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SUMMARY

This study examines the usefulness of the rescaled adjusted
range statistic as an aid in the analysis of hydrologic time series and
the construction of synthetic data generation models.

A definition is given of the rescaled adjusted range and other
related statisﬁics in terms of the 'residual mass curve' approach to
reservoir storage design. A more rigorous definition is presented
together with analytical results available in the literature for range
statistics in theoretical processes.

The pioneering work by Hurst (1951) in the use of the rescaled
adjusted range in the analysis of hydrologic time series is reviewed.
Perceptions of the 'Hurst Phenomenon' are discussed and various estimators
of the Hurst exponent that have been proposed in the literature are
described. It is pointed out that the erroneous comparison of sample
estimates of the expected value of the Hurst exponent with its theoretical
asymptotic value pervades much of the literature on the 'Hurst Phenomenon'.

Sampling experiments with computer generated data sequences are
carried out and show large sampling variation in the Hurst coefficient
and the rescaled adjusted range. Difficulties in determining the underlying
Hurst exponent from sample series are illustrated by examination of
synthetic and real data series.

The structure of 'short-memory' autoregressive and moving average
stochastic process models are examined in detail and model identification
and fitting procedures discussed. Useful properties of the rescaled
adjusted range in these types of theoretical processes are identified and
an analogy is drawn between the rescaled adjusted range function as a
function of sub-series length and the autocorrelation function as a

function of lag interval.
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The comparison of observed and theoretical rescaled adjusted
range functions is proposed as a design method for examining the
adequacy of a stochastic model for reservoir storage design purposes in
particular. Comparisons are made between observed and theoretical
functions for many Australian and overseas hydrologic data series and
series generated by appropriately identified models. In most cases the
observed functions fall within‘an approximate 95% confidence region
surrounding the theoretical function. Such comparisons discriminate
between various model structures proposed for a given data series.

In conclusion it is pointed out that a stochastic model should
produce series showing realistic values of the rescaled adjusted range
as a pre-requisite for application in the reservoir storage design process.
Behaviour of the Hurst exponent which is not reproducible by 'short-memory'
models in some cases may be an indication of a 'Hurst Phenomenon' in very
long data series. Consideration of such an effect may rot have much

relevance to hydrological design.
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CHAPTER 1: AN INTRODUCTION

1.1 Introduction

The engineering hydrologist is a practitioner in the art of
using the past to gather information about the future. He is called
on to forecast future risks of floods ana droughts and to construct
likely future sequences of rainfall and streamflow. The important
business of designing and operating systems for the exploitation, and
hopefully the protection, of the accessible parts of the hydrological
cycle depends for its success orn such information. The often competing
pressures on our water resources continue to grow and therefore the
challenge of adequate resource management demands improvement in the
engineering hydrologist's ability to provide information about the
future.

The only rational way to investigate the future is to learn
as much as possible of what the past has to teach and put that
information to careful use. The main difficulties are that the
past historical record never seems long enough for the task and that
the future wiil be quite different from the past in any case. A
saving grace is the apparent order underlying the natural phenomena
with which the hydrologist is involved.

This study relates to the attempts by many investigators
to analyse the underlying order in series of observations of rainfall,
streamflow and other geophysical phenomena and also the use of such

information to construct plausible future sequences of events.
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1.2 Time-series and Stochastic Processes

In this study attention will be focussed on time-series of
observed phenomena particularly streamflow. The instantaneous rate
of flow in a stream is a continuous variable with time, at least
while flow is occurring. To facilitate analysis, the continuous
streamflow record is broken up into equally spaced segments of time
such as a day, month or year. The total volume of flow over each
segment of time is regarded as a discrete quantity or event and the
succession of these events at equally spaced time intervals is
regarded as a time-series of streamflow. Monthly and annual time-
series of streamflow, rainfall and other geophysical phenomena are of
interest in this study.

Natural phenomena such as rainfall and streamflow show a
great deal of variation and the extremes of drought and flood are a
common experience, particularly in the Australian situation. Within
this variability however, the concept of an average value of rainfall
or streamflow is commonly accepted. Experience tells us that rainfall
and streamflow appear to fluctuate about an averace level which does
not seem to change greatly in the long term.

To some extent it is convenient to think of the rainfall or
streamflow time series as the output from some unknown mechanism or
process. Time-series which appear to have a constant mean level and
a constant average variability about that mean level over a long
period of time are often referred to as being the product of a

stationary process of more strictly a weakly stationary process.

Non-stationarity may take on different forms such as trend
or periodicity. The natural phenomenon being observed may be under-
going systematic change as the result of natural processes such as

the gradual silting up of a river or man's activities as in the case



of higher flood flows due to increasing urbanisation of a catchment.
Observations affected in this way will contain underlying trends.
Natural phenomena may have an underlying systematic variation which

is repeated each period of a day, lunar month or year. Such period-
icity is usually evident in monthly streamflow series where mean
values of streamflow,for example, may be lower in summer months than
winter months. Such a time series of monthly streamflows would not

be regarded as the product of a stationary process. However the series
of all the January flows in particular, taken as an entity, might be
considered to share a common mean and variance and therefore might be
regarded as the product of a stationary process.

Annual streamflow and rainfall series are often regarded as

stationary or weakly stationary as they are not subject to any

obvious periodicities. Whether or not such an assumption is valid, or
whether random shifts in climate occur or hidden periodicities exist,
is a puzzle which has occupied the attention of many investigators.
This question has obvious implications for hydrological design and

will be touched on later in this report.

1.3 Reservoir Storage Design

Because of the variability of rainfall and streamflow the
problem of storage is of great interest. Intuitively it would seem
that the more variable the rainfall or streamflow 'process', the
greater the amount of storage required to supply some fixed water
demand at a given reliability. It would seem also that for the same
rainfall or streamflow process and for a given desired reliability,
the higher the required demand the greater the amount of storage
required.

A frequent task for the engineering hydrologist is the



estimation of the amount of storage required at a stream site to
provide a particular level of water supply. One approach to this

problem is often referred to as the critical period approach. In this

method the reservoir is assumed to have operated throughout the
time-span of the available historical record. The storage selected
is such that satisfactory levels of supply would have been maintained
over the historical period with the reservoir just reaching
emptiness once in the period. The reservoir system therefore would
survive the critical period in the historical record. Additional
storage is sometimes added as a factor of safety. The rationale for
this traditional approach is not that the historical record will be
exactly reproduced in future, but that the approach provides an
acceptable, if somewhat arbitrary, basis for design which makes use
of some of the information available in the historical record.

The drawback of the criticeal period approach to storage
design is that very little indication is gained as to the risk of
failure to deliver the desired water supply. This drawback is
particularly significant for economic decision making, as estimates
of the risk to supply are essential for optimising the storage size
with respect to irrigation benefits for example. It is this coupling
of hydrologic analysis to economic decision making that has encouraged

the search for different approaches to reservoir storage design.

1.4 Synthetic Data Generation

The streamflow series itself was earlier
gescribed as the product of a process. It is a t-apting

ov :the

t

thought that the process might be discovered and the hanc
mechanism cranked to turn out future sequences of flows. Stream

flow is of course the product of a very complex physical process which
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consists of a random input of rainfall which is modified by the
catchment to produce the streamflow output. A study of the catchment's
response to rainfall may lead to confidence in the ability to predict
streamflow knowing what rainfall occurred. However, if the future
sequence of streamflows is to be predicted, then the rainfall inputs
themselves have to be predicted which is not possible.

Given the impossibility of predicting the future sequence of
rainfall because of its random or stochastic nature, a second best
approach is to artificially construct a set of rainfall sequences,
each sequence being equally likely to occur in the future. These
sequences can be converted by the established non-random or determin-
istic rainfall-streamflow relationship into equally likely future
series of streamflows. The artificially constructed or synthetic
rainfall series can be generated by 'drawing numbers from a hat' so to
speak. The 'numbers' in the hat would have to be such that a random
sampling of them would generate synthetic rainfall sequences
statistically indistinguishable from the real historical series. The
underlying assumption would be that the past and the future both
'obey' the same set of statistical rules.

An alternative approach is to consider the streamflow series
as the product of an unknown stochastic process in the same way as
the rainfsll series was considered previously. The process can then
be represented by a numerical model which uses some form of random
sampling as an input and which generates synthetic streamflow

sequences directly.

1.5 Storage Design Using Synthetic Data

If realistic synthetic streamflow series can be generated

then storage design can proceed using the criterion of risk of failure
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to supply rather than the survival of the system during the historical
critical period. A trial storage volume can be assumed, the

reservoir operation simulated over many synthetic sequences and the
frequency of failure to supply noted. In this way the storage design
procedure is able to sample the many different pattcrns of sequences
of high and low flows which are possible in the future.

Storage design methods have been proposed which rely on
synthetic data generated by process models. The process models in
turn rely on random sampling experiments sometimes referred to as
"Monte Carlo" techniques. Hazen (1914) was the first to apply such a
method to the problem of storage design and was followed by Sudler
(1927), Barnes (1954), Fiering (1961) and many others since.

An alternative approach follows on from the work of Moran
(1954). 1In this approach the theory of stochastic processes is used
to develop stochastic equations relating probabilities of inflow and
release for a given storage. From these probability statements the
risk of fzilure to supply can be obtained. The reader is referred to
Doran (1975) for a comprehensive review of this field. In general
this approach to storage design is more elegan£ mathematically but
less flexible in relation to complex reservoir systems than that

using synthetic data.

1.6 The Development of Synthetic Data Generation Technigues

This study relates to the task of constructing synthetic
data generation models which fully use the statistical information to
pe found in the available record. The aim of using such models is to
produce sets of realistic data each of which is statistically
indistinguishable from the historic sequence. Given the assumption

of the stationarity of the real physical process, it is assumed that



the synthetic data sets are all equally likely to occur in the future.
It should be noted that such models are operational devices in that

no attempt is made to simulate real physical processes. Instead the
historical sequence is regarded as a set of numbers ordered in time

and as such is a sample realisation of a theoretical stochastic
process. This stochastic process relates to the real physical
process only in its ability to produce series of numbers appearing to
have the same statistical character as the observed series. This
particular field of hydrology relating to synthetic data generation

has been referred to as operational hydrology, (Fiering - 1967). A

more commaon and perhaps more satisfactory term is synthetic hydrology.

The search for techniques to construct adequate synthetic
data generation models and to test their adequacy has led to a vast
literature. A starting point for much of this work was the study by
Hurst (1951) who examined many streamflow, rainfall and other
geophysical series related to hydrological phenomena.

Hurst used in his studies a statistic which is referred to
in this report as the rescaled adjusted range. For streamflows and
other natural phenomena where storage has relevance the rescaled
adjusted range statistic is closely related to the 'storage' character
of the series; that is, the extent to which storage must be provided
to assure a required supply. Hurst found a discrepancy between the
behaviour of the rescaled adjusted range in real data series and in
series of numbers resulting from such simple random independecat
processes as coin tossing and card drawing experiments. He concluded
that real data series have complexities which simple random processes
do not emulate and he was interested in the implication of this
result for storage design.

After more than a quarter of a century the difference in
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character which Hurst observed between series derived from theoretical
stochastic processes and real series is still the subject of research
by many investigators. The discrepancy has come to be known as the

Hurst Phenomenon and the attempts to explain it have led to many

insights into the statistical nature of theoretical and real data
series and also to controversy over the adequacy of different types
of data generation models.

Since the advent of high-speed electronic computers
there has been a great deal of development of synthetic data
generation methods and time-series analysis technigues within the
discipline of hydrology as well as within other disciplines such as
econometrics. The work of Box and Jenkins (1970) stands out as a

landmark and provides a unifying treatment of the subject.

1.7 Features and Aims of this Study

This report presents a general study of the rescaled
adjusted range statistic and its significance in time-series
analysis and synthetic data generation. It includes a review of the
Hurst Phenomenon, not as a primary aim but as part of the overall
story of how the rescaled adjusted range statistic has been used in
tsynthetic hydrology' and how the statistic behaves in thecretical
processes and real data series.

Following the review of the Hurst rhenamenon, synthetig
data generation models are discussed and various properties of the
rescaled adjusted range in theoreticzal processes examined. This
part of the study provides the justification of a proposed method in
which the rescaled adjusted range statistic is used to assist 1in
time-series analysis and data generation model building.

The study concludes with applications of +the proposed



method of comparison of theoretical and observed rescaled adjusted
range values. The examples used are drawn from Australian and
overseas streamflow, rainfall and other geophysical data series.

The ability of various data generation models to adequately preserve

the 'storage' character of the series being modelled is examined.



10.

CHAPTER 2: THE RESCALED ADJUSTED RANGE AND OTHER RELATED STATISTICS

2.1 Introduction

The statistic that H. E. Hurst (1951) used to examine many
geophysical time series was the range of the accumulated sums of the
residuals from *he sample mean, divided by the sample standard
deviation. This statistic has come to be known as the rescaled
adjusted range. Since Hurst's work, the rescaled adjusted range and
other related statistice such as the crude or population range
have received much attention in the literature. In the following
sections these range statistics will be illustrated by reference to
the close analogy they hold with the familiar "residual mass curve'
technique used in the critical period approach to reservoir storage
design. A more rigorous definition of the rescaled adjusted range
will follow and a graphical method due to Hurst (1951) for

conveniently evaluating the statistic will be described.

2.2 The 'Residual Mass Curve' Storage Design Analogy

The following simple example of the residual mass curve
technique is given in order to define the terms used in this
discussion and to illustrate how the range statistics mentioned
above encapsulate the storage nature of a time series.

Suppose that we have the following series of observations,

perhaps annual inflows to a reservoir:

TABLE 2.1

TIME SERIES FOR ILLUSTRATION

Time 1

Value x| 1 2 2 111 1 7 7
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Although i varies from 1 to 8, consider only the first six terms so
that i varies from 1 to n = 6 where n is the sub-series length. The
mean inflow X is seen to be 3. The residuals from this mean value

can be accumulated as shown in Table 2.2 and plotted as in Figure 2.1

TABLE 2.2

ACCUMULATING THE RESIDUALS

n
x4 (x = %) 'Z (x = x_)
i=1
0
1 -2 -2
2 -1 -3
2 -1 -4
1 -2 -6
11 +8 +2
1 =2 0
For the sub-series with n = 6, the largest negative value of the

accumulated residuals from the sub-series mean defines the adjusted

deficit mo= -6, the largest positive value, the adjusted surplus
*
Mn = 2 and their difference Mn - mn, the adjusted range Rn = 8,

The term 'adjusted' was introduced by Feller (1951) to differentiate
these statistics from similar statistics defined in terms of the non-
varying population mean or its estimate.
If the whole available series with i varying from 1 to
n = B8 is considered, the residuals may be accumulated against the
- * *
mean x = 4, giving M =0, m = -10and R_=10. M, m and R
n n n n n n n

are seen to have values varying with n, the number of terms of the

available series considered in the analysis.
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"IDEALISED RESERVOIR
OPERATION

FIGURE 2-1
RESIDUAL MASS CURVE

There is an important difference between these adjusted
statistics and the crude or unadjusted surplus, deficit and range. If
the mean x* ~ = 4 is considered to be the estimate of the population
mean, then the crude and adjusted statistics at n = 8 are equal in
value. However, to consider the variation of the crude range with n,
would require the recalculation of the range at smaller n values 1in

terms of the fixed mean value of x 8 =4 .
n:

The residual mass diagram (Figure 2.1) illustrates that
the adjusted range is the required storage size for an 1idealised
reservoir operation in which the reservoir starts and finishes with a
storage equal to the absolute value of the maximum deficit and
continuously delivers the mean inflow.

To allow comparison of the adjusted range values determined
for different time series a non-dimersional form of the adjusted range

is obtai led by dividing by the standard deviation, s, of the sub-series.
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* * ¥
The. resulting rescaled adjusted range, Rn/s, will be denoted by R .
n

One feature of the residual mass curve approach to reservoir storage
sizing is that as the length of record included in the analysis is
increased, the amount of storage required to meet the fixed demand
will tend to increase also. It will be seen later that values of R:
* %
and Rn tend to increase with increasing sub-series length n.,
Another feature of storage design is that the required

storage size tends to be relatively greater when flow events in the
series occur in 'clusters' of high and low events. The tendency of

low flows to follow low flows and high flows to follow high flows is

referred to as autocorrelation. It will be seen later that the

presence of autocorrelation in a series also leads to relatively

* * X
higher values of Rn and Rn .

2.3 A Formal Definition

Anis and Lloyd (1976) give the following formal definition
of the rescaled adjusted range.

Consider a time series

{/(t} (‘t = 1, 2...) = X1, X2 cee -—=(2.1)

the n-term mean

X = (X, 4 eoe + X))/ n, -—(2.2)
n 1 n

and standard deviatian

-3 lf = .2
s = n 2/~Z,<><]E -0, ——(2.3)
the partial sums

S = X 4+ o e +X (r=1, 2, 0-0)’ "‘_(204)



the adjusted partial sums
S = S _=1x  (r=1, ..., n), -—-(2.5)

the rescaled adjusted partial sums

¥* ¥

nS = nS* /s (r =1, ..n). -—(2.6)
T T n

The rescaled adjusted range is defined as

-—=(2.7)

R = Max (nS ) = Min (nS )
n T
1< 4n 1€ r<n

R = R /s --=(2.8)

2.4 A Graphical Method for Determining the Rescaled Range

Figure 2.2 illustrates a convenient graphical method for
determining the rescaled range. The method is due to Hurst (1951).
The series of annual flows, Qi, in the Brisbane River at Savages
Crossing (1910 to 1951) is analysed. Instead of accumulating resid-
uals from a mean value as was the case in section 2.2 an arbitrary
base is selected for convenience. In this case residuals from a
base of 500 are calculated and summed and the partial sums plotted.

The value of the rescaled range for n = 20 for example,
can be evaluated for the sub-series containing the years 1 to 20.

The line AB is drawn from the origin to the point on the residual mass
curve corresponding to i = 20. The sum of the largest deviations
(CD + EF) above and below this line gives the rescaled range R;D

which in this case is approximately 3,500. If the result is divided

by the standard deviation of the sub-series Q., i =1, 20 (in
1



15.

4000 r

2000-

YEAR 1

-2000" FIGURE 2-2
EVALUATING THE ADJUSTED RANGE R*
BRISBANE RIVER AT SAVAGES CROSSING"

ANNUAL FLOWS

this case 564) the value of the rescaled adjusted range R™ of 6.2
is obtained.

Another independent evaluation of R;A can be obtained by
examining the sug—series Qn, i = 21, 40,, Again a line BG 1is drawn
and a valui*of Rr"g = 2,000 determined from the sum of ﬁJ and HI. A
value of RN = 6.4 is obtained by dividing the value R™ by the
standard deviation of the sub-series Qi’ i = 21, 40 (in this case
310) .

