212

A.4. FEATURE INTUITION

g) Dwell Consistency: By contrasting the high and low extremes (min/max or

20th/80th percentile), we can obtain a normalized ratio of their di�erences. Thus,

any outlying images such as a secret the user spends additional time on, will be

captured by this normalized di�erence.

h) Duration of First Fixation: If a user locates a secret image initially when the

challenge is presented, they will remain fixated on their secret image for a longer

duration of time as compared to decoys [186].

i) Duration of Last Fixation: When a user recovers their secret items from the

challenge, their last fixation would also include computation time for the modulus-

sum obtain the result. The length of this last fixation is a possible indicator of the

di�culty of the computational task, with the inclusion of the modulus hypothesized

to take longer.

j) Longest Dwell Consistency: As an extension of the previous point, consistently

taking a long time traversing multiple items may be indicative of a di�cult task like

that of the modulus.

A.4.3 Adversary Level 3 Feature Hypotheses

a) Number of transitions (Halves) A user scanning through a challenge is likely

to traverse the entire challenge, consequently crossing between di�erent areas of

the challenge. It is suspected to be larger for challenges with more secrets present.

Transitions include: Left-Right (Ignoring center due to odd # of columns), Top-

Bottom and (Even), ignoring two center rows.

b) Time from bottom of the screen to the end: After a user finds their secrets,

they press a button to proceed to a submission page, a user may take additional

time to (mentally) compute the response prior to proceeding in a modulus event

with many secrets.

213

APPENDIX A. APPENDIX: EXPLOIT BEHAVIOR

A.4.4 Adversary Level 4 Feature Hypotheses

a) Highest Number of Reentries: For a given secret image within the challenge,

it is likely the user’s first pass will view the image to simply recognize it. However,

upon completion of a visual search, the user may revisit the image to get the weight

for response computation. Potentially, leading to larger values when many secrets

are present.

b) Number of non-entries: For a given challenge, a user may quickly re-identify

their secrets from a rapid search (no dwell), the secrets form salient images. As

such, some images may not be viewed at all, thus producing more un-viewed images

when less secret images are present.

c) Length of longest repeating sequence: During the visual search, a user is may

backtrack on the items identified as secrets, either from uncertainty, or a revisit to

retrieve weights for response computation. Thus a longer repeating sequence could

be related with a larger number of secret items in a challenge, and thus provide

modulus event information.

d) Weight of Longest dwell item (Top 3): As previously mentioned a user spends

more time on secret items. Therefore larger weights on these dwelled items will

likely require a modulus operation. The weights of the top 3 largest dwelled items

are considered.

214

Appendix B

Supplementary material for

Chapter 4 - On the Resilience of

Biometric Authentication Systems

against Random Inputs

215

APPENDIX B. APPENDIX: RANDOM INPUTS

B.1 Mitigation ROC Plots

This appendix contains plots of the results as discussed in Section 4.6. Figure B.1 contains

per-user scatter plots of AR and FPR for all biometric modalities and algorithms. For

the same classifiers, Figure B.2 illustrates the ROC curves for classifiers trained with the

inclusion of beta distributed noise only. Finally, Figure B.3 displays the ROC curves for all

classifiers of touch and face datasets with the inclusion of both beta distributed noise and

raw input vectors as an additional mitigation strategy against the the raw inputs, which

were unfazed by the beta noise. A summary of changes in FRR, FPR, AR and RAR of

both Figure B.2 and B.3 have been provided earlier in Table 4.1 and 4.2 of Section 4.6.

(a) Gait (b) Touch (c) Face (d) Voice

Figure B.1: Individual user scatter of AR and FPR after the addition of beta
distributed noise. A substantial proportion of users now exhibit an AR close
to zero, or below the AR = FPR. Unfortunately, this defense mechanism did
not completely minimize the AR of LINSVM for the Face authenticator. Nor
did this defense protect two outlying users in the RNDF voice authenticator.

B.2 DNN Estimator configuration.

All models were trained for 5000 steps, with batch size of 50, with the Adagrad optimizer.

The exact layer configuration of the DNNEstimator [129] used can be found on our project

page (https://imathatguy.github.io/Acceptance-Region/).

216

https://imathatguy.github.io/Acceptance-Region/

B.2. DNN ESTIMATOR CONFIGURATION.

(a) Gait Average ROC in the presence of Beta Noise

(b) Touch Average ROC in the presence of Beta Noise

(c) Face Average ROC in the presence of Beta Noise

(d) Voice Average ROC in the presence of Beta Noise

Figure B.2: Beta-noise mitigation of AR, with additive negative training noise
sampled from a symmetric beta distribution around the mean of the user’s
features. The EER is marked on the diagrams as a vertical line. It is noted the
plots with RAR curves the additional Beta-noise is not su�cient in mitigating
RAR attacks.

217

APPENDIX B. APPENDIX: RANDOM INPUTS

(a) Touch Average ROC in the presence of Beta Noise

(b) Face Average ROC in the presence of Beta Noise

Figure B.3: Beta-noise mitigation of AR, with additional negative samples
from the RAR feature set. The EER is marked on the diagrams as a vertical
line. Addition RAR vectors were included as it was previously observed that
beta noise is su�cient in mitigating AR attacks, but not the RAR attack.

218

Appendix C

Supplementary material for

Chapter 5 - On the (In)Feasibility

of Attribute Inference Attacks on

Machine Learning Models

219

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

C.1 Model Parameters

C.1.1 Target Models

We will first describe the Neural Network (NN) based target models used in the bulk

of our experiments, followed by the configurations of the classifiers in Section 5.4.2. The

training and testing accuracies can be found in Table C.1. Location: The model was

trained in keras as a fully connected NN with 1 hidden layer of 128 nodes with the “tanh”

activation function. We replicate the training and testing accuracy of [33]’s target model.

Purchase: The target model was trained in keras as a fully connected neural network

with 1 hidden layer of [128] nodes with a “tanh” activation function. This architecture

replicates the training and testing accuracy for the target model as previously reported

in [33]. CIFAR: The target model is a multilayer perceptron, consisting of two hidden

layers of 256 units, with relu activation layer and a softmax output layer. This is the same

architecture used in [46].

Logistic Regression (LR): The parameter C was set at 100 for all datasets, with all

other parameters remain at the default values. Support Vector Machine (SVM): We

select a linear kernel for all the datasets. We keep parameters at default values. Random

Forest (RF): The number of estimators was chosen to be 100 with no depth specified,

the remaining parameters were kept as defaults.

The training and testing accuracies for each algorithm, and for each datasets are noted in

Table C.1.

C.1.2 MI Attack Configurations

Due to the di�erent data requirements for each attack, the way the data is partitioned

di�ers, we note these di�erences in this section. The average MI AUC can be found in

Table C.1. For the Conf and Loss attacks, we do not require additional data to train an

attack model.

220

C.1. MODEL PARAMETERS

Table C.1: Summary of training and testing accuracies, with MI AUC for all
machine learning classifiers.

Dataset Model Train Acc Test Acc MI AUC Model - MI Train Acc Test Acc MI AUC
LR - Conf 1.000 0.582 0.897 NN - Conf 1.000 0.794 0.705

Loc-30 SVM - Conf 1.000 0.731 0.916 NN - Loss 1.000 0.794 0.710
RF - Conf 1.000 0.566 0.975 NN - Shadow 1.000 0.666 0.909
NN - Local 0.998 0.430 0.891 NN - Global 0.998 0.430 0.886
LR - Conf 1.000 0.484 0.765 NN - Conf 0.999 0.765 0.708

Pur-100 SVM - Conf 1.000 0.799 0.855 NN - Loss 0.999 0.765 0.720
RF - Conf 1.000 0.606 0.998 NN - Shadow 1.000 0.700 0.842
NN - Local 0.538 0.487 0.508 NN - Global 0.538 0.487 0.719
LR - Conf 0.995 0.601 0.614 NN - Conf 0.998 0.832 0.629

Pur-50 SVM - Conf 1.000 0.857 0.716 NN - Loss 0.998 0.832 0.638
RF - Conf 1.000 0.724 0.980 NN - Shadow 1.000 0.778 0.763
NN - Local 0.692 0.657 0.520 NN - Global 0.692 0.657 0.668
LR - Conf 0.973 0.785 0.552 NN - Conf 0.999 0.889 0.577

Pur-20 SVM - Conf 1.000 0.906 0.584 NN - Loss 0.999 0.889 0.582
RF - Conf 1.000 0.813 0.917 NN - Shadow 1.000 0.841 0.690
NN - Local 0.803 0.781 0.505 NN - Global 0.803 0.781 0.626
LR - Conf 0.973 0.878 0.521 NN - Conf 0.999 0.911 0.558

Pur-10 SVM - Conf 1.000 0.932 0.530 NN - Loss 0.999 0.911 0.561
RF - Conf 1.000 0.840 0.902 NN - Shadow 1.000 0.868 0.644
NN - Local 0.836 0.818 0.503 NN - Global 0.836 0.818 0.608
LR - Conf 1.000 0.986 0.499 NN - Conf 0.998 0.959 0.521

Pur-2 SVM - Conf 1.000 0.987 0.502 NN - Loss 0.998 0.959 0.522
RF - Conf 1.000 0.921 0.781 NN - Shadow 0.999 0.944 0.580
NN - Local 0.914 0.906 0.505 NN - Global 0.914 0.906 0.567

CIFAR-20 NN - Conf 0.920 0.322 0.544 NN - Loss 0.920 0.322 0.799
NN - Shadow 0.999 0.281 0.925 - - - -

CIFAR-100 NN - Conf 0.831 0.214 0.524 NN - Loss 0.831 0.214 0.844
NN - Shadow 0.999 0.170 0.967 - - - -

C.1.2.1 Conf and Loss attacks

Location: We take the full dataset and divide it into 2 parts. 20% is used for training

the target model and remainder 80% is kept for testing purposes. Purchase: We sample

20,000 records from the dataset and divide it into 2 parts. The first 80% is used for training

the target model and remaining 20% is kept for testing purposes. CIFAR: 50,000 records

are sampled from the dataset to constitute our experimental dataset, from this 20% is

reserves as the training data, and the remaining 80% is use for testing.

