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(i) 

SUMMARY 

This study examines the usefulness of the rescaled adjusted 

range statist ic as an aid in the analysis of hydroloqic time series and 

the construction of synthetic data generation models. 

A definition is given of the rescaled adjusted range and other 

related statistics in terms of the 'residual mass curve' approach to 

reservoir storage design. A more rigorous definition is presented 

together with analytical results available in the literature for range 

statistics in theoretical processes. 

The pioneering work by Hurst (1951) in the use of the rescaled 

adjusted range in the analysis of hydrologic time series is reviewed. 

Perceptions of the 'Hurst Phenomenon' are discussed and various estimators 

of the Hurst exponent that have been proposed in the literature are 

described. It is pointed out that the erroneous comparison of sample 

estimates of the expected value of the Hurst exponent with its theoretical 

asymptotic value pervades much of the literature on the 'Hurst Phenomenon'. 

Sampling experiments with computer generated data sequences are 

carried out and show large sampling variation in the Hurst coefficient 

and the rescaled adjusted range. Difficulties in determining the underlying 

Hurst exponent from sample series are illustrated by examination of 

synthetic and real data series. 

The structure of 'short-memory' autoregressive and moving average 

stochastic process models are examined in detail and model identification 

and fitting procedures discussed. Useful properties of the rescaled 

adjusted range in these types of theoretical processes are identified and 

an analogy is drawn between the rescaled adjusted range function as a 

function of sub-series length and the autocorrelation funct ion as a 

function of lag interval. 



(ii) 

The comparison of observed and theoretical rescaled adjusted 

range functions is proposed as a design method for examining the 

adequacy of a stochastic model for reservoir storage design purposes in 

particular. Comparisons are made between observed and theoretical 

functions for many Australian and overseas hydrologie data series and 

series generated by appropriately identified models. In most cases the 

observed functions fall within an approximate 95% confidence region 

surrounding the theoretical function. Such comparisons discriminate 

between various model structures proposed for a given data series. 

In conclusion it is pointed out that a stochastic model should 

produce series showing realistic values of the rescaled adjusted range 

as a pre-requisite for application in the reservoir storage design process. 

Behaviour of the Hurst exponent which is not reproducible by 'short-memory' 

models in some cases may be an indication of a 'Hurst Phenomenon' in very 

long data series. Consideration of such an effect may not have much 

relevance to hydrological design. 
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CHAPTER 1 : AN INTRODUCTION 

1.1 Introduction 

The engineering hydrologist is a practitioner in the art of 

using the past to gather information about the future. He is called 

on to forecast future risks of floods and droughts and to construct 

likely future sequences of rainfall and streamflow. The important 

business of designing and operating systems for the exploitation, and 

hopefully the protection, of the accessible parts of the hydrological 

cycle depends for its success on such information. The often competing 

pressures on our water resources continue to grow and therefore the 

challenge of adequate resource management demands improvement in the 

engineering hydrologistes ability to provide information about the 

future, 

The only rational way to investigate the future is to learn 

as much as possible of what the past has to teach and put that 

information to careful use. The main difficulties are that the 

past historical record never seems long enough for the task and that 

the future will be quite different from the past in any case. A 

saving grace is the apparent order underlying the natural phenomena 

with which the hydrologist is involved. 

This study relates to the attempts by many investigators 

to analyse the underlying order in series of observations of rainfall, 

streamflow and other geophysical phenomena and also the use of such 

information to construct plausible future sequences of events. 
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1.2 T i m e - s e r i e s and S t o c h a s t i c P r o c e s s e s 

In this s t u d y a t t e n t i o n w i l l be f o c u s s e d on t i m e - s e r i e s of 

o b s e r v e d p h e n o m e n a p a r t i c u l a r l y s t r e a m f l o w . The i n s t a n t a n e o u s rate 

of flow in a s t r e a m is a c o n t i n u o u s v a r i a b l e w i t h t i m e , at l e a s t 

w h i l e flow is o c c u r r i n g . To f a c i l i t a t e a n a l y s i s , the c o n t i n u o u s 

s t r e a m f l o w r e c o r d is b r o k e n up i n t o e q u a l l y s p a c e d s e g m e n t s of time 

s u c h as a day, m o n t h or y e a r . The t o t a l v o l u m e of flow o v e r each 

s e g m e n t of time is r e g a r d e d as a d i s c r e t e q u a n t i t y or e v e n t and the 

s u c c e s s i o n of these e v e n t s at e q u a l l y s p a c e d time i n t e r v a l s is 

r e g a r d e d as a t i m e - s e r i e s of s t r e a m f l o w . M o n t h l y and a n n u a l t i m e -

s e r i e s of s t r e a m f l o w , r a i n f a l l and o t h e r g e o p h y s i c a l p h e n o m e n a are of 

i n t e r e s t in this s t u d y . 

N a t u r a l p h e n o m e n a such as r a i n f a l l and s t r e a m f l o w show a 

g r e a t d e a l of v a r i a t i o n and the e x t r e m e s of d r o u g h t and flood are a 

c o m m o n e x p e r i e n c e , p a r t i c u l a r l y in the A u s t r a l i a n s i t u a t i o n . W i t h i n 

this v a r i a b i l i t y h o w e v e r , the c o n c e p t of an a v e r a g e v a l u e of rainfall 

or s t r e a m f l o w is c o m m o n l y a c c e p t e d . E x p e r i e n c e t e l l s us that rainfall 

and s t r e a m f l o w a p p e a r to f l u c t u a t e a b o u t an a v e r a g e l e v e l w h i c h does 

not s e e m to c h a n g e g r e a t l y in the long term. 

To some e x t e n t it is c o n v e n i e n t to think of the r a i n f a l l or 

s t r e a m f l o w time s e r i e s as the o u t p u t from some u n k n o w n m e c h a n i s m or 

p r o c e s s . T i m e - s e r i e s w h i c h a p p e a r to have a c o n s t a n t mean l e v e l and 

a c o n s t a n t a v e r a g e v a r i a b i l i t y a b o u t that m e a n l e v e l o v e r a long 

p e r i o d of time are o f t e n r e f e r r e d to as b e i n g the p r o d u c t of a 

s t a t i o n a r y p r o c e s s of more s t r i c t l y a w e a k l y s t a t i o n a r y p r o c e s s . 

N o n - s t a t i o n a r i t y may take on d i f f e r e n t f o r m s such as trend 

or p e r i o d i c i t y . The n a t u r a l p h e n o m e n o n b e i n g o b s e r v e d may be u n d e r -

going s y s t e m a t i c c h a n g e as the r e s u l t of n a t u r a l p r o c e s s e s such as 

the g r a d u a l s i l t i n g up of a r i v e r or m a n ' s a c t i v i t i e s as in the case 
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of higher flood flows due to increasing urbanisation of a catchment. 

Observations affected in this way will contain underlying trends. 

Natural phenomena may have an underlying systematic variation which 

is repeated each period of a day, lunar month or year. Such period-

icity is usually evident in monthly streamflow series where mean 

values of streamflow,for example, may be lower in summer months than 

winter months. Such a time series of monthly streamflows would not 

be regarded as the product of a stationary process. However the series 

of all the January flows in particular, taken as an entity, might be 

considered to share a common mean and variance and therefore might be 

regarded as the product of a stationary process. 

Annual streamflow and rainfall series are often regarded as 

stationary or weakly stationary as they are not subject to any 

obvious periodicities. Whether or not such an assumption is valid, or 

whether random shifts in climate occur or hidden periodicities exist, 

is a puzzle which has occupied the attention of many investigators. 

This question has obvious implications for hydrological design and 

will be touched on later in this report. 

1 .3 Reservoir Storage Design 

Because of the variability of rainfall and streamflow the 

problem of storage is of great interest. Intuitively it would seem 

that the more variable the rainfall or streamflow 'process', the 

greater the amount of storage required to supply some fixed water 

demand at a given reliability. It would seem also that for the same 

rainfall or streamflow process and for a given desired reliability, 

the higher the required demand the greater the amount of storage 

required. 

A frequent task for the engineering hydrologist is the 
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estimation of the amount of storage required at a stream site to 

provide a particular level of water s u p p l y . One approach to this 

problem is often referred to as the critical period approach. In this 

method the reservoir is assumed to have operated throughout the 

time-span of the available historical record. The storage selected 

is such that satisfactory levels of supply would have been maintained 

over the historical period with the reservoir just reaching 

emptiness once in the period. The reservoir system therefore would 

survive the critical period in the historical record. Additional 

storage is sometimes added as a factor of safety. The rationale for 

this traditional approach is not that the historical record will be 

exactly reproduced in future, but that the approach provides an 

acceptable, if somewhat arbitrary, basis for design which makes use 

of some of the information available in the historical record. 