The two values of R”g obtained above can be regarded as

* *

independent estimates of the expected value of R”g for an wunderlying
stochastic process producing the . In general the available series

may be subdivided into non-overlapping sub-series of length n to

obtain independent estimates of R . Of course where n is greater
n
than half the series length then only one independent estimate of

R is available,
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The range statistics described in this chapter have been
the subject of considerable investigation. In the next chapter some

theoretical properties of these statistics are discussed.
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CHAPTER 3: ANALYTICAL RESULTS FOR RANGE STATISTICS OF SOME

THEORETICAL PROCESSES

3.1 Introduction

In the previous chapter the definition of the range
statistics was illustrated by crude example using some data series of
finite length.

The underlying stochastic process in the case of the
Brisbane River flow data analysed in the previous chapter is of
course unknown. It is possible however to consider data series for
which the underlying stochastic process is known. For example,
computers are commonly used to generate numbers which are apparently
randomly selected from a normal distribution. Many sequences of such
numbers can be analysed to determine the mean value of the rescaled

* ¥
adjusted range (Rn ) at a particular sub-series length n. In this
context the mean value is an approximation to the true expected value
¥*# ¥* %

of Rn for the process. The values of Rn obtained from each of the
sequences will show sampling wariance about the mean and this
variance will be an estimate of the true variance of R:* for the
process.

A useful feature of the range statistics described in
Chapter 2 is that statisticians have been able to provide closed-
form expressions for their expected values in the case of some
theoretical processes. Attention has centred mainly on simple
independent random processes but recently theoretical results have
become availatlc for seome Zep:sndent processes. These aralytical

expressions complement the knowledge to be gained by the zalternative

approach of computer simulation experiments.
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3.2 Expressions Valid Asymptotically - Independent Variates

Hurst (1951) derived an expression for the expected value
of the adjusted range in terms of the series length n for an
independent normal variate. He used a combinatorial argument
regarding the theoretical result of a coin tossing experiment. The

expression is as follows:

E[R:]/s =\/[¥] : 1.2533 /n ——=(3.1)

Feller (1951), using a different approach, proved that the
above expression is valid asymptotically (i.e. its accuracy increases
as n becomes large) and applies for any identically distributed
independent random variate. Feller (1951) also derived the following
expression for the asymptotic variance of the rescaled range for such

variates.

---(3.2)

<

)

H
—

=]

*
e
~.

)

1]
[a =]

i
[NTR=|

]

McLeod and Hipel (1978a) point out that due to a standard
convergence theorem in probability theory, for large n,
* * - * ¥
E [ R 1 /s = E [ R/si = E [ R J . The above expressions, (3.1)
n J n. g L n »
and (3.2), can therefore be considered as asymptotic expressions for

the rescaled adjusted range for an identically distributed independent

random variate.

3.3 Exact Expected Values - Independent Variates

Anis and Lloyd (1953) determined an expression for the exact

expected value of the crude or unadjusted range for the standard

(zero mean, unit variance) independent normal variate. Solari and
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Anis (1957) determined an expression for the exact expected value of
the adjusted (but not rescaled) range. However, it was not until
Anis and Lloyd (1976) that an expression for the exact expected value
of the rescaled adjusted range of an independent normal variate

became available. The expression they derived is as follows:

w7 Tla(n-1)] g
£ [ RHJ = Aen r2=1 ‘/r ---(3.3)

where T‘represents the Gamma function.

Sen (1974) independently obtained the above expression.
However, Anis and Lloyd (1976) cast doubts on the mathematical validity
of Sen's derivation referring to it as "conjecture".

Anis and Lloyd (1977) derived exact explicit formulae for
the distribution of the rescaled adjusted range of an independent
normal variate for the cases n < 4. They surmised howéver that the
problem of deriving such formulae for general values of n is of

"unmanageable complexity".

3.4 Expressions for Dependent Variates

Sen (1977a) presented an expression for the exact expected
value of the rescaled adjusted range which it is claimed applies for
any normal stationary process either independent or dependent. The

expression is as follows:

1
e [55] - 2 (n)® .T‘[(n+1)/2]
" mtenny T2
n 1
.0 [\/(2 ) - 2.0 (R, %) ewEo] T
ey k k n n|
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V( ) and C( ) are respectively the variance and co variance of the
arquments, o is the population standard deviation of the underlying
normal distribution function, and ;k and ;n are the sample means of

. th th . .
the sequence of observations up to the k and the n time points
respectively., The expression (3.4) reduces to(3.3) for the independ-
ent normal process.

Sen (1977c) gives expressions for V(;k), V(xn) and

C(xk, xn) for various dependent processes. These can be substituted
in (3.4) but the resulting closed-form expressions are very large.
* ¥

The value of E (R 1 is shown to depend only on n and the lag-one

LonoJ
autocorrelation coefficient ( q) for a lag-one Markov process. Sen
found good agreement between the analytical expressions and results
from computer simulation experiments.

Siddigui (1976) obtained a general expression for the
**-]
asymptotic value of E rRr | for any ARMA process having a normally
L

distributed random component. ARMA processes will be described in
detail later in this report. They are = class ¢f dependent 'short

memory' processes made up uf autoregressive and moving average terms.

The expression obtained by Siddigui is as follows:

3 [ R:*:] . —==(3.5)

3 p
. _ -0.5 ,
where & = 1.2533 ¥y (1= 80/ 0~ )y B .) and ¥, is a

4 1 .
l=1 l=‘[
theoretical autocovariance functic~ 3t lag 0 evaluated using an

algorithm given by Mcleod (1975). 3. =nd ¥  are the moving sverage

and autoregressive parameters respectively. g arnd P 3re the number

of such parameter terms included in the process.
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Comparison of Asymptotic and Exact Expressions for an
Independent Normal Variate

[00 r

SO 100 500 1000
FIGURE 3-1 A
CONVERGENCE WITH N OF EXACT
AND ASYMPTOTIC EXPRESSIONS FOR E'
- INDEPENDENT NORMAL VARIATE

Figure 3.1 shows the asymptotic and exact expected values
of the rescaled adjusted range for an independent normal variate.
The values are derived from expressions (3.1) and (3.3). The converg-
ence of the exact result to the asymptotic value is quite slow as 1is
shown 1in Table 3.1.
TABLE 3.1

INDEPENDENT NORMAL VARIATES

* %

Asymptotic value R"
n * %
Exact expected value Rn

20 1.26
50 1.134
100 1.094
200 1.066
500 1.039

1-000 1.027
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CHAPTER 4: THE OBSERVATIONS OF H. E. HURST

4.1 Introduction

The rescaled adjusted range is closely related to reservoir
storage capacity determined oy the 'residusl mass curve' method due
to Rippl (1883). Although this method nas been in use for a very
long time, interest in the rescaled adjusted range as a general tool
for time series analysis stems from the work of Hurst (1951).

Hurst was primarily interestea in computing the storage
required in the Great Lakes of the Nile Zasin to provide adeguate

regulation of Nile River flows. In nis (1931) paper he pointed out

the uncertainty in estimates of storage requirements computed from a

Uy

single historical record. Large variatiocrs ir storage reguirements
were observed between that obtzined from the whele available record,

and tnose obteimed assuming varicus portiars of the same record were

all that was available to the designer.

£
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Hurst attempted to avercome th uncertainty by
resorting to a theorstical approasch. == roted that many natural

phenomena have frequency distributian

(]

which ares approximztely

@]

normal if the order of occurrenc2 is Zisr=gsrsed. He therefore
sought to obtain a treoreticzl expression for storage reguirement for
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form in which storage requirement was expressecd was thz adjusted
*
range Rn which is, as previously definez, the minimum storage resquired i
maintain a constant discharge equal to the mean inflow.
In this chapter =z detailec review is carried out of Hurst's

(1951) paper with a view to highlightinc aspects of his work which

o}

are importart ir later aiscussion,
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4.2 Derivation of an Expression for the Expected Value of the

Adjusted Range

As mentioned in Chapter 3, Hurst derived the expression
(3.1) for the expected value of the adjusted range. The expression
was derived using a combinatorial argument regarding the theoretical
result of a coin tossing experiment. It involved the assumption of
large n and the use of Stirling's approximation for factorial n.
The expression is therefore an asymptotic result and is not true for
small n.

Hurst tested the expression by a series of experiments:
(a) ten coins tossed 1,000 times, (b) probaktility cards cut 1,000
times and (c) a sequence of 1,000 numbers derived from bond serial

numbers published in newspapers. Each trial was repeated 1,000 times,

certainly a prodigious amount of work., He found for nis n = 1,000
*
R

sequences a mean value of Ny of 1.22, close to the theoretical
n

value of 1.25. He also observed considerable variation im individual
*

R
values of th' The standard deviation of the mearn values derived

from 30 sets of 100 observatiorns was J.32.

4.3 Evaluation of the Rescaled Adjusted Range ir Geophysic=l Time

Series

Hurst carried out an extensive investigation of 75 different
observed annual series which included river and lake levels and flows,
rainfall, temperature and pressure means, annual growth cf tree rings,
mud varve thicknesses, sunspot numbers and wheat prices. The longest
series examined was 4,000 years of mud varve thicknesses Trom lLake
Saki in the Crimea - (mud varve thickresses are believed to be
related to annual inflows). He also examined = 1,040 year long

record of annual high fload levels at the Roda Gauge on the Nile
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River. In all, 690 values of the rescaled adjusted range were
calculated for data series of various lengths n.

Related phenomena were treated as a group with sub-series
selected so as to give a number of samples of the same length n.

* ¥
The mean Rn value for that n value was calculated.

4.4 (Observed Behaviour of the Rescaled Adjusted Range with Time

Series Length

*

Hurst found that log-log plots of the averaged R: values
versus n showed approximately linear relationshipsover the range of
n(35 € n £ 2 000) considered. He simplified the process of fitting a
straight line to the points. The assumption was made that,as the
theoretical value of the rescaled adjusted range is unity for n = 2,

*%*

one end of the line should pass through the point Rn =1, n= 2.

The eguations of the lines then had the form:

* ¥ . .
log Rn = K[ log(n) - log (2)] ——=(4.1)
* * * %
where log Rn is the mean of the logarithms of the Rn values and

log (n) is the mean of the logarithms of the series lengths n.

The Hurst coefficient K was then defined as the slope

* ¥

K = log R_ /’[ log (n) - log (2)] ---(4.2)

K derived in this way, is an expression for a slope on the log-log
* %
plot of the averaged lag Rn and log n values. Values of K for each

of the group of related phenomena were determined using expression

(4.2). Hurst's results are summarised in Table 4.1.



Values of K were then

individual data points

which is now familiar

The mean value of K was found to be 0,73 and standard deviation

VALUES GF K DETERMINED BY HURST

R

R

TABLE 4.1
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1.3

Comparison of Observed and Theoretical Behaviour

Hurst drew a comparison between the theoretically derived

expression (3.1),

He noted that the higher exponent in expression (4.4) indicated a

more rapid growth of the rescaled adjusted range with series length

in real data than theory would predict.

between theory and observation has

Phenomenon' .

This apparent discrepancy

come to be known as the 'Hurst

In summary, Hurst drew attention to the tendency of natural

data to occur in groups of high anc low values even though the data

may have a normal frequency distribution when the order of occurrence

1is not considered.

As a conseguence of the additional complexity of

real data, the theoretical expression (3.1) for the adjusted range

understates the storage requirements of real data series.

It should be noted that a distinction has been drawn in

*

. . . R
this discussion between —' and R
n

which expresses an expected value.

¥* *
- E’:R]
s n
and in fact such a relationship is

section 3.2). Expression (3.1) is

but it is not clear that Hurst was

* %

(3.1)

in relation to expression

It is not generally true that

only valid asymptotically (See
also only valid asymptotically

aware of this point.
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In this chapter various aspects of the contents of Hurst's
(1951) paper have been highlighted. The following chapter will
present some comments on Hurst's observations and method of analysis
with a view to clarifying aspects of the 'Hurst Phenomenon' and also
as a means of progressing towards the use of the rescaled adjusted

range as a time series analysis tool.
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CHAPTER 5: SOME COMMENTS ON HURST'S OBSERVATIONS

AND METHOD

5.1 Introduction

Hurst's remarkable work (Hurst 1351) has led to a large
literature which continues unabated more than a quarter of a century
later. Consideraticn of the 'Hurst Phenomenon' described in the
previous chapter (section 4.5) has led investigators to the form-
ulation of new and more complex stochastic models, and to such
important questions as to what extent historical data series of
hydrological phenomena can be regarded as statistically stationary
over a period of time. Much attertion has been focussed on the
rescaled adjusted range statistic itself both as regards its properties
for theoretical processes and its tehaviour in real dataz series.

In this chapter attertion will te centrec on aspects of
Hurst's method which have important consequences for interpreting the

'Hurst Phenomenon'.

5.2 The Asymptotic Nature of Hurst's Expression for the Ad justed

Range
Yevjevich (1972) makes the following statement regarding the
work of Feller (1951): "Feller used other means to develop the

asymptotic mean ard variance of the adjusted range and not the expected

value of the range as Hurst thought." Whether or not Hurst realised
the ssymptotic nature of his expreszion is not clesr =ut the assumpt-
ion of large n ir ite Zerivation s auite clearly stetec. The

combinatorisl ars.ment upon which it is cased Zepends cpor 3tirling's
approximation for f=ctorial r. Hurst oroceeded to check the

expression by mears of experimertzl series of length n = 1,008
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involving coins, cards and published bond numbers and found good
agreement at this large value of N. The mean value of R:*/ yn for
the expériments was found to be 1.22 as against the theoretical value
of 1.25. It is interesting to note that for the independent normal
variate with n = 1,000, the exact expected value ﬂ:;v71i51-217 from

Anis and Lloyd (1976).

5.3 Comparison of Observed and Theoretical Asymptotic Values

In his paper Hurst does not discuss the range of values of

n for which the expression (3.1)

*
1.25 nD'5

0
3
]

|

is applicable. He does however compare the exponent of 0.5 with the
exponent of 0.72 in the empirical relationship (4.4)

* %
R = 0.61 HD.72

determined from series varying in length from n = 30 to 200.
The theoretical result (3.3) derived by Anis and Lloyd (1976)
* ¥ .
for the exact expected value of Rn for an independent normal variate,
allows an evaluation of the effect of Hurst's comparison of observed
and asymptotic behaviour. They defined a local Hurst exponent h(n),

where

h(n) = 3(bg E[R |1/ 3(icg n) e (5.1)

h(n) can be approximated as

* % * *

log E [R 1= log E [R ]

h( ) _ n+1 J L n"1 ___(5 2)
o log (n+1) - log (n-1)
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h(n) was evaluated using values obtained from expression (3.3).
Table 5.1 shows that h(n) is significantly higher than 0.5 for an
independent normal variate when evaluated at small to medium values

of n.

TABLE 5.1

THEORETICAL VALUES OF THE LOCAL HURST. EXPONENT h(n) FOR
AN INDEPENDENT NORMAL VARIATE
(Anis and Lloyd - 1976)

n h(n)
5 . .6762
40 .5672
100 .5429
200 .5315
500 .5202

It is of interest to see what results Hurst would have
obtained if all the series he examined were composed of values
derived from independent normal variates. This can be done by using
values of Rn** derived from expression (3.4). The analysis of the
Lake Saki mud varves is reproduced in Table 5.2 using this assumption.
(See Table 7 of Hurst (1951). )

With the advantage of hindsight and the availability of the

* ¥
expression for the exact expected value of R
n

, it becomes apparent
that the comparison of ex_onents that Hurst made is not a valid one.
The reason for the failure of K in Table 5.1 to equal 0.5 lies not

. ** 0.5
only in the fact that Rn varies with n only asymptotically, but

more significantly in the definition of K itself which will be

discussed further.
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HURST'S ANALYSIS OF LAKE SAKI MUD VARVE DATA REPRODUCED
ASSUMING AN INDEPENDENT NORMAL VARIATE

l K R**
No. of N R:*(independent log1DN log1DR** —Eglg—l-
cases years normal variate) : 10910 %
40 50 7.81 1.70 .89 .62
40 100 11.45 2.00 1.06 .62
20 200 16.62 2.30 1.22 .61
8 500 26.90 2.70 1.43 .60
4 1000 38.50 3.00 1.59 .59
2 2000 55.90 3.30 1.75 " .58
mean of 114 cases 2.06 1.08 T L6t
(mean K = ,69 for historical data)

5.4 The Definition of Hurst's Coefficient K

Hurst was interested in comparing the rate of growth of the
rescaled adjusted range with n, for observed series, with that predicted
by theory. As such he was primarily concerned with values of h and
hence slopes on log-log plots.

*%

A least sguares fit to log Rn versus log n data yields an

equation of the form:

log (R ) = 1log a + b logn ---(5.3)
n

R = a (n) -——(5.4)

which is an expression containing two constants or parameters (a, b)

to be determined in the fittirg process.
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As described in caction 4.4, Hurst chose a simpler approach

*
forcing the straight line fit through the point Rn =1,

*

*
n: 1 (log R =0, log 2). The other end of the line was the
n

centre of gravity of the observed data points i.e. some point

* %

(log R, ), (log n). This gave expression (4.2)

¥* ¥

log R_ = K (log n - log 2!

¥* ¥ *

*
Hurst used lag Rn , log Rn and log n, log n inter-

changeably in deriving expression (4.3) from individual data points.

This led to the definition of K given by expression (4.3)
¥* ¥
K = 1log Rn / leg (n/2)

It is important to note here the dual character of K. In
expression (4.2) it i1s clearly a slope estimator. However in
expression (4.3) it is both a single point estimate of slope and a

¥* #
logarithmic transformation of a single point value of Rn . It will
be seen later that two main schools of thought about the 'Hurst
Phenomenon' diverge essentially from this point. One school follows
the idea of K being a slope ana the other assumes K to be a trans-

¥* %
formation indicating the magnitude of Rn .

5.5 Hurst's Coefficient K as an Estimator of Slope

The limitations of K a: an estimator of the slope of a plot

* ¥
of log Rn versus log r are shuwn Ly Figure 5.1,

* %
The log R Lersus .r g olo* f-r such a 'srort memory'
il

*“eoretical prrocess as ar iraeperdeat  orral  ariate :s ir fact

Sur..iunear, I+ 1. e 0" t e slune e otan ra 1, K ot, for example,
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ooy
5 10 so 100 500 i000
FIGURE 5-1 N
LIMITATIONS OF K AS A SLOPE ESTIMATOFk
- INDEPENDENT NOPKMAL VARIATE
n = 200 is seen to be greater than the true slope due to the

curvature in the log-log plot» The plotted values are derived from
expression (3.3) given by Anis and Lloyd (1976).
At n = 200, k, Eae slope of the chord between the points

**

(Rn =1, n = 2) and 2U n = 200), is seen from Figure 5.1 to be
0.61. The values of K at other values of n for this case of an

independent*gormal variate are shown in Table 5.3. The expected

values of Rn were obtained from expression (3.3) and the correspond-

ing value of K from Hurst"s definition, expression (4.3).

The limitations of K as a slope are to be seen in Table 5.3
where very slow convergence to 0.5 for an independent normal variate
is apparent. As a starting point for looking for some wunexplained
behaviour in an observed series of even very long length, the values
of K given in Table 5.3 should be considered.