C.1.2.2 Shadow MI

Location: We take the full dataset and divide it into 3 parts. The first 20% is used for

training the target model, 64% for training the shadow models and the remaining 16% is

221

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

retained for testing. Our Shadow MI attack is from the open-source library [187]. The

training and testing accuracies are found in Table C.1. Our models are as follows:

1. Shadow Models: We select 60 attack models for Location dataset, consistent with

[33]. The architecture of these shadow models and the size of their training dataset are

equivalent to the target model.

2. Attack Model: The attack model is multilayer perceptron with a 64-unit hidden

layer and a sigmoid output layer. This architecture replicates the precision and recall

as previously reported in [33]. For the Location-30 dataset our MI attack obtains a

precision of 0.93 and recall of 0.82

Purchase: We sample 40000 records from the dataset and divide it into 3 parts. The first

25% is used for training the target model, 67.5% for training the shadow models and the

last 7.5% is kept for testing. The setup for running this attack on the Purchase datasets

are as follows:

1. Shadow Models We chose the number of shadow models as 20 for Purchase dataset.

The architecture of these shadow models and the size of their training dataset are the

same as the target model.

2. Attack Model The attack model is multilayer perceptron with a 64-unit hidden layer

and a sigmoid output layer. This architecture replicates the precision and recall ob-

served in [33]. We obtain precision of 0.66, 0.78, 0.81, 0.85, 0.89 and recalls of 0.54,

0.57, 0.6, 0.67, 0.76 for Purchase-2, 10, 20, 50, 100, respectively.

CIFAR: We sample complete dataset(around 50000 records) from the dataset and divide

it into 3 parts. The first 20% is used for training the target model,next 72% for training

the shadow model and the rest 8% is kept for testing purposes. The setup for running this

attack on this dataset is as follows:

222

C.1. MODEL PARAMETERS

1. Shadow Models We chose the number of attack models as 5 for CIFAR dataset which

is the same as [46]. The architecture of this shadow model and the size of the training

dataset is the same as the target model.

2. Attack Model A multilayer perceptron (two 64 unit hidden layer with “tanh” acti-

vation layer and a sigmoid output layer). This architecture matches the precision and

recall of the attack model previously reported in [33]. We achieve 0.98 precision and

0.9 recall for CIFAR-100.

C.1.3 Local and Global White Box Inference Attacks [1]

As a result of the federated setting, the target models for our datasets di�er. The target

models and attack model architecture, as well as the training and testing setup, originally

described by [1] are utilized in this study.

Target Model Our target model for both datasets consisted of five layers (1024, 512,

256, 128, 100) with “tanh” activation, replicated from [1]. Each party as well as the server

is trained on this model across 100 epochs with an Adam optimizer with learning rate of

0.0001 and cross entropy loss.

Attack Model The attack model takes in a number of di�erent inputs from the target

model, which are trained on ’submodules’ before being combined in a final network. These

inputs described below, with c being equal to the number of classes of the dataset:

• Gradient loss of the final layer - One convolutional layer (1000) with kernel size (1, c)

and three hidden layers (1024, 512, 128)

• One hot encoded true label - 2 hidden layers (128, 64)

• Predicted labels - 2 hidden layers (100, 64)

• Output for the correct label – 2 hidden layers (c, 64)

223

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

The combined input is trained using three hidden layers (256, 126, 64, 1). "ReLu" activa-

tion is used throughout the attack model, with an Adam optimiser with learning rate of

0.00001 and mean square error loss.

Datasets During target model training the Location and Purchase datasets were both

split with 20% (30,000 for Purchase, 1,158 for Location) used for the initial target model

training, and 80% (150,000 for Purchase, 5,790 for Location) for testing, as described for

the purchase dataset in [1]). The data was further split equally amongst the three parties

so that each party had a training and testing set of the same size. The attack model was

subsequently trained with half of the original training data and the same amount of the

original testing data (representing members and nonmembers, respectively). Each batch

was designed to have 50% of members and nonmembers. The remaining samples were

used for testing.

C.2 Additional Figures and Experimentation

C.2.1 Additional Plots

CIFAR-20 Plots In Section 5.4, we presented results for CIFAR-100, here we provide

accompanying plots in Figure C.1a and C.1b for CIFAR-20, which demonstrates the same

trends as those observed in CIFAR-100. We do note that the AUC curves for CIFAR-20

are slightly lower than the respective CIFAR-100 curves. An expected result due to the

reduction in the number of class labels.

Per-Label Plots As previously discussed in Section 5.4.1.3, we had only shown the

Purchase-20 dataset. We now provide the per-label plots of our remaining binary datasets

in Figure C.2.

224

C.2. ADDITIONAL FIGURES AND EXPERIMENTATION

(a) Original vectors (b) Generated vectors

Figure C.1: AUC of MI attacks on original and synthetic non-member vectors
of the CIFAR-20 dataset as a function of Manhattan distance.

C.2.2 Validating the Indistinguishable Neighbor Assumption

To demonstrate that the indistinguishable neighbor assumption from Definition 5.2.5 holds

for real-world datasets, we train a Generative Adversarial Network (GAN) to produce and

discriminate between real and perturbed vectors from the Purchase dataset. We train the

GAN over 50 epochs with 90% of the data, and evaluate with the remaining 10%. We

use a 100 length noise input to the generator. In Figure C.3, it is clear that at small

distances (r-values) there is little advantage in distinguishing between a real vector and

a perturbed vector. The advantage increases, and becomes significant, as the distance

increases, validating our theoretical assumption.

C.2.3 Exact AI on a Single Missing feature

In this section we present an equivalent AI attack to that in Section 5.5.1, with the

exception that only the single most informative feature is to be inferred. Compared to

Table 5.1, we see that AI advantages for a single missing feature are better than their

counterparts for multiple missing features. This is intuitively clear since with more feature

information withheld from an attacker (15 features as in Section 5.5.1), the di�culty of the

attack increases, and the likelihood of AI success will decrease. However, when compared

to Table C.1, we note that the significant MI performance (in terms of AUC) is not

reflected in the AI performance of Table C.2. For a single missing feature, AI is equivalent

225

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

(a) Loc-30 Conf MI (b) Loc-30 Loss MI (c) Loc-30 Shadow
MI

(d) Loc-30 Local WB(e) Loc-30 Global
WB

(f) Pur-2 Conf MI (g) Pur-2 Loss MI (h) Pur-2 Shadow MI (i) Pur-2 Local WB (j) Pur-2 Global WB

(k) Pur-10 Conf MI (l) Pur-10 Loss MI (m) Pur-10 Shadow
MI

(n) Pur-10 Local WB(o) Pur-10 Global
WB

(p) Pur-50 Conf MI (q) Pur-50 Loss MI (r) Pur-50 Shadow
MI

(s) Pur-50 Local WB(t) Pur-50 Global
WB

(u) Pur-100 Conf MI(v) Pur-100 Loss MI(w) Pur-100 Shadow
MI

(x) Pur-100 Local
WB

(y) Pur-100 Global
WB

Figure C.2: Increasing AUC of MIA with increasing distance of synthetic non-
members from the training dataset, with a separation of class labels depending
on the size of the DR, for the Loc-30, Pur-2, 10, 20, 50, 100 datasets.

Figure C.3: Advantage of the GAN distinguisher in distinguishing between
real and perturbed vectors from the Purchase dataset at increasing distances.

226

C.2. ADDITIONAL FIGURES AND EXPERIMENTATION

to AAI, since in a binary dataset, with only one missing feature, it is either correct or

incorrect. Thus, we only perform AAI for the case of multiple missing features, as is done

in Section 5.5.1.

Table C.2: Attribute Inference (Experiment 3) Advantage, where the adver-
sary seeks to infer the exact attribute, when a single most informative feature
is missing. The results below are normalized when dealing with ties.

AI Loc-30 Pur-2 Pur-10 Pur-20 Pur-50 Pur-100
Salem Advantage 0.0700 0.0051 0.0266 0.0396 0.0815 0.0917
Yeom Advantage 0.0581 0.0069 0.0191 0.0294 0.0655 0.0791

Shokri Advantage 0.0377 -0.0057 0.0445 0.0581 0.0318 0.0251

C.2.4 Tuning Attack Models for SMI

It may be argued that these MI attacks are not specifically trained to distinguish between

members and nearby (synthetic) non-members, which may explain their poor performance

in SMI. To investigate if we can improve their performance of SMI, we tune the training

process of these attack models to further include nearby synthetic non-members. This

augmented training process is only applicable to the MI attacks that employ an attack

model, i.e., Shadow, Local WB, and Global WB. The other two MI attacks, i.e., Conf

and Loss MI, directly inspect the outputs of the target model for their MI decision, and

hence tuning the decision based on member and nearby synthetic non-member vectors is

not applicable.

To perform this experiment we take the same experimental steps as Section 5.4.1.2, se-

lect the Shadow MI attack, and augment the tuning step with synthetic non-members

generated from both members and non-members of the attack model training set. For

each training vector (member or non-member), we generate two synthetic vectors at all

Hamming distances up to 10. These synthetic non-members are then used to update the

attack model.

From Figure C.4, it can be observed that the AUC of the attack at distances close to

the dataset still remains close to 0.5, while at larger distances, the AUC approaches 0,

227

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

(a) SMI View (b) Extended View

Figure C.4: AUC performance on Shadow MI tuned with additional close
vectors (dotted lines). The existing Shadow MI results (solid lines) have been
mirrored on 0.5 to allow for easier comparison pre and post tuning.

indicating that the attack can distinguish between members and non-members as we move

away from the dataset, although with membership label reversed, i.e., more members are

now classified as non-members and vice versa. Upon closer inspection, the attack model

had no advantage in inferring membership of member vectors (near 0.5 AUC across all

datasets). On the other hand, the attack model erred more towards mislabeling non-

members (both original and synthetic) as members. We hypothesize this output label

“flipping” of the trend is due to the numerous additional close non-members provided

to the attack model, which “confuses” the model in distinguishing members from non-

members, producing an AUC below 0.5. Regardless, for all datasets tuning the attack

model for SMI does not show any improvement in detecting non-members close to the

dataset compared to the original attack model. We also carried out an additional repetition

of the experiment with one synthetic vector generated per member and non-member, at

each Hamming distance up to 50. This demonstrated worse AUC performance over all

distances.