The drawback of the critical period approach to storage 

design is that very little indication is gained as to the risk of 

failure to deliver the desired water supply. This drawback is 

particularly significant for economic decision m a k i n g , as estimates 

of the risk to supply are essential for optimising the storage size 

with respect to irrigation benefits for example. It is this coupling 

of hydrologic analysis to economic decision making that has encouraged 

the search for different approaches to reservoir storage design. 

1.4 Synthetic Data Generation 

The streamflow series itself was earlier 

• escribed as the product of a process. It is a tr-."iDxing 

thought that the process might be discovered and the hanc £ OT' ;he 

mechanism cranked to turn out future sequences of flows. Stream 

flow is of course the product of a very complex physical process which 
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consists of a random input of rainfall which is modified by the 

catchment to produce the streamflow output. A study of the catchment's 

response to rainfall may lead to confidence in the ability to predict 

streamflow knowing what rainfall occurred. However, if the future 

sequence of streamflows is to be predicted, then the rainfall inputs 

themselves have to be predicted which is not passible. 

Given the impossibility of predicting the future sequence of 

rainfall because of its random or stochastic nature, a second best 

approach is to artificially construct a set of rainfall sequences, 

each sequence being equally likely to occur in the future. These 

sequences can be converted by the established non-random or determin-

istic rainfall-streamflow relationship into equally likely future 

series of streamflows. The artificially constructed or synthetic 

rainfall series can be generated by 'drawing numbers from a hat' so to 

speak. The 'numbers' in the hat would have to be such that a random 

sampling of them would generate synthetic rainfall sequences 

statistically indistinguishable from the real historical series. The 

underlying assumption would be that the past and the future both 

'obey' the same set of statistical rules. 

An alternative approach is to consider the streamflow series 

as the product of an unknown stochastic process in the same way as 

the rainfall series was considered previously. The process can then 

be represented by a numerical model which uses some form of random 

sampling as an input and which generates synthetic streamflow 

sequences directly. 

1.5 Storage Design Using Synthetic Data 

If realistic synthetic streamflow series can be generated 

then storage design can proceed using the criterion of risk of failure 
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to s u p p l y r a t h e r than t h e s u r v i v a l of the s y s t e m d u r i n g the h i s t o r i c a l 

c r i t i c a l p e r i o d . A t r i a l s t o r a g e v o l u m e can be a s s u m e d , the 

r e s e r v o i r o p e r a t i o n s i m u l a t e d o v e r m a n y s y n t h e t i c s e q u e n c e s and the 

f r e q u e n c y of f a i l u r e to s u p p l y n o t e d . In t h i s w a y t h e s t o r a g e d e s i g n 

p r o c e d u r e is a b l e to s a m p l e the m a n y d i f f e r e n t p a t t e r n s of s e q u e n c e s 

of h i g h and low f l o w s w h i c h are p o s s i b l e in the f u t u r e . 

S t o r a g e d e s i g n m e t h o d s h a v e been p r o p o s e d w h i c h r e l y on 

s y n t h e t i c d a t a g e n e r a t e d by p r o c e s s m o d e l s . T h e p r o c e s s m o d e l s in 

t u r n r e l y on r a n d o m s a m p l i n g e x p e r i m e n t s s o m e t i m e s r e f e r r e d to as 

" M o n t e C a r l o " t e c h n i q u e s . H a z e n ( 1 9 1 4 ) w a s t h e f i r s t to a p p l y such a 

m e t h o d to the p r o b l e m of s t o r a g e d e s i g n and w a s f o l l o w e d by S u d l e r 

( 1 9 2 7 ) , B a r n e s ( 1 9 5 4 ) , F i e r i n g ( 1 9 6 1 ) and m a n y o t h e r s s i n c e . 

An a l t e r n a t i v e a p p r o a c h f o l l o w s on f r o m the w o r k of Moran 

( 1 9 5 4 ) . In this a p p r o a c h the t h e o r y of s t o c h a s t i c p r o c e s s e s is used 

to d e v e l o p s t o c h a s t i c e q u a t i o n s r e l a t i n g p r o b a b i l i t i e s cf i n f l o w and 

r e l e a s e for a g i v e n s t o r a g e . F r o m t h e s e p r o b a b i l i t y s t a t e m e n t s the 

risk of f c i l u r e to s u p p l y can be o b t a i n e d . The r e a d e r is r e f e r r e d to 

D o r a n (1975) f o r a c o m p r e h e n s i v e r e v i e w of t h i s f i e l d . In g e n e r a l 

t h i s a p p r o a c h to s t o r a g e d e s i g n is m o r e e l e g a n t m a t h e m a t i c a l l y b u t 

l e s s f l e x i b l e in r e l a t i o n to c o m p l e x r e s e r v o i r s y s t e m s than t h a t 

u s i n g s y n t h e t i c d a t a . 

1 .6 The D e v e l o p m e n t of S y n t h e t i c D a t a G e n e r a t i o n T e c h n i q u e s 

T h i s s t u d y r e l a t e s to t h e task of c o n s t r u c t i n g s y n t h e t i c 

d a t a g e n e r a t i o n m o d e l s w h i c h f u l l y use the s t a t i s t i c a l i n f o r m a t i o n to 

be f o u n d in the a v a i l a b l e r e c o r d . T h e aim of u s i n g such m o d e l s is to 

p r o d u c e sets of r e a l i s t i c d a t a each of w h i c h is s t a t i s t i c a l l y 

i n d i s t i n g u i s h a b l e f r o m the h i s t o r i c s e q u e n c e . G i v e n the a s s u m p t i o n 

of the s t a t i o n a r i t y of the r e a l p h y s i c a l p r o c e s s , it is a s s u m e d t h a t 
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t h e s y n t h e t i c d a t a s e t s a r e a l l e q u a l l y l i k e l y to o c c u r in t h e f u t u r e . 

It s h o u l d b e n o t e d t h a t s u c h m o d e l s a r e o p e r a t i o n a l d e v i c e s in t h a t 

n o a t t e m p t i s m a d e to s i m u l a t e r e a l p h y s i c a l p r o c e s s e s . I n s t e a d t h e 

h i s t o r i c a l s e q u e n c e i s r e g a r d e d as a s e t of n u m b e r s o r d e r e d in t i m e 

a n d as s u c h i s a s a m p l e r e a l i s a t i o n o f a t h e o r e t i c a l s t o c h a s t i c 

p r o c e s s . T h i s s t o c h a s t i c p r o c e s s r e l a t e s to t h e r e a l p h y s i c a l 

p r o c e s s o n l y in i t s a b i l i t y to p r o d u c e s e r i e s of n u m b e r s a p p e a r i n g to 

h a v e t h e s a m e s t a t i s t i c a l c h a r a c t e r as t h e o b s e r v e d s e r i e s . T h i s 

p a r t i c u l a r f i e l d o f h y d r o l o g y r e l a t i n g to s y n t h e t i c d a t a g e n e r a t i o n 

h a s b e e n r e f e r r e d t o as o p e r a t i o n a l h y d r o l o g y , ( F i e r i n g - 1 9 6 7 ) . A 

m o r e c o m m o n a n d p e r h a p s m o r e s a t i s f a c t o r y t e r m i s s y n t h e t i c h y d r o l o g y . 

T h e s e a r c h f o r t e c h n i q u e s to c o n s t r u c t a d e q u a t e s y n t h e t i c 

d a t a g e n e r a t i o n m o d e l s a n d to t e s t t h e i r a d e q u a c y h a s l e d to a v a s t 

l i t e r a t u r e . A s t a r t i n g p o i n t f o r m u c h of t h i s w o r k w a s t h e s t u d y b y 

H u r s t ( 1 9 5 1 ) w h o e x a m i n e d m a n y s t r e a m f l o w , r a i n f a l l a n d o t h e r 

g e o p h y s i c a l s e r i e s r e l a t e d to h y d r o l o g i c a l p h e n o m e n a . 

