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A b s t r a c t 

Computer execution t i m e s fo r subrout ines us ing the Colebrook-
White equation f o r f r i c t i o n f a c t o r (and i t s expl ic i t approx imat ions ) a r e 
c o m p a r e d with t i m e s fo r subrout ines us ing the Hazen-Wi l l i ams fo rmula . 
The e f fect of u s ing the se subrout ines on the total computer execution 
t ime of nodal and loop method p r o g r a m s i s d i s c u s s e d . 

N o t a t i o n 

a , b, c coe f f i c ient s in Wood's approx imat ion for "X 
C i constant 
Chw Hazen-Wi l l i ams coef f ic ient 
d pipe d i a m e t e r 
f function of 
F function of 
g a c c e l e r a t i o n due t o gravity-
G function of 
h head l o s s due to f r ic t ion in a p r i s m a t i c pipe 
H node (or iunction> head 
k equivalent sand gra in roughnes s s i z e 
K r e s i s t a n c e coe f f i c ient - S j 
I pipe length 5 
p function of ir 2 
Q f lowra te (or d i s c h a r g e ) 7* ^ 
r function of ^ 
R Reynolds Number ^ — 

m e a n velocity 
p k inemat ic v i s c o s i t y 2hgd 
7s. D a r c y - W e i s b a c h f r i c t ion f a c t o r = ^ 
^ convergence l imit 



1. Introduction 

For analysis of steady flow in pipe netAvorks bv nodal methods, a 
relationship Q(h) between Q and h is required, as well as the derivaiive 
0 ' (h) . For loop methods h(0) and h'(Q) are required. 

The empirical Hazen-Williams and Manning formulae are frequently 
used to relate Q and h, and the derivatives are simple expressions. 

Use of the Darcy-Weisbach equation, in conjunction with the 
Colebrook-White equation for , is preferable. Not only are the re-
sults more accurate (Refs. 19, 16,20), but the computer program is 
then applicable to flows other than water. Application of the Colebrook-
White equation in pipe network analysis programs has often been avoided 
in the past, particularly for loop methods when iterative solutions of the 
equation have resulted in significant increases in computer execution 
times. 

This note compares the computer times required to use subroutines 
employing the Hazen-Williams formula and the Colebrook-White equation 
• and some explicit approximations to it) for both nodal and loop methods of 
analysis. F ôr modern computer programs, the increase in computer ex-
ecution time required to use the Colebrook-White equation instead of the 
Hazen-Williams formula is shown to be slight. 

2. Basic Equations for Head Loss and Friction Factor 

The Hazen-Williams form.ula, the Darcy-Weisbach equation, and 
several forms of the Colebrook-White equation are shown in Table 1. 
Also shown are three explicit approximations to the Colebrook-White 
equation. 

The accuracy of the Moody and Wood approximations in the trans-
ition zone is shown in Table 2. The Barr approximation is not shown in 
Table 2 as it gives> values within - 2% of the true value over the entire 
range of ^ and R values shown in Table 2. 

3. Equations for Nodal Methods 

Equations for nodal methods are shown in Table 3. These apply 
to both the simple node (Refs. 15, 2) and the simultaneous node 
(Refs. 14, 8, 5) methods of analysis. Taking Ĥ  as the head at the node 
in question, and Hj as the head at the far end of the pipe, then the head 
loss is given by equation (11). Equations (12) to (15) apply for the con-
vention that flows towards node i are positive. Note that Q (Hj) is al-
ways negative with this convention. 
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Table 1: Basic Equations 
Eqn. 
No. 