We conclude that despite the retraining the attack model with additional nearby non-

members, the attack failed to achieve SMI. In fact, MI performance generally decreased,

due to the similarity of members and the synthetic nearby non-members.

228

C.3. METRICS, BALLS AND SIBLINGS

C.3 Metrics, Balls and Siblings

The results from Section 5.2.2 do not apply to any arbitrary distance metric. For instance,

given any distance metric d, the metric C · d, where C > 0 is a constant is also a distance

metric. But this introduces arbitrarily large (artificial) distance between vectors. We,

therefore, restrict ourselves to metrics that do not exhibit arbitrarily large deviation given

small perturbation in vectors. This leads to the notion of conserving metric [188, §1.6] to

be introduced shortly.

Theorem C.3.1 (Metrics). Let d1 be a metric on D. Let x, xÕ
œ Dm. Then the functions

1. dM (x, xÕ) =
q

m

i=1 d1(xi, xÕ
i
),

2. dE(x, xÕ) =
Òq

m

i=1(d1(xi, xÕ
i
))2,

3. dŒ(x, xÕ) = maxiœ[m](d1(xi, xÕ
i
)),

are metrics on the product space Dm. Moreover, for every x, xÕ
œ Dm, we have dŒ(x, xÕ) Æ

dE(x, xÕ) Æ dM (x, xÕ) [188, §1.6].

Definition C.3.1 (Conserving metric). A metric d is called a conserving metric [188,

§1.6] on the product space Dm if for all x, xÕ
œ Dm, we have

dŒ(x, xÕ) Æ d(x, xÕ) Æ dM (x, xÕ).

Examples of conserving metrics include the Hamming distance over Dm = {0, 1}
m, where

d1(x, xÕ) = |x ≠ xÕ
|, x, xÕ

œ {0, 1}, the Euclidean distance over Dm = [0, 1]m, where

d1(x, xÕ) = |x ≠ xÕ
|, x, xÕ

œ [0, 1], and the Manhattan distance (dM) over Dm = [≠1, 1]m,

where d1(x, xÕ) = |x ≠ xÕ
|, x, xÕ

œ [≠1, 1]. Henceforth we will assume the metric d to be a

conserving metric on Dm.

For any subset X ™ Dm, the diameter of X, denoted diamd(X) is defined as max{d(x, xÕ) |

x, xÕ
œ X}.

229

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

Bounded Feature Space. We assume D to be bounded, i.e., diamd1(D) < Œ. Since d

is a conserving metric it follows that diamd(Dm) < Œ, and hence the feature space is also

bounded. This is equivalent to saying that for any x œ Dm, there exists an R > 0 such

that Dm = Bd(x, R) [188, §7.1].

Siblings. Overloading notation, we also define

�i(x) =
€

S™[m]
|S|=i

�S(x),

where 1 Æ i Æ m ≠ 1.

Proposition C.3.1. Let 1 Æ i Æ m ≠ 1. Let r Ø i ◊ diamd1(D). Then for every feature

vector x œ Dm, we have �i(x) ™ Bd(x, r).

Proof. Consider any xÕ
œ �i(x). Then xÕ

œ �S(x), for some S ™ [m] where |S| = i. Then,

as d is a conserving metric,

d(x, xÕ) Æ dM (x, xÕ) Æ

mÿ

j=1
d1(xj , xÕ

j) =
ÿ

jœS

d1(xj , xÕ
j)

Æ

ÿ

jœS

diamd1(D) = i ◊ diamd1(D) Æ r.

Hence xÕ
œ B(x, r).

For metrics dE and dM , we define di to be the restriction of dE or dM to i dimensions in

a natural way, where 1 Æ i Æ m.

Proposition C.3.2. If diamd1(D) = ” > 0, then diamd1(D) < diamd2(D2) < diamd3(D3) <

· · · .

Proof. Consider the metric to be dE . Consider i = 1. Then there exist x, xÕ
œ D such that

” = d(x, xÕ). Construct the 2-dimensional vectors x = (x, x) and xÕ = (xÕ, xÕ). Then,

diamd2(D2) Ø

Ò
(d1(x, xÕ))2 + (d1(x, xÕ))2

=
Ô

2” > ” = diamd1(D).

The rest of the proof follows by induction. The case for dM is similar.

230

C.3. METRICS, BALLS AND SIBLINGS

Proposition C.3.3. Let 1 Æ i Æ m ≠ 1. Let diamdi+1(Di+1) > r Ø diamdi
(Di), where dj

is dE restricted to j dimensions. Then,

1. For any feature vector x œ Dm, we have �i(x) ™ BdE
(x, r).

2. There exists a feature vector x œ Dm, such that �i+1(x) ”™ BdE
(x, r).

Furthermore, the same holds for the metric dM , and dj being dM restricted to j dimensions.

Proof. For part (1), consider any xÕ
œ �i(x). Then xÕ

œ �S(x), for some S ™ [m] where

|S| = i. Then,

dE(x, xÕ) =
ı̂ıÙ

mÿ

j=1
(d1(xj , xÕ

j
))2

=
Ûÿ

jœS

(d1(xj , xÕ
j
))2 Æ diamdi

(Di) Æ r.

Hence xÕ
œ BdE

(x, r). For part (2), let ” = diamdi+1(Di+1). Then their exist (i + 1)-

dimensional vectors xÕ, xÕÕ
œ Di+1 such that di+1(xÕ, xÕÕ) = ”. Furthermore, d1(xÕ

j
, xÕÕ

j
) ”= 0,

for all j œ [i + 1]. Suppose not, and wlog assume that d1(xÕ
i+1, xÕÕ

i+1) = 0. Then, we can

discard the last element from both vectors, and the resulting i-dimensional vectors have

distance ” according to di, which is greater than diamdi
(Di); a contradiction. Now, sample

any (m ≠ i ≠ 1)-dimensional vector from Dm≠i≠1 and append it to both xÕ and xÕÕ. Let

us call the resulting vectors x1 and x2. Let S = {1, 2, . . . , i + 1}. Then, |S| = i + 1, and

x2 œ �S(x1) ™ �i+1(x1), but

dE(x1, x2) =
ı̂ıÙ

mÿ

j=1
(d1(xj , xÕ

j
))2

=
Ûÿ

jœS

(d1(xj , xÕ
j
))2 = ” > r.

Hence x2 /œ BdE
(x1, r).

A similar proof holds for the metric dM .

Corollary C.3.1.1. Let i and x be as in the statement of the previous proposition. Define

d1(x, xÕ) = |x ≠ xÕ
| for x, xÕ

œ D.

231

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

1. Let dH be the Hamming distance on D = {0, 1}
m. Let r Ø i. Then �i(x) ™

BdH
(x, r).

2. Let dM be the Manhattan distance on D = [≠1, 1]m. Let r Ø 2i. Then �i(x) ™

BdM
(x, r).

3. Let dE be the Euclidean distance on D = [≠1, 1]m. Let r Ø
Ô

4i. Then �i(x) ™

BdE
(x, r).

The above corollary can be used to select an r such that all siblings of a portion are within

the r-ball. This is used, for instance, by the AI adversary to employ an SMI attack as a

subroutine to infer attributes in Section 5.2.2.

C.4 Relationship between Inference Notions

Proof of Theorem 5.2.1.

Proof. We essentially show that a membership inference (MI) adversary does not imply a

strong membership inference (SMI) adversary, i.e., MI ”∆ SMI. Let r > 0 be fixed. Let

k Ø 2 be a fixed number of labels. Let N ∫ n. Sample N points from Rm such that for

all pairs of points x, xÕ in this sample, with x ”= xÕ, we have d(x, xÕ) > 3r.1 Let us call this

sample S1. For each x œ S1, assign it an arbitrary label from the k labels and set c(x) to

this label. Initialize an empty set S2. Now for each x œ S1, sample a random point from

B(x, r)≠{x}, and add to S2, and assign it the same label as x, i.e., c(x). Let S = S1 fiS2.

Notice that every vector in S has precisely one r-neighbor in S. To see this, first note

that every vector in S1 is not an r-neighbor of any other vector in S1 by construction.

Next, we take a vector x in S1, and see if it has more than one r-neighbors in S2. Let y

1There can be many such vectors, which can be found using a greedy algorithm [189].
For instance, if D = {0, 1}, r = 1, and d is the Hamming distance, then the Gilbert-
Varshamov bound states that there are at least 2m/

q3
i=0

!
m

i

"
, vectors with minimum

Hamming distance > 3r = 3 [189,190].

232

C.4. RELATIONSHIP BETWEEN INFERENCE NOTIONS

be the r-neighbor guaranteed by construction. Assume now that w œ S2 di�erent from

y is another r-neighbor of x. Let z œ S1 be the r-neighbor of w in S1 guaranteed by

construction. Then,

d(x, z) Æ d(x, w) + d(w, z) ∆ d(x, z) Æ r + r = 2r,

a contradiction. Next, we will look at vectors in S2. We will check if any vector from S2

has more than one r-neighbor in S1. Then, we will check if the vectors in S2 have any

r-neighbors in S2. This exhausts the cases.

Let y be the r-neighbor in S2 of some x œ S1. This is true by construction. Let z be some

other vector in S1. Then, d(x, y) Æ r, and d(x, z) > 3r. Therefore,

d(x, z) Æ d(x, y) + d(y, z)

∆ 3r < d(x, y) + d(y, z)

∆ 3r < r + d(y, z) ∆ 2r < d(y, z),

hence y is not an r-neighbor of any other z in S1. Now consider some w œ S2 not equal

to y. Assume to the contrary that d(y, w) Æ r. Let z be the r-neighbor of w in S1 (again

by construction, it should exist). Then,

d(x, z) Æ d(x, y) + d(y, w) + d(y, z)

∆ d(x, z) Æ r + r + r = 3r,

which is a contradiction.