H u r s t u s e d in h i s s t u d i e s a s t a t i s t i c w h i c h i s r e f e r r e d to 

in t h i s r e p o r t as t h e r e s c a l e d a d j u s t e d r a n g e . F o r s t r e a m f l o w s a n d 

o t h e r n a t u r a l p h e n o m e n a w h e r e s t o r a g e h a s r e l e v a n c e t h e r e s c a l e d 

a d j u s t e d r a n g e s t a t i s t i c is c l o s e l y r e l a t e d to t h e ' s t o r a g e ' c h a r a c t e r 

of t h e s e r i e s ; t h a t is, t h e e x t e n t to w h i c h s t o r a g e m u s t be p r o v i d e d 

to a s s u r e a r e q u i r e d s u p p l y . H u r s t f o u n d a d i s c r e p a n c y b e t w e e n t h e 

b e h a v i o u r of t h e r e s c a l e d a d j u s t e d r a n g e in r e a l d a t a s e r i e s a n d in 

s e r i e s of n u m b e r s r e s u l t i n g f r o m s u c h s i m p l e r a n d o m independc.it 

p r o c e s s e s as c o i n t o s s i n g a n d c a r d d r a w i n g e x p e r i m e n t s « He c o n c l u d e d 

t h a t r e a l d a t a s e r i e s h a v e c o m p l e x i t i e s w h i c h s i m p l e r a n d o m p r o c e s s e s 

d o n o t e m u l a t e a n d he w a s i n t e r e s t e d in t h e i m p l i c a t i o n of t h i s 

r e s u l t f o r s t o r a g e d e s i g n . 

A f t e r m o r e t h a n a q u a r t e r of a c e n t u r y t h e d i f f e r e n c e in 



c h a r a c t e r v./hich Hurst o b s e r v e d b e t w e e n s e r i e s d e r i v e d from theoretical 

s t o c h a s t i c p r o c e s s e s and real series is still the s u b j e c t of research 

by many i n v e s t i g a t o r s . The d i s c r e p a n c y has come to be known as the 

Hurst P h e n o m e n o n and the attempts to explain it have led to many 

insights into the s t a t i s t i c a l n a t u r e of t h e o r e t i c a l and real data 

series and also to c o n t r o v e r s y o v e r the a d e q u a c y of d i f f e r e n t types 

of data g e n e r a t i o n m o d e l s . 

Since the advent of h i g h - s p e e d e l e c t r o n i c c o m p u t e r s 

there has been a great deal of d e v e l o p m e n t of s y n t h e t i c data 

generation m e t h o d s and t i m e - s e r i e s analysis t e c h n i q u e s w i t h i n the 

d i s c i p l i n e of h y d r o l o g y as w e l l as w i t h i n other d i s c i p l i n e s such as 

e c o n o m e t r i c s . The work of Box and Jenkins (1970) stands out as a 

landmark and provides a unifying t r e a t m e n t of the subject. 

1.7 Features and Aims of this Study 

This report presents a general study of the rescaled 

adjusted range s t a t i s t i c and its s i g n i f i c a n c e in t i m e - s e r i e s 

analysis and s y n t h e t i c data g e n e r a t i o n . It i n c l u d e s a review of the 

Hurst Phenomenon, not as a primary aim but as part of the o v e r a l l 

story of how the rescaled adjusted range s t a t i s t i c has been used in 

'synthetic hydrology' and how the s t a t i s t i c b e h a v e s in thecretical 

processes and real data series. 

F o l l o w i n g the review of the Hurst t-henanenon, s y n t h e t i c 

data generation models are d i s c u s s e d and v a r i o u s p r o p e r t i e s of the 

rescaled adjusted range in t h e o r e t i c a l p r o c e s s e s examined. This 

part of the study provides the j u s t i f i c a t i o n of a proposed method in 

which the rescaled adjusted range s t a t i s t i c is used to assist in 

time-series analysis and data g e n e r a t i o n model b u i l d i n g . 

The study c o n c l u d e s w i t h a p p l i c a t i o n s of the proposed 
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method of comparison of theoretical and observed rescaled adjusted 

range values. The examples used are drawn from Australian and 

overseas streamflow, rainfall and other geophysical data series. 

The ability of various data generation models to adequately preserve 

the 'storage' character of the series being modelled is examined. 
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C H A P T E R 2: THE R E 5 C A L E D A D J U S T E D R A N G E AND O T H E R R E L A T E D S T A T I S T I C S 

2 o1 I n t r o d u c t i o n 

The s t a t i s t i c t h a t H . E . H u r s t (1951) used to e x a m i n e m a n y 

g e o p h y s i c a l t i m e s e r i e s w a s the r a n g e of the a c c u m u l a t e d s u m s of the 

r e s i d u a l s f r o m the s a m p l e m e a n , d i v i d e d by the s a m p l e s t a n d a r d 

d e v i a t i o n . This s t a t i s t i c has c o m e to be k n o w n as the r e s c a l e d 

a d j u s t e d r a n g e . S i n c e H u r s t ' s w o r k , the r e s c a l e d a d j u s t e d r a n g e and 

o t h e r r e l a t e d s t a t i s t i c s such as the c r u d e or p o p u l a t i o n r a n g e 

h a v e r e c e i v e d much a t t e n t i o n in t h e l i t e r a t u r e . In the f o l l o w i n g 

s e c t i o n s t h e s e r a n g e s t a t i s t i c s w i l l be i l l u s t r a t e d by r e f e r e n c e to 

the c l o s e a n a l o g y t h e y hold w i t h the f a m i l i a r ^'residual m a s s c u r v e ' 

t e c h n i q u e used in the c r i t i c a l p e r i o d a p p r o a c h to r e s e r v o i r s t o r a g e 

d e s i g n . A m o r e r i g o r o u s d e f i n i t i o n of the r e s c a l e d a d j u s t e d r a n g e 

w i l l f o l l o w and a g r a p h i c a l m e t h o d d u e to H u r s t ( 1 9 5 1 ) f o r 

c o n v e n i e n t l y e v a l u a t i n g the s t a t i s t i c w i l l be d e s c r i b e d c 

2„ 2 T h e 'Residual Mass C u r v e ' S t o r a g e D e s i g n A n a l o g y 

T h e f o l l o w i n g s i m p l e e x a m p l e of the r e s i d u a l m a s s c u r v e 

t e c h n i q u e is given in o r d e r to d e f i n e the t e r m s used in this 

d i s c u s s i o n and to i l l u s t r a t e how the r a n g e s t a t i s t i c s m e n t i o n e d 

a b o v e e n c a p s u l a t e the s t o r a g e n a t u r e of a t i m e s e r i e s . 

S u p p o s e t h a t we h a v e the f o l l o w i n g s e r i e s of o b s e r v a t i o n s , 

p e r h a p s a n n u a l i n f l o w s to a r e s e r v o i r : 

T A B L E 2.1 

TIME S E R I E S FOR I L L U S T R A T I O N 

T i m e i 2 3 4 5 6 7 8 

V a l u e X 
i 

1 2 2 1 11 1 7 7 
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A l t h o u g h i v a r i e s f r o m 1 to 8, c o n s i d e r only the f i r s t six terms so 

t h a t i v a r i e s f r o m 1 to n = 6 w h e r e n is the s u b - s e r i e s l e n g t h . The 

m e a n i n f l o w x^ is seen to be 3. The r e s i d u a l s f r o m this m e a n v a l u e 

can be a c c u m u l a t e d as s h o w n in T a b l e 2.2 and p l o t t e d as in F i g u r e 2.1 

T A B L E 2.2 

A C C U M U L A T I N G T H E R E S I D U A L S 

X . 
1 

(x.- X ) 
1 n 

n 

Z (x.- X ) 
i=1 ^ " 

• 

1 - 2 - 2 

2 -1 - 3 

2 -1 - 4 

1 - 2 - 6 

1 1 + 8 +2 

1 - 2 0 

F o r the s u b - s e r i e s w i t h n - 6, the l a r g e s t n e g a t i v e value of the 

a c c u m u l a t e d r e s i d u a l s f r o m the s u b - s e r i e s mean d e f i n e s the ad.justed 

d e f i c i t m = - 6 , the l a r g e s t p o s i t i v e value, the ad.i" us ted s u r p l u s 

* 
M = 2 and t h e i r d i f f e r e n c e M - m , the a d j u s t e d range R = 8 . 
n n n ^ n 

The t e r m 'adjusted' was i n t r o d u c e d by F e l l e r (1951) to d i f f e r e n t i a t e 

t h e s e s t a t i s t i c s f r o m s i m i l a r s t a t i s t i c s d e f i n e d in terms of the non-

v a r y i n g p o p u l a t i o n m e a n or its estimateo 

If the w h o l e a v a i l a b l e s e r i e s with i v a r y i n g from 1 to 

n = 8 is c o n s i d e r e d , the r e s i d u a l s may be a c c u m u l a t e d a g a i n s t the 
_ * * 

m e a n x = 4 , giving M = 0, m = - 1 0 and R = IDo M , m and R 
n n n n n n n 

are seen to have v a l u e s v a r y i n g w i t h n, the n u m b e r of terms of thie 

a v a i l a b l e s e r i e s c o n s i d e r e d in the a n a l y s i s . 
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^ I D E A L I S E D RESERVOIR 
I OPERATION 