It is obviously incorrect to assume the presence of some

"Hurst Phenomenon® or “Hurst Effect® ir leal data simply on the basis
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"ABLE 5.3

VALUES OF THE HURST COEFFICIENT K FOR AN
INDEPENDENT NORMAL VARIATE

-
n E[Rn ] K
5 1.9274 T16
40 6.8895 .644
100 11.4533 .623
200 16.6214 .610
1000 38.4969 .587

of observed K values being higher than 0.5.- It will be seen later in
this report that processes which possess autocorrelation exhibit
higher values of K than those shown in Table 5.3.

It remains to be said that the preceding comments on Hurst's
work raise points which are more relevant to a discussion of the
literature that follows his paper than to the paper itself. Hurst's
work is an outstanding contribution. His main point, that natural
time series have characteristics which lead to the requirement of
more storage for the same yield than simple independent randaom
processes, is of course a valid one. The guestion as to the nature
of this difference between observation and theory remains both

important and topical.
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CHAPTER 6: INDICATORS OF THE HURST PHENOMENON

6.1 Introduction

Hurst's observations showed that for a wide sampling of
natural time series the rescaled adjusted range varied with series
length n as

* %
R oL nh ' -—(6.1)

The exponent h has become known as the 'generalised Hurst

ot

coefficient' or 'Hurst exponent'. Hurst estimatéd it as Krénd found
an average value of 0.73 over many observed natural series. The
tendéncy for estimates of h obtained from observed series to be
larger than the theoretical value of 0.5 has come to be known as the
'Hurst Phenomenon'.

Two contributing factors to the discrepancy in exponents
have been discussed already:

(i) The comparison of the theoretical asymptotic behaviour

of the rescaled adjusted range with that observed in series

of finite length.

(ii) The bias inherent in Hurst's estimator K.

In this chapter some of the alternative estimators of h proposed in

the literature will be described.

6.2 A Perception of the Hurst Phenomenon

Liven an appreciation of the above mentioned factors (1)
and (ii), the Hurst Phenomenon may be perceived as the failure of the
behaviolr of tne estimated expected value cf tre rescaled adjusted

ra~-= i- lorj otserved series to show the theoretical asymptotic
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behaviour. Mandelbrot and Wallis (1969) take this view and reject
many thecretical processes on the basis that for these processes
there is an asymptotic convergence of the exponent h towards a value
of 0.5. The processes which are rejected are Gaussian in nature and
include identically distributed independent variates and the genefal
class of 'short memory' autoregressive and moving average processes.

Mandelbrot and Wallis proposed an alternative theoretical
process Called'Fractional Gaussian Noise‘which is capable of preserv-
ing a specified value of h, between zero and one, for any value of
series length n. Mcleod and Hipel (1978a) give a concise account of
Fractional Gaussian Noise and its approximations,

A feature of Fractional Gaussian Noise is that such a
process is specified CQmpletely by its mean, variance and constant
Hurst exponent h. The critical importance of h in this context led
Mandelbrot and Wsllis (1969d) to propose an alternative estimation

procedure to the Hurst coefficient K.

6.3 Alternatives to the Hurst Coefficient K - Slopes Estimated from

Many Data Points

Mandelbrot and Wallis (1969d) proposed a graphical

procedure which they call a 'pox diagram', an example of which, taken
* %

from their paper, is shown as Figure 6.1. R is evaluated for a
n

standardised set of subseries lengths n = 3,4,5,7,10,20,40,70,100,
2006, 700,1000,2000,4000,7000 and 9000 and n < T, where T is the total

length of the series to be analysed. For each value of n a maximum

* %
of 14 evaluations of Rn are made using sub-series obtained by moving

the starting point progressively along the record. The sub-series

* ¥
overlap and hence the values of Rn obtained are not independent. At
¥* %

each value of n the various Rn values are plotted on a log-log
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* *

diagram. Mean values of R~ are marked for each set and the 1log-1log
slope estimated by a straight line fitted by eye. Mandelbrot and
Wallis designated this indicator of the Hurst Phenomenon as H.
Wallis and Matalas (1970) proposed refinements to the above
procedure and defined estimatore FH(i) and GH(i), In this approach

slope estimates are obtained by a least squares regression on the
* x

mean R~ values. The regression is carried out through the mean
values at each sub-series length to avoid the bias that would occur
if all individual values were included in the regression, there
being fewer values available as the sub-series length increases.

The designation (i) in FH(i) and GH(i) refers to the
minimum sub-series length included in the regression. The latter 1is
specified in an attempt to avoid bias being introduced by the
pronounced curvature in the log-log plot at small n. This curvature

is apparent for example in Figure 5.1, The designations F and G

ST LAWRENCE NR. OGDENSBURG6, N.Y
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100.
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refer to different schemes for dividing the series to be analysed
into sub-series. In both cases the subseries overlap.

Wallis and Matalas (1970) carried out computer experiments
to investigate the small sample properties of K and GH(10) for
independent variables and lag-one Markov processes and found that K

has greater bias and GH(10) greater variance.

6.4 Alternatives to the Hurst Coefficient K - Slopes Estimated from

A Single Data Point

Gomide (1975) proposed another estimator of the slope h
which will be referred to here as YH, He used, as a basis for the
definition, expression (3.1) due to Hurst (1951) and Feller (1951)

) ¥* ¥*
which gives the asymptotic value of E [ R ] for an identically
n
distributed independent random variate. Gomide proposed the following

definition of YH

¥+ %
R 1.2533 nYH -——=(6.2)

which by taking logarithms may be restated as

*

*
YH = (log R - log 1.2533) / (log n) ---(6.3)

Siddiqui (1976) proposed another estimator of the slope h
which will be referred to here as SH. He also based the definition
. * #
of the estimator on an expression for the asymptotic value of E['R ],
n
in this case expression (3.5). This expression is generally applicable
to ARMA processes having normally distributed random components.

Siddiqui defined SH as follows:
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R = a' n ——=(6.4)

where a'is a constant, the value cf which depends upon the assumed
underlying ARMA process as previously discussed in secticor 3.4 of
Fis report. By *akirg logarithms, expression 6.4 may be restated as

*

*
SH = (log R - log &) / (log n) ---(6.5)
N

Both Gomide's YH and Siddiqui's SH estimators give slope values
* %
derived from values of Rn and n at a single point as does Hurst's
estimator K,
Hipel and Mcleod (1978a) examined values of K, YH and SH

obtained from 23 geophysical series of lengths varying from 96 to

1164 years. The results of their study are shown in Table 6.1

TABLE 6.1

VALUES 0OF SLOPE ESTIMATORS K, YH & SH FROM
23 GEOPHYSICAL TIME SERIES
{(McLeod & Hipel 1978a)

K YH SH
Mean 0.701 0.660 0.577
Standard deviation 0.084 0.131 0.078

Table 6.1 shows that the YH and SH values are lower than K. Mean

values of YH and SH are withir 1 or 2 standard deviations of 0.%, the
theoretical asymptotic value of =zach of the estimatcrs for 'short

memory' processes. Mcleod and Hipel suggest that it can be argued
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that the 'Hurst Phenomenon' is not significant for the YH and SH
statistics.

The variety of approaches that have been proposed for
estimating the slope parameter h in expression (6.1) is an indication
of the difficulties involved. These problems will be further
illustrated in the next chapter where some sampling experiments

carried out in this study are described.
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CHAPTER 7: SOME SAMPLING EXPERIMENTS WITH AN INDEPENDENT NORMAL

VARIATE

7.1 Introduction

In this chapter the results are presented of some sampling
experiments involving the standard normal independent variate.
Sequences of values of the variate were produced by computer simulation
and were examined to determine values of the rescaled adjusted range
statistic.

The results presented here show the considerable variation

¥* %

in individual values of Rn obtained from realisations of theoretical

processes.

7.2 Variation in the Slope of the Log-log Plot

* %
Figure 7.1 shows a log-log plot of Rn versus n from a

sequence of 900 values generated using the FORTRAN routine GENRATE
written for this study (See Appendix). Each plotted point represents
* ¥
the calculated value of Rn for the single sub-series of length n
extending from the start of the synthesised sequence. That is, each
x*

point represents a single sampling of Rn for each value of n. There
is considerable scatter on the plot which illustrates some of the
problems in estimating a Hurst exponent. In this case a least squares
fit through the plotted points indicates a slope of .60 .

Figure 7.2 shows a plot resulting from an approach similar
to the GH procedure described by Wallis and Matalas (1970). The
same synthesised seguence of 900 independent normal variables is
divided into as many non-overlapping sub-series as are available for

* ¥

each nominated sub-series length n. For example, the value of Rn

plotted for n = 10 is the mean of 90 values and for n = 100 is the

mean of 9 values. In each case the first or only sub-series of
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length n starts at the beginning of the overall series. The procedure
used here differs from that used by Wallis aﬁd Mafalas (1970) in that
only non-overlapping sﬁb-series are considered.

Exact expected values obtained from exprEssionv(S.B) as.
given by Anis and Lloyd (1976) are also plotted in Figure 7.2. T%e
increase in scatter about the exect expected values can be seen ag n
becomes larger and the plotted points représent~averages from smaﬁl
samples. The difficulties of estimation of the true underlying sﬁope
from the plotted points is apparent. In comparison with Figure 7.1
the analysis of all available non-overlapping sub-seriés i gives,,

**
where n is small enough, more than one independent sample of Rn .

* #
The resulting mean values of Rn plotted in Figure 7.2 are more

¥* *
representative of the 'true' expected values of R_ . Hence, for
n
smaller n, a better view is gained of the underlying relationship
* # .
between Rn and n. The rescaled adjusted range analysis was carried

out using the FORTRAN routine RANGE written for this study (See

Appendix ).

7.3 Variation in Rescaled Adjusted Range Valuss

In Chapter 5 it was pointed out that two factorS,contribute
to the Hurst exponent h being greater than 0.5 when estimated from an
observed series. Firstly the comparison of observed values with the
value of 0.5 determined from an asymptotic expression 1s erroneous,
and secondly, the estimator K gives higher values than the true slope

¥* ¥
of the log R versus log n plot. Figures 7.1 and 7.2 indicate a
n

* *
further problem, that of the considerable variation in sample Rn
values.

Table (7.1) shows some results from an analysis of 12

sequences of 70 values of the standarc normal variate. The table
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TABLE 7.1

12 SEQUENCES OF THE STANDARD INDEPENDENT NORMAL VARIATE
Sequence length = 70

* * g Least sgs.
Sequence Z% n=30 ZQ n=70 atKn=30 : atKn=70 slope H

from n=10,70

1 5.009 10.523 .59 .66 .51

2 3.156 6.485 .42 .53 .39

3 ' 8.560 15,262 .19 ST .68

4 4.559 11.036 .56 .68 57T

5 4,150 6.292 .53 .52 .45

6 8.255 9.266 .78 .63 .53

7 4.938 16.452 .59 .79 .66

8 4,121 7.818 .52 .58 AT

9 3.g12 9.770 .49 .64 .53

10 6.398 6.506 .69 ;53 .49

11 4,615 9.019 .56 .62 .48

12 - 5,921 6.665 .66 .53 .45

Average 5.29 9.59 .60 .62 .52

presents a small sample of values but illustrates an important point.
The variability of R:* can lead to very high values of K in individual
realisations of the underlying process even in the case of a process
consisting of independent random variables. This is illustrated by
an estimate of K of 0.79 for n = 70 in Table (7.1). The values of H,
the slopé of the least squares fit to the log-log plot, for points
between n = 10 and n = 70, also have considerable variation but their
mean lies closer to the asymptotic exponent h = 0.5. This is in

accord with the results obtained by Wallis and Matalas (1970).
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3* ® .
The matter of the variance of Rn and K for some theoretical

processes will be examined in detail in a later chapter of this report.
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CHAPTER 8: THE LOG-LOG SLOPE OF THE RESCALED ADJUSTED RANGE PLOT

FOR SOME OBSERVED AND SYNTHETIC SERIES

8.1 Introducti

As discussed in Chapter 6, Mandelbrot and Wallis (1968) in
their approach to the Hurst Phenomenon, concentratedtheir attention
on the slope of the log-log relationship between the rescaled
adjusted range R:* and subseries length n. Thgy developed a
Fractional Gaussian Noise process which has the implication of
infinite memory and which is based on the concept of 'self
similarity'. A consequence of the self similarity concept is that
the expected value of the Hurst exponent is constant over all time
intervals.

A Fractional Gaussian Noise process is defined by its mean,
variance and Hurst coefficient and consequently the problem of
obtaining the most appropriate estimate of the Hurst coefficient is
of vital concern. The argument for this type of process model relies

*

heavily upon the linearity of the log R: versus log n plot of
observed series. It is claimed that the failure of observed slopes
to approach the value of 0.5, which is the asymptotic slope for the
'short memory' process models commonly used in synthetic hydrology,
is proof of the superiority of Fractional Gaussian Noise models.
Mandelbrot and Wallis go further than this claim and propose
'infinite memory' processes as a physical reality.

It should be noted that this approach of concentrating
attention on the slope of the log-log plot does not directly concern
itself with the absolute size of R:* for particular finite values of

* %
series length. However, the magnitude of Rn has a direct implication

* *
for reservoir storage design. The magnitude of Rn is the storage
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size, expressed in standard deviation units, of an "ideal' reservoir.
This ideal reservoir has the minimum storage required to maintain a
constant discharge equal to the mean inflow over the duration of the
series while starting and finishing the series with the same storage.

Many series of the same length can be sampled from a
theoretical stochastic process. The ideal reservoir size for each
series will show considerable variation but the mean of the sizes is
an estimate of the true expected ideal size for the process and for
the series length nominated.

It may be that a designer wishes to examine the usefulness
of a process as a stochastic model of some real data series, say
with a view to the computer generation of synthetic sequences for
storage design. The expected ideal reservoir size for the process at
particular series lengths may be compared with the best estimates
obtained from the real data series. While it is of interest to
observe whether the ideal storage size increases with series length
at a simi.ar rate in both cases, it is of perhaps more crucial
importance to observe whether the process values are much higher or
lower than those obtained from the real data.

It is important to note that K, YH and SH, the estimators
of Hurst's coefficient h, discussed in Chapter 6, are in fact trans-

* %

formations of the magnitude of the ideal reservoir size (Rn ) at a
particular series length. The other estimators discussed in Chapter
6, that is, H, GH and FH, are true slopes depending upon values of

** . . . .
R at many different series lengths and hence give no indication of
n

* X

the magnitude of Rn

* X
In this chapter the log R versus log n relationships of
n

some observed and synthesised data series will be examined.
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8.2 The Rescaled Adjusted Range for Some Synthetic Series

Figure 8.1 shows the behaviour of the rescaled adjusted
range for series sampled from three theoretical "'short memory'
process models. The processes are the independent normal variate, a
lag-orne Markev process with lag-one autocorrelation coefficient
of 0.3, and a mixed Autoregressive-Moving Average (ARMA (1,1) )
process. The autoregressive and moving average parameters of the
latter process are E1= 0.9 SF 0.7 respectively. All processes
have a theoretical mean of zero and unit variance.

The terms used above in relation to the theoretical
processes as well as their structure will be fully discussed in
Chapter 9. For the time being they can be regarded as being
representative of short memory processes oOr 'models' that have been
used in hydrology to generate sequences of synthetic data.

A rescaled adjusted range analysis has been carried out on
a single realisation of 900 values of each process using the
procedure described in Chapter 7, that 1is, each plotted point
represents the mean value determined from as many non-overlapping
subseries as are available for the selected value of n. The single
sets of 900 values have been selected to allow a valid visual com-
parison between results for realisations of the processes and results
for some observed series with length n in the range 800 to 1,000.

Figure 8.1 shows how increasing complexity of the process
autocorrelation increases the slope of the plot particularly in the

*%
range of n less than about 200. The size of Rn is also increased
with the increase cenerally larger at greater subseries length.
With a sample of this size there are considerable fluctuations in the

plot but visually one gets the impression of the plot 'rolling over'

or converging to a slope of about 0.5. The problem of determining
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the slope at large values of n is made difficult by the large fluct-
* ¥

uations in Rn . These are due to the availability of only one
independent value when n is greater than half the series length.
The impression is gained also that more complex autocorrelation
causes the convergence to a slope of 0.5 to occur at larger n.
Figure 8.2 confirms these impressions with plots of mean values of

* ¥

Rn calculated from 150 independent realisations, of length n, of

the three processes.

8.3 The Rescaled Adjusted Range for some Observed Series

Figures 8.3 to 8.5 show the results of some of the
rescaled adjusted range analyses carried ou£ in this study. Results
are presented here for five long data series as follows:

(i} Mud varve thicknesses at Lake 5Saki in the Crimea.

The source for this series is Shostakovitsch (1934). The

data analysed covers the period 2290 B.C. to 1889 A.D., a

continuous record of 4,180 years. The mud varves are

believed to be correlated with annual lake inflows.

(ii) Tree Ring Index - Finland. This series is due to

Siren (1961) and the data is reproduced in Lamb (1977).

The series covers the period 1181 to 1960, a total length

of 70C years. The data is believed to be correlated with

summer mean temperature.

(iii) Standardised monthly flow volumes for the Snowy

River at Jindabyne N.5.W. (1905-1977). Flows in the post-

Snowy Mountains Scheme period have been corrected for

requlatior on the basis of careful operational water

calances.

(iv} Standardised monthly flow volumes for the Macquarie
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River at Burrendong N.S.W. (1886-1964).
(v) Standardised monthly flow volumes for the Kiewa River

at Kiewa VIC. (1893-1970).

The monthly flow series have been rendered stationary as
far as their means and variance are concerned by the commonly used
process of subtracting monthly means from the data and dividing by
monthly standard deviations. This 'standardising' process is an
efficient way of removing deterministic periodicities or cyclicities
in data.

The results of the analysis of series (ii) and (iii) are
shown in Figure 8.3. The two plots give the visual impression of
their slope decreasing with n. This result, particularly for the
tree ring series, 1is surprising in the light of the extensive analysis
presented by Mandelbrot and Wallis (1969d) who make the following
statement: |

"Were the records in question generated by a random
process such that observations far removed in time can be considered
independent, (R:*) would become asymptotically proportional to (nD'5),
which means that Hurst's law would have to 'break' for large enough
lags. No such break has been observed. Thus for practical purposes,
geophysical records must be considered to have an 'infinite' span of
statistical interdependence."”

It should be pointed out again that the procedure for
plottiﬁg R:* values used here differs from that used by Mandelbrot
and Wallis (1969d). In this study, when the sub-series length n is
greater than half the total available series leaving only one

* ¥

independent sub-series, one determination of Rn is made. In each

case the sub-series starting at the beginning of the record is used.
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In their work Mandelbrot and Wallis make several determinations of

* %
Rn by sliding the start of the sub-series forward in the record

from the beginning. The resulting values of R:* are highly correlated
as they result from overlapping series and hence exhibit only a
small amount of variation.