Let Dm = S. Define the distribution D as the uniform distribution over S. Sample a

dataset X Ω D
n. Define a classifier hX which given a point x in X, assigns its label c(x)

to all vectors within the ball B(x, r), i.e., all r-neighbors of x have the constant label.

The classifier hX , when queried for a point x œ X, simply outputs the label c(x). For any

point x /œ X, it checks if there is some xÕ
œ X such that d(xÕ, x) Æ r. If yes, it returns the

label c(xÕ). Otherwise, it returns an arbitrary label from the k labels.

Now consider an MI adversary A which given (x, c(x)), queries hX with x, and outputs 1

(member) if hX(x) = c(x) and 0 (non-member) otherwise. Let us calculate the probabili-

233

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

ties in:

Pr[bÕ = 1 | b = 1] ≠ Pr[bÕ = 1 | b = 0],

which define the adversary’s advantage (Definition 5.2.7). If x is a member, then the

adversary does not make a mistake, as the label returned by hX is exactly the label c(x)

by construction. Therefore,

Pr[bÕ = 1 | b = 1] = 1.

Now consider the other probability, i.e., Pr[bÕ = 1 | b = 0]. The adversary could erroneously

output x as a member either if its r-neighbor was in X, or if its r-neighbor was not part

of X, but the classifier gives it the correct label by chance. Thus

Pr[bÕ = 1 | b = 0] =
3

1 ≠

32N ≠ 2
2N ≠ 1

4n4

+
32N ≠ 2

2N ≠ 1

4n 3 1
k

4

= 1 ≠

3
1 ≠

1
2N ≠ 1

4
n

3
k ≠ 1

k

4

Subtracting this from the above, we see that the advantage is
3

1 ≠
1

2N ≠ 1

4
n

3
k ≠ 1

k

4

By Bernoulli’s inequality [191], we have
3

1 ≠
1

2N ≠ 1

4
n

Ø 1 ≠
n

2N ≠ 1 ,

and noting that N > n, we get 2N ≠ 1 Ø 2n. And therefore,

1 ≠
n

2N ≠ 1 Ø 1 ≠
n

2n
= 1

2 .

Finally, we get the advantage of at least 1
2

k≠1
k

, which is a constant.2 However, the same

adversary if used as a subroutine in Experiment 2, will always output 1 if queried on x

and its r-neighbor, since every r-neighbor of a member x œ X, is assigned the true label

(even if it is not in X, by construction). Hence, the resulting adversary has no advantage

in the sense of SMI.

2Note that if the adversary just guesses randomly, the advantage is 0. This is signifi-
cantly greater than 0.

234

C.5. MISCELLANEOUS RESULTS

C.5 Miscellaneous Results

Relationship between AUC and Advantage. The MI advantage from Definition 5.2.7

denoted AdvMI(A, hX , n, D) can be empirically estimated as TPR(·) ≠ FPR(·)3 with ·

denoting the threshold parameter of the given classifier hX and TPR(·) and FPR(·)

denoting the True Positive Rate and False Positive Rate respectively at · . The AUC-

ROC statistic captures the aggregate performance of the classifier hX for all possible

values of the threshold · and is computed as AUC =
s 1

FPR(·)=0 TPR(·)d(FPR(·)) =
s 1

x=0 TPR(FPR≠1(x))dx.

When AdvMI(A, hX , n, D)) = Advm for all possible values of · (i.e. Advantage is same for

all values of the threshold parameter), the AUC is computed as
s 1

x=0(FPR(FPR≠1(x)) +

Advm)dx = 1
2 + Advm. Thus, AUC ≠

1
2 equals the advantage from Definition 5.2.7. Even

when the advantages vary with · , AUC ≠
1
2 is a good approximation for the average

advantage.

Similarly, the Advantage in the strong membership inference definition, AdvSMI(A, hX , r, n, D)

can be empirically estimated as TPR(·) ≠ FPR(·) as long as Bd(x0, r) is assumed to have

a small number of samples from X, i.e., in general Bd(x0, r) would contain more elements

outside of X.

Average Manhattan Distance. Let Dm = [≠1, 1]m. Given a vector x œ Dm, we want to

find the Manhattan distance dM between x and a vector y œ Dm, each of whose elements

is sampled uniformly at random from the set D = [≠1, 1]. Define the distance as –m.

Consider first m = 1. Then, –1, the expected Manhattan distance between x and y, can

be defined as

–1 = 1
R

⁄ +1

≠1

⁄ +1

≠1
|x ≠ y| dx dy,

3i.e., Pr[bÕ = 1 | b = 1] = Pr[bÕ=1·b=1]
Pr[b=1] = TPR and Pr[bÕ = 1 | b = 0] = Pr[bÕ=1·b=0]

Pr[b=0] =
FPR

235

APPENDIX C. APPENDIX: MEMBERSHIP AND ATTRIBUTE INFERENCE

where R = 4 is the area of the square [≠1, 1] ◊ [≠1, 1]. Integrating the above we get,

–1 = 1
4

⁄ +1

≠1

3⁄
y

≠1
(y ≠ x) dx +

⁄ +1

y

(x ≠ y) dx
4

dy

= 1
4

⁄ +1

≠1
(y2 + 1) dy = 1

4 ·
8
3 = 2

3 .

By independence, we get –m = m–1 = 2m/3. For m = 5, we get –5 = 10/3 ¥ 3.33.

Thus, we set – = 3.33 as the benchmark for a random guess with 5 missing features in

the CIFAR dataset.

236

Appendix D

Supplementary material for

Chapter 6 - Not one but many

Tradeo�s: Privacy Vs. Utility in

Di�erentially Private Machine

Learning

237

APPENDIX D. APPENDIX: PRIVACY - UTILITY TRADEOFFS

D.1 Machine Learning algorithm training configurations

The hyper-parameters of the NN models were replicated from [46]. For RF , the number

of trees was fixed at 100, and the maximum tree depth was capped at 15 (due to memory

limits in [161]). For LR, the solver was ‘lbfgs’; multi-class classification problems were

handled in a one vs. rest manner. All other models’ parameters are kept at library

defaults.

D.2 Experimental Results for LossMI on Synthetic Data

This section contains privacy advantage plots for the LossMI attack when applied on

synthetic data with various ML methods. From Figure D.1, we can observe that like

ConfAI , the inflection point for S1 DP-ML models occurs at ‘¥100, and for S3 at ‘¥1-

10. However unlike ConfAI , the inflection point on S2 is much more pronounced, clearly

occurring at ‘=1 and ‘=100 for RF and NN respectively. Across all DP-ML methods, the

absolute advantage (when the attack is e�ective) tends to be higher than that of ConfMI ,

an expected result given access to ground truth information about the class label.

D.3 Experimental Results for ConfAI on Synthetic Data

This section contains privacy advantage plots for the ConfAI attack when applied on

synthetic data with various ML methods. Figure D.2 allows us to view trends similar to

those mentioned when analyzing LossAI . Interestingly, it appears that both ConfMI and

ConfAI obtain a poor advantage for an attacker for the models in S2, due to the ConfAI

attack relying on ConfMI as a subroutine.

238

D.4. EXPERIMENTAL RESULTS FOR LOSSMI ON REAL-WORLD DATA

D.4 Experimental Results for LossMI on Real-world Data

This section contains privacy advantage plots for the LossMI attack when applied on real-

world data with various ML methods. The trends we observe in Figure D.3 are reminiscent

of the trends observed in the synthetic results seen in Figure D.1. Again we can observe

that like ConfAI , the inflection point for S1 DP-ML models occurs at ‘¥100, and for S3

at ‘¥1-10. However, unlike ConfAI on the real world data, the inflection point on S2:NN

is much more pronounced, clearly occurring at ‘=100. As expected, across all DP-ML

methods, the absolute advantage (when the attack is e�ective) tends to be higher than

that of ConfMI .

D.5 Experimental Results for ConfAI on Real-world Data

This section contains privacy advantage plots for the ConfAI attack when applied on

real-world data with various ML methods. Figure D.4 contains our results. The ConfAI

attack observes inflection points for S1 at ‘¥1. For S3, these inflection points occur at

‘=1 and 10, for NB and LR, respectively. Similar to what we observed in the synthetic

results, we see that the ConfAI advantage on S2 models is near zero, which is not the case

in LossAI .

D.6 Summaries of Experimental Results for LossMI , Los-
sAI , ConfAI

In this Section, and as previously observed in Section 6.4.2.5, we present the additional

summary figures for LossMI , LossAI and ConfAI (Figure D.5).

239

APPENDIX D. APPENDIX: PRIVACY - UTILITY TRADEOFFS

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure D.1: Advantage of LossMI attack for each of the ML methods used,
when di�erent amount of DP noise is applied at Stage 1, 2, 3 of the ML
pipeline, and for di�erent synthetic datasets.

240

D.6. SUMMARIES OF EXPERIMENTAL RESULTS FOR LOSSMI , LOSSAI ,
CONFAI

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure D.2: Advantage of Zhao et al.’s Attribute inference attack (ConfAI) for
each of the ML methods used, when di�erent amount of DP noise is applied
at Stage 1, 2 and 3 of the ML pipeline, and for synthetic datasets used.

241

APPENDIX D. APPENDIX: PRIVACY - UTILITY TRADEOFFS

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure D.3: Advantage of LossMI attack for each of the ML methods, when
di�erent amount of DP noise is applied at Stage 1, 2, 3 of the pipeline, and for
di�erent real datasets. We summarize the datasets by the number of classes
used.

242

D.6. SUMMARIES OF EXPERIMENTAL RESULTS FOR LOSSMI , LOSSAI ,
CONFAI

(a) S1: Naive Bayes (b) S1: Logistic Regression

(c) S1: Random Forest (d) S1: Neural Network

(e) S2: Random Forest (f) S2: Neural Network

(g) S3: Naive Bayes (h) S3: Logistic Regression

Figure D.4: Advantage of Zhao et al.’s AI attack (ConfAI) for each ML method
used, when di�erent amount of DP noise is applied at Stage 1, 2 and 3 of the
pipeline, for di�erent real datasets. We summarize the datasets by the number
of classes used.