F I G U R E 2-1 
RESIDUAL MASS CURVE 

T h e r e i s an i m p o r t a n t d i f f e r e n c e b e t w e e n t h e s e a d j u s t e d 

s t a t i s t i c s and t h e c r u d e o r u n a d j u s t e d s u r p l u s , d e f i c i t and r a n g e . If 

t h e m e a n x ^ ^ = 4 is c o n s i d e r e d to be the e s t i m a t e of t h e p o p u l a t i o n 

m e a n , t h e n t h e c r u d e and a d j u s t e d s t a t i s t i c s at n = 8 a r e e q u a l in 

v a l u e . H o w e v e r , to c o n s i d e r t h e v a r i a t i o n of t h e c r u d e r a n g e w i t h n , 

w o u l d r e q u i r e t h e r e c a l c u l a t i o n of t h e r a n g e at s m a l l e r n v a l u e s in 

t e r m s of t h e f i x e d m e a n v a l u e of x = 4 . 
n = 8 

T h e r e s i d u a l m a s s d i a g r a m ( F i g u r e 2 . 1 ) i l l u s t r a t e s t h a t 

t h e a d j u s t e d r a n g e is t h e r e q u i r e d s t o r a g e s i z e f o r an i d e a l i s e d 

r e s e r v o i r o p e r a t i o n in w h i c h t h e r e s e r v o i r s t a r t s and f i n i s h e s w i t h a 

s t o r a g e e q u a l to t h e a b s o l u t e v a l u e of t h e m a x i m u m d e f i c i t and 

c o n t i n u o u s l y d e l i v e r s t h e m e a n i n f l o w . 

To a l l o w c o m p a r i s o n of t h e a d j u s t e d r a n g e v a l u e s d e t e r m i n e d 

f o r d i f f e r e n t t i m e s e r i e s a n o n - d i m e r s i o n a l f o r m of t h e a d j u s t e d range 

is o b t a i led by d i v i d i n g by t h e s t a n d a r d d e v i a t i o n , s , of t h e sub-series. 
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The- resulting rescaled ad.justed range. R / s , w i l l be denoted by R 
n ^ n 

One feature of the r e s i d u a l mass curve approach to reservoir storage 

sizing is that as the length of record included in the analysis is 

increased, the amount of storage required to meet the fixed demand 
* 

w i l l tend to increase also. It w i l l be seen later that values of R 
n 

* * 

and R^ tend to increase with increasing sub-series length n . 

Another feature of storage design is that the required 

storage size tends to be relatively greater when flow events in the 

series occur in 'clusters' of high and low events. The tendency of 

low flows to follow low flows and high flows to follow high flows is 

referred to as autocorrelation. It w i l l be seen later that the 

presence of autocorrelation in a series also leads to relatively 
* * * 

higher values of R and R 
n n 

2.3 A Formal Definition 

Anis and Lloyd (1976) give the following formal definition 

of the rescaled adjusted range. 

Consider a time series 

t = 1 , 2 . . . ) = x^, x^ ... , (2.1 

the n-term mean 

X = (X + ... + X ) / n , (2o2 
n 1 n 

and standard deviation 

r 

= n " V < 7 , ( X - X s 
n r n 

-—(2.3 

the partial sums 

5 = X, + o.. + X (r = 1, 2, ...), — ( 2 . 4 
r 1 r 
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the a d j u s t e d p a r t i a l sums 

nS* = 5 - rx (r = 1, n), — ( 2 . 5 ) 
r r n 

the rescaled adjusted p a r t i a l sums 

n5 = nS / s (r = 1, ... n). (2.6) 
r r n 

The rescaled adjusted range is d e f i n e d as 

* * * * * * , ^ 
R = Max (nS ) - Min (nS ) (2.7) 
n r r 

1 ^ r ^n ^ £ r^ n 

A c o r r e s p o n d i n g d e f i n i t i o n is given for the adjusted range R^ :SO that 

* * * , V 

R = R / s — ( 2 . 8 ) 
n n n 

2.4 A G r a p h i c a l Method for D e t e r m i n i n g the R e s c a l e d Range 

Figure 2.2 i l l u s t r a t e s a c o n v e n i e n t g r a p h i c a l m e t h o d for 

d e t e r m i n i n g the r e s c a l e d range. The m e t h o d is due to Hurst (1951). 

The series of annual flows, Q., in the B r i s b a n e River at Savages 
1 

C r o s s i n g (1910 to 1951) is analysed. Instead of a c c u m u l a t i n g r e s i d -

uals from a mean value as was the case in section 2.2 an arbitrary 

base is selected for c o n v e n i e n c e . In this case r e s i d u a l s from a 

base of 500 are c a l c u l a t e d and s u m m e d and the p a r t i a l sums plotted. 

The value of the rescaled range for n = 20 for example, 

can be evaluated for the s u b - s e r i e s c o n t a i n i n g the y e a r s 1 to 20. 

The line AB is drawn from the origin to the point on the r e s i d u a l mass 

curve c o r r e s p o n d i n g to i = 20. The sum of the l a r g e s t d e v i a t i o n s 

* 

(CD + EF) above and below this line gives the rescaled range R^g 

which in this case is a p p r o x i m a t e l y 3,500. If the result is divided 

by the standard d e v i a t i o n of the s u b - s e r i e s i = 1, 20 (in 
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4000 r 

2 0 0 0 -

-

- 2 0 0 0 ^ 

^ '40 
YEAR i 

FIGURE 2-2 
EVALUATING THE ADJUSTED RANGE R* 

BRISBANE RIVER AT SAVAGES CROSSING^' 
ANNUAL FLOWS 

t h i s c a s e 564) the v a l u e of t h e r e s c a l e d a d j u s t e d r a n g e R^^^ of 6.2 

is o b t a i n e d . 

* 

A n o t h e r i n d e p e n d e n t e v a l u a t i o n of R^^ c a n be o b t a i n e d by 

e x a m i n i n g t h e s u b - s e r i e s Q ^ , i = 21, 40„ A g a i n a l i n e BG is d r a w n 
* 

and a v a l u e of R ^ g = 2 , 0 0 0 d e t e r m i n e d f r o m t h e s u m of K J and HI. A 
* * * 

v a l u e of R^j^ = 6.4 is o b t a i n e d by d i v i d i n g t h e v a l u e R^^^ by the 

s t a n d a r d d e v i a t i o n of t h e s u b - s e r i e s Q., i = 21, 40 (in t h i s c a s e 
1 

310) . 

* * 

T h e t w o v a l u e s of R^g o b t a i n e d a b o v e c a n be r e g a r d e d as 

* * 

i n d e p e n d e n t e s t i m a t e s of t h e e x p e c t e d v a l u e of R^g f o r an u n d e r l y i n g 

s t o c h a s t i c p r o c e s s p r o d u c i n g t h e . In g e n e r a l the a v a i l a b l e s e r i e s 

m a y be s u b d i v i d e d i n t o n o n - o v e r l a p p i n g s u b - s e r i e s of l e n g t h n to 
* * 

o b t a i n i n d e p e n d e n t e s t i m a t e s of R . Of c o u r s e w h e r e n is g r e a t e r 
^ n 

t h a n h a l f the s e r i e s l e n g t h t h e n o n l y o n e i n d e p e n d e n t e s t i m a t e of 

R is a v a i l a b l e , 
n 
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The range s t a t i s t i c s d e s c r i b e d in this c h a p t e r have been 

the s u b j e c t of c o n s i d e r a b l e i n v e s t i g a t i o n . In the next c h a p t e r some 

t h e o r e t i c a l p r o p e r t i e s of these s t a t i s t i c s are d i s c u s s e d . 
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C H A P T E R 3: A N A L Y T I C A L R E S U L T S FOR RANGE S T A T I S T I C S OF SOME 

T H E O R E T I C A L P R O C E S S E S 

3.1 I n t r o d u c t i o n 

In the p r e v i o u s c h a p t e r the d e f i n i t i o n of the range 

s t a t i s t i c s was i l l u s t r a t e d by crude example using some data series of 

f i n i t e length. 

The u n d e r l y i n g s t o c h a s t i c process in the case of the 

B r i s b a n e R i v e r flow d a t a analysed in the p r e v i o u s c h a p t e r is of 

c o u r s e u n k n o w n . It is p o s s i b l e h o w e v e r to c o n s i d e r data series for 

w h i c h the u n d e r l y i n g s t o c h a s t i c process is known. For example, 

c o m p u t e r s are c o m m o n l y used to generate numbers which are apparently 

r a n d o m l y s e l e c t e d f r o m a n o r m a l d i s t r i b u t i o n . Many sequences of such 

n u m b e r s can be a n a l y s e d to d e t e r m i n e the mean value of the rescaled 

* * 
adjusted range (R^ ) at a p a r t i c u l a r sub-series length n. In this 

c o n t e x t the m e a n value is an a p p r o x i m a t i o n to the true expected value 
** ** 

of R for the p r o c e s s . The v a l u e s of R obtained from each of the 
n n 

s e q u e n c e s will show s a m p l i n g v a r i a n c e about the mean and this 

* * 

v a r i a n c e will be an estimate of the true variance of R for the 
n 

p r o c e s s . 