The analysis of series (i), (iv) and (v) is shown in
Figures 8.4 and B.5. For thése series no ‘'rolling over' of the
plot is apparent. A feature of the Lake Saki plot (Fig. B8.4) is the
distinct 'break' to a greater slope at about n = 600. Mandelbrot
and Wallis (1969d) state that such a break in slope is characteristic
of a strongly periodic series. Figure 8.6 shows some of the results

obtained by Hurst (1951) which also show no gtrong indication of convergen

to a slope of 0.5.

8.4 Further Comments on the Work of Maadelbrot and Wallis

The weight of the evidence available points to the apparent
failure of slopes of log R:* versus log n plots of long observed
series to converge to 0.5. Mandelbrot and Wallis (1969d) carried out
a comprehensive analysis of about 70 observed data series of which
only five have an apparent Hurst Coefficient H of 0.5. Their analysis
is however open to the following comments.

Many of the series analysed by Mandelbrot and Wallis are
too short for the theoretical asymptotic behaviour to develop. As
an example the reader is referred to Figure 6.1 presented earlier in
this report. Figure 6.1 is taken from Mandelbrot and Wallis (1969d)
and shows results for the series of annual flows in the St. Lawrence
River at Ogdensburg, New York (1860-1957). As part of this study

the same data was obtained from the acknowledged source, Yevjevich

(1963), and a rescaled adjusted range analysis of it was carried out.
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The results are shown in Figure 8.7.

Figure 8.7 also shows a plot of estimated expected values

* ¥
of R derived from a stochastic model. The model is a constrained

n

three-lag autoregressive process. The autoregressive parameter
values E1, ﬂz and ﬂa, are shown on the figure. Such stochéstic
models will be discussed in detail in the next chapter of this report.

The three-lag autoregressive model was used to generate,
by computer, 500 synthetic sequences of length n. The model structure
and parameter values were prcposed for the St. Lawrence River data
by McLeod et al (1977).

In Figure 6.1 Mandelbrot and Wallis contrast the slope of
their 'pox' diagram with a line of slape D.é, the theoretical asymp-
totic slope for the general class of Gaussian 'short memory"
processes. They use the apparent discrepancy in slopes as evidence
of the non-Gaussian nature of real data. The slope estimator H is
seen to have the high value of 0.98.

Figure 8.7 shows the irrelevance of the comparison of
slopes made by Mandelbrot and Wallis. In fact the 'short memory"

* %
model generates sequences giving mean values of Rn which are quite
close to the observed values. At the available series length
(n = 98 years) of the observed data it is seen that the asymptotic
slope of the theoretical process has not yet developed.

Further comments on the work of Mandelbrot and Wallis and
the 'Hurst Phenomenon' in general will be made later in this report.
The next chapter will deal with the structure of various 'short
memory' stochastic processes and how models based on these processes
can be fitted to observed data series. The discussion therein will

allow further comparisons of theoretical and observed rescaled

adjusted range values.
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CHAPTER 9: SYNTHETIC DATA GENERATION MODELS AND FITTING PROCEDURES

9.1 Introduction

In summary, the areas of discussion covered and the findings
in this report so far are as follows:

(i) The definition of the rescaled adjusted range was
. presented showing the analogy with the residual mass curve
approach to storage design. Next, the available analytical
results for the rescaled adjusted range and related range
statistics for some theoretical processes were presented.
The discussion of Hurst's work which followed showed that he
found the rescaled adjusted range statistic (R:*) could be
used to reveal complexities of real data series. These
complexities he typified with K, the slope of the lcé-log
plot of the rescaled adjusted range versus the series

length n.

(ii) A close look at Hurst's methodology and the definition
of K, showed K to have a dual character, that of a slope and
that of a logarithmic transformation of R:* at a single
point.

Later chapters discussed the approach of some invest-
igators, notably Mandelbrot and Wallis, who concentrate on
the slope nature of K replacing it with more refined slope
estimators. They see the behaviour of the R:* slope in long
observed series as proof of the 'self-similar' nature of
real data - a theory which carries an implieation of infinite
memory. Fractional Gaussian Noise models are proposed which
approximate such an infinite memory process and produce

linear log-log slopes. Some reservations were expressed in
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the report about this approach and it was pointed out that

perhaps a more pressing concern for the hydrologist is the

question of whether or not familiar 'short memory' models

preserve the observed magnitudes of the rescaled adjusted

range.

The remaining part of this report will concentrate on the
guestion of the ability of 'short memory' models to preserve the

* ¥
observed magnitudes of Rn . Observed data series will be analysed

and sample R:* values compared with those expected from theoretical
stochastic processes., It will be shown that such a comparison provides
a powerful means of process model evaluation. However, before such

an exposition can proceed, it is necessary to examine the structure

of various 'short memory' process models and the properties of the

* ¥
Rr statistic. This will identify the detail in which data generation

models must be specified in order to allow valid comparisons between
* 3%
observed and theoretical Rn values.

The discussion whiech follows, of autoregressive (Markov) and
general autoregressive-moving average (ARMA) models, relies heavily
on the general exposition of Box and Jenkins (1970) and because of
this will retain most of their notation. Box and Jenkins provide a
lucia and unifying treatment of data generation methods which have
developed in a rather ad hoc fashion within the field of Hydrology.
It seems also that hydrologists do not as yet generally perceive of

the familiar Markov models as being members of a wider family of

stationary autoregressive-moving average (ARMA) processes.

9.2 Autoregressive Models - General

A general autoregressive process can be described as



z = z -- --=(9.
+ Q} i1 7 + gp Zt—p + a8, (9.1)
where Zt =z, - 7 is the deviation of the process from its mean z .

Zt is therefore the weighted sum of the p past deviations and a

random shock a,r where at is & realisation of an uncorrelated random

variate with mean zero and constant variance s ?. The E.i are

weighting parameters. These processes will be designated as AR(p).
The above is a generalisation of a concept introduced by

the Russian mathematician Markov (1856-1922). The term 'Markov

model' is commonly applied in the hydrological literature to auto-

regressive models, sometimes with the connotation of p = 1; i.e. 'lag-

one Markov' models.

Expression (9.1) may be multiplied throughout by Z to

t-k
obtain
T T T S S
z z ---(9.2)
R T
and taking expected values in expression (9.2) gives
=g, ¥ - ¥ k>0 -—-(9.3)
o =0 5 g+ B8 5B 9 (
noting that Xk is the autocovariance at lag k, that is,
- -z -2 ishes when k >0
Ek = E[ (zt z) (Zt—k Z)J and that E[Zt_k at] vanishes when k >
as Zt  can only involve the shocks aj up to the time t-k which are

uncorrelated with at.

2

Dividing expression (9.3) by the variance XD =S, gives
z 1
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P = B Py * BpPip * o P B P KT T34

i
where Pk = lag k autocorrelation = jﬂf’. Substituting k=1, 2...p in

expression (9.4) gives a set of linear equations for ﬁ1,ﬂ 5 ...ﬂp)in

terms of Pir Por Py ....pp as follows, (noting that o_; = pi)

Py = g 1 g P + ...+ 0 P
o, = E1 p1 + ¢ + wee v B p -—=(9.5)

p =1 ' Pp—1 + ¢ 2/0p—2 t oeae + 5

The expressions (9.5) are krnown as the Yule-Walker equations
and form the basis of the traditional hydrological approach to model
fitting. Theoretical autocorrelations pk are replaced by the
estimated autocorrelations T, for an assumed order of process p. The

equations may then be solved for @1 5 .
12 eee P

The variance of the process is derived as follows. 0On

taking expected values in expression (9.2) with k = 0,

2 2 . . .
E[ Zt—k at] = E[ atj = s _ since the only part of Zt which will be

correlated with 24 is the most recent shock = . Therefore for « = 0,
T

:th + @ 3 + .+ 0K + S,
p =P d
2

orn dividing through by 50 = S; and substituting bk = 4 " the variance

s may be written
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9.3 Lag-one Markov Processes

The familiar lag-one Markov (AR(1) ) process may be written

as

Zt = ﬂ1 Zt—1 + at —-‘(9.7)
and for p = 1, expression (9.4) becomes

Pk = ﬂ 1 pk—1 k > D -"-(9-8)

which with Pb = 1 gives
pk = (8)) k =0 -—-(9.9)

Equation (9.9) gives the theoretical expression for the
AR(1) autocorrelation function (correlogram) indicating that the
function decays exponentially to zero when 1 is positive.

Putting k = 1 in expression (9.9) gives

p = B, ---(9.10)

2 2

2 Sa Sa
- —_— . —(9.11
Sz 1—,01 12]1 1 - ,01 (9 )

The lag-one Markov model proposed by Brittan (1961) is now

evident. Equation (9.7) can be expressed as

v ---(9.12)



€2,

where v, is an identically distributed independent random variate of

zero mean and unit variance. Now from expression (9.11)

s = \/Sj (1 -6 = s, J1- I ——=(9.13)

Substituting (9.1¢) and (9.13) in (9.12) gives

- - 2
S, - - 1 - v ---{9.14
2pme =l Eym ) "z\/ P t (9.14)
- i -1
and if process parameters =z, 5 p1 are replaced by estimates ZyS,1
then )
T _ 3 '\/\ _ 2 o
z, == T (Zt~1 )+ s, 1 T,V (9.15)
As praposed oy Brittan, Vi was a normal independent variate
of zero mean and unit variance. The derivation shows that expression

(9.15) preserves the process mean and variance for any identically
distributed ircependent variate of zero mean and unit variance.

Fierirng (1367) oresents the following analysis to show that
for skewed series the skewness of the random component and the

skewness of thes v

[’

lues generated by the process model are related
throsgn the correlation structure of the process.

Consiger standardised values qt such that

S S ———(9.16)

Now dividing expression (9.14) by s_ gives

Z

- —
I = P S T ¢1 - Py Yy -==(5.17)
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and by definition

m
|
0
d.
|
|
m
—
0
ot
|
w-—
| N—
1}
O

---(9.18)

£ [ Vt } = 0
E [ vtz] = 1
£ [ Vt3] = XV

where Xz and 4 are the series and random component skewnesses
v
respectively.

By cubing expression (9.17)

3 3 3 \/ 2 2 3 2
o= Py A TVl LA a ) s v (D -2 a

3

+ \/i\/( 1- /012) "“(9.19)

and by taking expectations

1]
D
o
N
+
v
)
-
o<

and
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3
¥ - oy (-Ay) ——-(9.20)
Vv

The skewness ¢ of the random component of the process is seen
v

therefore to be modified by serial correlation as in expression (9.20)
to give a different skewness Xz of the process values.

If the series skewness is estimated as XJZ, then X; can be
calculated from (9.20). The following transformation due to Wilson
and Hilferty (1931) can be used to convert a normal independent
variate ny with zero mean and unit variance to a random variate Vi

which is distributed like the gamma distribution with zero mean, unit

/
variance and skewness ¥ .
v

2 3
2 Yo N ’ ] 2
<, v ot Sv <
vy = §/{ 1+ z - 3¢ - Kv ---(9.21)

This transformation has been shown by McMshcn and Miller
(1971) to become unstable for values of X; greater than about two
and for such values a modification due to Kirby (1972) should be used.

Other approaches have been taken to generating skewed series.
One method is to transform the observed series by taking logarithms.
Expression (9.15) is used with moments of the transformed log series
and the resulting generated log values are retransformed by taking
anti-logs. Other normalising transformations can be used. There is
an inherent drawback in this approach in that moments of the trans-
formed, rather than the original, series are maintained.

Another approach, due to Matalas (1967), assumes a three-

parameter log-normal distribution and transforms the parameters 2: sy

r, in expression (9.15) while sampling /4 from a normal distribution.
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From the preceding discussion it can be seen that this approach masks
the clear functional relationships between the terms in (9.15) and
also lacks generality as the transformation of the parameters depends
on the assumption of an underlying three-parameter log-normal
distribution. On the other hand, expression (9.20) which preserves
the third moment is free from an assumption regarding distribution
type and hence v, may be drawn from a range of distributions. The
role of a transformation such as that of Wilson-Hilferty (193%) is to
provide an algorithm for converting the more easily sampled normal

variate to onme having the desired distribution of v .

9.4 Multi-lag Markov Processes

The approach of 9.2 can be extended to processes containing
more autoregressive terms. This is illustrated by the following

relationships for a two-lag Markov process, Again following Box and

Jenkins (1970), such a process can be written as
= --=(9.22
Zt i 1 Zt-1 + . Zt—2 v oAy (9 )
which now has two autoregressive parameters f£,, @.. The Yule-

Walker equations (9.5) become for p = 2

---(9.23)

Equation (9.23) can be solved to give

P, - A)

1 - p,
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P, - p
1212 = ——;2——12- ---(9.24)
Y

From expression (9.6) the variance of the process is given by

2 Sa2

: T t-p B - P, B

---(9.25)

In practice fﬂ and pz are replaced by estimates T, and T,

9.5 ARMA (Autoregressive Moving Average Models)

Box and Jenkins (1970) describe a wider class of stationary
linear stochastic processes which they label autoregressive moving

average (ARMA). These processes have the general form

Zt is seen here to be the sum of a random shock and weighted sum of
previous values of Z and previous values of random shocks a; - The a;
are as before identically distributed with zero mean and constant
variance 52. The above process is described as ARMA (p,q).

If all the Bi are éero the process is pure autoregressive
of order p, i.e. AR(p) or ARMA(p,0). If all the ﬂi are zero, then
the process is pure moving average of order g, i.e. MA(g) or ARMA(O,q).

The theoretical autocorrelation function (correlogram) of
pure MA processes truncates after g lags while that of AR processes
attenuates. The mixing of AR and MAterms provides a flexible modelling
tool for preserving observed autocorrelation functions.

The ARMA (1,1) process has received considerable attention

in the hydrology literature and can be written.as
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z = m1Z + a - B8 3 ---(9.27)

Such a process can be seen as a simple extension of the Markov lag-
one case. The process 'remembers' not only the previous value but
the previous random disturbance.

The following relationships are obtained for the ARMA (1,1)

process by an approach similar to that for the pure AR process.

p1 = ---(9.28)

D
N
I
=
N

Values of 7, and B , have the following limitations
| i

12 g < 41 ---(9.29)

_14;244.1

which meet stationarity and 'invertability' conditions defined by
Box and Jenkins (1970).
The parameters g1 81 of an ARMA (1,1) process may be

b

r_ in expression

estimated by replacing /H, £ with estimates Ty T
(9.28).
The series and random component variances are related as
follows:
2
5, - 29,8 ,
s, _ 1x 1 L1 = —--(9.30)
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Srikartha and MeMahon (19/¢) presert an ex, 1e<10r for the

random component skewness of an ARMA (1,1) process.

3 3 2 2
t+8 -288]35[1-8 +3ﬂ191-31z}191]x
3 2z
v 1. E{ f - g ,

1 -—

(9.31)

The reader is referred to Nelson (1973) who gives a quite

readable account of ARMA processes and model fitting.

9.6 Model Fitting

The hydrological approach to deterﬁining data generation
model parameters, such as ﬂ1, ﬂz in an AR(2) model, is generally to
solve the Yule-Walker equations (9.5). The appropriate number p of
autoregressive terms is assumed and sample autocorrelatior estimates
(e.g. Ty r2) inserted in the equations. The variance SZ of the
random component is estimated from the sample series variance and a
relationship such as expression (9.30). This approach which relies
on sample moments and autocorrelations will be referred to as the
'moment-estimation' procedure.

The moment-estimation procedure is heavily dependent on the
estimated values Tys Ty eeee rp. These sample autocorrelations have
considerable uncertainty about them as is shown in Figure 9.1 where
the sample autocorrelations calculated from a set of 100 values of an
independent normal variate are shown. The theoretical value of the
autocorrelation coefficient is of course zero at all lags far an
independent process. The point is further illustrated by Figure 9.2,
which shows a seguence of 100 values generated hy a lag-one Marko
process with a theoretical lag-one autocorreiation coeffigciert »f J.15

Box and Jenkins ‘1970) present an altermative -o the moment-
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FIGURE 9-1
SAMPLE AUTOCORRELATION FUNCTION -
100 VALUES OF AN INDEPENDENT
NORMAL VARIATE
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LAG

FIGURE 9-2
SAMPLE AUTOCORRELATION FUNCTION
100 VALUES OF A LAG'ONE MARKOV PROCESS
r,= 015

15
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estimation ‘ype approach to mudei fitting. They propose asystematic

method of analysis consistiny of three distimtt phases

(1) Identification
(ii) Estimation
(1id) Diagnostic Checks

In phase (i) the model structure is inferred from the
sample autocorrelation function (correlogram) and the sample partial
autocorrelation function. These sample functions are compared with
the theoretical functions for AR, MA or ARMA models. The theoretical
partial autocorrelation function comes from the succéssive solution
of the Yule-Walker equations (9.6) for an increasing number of lags k.
The value of the partial autocorrelation funetion at lag k is wkk’
the last parameter of a pure autoregressive process if it was of the
order p = k. Ffor a pure autoregressive process of lag p the theoret-
ical partial autoﬁorrelation function truncates at p. Figures 9.3 and 9.4
show a&autocorrelation an:; partial autocorrelation funections from a
sample o7 900 values of a lag-one Markov process with Py = D0.5.

McLeod ard Hipel (1977) propose two other funstions, the
'inverse autocorrelation function' and 'inverse partial autocorrelation
function', as an aid to model ide~tification.

ir prase (ii) the parameters of the proposed model are
estimated by an approximate maximum likelihood method in whiech a 'sum-

of-squares' function is minimised. For example the AR(1) model given

by expression (9.7) can be written as
a = <4 - B, 7 --—-i{9.32)

and 1¢ the Z, are replaced oy 3 set of observed values Z; then
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FIGURE 9-3

SAMPLE AUTOCORRELATION FUNCTION

900 VALUES OF A LAG-ONE MARKOV
PROCESS f|~-0-50)

95%CONFIDENCE LIMIT FOR
EPROCESS

- 1 1 A T
i's)

FIGURE 9-4
SAMPLE PARTIAL AUTOCORRELATION
FUNCTION - 900 VALUES OF A LAG ONE
MARKOV PROCESS
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£ £ 1 Liq ---(9.33)

If some starting value Zé is nominated then the set of

residuals for the assumed value of ﬂ1, i.e. al ﬂ1)t, can be
calculated from
(g, = Z g, Z
a 1717 T 5 T 1
---(9.34)
1 1 1
a (B, = 2 = B el
In this case the sum of squares function is
T T
' 1 2 ' 2
5(8,) = t_21[ Z, - 2, 7, =t§[a(ﬂ1)t] (5.35)

Minimising S(B1) leads to an approximate maximum likelihood estimate
ﬂ1. The maximum likelihood estimate of the variance of the residuals

saz is obtained from
—==(9.36!

The procedure of minimising the sum of squares function
involves multivariate search in the case of a proposed process with
more than one autocorrelation parameter e.g. ARMA (1,1). Starting
estimates for the search are usually determined by the moment-

estimation procedure. (Nelson - 1973)
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The maximum likelihood estimates of parameters have been
shown to be insensitive to lack of normality in the residuals
(McLeod, 1974). MclLeod and Hipel (1977) discuss refinements to the
maximum likelihood estimating procedure.

