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Abstract

Computer execution times for subroutines using the Colebrook-
White equation for friction factor (and its explicit approximations) are
compared with times for subroutines using the Hazen-Williams formula.
The effect of using these subroutines on the total computer execution
time of nodal and loop method programs is discussed.

Notation

a, b, c coefficients in Wood's approximation for A
Cq constant

Chw Hazen-Williams coefficient

d pipe diameter

function of

function of

acceleration due to gravity
function of

head loss due to friction in a prismatic pipe
node (or junction’ head

equivalent sand grain roughness size
resistance coefficient = 8
pipe length 7t‘.2 5

function of ed
flowrate (or discharge) - Ra2v
function of 4
Revnolds Number = yi)f’.

mean velocity
kinematic viscosity 2hgd
Darcy-Weisbach friction factor = W
convergence limit
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i, Introduction

For analysis of steadv flow in pipe networks bv nodal methods, a
relationship Q(h) between Q and h is required, as well as the derivative
@'(h). For loop methods h(Q@) and h'(Q) are required.

The empirical Hazen-Williams and Manning formulae are frequentls
used to relate Q and h, and the derivatives are simple expressions.

Use of the Darcy-Weisbach equation, in conjunction with the
Colebrook-White equation for A , is preferable. Not only are the re-
sults more accurate (Refs. 19, 16,20), but the computer program is
then applicable to flows other than water. Application of the Colebrook-
White equation in pipe network analvsis programs has often been avoided
in the past, particularly for loop methods when iterative solutions of the
equation have resulted in significant increases in computer execution
times.

This note compares the computer rimes required to use subroutines
emploving the Hazen-Williams formula and the Colebrook-White equation
rand some explicit approximations to it) for both nodal and loop methods or
analvsis. For modern computer programs, the increase in computer ex-
ecution time required to use the Colebrook-White equation instead of the
Hazen-Williams formula is shown to be slight.

2. Basic Equations for Head Loss and Friction Factor

The Hazen-Williams formula, the Darcy-Weisbach equation, and
several forms of the Colebrook-White equation are shown in Table 1.
Also shown are three explicit approximations to the Colebrook-White

equation.

The accuracy of the Moody and Wood approximations in the trans-
ition zone is shown in Table 2. The Barr approximation is not shown in
Table 2 as it gives N\ values within ¥ 2% of the true value over the entire
range of ié_ and R values shown in Table 2.

3. Equations for Nodal Methods

Equations for nodal methods are shown in Table 3. These apply
to both the simple node (Refs. 15, 2) and the simultaneous node
(Refs. 14, 8, 5) methods of analysis. Taking H; as the head at the node
in question, and Hj as the head at the far end of the pipe, then the head
loss is given by equation (11). Equations (12) to (15) apply |for the con-
vention that flows towards node i are positive. Note that Q (H;) is al-
ways negative with this convention.
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Table 1: Basic Equations
E}?:. l;zt: ..Name Equation
1 | 12 |Hazen-Williams, h= 4.73Q1-82}
SI units ' 4,87 1.852
d Chw
2 Darcy-Weisbach, h = )\ g V2
Velocity form d 2g
. l 2 2
3 Darcy-Weisbach, h =8 A Q =KAQ
Discharge form » 2g P
4 6 | Colebrook-White, - -9210 k . 2.51
1 form Y €10 (73.7d R/N
A 1
5 Colebrook-White, /- [2 log, 4 1oge(3k = ; 51)]
» form JA
. K -1
6 Rough pipe, 5 form /- == [2 log;1 o€ loge (3—7‘1)]
Py k 2.51Y] 2
7 Colebrook-White, ={2 log, .e log (—— + —]
1/3
8 17 | Moody approx. for) )\ . 0055 [1 +(2x10 —_— +—) _]
- -2 3
(5x10 <3 <107%, 4x10%cR < 10 )
9 22 | Wood approx. for R A= a+bR cz 95
a = .094(%) + .53 (—)
b = 88(%) , c162( )
(10' S -13 < 1x1072, 4x103¢R < 108)
1 k 5.13
10 3 | Barr approx. for A Y =-2 1°g10(3.7d+ 39 )