A u s e f u l f e a t u r e of the range s t a t i s t i c s described in 

C h a p t e r 2 is that s t a t i s t i c i a n s have been able to provide c l o s e d -

form e x p r e s s i o n s f o r their e x p e c t e d values in the case of some 

t h e o r e t i c a l p r o c e s s e s . Attention has centred m a i n l y on simple 

i n d e p e n d e n t random p r o c e s s e s but recently t h e o r e t i c a l results have 

become a v a i l a b l e for somn d e p n n d o n t processes. These analytical 

e x p r e s s i o n s c o m p l e m e n t the knowledge to be gained by the alternative 

a p p r o a c h of c o m p u t e r s i m u l a t i o n experiments. 



3.2 Expressions Valid Asymptotically - Independent Variates 

Hurst (1951) derived an expression for the expected value 

of the adjusted range in terms of the series length n for an 

independent normal variate. He used a combinatorial argument 

regarding the theoretical result of a coin tossing experiment. The 

expression is as follows: 

E R = / 

TTn = 1.2533 s/u (3.1 

Feller (1951), using a different approach, proved that the 

above expression is valid asymptotically (i.e. its accuracy increases 

as n becomes large) and applies for any identically distributed 

independent random variate. Feller (1951) also derived the following 

expression for the asymptotic variance of the rescaled range for such 

variates. 

Var r" I /s L nj ¡ - P " — (3.2) 

McLeod and Hipel (1978a) point out that due to a standard 

convergence theorem in probability theory, for large n, 

R^'l/s = E 
n J 

* - (_ * 

R /s 1 = E I R n J L n _ The above expressions, (3.1) 

and (3.2), can therefore be considered as asymptotic expressions for 

the rescaled adjusted range for an identically distributed independen' 

random variate. 

3.3 Exact Expected Values - Independent Variates 

Anis and Lloyd (1953) determined an expression for the e x a c t 

expected value of the crude or unadjusted range for the standard 

(zero mean, unit variance) independent normal variate. Solari and 
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Anis (1957) d e t e r m i n e d an e x p r e s s i o n for the exact expected value of 

the adjusted (but not rescaled) range. However, it was not until 

Anis and Lloyd (1976) that an expression for the exact expected value 

of the r e s c a l e d a d j u s t e d range of an independent normal variate 

became a v a i l a b l e . The expression they derived is as follows: 

n _ - v/jTT(in) L . s/ r (3.3) 
r=1 

w h e r e T * r e p r e s e n t s the Gamma function. 

Sen (1974) independently obtained the above expression. 

H o w e v e r , A n i s and Lloyd (1976) cast doubts on the m a t h e m a t i c a l validity 

of Sen's d e r i v a t i o n referring to it as "conjecture". 

Anis and Lloyd (1977) derived exact explicit formulae for 

the d i s t r i b u t i o n of the rescaled adjusted range of an independent 

normal v a r i a t e for the cases n ^ â. They surmised however that the 

p r o b l e m of d e r i v i n g such formulae for general values of n is of 

" u n m a n a g e a b l e c o m p l e x i t y " . 

3.4 E x p r e s s i o n s for Dependent Variates 

Sen (1977a) presented an expression for the exact expected 

value of the rescaled adjusted range which it is claimed applies for 

any normal s t a t i o n a r y process either independent or dependent. The 

expression is as follows : 

r * 
E 

^ ( - r T)V(n-l) ' 

2 (n)^ r[(n4-1 )/2. 

E 
k=1 

V(x, ) - 2.C (x, , X ) + V(x 
k k n n 

-1 j_ 
2 (3.4) 
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V( ) and C( ) are r e s p e c t i v e l y t h e v a r i a n c e and co v a r i a n c e of the 

a r g u m e n t s , c i s the p o p u l a t i o n s t a n d a r d d e v i a t i o n of the u n d e r l y i n g 

n o r m a l d i s t r i b u t i o n f u n c t i o n , and x and x are the s a m p l e m e a n s of 
k n 

t h e s e q u e n c e of o b s e r v a t i o n s up to t h e k^*^ and t h e n"''̂  t i m e p o i n t s 

r e s p e c t i v e l y . T h e e x p r e s s i o n (3.4) r e d u c e s to (3.3) f o r t h e i n d e p e n d -

ent n o r m a l p r o c e s s . 

Sen ( 1 9 7 7 c ) g i v e s e x p r e s s i o n s f o r V (x ) , \J{x ) and 
K n 

C ( x , X ) f o r v a r i o u s d e p e n d e n t p r o c e s s e s . T h e s e can be s u b s t i t u t e d 
k n 

in (3.4) but the r e s u l t i n g c l o s e d - f o r m e x p r e s s i o n s are v e r y l a r g e , 

t-
T h e v a l u e of E R 

^ n 
is s h o w n to d e p e n d o n l y on n and the l a g - o n e 

a u t o c o r r e l a t i o n c o e f f i c i e n t ( f o r a l a g - o n e M a r k o v p r o c e s s . Sen 

f o u n d good a g r e e m e n t b e t w e e n the a n a l y t i c a l e x p r e s s i o n s and r e s u l t s 

f r o m c o m p u t e r s i m u l a t i o n e x p e r i m e n t s . 

S i d d i q u i ( 1 9 7 6 ) o b t a i n e d a g e n e r a l e x p r e s s i o n f o r the 

r * * i 

a s y m p t o t i c v alue of E I R ' fo r any ARMA p r o c e s s h a v i n g a n o r m a l l y 

d i s t r i b u t e d r a n d o m c o m p o n e n t . A R M A p r o c e s s e s w i l l be d e s c r i b e d in 

d e t a i l l a t e r in t h i s r e p o r t . T h e y are a c l a s s cf d e p e n a e n t 'short 

m e m o r y ' p r o c e s s e s m a d e up uf a u t o r e g r e s s i v e and m o v i n g a v e r a g e t e r ms 

T h e e x p r e s s i o n o b t a i n e d by S i d d i q u r is as f o l l o w s : 

* * -f 
R 

, 0.5 
a n — (3.5) 

w h e r e a' = 1 . 2533 ' (1 - B .) / (1 _ ^ 0 .) and r^ is a 

i=1 ~ i=1 " 

t h e o r e t i c a l a u t o c o v a r i a n c e f u n c t i o n ax lag • e v a l u a t e d u s i n g an 

a l g o r i t h m g i v e n by M c L e o d (1 9 7 5 ) . 9. and '2. are the m o v i n g a^/erage 

and autoregressivye p a r a m e t e r s r e s p e c t i v e l y . q and p are the n u m b e r 

of s u c h p a r a m e t e r t e r m s i n c l u d e d in t h e p r o c e s s . 
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Comparison of Asymptotic and Exact Expressions for an 

Independent Normal Variate 

lOO r 

so lOO 500 lOOO 

FIGURE 3-1 ^ 
CONVERGENCE WITH N OF EXACT 

AND ASYMPTOTIC EXPRESSIONS FOR E ' 
- INDEPENDENT NORMAL VARIATE 

* * 

Figure 3.1 shows the asymptotic and exact expected values 

of the rescaled adjusted range for an independent normal variate. 

The values are derived from expressions (3.1) and (3.3). The converg-

ence of the exact result to the asymptotic value is quite slow as is 

shown in Table 3.1. 

TABLE 3.1 

INDEPENDENT NORMAL VARIATE5 

n 

* * 
Asymptotic value R^ 

* * 
Exact expected value R n 

20 1 .26 

50 1 .1 34 

1 00 1 .094 

200 1 .066 

500 1 .039 

1-000 1 .027 
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CHAPTER 4: THE OBSERVATIONS OF H. E. HURST 

4.1 Introductiot 

The rescaled adjusted range is closely related to reservoir 

storage capacity determined ny the 'residual mass curve' method due 

to Rippl (1883). Although this metnod has been in use for a very 

long time, interest in the rescaled adjusted range as a general tool 

for time series analysis stems from the work of Hurst (1951). 

Hurst was primarily interestea in computing the storage 

required in the Great Lakes of the Nile Easin to provide adequate 

regulation of Nile River flows. In l̂is (1951) paper he pointed out 

the uncertainty in estimates of storage requirements computed from a 

single historical record. Large variatiors ir storage requirements 

were observed between that obtained from the whole available record, 

and tnose obtained assuming various p o r t i o n s Q f the same record were 

all that was available to the designer. 