Phase (iii) involves the examination of the residuals aL
determined using the estimated model parameters. The residuals are
checked for the assumptions of independence, normality and constant
variance. The most important assumption is the independence of the
residuals for which several statistical tests are available (McbLeod
and Hipel 1977). The latter two features are less important and it
is suggested that transformations of the original data may rectify
problems in this area. If the residuals prove to be not independent,
then the model structure should be revised by removing or adding AR
or MA terms and the analysis repeated.

In this chapter the structure of various 'short-memory'
stochastic process models has been examined in some detail. In the next
chapter attention will be turned to the effect on the rescaled adjusted
range, in series produced by such process models, of the model structures

and parameters.
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CHAPTER 10: SOME PROPERTIES OF THE RESCALLD ADJUSTED RANGE OF

THEORETICAL PROCLSOLD

13.1 Introduction

The present point of interest is the ability of 'short
memory' data generation models to preserve the size of the rescaled
adjusted range observed in real data series. This question can be
approached by fitting models to observed series and comparing the
theoretical and observed rescaled adjusted range.

The structure of a general class of 'short memory' models
was discussed in Chapter 9. The next logicgl step is to see in how
much detail a proposed model has to be specified if the comparison of
theoreticel and observed rescaled adjusted range values is to be valid.
For instamce, is the rescaled adjusted range affected by the assumed
distribution of the random component of the model? If the latter
were the case, then attention would have to be given to correctly
inferring the marginal distribution of the observed series.
Investigators have in fact examined skewness as a possible explanation
of the 'Hurst Phenomenon'.

A FORTRAN routine,. DRSGE, was written to assist in this
investigation (see appendix). DRSGE calculates means and standard

*%
deviations cf Rn and K at nominated values of series length n and
for a nominated number of independent sequences. The programme
simulates AR(p) and ARMA (1,1) processes. In the discussion that
follows, means and standard deviations have been sampled from a
maximum of 500 sequences in order to keep computing time to within

reasonable limits.
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10.2 The Effect of Process Mean and Variance on the Rescaled

Adjusted Range

Given a series of values Zy s t =1,2....n, the adjusted
range for series length n is formed from the series z, - z where z is

the mean value of the Zis that is

n

z o= () z.) /n -—-(10.1)
t=1
The rescaled adjusted range (Rn ) is formed from the series

a, = oz, -7 t=1,2....n ---(10.2)

where

fingE
3
N
.
I
N
N
(Ve

s, = ---(10.3)

* ¥
Rn is obtained directly from the series

6, = L oa, o t=1, 2.0 ——=(10.4)
i=1

Since z and s, are the mean and standard deviation of the sub-series

t =1, 1....n, the q, are standardised estimates of z, and

Zt’ t

therefore qt itself will have zero mean and unit variance.

* ¥
The standardisation inherent in Rn means, loosely speaking,

that the statistic is independent of the underlying process mean and
variance. This is a useful property when comparing observed values
* %

of R with theoretical values derived by some proposed process as 1is
n

shown below,

For example, taking the lag-one Markov process specified by
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expression (9.14)

zt—z =,o1 (Zt—1 -z ) +sz\/1-— p1 vy

and dividing both sides by SZ gives

that is

2
= - ---(10.5
9 Py Qg F 1 2 Vi ( )

Expression (10.5) is a lag-one Markov process producing standardised

values Qy -

* %
Because R is independent of the process mean and variance,
n

* %
expected values of Rn and its higher moments derived from series

generated by (9.14) and (10.5) will be identical.

A further simplification can be made by noting from the

. . . . / 2 .
discussion in section 9.3 that the role of the term 1 - />1 in

expression (10.5) is to scale the random component (Vt)’ which has

unit variance, so that the process variance equals unity. Dividing

( 10.5 ) by /1 - p12 gives

Y S v —--{10.6)
&G T % % L
*

where Q. = qy / 1 —P%

Now for a lag-one Markov model expression (9.11) gives the relation-

ship between the variance of the process s° and the variance of the
z
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random component 82 as follows
a

*
1 in expression (9.11) gives, for the series qy

Substituting si

the variance
2, % 1
=la) = TR —-=(10.7)

*
Therefore the variate qt defined in expression (10.6), while
1 1 2 which is finite and
IRl
greater than unity for 04 p, ¢ 1 and -lLﬁlL 0.

retaining a zero mean, has a variance of

One may wish to test the validity of assuming that an
observed series can be modelled by a lag-one Markov process. If
interest lies in the ability of such a process to reproduce observed

* %

Rn values, then it is sufficient to examine the values produced by
the sihplified model form of expression (10.6). This result applies
generally and hence process models used for this purpose may be
simplified intoc a form which produces a variate having zeroc mean and
some finite variance greater than unity.

It is now necessary to examine the effect of the distribution

of the random component (Vt) on the rescaled adjusted range.

10.3 The Effect of Skewness on the Expected Value of the Rescaled

Adjusted Range

The skewed nature of real data was seen as one possible
explanation of the 'Hurst Phenomenon', & question which has received
considerable attention in the literature.

Feller (1951) showed rigorously that the asymptotic value
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of the rescaled adjusted range is the same for any independent
variate having finite variance. Langbein (1956) argued that skewness
should not affect the expected value of the rescaled adjusted range
and hence could not provide an explanation of the Hurst Phenomenon.
Matalas and Huzen (1967) examined this question by computer experiment
involving lag-one Markov processes of varying /ﬁ. They found that

%%
the expected values of Rn at varying series lengths remained
virtually unchanged when the distribution of the random component
was changed from normal to log normal. Values of process skewness up
to ¢.0 were considered.

Mandelbrot and Wallis (1969c) reported on the distribution-
free nature of the expected value of the rescaled adjusted range and
declared it to be a very robust statistiec. Their results however are
subject to the computer programming error reported by Tagqu (1970).
MclLeod and Hipel (1978a) showed that expected vslues of the rescaled
adjusted range do not vary substantially from one distribution to
another. They examined independent variates with the normal, gamma,
stable and cauchy distributions.

Tables 10.1, 10.2 and 10.3 present the results of same
computer simulation experiments carried out using the FORTRAN routine

* %
DSRGE developed for this study (see Appendix ), Mean values of Rn
are shown for a lag-one Markov process and an ARMA (1,1) process.
The mean values were obtained from 500 independent series generated
by the process model. Results are shown for the case of a normally
distributed random component and for the random component distributed
like gamma. Skewnesses of the random component were selected using
expressiors (9.20) and (9.31) to give series skewness values of 2.0,

4.0 and 6.0. Kirby's (1972) modification of the Wilson-Hilferty

transformation was used to generate the skewed random component values.



TABRLE 10.1

%* ¥
ESTIMATED VALUES OF E[ R ] FOR A LAG-ONE MARKOV

PROCESS (/%: 0.5) - Sample Size 500

Series £ **

length [ Rn ]
n Normal ¥ = 2.0 Y = 4.0 ¥= 6.0

z z z

20 5.88 5.89 5.97 5.98
40 9.64 9.75 9.63 9.69
60 12.67 12.85 12.71 12.67
80 15.49 15.41 15.24 15.18
100 17.65 17.63 17.41 17.46

The values shown in Tables 10.1 and 10.3 at each value of n
differ from each other by less than one or two standard errors of
estimate. The approximate value of the standard error of estimate is,
for example, 0.15 in the case of n = 100, Xz = 6.0 and the lag-one
Markov process. The differences between values shecw alsao, no
consistent trends with changes in n or Xz’

Table 10.2 shows a similar analysis for series lengths up
to n = 1000. In this case sampling is limited to 150 independent
sequences. The differences in values are again not significant for
the smaller sample size. The approximate standard error of estimate
for n = 1000 and ¥ = 4.0 is 1.23.

The results shown in Tables 10.1, 10.2 and 10.3 confirm
that the expected value of the rescaled adjusted range is quite

unaffected by process skewness.
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TABLE 10.2

* X
ESTIMATED VALUES OF E [ R ] FOR A LAG-ONE MARKOV PROCESS

( fﬂ: 0.5) - Sample Size 150

Series *x

length E[ Rn ]
n Normal XZ= 4.0
200 26.24 26.28
400 3B.58 39.41
600 47.58 49 .05
800 55.13 58.10
1000 63.39 64.47

TABLE 10.3

* ¥
ESTIMATED VALUE OF E[ Rn ] FOR_AN ARMA (1,1) PROCESS

(B4= .9, 8= .7) - Sample Size 500

Tenoin [ 7]
n Normal Xzz 4.0
20 5.37 5.44
40 9.96 9.81
60 14.25 14.00
80 18.16 17.84
100 21.79 21.65
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10.4 The Effect of Skewness on the Standard Deviation of the Rescaled

Ad justed Range

It will be shown in the next chapter that plots of expected

* ¥
values of Rn and confidence limits obtained from the standard

* % * %
deviations of Rn i.e. S(Rn ) provide a powerful tcol for model

evaluation. To the writer's knowledge the effect of process skewness

* ¥
on S(Rn) has not been discussed in detail in the literature. Strictly

¥* %
speaking, S(Rn ) refers to estimated values of the standard deviation.

Exact values have not been derived for other than the case of an
independent normal variate with n = 3 and n = 4. (Anis and Lloyd -

1977).

The problem of a general expression for the exact value of

* ¥
the standard deviatjon of Rn for larger values of n or for dependent

variates is orie of great difficulty and has not yet been solved.

(E. H. Lloyd 1978 - private communication).

* *
Values of s(R ) determined by computer simulation for
n

independent processes distributed like normal, gamma, stable and

cauchy, may be inferred from Table 5 of McLeod and Hipel (1978).

* ¥
These authors present estimates of the expected values E[ Rn ]

* ¥
together with standard errors of estimates of E[ Rn ]- These standard

* *

errors can be converted to S(RrI ) by multiplying by SN = 100 where N
4 ¥* ¥ R
is the sample size of 10 . The inferred values of S(Rn) from this

source indicate that there is little variation between the different

* ¥
distributions. A slight reduction in S(Rn) is apparent in the gamma

case compared with the normal distribution.
Tables 10.4, 10.5, 10.6 and 10.7 show the results of the

computer simulation experiments carried out in this study to determine

* ¥

values of s(R ). The skewed random components are distributed like
n

gamma and are obtained as described 1in Section 10.3.
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TABLE 10.4

* ¥

ESTIMATED VALUES OF S(Rn) FOR AN INDEPENDENT VARIATE

Sample Size 500

* ¥
Series S(Rn )
length
n Normal
= . = - X = 6.0
(McLeod & Normal | ¥ = 2.0 3; 4.0 N
Hipel)
20 1.00 .99 .96 .84 .75
40 1.58 1.56 1.53 1.32 1.25
60 1.98 1.84 1.87 ) 1.78 1.63
80 2.33 2.35 2.21 2.18 1.90
100 2.62 2.74 2.60 2.50 2.25
(Sample of
10%)
TABLE 10.5

* ¥

ESTIMATED VALUES OF S(Rn) FOR_A LAG-ONE MARKOV PROCESS

( p1= 0.5) - Sample Size 500

* %
Series s(R )
length "
n Normal ¥ = 2.0 § = 4.0 ¥ = 6.0
z z z
20 1.19 1.10 0.99 0.86
40 2.14 1.97 1.82 1.59
60 2.83 2.81 2.59 2.29
80 3.50 3.45 3.07 2.88
100 4,09 3.92 3.39 3.37




ESTIMATED VALUES OF s(R
n
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TABLE 10.6

* %

) FOR_A LAG-ONE MARKOV PROCESS

( A 0.5) - Sample Size 150
* %
Series s(R )
length L
n Normal XZ= 4.0
200 5.80 5.39
400 8.43 9.13
600 10.73 11.59
80O 12.69 ~13.48
1000 13.65 15.03
TABLE 10.7
* %
ESTIMATED VALUES OF S(Rn) FDR AN ARMA (1,1) PROCESS
(@1= .9, 91 = .7 ) - Sample Size 500
* ¥
Series S(Rn)
length
n Normal XZ= 4.0
20 1.22 1.13
40 2.48 2.24
60 3.80 3.45
80 4.98 4.56
100 6.01 .0
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* ¥
Standard errors of the estimates of S(Rn yin Tables 10.4,

10.5, 10.6 and 10.7 have not been.calculated and hence the
significance of the differences between values for the same series
length can not be determined. There are however some apparent trends.
In Tables 10.4, 10.5 and 10.7, there is an apparent reduction in

* %
s(R  )as the skewness increases. There is an apparent opposite trend

n
in the results shown in Table 10.6 which may result however, from
sampling error due to the smaller sample size.
¥* ¥

This study of the effect of process skewness on S(Rn ) has
certainly not been an exhaustive one but it does appear that the
standard deviation of the rescaled adjusted range is only slightly
affected by process skewness. As an example, the coefficient of
variation, which is the ratio of the standard deviation to the

expected value, changes from 0.23 to 0.19 for the lag-one Markov case

with n = 100 and skewness changing from zero to 6.0.

10.5 Distribution of the Rescaled Adjusted Range

Mandelbrot and Wallis (1969b p.253) state that the
distribution of the rescaled adjusted range is 'markedly skew'.
Their Figure 11, showing results obtained by computer simulation,

* X%

indicates a median value of Rn of about 11 at n = 100 for the normal
independent variate. The authors compare this with a value of 12.5
obtained from Feller's (1951) asymptotic expression and conclude that
the difference between the mean and median is indicative of high
skewness. The comparison is however not valid as the exact expected
value from Anis and Lloyd (1976) is 11.45. In fact this tendency to
compare observed values of the rescaled adjusted range or Hurst's

coefficient K with expected values obtained from expressions which

are only asymptotically valid, pervades much of the literature
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relating to the 'Hurst Phenomenocn'. Hurst (1951) nhimself made this

error.

Wallis and O'Connel refer to the above-mentioned Mandelbrot

* %
and Wallis conclusion stating - "The distribution of R/s (i.e. R )
n

is known to be highly skewed when n is small." They go on to state
that in using the rescaled adjusted range statistic as a test of
statistical independence it is insufficient to know its expected
value and standard deviation. They suggest that a knowledge of the
whole empirical distribution is required and then proceed to produce
this with an extensive computer simulation experiment. Sen(1977a)
also refers to Mandelbrot and Wallis (1969b) and states that the
distribution of the rescaled adjusted range is highly skewed. Hipel
and MclLeod (19782 - microfiche version) present the full empirical
cumulative distribution functions for the rescaled adjusted range for
lag-one Markov models with p1 varying from 0.1 to 0.9 and various
series length.

Anis and Lloyd (1977) have obtained the exact distribution

* ¥ . i
of R for the case of an independent normal variate with series
n
lengths n = 3 and n = 4. The distributions they obtained were
complex and highly skewed. It has been found in this study however,
that in all cases examined using computer simulation and with n
* * X
greater than 20, the distribution of Rn is only moderately skewed.
The skewness is generally insufficient to invalidate making statistical
inferences on the basis of a knowledge of expected values and standard
* %
deviations. Table 10.8 shows the calculated skewness of Rn for
several different processes.
* *
The values of the skewress of Rn shown in Tatle 10.8

exhibit some variation due to the relatively small sample size of

500. However *hev suffice to show the moderate degree of skewress
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TABLE 10.8

* %
ESTIMATED SKEWNESS OF Rn FOR VARIOUS PROCESSES

Sample Size 500

* ¥ * %
Estimated  Skewness Rn - X(Rn )
Series
length Independ-| Lag-one ARMA(1,1) | Indspend- | Skewed
n ent Markov # = .82 ent gamma | lag-one
normal £1= 0.5 B1= .40 XZ= 4.0 | pq= 0.5
¥,= 2.0
20 .50 .01 -.25 .53 -.15
40 .50 .22 .01 .56 .03
60 .49 .27 A5 .59 .28
80 .66 .33 .18 .68 .38
100 .68 .50 .26 .41 .28

evident. It appears that as the complexity of the correlation
structure of the process increases, the skewness tends to decrease.

The following check was carried out on the loss of accuracy
likely to result from using the assumption of normality when making
inferences about the rescaled adjusted range. Hipel and Mcleod
(1978a - microfiche version) present tables derived from a sample size
of 104, giving the full empirical cumulative distribution functions
of the rescaled adjusted range for lag-one Markov processes with
normally distributed random components. They present values for
processes with Qi ranging from 0.1 to 0.9 and series length n up to

* %

200. For the case of @&, = 0.5, values of Rn at the 84.13 percentile

1

and 15.87 percentile were interpolated from the table. These percent-

iles correspond to the mean plus or minus one standard deviation on

* %
the assumption of the normality of Rn. The interpolated values were
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TABLE 10.9

*

~EeTTAE *
TESTING THE ERROR AT ONE _STANDARD DEVIATION IN ASSUMING R TO BE
n

NORMALLY DISTRIBUTED - Lag-one Markov Process (p1= 0.9)
Interpolated from Cpmputer simulation
Series Hipel & MclLeod ('78a) Sample size of 500
length 84.13 15.87 mean + std. | mean - std.
n percgntile| percgntile devigfion devigtion
Rn Rn R, R
20 7.34 4.71 7.50 4.67
40 12.14 7.63 11.86 7.46
60 15.87 9.88 15.62 9.97
80 19.15 11.78 18.81 1M.77
100 21.79 13.50 21.62 13.39

then compared with the experimental results obtained in this study
from a much smaller sample of 500. Table 10.9 shows the results
obtained.

A similar exercise was carried out comparing the values of

* ¥ **
Rn at the 97.72 and 2.28 percentiles with values of Rn at plus or
minus two standard deviations from the mean. The results are shown
in Table 10.10.

Table 10.11 shows the differences between mean and median
values of the rescaled adjusted range from three lag-one Markov
processes. The values are taken from MclLeod and Hipel (1978) and
Hipel and MclLeod (1978a).

A visual impression of the near-normality of the distribution

* %
of R is obtained from Figure 10.1. This figure shows a computer
n

**
line-printer plot of relative frequenciesfor 1000 values of Rn at

n = 50 for an independent normal variate. The slight positive
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TABLE 10.10

*%
TESTING THE ERROR AT TWO STANDARD DEVIATIONS IN ASSUMING Rn TO BE

NORMALLY DISTRIBUTED -  Lag-one Markov Process (f% = 0.5)
Interpolated from Computer simulation
Series Hipel & Mcleod ('78a) Sample size of 500
length 97.22 2.28 mean + 2x std|mean-2x std
n percgptile| percgptile devigfion devigiion
R, R Rn n
20 8.26 3.66 8.20 3.50
40 14.17 6.01 14.06 5.26
60 18.86 T7.79 18.43 7.15
80 23.06 9.29 22.33 8.25
100 26.47 10.71 25.74 9.28

TABLE 10.11

**
MEAN AND MEDIAN VALUES OF Rn FOR THREE LAG-ONE MARKOV_ PROCESSES
Values obtained from MclLeod & Hipel (1978) and Hipel & MclLeod (1978a)

Sample Size 10,000

i’:;;ii = 0.3 p,= 0.5 p= 0.7
n mean median mean median mean median
20 5.43 5.36 6.04 6.05 6.73 6.84
40 8.50 8.35 9.87 | 9.76 11.66 | 11.68
60 10.87 10.66 12.85 12.65 15.63 15.58
80 12.92 12.65 15.43 15.18 19.12 18.92
100 14.62 14.31 17.60 17.29 22.07 21.82
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skewness is apparent.