Ref. 
No. Name Equation 

8 

10 

12 

6 

17 

22 

Hazen-Williams, 
SI units 

Darcy-Weisbach, 
Velocity form 

Darcy-Weisbach, 
Discharge form 

Colebrook- White, 
1 form 

Colebrook- White, 
form 

Rough pipe. In form 

Colebrook- White, 
^ form 

Moody approx. 

h = 4.73 Q 1.852 i 
^ 4 . 8 7 ^ 1.852 

h = X J . V 
2g 

h = 8 £ > Q^ = K > Q^ 

Wood approx. for ^ 

Barr approx. for ^ 

^s 

ß -

/ k 2.51 \ 

/ k 2.5lV 2 log^ ^e log^, ^ „ , 

2 log^^e log^ ( O d ) ] 

/ k . 2 .51\T^ 2 

-s r / 4 k > = . 0 0 5 5 1 1 

a = . 0 9 4 ^ ) + . 5 3 ( | ) 

b = 88 ( I ) . c = 1 . 6 2 ( - | ) 

( 1 0 " I <4x10"^.4X103<R < 10^ 

= - 2 
/ k , 5.13 \ 



Table 2: Accuracy of Explicit Approximations for X 

k/d 

1 
Error Exceeding - 2% . j 

k/d 4 R = 10 l o ' 10® l o ' 10« 
! i 1 

10-® -

- 3 . 5 - 5 . 4 

1 - - - • — 
-

1 
W^ood, eqn. (9) | 
Moody, eqn. (8̂  

10-^ - 3 . 2 - 3 . 8 
- 3 . 4 - 4 . 4 +2. 1 -

5x10'^ --2.4 
- 2 . 9 

+3.8 - 3 . 7 
- 2 .9 

10-^ 4-2. 3 
- 2 . 3 

- 5 . 3 
- 3 . 1 

i 

- 4 4x10 ^ +2.7 -6 
- 2 . 7 1 

-4 .5 
- 3 . 7 

+3.5 
- 1 I 

10"^ +3.7 - 5 . 2 
+3.7 

^4.4 
-4 

4X10"3 - 2 . 4 +2.8 
+2.2 

^3.2 
- 2 .7 -2 .8 

.3 

10-2 

Table 3: Equations for Nodal Methods 
Eqn, 
No. Name Equation 

11 

12 

13 

14 

15 

Head loss 
Hazen-Williams 
discharge 
Hazen-Williams 
derivative 
Darcy and Cole-
brook-White 
discharge 

Darcy and Cole-
brook-White 
derivative 

h = Hj - Hi 

Q(Hi)-Sign(h) 

Q'(Hi) = - .54 ^ 

d^-®^ Chw 
2.314 

Q(Hi) 

Q(Hi) - -Sign(h)logioe ^ / l ^ J ^ 

loge 3.7d d 
- 1 

iP^) - l 7 

Q (Hi) ^ 

2.51V / _ J 
d 1.3. 

Q(Hi)| -f logio e ^ 

k_ + 2.51V 
7d d 

- 1 
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4. Equations for Loop Methods 

Equations for loop methods are shown in Table 4, which apply to 
both the simple loop (Refs. 8, 2, 11) and simultaneous loop (Refs. 10, 21) 
methods. The term normally included in the h(Q) equations to indicate 
the direction of the loop through the pipe has been omitted. Note that 
h'(Q) is always positive. 

Table 4: Equations for Loop Methods  

Eqn. 
No. Name Equation 

l.Bb2 I 16 

17 

18 

19 

20 

21 

22 

23 

Haz en-Williams 
head loss 

Haz en-Williams 
derivative 

Darcy head loss 

Darcy derivative 

Darcy and Colebrook-
White derivative 

Darcy and Moody 
approx. derivative 

Darcy and Wood 
approx. derivative 

Darcy and Barr 
approx. derivative 

h(Q) = Sign (Q) 4. 73 

h'(Q) = 1.852 

T J o R [^hw ) ,4.87 

Q J 
h (Q) = Sign (Q) K X Q^ 

h' (Q) = K (2 \ \Q\ 1 2 L 
2 Q 

h' (Q) = 2KXQ 
r / 2 . 5 1 + 

1-2 log^Q ex2.51 

^ ^ R+2 logioex2.51 • 7 - 1 

h'(Q) = K 2 Aq - .0055xl0®x ^ 

(2 X 10^ I . R ) 
h' (Q) = KQ 2 > - C( > - a) 

h'(Q) = 2K>Q 1-2 log^QexS. 13x . 8 9 ^ 

R .89 5.13 \ 
[ 3.7d r . 8 9 J 

- 1 1 

Equations (16) and (17) use the Hazen-Williams formula. 