'-!urst attempted to o V e r c o rrie the proolem of uncertainty by 

resorting to a theoretical aoproach, ha ^.oted that many natural 

phenomena have frequency distribuxians which are approximately 

normal if the order of occurrence is z^isreqarced . He therefore 

sought to obtain a theoretical expression for storage requirement for 

a random process invcl^.-i-g samplinq ^ram a ncr~5l distribution. The 

form in which storage requirement was expressed was the adjusted 
* 

range R^ which is, as previously defined, the minimum storage required t; 

maintain a constant discharge equal to the mean inflow. 

In this chapter a uetdiled revieiv it̂  carried out of Hurst's 

(.1951) paper with a v/ieiv to hiqhliqhtinc aspects of his work which 

are important in later aiscussion. 
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4.2 Derivation of an Expression for the Expected Value of the 

Ad.iusted Range 

As mentioned in Chapter 3, Hurst derived the expression 

(3.1) for the expected value of the adjusted range. The expression 

was derived using a combinatorial argument regarding the theoretical 

result of a coin tossing experiment. It involved the assumption of 

large n and the use of Stirling's approximation for factorial n. 

The expression is therefore an asymptotic result and is not true for 

small n . 

Hurst tested the expression by a series of experiments: 

(a) ten coins tossed 1,000 times, (b) probability cards cut 1,000 

times and (c) a sequence of 1,000 numbers derived from bond serial 

numbers published in newspapers. Each trial was repeated 1,000 times, 

certainly a prodigious amount of work. He found for nis n = 1,000 
* 

p 
sequences a mean value of —^ of 1.22, close to the theoretical 

Sv/n 

value of 1.25. He also observed considerable variation in individual 
* 

values of —^ . The standard deviation of the mean values derived 
S'/n 

from 30 sets of 100 observations was 0.32. 

4.3 Evaluation of the Rescaled Adjusted Range in Geophysical Time 

Series 

Hurst carried out an extensive investigation of 75 different 

observed annual series which included river and lake levels and flows, 

rainfall, temperature and pressure means, annual growth of tree rings, 

mud varve thicknesses, sunspot numbers and wheat prices. The longest 

series examined was 4,000 years of mud varve thicknesses from Lake 

Saki in the Crimea - (mud varve thicknesses are believed to be 

related to annual inflows). He also examined a 1,G40 year long 

record of annual high flood levels at the Roda Gauge on the Wile 
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R i v e r . In all, 690 values of the r e s c a l e d a d j u s t e d range were 

c a l c u l a t e d for data series of v a r i o u s l e n g t h s n. 

Related p h e n o m e n a were treated as a group with sub-series 

s e l e c t e d so as to give a n u m b e r of s a m p l e s of the same length n. 
** 

The mean R value for that n value was c a l c u l a t e d , 
n 

4.4 Observed B e h a v i o u r of the R e s c a l e d Adjusted Range with Time 

Series Length 

* * 

Hurst found that l o g - l o g plots of the averaged R^ v a l u e s 

versus n showed a p p r o x i m a t e l y l i n e a r relationships over the range of 

n(35 ^ n - 2 ODD) c o n s i d e r e d . He s i m p l i f i e d the process of f i t t i n g a 

s t r a i g h t line to the points. The a s s u m p t i o n was made that,as the 

t h e o r e t i c a l value of the r e s c a l e d adjusted range is unity for n = 2, * * 

one end of the line should pass t h r o u g h the point R^ = 1 » n = 2. 

The e q u a t i o n s of the lines then had the form: 

log R = K log(n) - log (2) — (4.1) 

where log R is the mean of the l o g a r i t h m s of the R^ v a l u e s and 

log (n) is the mean of the l o g a r i t h m s of the series l e n g t h s n. 

The Hurst c o e f f i c i e n t K was then defined as the slope 

n 
K = log R / log (n) - log (2) (4.2) 

K derived in this way, is an e x p r e s s i o n for a slope on the log-log 

* * 

plot of the averaged log R and log n v a l u e s . V a l u e s of K for each 

of the group of r e l a t e d p h e n o m e n a were d e t e r m i n e d using e x p r e s s i o n 

(4.2). Hurst's r e s u l t s are s u m m a r i s e d in Table 4.1. 
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T A B L E 4.1 

V A L U E S GF K D E T E R M I N E D BY H U R S T (1951 

F Ü R G R O U P S GF R E L A T E D P H E N O M E N A 

P h e n o m e n a K 

R i v e r S t a t i s t i c s 0 o 7 5 

R a i n f a l l 0 . 7 0 

T e m p e r a t u r e &, P r e s s u r e 0 , 7 0 

T r e e R i n g s 0 . 8 0 

V a r v e s , L a k e S a k i 0 . 6 9 

V a r v e s , C a n a d a &, N o r w a y 0 . 7 7 

S u n s p o t N o s . &. W h e a t P r i c e s 0 . 6 9 

V a l u e s of K w e r e t h e n d e t e r m i n e d f o r e a c h of t h e 6 9 0 

i n d i v i d u a l d a t a p o i n t s u s i n g t h e e x p r e s s i o n : 

* * 

K = l o g R ^ / l o g ( n / 2 ) 

\ "A 
library 

"Oündat:̂  ÔÜNDATIÔ  ̂^ 

w h i c h is now f a m i l i a r as t h e d e f i n i t i o n of the^Htrr-si.-C^-fficient. 

T h e m e a n v a l u e of K w a s f o u n d to b e 0 , 7 3 and s t a n d a r d d e v i a t i o n 0 , 0 9 . 

I n d i v i d u a l v a l u e s v a r i e d o v e r t h e r a n g e 0 . 4 6 to 0 . 9 6 , 

W h e n t h e s e r i e s l o n g e r t h a n 2 0 0 y e a r s w e r e d i s r e g a r d e d in 

o r d e r to g i v e w e i g h t to t h e m o r e p r e c i s e m e a s u r e m e n t s r e l a t i n g to 

r i v e r f l o w s , r a i n f a l l and t e m p e r a t u r e , the m e a n v a l u e of K w a s f o u n d 

* * 

to b e 0 . 7 2 . T h i s l e d to t h e f o l l o w i n g e x p r e s s i o n f o r R^ : 

r̂  . 0 . 7 2 

2 ' 
= 0.61 n 

0.72 
— (4.4 
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J.5 C o m p a r i s o n of O b s e r v e d and T h e o r e t i c a l B e h a v i o u r 

Hurst drew a c o m p a r i s o n b e t w e e n the t h e o r e t i c a l l y d e r i v e d 

e x p r e s s i o n (3.1), 

* 

n = 1.25 n 

and the e m p i r i c a l r e l a t i o n s h i p (4.4), 

** 0.72 
R = 0.61 n 
n 

He noted that the h i g h e r e x p o n e n t in e x p r e s s i o n (4.4) i n d i c a t e d a 

more rapid growth of the rescaled adjusted range with series l e n g t h 

in real data than theory w o u l d p r e d i c t . This a p p a r e n t d i s c r e p a n c y 

b e t w e e n theory and o b s e r v a t i o n has come to be known as the 'Hurst 

P h e n o m e n o n ' . 

In s u m m a r y , Hurst drew a t t e n t i o n to the t e n d e n c y of natural 

data to occur in groups of high and low values even though the data 

may have a normal frequency d i s t r i b u t i o n when the o r d e r of occurrence 

is not c o n s i d e r e d . As a c o n s e q u e n c e of the a d d i t i o n a l c o m p l e x i t y of 

real data, the t h e o r e t i c a l e x p r e s s i o n (3.1) for the adjusted range 

u n d e r s t a t e s the storage r e q u i r e m e n t s of real data series. 