The preceding discussion shows that it should be generally

* %

sufficient for practical purposes to assume that R is normally
distributed for the purpose of making statistical inferences about
its preservation by a particular process model. This assumption
leads to a considerable saving in computing effort and assists in the
graphical presentation of results of analysis. Inferences may be
drawn on the basis of standard deviations calculated from smaller

samples than that required to adequately define a complete empirical

distribution.

10.6 Useful Properties of the Rescaled Adjusted Range
The discjssion up to now has shown the rescaled adjusted
range statistic to have a great deal of promise as a time series

analysis tool for the hydrriogist. Its useful properties can be
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summarised as follows:
(i) It provides a measure of the 'storage' character of a
series.
(ii) The sample value at various values of sub-series
length n can be readily determined from an observed series.
(iii) The exact expected value has been obtained in
analytical form for some theoretical processes.
(iv) Means and standard deviations or complete empirical
distributions can be obtained to a desired accuracy by
computer simulation for specified theoretical processes.
(v) Its distribution may be considered to be approximately
normal for medium and large n.
(vi) Expected values and standard deviations are independent
of the assumed mean level and variance of the theoretical
process.
(vii) Expected values are apparently independent of the
marginal distribution of the theoretical process.
(viii) Standard deviations are only slightly affected by
changes in the marginal distribution of the theoretical
process.
In the next chapter it will be shown that comparison of
*%
observed values of Rn with those produced by theoretical processes
provides a powerful method of checking the adequacy of proposed
process models. It will also be seen that properly identified 'short
memory' processes are generally capable of preserving observed values
*
of Rn up to large values of n. This latter feature and sampling

variability go much of the way to accounting for the claimed

unexplained behaviour or 'Hurst Phenomenon' in observed data series.
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CHAPTER 11: MODELLING THE RESCALED ADJUSTED RANGE IN SOME AUSTRALIAN

AND OVERSEAS DATA

11.1 Introduction

In Chapter 10 it was seen that the rescaled adjusted range
statistic in theoretical processes has properties which should make
it a useful tool for investigating the performance of data generation
models. In particular the available evidence points to mean values
and standard deviations of the rescaled adjusted range being sensitive
only to the autocorrelation structure of the process. The statistic
has considerable significance for the hydrologist due to the close
analogy with residual mass curve storage analysis.

In this chapter observed hydrologic data series from
Australian and overseas locations will be analysed and inferences
made about underlying autocorrelation structures on the basis of
sample autocorrelation functions and partial autocorrelation functions.
Moment estimation type procedures as described in Chapter 9 will be
used to fit data generation models. The rescaled adjusted range
values obtained from these models will be compared with those obtained
from the observed series.

It should be noted once again that the rescaled adjusted
range values obtained from the model being examined are sensitive
only to the model's autocorrelation structure. To investigate the
adequacy of the model as far as the rescaled adjusted range is
concerned, it is suffi: ient to specify the autoregressive and moving-
average term parameters. The estimation of parameters relating to
%he wean, variance .nd skewness of the process is therefore not
required. In this study the models used assume a process mean of

zero and a normally distributed random component with a variance of
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'Jnityo

11.2 Annual Flows in the St. Lawrence and Niger Rivers - Models

Proposed in the Literature

Carlson, MacCormick and Watts (1970) examined the annual
series of flows of the St. Lawrence River at Ogdensburg, New York for
the period 1860-1957. This series is given by Yevjevich (1963).

The authors used the sample autocorrelation function to identify the
series as a lag-one autoregressive process and using the maximum
likelihood approach to model fitting proposed the following equation

as the best model

= - .1
Zt 0.69 Zt—1 + 8, (11.1)

where Zt’ Zt-1 are series values expressed as devistions from the
process mean at times t, t-1, and a, is a realisaticn cf an
uncorrelated random variate with a mean of zero and constant varjance.
McLeod, Hipel and Lennox (1977) examined the same series of
flows. THey used the sample autocorrelation function and partial
autocorrelation function to identify the process structure as well as
two additional functions, the inverse autocorrelatiﬁn and inverse
partial autocorrelation functions. These authors suggest the follow-

ing constrained three-lag autoregressive model as being superior to

that proposed by Carlson et al.

+ 0.18 Zt- + a -—=(11.2)

z = 0.62 Zt— 3 +

t 1

MclLeod et al showed that their model is superior to equation

(11.1) on the grounds of the comparison of parameter estimates with
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their standard errors, the likelihood ratio test (Hipel, Mcleod and
Lennox - 1979) and the Akaike information criterion (Akaike 1974).
In this study expression (11.1) was replaced by the

following

qt = 0.69 Qg + vt ——(11.3)

and expression (11.2) replaced by

q, = 0.62 Ay * 0.18 q, 5, + v, --=(11.4)

where Qy» and q,_3 are values of the process at times t, t-1,

-1
t-3 and vt is a value sampled from the standard normal variate at
time t. A differentiation has been made between process values Zt
and q, because the random components in each process have different
variance. The processes represented by Zt and qi will have different
variance but the same rescaled adjusted range properties. (See
section 10.2 of this report for discussion.)

"Expression (11.3) and (11.4) were used to generate 500

e *w

sequences of various lengths n from which estimates Rn , s(Rn )were
made of the mean value of the rescaled adjusted rahge and its standard
deviation respectively at each n value. A FORTRAN routine DSRGE
(see appendix) was written to perform this task. Figures 11.1 and
11.2 show curves drawn through the mean values of the rescaled
adjusted range and the mean plus and minus two standard deviations.
The area between the two outlying curves corresponds to a
95% confidence region assuming that R;* is appro .imately normally

‘distributed (See section 10.4 for discussion).

Also plotted on Figures 11.1 and 11.2 are R
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values obtained from an analysis of the St. Lawrence River annual
flow series. The data used was the series given by Yevjevich (1963);
the source acknowledged by MclLeod et al and Carlson et al. The
FORTRAN routine RANGE (see appendix) was used for the analysis.

As discussed in section 7.2 of this report the method used
in this study to evaluate the rescaled adjusted range in an observed
data series is as follows. A sub-series length n is nominated. The
observed series is subdivided into as many adjacent non-overlapping
sub-series as the length of the record permits and with the first

* %
sub-series commencing at the start of the record. Rn is then
evaluated for each sub-series. Where more than one sub-series is
* *
available from the record, the various values of Rn obtained
can be regarded as independent estimates of the true expected value
* X
of Rn for the underlying stochastic process. A sample function of
the rescaled adjusted range can be developed from the observed series
by repeating the above procedure for various values of n. A
necessary feature of such a function is the decreasing number of
A * %
independent samplings of Rn as the value of n increases. Ffor n
greater than one half of the observed series length there is of
* %
course only one independent sample of R available.
n

The sample rescaled adjusted range function for the St.
Lawrence River data was plotted in Figures 11.1 and 11.2. The values
obtained from sub-series commencing at the beginning of the series
are connected with a dotted line as an aid to visual interpretation.
As might be expected there appears to be a considerable amount of

* ¥
dependence between the Rn values at adjacent values of n. This is

* ¥
particularly so for the values of R joined by the dotted line.
n

* *
Adjacent values of Rn so marked are derived from sub-series which

include common terms up to the smaller value of n.
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A comparison of figures 11.1 and 11.c srnows that the
claimed superiority of the three-lag model proposed by McLeod et al
is reflected in an apparent improvement in the ability of the model
to generate series which have values of the rescaled adjusted range
which agree with those obtained from the historical data series.

The word apparent has been used because in the area of greatest
interest where the value of n approaches the series length, there is
only one independent estimate of the rescaled adjusted range
available. It is not possible therefore to infer in a strict
statistical sense that the rescaled adjusted range is better preserved
by either model. One gains the visual impression however that the
constrained three-lag process models the observed rescaled adjusted
range values more successfully. It will be seen on carrying out a
similar analysis of other series and models, that when components

are added to a model so that the model better preserves the auto-
correlation structure of the historical data series, there is a
consistently better fit between the theoretical confidence region of
the rescaled adjusted range values and those values obtained from the
historical data.

Carlson, MacCormick and Watts (1970) examined the series
of annual flows in the Niger River at Koulicoro (1906-1957). This
data is also obtained from Yevjevich (1963). The authors identified
a number of possible models: among them a lag-one autoregressive

model:

(11,

|
(ww]
Ul
wn
n
+
<
n

and 3 mixed astoregres-i.e moving average mode. of order ane

CARMA 1,1,
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9, = 0.82 q,_, + Vv, - 0.40 Vi1 | -—-(11.6)
The authors showed that equation (11.6) is the superior model on the
basis of a least sqﬁares fit criterion.

Figures 11.3 and 11.4 compare theoretical and observed
rescaled adjusted range values and again there is some apparent
improvement in the modelling of the rescaled adjusted range by the
claimed superior model.

It should be noted that the above comparison between
theoretical and observed values of the rescaled adjusted range is a
comparison of the fit between the sampling épread of observed values
and a theoretical confidence region. The comparisons between observed

* %
and theoretical values of Rn or Hurst's coefficient K that have been
made in the literature to date have, it would seem, only been made on
the basis of mean and expected values. It is-suggested that the
approach vsed in this study is superior because of the considerable

¥* *
sampling variability in Rn and K.

11.3 Annual Flows in Some Australian Rivers

The comparison of the theoretical and observed rescaled
adjusted range functions appear to give an insight into model
behaviour in the case of the St. Lawrence and Niger River models.
Attention will now be focussed on annual flow series of some
Australian rivers.

The series of annual flows in the Darling River at
Wilcannia (1886-1971) was analysed to obtain the sample autocorrelation
and partial autocorrelation functions which are shown as Figures 11.5

and 11.6. The series exhibits a lag-one autocorrelation coefficient
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of 0.25 and hence a model of the form:

qt = 0.25 q't—1 + \ -——(11.7)

might be proposed. However the autocorrelation function shows
similarly large values at lags three and four while the partial auto-
correlation function has values outside the 95% confidence interval
at lags one and three. The value at lag three is unlikely to result
by chance if the 'underlying' process is assumed autoregressive and
of order less than three. A three lag autoregressive process would
therefore seem a better model than equation (11.7). Solving the
Yule-Walker equations for a three lag process (see section 9.2 of

this report) yields the following model form:
= . - . . - 11.8
q, 26 91 a9 Qo * 26 A3 * Yy ( )

The'observed and theoretical rescaled adjusted range
functions for the two models are shown as Figures 11.7 and 11.8.
Once again it appears that plots of this kind can discriminate
between models as regards the appropriateness of their autocorrelation
structure. The three lag model appears to give an improved fit to
the observed rescaled adjusted range values.

It should be noted that, in this study, models have not
been rigorously identified and estimated. The aim here is not to
find tHe best model but to observe trends in the rescaled adjusted
range function plots with increased model component identification
effort. Accordingly model parameters have been determined by solution
of the Yule-Walker equations (9.5) rather than by the more efficient

maximum likelihood technigues.
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Figures 11.9 to 11.13 show rescaled adjusted range function
plots for annual flow series of the Snowy, Barron, Brisbane,

Burdekin and Kiewa Rivers. In these cases the evidence available
from the sample autocorrelation and partial autocorrelation functions
points to either independent random processes or lag-one autoregress-
ive (Markov) processes being appropriate models. This finding is
reinforced in each of the cases by the rescaled adjusted range
function plot. These simple models appear to preserve the resealed
adjusted range quite well.

A comparisQn of Figures 11.13 and 11.14 illustrate the
sensitivity of the rescaled adjusted range to autocorrelation. In
Figurell.l4 the sample range function of the Kiewa River annual flow
series is superimposed on the theoretical function for an independent
random process. The fit is substantially poorer than for the model
with the appropriate degree of autocorrelation.

The remaining Australian annual stream flow series analysed
was the Macquarie River at Burrendong (1886-1964). The sample
autocorrelation and partial autocorrelation functions are shown as
Figures 11.15 and 11.16. The partial autocorrelation function shows
no values cutside the 95% confidence interval and hence there is no
strong indication that the appropriate model would be other than an
independent random process. However the rescaled adjusted range
function pl t (Figure 11.17) shows that an independent random process
mcdel does not appear to yield satisfact.ry rescaled adjusted range
values. The disparity could be due t~ ctance but the modeller might
be advised to re-examine the data and should certainly be cautious in

aLely.ng sucw a model.
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11.4 Monthly Flows in Some Australian Rivers

Monthly flows are of great practical interest to the
hydrologist and water resource system designer as the period of one
month allows for realistic simulation and analysis in many cases.
Monthly flows of course have the complication of periodicity and often
high autocorrelation. One commonly used approach to the modelling of
monthly flow series is to transform the observed periodic series into
one which is approximately stationary by subtracting monthly mean
values and dividing by monthly standard deviations. The resulting
'standardised' series can then be modelled with the type of models
already discussed in this report. The standardised series is
stationary with respect to mean and standard deviation. Periodicities
may remain however' in higher moments such as skewness and also in
the autocorrelations from one monthly value to the next. It is of
great interest therefore to know whether the observed series éan be
adequately modelled by viewing it as a single 'standardised' entity.
If so, autocorrelation structure may be typified by say, a single
~overall value of lag-one autocorrelation rather than different values
between different pairs of calendar months.

Wright (1975) analysed monthly flows from 12 Australian
streams including the Kiewa River at Kiewa and the Macquarie River
at Burrendong. He removed periodicities from the series and found
that the partial autocorrelation functions of the resulting series
indicated that autoregressive models of order greater than one were
indicated in nine of the cases. Models of various lags were fitted
‘4o each of the series and sequences of flows generated. Wright
found that the marginal statistics of the observed series such as the
means, standard deviations and skewness were reasonably well

preserved by the models irrespective of the number of lags included
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in them. He concluded that there is little justification for using
autoregressive structures of order higher than one unless the
preservation of the serial correlogram (autocorrelation function) is
important.

The importance of preserving the series autocorrelation is
clearly seen in figures 11.18 and 11.19., These figures show the
sample rescaled adjusted range function of the standardised series of
monthly flows ir the Kiewa River at Kiewa (1893-1970) together with
the range values obtained from the appropriate one lag and three lag
autoregressive models. The ttree lag modzl clearly appears superior
as regards preserving the rescaled adjusted range. A similar effect
is notic=d in Figures 11.20 and 11.21 for the Macquarie River at
Furrendong (1886-1964) stardardised monthly seriss. Examination of
the partial autocorrelation function in this case indicates that a
12 lag model is appropriate. This multilag model also appeacs to be
more sutcessful than the lag-aone modei in preserving the rescaled
adjusted range.

In the case of the standardised monthly flow series for the
5nowy River at Jindabyne (1905-1977) the sample autocorrelation &nd
partial autororrelation functiorms :incicate that a lag-one auto-
regressive model should be appropriate. Figure 11.22 shows that in
this case such a model appears to adsgquately preserve the rescaled

adjusted range.

11.5 Annual Rainfalls at Sowme Australian localities

Figures 11.22 to 11.26 show rescaled adjusted range
function plots for annual rainfall series at Adelaide, Alice Springs,
Windsor (M.S.W.) and Balranald. The sample autocorrelation and

partial autocorrelation functions indicate that an independent
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random process would be an appropriate moael for the Adelaide (1839-
1963) and Alice Springs (1874-1960) series. Figures 11.23 and 11.24
indicate that in both cases the rescaled adjusted range appears to be
rather well preserved by such a model. The autocorrelation and
partial autocorrelation functions of the Windsor (1898-1971) series
indicate a lag-one autoregressive model with an autocorrelation
coefficient of 0.25. Figure 11.25 shows that the indicated model
appears to preserve the rescaled adjusted range in this case also.

In the case of the Balranald (1879-1970) series a random
independent process model is indicated. The rescaled adjusted range
function plot (Figure 11.26) however shows a lack of fit which, while
being possibly due to chance, may cause the modeller to doubt the
adequacy of the model. Figure 11.27 shows the performance of a lag-
one autoregressive model with an autocorrelation coefficient of 0.25.
In this case the fit between the theoretical and observed rescaled
adjusted range values is quite good. Given that the preservation of
the storage characteristics of the series is important,and in the
light of uncertainties surrounding model identification on the basis
of sample autocorrelation and partial autocorrelation functions, it
is suggested that the modeller might consider selecting the auto-
regressive model as being more suitable.

Potter (1976) examined six annual rainfall series ranging
in timespan from 100 to 155 years for locations along the east coast
of the United States. In contrast to the Australian series discussed
above, Potter found the U.S. series to be guite highly autocorrelated
with lag-one coefficients ranging from 0.22 to 0.59. He also
calculated the Hurst coefficient K for the series and found values
ranging from 0.73 and 0.88. From this and other analysis Potter

concluded that the series exhibited nonstationarity of the mean which
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was a reflection of shifts in climate. He claimed that the series
could not therefore be modelled by Markov (lag-one autoregressive)
models., This conclusion is not well supported by the results for
the Australian series examined in this study. Independent and lag-
one autoregressive models appear quite satisfactory for at least the
Adelaide, Alice Springs and Windsor series.

As discussed in detail earlier in this report, considerable
caution must be used in interpreting one-point Hurst coefficient (K)
values. For example the K value in the case of the Windsor series
(Figure 11.25) as determined from the single rescaled adjusted range
value at the end of the series is 0.76 and is obviously subject to

large sampling error.

11.6 Tree Rings and Mud Varves

' *%
In section 8.3 of this report, plots of log Rn versus log

were examined for two very long annual series believed to have
climatic or hydrologic significance. The series were the North
Finland Pine Tree-Ring index (Siren 1961) of 780 years timespan and
the Lake Saki Mud Varve series (Shostakovitsch 1934) of 4,180 years.
The tree ring index is believed to correlate with mean summer
temperatures and the mud varve thicknesses with annual lake inflows.

These two series are further examined by means of rescaled
adjusted range function plots drawn to natural scales in Figures
11.28 and 11.29.

The sample autocorrelation and partial autocorrelation
functions of the tree ring data indicate that a four lag auto-
regressive model might be appropriate. The rescaled adjusted range
function plot (Figure 11.28) indicates that such a model produces

rescaled adjusted range values which appear rather high. This is an
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interesting result as 'short memory' autoregressive models have often
been cited in the literature as being incapable of reproducing the
high rescaled adjusted range values observed in very long geophysical
series.

The rescaled adjusted range function plot for the Lake Saki
data (Figure 11.29) shows a quite different result. The sample
autocorrelation function for this series shows a relatively small
lag-one coefficient of 0.24 and a lag-two coefficient of 0.17.