(10'6<' %—<1o'2, 3x10°%c R < 108)
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Table 2: Accuracv of Explicit A.ppr(jximations for A\
7, Error Exceeding j 2%
k/d 1 = — _ - ‘
R=10 10 10 10 10"
1 -6 - \
10 - - - - - Wood, eqgn. (9)
-3.5 -5.4 - Moody, egn. (8
107° -3.2 | -3.8
-3.4 -4.4 +2.1 -
5x10 -2.4 +3.8 +3.7
-2.9 +2.9 -
-4 _
10 +2.3 5.3 +4
-2.3 -3.1 -
45107 % +2.7 | -8 ~4.5 | +3.5
2.7 +3.7 -
1073 +3.7 | =5.2 ~4.4
+3.7 ~4 -
451073 | -2.4 |+2.8 | -3.2 +3 +3
+2.2 2.7 -2.83 -
1072
Table 3: Equations for Nodal Methods
E§§ Name Equation
11 Head loss h = Hj - Hj
. 54 .
12 Hazen-Williams | oy cionm) |h| a2-83 o
discharge p=s18 I, 2.314
113 ) = Q(Hji)
13 Hazen-Williams Q'(Hj) = —- .54 —n
derivative 9
7td 2gd |h
14 Darcy and Cole- Q(H;) = -Sign(h) logigpe g
brook-White
discharge k2. 517) 2gd )
loge [3 7d
15 Darcy and Cole- -1
: Q <Hi) = l ‘Q(Hl)l +logqg ©
2 l [

derivative

zsn){ k +2jrv(M@,MI
d 3.7 d \f 4

)’1}'

i

.




4. Equations for Loop Methods

Equations for loop methods are shown in Table 4, which apply to
both the simple loop (Refs. 8,2, 11) and simultaneous loop (Refs. 10, 21)
methods. The term normally included in the h(Q) equations to indicate
the direction of the loop through the pipe has been omitted. Note that
h'(Q) is always positive.

Table 4: Equations for Loop Methods

El\?: . Name Equation
- 1. 852

16 Hazen-Williams h(Q) = Sign (Q) 4.73 (——L _%87

head loss d

. h

17 Hazen-Williams h'(Q) = 1.852 (\——Q(Q)D

derivative

2
18 Darcy head loss h(Q) = Sign Q) K AN Q
2

19 Darcy derivative h' (Q) = K (2 A lQl + g)(‘g Q )

20 | Darcy and Colebrook- | h' (Q) = 2KAQ [ 1-2 log,, ex2.51

White derivative
2.51 k -1
{(Er_; + T’ﬂj) R+2 logloex2.51} ]
' - 6. Q
21 | Darcy and Moody h'@Q) = K [.2 AQ - 0055x10 x 3R
approx. derivative 3 Kk 10° -2/3
(2 x 10 E + R ) ]

22 Darcy and Wood
approx. derivative

h' (Q = KQ[2A- el A - a)]

23 Darcy and Barr h'(Q) = 2KAQ [1 2 logygex5.13x 89[
approx. derivative R-'89 Kk 5.13 -1
' 3.7d R .89

Equations (16) and (17) use the Hazen-Williams formula.

Equation (18) gives the head loss from the Darcy equation. The
friction factor N for use in equation (18) may be found by iterative solution
of one of the forms of the Colebrook-White equation (equation (4), (5) or
(7)) or from one of the explicit approximations (equation (8), (9) or (10).
h'(Q) is given by equation (19) (Ref. (13) ). When A is found from the
Colebrook-White equation h'(Q) is found from equation (20). When one of
the approximations is used, then the corresponding h'(Q) expression is given
by equation (21), (22) or (23).
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5. Iterative Solution of the Colebrook-White Equation

Equations for this section are shown in Table 5.

substitution (Refs. 23,7,13) and Newton's method (Ref. 21) have been

The successive

suggested for finding the root A of the implicit Colebrook-White equation.

Table 5: Equations for Iterative Solutions
Eqn. .
No. Name Equation
24 Successive substitution )‘j+1 = - [2 log, 4e log,
-1
k 2.51 \)]
+ = f h
3.7d R/ x. (/—)
25 Successive substitution )‘j+1 = (1-C1)J_Xj-(?1
M1 . k 2.51y "
&— Ogloe Oge 3.7d Rm/
t = - F .
26 Newton's method, ) i1 )j 5 f) ) P‘)‘j)
-— form F ()\j )
0
1 i
27 F ()]) = —)— + 2 logqg € loge
J
( koo, 2.51)
3.7d R
P -1 2.51
28 Fl\)’j>_2—7‘T5[1+210g108 X. R
! 1
(k 2.51 }
3.7d Rm
- G(AY .
29 Newton's method, )j+1 = )j m = r( )\J)
A form
30 G()\j) = }\j - [2 logqge loge
(k 2.51 ﬂ -2
3.7d Rﬁ.‘j
2.51
31 G'(Ay) = 1-2logige xH—
k 2. 51)
3.7d
32 Convergence criterion )‘J+1 ) \<é
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Equation (5) is already in a form suitable for applving successive
substitution. Equation (24) results, where )j is the current estimate
of the root and )1-41 is a better estimate by iteration. Iteration is
terminated when the relative convergence criterion, equation (32), is sat-
isfied. Taking the convergence limit & =.001 suffices for pipe network
programs.