243

APPENDIX D. APPENDIX: PRIVACY - UTILITY TRADEOFFS

(a) LossMI

(b) LossAI

(c) ConfAI

Figure D.5: Summary plot of accuracy loss (y1-axis) and privacy advantage
(y2-axis) vs. ‘ applied (x-axis), for each pipeline Stage. Each point, for a line of
a given Stage, is the mean across all results we have for di�erent ML methods
and real-world datasets. Shaded colored areas signify 1 standard deviation
around each mean.

244

References

[1] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep

learning: Stand-alone and federated learning under passive and active white-box

inference attacks,” arXiv preprint arXiv:1812.00910, 2018.

[2] J. Chauhan, B. Z. H. Zhao, H. J. Asghar, J. Chan, and M. A. Kaafar, “Behaviocog:

An observation resistant authentication scheme,” in International Conference on

Financial Cryptography and Data Security. Springer, 2017, pp. 39–58.

[3] H. J. Asghar, R. Steinfeld, S. Li, M. A. Kaafar, and J. Pieprzyk, “On the linearization

of human identification protocols: Attacks based on linear algebra, coding theory,

and lattices,” IEEE Transactions on Information Forensics and Security, vol. 10,

no. 8, pp. 1643–1655, 2015.

[4] “The 2019 o�cial annual cybercrime report,” Dec. 2020. [Online]. Available:

https://www.herjavecgroup.com/the-2019-o�cial-annual-cybercrime-report/

[5] K. Security, “Hidden cameras on automated teller machines (atms),” https://

krebsonsecurity.com/tag/atm-skimmer/, accessed: 2018-11-30.

[6] G. T. Wilfong, “Method and apparatus for secure pin entry,” U.S. Patent 5 940 511,

Aug., 1999.

[7] N. J. Hopper and M. Blum, “Secure human identification protocols,” in International

conference on the theory and application of cryptology and information security.

Springer, 2001, pp. 52–66.

245

https://www.herjavecgroup.com/the-2019-official-annual-cybercrime-report/
https://krebsonsecurity.com/tag/atm-skimmer/
https://krebsonsecurity.com/tag/atm-skimmer/

[8] S. Li and H. Y. Shum, “Sechci: Secure human-computer identification (interface)

systems against peeping attacks,” Computer Science Preprint Archive, vol. 2004.

Issue 3, pp. 21–69, 2004.

[9] H. J. Asghar, S. Li, R. Steinfeld, and J. Pieprzyk, “Does counting still count? revis-

iting the security of counting based user authentication protocols against statistical

attacks,” in Proceedings of the 20th Annual Network and Distributed System Security

Symposium (NDSS 2013). The Internet Society 2013, 2013, pp. 1–18.

[10] T. Matsumoto, “Human–computer cryptography: An attempt,” Journal of Com-

puter Security, vol. 6, no. 3, pp. 129–149, 1998.

[11] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, L. Bauer, N. Christin, and L. F.

Cranor, “The impact of pattern length, pattern compactness, and mathematical

operators on the usability and security of system-assigned graphical one-time pins,”

in International Conference on Financial Cryptography and Data Security, 2013, pp.

34–51.

[12] H. J. Asghar, J. Pieprzyk, and H. Wang, “A new human identification protocol

and coppersmith’s baby-step giant-step algorithm,” in International Conference on

Applied Cryptography and Network Security. Springer, 2010, pp. 349–366.

[13] S. Wiedenbeck, J. Waters, L. Sobrado, and J.-C. Birget, “Design and evaluation of

a shoulder-surfing resistant graphical password scheme,” in The working conference

on Advanced visual interfaces. ACM, 2006, pp. 177–184.

[14] D. LeBlanc, A. Forget, and R. Biddle, “Guessing click-based graphical passwords by

eye tracking,” in Privacy Security and Trust (PST), 2010 Eighth Annual Interna-

tional Conference on. IEEE, 2010, pp. 197–204.

[15] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of fingerprint recog-

nition. Springer Science & Business Media, 2009.

[16] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,”

arXiv preprint arXiv:1411.7923, 2014.

246

[17] F. Schro�, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for

face recognition and clustering,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015.

[18] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale speaker identi-

fication dataset,” arXiv preprint arXiv:1706.08612, 2017.

[19] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recognition,”

arXiv preprint arXiv:1806.05622, 2018.

[20] U. Mahbub, S. Sarkar, V. M. Patel, and R. Chellappa, “Active user authentication

for smartphones: A challenge data set and benchmark results,” in Biometrics The-

ory, Applications and Systems (BTAS), 2016 IEEE 8th International Conference

on. IEEE, 2016, pp. 1–8.

[21] W. Xu, G. Lan, Q. Lin, S. Khalifa, N. Bergmann, M. Hassan, and W. Hu, “Keh-

gait: Towards a mobile healthcare user authentication system by kinetic energy

harvesting.” in NDSS, 2017.

[22] M. T. Curran, N. Merrill, J. Chuang, and S. Gandhi, “One-step, three-factor authen-

tication in a single earpiece,” in Proceedings of the 2017 ACM International Joint

Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017

ACM International Symposium on Wearable Computers. ACM, 2017, pp. 21–24.

[23] C. Huang, H. Chen, L. Yang, and Q. Zhang, “Breathlive: Liveness detection for heart

sound authentication with deep breathing,” Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1, p. 12, 2018.

[24] R. Liu, C. Cornelius, R. Rawassizadeh, R. Peterson, and D. Kotz, “Vocal resonance:

Using internal body voice for wearable authentication,” Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1, p. 19, 2018.

[25] Y. Chen, J. Sun, X. Jin, T. Li, R. Zhang, and Y. Zhang, “Your face your heart:

Secure mobile face authentication with photoplethysmograms,” in IEEE INFOCOM

2017-IEEE Conference on Computer Communications. IEEE, 2017, pp. 1–9.

247

[26] C. Song, A. Wang, K. Ren, and W. Xu, “Eyeveri: A secure and usable approach for

smartphone user authentication,” in IEEE INFOCOM 2016-The 35th Annual IEEE

International Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[27] J. Chauhan, Y. Hu, S. Seneviratne, A. Misra, A. Seneviratne, and Y. Lee, “Breath-

print: Breathing acoustics-based user authentication,” in Proceedings of the 15th

Annual International Conference on Mobile Systems, Applications, and Services.

ACM, 2017, pp. 278–291.

[28] J. Ho and D.-K. Kang, “Mini-batch bagging and attribute ranking for accurate user

authentication in keystroke dynamics,” Pattern Recognition, vol. 70, pp. 139–151,

2017.

[29] H. Crawford and E. Ahmadzadeh, “Authentication on the go: assessing the e�ect

of movement on mobile device keystroke dynamics,” in Thirteenth Symposium on

Usable Privacy and Security ({SOUPS} 2017), 2017, pp. 163–173.

[30] E. Pagnin, C. Dimitrakakis, A. Abidin, and A. Mitrokotsa, “On the leakage of

information in biometric authentication,” in International Conference in Cryptology

in India. Springer, 2014, pp. 265–280.

[31] M. Martinez-Diaz, J. Fierrez-Aguilar, F. Alonso-Fernandez, J. Ortega-García, and

J. Siguenza, “Hill-climbing and brute-force attacks on biometric systems: A case

study in match-on-card fingerprint verification,” in Proceedings 40th Annual 2006

International Carnahan Conference on Security Technology. IEEE, 2006, pp. 151–

159.

[32] J. Galbally, C. McCool, J. Fierrez, S. Marcel, and J. Ortega-Garcia, “On the vul-

nerability of face verification systems to hill-climbing attacks,” Pattern Recognition,

vol. 43, no. 3, pp. 1027–1038, 2010.

[33] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks

against machine learning models,” in 2017 IEEE Symposium on Security and Privacy

(SP). IEEE, 2017, pp. 3–18.

248

[34] A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “Ml-leaks: Model and

data independent membership inference attacks and defenses on machine learning

models,” NDSS, 2019.

[35] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine learning:

Analyzing the connection to overfitting,” in 2018 IEEE 31st Computer Security

Foundations Symposium (CSF). IEEE, 2018, pp. 268–282.

[36] M. Yaghini, B. Kulynych, and C. Troncoso, “Disparate vulnerability: on the unfair-

ness of privacy attacks against machine learning,” arXiv preprint arXiv:1906.00389,

2019.

[37] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit

confidence information and basic countermeasures,” in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security. ACM, 2015, pp.

1322–1333.

[38] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in

pharmacogenetics: An end-to-end case study of personalized warfarin dosing,” in

23rd USENIX Security Symposium, 2014, pp. 17–32.

[39] “Children’s Online Privacy Protection Rule (COPPA),” https://www.

ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/

childrens-online-privacy-protection-rule, 1998, accessed: 2020-02-14.

[40] “General Data Protection Regulation (GDPR),” https://gdpr-info.eu/, 2018, ac-

cessed: 2020-02-14.

[41] “Proposal for an ePrivacy Regulation,” https://ec.europa.eu/digital-single-market/

en/proposal-eprivacy-regulation, 2019, accessed: 2020-02-14.

[42] “California Consumer Privacy Act (CCPA),” https://oag.ca.gov/privacy/ccpa, 2020,

accessed: 2020-02-14.

[43] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, our-

selves: Privacy via distributed noise generation,” in Annual International Conference

249

https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://gdpr-info.eu/
https://ec.europa.eu/digital-single-market/en/proposal-eprivacy-regulation
https://ec.europa.eu/digital-single-market/en/proposal-eprivacy-regulation
https://oag.ca.gov/privacy/ccpa

on the Theory and Applications of Cryptographic Techniques. Springer, 2006, pp.

486–503.

[44] C. Dwork, A. Roth et al., “The algorithmic foundations of di�erential privacy,”

Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–

407, 2014.

[45] J. Konecn˝, B. McMahan, and D. Ramage, “Federated optimization: Distributed

optimization beyond the datacenter,” CoRR, vol. abs/1511.03575, 2015.