Beyond this value the autocorrelation function attenuates extremely
slowly. The partial autocorrelation function exhibits apparently
significant values out to about lag 20 and hence a 20 lag auto-
regressive model was fitted by solution of the Yule-Walker equations
(9.5). Figure 11.29 shows clearly that such a model gives values of
the rescaled adjusted range which are too low for values of the sub-
series length n greater than about 1600. The shape of the auto-
correlation and partial autocorrelation functions in this case give
some indication that a mixed autoregressive moving average (ARMA)
process might be appropriate. An ARMA model with one autoregressive
and one moving average term was fitted but the rescaled adjusted
range values produced were ccnsiderably smaller than for the 20 lag
autoregressive model. ARMA models of hiéher‘order than ARMA (1,1)

were not examined but such a study would be of interest.

11.7 The Rescaled Adjusted Range Function

The preceding analysis of various datz series and models
shows quite clearly the Qalue of the rescaled adjusted range function
as another weapon in the time-series modeller's armoury. The term
'rescaled adjusted range function' has been used deliberately because

of the analogy with the autocorrelation function. There is also an



120,

analogy between the comparison of the theoretical and sample
autocorrelation functions and the theoretical and sample rescaled
adjusted range functions. The former are functions in the domain of
lag and the latter in the domain of series length.

The analyses carried out in this chapter could perhaps have
been performed using the autocorrelation function. An inferred model
structure could have been used to generate many sequences of the same
length as the observed series. For each lag value the mean and
standard deviation or if necessary, the full empirical distribution
of the autocorrelation coefficient, could be determined and a
theoretical autocorrelation function plot prepared in the same way as
for the rescaled adjusted range. The sample autocorrelation function
could then be superimposed on the theoretical function to see whether
the model appeared to adequately preserve the observed autocorrelation.
Such a procedure'might be regarded as assisting in model identificatior
as well as diagnostic checking, two tasks kept separate in the Box
and Jenkins approach to modelling (see section 9.6 of this report).

The'theoretical rescaled adjusted range and autocorrelation
functions have been seen to be related. The expected value of the
autocorrelation coefficient as well as presumably its sampling
distribution depend only on the process autocorrelation structure.
The expected value of the rescaled adjusted range appears also to
have the same attribute whilst its sampling variance has been seen
to be largely unaffected by changes in the marginal distribution of
the process as seen in Chapter 10.

The close relationship between the two functions raises the
question as to what additional insight is gained by the use of the
rescaled adjusted range function. Indeed Hipel and Mcleod (1978a)

show that in a sample of 23 geophysical time series the construction
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of autoregressive and mixed autoregressive-moving average models
involving close attention to the preservation of the sample
autocorrelation, led to the general preservation of the rescaled
adjusted range. It can be arqgued that good modelling practice, where
'good' implies the paying of careful attention to autocorrelation
without explicit consideration of the rescaled adjusted range, will
in fact lead to models which perform satisfactorally as far as the
rescaled adjusted range is concerned.

. The value of the use of the rescaled adjusted range function
in model building lies in the direct hydrological significance of the
rescaled adjusted range statistic. Autocorrelation coefficient values
measure the degree of association between series values at different
lags. The rescaled adjusted range statistic however measures the
consequence of the various degrees of association at all lags as they
affect the amount of storage required to deliver a yield equal to
the series mean. The modeller is able therefore to work directly
with a statistic which is closely related to what is in many cases
the aim of the modelling effort, that of generating realistic synthetic
sequences for storage analysis. Even if storage analysis is not the
aim, it is difficult to imagine a situation in time-series modelling
where the preservation of the sample autocorrelation would not be
desirable. The rescaled adjusted range function assists by providing
an alternative integrated view of the sample autocorrelation.

It should be noted that in the case of two of the series
analysed (Figures 11.17 and 11.26), the autocorrelation structures
indicated by the autocorrelation and partial autocorrelation functions
led to models giving apparently unsatisfactorily low values of the
rescaled adjusted range. It is possible that more rigorous model

identification and parameter estimation procedures would have
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corrected this. At the very least the modeller is warned of apparent
deficiencies in his mouael.

In the situation where a particular time series is to be
modelled it would be desirable to be able to show by statistical test
that a particular model preserved the rescaled adjusted range.
However, the main interest in model performance as regards the rescaled
adjusted range is at higher values of the sub-series length wh;re
only one independent value is available and statistical testing is
not possible. The autocorrelation function also suffers this draw-
back as only one independent value of the autocorrelation coefficient
is available at each lag for the particular sample series length,
Statistical inference can be used however in both cases to reject,
but not accept, the null hypothesis that the sample value is drawn
from the theoretical population. Rescaled adjusted range function
values falling more than, say, two standard deviations away from the
mean theoretical value would be unlikely to occur by chance given the
truth of the null hypothesis. This would indicate at the 95%
significance level, given the approximate normality of the distrib-
ution of the rescaled adjusted range, that the particular model
does not preserve the statistic.

This chapter has presented a rather exploratory examination
of the usefulness of the rescaled adjusted range function in time
series modelling. Model fitting has been of necessity approximate
but hopefully adequate for the purpose of illustrating the worth of
the approach. The remaining chapter will conclude this report with

some general discussion on the rescaled adjusted range and the 'Hurst

Phenomenon'.
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CHAPTER 12: CONCLUDING REMARKS

12.1 Introduction

This report has presented a study which might be regarded
as a general exploration of the usefulness of the rescaled adjusted
range statistic in the field of stochastic hydrology. An inseparable
part of the study has been an examination of the so~-called 'Hurst
Phenomenon!',

The main thrust of the study has been towards the comparison
of observed and theoretical rescaled adjusted range values presented
in Chapter 11. It is in this series of figures that the real value

* %
of the statistic Rn in synthetie hydrology can be seen.

This chapter will present some concluding remarks about the
three main.areas of interest in the study;

(i) Properties of the rescaled adjusted range which
provide a basis for the comparisons of observed and theoretical
rescaled adjusted range functions presented in Chapter 1.

(ii) The results of the compaiisons presented in Chapter 11.

(iii) The 'Hurst Phenomenon',

12.2 Properties of the Rescaled Adjusted Range

A large part of this report has been concerned with
>

properties of the Rn statistic in theoretical processes and the
structure of the processes themselves. This has been necessary to
establish the validity of the comparisons made in Chapter 11 and the
conclusions drawn from them.

The process models examined were of the general class of
short-memory autoregressive and moving average models of which the

simple lag-one Markov model is a member. These models are in
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common use in synthetic hydrology. It has been repeatedly claimed
in the literature that they are not capable of generating synthetic
sequences which have R:* values similar to those observed in real
data series.

It was shown in the report that for the processes examined
the rescaled adjusted range is approximately normally distributed for
medium to large values of series length n. This feature enables the
construction of an approximate 95% confidence region around the
expected values by drawing confidence lines at plus or minus two
standard deviations distant from the expected values.

It was also shown for the processes examined that the

* *
expected values and variance of Rn are unaffected by the process

* %
mean or variance. The expected values of R are also unaffected,
n

*n
and the variance of Rn only slightly affected, by changes in process

skewness. These properties of R:* mean that the rescaled adjusted
range function of a process depends only on the autocorrelation
structure of the process. The confidence region around the function
is as well quite insensitive to factors other than the autocorrelation
structure of the process. It is not necessary therefore to determine
model parameters relating to process mean, variance and skewness
when examining the rescaled adjusted range function of the process.

It was noted that the sample rescaled adjusted range
function obtained from the observed series can be regarded as an

alternative view of the underlying autocorrelation structure to that

provided by the sample autocorrelation function.

12.3 Comparison of Observed and Theoretical Rescaled Adjusted Range

Functions

The figures in Chapter 11 presenting comparisons of observed
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*% :
and theoretical Rn functions show the sample function from the -

observed series superimposed on the approximate theoretical expected
value function and its surrounding confidence region. The comparison
does not provide a statistical test designed to prove that the
proposed model preserves the rescaled adjusted range of the observed
series, but it does give an indication of the model's performance in
this regard.

Twenty different data series were examined in Chapter 11.
They consisted of annual and standardised monthly river flows, annual
rainfalls, North Finland tree ring indices and the Lake Saki mud
varves., The autocorrelation and partial autocorrelation functions of
each series were used to identify an appropriate short-memory process
model,

Reasonable agreement was found between the observed and

* % .
process Rn functions for sixteen of the twenty cases. In these

cases the sample R:* values all lie within plus or minus two standard
deviations of the estimated expected value of R:* for the process.
In nine of the cases the sample R:* values lie largely within plus or
minus one standard deviation.

. * %

In the remaining four cases it was fand that sample Rn
values fall outside the approximate 95% confidence region indicated
by lines at plus or minus two standard deviations from thelprocess
expected value. The series in question are the annual flows and
standardised monthly flows in the Macquarie River at Burrendong
(Figures 11.17 and 11.21), the annual rainfalls at Balranald (Figure
k11.26) and~£he series of Lake Saki mud varves (Figure 11.29). It was
pointed out in the report that, for the first three of these series

at least, the assumption of a moderate increase in the degree of

autocorrelation above that indicated by the sample autocorrelation
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and partial autocorrelation functions would lead to reasonable
agreement between the sample and process R:* functions. The
uncertainties surrounding the identification of the true underlying
autocorrelation from the sample autocorrelation and partial auto-
correlation functions were pointed out. The suggestion was made that
in such cases, and where the storage character of generated synthetic
sequences is of importance, the autocorrelation structure of the
assumed model should perhaps be adjusted to give reasonable agreement
** '

between the sample and process Rn functions.

In the case of the Lake Saki mud varve series (Figure 11.29)
the assumed 20-lag autoregressive model is clearly quite incapable of

+* %
generating sequences having values of Rn large enough to match those

of the observed series. The inadequacy of the model is apparent at
values of series length n above about 1600. The distinguishing feature
of the Lake Saki series is its very long length compared with the other
series examined. The reasons for the inadequacy of the assumed model
are certainly an interesting area of further investigations.

From this study it appears that short-memory autoregressive
and moving average models are quite adequate in most cases for
generating sequences which have realistic values of the rescaled
adjusted range. This is particularly so for the range of series
lengths likely to be of interest in hydrologiéal design. In any case
the comparison of sample and process R:* functions provides a method
for judging the adequacy of the model in this regard.

It was also seen in the report that a valuable feature of the
comparison of R:* functions is the ability to discriminate between

various models proposed for a given series. This is clearly seen in

Figures 11.18 and 11.19 for example, in which the advantage in using
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the appropriate three-lag autoregressive model for the series of
standardised monthly flows in the Kiewa River at Kiewa, rather than
the single lag model, is quite apparent. The single lag model would
* %

generate sequences having unrealistically low values of R which
n

could have serious implications for hydrological design.

12.4 The Relevance of the Rescaled Adjusted Range to Reservoir

Storage Design

This study has been very much concerned with the problem of
choosing models which generate synthetic sequences having realistic
values of the rescaled adjusted range. The question which now arises
is that of just how important is this aspect of model performance,
particularly in the area of reservoir storage design.

The role of a stochastic model in reservoir storage design
is to generate many realistic synthetic sequences, all equally likely
to occur in the future. The length of each sequence might be set
equal to some assumed 'economic' life of the project. The operation
of the reservoir system can be simulated using each of the synthetic
sequences and a relationship obtained between risk of failure to
supply and storage size for some assumed release rule. This relation-
ship can then be used in an economic study inQolving benefit and cost
functions to determine the economic optimum storage size.

Now assume that the above-mentioned stochastic model
preserves the rescaled adjusted range in the observed series. The
many synthetic sequences generated by the model can be analysed and
the value of R** determined from each at n equal to the sequence

" L2
length. Etach value of Rn represents the minimum reservoir size
required to deliver a constant supply equal to the mean inflow for the

sequence. The mean of all the reservoir sizes determined from the
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sequences will approximate & (Rn ), the expected value of Rn for

the stochastic process underlying the observed series. It is apparent
therefore that the model preserves the 'storage character' of the
observed series. However a knowledge of the value of E(R:*) gives no
information about the probability that a reservoir of such size will
fail to deliver a constant supply equal to the mean inflow in the

case of a single sequence sampled from those generated by the model.
It is this latter type of information that is requirgd for economic
decision making.

The value of preserving the rescaled adjusted range lies
however in the need for realistic synthetic sequences in the design
procedure. Fiering (1967) stated this point quite clearly in terms
of the adjusted, but not rescaled, range R:. "It is appropriate to
repeat that no special nobility is ascribed to E(R:) as a design
decision; rather any generating model recommended for design purposes
should, as a matter of consistency, be capable of reproducing the

essence of observed storage behaviour ......"

12.5 The Fiering (1967) Approach to Synthesis of Streamflow Data

Fiering (1967) discussed synthetic data generation in the
context of the reservoir storage design problem. As the statement
quoted in the previous section reveals, he saw the preservation of
the adjusted range as a necessary attribute of a stochastic model if
it is to produce realistic data to be used in economic decision making.

The technique presented in this study, of comparing R:*
functions to establish whether or not a particular model appears to
preserve the reecaled adjusted range, is to some extent e refinement of

the approach used by Fiering.

Fiering saw a need to consider multi-lag autoregressive
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models in some cases to preserve the adjusted range. He established
a set of criteria unrelated to the adjusted range statistic for
deciding the number of autoregressive terms to be used in the model.
The maximum number of terms considered was twenty. Additional
autoregressive terms were added until there was no improvement in the
degree of multiple correlation between the actual terms in the data
series and the preceding terms at the lags included in the model.
Numerical instability in the calculated autoregfessive parameters was
another criteria for ceasing to add additional terms.

Fiering used the approach described above to fit models to
fifteen data series. For each of the models identified he obtained
by computer simulation the expected value of the adjusted range, E(R:),
at the value of n equal to the length of the observed series. He
prepared a plot of the log E(R:)/s versus log n values in the
same manner as Hurst (1951). He found that the regression equation
fitted by Chow (1951) to Hurst's data also was a close fit to his own.
Fiering took this result to be an indication that models fitted using
his technique would in general reproduce the 'Hurst Phenomenon' or,
expressed differently, would preserve the adjusted range.

The difference between Fiering's approach and that presented
in this study is that in the latter the ability of the individual
model to preserve the rescaled adjusted range is explicitly examined.

Fiering's (1967) results have been incorrectly used by
other authors to argue that short-memory models in general require
very many autoregressive terms to preserve the rescaled adjusted
range for even short series lengths. 0'Connel (1977) makes the
¥ollowing statement. "In applying multi-lag autoregressive models
Fiering (1967) found that he required a 20-lag model to ensure Hurst's

law .... with B> 0.5 held for n £ 60. Computational, not
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statistical, grounds prevented an extension of this approach". A
similar statement is also made by Mandelbrot and Wallis (1968). In
fact Fiering may well have chosen other criteria leading to models with
fewer autoregressive terms and still have found that they preserved
the 'Hurst Phenomenon'. The results of this study show that simple
short-memory models are in general capable of preserving the rescaled
adjusted range over the series lengths of interest in hydrological

design.

12.6 The Hurst Phenomenon

It would appear from the discussion in this report that
much of the behaviour of the rescaled adjusted range in real data
series can be simulated by simple short-memory stochastic models. It
has been strongly argued in the report that such models are generally
satisfactory for hydrological design purposes. It is not surprising
however that simple stochastic models may not be able to reproduce all
the complexities of real data series. Stochastic models are, of
course, mere mathematical abstractions and their structures bear no
relationship to the real physical processes they attempt to mimic.

The important question is that of whether the synthetic data produced
by the model is realistic enough to be useful for the purpose at hand.

Some authors have argued that there are important differences
between the behaviour of the rescaled adjusted range in long series of
real data and that in long synthetic series produced by short-memory
process models. In particular it is claimed that the slope of the log
R:* versus log n plot constructed for real series does not exhibit the
convergence to an asymptotic slope of 0.5 that is exhibited by'aeriaa
produced by short-memory models. It has been illustrated in this

study (Sections 5.3 and 8.3) that with short-memory processes the
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convergence to 0.5 occurs very slowly and is slower with increasing
process autocorrelation. Real data series can be thought of as one
realisation of an underlying stochastic process. It was shown also
(Section 8.1) that for single series realisations of short-memory

* %
processes, the sampling variability of R led to large fluctuations
n

in the slope of the log R:* versus log n plot, particularly at larger
n values. This was seen to make estimation of the true underlying
slope quite difficult. In this study log R:* versus log n plots of
five different series were examined. Two of the five plots (Figure
8.3) gave the visual impression of convergence of the slope to some-
thing of the order of 0.5. The other three plots (Figures 8.4 and
8.5), which included the results of the analysis of the longest series
available, the Lake Saki mud varves (n = 4180), did not indicate
convergence of the slope to 0.5. All plots showed large fluctuations
in slopes at the higher n values.

From the results of this study it would appear that it can
not be stated without doubt and as a general truth that short-memory

. * %
processes fail to preserve the behaviour of the slope of the log Rn
versus log n plot in long series of real data. However, sheuld this
be the case, the question remains as to the significance to
hydrological design of such a failure.

One physically plausible reason why short-memory process
models may not fully reproduce the behaviour of the rescaled adjusted
range in long geophysical series data series is non-stationarity. It
is possible that climatic changes occur more or less randomly bringing
about abrupt shifts in the mean level of geophysical processes.

Models of non-stationary stochastic processes have beén proposed by

Hurst (1957), Klemes (1974), Potter (1975) and Boes and Salas (1978).

These models are capable of producing synthetic data series in which
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% %
convergence of the log Rn versus leg n slope to a value of 0.5 occurs

extremely slowly. These models have been proposed as alternatives_to
complex stationary process models such as fractional gaussian noise
(Mandelbrot and Wallis, 1968).

In regard to the relative merits of non-stationary and
stationary stochastic models, O'Connel (1977) makes the following
statement. ".... non-stationarity is a rather intractable assumption
if the ultimate aim is to generate synthetic flows; provided
stationary stochastic processes which can reproduce the Hurst
Phenomenon are available, these would appear to be more desirable
for application in the planning of water resource systems, provided
strong physical grounds do not inhibit their use". It has been shown
in this report that simple stationary short-memory stochastic
processes do, in many cases, "reproduce the Hurst Phenomenon" over the
range of values of series length encountered in available hydrological
records,

* %

Concern with the slope of the log Rn versus log n plot at
very large series lengths may be appropriate where it is desired to
synthesise a very long record which is to preserve features consistent
with the possible non-stationary nature of long geophysical series.
This is not the usual aim of data synthesis for hydrological design.
The usual aim is to produce many equally-likely sequences of some
fairly short length equal perhaps to the assumed econamic life of the
project. The use of a stationary short-memory model in this setting,
implies that the short-term past and the short term future may be
assumed to be manifestations of a stochastic process which can be
regarded as stationary at least over such a period of time. Attempts
to use non-stationary models or complex models such as fractional

gaussian noise in this setting imply that the uncertainties associated
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with, say, climatic change in the future are to be gathered into the
many short term futures used in the design process. The choice
between the two approaches is a problematical one for the designer.