It should be noted that a d i s t i n c t i o n has been drawn in * 
R ** 

this d i s c u s s i o n between — a n d R in r e l a t i o n to e x p r e s s i o n (3.1) 
s n 

which e x p r e s s e s an expected value. It is not generally true that 

E L RnJ = E 
* * -

R 
n s 

and in fact such a r e l a t i o n s h i p is only valid a s y m p t o t i c a l l y (See 

section 3.2). E x p r e s s i o n (3„1) is also only valid a s y m p t o t i c a l l y 

but it is not c l e a r that Hurst was aware of this point. 
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In this chapter various aspects of the contents of Hurst's 

(1951) paper have been highlighted. The following chapter will 

present some comments on Hurst's observations and method of analysis 

with a view to clarifying aspects of the 'Hurst Phenomenon' and also 

as a means of progressing towards the use of the rescaled adjusted 

range as a time series analysis tool. 
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CHAPTER 5: SOME C O M M E N T S ON HURST'S O B S E R V A T I O N S 

AND METHOD 

5 .1 Introduction 

Hurst's r e m a r k a b l e work (Hurst 1951) has led to a large 

l i t e r a t u r e which c o n t i n u e s unabated more than a quarter of a c e n t u r y 

later. C o n s i d e r a t i o n of the 'Hurst Phenomenon' described in the 

previous c h a p t e r (section 4.5) has led i n v e s t i g a t o r s to the f o r m -

ulation of new and more complex s t o c h a s t i c models, and to such 

i m p o r t a n t q u e s t i o n s as to what extent h i s t o r i c a l data series of 

h y d r o l o g i c a l p h e n o m e n a can be regarded as s t a t i s t i c a l l y s t a t i o n a r y 

over a period of time. Much a t t e n t i o n has been focussed on the 

rescaled adjusted range s t a t i s t i c itself both as regards its properties 

for t h e o r e t i c a l p r o c e s s e s and its o e h a v i o u r in real data s e r i e s . 

In this c h a p t e r a t t e n t i o n will be centred on aspects of 

Hurst's method which have i m p o r t a n t c o n s e q u e n c e s for i n t e r p r e t i n g the 

'Hurst P h e n o m e n o n ' . 

5 o 2 The A s y m p t o t i c Nature of Hurst's E x p r e s s i o n for the Adjusted 

Range 

Y e v j e v i c h (1972) makes the f o l l o w i n g s t a t e m e n t r e g a r d i n g the 

work of Feller (1951): "Feller used other means to d e v e l o p the 

a s y m p t o t i c mean and variance of the adjusted range and not the expected 

value of the range as Hurst t h o u g h t . " W h e t h e r or not Hurst realised 

the a s y m p t o t i c nature of his e x p r e s s i o n is not clear but the assumpt-

ion of large n in its d e r i v a t i o n is cuite clearly statec. The 

c o m b i n a t o r i a l arg.^msnt upon '.vhich it x5 cased d e p e n d s upo- Stirling's 

a p p r o x i m a t i o n for f a c t o r i a l Hurst proceeded to check the 

e x p r e s s i o n by means of e x p e r i m e n t a l serres of length n = 1,000 



29 . 

involving coins, cards and published bond numbers and found good 

agreement at this large value of N. The mean value of R / x/n for 
n 

the experiments was found to be 1.22 as against the theoretical value 

of 1.25. It is interesting to note that for the independent normal 

variate with n = 1,000, the exact expected value R^ / \/T\ is 1.217 from 

Anis and Lloyd (1976). 

5.3 Comparison of Observed and Theoretical Asymptotic Values 

In his paper Hurst does not discuss the range of values of 

n for which the expression (3.1) 

* 0.5 
Rn = 1.25 n 

is applicableo He does however compare the exponent of 0.5 with the 

exponent of 0.72 in the empirical relationship (4.4) 

** 0.72 
R = 0.61 n • ' 
n 

determined from series varying in length from n = 30 to 200. 

The theoretical result (3.3) derived by Anis and Lloyd (1976 

* * 

for the exact expected value of R for an independent normal variate, 
n 

allows an evaluation of the effect of Hurst's comparison of observed 

and asymptotic behaviour. They defined a local Hurst exponent h(n), 

where 

h(n) = ^(JDg e T r * * ] ) / d(log n) -__(5.1) 

h{n) can be approximated as 

log E 
-| r ** ^ 

R - log E 
, / ^ ^ ^ n + ̂  J 

~ log (n + 1) - log (n-1) 

R , n-1 . 
(5.2) 
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h(n) was evaluated using values obtained from expression (3.3). 

Table 5.1 shows that h(n) is significantly higher than 0.5 for an 

independent normal variate when evaluated at small to medium values 

of n. 

TABLE 5.1 

THEORETICAL VALUES OF THE LOCAL HURST- EXPONENT h(n) FOR 

AN INDEPENDENT NORMAL VARIATE 

(Anis and Lloyd - 1976) 

n h(n) . 

5 .6762 

40 .5672 

100 .5429 

200 .5315 

500 .5202 

It is of interest to see what results Hurst would have 

obtained if all the series he examined were composed of values 

derived from independent normal variates. This can be done by using 
** 

values of R derived from expression (3.4). The analysis of the 

Lake Saki mud varves is reproduced in Table 5.2 using this assumption, 

(See Table 7 of Hurst ( 1 9 5 1 ) . ) 

With the advantage of hindsight and the availability of the 
* * 

expression for the exact expected value of R , it becomes apparent 
n 

that the comparison of exponents that Hurst made is not a valid one. 

The reason for the failure of K in Table 5c1 to equal Oo5 lies not 

** 0.5 
only in the fact that R^ varies with n *' only asymptotically, but 

more significantly in the definition of K itself which will be 

discussed further. 
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T A E L E 5 . 2 

HURST'S A N A L Y S I S OF LAKE S A K I MUD VARVE DATA REPRODUCED 

A S S U M I N G AN I N D E P E N D E N T NORMAL VARIATE 

N o . of 

c a s e s 

N 

years 

* * 

R ( i n d e p e n d e n t 

n o r m a l v a r i a t e ) 

log^^N 
* * 

r ** -, 

1 J 

40 50 7.81 1 .70 .89 .62 

40 100 1 1 .45 2.00 1 .06 .62 

20 200 16.62 2.30 1 .22 .61 

8 500 26.90 2.70 1 .43 .60 

4 1000 3 8 . 50 3.00 1 .59 .59 

2 2000 55.90 3.30 1 .75 ' .58 

m e a n of 114 cases 2.06 1 .08 .61 

(mean K = .69 f o r h i s t o r i c a l data) 

5.4 The D e f i n i t i o n of Hurst's C o e f f i c i e n t K 

Hurst was i n t e r e s t e d in comparing the rate of growth of the 

r e s c a l e d adjusted range with n , f o r observed series, with that predicted 

by t h e o r y . As such he was p r i m a r i l y concerned with values of h and 

hence slopes on l o g - l o g p l o t s . 

* * 

A least squares fit to log R versus log n data yields an 

equation of the f o r m : 

log (R log a + b log n — (5.3) 

This indicates the r e l a t i o n s h i p 

a (n) — ( 5 . 4 ) 

which is an e x p r e s s i o n c o n t a i n i n g two constants or parameters (a, b) 

to be d e t e r m i n e d in the fitting p r o c e s s . 



As described m <^ection 4,4, Hurst chose a simpler approach 

* * 
forcing the straight line fit through the point R = 1 , 

* * 
n ^ 1 (log R = 0 , log 2). The other end of the line was the 

n 

centre of gravity of the observed data points i.e. some point 

(log R^ ), (log n). This gave expression (4.2) 

log R^ = K (log n - log 2 

Hurst used log R^ , log R^ and log n, log n inter-

changeably in deriving expression (4.3) from individual data points 

This led to the definition of K given by expression (4.3) 

K = log R^ / log (n/2) 

It is important to note here the dual character of K. In 

expression (4.2) it is clearly a slope estimator. However in 

expression (4.3) it is both a single point estimate of slope and a 

* * logarithmic transformation of a single point value of R . It will 
n 

be seen later that two main schools of thought about the 'Hurst 

Phenomenon' diverge essentially from this point. One school follows 

the idea of K being a slope ario the other assumes K to be a trans-
* * 

formation indicating the magnitude of R 
n 

5.5 Hurst's Coefficient K as an Estimator of Slope 

The limitations of K as an estimator of the slope of a plot 

* * 

of loq R^ versus log p are sKuwn Ly f^igure b. 1 . 

* * 

The log .ersus .r • 010+ ^ .r S iCh a 'snort memory' 

+ 'earetxcal process ^s ar- i' .leppr-.iP-it o't-hI ^-iate is in fact 

Cur. iinear. ]• .-p f e slun^ tiri.'^'' L, K at, for example, 
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l O O r 

5 I O S O l O O 

FIGURE 5-1 
LIMITATIONS OF K AS A SLOPE ESTlMATOFk 
- INDEPENDENT NOPkMAL VARIATE 

5 0 0 i O O O 

N 

n = 200 is seen to be g r e a t e r than t h e t r u e s l o p e d u e to the 

c u r v a t u r e in the l o g - l o g plot» T h e p l o t t e d v a l u e s are d e r i v e d from 

e x p r e s s i o n (3.3) given by Anis and Lloyd ( 1 9 7 6 ) . 