Equation (18) gives the head loss from the Darcy equation. The 
friction factor X for use in equation (18) may be found by iterative solution 
of one of the forms of the Colebrook-White equation (equation (4), (5) or 
(7) ) or from one of the explicit approximations (equation (8), (9) or (10). 
h'(Q) is given by equation (19) (Ref. (13) ). When > is found from the 
Colebrook-White equation h'(Q) is found from equation (20). When one of 
the approximations is used, then the corresponding h'(Q) expression is given 
by equation (21), (22) or (23). 
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5. Iterative Solution of the Caleb rook-White Equation 

Equations for this section are showni in Table 5. The successive 
substitution (Refs. 23,7,13) and Newton's method (Ref. 21) have been 
suggested for finding the root ^ of the implicit Colebrook-White equation. 

Table 5; Equations for Iterative Solutions 
Eqn, 
No. Name Equation 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Successive substitution 

Successive substitution 

Newton's method, 
1 form 

i+1 2 log^^e log^ 

k + 3.7d R 

^ = ( l -C i ) />3 -C i 

•v' -1 
= i / 

i , 1 ( A - . ) 

Newton's method, 
form 

Convergence criterion 

\2 logiQ e logg / k 2. 51\ - 1 

3.7d a jY^ j 

>3^1 = >3 -
F U j ) 

^ ^ " ^ 2 "̂"SlO e ioge 
(h 

k 2.51 
3.7d R/>. 

F 
- 1 

2V 
• « , 2.51 1+ 2 log^Qe X 

3.7d + 
2.51 - 1 ^ 

- G( > n-: 
V = > 3 = 

G(>\j) - X j - 2 logioe loge 
1 - 2 

3. 7d + 
2.51 Y 

G'(Aj) - l -21ogioe x ^ — 
'_k ^ 2.51 Y ^ 
3.7d ^ B f X ] J 

>¿+1^3 
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Equation (S"» is already in a form suitable for applying successive 
substitution. Equation (24) results, where ^ j is the current estimate 
of the root and X-jxi a better estimate by iteration. Iteration is 
terminated when tiie relative convergence criterion, equation (32), is sat-
isfied. Taking the convergence limit ¿r =.001 suffices for pipe network 
programs. 

Convergence of equation (24) is assured as f ( /X^) C l . O , 
where is the true solution (Refs. 7 ,4) . Convergence is slowest for 
small values of ^/d, in particular at low R values. Convergence 
of the successive substitution method can sometimes be improved by re -
defining f( Xj ) in equation (24) to yield equation (25) (Ref. 4). The opt-
imum value of the constant C^ lies between 0. 8 and 0. 9 and a mean value 
of 0.85 has been used for C \. 

The starting value ^ to commence iteration, can be either ^ from 
the rough pipe formula (equation (6) ) (Ref. 23), or an arbitary value for 
all turbulent flows, ranging from .024 to 1.0 (Refs. 24,7,13) . Equations 
(26) to (31) are for application of Newton's method, using either equation 
(4) or equation (7) as the basic equation. At the root \ ^ P'( A n̂  
(equation (26) or r ' ( ^ (equation (29) ) tends to zero. For convergence 
the starting value for friction factor, i , should be "near' ' the true value 

(Ref. 4), and p'( "X-;) or r' ( )\ should decrease from one iteration 
N 

to the next. Possible values of AI are the rough pipe A (equation (6) ); 
an arbitrary value for all turbulent flows; or from one of the approximate 
formulae, equation (8), (9), or (10). 