It is appropriate to conclude this discussion with the words
of Klemes (1974), "There is no doubt about the importance of the
Hurst Phenomenon. It seems, however, that its import is not in
reducing the uncertainties of storage reservoir design but rather in
helping us to understand them, to realise the complexity and
unpredictability of hydrologic processes and the limits of our know-

ledge".
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APPENDIX COMPUTER PROGRAMS DEVELOPED FOR THIS STUDY

Gencsral Information

Computer Environment: Control Data CYBER installation at the
University of New South Wales. KRONQS

operating system. BATCH mode.

Language: FORTRAN IV

Program GENRATE

Program Description: Generates and writes to a file a nominated
number of values from a specified lag-one

Markov or ARMA (1,1) process.
Program Listing: See page 141.

Further Comments: Sub-routine MHNRAND returns normally distributed
pseudo-random numbers of zero mean and unit
variance and was a pre-existing routine used
within the School of Civil Engineering,
University of New South Wales. This routine
contains non-standard FORTRAN IV and it can be

replaced by an equivalent local library routine.



Program RANGE

Program Description:

Program Listing:

Program DSRGE

Program Description:

Program Listing:

Further Comments:

140.

Reads the record to be analysed from a file.
Determines the rescaled adjusted range and the
Hurst coefficient K for the available non-
overlapping sub-series at the nominated sub-
series lengths. Determines mean values of the
rescaled adjusted range and K at each nominated

sub-series length.

See page 142

Generates a nominated number of independent series
of nominated lengths using a defined ARMA (1,1)
process model or autoregressive process model

of up to 20 terms. The process random component
may be distributed like GAMMA with a given
skewness. Values of the rescaled adjusted range
and the Hurst coefficient K are determined for
each series. The mean values, standard deviations
and skewness of R:* and K at the nominated lengths

n are then determined.
See pages 143-146.

For comments on sub-routine MHNRAND see previous

comments on program GENRATE.
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PROGRAM GENRATE(QUTPUT, TAPE2sOUTPUT, TAPE]3)
CNOMMON TNIT,V(100)
DIMENSIUN AV(1000)
niz=hle
INITZ21234567
SMHEANSO,0
STAND=1,0
PHI=, 92 )
THETAS 70
PONES, 24
IGENE]
po 100 I=1,100
CALL MHNRAND(RN)
V(1)=RN
100 CONTINUF
CALL DGDRAND(RN)
RVNEWSHE
AVOLD=0,
pu 200 1=1,100
RVULD=RVNEW
CALL DGDRAND(RN)
RVNEW=RN
1F(IGEN,EQ,.Y) WASTESSMEANPH] $ (AVOLD=SMFEAN) +STAND* (RVNEW=THETA
16RVOLD)
TF(1GEN,EQ,2) WASTERSMEAN+RONE®* (AVOLD=SMEAN) +RVNEW*STAND*SQRT
1 (1 *"RONE*RUNE)
AVOLD=2WASTE
200 CONTINUE
: DO 300 I=1,N1
RVOLD=RVNEW
CALL DGODRAND(RN)
RVNEWSRN
IF(IGEN,EQ.1) AV(I)SSMEANSPH1®*(AVOLD=SMEAN)+STAND* (RVNEW=THETA
1 ¢RVOLD)
IF(IGEN,EQ,2) AV(I)OSQEQNQRONH§(AVULD-SMEAN)0RVNEV$STAND‘SQRT
1 (1 ~RONE*RONE)
AVOLD=AV(])
300 CONTINUE
WRITE (3,5) (AV(1),I=1,NI)
5 FORMAT(6X,12F6,2,2X)
STOUP
END :
SUBROUTINE MHNRAND (RANDNUR)

THI1S RUUTINE GENERATES NORMALLY DISTRIBUTED PSHUDO=RANDOM NUMBERS
UF ZERU MEAN AND UNIT VARIANCE BY A MULTIPLICATIVE CONGRUENTIAL
PRUCEDURE FOLLOWED BY A REVERSE BOX=MULLER TRANSFURMATION,

: INITIALISLING NUMBRER SHOULD BE AN ODD INTEGER

COMMOM INIT,V(100)

NInT 2 SHIFT(INIT,10)

INT = INTTHINITHINITeNINT

INT = INT ,AND, 0000377777777777177178
REALNO = FLUAT(INT)$2,0%%(=47)

NINT = SHIFT(INT,10)

INIT = INTH+INT®INTNINT ) »

IRIT = INIT AND, 000037727777777777778
REALNP = FLUAT(INIT)®*2,0%%(=47)

RANDNOR = SIN(REALNO®%6,2831853071796)%SQ0KT(=2,0*ALOG(REALNP))
KETURN

kND

SUBROUTINE DGDRAND(R)

CUOMMON IN]IT,V(100)

IR = 100SRANF(AK) ¢ |

R = V(IR) |

CALJ, MHNRAND (RR)

V(IR) = KR

RF. TURN

F.ND
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PRGGRAM RANGE(OUTPUT, TAPE2=0UTPUT,TAPF3,TAPE4)
DIMENSION QTS(45003,IN(100),X(4500) ,IFMT(3)
READ (3,11) TITLE T

READ (3,10) NI

READ (3,10) NT

READ (3,10) (IN(I),I=1,NT)

READ(3,10) ILIST
READ (3,11) (IFMT(IL),

1=1,3
READ (4,IFMT) (QTS(l),I=i,

NT)
WRITE (2,19) TITLE )

WRITE (2,20) NI

WRITFE (2,21)

WRITE (2,23) (INCI),I=1,NT)
WRITE (2,22)

DO 900 I=1,NT
RSUM=0,
NA=IN(I)
KN=NT/NA
KR=0
DO B0O K=1,KN
DO 700 J=1,NA
KR=KR+1
X(J)=Q0TS(KR) .
700 CONTINUE ‘ o
CALL HART(X,NA,RS)
IF(KN.GT.1,AND,ILIST,EQ.1) WRITE(2,35)RS
RSUM=RSUM$RS
800 CONTINUE o o o
RSUM=RSUM/KN =~ 777
WRITE (2,30) NA,RSUM,KN s e
900 CONTINUE o

10 FORMAT (16i5)
11 FORYAT (3A2)
19 FORMAT(10X,FILE ~7,3R10, 7 — 7 oo
20 FORMAT(10X, 'NUMBER OF ITEMS IN SERIES’,15)
21 FORMAT(10X, "DETERMINATION OF RESCALED ADJUSTED RANGE FOR N &°)y "
22 FORMAT(//,11X,°N’,11X,* R/S *,8X,*'MEAN OF K VALUES®,/,37X,°K*,/)
23 FORMAT(54X,615) h
35 FORMAT(20X,F10,2) )
sTOP e - B
END
SURROUTINE HART(X,NA,RSY
DIMENSION X(1)
CALL MDEV(X,NA,XM,XD) ~ 7777 7T e e e
SUMDEV=0,
SURPLS=0, T T
DEFICT=0,
DO 900 I=1,NA T ST
SUMDEV=SUMDEV=XM+X (1)
IF(SUMDEV,GT,SURPLS) SURPLS=SUNMDEV
TF (SUMDFV,.LT.DEFICT) DEFICT=SUMDEV
RGE=SURPLS=DEFICT
RS=RGE /XD
900 CONTINUE ~ = 7 ) T ) "
RETUKN
END - B o

SUBRQUTINE MDEV (X,NA,XM,XD)
DIMENSTION X (1)
SUMM=0,
SUMnD=0,
DO 100 I=1,NA
SUMM=SUMMeX (1)
100 CONTINUE
XM=SUMM/FLOAT(NA)
DO 200 1=1,NA
SUMD=SUMD+ (X(1)=XM)¥(X(I)=XM)
200 CONTINUE
SUMD=SUND/FLOAT(NA=Y)
XD=SQRT(SUMD)
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CONTINUE -

MAIN LOOP

DN S0n =), SEG
CALL SFEDC(INIT)

o — —— - st

GENRATF SINGLE SEOUENCE LENGTH LSEQY

Jen

- ACHUMULATF STATISTICS FOR EACH SURSERIES-LENGTH ——-

CALL RFNRATE (PHIJJLSEOT,VAR,VARP) ) . ( ;

DO 60N Lm]oNTFEST

’QU“_ . Ciavmwe s Loy eee mei= e
X<Su>=h
LeFazLséngiL)
DN 3N JUs1,LSEN
Xsva9 tJ)

XS IM=XQ|IMe X Cee et e e cemre o wes mamee s wwea
XQ““’:VGUN?oxox

COMTINLE

SY=FLNATILSFNY - - e —— e
XUFAL=xyQIIM/QN
XSTR=CNFVRISNoySUMP o XMEAN) v e o e o e

—— T s R

RER R e— — e
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DO &nn J=1,LSEQ

L N e
uv - +

1F (SUMREV ,6T,SURPLS) SURPLS=SUMDEV

IF(QPVDFV LT DEFICT) DEFICT=SUMDEV e e

p=curel s-NEFiCT .

CONTINUE .

R=2/YSTD - .
IF(NTFILE,NE.L) GO TO 650 ’ -

M=use] o

1F(NTFILEL,EQ,L) RFILE(M)=R

PSU“(L)=°SUM(L)¢R )
PSP (L) =FSumM2 (L) +ReR . s
TREUMAL ) =KSyYM3 (L) +ReReR
~nL=Aan(p)/ALnG(SN/?.)
pLAUM (L )Y=FLSUMIL) +RL -
PLCU“?(L)=FL§UM?¢L)¢QL°RL
plLelua (L) =RLSUM3 (L) +RLERL *RL e e
CONTTINRUE
CONTTIMNIE

SN=FLOAT(NSED) L .
DO 7NN L=)oNTFST - - - -— e
LSFR=sLSENJIL)

PuUFAN=2SUM (L) /SN

RETN=SOFVR (SN ¢RSUMP (L) s RMFAN)

REXFw=Q<Ew (SN, oSU“!(L).RSUMZ(L).RMEAN),

pLPEA*-QLQUV(L)/SN

RLSTN=SNEVR (SN, PLSU“?(L).RL"EAN
RLSXEW=SKEW (SN _RLSUM3I(L)RLS & s RLMEAN)
WETTE (2+20)LSEQ, EAN.pqvo.R LMEAN, RLSTD.RLSKEH NSEQ
FOPUAY cts.sx.arlP.a.arl?.S.I
FORMAT (/4% R/S VALUES FOR N=¢ ,15. wnITTEN T0 TAPE3(10FR 3)%477)
FORMAT (10FA,3)
FODUAT (3IXe P IBFN = 102,43 == ARMA(101) 1AR(150) VAR (NPMI»0) ¥ 4773
13X PIAFN = 1,]247Xe tNFH] = Vo12¢//793X9'SERIES MEAN® 44X,y 'SERJES ST,
POFV 1 o 3X o ' THETA Y 44X ST, DEV,0F RANDOM VARIATE Y ¢//e3XeF11,3¢5Xe
AFT].3e6XeF6 316X eF6,34//93Ks "PHIINLAG) 14/ RF10434//)
FAOUAT (7e3R VSHERNESS OF RANDOM VARIATE = ',F5,3)
FORMAT(/s' SAMPLE OF 200 GEMEKATED VAKIABLES WRITTEN TO TAPE4?) —
FORUAT(1&]15)
FOEMAT (14F5,2)
FORMATY (3F10,3) : o S
anuatth.-uonlrleo WILSON=HILFERTY TRANSFORMATION'o
1'PARAMEFTERS (KIRRY=W,RES,RES B(5)=1972)~==AByGr'e3F10.5) .
FODMAT (//e5XetNV4OX s tMEAN R/SY 42X tSTU,DEV R/SY 94X *SKEW R/S?,
12;.;;?&; K 192Xe?tSTD,NDEV K 143Xy tSKEW K 19 SAMPLE SIZE?')

WA M . R I

E(1)el=14NSEQ)

IF(\TFILE.NE.n) WRITE(3,40) (RFIL
Trp

coMuny - INTT, véloo).susaw.sTAND s THETANPHI s SDRAN)GAMA, IGEN
COAMMNN WHA L WHRWHG
ENFYR=CQRT ((SUMXC= anxMﬁhNGX“EAN)/(SN“l 0))

RFTURM - e —
Ful .

FUMCTTION SKEw(SN-SUMX3.SUVX2.XM¢AN).

COMUON INIT.VénOn)oSMEAN.STAND.TﬁETA.NPHI.SDRANWGAMA-1GEN‘

go;vng 5§€‘§”o°§ﬁ“( MEANB @3 0) 3,08 XMEANOSUMX 2-SN MEAN Q)
rFw=S +3, 005N (XMEANS®3 0 )= & XMt *Sy =3N& { XM No &

SKFAN=QrEwBSN/ ((SN=],0)® (SN=2,0)) tx 23

g;;n::KEw/( SOEVP(SN.%UMXZ.XMEAN))903 0)

£r.0n

SURPOHTINE GENRATE(PHTIJWNTAVAVP)
COMMON TNIT.Vé)OO).SMEAN GTANDvTHETA.NPHI.SDPAN,GAMA.IGEN“"
COMMAORL WHA W™ wHG

DIUFNSION AVI4100) +PHIJ(20)sAVP(20)TEMP(20) ___ _
IF(IGEN,EQ,3) GO TO 400

DGRAND(AN) PETY pNs SINGLE RANDOM (0,1) VARIATE — —-
CeLL NGDRAND(R

RVMFW=RN

AVOLD=AVP(]) ’ R —
DO 200 T=16450
RVNLD=RAVYEW
CALE reORAND (RN)
RVYNFw=RN
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TF(IRFN,FOL1) WASTE=SMEANGPHIV(1)®(AVOLD~SMEAN)+STANDS .

1SNHPANS (RVIE d=THETASQYOLD)
!F(YPFN FG,2) VASTEasMFAN‘PH!J(I)'(AVOLD-SMEAN)ORVN:d'STAND
AVNLN=aiSTE

ConYINUF

DN 360 I=)1eN1

- AVOLD=PVNF W

- 600
YY)

700
. Qo0

100

caLL PCD?LND(QN)
ByNEw=DN

1z:6683? EO l) AV(I)=SMEANSPHIJ (1) ® (AVOLD=SMEAN) +S AND°tRVNEH-THETA
XP(!GFN.EO ?) AV(!)ISVEaNopﬂtJ(l)“(AVOLD-SMEAN)‘RVNENOSYANDGSDRAN
AVOLNeAV(]) B

COMNTINUF .

GO 10 Q00

CONTINUE R - -
NT=MNTeEN

DO 700 I=14N o
caLL be DAND!DN)
RVNMEw=DN

AVal =CrFANGSTANDESDRANSRYNEW.
DO S8R0 JJ=1 NPH]T

AV AvAL‘fAvPcJJ>-%MEAN)-PHIJtJJ)

oYy !’UF
DO &6 Jd= la“DH!
TEVP (JJY=AVP (JJ) . ) e
CONTINUE
DN A&ND JSJ=? NPHT
AVP (JJ)=TEMP (JJU=]) e e
CONTINGE
17240} aver-se

"t 3 (1= =AVAL
CONTang v ' vaL
CONTINOE
PFTURN o
Fﬁ,-r\

SURRDUTINE MHNRAND - (RANDNOR)

THIS PNUTINE GENERATES NOPMALLY D!STRIBUTFD

PSEUDO M NUMBERS
OF 7FRN MEAN AND UNIT VARIANCE BY A TIPLIg:Lé:g

ENTIAL ——
PRNCENPURE FOLLOWED RY A RFVERSE ROX-MULLFR .

INTTIALISING NUMBER SHOULD BE AN ODD INTEGFR™

kdg )]
i POD>
; -2Z2Z
i =4O

oo

ZC

COVMMON INTTWV 100)cSMEANoSTANDoYHETAoNPHX'SDRANoGAMAoIGEN———un—_____
COVVON wWhHAoWH
NINT = Sﬂ;FT(lulToIO)
IMT = INTTeINITOINITHNINT s s
INT = INT .AN? NONOATTTITITTITTITITTITTITYIB
RFEALNO = FLOA tynr,.p,o.o( 'S 3 B L
NINT = SHIFT(INT.10)
INTT = INTSINTSINTeNINT
INIT = INIT JAND, A0OO0377777777277777718. ..
RFALNP = FLOAT(!P!T&.; L0006 (=67)
RANDNOR = SIN(REALNO®S, ?831953071196)'50R7(-2 oOALOG(REALNP))
WILSAMeHILFERTY 79A~qroaMATION¢KIRavos MODIFICATION)
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146.

CALL DGOHRAND(RN)
RVNEwWw=PHN
AVALSOMEAN+STANDSSDRANSRKRVNEW
D0 550 JJs) ,NPHI
AVALZAVAL+(AVP(JJ)=SMEAN)*PHILJ(JJ)
550 CUNTINUE
DO 600 JJ=1,NPHI
TEMP(JI)=AVP(JJ)
600 CUNTINUE
DU 650 JJ=2,NPHT
AVP(JJ)=TFMP (JJ=1)
650 CONTINNHE
AVP(1)=AVAL
IF(1,GT,50) AV(]1=50)=AVAL
700 CUNTINUE
900 CONTINUE
HETURN
END
SUBRUUTINE MHNRAND (RANDNOR)

THIS ROUTINE GENERATES NORMALLY DISTRIBUTED PSEUDO<RANDOM NUMBERS
OF ZEKRO MEAN AND UNIT VARIANCE BY A MULTIPLICATIVE CONGRUENTIAL
PROCEDURE FOLLOWED BY A REVERSF. BOX=MULLER TRANSFORMATION,

INITIALISING NUMBER SHNOULD BE AN UDD INTEGER

CUOMMUN INIT,V(100),SMEAN,STAND,THETA,NPHI ,SDRAN,GAMA,IGEN
NINT = SHIFT(INIT,10)

INT = INITOINITHINITHNINT

INT = INT ,AND, 000037777777777177778B

REALNO = FLOAT(INT)*2,0%%(=47)

NINT = SHIFTCINT,10)

INIT = INTHINT#INTeNINT

INTT = INIT AND, 000037777777777727778

KEALNP = FLOAT(INIT)*2,0%%(=47)

KANDNUR = SIN(REALN(O%6,2838853071796)%SQRT(=2,0%ALOG(REALNP))

AILSON-HILFERTY TRANSFORMATION

IF(GAMA,EQ,0,.) GO TO 100

KANDNUR=(2,/GAMA) *((1,+GAMA*RANDNOR/6 ,=GAMASGAMA/36,)¢%3 =1,)
100 CUNTINUE

RETURN

e e ..

SUBRUUTINFE. DGDRAND(R)

CUMMON INIT,V(100),SMEAN,STAND, THETA,NPHL,SDRAN,GAMA,IGEN

IR = 100%RANF(AK) + 1

R = V(IR) T

CALL MHNRAND(RR)

V(IR) = RR T T e T oo T o

RETURN

END . e o e e e e e

SURROUTINE SEFD(ITS)

COMMON INIT,v(100),SMEAN,STAND, THETA,NPHI,SDRAN,GAMA,IGEN ~—~ ~
S=SECOND(T) %1000,
ITSTINT(S)
1TS=ITS+3333333

IF(MUD(ITS,2),EQ0,0) ITS=ITS+1
RETURN
END