[46] B. Jayaraman and D. Evans, “Evaluating di�erentially private machine learning in

practice,” in USENIX, 2019.

[47] A. Krizhevsky et al., “Learning multiple layers of features from tiny images,” Cite-

seer, Tech. Rep., 2009.

[48] “Acquire valued shoppers challenge - kaggle,” https://www.kaggle.com/c/

acquire-valued-shoppers-challenge/data, 2014, accessed: 2020-01-30.

[49] “Netflix prize dataset - kaggle,” https://www.kaggle.com/netflix-inc/

netflix-prize-data, 2006, accessed: 2020-01-30.

[50] Q. Yan, J. Han, Y. Li, and R. H. Deng, “On limitations of designing leakage-resilient

password systems: Attacks, principles and usability,” in The 19th Annual Network

and Distributed System Security Symposium. Citeseer, 2012.

[51] M. �agalj, T. PerkoviÊ, and M. BugariÊ, “Timing attacks on cognitive authentication

schemes,” IEEE Transactions on Information Forensics and Security, vol. 10, no. 3,

pp. 584–596, 2015.

[52] S. Li and H.-Y. Shum, “Secure human-computer identification (interface) systems

against peeping attacks: Sechci,” 2005.

[53] S. Y. Ooi, A. B. J. Teoh, Y. H. Pang, and B. Y. Hiew, “Image-based handwrit-

ten signature verification using hybrid methods of discrete radon transform, princi-

pal component analysis and probabilistic neural network,” Applied Soft Computing,

vol. 40, pp. 274–282, 2016.

250

https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.kaggle.com/netflix-inc/netflix-prize-data

[54] M. Diaz, A. Fischer, M. A. Ferrer, and R. Plamondon, “Dynamic signature veri-

fication system based on one real signature,” IEEE Transactions on Cybernetics,

vol. 48, no. 1, pp. 228–239, 2018.

[55] A. Hadid, N. Evans, S. Marcel, and J. Fierrez, “Biometrics systems under spoofing

attack: an evaluation methodology and lessons learned,” IEEE Signal Processing

Magazine, vol. 32, no. 5, pp. 20–30, 2015.

[56] M. Yang, L. Zhang, J. Yang, and D. Zhang, “Metaface learning for sparse rep-

resentation based face recognition,” in Image Processing (ICIP), 2010 17th IEEE

International Conference on. IEEE, 2010, pp. 1601–1604.

[57] S. Li, A. Ashok, Y. Zhang, C. Xu, J. Lindqvist, and M. Gruteser, “Whose move

is it anyway? authenticating smart wearable devices using unique head movement

patterns,” in Pervasive Computing and Communications (PerCom), 2016 IEEE In-

ternational Conference on. IEEE, 2016, pp. 1–9.

[58] R. Kumar, V. V. Phoha, and A. Serwadda, “Continuous authentication of smart-

phone users by fusing typing, swiping, and phone movement patterns,” in Biometrics

Theory, Applications and Systems (BTAS), 2016 IEEE 8th International Conference

on. IEEE, 2016, pp. 1–8.

[59] T. Feng, Z. Liu, K.-A. Kwon, W. Shi, B. Carbunar, Y. Jiang, and N. Nguyen, “Con-

tinuous mobile authentication using touchscreen gestures,” in Homeland Security

(HST), 2012 IEEE Conference on Technologies for. Citeseer, 2012, pp. 451–456.

[60] S. Krishnamoorthy, L. Rueda, S. Saad, and H. Elmiligi, “Identification of user behav-

ioral biometrics for authentication using keystroke dynamics and machine learning,”

in Proceedings of the 2018 2nd International Conference on Biometric Engineering

and Applications. ACM, 2018, pp. 50–57.

[61] A. Serwadda and V. V. Phoha, “When kids’ toys breach mobile phone security,” in

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security. ACM, 2013, pp. 599–610.

251

[62] T. Eude and C. Chang, “One-class svm for biometric authentication by keystroke

dynamics for remote evaluation,” Computational Intelligence, vol. 34, no. 1, pp.

145–160, 2018.

[63] P. Abeni, M. Baltatu, and R. D’Alessandro, “Nis03-4: Implementing biometrics-

based authentication for mobile devices,” in Global Telecommunications Conference,

2006. GLOBECOM’06. IEEE. IEEE, 2006, pp. 1–5.

[64] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[65] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[66] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press

Cambridge, 2016, vol. 1, no. 2.

[67] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and

applications,” ACM Transactions on Intelligent Systems and Technology (TIST),

vol. 10, no. 2, pp. 1–19, 2019.

[68] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kid-

don, J. Kone�nỳ, S. Mazzocchi, H. B. McMahan et al., “Towards federated learning

at scale: System design,” arXiv preprint arXiv:1902.01046, 2019.

[69] J. Kone�nỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Ba-

con, “Federated learning: Strategies for improving communication e�ciency,” arXiv

preprint arXiv:1610.05492, 2016.

[70] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector ma-

chines,” in Proceedings of the 29th International Coference on International Confer-

ence on Machine Learning, 2012, pp. 1467–1474.

[71] S. Li, M. Xue, B. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor attacks on

deep neural networks via steganography and regularization,” IEEE Transactions on

Dependable and Secure Computing, 2020.

252

[72] S. Li, H. Liu, T. Dong, B. Z. H. Zhao, M. Xue, H. Zhu, and J. Lu, “Hidden backdoors

in human-centric language models,” arXiv e-prints, pp. arXiv–2105, 2021.

[73] X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li, “Adversarial examples: Attacks and

defenses for deep learning,” arXiv preprint arXiv:1712.07107, 2017.

[74] J. Gilmer, R. P. Adams, I. Goodfellow, D. Andersen, and G. E. Dahl, “Moti-

vating the rules of the game for adversarial example research,” arXiv preprint

arXiv:1807.06732, 2018.

[75] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Prac-

tical black-box attacks against machine learning,” in Proceedings of the 2017 ACM

on Asia conference on computer and communications security. ACM, 2017, pp.

506–519.

[76] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine learning:

from phenomena to black-box attacks using adversarial samples,” arXiv preprint

arXiv:1605.07277, 2016.

[77] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Adversarial generative

nets: Neural network attacks on state-of-the-art face recognition,” arXiv preprint

arXiv:1801.00349, 2017.

[78] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial exam-

ples and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[79] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical

world,” arXiv preprint arXiv:1607.02533, 2016.

[80] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of

security and privacy in machine learning,” arXiv preprint arXiv:1611.03814, 2016.

[81] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and G. Felici,

“Hacking smart machines with smarter ones: How to extract meaningful data from

machine learning classifiers,” International Journal of Security and Networks, vol. 10,

no. 3, pp. 137–150, 2015.

253

[82] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine

learning models via prediction apis,” in USENIX Security Symposium, 2016, pp.

601–618.

[83] C. A. C. Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only membership

inference attacks,” arXiv preprint arXiv:2007.14321, 2020.

[84] Z. Li and Y. Zhang, “Label-leaks: Membership inference attack with label,” arXiv

preprint arXiv:2007.15528, 2020.

[85] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[86] C. Song and V. Shmatikov, “Auditing data provenance in text-generation models,”

in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, 2019, pp. 196–206.

[87] Y. Miao, B. Z. H. Zhao, M. Xue, C. Chen, L. Pan, J. Zhang, D. Kaafar, and

Y. Xiang, “The audio auditor: Participant-level membership inference in voice-based

iot,” arXiv preprint arXiv:1905.07082, 2019.

[88] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, and

A. Torralba, “Eye tracking for everyone,” in IEEE conference on computer vision

and pattern recognition, 2016, pp. 2176–2184.

[89] H. Sasamoto, N. Christin, and E. Hayashi, “Undercover: authentication usable in

front of prying eyes,” in SIGCHI Conference on Human Factors in Computing Sys-

tems. ACM, 2008, pp. 183–192.

[90] R. Dhamija, A. Perrig et al., “Deja vu-a user study: Using images for authentication.”

in USENIX Security Symposium, vol. 9, Aug. 2000.

[91] S. Brosto� and M. A. Sasse, “Are passfaces more usable than passwords? a field trial

investigation,” in People and Computers XIV-Usability or Else! Springer, 2000, pp.

405–424.

254

[92] J. V. Uspensky, Introduction to mathematical probability. McGraw-Hill Book Com-

pany, New York, 1937, pp. 23–24.

[93] D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of models for eyes

and gaze,” IEEE transactions on pattern analysis and machine intelligence, vol. 32,

no. 3, pp. 478–500, 2010.

[94] T. Baltruöaitis, P. Robinson, and L.-P. Morency, “Openface: an open source facial

behavior analysis toolkit,” in Applications of Computer Vision (WACV). IEEE,

2016, pp. 1–10.

[95] E. S. Dalmaijer, S. Mathôt, and S. Van der Stigchel, “Pygaze: An open-source,

cross-platform toolbox for minimal-e�ort programming of eyetracking experiments,”

Behavior research methods, 2014.

[96] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press

Cambridge, 2016, vol. 1.

[97] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information: cri-

teria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions

on Pattern Analysis & Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[98] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in

Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[99] J.-A. LeFevre, G. S. Sadesky, and J. Bisanz, “Selection of procedures in mental

addition: Reassessing the problem size e�ect in adults.” Journal of Experimental

Psychology: Learning, Memory, and Cognition, 1996.

[100] D. Foo Kune and Y. Kim, “Timing attacks on pin input devices,” in The 17th ACM

Conference on Computer and Communications Security, ser. CCS ’10. New York,

NY, USA: ACM, 2010, pp. 678–680.

255

[101] L. Cai and H. Chen, “Touchlogger: inferring keystrokes on touch screen from smart-

phone motion,” in The 6th USENIX conference on Hot topics in security. USENIX,

2011.

[102] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge attacks on

smartphone touch screens,” in The 4th USENIX conference on O�ensive technolo-

gies. USENIX, 2010, pp. 1–7.

[103] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition of touched

keys on mobile devices,” in The 2014 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 2014, pp. 1403–1414.