Convergence of equation (24) is assured as (f' (m) [ <1.0,
where )\ _ is the true solution (Refs. 7,4). Convergence is slowest for
n ~ k . - ~

small values of ¥/d, in particular at low R values. Convergence

of the successive substitution method can sometimes be improved by re-
defining f( )\j) in equation (24) to vield equation (25) (Ref. 4). The opt-
imum value of the constant Cq lies between 0.8 and 0.9 and a mean value
of 0.85 has been used for Cj.

The starting value A ; to commence iteration, can be either A from
the rough pipe formula (equation (6) ) (Ref. 23), or an arbitary value for
all turbulent flows, ranging from .024 to 1.0 (Refs. 24,7,13). Equations
(26) to (31) are for application of Newton's method, using either equation
(4) or equation (7) as the basic equation. At the root A\p pP'( A p)
(equation (26) or r'( A n (equation (29) ) tends to zero. For convergence
the starting value for friction factor, A 1, should be "'near" the true value
A n (Ref. 4), and p'( )\j) or r' (A.) should decrease from one iteration
to the next. Possible values of A; are the rough pipe A (equation (6) );
an arbitrary value for all turbulent flows; or A from one of the approximate
formulae, equation (8), (9), or (10).

6. Comparative Computer Times

The methods described in Sections 3,4 and 5 above, have been trans-
lated into computer program subroutines. The execution times requires
to call these subroutines many times have been found for the transition
zone between smooth and rough wall turbulent flow in the range
106« X <1072 and 104< R < 108.  In the case of the iterative sub-
routines mean execution times in the transition zone have been found.
Execution times have been divided by those for the Hazen-Williams nodal
or loop subroutines to find comparative times. Comparative times may
vary slightly with the computer and compiler used, so values to the nearest
0.1 have been quoted.

Comparative times for nodal method subroutines are shown in Table 6.
Comparative times for loop method subroutines are shown in Table 7.

7. Discussion of Results

The results in Table 6 show that the time for Q(H;) and Q'(H;) comp-
utations in nodal methods is increased by 30% if the Colebrook-White
equation (in conjunction with the Darcy equation) is used instead of the
Hazen-Williams formula.
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Table 6: Nodal Method Subroutines, Comparative Computer Times

Subroutine Description Egn. for Eqn. for Comparative
Q(H;) Q' (Hj) Time
HWN Hazen-Williams 12 13 1.0
CWN Darcy and
Colebrook-White 14 15 1.3
Table 7: Loop Method Subroutines, Comparative Computer Times
[ Subroutine [ Description | Eqn. Eqgn. Eqgn. for [Starting | Comparat-
for h(Q) | for h'(Q) | iteration ive Time
HWL Hazen-
Williams 16 17 1.0
WL Wood
approx. 18 22 1.0
ML Moody
approx. 18 21 1.5
BL Barr
approx. 18 23 1.5
S1 Successive )
substn. 18 20 24 .02 3.1
S2 18 20 24 Eqn. 3.2
(6)
S3 18 20 25,C1-= Eqn.
. 85 (6) 3.5
S4 18 20 24 1.0 3.6
N1 Newton's 18 20 26 Eqn. 3.9
Method (10)
N2 18 20 26 Eqgn.
(9) 5.7
N3 18 20 26 Eqn.
(6) 5.8
N4 18 20 29 Eqgn. 6.5
(9)
N5 18 20 29 Eqn. 6.9
(6)
N6 18 20 26 .02 Diverges
- k -
10-8 5<10
10'<R <10°

Not es (1) Wood's coefficients a, b and c avalable to subroutine WL
(2) Convergence € =,001 in Eqn.(32) for iterative subroutines.
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For loop methods, the resulis in Table 7 show that the time reguirec
“or h Q) and R'(G) determinations “will increase bv factors ranging from
1.0 to 6.9 (depending on the subroutine used) if Colebrook-White based
ecuations are used instead of the Hazen-Williams formula.