6. Comparative Computer Times 

The methods described in Sections 3,4 and 5 above, have been trans-
lated into computer program subroutines. The execution times requires 
to call these subroutines many times have been found for the transition 
zone between smooth and rough wall turbulent flow in the range 
10~6<- is < 1 0 " 2 and lO^C R -C 10^. In the case of the iterative sub-
routine^^ mean execution times in the transition zone have been found. 
Execution times have been divided by those for the Ha z en-Williams nodal 
or loop subroutines to find comparative times. Comparative times may 
vary slightly with the computer and compiler used, so values to the nearest 
0.1 have been quoted. 

Comparative times for nodal method subroutines are shown in Table 6. 

Comparative times for loop method subroutines are shown in Table 7. 

7. Discussion of Results 

The results in Table 6 show that the time for Q(Hi) and Q'(H^) comp-
utations in nodal methods is increased by 30% if the Colebrook-White 
equation (in conjunction with the Darcy equation) is used instead of the 
Hazen-Williams formula. 
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Table 6: Nodal Method Subroutines, Comparative Computer Times 

Subroutine Descript ion Eqn. for 
Q(Hi) 

Eqn. for 
Q' (Hi) 

Comparat ive 
Time 

HWN Hazen-Will iams 12 13 1.0 
CWN Darcy and 

Col ebr ook-White 14 15 1.3 

Table 7: Loop Method Subroutines, Comparative Computer Times 

Subroutine Descript ion Eqn. 
fo r h(Q) 

Eqn. 
for h'(Q) 

Eqn. for 
i terat ion 

Starting^ Comparat-
ive Time 

HWL Ha z en-
William s 16 17 1.0 

WL Wood 
approx. 18 22 1.0 

ML Moody 
approx. 18 21 1.5 

BL B a r r 
approx. 18 23 1.5 i 

SI Successive 
substn. 18 20 24 .02 

i 
3. 1 

S2 18 20 24 Eqn. 
(6) 

3.2 

S3 18 20 25 ,C i = 
. 85 

Eqn. 
(6) 3.5 

S4 18 20 24 1.0 3.6 

N1 

N2 

Newton's 
Method 

18 

18 

20 

20 

26 

26 

Eqn. 
(10) 
Eqn. 
(9) 

3.9 

5.7 

N3 18 20 26 Eqn. 
(6) 5.8 

N4 18 20 29 Eqn. 
(9) 

6.5 

N5 18 20 29 Eqn. 
(6) 

6.9 

N6 18 20 26 .02 Diverges 

lO'^CRClC^ 
1 

(2) Convergence ^ =.001 in Eqn.(32) for i tera t ive subrout ines . 



For loop methods, the results in Table 7 show that the time required 
for h iQ) and h'(Q» determ.inations will increase bv factors ranging f rom 
1.0 to 6.9 ('depending on the subroutine used^ if Colebrook-White based 
equations are used instead of the Hazen-Williams formula. 

Wood's approximationfor^ (subroutine WL^'may be used instead of 
the Hazen-Williams formula in loop methods without increasing the exec-
ution time. The error in X introduced by using Wood's approximation 
ranges f rom about -4To to 6% (see Table 2) but this is still preferable to 
using the Hazen-Williams formula. 

Barr ' s approximation for ^ (subroutine B D involves an increase in 
execution time for h(Q) and h'(Q) calculations of 50^: compared to using 
the Hazen-Williams formula. Barr ' s approximation gives values 
within ^ 2̂ 0 of the true value over the whole range of practical pipe flov\-s, 
and this accuracy is m.ore than adequate for network analysis (Ref. D. 

Mood;\^'s approximation for "X (subroutine ML^ takes the same time 
as Barr ' s , and, as it is less accurate, its use is not justified. 