[104] L. Simon and R. Anderson, “Pin skimmer: Inferring pins through the camera and

microphone,” in The Third ACM workshop on Security and privacy in smartphones

& mobile devices. ACM, 2013, pp. 67–78.

[105] A. Blum, J. Hopcroft, and R. Kannan, “Foundations of data science,” Vorabversion

eines Lehrbuchs, 2016.

[106] D. Gafurov, K. Helkala, and T. Søndrol, “Biometric gait authentication using ac-

celerometer sensor.” JCP, vol. 1, no. 7, pp. 51–59, 2006.

[107] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics: On the

applicability of touchscreen input as a behavioral biometric for continuous authenti-

cation,” IEEE transactions on information forensics and security, vol. 8, no. 1, pp.

136–148, 2012.

[108] W. Garcia, J. I. Choi, S. K. Adari, S. Jha, and K. R. Butler, “Explainable black-

box attacks against model-based authentication,” arXiv preprint arXiv:1810.00024,

2018.

[109] H. Xu, Y. Zhou, and M. R. Lyu, “Towards continuous and passive authentication

via touch biometrics: An experimental study on smartphones,” in 10th Symposium

On Usable Privacy and Security ({SOUPS} 2014), 2014, pp. 187–198.

256

[110] C.-C. Han, H.-L. Cheng, C.-L. Lin, and K.-C. Fan, “Personal authentication using

palm-print features,” Pattern recognition, vol. 36, no. 2, pp. 371–381, 2003.

[111] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for smartphones.” in

NDSS, vol. 56, 2013, pp. 57–59.

[112] J. Chauhan, H. J. Asghar, A. Mahanti, and M. A. Kaafar, “Gesture-based continuous

authentication for wearable devices: The smart glasses use case,” in International

Conference on Applied Cryptography and Network Security. Springer, 2016, pp.

648–665.

[113] A. Das, N. Borisov, and M. Caesar, “Tracking mobile web users through motion

sensors: Attacks and defenses,” in NDSS, 2016.

[114] “Android developers - monkeyrunner,” https://developer.android.com/studio/test/

monkeyrunner, accessed: 2019-10-13.

[115] O. Shwartz, A. Cohen, A. Shabtai, and Y. Oren, “Shattered trust: When replace-

ment smartphone components attack,” in 11th {USENIX} Workshop on O�ensive

Technologies ({WOOT} 17), 2017.

[116] C. Son, W. Chang, K. Deoksang, D.-K. Shin, B. Yoo, H. SeungJu, H. JaeJoon,

S. Jinwoo, and C. K. Choi, “Face verification method and apparatus,” Oct. 2018,

uS Patent App. 15/833,292.

[117] “Clarifai - face embedding model,” https://www.clarifai.com/models/

face-embedding-image-recognition-model-d02b4508df58432fbb84e800597b8959,

accessed: 2019-10-13.

[118] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[119] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of brain

mechanisms,” Cornell Aeronautical Lab Inc Bu�alo NY, Tech. Rep., 1961.

[120] V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello, “Continuous user authen-

tication on mobile devices: Recent progress and remaining challenges,” IEEE Signal

Processing Magazine, vol. 33, no. 4, pp. 49–61, 2016.

257

https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://www.clarifai.com/models/face-embedding-image-recognition-model-d02b4508df58432fbb84e800597b8959
https://www.clarifai.com/models/face-embedding-image-recognition-model-d02b4508df58432fbb84e800597b8959

[121] D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz, “A public

domain dataset for human activity recognition using smartphones,” in Proceedings

of the 21th International European Symposium on Artificial Neural Networks, Com-

putational Intelligence and Machine Learning, 2013, pp. 437–442.

[122] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2: A dataset for

recognising faces across pose and age,” in 2018 13th IEEE International Conference

on Automatic Face & Gesture Recognition (FG 2018). IEEE, 2018, pp. 67–74.

[123] G. B. H. E. Learned-Miller, “Labeled faces in the wild: Updates and new reporting

procedures,” University of Massachusetts, Amherst, Tech. Rep. UM-CS-2014-003,

May 2014.

[124] “Github - facenet source repository,” https://github.com/davidsandberg/facenet,

accessed: 2019-10-13.

[125] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification

using a" siamese" time delay neural network,” in Advances in neural information

processing systems, 1994, pp. 737–744.

[126] A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, and S. Soatto, “Classification regions

of deep neural networks,” arXiv preprint arXiv:1705.09552, 2017.

[127] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic, “Evaluating behavioral

biometrics for continuous authentication: Challenges and metrics,” in Proceedings

of the 2017 ACM on Asia Conference on Computer and Communications Security.

ACM, 2017, pp. 386–399.

[128] S. Sugrim, C. Liu, M. McLean, and J. Lindqvist, “Robust performance metrics

for authentication systems,” in Network and Distributed Systems Security (NDSS)

Symposium, 2019.

[129] “Github - timesynth source repository,” https://www.tensorflow.org/guide/

estimators, accessed: 2019-10-13.

258

https://github.com/davidsandberg/facenet
https://www.tensorflow.org/guide/estimators
https://www.tensorflow.org/guide/estimators

[130] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining the

predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining. ACM, 2016, pp. 1135–1144.

[131] S. Sprager and M. Juric, “Inertial sensor-based gait recognition: A review,” Sensors,

vol. 15, no. 9, pp. 22 089–22 127, 2015.

[132] “Tensorflow - estimators,” https://github.com/TimeSynth/TimeSynth, accessed:

2019-10-13.

[133] C. Soutar, “Biometric system performance and security,” IEEE Auto. Identification

Advanced Technol., 1999.

[134] E. Chan-Tin, V. Heorhiadi, N. Hopper, and Y. Kim, “The frog-boiling attack: Lim-

itations of secure network coordinate systems,” ACM Transactions on Information

and System Security (TISSEC), vol. 14, no. 3, p. 27, 2011.

[135] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar, “Adversarial

machine learning,” in Proceedings of the 4th ACM workshop on Security and artificial

intelligence. ACM, 2011.

[136] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the eleventh ACM

SIGKDD international conference on Knowledge discovery in data mining. ACM,

2005, pp. 641–647.

[137] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learn-

ing models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[138] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robustness via

randomized smoothing,” arXiv preprint arXiv:1902.02918, 2019.

[139] X. Cao and N. Z. Gong, “Mitigating evasion attacks to deep neural networks via

region-based classification,” in Proceedings of the 33rd Annual Computer Security

Applications Conference. ACM, 2017, pp. 278–287.

259

https://github.com/TimeSynth/TimeSynth

[140] S. Sugrim, C. Liu, and J. Lindqvist, “Recruit until it fails: Exploring performance

limits for identification systems,” Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, vol. 3, no. 3, p. 104, 2019.

[141] M. J. Kearns and U. V. Vazirani, An introduction to computational learning theory.

MIT press, 1994.

[142] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory

to algorithms. Cambridge university press, 2014.

[143] B. Z. H. Zhao, H. J. Asghar, and M. A. Kaafar, “On the resilience of biometric

authentication systems against random inputs,” in Network and Distributed System

Security Symposium (NDSS), 2020.

[144] D. Yang, D. Zhang, and B. Qu, “Participatory cultural mapping based on collective

behavior data in location-based social networks,” ACM Transactions on Intelligent

Systems and Technology (TIST), vol. 7, no. 3, p. 30, 2016.

[145] B. Z. H. Zhao, H. J. Asghar, R. Bhaskar, and M. A. Kaafar, “On inferring training

data attributes in machine learning models,” arXiv preprint arXiv:1908.10558, 2019.

[146] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for formal-

izing model-inversion attacks,” in 2016 IEEE 29th Computer Security Foundations

Symposium (CSF). IEEE, 2016, pp. 355–370.

[147] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan: Membership inference

attacks against generative models,” Proceedings on Privacy Enhancing Technologies,

vol. 2019, no. 1, pp. 133–152, 2019.

[148] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Revisiting membership inference

under realistic assumptions,” arXiv preprint arXiv:2005.10881, 2020.

[149] Z. Yang, J. Zhang, E.-C. Chang, and Z. Liang, “Neural network inversion in ad-

versarial setting via background knowledge alignment,” in Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security, 2019, pp.

225–240.

260

[150] H. Zhao, J. Chi, Y. Tian, and G. J. Gordon, “Adversarial privacy preservation under

attribute inference attack,” arXiv preprint arXiv:1906.07902, 2019.

[151] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou, “White-box vs

black-box: Bayes optimal strategies for membership inference,” in International

Conference on Machine Learning, 2019, pp. 5558–5567.

[152] Y. Long, L. Wang, D. Bu, V. Bindschaedler, X. Wang, H. Tang, C. A. Gunter, and

K. Chen, “A pragmatic approach to membership inferences on machine learning

models,” in 2020 IEEE European Symposium on Security and Privacy (EuroS&P),

2020, pp. 521–534.

[153] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended

feature leakage in collaborative learning,” in 2019 IEEE Symposium on Security

and Privacy (SP). IEEE, 2019, pp. 691–706.

[154] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang, “Deep learning with di�erential privacy,” in Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. ACM, 2016, pp.

308–318.

[155] F. Farokhi and M. A. Kaafar, “Modelling and quantifying membership information

leakage in machine learning,” arXiv preprint arXiv:2001.10648, 2020.

[156] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” arXiv preprint arXiv:1412.6572, 2014.

[157] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to adver-

sarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[158] I. Mironov, “Rényi di�erential privacy,” in 2017 IEEE 30th Computer Security Foun-

dations Symposium (CSF). IEEE, 2017, pp. 263–275.

[159] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk minimization: E�-

cient algorithms and tight error bounds,” in 2014 IEEE 55th Annual Symposium on

Foundations of Computer Science. IEEE, 2014, pp. 464–473.

261

[160] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Sys-

tems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran

Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/

paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[161] S. Fletcher and M. Z. Islam, “Di�erentially private random decision forests using

smooth sensitivity,” Expert Systems with Applications, vol. 78, pp. 16–31, 2017.

[162] K. Gurney, An introduction to neural networks. CRC press, 2014.