Wood's approximationfora (subro:tine WL)may be used instead of
the Hazen-Williams formula in loop methods without increasing the exec-
ution time. The error in A introduced by using Wood's approximation
ranges from about -47% to 6% (see Table 2) but this is still preferable to
using the Hazen-Williams formula.

Barr's approximation for A (subroutine BL) involves an increase in
execution time for h(Q) and h'(Q) calculations of 507: compared to using
the Hazen-Williams formula. Barr's approximation gives A values
within = 2% of the true value over the whole range of practical pipe flows,
and this accuracy is more than adequate for network analvsis (Ref. 1}.

Aloody's approximation for A\ (subroutine ML) takes the same time
as Barr's, and, as it is less accurate, its use is not justified.

Of the iterative subroutines, S1 to S4 and N1 to N5, the subroutine
S1 is the least time consuming, taking asbout twice as long as subroutine
BL (using Barr's approximation), and three times as long as HWL (using
Hazen-Williams formula). TUse of the iterative subroutine S1 does not
seem justified, however, in view of slight increase in accuracy over sub-
routine BL.. An ill-chosen subroutine, for example N5, can be quite
time consuming when compared to subroutine HWL. This may account
for some previous avoidance of use of the Colebrook-White equation in
loop method programs.

8. Effect of the Head-Discharge Relation on Total Execution Time

The effect of the head-discharge relation used depends on the prop-
ortion of the total time spent in using the relation, which in turn depends
on the method of analysis and the size of the network.

For the simple nodal and loop methods, where node head adjustments
and loop flow corrections, respectively, are made one at a time, the head-
discharge relation is used continuously. For the simultaneous nodal and
loop methods, the head-discharge relations are used only at the beginning
of each iteration step involving in the solution of a set of linear simultaneous
equations. The solution of the simultaneous equations accounts for most
of the computer time.

Execution times for the various sections of a program are not often
given in the literature. The effect of network size on total execution
time is usually given. Some approximate estimates of the effect of chang-
ing from the Hazen-Williams formula for pipe flow to the Colebrook- White
equation for several methods of analysis are given in Table 8. These
probably apply to medium sized networks up to about 300 pipes. Lack of
data prevents estimation of the effect of network size on the proportion of
the total time spent in using head-discharge relations.



Table 8: Effect of h - Q Relation on Total Execution Time,
Networks of about 300 Pipes
Method of Ref., Estimate of: Subroutine A, Subroutine 13,| Approx.%
Analysis No. Time using h - Q relation x 100% |Hazen-Williams Colebrook- increase in
Total execution time White total ‘exec-
ution time
using subr.
B in place
of A, to
nearest 5%.
Simple Node 15 90 HWN CWN 30
Simultaneous
Node < 10 TWN CWN 5
Simultaneous
Node, sparsely
oriented 5 5 HWN CWN 0
Simple Loop, i1 90 * HWI.. WL 0
initial pipe Q BI, 45
and loops
supplied as data
Simple T1.oop, 18 60 TWI, W1, 0
initial pipe Q . 30
and loops found
by program
Simultancous 10, 10 ITWI, WI. 0
y 21
Lo0p ey 5
NS 60
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9. Conclusions and Recommendations

1. For simple nodal method programs using the Colebrook-White
equation instead of the Hazen-Williams formula will increase execution
time by about 30%.

2. For modern simultaneous node method programs, the head-loss re-
lation used for pipes has negligible effect on execution time.

3. For loop method programs, Wood's approximation may be used in-
stead of the Hazen-Williams formula without affecting execution time.
Wood's approximation introduces errors in A ranging from -4 to + &%
but this is still preferable to using the Hazen-Williams formula.

4. Barr's approximation is recommended for use in loop methods pro-
grams, being of adequate accuracy ( ¥ 29) and less time consuming than
iterative solutions of the Colebrook-White equation.

5. For simple loop method programs using Barr's approximation in

place of the Hazen-Williams formula increases execution time from 30%
to 45%, depending on the method used for determining initial pipe discharges
and loop layout.

6. For modern simultaneous loop method programs a negligible increase
in execution time will result when Barr's approximation is used instead of

the Hazen-Williams formula.
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