Of the iterative subroutines, SI to S4 and N1 to N5, the subroutine 
SI is the least time consuming, taking about tivice as long as subroutine 
BL (using Barr ' s approxim.ation), and three times as long as HWL (using 
Hazen-Williams formula). Use of the iterative subroutine SI does not 
seem justified, however, in view of slight increase in accuracy over sub-
routine B L . An i l l -chosen subroutine, for example N5, can be quite 
time consuming when compared to subroutine HWL. This may account 
for some previous avoidance of use of the Colebrook-White equation in 
l oop method programs. 

8. Effect of the Head-Discharge Relation on Total Execution Time 

The effect of the head-discharge relation used depends on the prop-
ortion of the total time spent in using the relation, which in turn depends 
on the method of analysis and the size of the network. 

For the simple nodal and loop methods, where node head adjustments 
and loop flow correct ions, respectively, are made one at a time, the head-
discharge relation is used continuously. For the simultaneous nodal and 
loop methods, the head-discharge relations are used only at the beginning 
of each iteration step involving in the solution of a set of linear simultaneous 
equations. The solution of the simultaneous equations accounts for most 
of the computer t ime. 

Execution times for the various sections of a program, are not often 
given in the literature. The effect of network size on total execution 
time is usually given. Some approximate estimates of the effect of chang-
ing f rom the Hazen-Williams formula for pipe flow to the Colebrook-White 
equation for several methods of analysis are given in Table 8. These 
probably apply to medium sized networks up to about 300 pipes. Lack of 
data prevents estimation of the effect of network size on the proportion of 
the total time spent in using head-discharge relations. 



Table 8: Effect of h - Q Relation on Total Execution Time, 

Method of Ref. Estimate of: Subroutine A, Subroutine Approx. % 
Analysis No. Time using h - Q relation x 100% Hazen-Williams Colebrook- increase in Analysis 

Total execution time White total exec-
ution time 
using subr. 
B in place 
of A, to 
nearest 5%. 

Simple Node 15 90 HWN CWN 3 0 

Simultaneous 
Node 9 10 i r w N CWN 5 

Simultaneous 
Node, sparsely 

0 oriented 5 5 HWN Ĉ WN 0 

Simple Loop, 11 90 • llWl.. WL 0 
initial pipe Q B I . 45 
and loops 
supplied as data 
Simple Loop, 18 60 TTWi> WL 0 
initial pipe Q B L 30 
and loops found 
by program 
Simultaneous 10, 10 l i w r . W i . 0 
Loop 21 H I . 5 

N5 60 
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9. Conclusions and Recommendat ions 

1. Fo r s imple nodal method p r o g r a m s using the Colebrook-White 
equation ins tead of the Hazen-Wil l iams fo rmula will i n c r e a s e execution 
t ime by about 30%. 

2. Fo r modern s imul taneous node method p r o g r a m s , the head - lo s s r e -
lat ion used fo r pipes has negligible effect on execution t i m e . 

3. F o r loop method p r o g r a m s . Wood's approximat ion may be used in-
s tead of the Haz en-Wi l l i ams f o r m u l a without affect ing execution tim,e. 
Wood's approximat ion in t roduces e r r o r s in ranging f r o m - 4 to + 8% 
but this i s s t i l l p r e f e r a b l e to us ing the Hazen-Wil l iams f o r m u l a . 

4. B a r r ' s approximat ion is r ecommended f o r use in loop methods p ro -
g r a m s , being of adequate accuracy ( - 2%) and l e s s t ime consuming than 
i te ra t ive solutions of the Colebrook-White equation. 
5. F o r s imple loop method p r o g r a m s using B a r r ' s approximat ion in 

place of the Hazen-Wil l iams f o r m u l a i n c r e a s e s execution t ime f r o m 30% 
to 45%, depending on the method used fo r determining init ial pipe d i scha rges 
and loop layout . 
6. F o r modern s imul taneous loop method p r o g r a m s a negligible i n c r e a s e 

in execution t ime will r e s u l t when B a r r ' s approximat ion is used instead of 
the Hazen-Wil l iams f o r m u l a . 
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