[163] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI 2001

workshop on empirical methods in artificial intelligence, vol. 3, no. 22, 2001, pp.

41–46.

[164] N. Holohan, S. Braghin, P. Mac Aonghusa, and K. Levacher, “Di�privlib: The ibm

di�erential privacy library,” arXiv preprint arXiv:1907.02444, 2019.

[165] J. Vaidya, B. Shafiq, A. Basu, and Y. Hong, “Di�erentially private naive bayes

classification,” in 2013 IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1. IEEE, 2013,

pp. 571–576.

[166] P. McCullagh, Generalized linear models. Routledge, 2019.

[167] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Di�erentially private empirical

risk minimization,” Journal of Machine Learning Research, vol. 12, no. Mar, pp.

1069–1109, 2011.

[168] S. A. M’rio, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Measuring informa-

tion leakage using generalized gain functions,” in 2012 IEEE 25th Computer Security

Foundations Symposium. IEEE, 2012, pp. 265–279.

[169] I. Issa, S. Kamath, and A. B. Wagner, “An operational measure of information

leakage,” in 2016 Annual Conference on Information Science and Systems (CISS).

IEEE, 2016, pp. 234–239.

262

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[170] W. Wang, L. Ying, and J. Zhang, “On the relation between identifiability, di�eren-

tial privacy, and mutual-information privacy,” IEEE Transactions on Information

Theory, vol. 62, no. 9, pp. 5018–5029, 2016.

[171] S. Corbett-Davies and S. Goel, “The measure and mismeasure of fairness: A critical

review of fair machine learning,” arXiv preprint arXiv:1808.00023, 2018.

[172] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Pro-

ceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[173] J. Chauhan, S. Seneviratne, Y. Hu, A. Misra, A. Seneviratne, and Y. Lee,

“Breathing-based authentication on resource-constrained iot devices using recurrent

neural networks,” Computer, vol. 51, no. 5, pp. 60–67, 2018.

[174] B. Jayaraman and D. Evans, “Evaluating Di�erentially Private Machine Learning

in Practice,” https://github.com/bargavj/EvaluatingDPML, 2019, accessed: 2020-

02-12.

[175] Google, “TensorFlow Privacy,” https://github.com/tensorflow/privacy, 2019, ac-

cessed: 2020-02-12.

[176] S. Fletcher, “A Di�erentially-Private Random Decision Forest using Smooth Sensi-

tivity,” https://github.com/sam-fletcher/Smooth_Random_Trees/, 2016, accessed:

2020-02-12.

[177] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,

P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,

and G. Varoquaux, “API design for machine learning software: experiences from the

scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining and

Machine Learning, 2013, pp. 108–122.

[178] IBM, “IBM Di�erential Privacy Library,” https://github.com/IBM/

di�erential-privacy-library, 2019, accessed: 2020-02-12.

[179] A. K. Jain, K. Nandakumar, and A. Nagar, “Biometric template security,”

EURASIP Journal on advances in signal processing, vol. 2008, p. 113, 2008.

263

https://github.com/bargavj/EvaluatingDPML
https://github.com/tensorflow/privacy
https://github.com/sam-fletcher/Smooth_Random_Trees/
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library

[180] S. Marcel, M. S. Nixon, and S. Z. Li, Handbook of biometric anti-spoofing. Springer,

2014, vol. 1.

[181] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang,

Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-end speech synthesis,”

arXiv preprint arXiv:1703.10135, 2017.

[182] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans, J. Yamagishi, and

K. A. Lee, “The asvspoof 2017 challenge: Assessing the limits of replay spoofing at-

tack detection,” ISCA (the International Speech Communication Association), 2017.

[183] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a single image

with sparse low rank bilinear discriminative model,” in European Conference on

Computer Vision. Springer, 2010, pp. 504–517.

[184] M. Bicego, E. Grosso, and M. Tistarelli, “Face authentication using one-class support

vector machines,” in International Workshop on Biometric Person Authentication.

Springer, 2005, pp. 15–22.

[185] W. Garcia, A. Chhotaray, J. I. Choi, S. K. Adari, K. R. Butler, and S. Jha, “Brittle

features of device authentication,” in Proceedings of the Eleventh ACM Conference

on Data and Application Security and Privacy, 2021, pp. 53–64.

[186] L. Elazary and L. Itti, “A bayesian model for e�cient visual search and recognition,”

Vision research, vol. 50, no. 14, pp. 1338–1352, 2010.

[187] B. Kulynych and M. Yaghini, “mia: A library for running membership

inference attacks against ML models,” 2018. [Online]. Available: https:

//doi.org/10.5281/zenodo.1433744

[188] M. O’Searcoid, Metric spaces. Springer Science & Business Media, 2006.

[189] V. Guruswami, “Gilbert-varshamov bound,” Lecture Notes, Introduction to Coding

Theory, 2010.

264

https://doi.org/10.5281/zenodo.1433744
https://doi.org/10.5281/zenodo.1433744

[190] P. Gaborit and G. Zemor, “Asymptotic improvement of the gilbert–varshamov

bound for linear codes,” IEEE Transactions on Information Theory, vol. 54, no. 9,

pp. 3865–3872, 2008.

[191] D. S. MitrinoviÊ, J. E. Pe�ariÊ, and A. M. Fink, Bernoulli’s Inequality. Springer

Netherlands, 1993, pp. 65–81.

265

	Abstract
	Acknowledgments
	Publications and Presentations
	Contents
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Alternative authentication schemes to conventional password systems
	Cognitive Authentication
	Biometrics Authentication
	Security Attacks on Cognitive Schemes
	Measuring Biometrics

	Machine Learning
	Machine Learning Architectures
	Security and Privacy Attacks on Machine Learning

	Active Attacks
	Poisoning Attacks
	Backdoor Attacks

	Passive Attacks
	Adversarial Examples
	Transferability

	Privacy Attacks on Machine Learning
	Model attacks
	Inversion attacks
	Model Extraction

	Inference Attacks
	Membership Inference Attack
	Attribute Inference Attacks
	Positive applications of Inference Attacks

	Differential Privacy

	Exploit Behavior
	Introduction
	Background
	Observation Resilient Authentication Schemes
	k-out-of-n ORAS
	k-out-of-n ORAS Chosen for Analysis
	Other ORAS

	The Modulus Event and Associated Biases
	Guessing a Modulus Event through Responses
	Weight Bias in a Modulus Event
	Biases in Specific ORAS

	Attack Algorithm and the Faulty Oracle
	Implementing the Attack Using Behavioral Side-Channel
	Levels of Adversarial Strength
	User Study
	Features and Classifiers
	Modulus Event Side Channel

	Application to Other ORAS
	PassGrids
	Mod10

	Related Work
	Conclusion

	Random Input
	Introduction
	Background and Threat Model
	Biometric Authentication Systems
	Biometric API: The Setting
	Threat Model and Assumptions

	Acceptance Region and Proposed Attack
	Motivation and Attack Overview
	Acceptance Region

	Evaluation on Biometric Systems
	The Biometric Datasets
	Evaluation Methodology
	Machine Learning Classifiers
	Acceptance Region: Feature Vector API
	Acceptance Rate: Raw Input API

	Synthetic Dataset
	Simulating a Biometric Dataset
	Effects of Feature Variance on Acceptance Region
	On Distance Based Classifiers
	Effects of Increasing Synthetic Users

	Mitigation
	The Beta Distribution
	Feature Vectors from Raw Inputs as Negative Samples

	Related Work
	Conclusion

	Membership and Attribute Inference
	Introduction
	Formal Treatment of Membership and Attribute Inference Attacks
	Notation and Definitions
	Formal Results: Relationship between Variants of Membership and Attribute Inference

	Experimental Methodology
	Data and Machine Learning Models
	MI and AI Adversaries
	Attack Methodology

	Membership Inference
	MI Attacks on Neural Networks
	Generalization to Other Machine Learning Models

	Attribute Inference
	Attribute Inference Attacks
	Approximate Attribute Inference Attacks
	AI, AAI and Relation to Overfitting

	Related Work
	Conclusion

	Privacy - Utility Tradeoffs of Differential Privacy
	Introduction
	Methodology
	Overview
	Differential Privacy
	ML Pipeline Stages for DP Noise Injection
	DP-based ML Algorithms
	Privacy Attacks & Privacy Metrics
	ML Utility Metrics

	Experimental Investigation
	Experimental Framework
	Experimental Datasets

	Experimental Results
	Privacy-Utility Tradeoff on Synthetic Data
	Privacy-Utility Tradeoff on Real Data

	Conclusion

	Discussion, Future Works and Conclusion
	Behavioral Side Channel Attacks
	Random Input Attacks
	Membership and Attribute Inference Attacks
	Privacy - Utility tradeoffs of Differential Privacy
	Security and Privacy Attacks
	Conclusion

	Appendix: Exploit Behavior
	Proof of Theorem 3.3.1
	Proof of Lemma 3.3.2
	Proof of Theorem 3.4.1
	Feature Intuition
	Adversary Level 1 Feature Hypotheses
	Adversary Level 2 Feature Hypotheses
	Adversary Level 3 Feature Hypotheses
	Adversary Level 4 Feature Hypotheses

	Appendix: Random Inputs
	Mitigation ROC Plots
	DNN Estimator configuration.

	Appendix: Membership and Attribute Inference
	Model Parameters
	Target Models
	MI Attack Configurations
	Local and Global White Box Inference Attacks nasr2018comprehensive

	Additional Figures and Experimentation
	Additional Plots
	Validating the Indistinguishable Neighbor Assumption
	Exact AI on a Single Missing feature
	Tuning Attack Models for SMI

	Metrics, Balls and Siblings
	Relationship between Inference Notions
	Miscellaneous Results

	Appendix: Privacy - Utility Tradeoffs
	Machine Learning algorithm training configurations
	Experimental Results for LossMI on Synthetic Data
	Experimental Results for ConfAI on Synthetic Data
	Experimental Results for LossMI on Real-world Data
	Experimental Results for ConfAI on Real-world Data
	Summaries of Experimental Results for LossMI, LossAI, ConfAI

	References