At n = 200, k , the s l o p e of the chord b e t w e e n the p o i n t s 
** ** 

(R = 1 , n = 2) and n = 2 0 0 ) , is seen f r o m F i g u r e 5.1 to be 
n 2UU 

0.61. The v a l u e s of K at o t h e r v a l u e s of n f o r this c a s e of an 

i n d e p e n d e n t n o r m a l v a r i a t e are s h o w n in T a b l e 5 . 3 . The e x p e c t e d 
** 

v a l u e s of R w e r e o b t a i n e d f r o m e x p r e s s i o n (3.3) and the c o r r e s p o n d -
n 

ing v a l u e of K f r o m H u r s t ' s d e f i n i t i o n , e x p r e s s i o n ( 4 . 3 ) . 

T h e l i m i t a t i o n s of K as a s l o p e are to be seen in T a b l e 5.3 

w h e r e v e r y slow c o n v e r g e n c e to 0.5 f o r an i n d e p e n d e n t n o r m a l v a r i a t e 

is a p p a r e n t . As a s t a r t i n g p o i n t for l o o k i n g for s o m e u n e x p l a i n e d 

b e h a v i o u r in an o b s e r v e d s e r i e s of even v e r y long l e n g t h , the v a l u e s 

of K given in T a b l e 5.3 s h o u l d be c o n s i d e r e d . 

It is o b v i o u s l y i n c o r r e c t to a s s u m e the p r e s e n c e of some 

'Hurst P h e n o m e n o n ' or 'Hurst E f f e c t ' ir l e a l d a t a s i m p l y on the basis 
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' ABL E i . 3 

VALUES OF THE HURST C O E F F I C I E N T K FOR AN 

INDEPENDENT NORMAL VARIATE 

n E 
r ** n 
R 
_ n _ 

K 

c; ^.9274 .716 

40 6 . 8895 . 644 

100 11.4533 .623 

200 16.6214 .610 

1000 36.4969 .587 

of observed K values being higher than G.5.- It w i l l be seen l a t e r in 

this report that processes which possess autocorrelation exhibit 

h i g h e r values of K than those shown in Table 5 . 3 . 

It remains to be said that the preceding comments on Hurst's 

work raise points which are more relevant to a discussion of the 

l i t e r a t u r e that follows his p a p e r than to the p a p e r i t s e l f . Hurst's 

work is an o u t s t a n d i n g contributiono His main p o i n t , that n a t u r a l 

time series have c h a r a c t e r i s t i c s which lead to the requirement of 

more storage for the same yield than simple i n d e p e n d e n t random 

p r o c e s s e s , is of course a valid o n e . The question as to the nature 

of this difference between observation and theory remains both 

important and t o p i c a l . 
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CHAPTER 6: INDICATORS OF THE HURST PHENOMENON 

6.1 Introduction 

Hurst's observations showed that for a wide sampling of 

natural time series the rescaled adjusted range varied with series 

length n as 

** h R o^ n" (6.1 n 

The exponent h has become known as the 'generalised Hurst 

coefficient' or 'Hurst exponent'' . Hurst estimated it as K and found 

an average value of 0,73 over many observed natural series. The 

tendency for estimates of h obtained from observed series to be 

larger than the theoretical value of 0.5 has come to be known as the 

'Hurst Phenomenon'. 

Two contributing factors to the discrepancy in exponents 

have been discussed already: 

(i) The comparison of the theoretical asymptotic behaviour 

of the rescaled adjusted range with that observed in series 

of finite length. 

(ii) The bias inherent in Hurst's estimator K. 

In this chapter some of the alternative estimators of h proposed in 

the literature will be described. 

6.2 A Perception of the Hurst Phenomenon 

biven an appreciation of the above mentioned factors (i) 

and (ii), the Hurst Phenomenon may be perceived as the failure of the 

Dfenavxc-ir at tne estimated expected val'je of t̂  e rescaled adjusted 

ra^ e i' lorj ocserved series to show the theoretical asymptotic 
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behaviour. Mandelbrot and Wallis (1969) take this view and reject 

many theoretical processes on the basis that for these processes 

there is an asymptotic convergence of the exponent h towards a value 

of 0.5. The processes which are rejected are Gaussian in nature and 

include identically distributed independent variates and the general 

class of 'short memory' autoregressive and moving average processes, 

Mandelbrot and Wallis proposed an alternative theoretical 

I t 

process called Fractional Gaussian Noise which is capable of preserv-

ing a specified value of h, between zero and one, for any value of 

series length n. McLeod and Hipel (1978a) give a concise account of 

Fractional Gaussian Noise and its approximations. 

A feature of Fractional Gaussian Noise is that such a 

process is specified completely by its mean, variance and constant 

Hurst exponent h. The critical importance of h in this context led 

Mandelbrot and Wallis (1969d) to propose an alternative estimation 

procedure to the Hurst coefficient K. 

6.3 Alternatives to the Hurst Coefficient K - Slopes Estimated from 

Many Data Points 

Mandelbrot and Wallis (1969d) proposed a graphical 

procedure which they call a 'pox diagram', an example of which, taken 

* * 
from their paper, is shown as Figure 6.1. R is evaluated for a 

n 

standardised set of subseries lengths n = 3,4,5,7,1•,20,40,TO,1 GO, 

200,700,1000,2000,4000,7000 and 9000 and n T, where T is the total 

length of the series to be analysed. For each value of n a maximum 

* * 

of 14 evaluations of R^ are made using sub-series obtained by moving 

the starting point progressively along the record. The sub-series 

* * 

overlap and hence the values of R obtained are not independent. At 

* * 

each value of n the various R values are plotted on a log-log 
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* * 
d i a g r a m . Mean v a l u e s of R^ are m a r k e d for each set and the l o g - l o g 

s l o p e e s t i m a t e d by a s t r a i g h t line fitted by eye. M a n d e l b r o t and 

W a l l i s d e s i g n a t e d this i n d i c a t o r of the Hurst P h e n o m e n o n as H. 

W a l l i s and M a t a l a s (1970) proposed r e f i n e m e n t s to the above 

p r o c e d u r e and d e f i n e d e s t i m a t o r e FH(i) and GH(i), In this approach 

s l o p e e s t i m a t e s are o b t a i n e d by a least squares r e g r e s s i o n on the 
** 

m e a n R^ v a l u e s . The r e g r e s s i o n is carried out t h r o u g h the mean 

v a l u e s at each s u b - s e r i e s length to avoid the bias that would o c c u r 

if all i n d i v i d u a l values were i n c l u d e d in the r e g r e s s i o n , there 

b e i n g f e w e r values a v a i l a b l e as the s u b - s e r i e s length increases. 

The d e s i g n a t i o n (i) in FH(i) and GH(i) refers to the 

m i n i m u m s u b - s e r i e s length i n c l u d e d in the r e g r e s s i o n . The l a t t e r is 

s p e c i f i e d in an attempt to avoid bias being i n t r o d u c e d by the 

p r o n o u n c e d c u r v a t u r e in the l o g - l o g plot at small n. This c u r v a t u r e 

is apparent for example in Figure 5.1, The d e s i g n a t i o n s F and G 

100. 

ST LAWRENCE NR. 0GDENSBUR6, N.Y 
1860-1957 

10. 
(r> 

0.1 

0.01 

APPARENT H=0.98-

TREND LINE OF SLOPE 
0.5 DRAWN THROUGH 
TIME 20 

MOMENTS OF DATA 
Ml = 0.00 
M2= 1.00 
M3=-0.26 
M4=2.70 

10 100 1000 
TIME 

F I G U R E 6-1 
' POX ' D I A G R A M - A F T E R M A N D E L B R O T 
AND WALL IS f l 9 6 9 d ) 
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refer to d i f f e r e n t s c h e m e s f o r d i v i d i n g t h e s e r i e s to be a n a l y s e d 

i n t o s u b - s e r i e s . In b o t h c a s e s t h e s u b s e r i e s o v e r l a p . 

W a l l i s and M a t a l a s ( 1 9 7 0 ) c a r r i e d o u t c o m p u t e r e x p e r i m e n t s 

to i n v e s t i g a t e the s m a l l s a m p l e p r o p e r t i e s of K and G H ( 1 D ) f o r 

iridependent v a r i a b l e s and l a g - o n e M a r k o v p r o c e s s e s and f o u n d t h a t K 

hds g r e a t e r bias and G H ( 1 0 ) g r e a t e r v a r i a n c e . 

6.4 A l t e r n a t i v e s to t h e H u r s t C o e f f i c i e n t K - S l o p e s E s t i m a t e d f r o m 

A S i n g l e D a t a P o i n t 

G o m i d e ( 1 9 7 5 ) p r o p o s e d a n o t h e r e s t i m a t o r of the s l o p e h 

w h i c h w i l l be r e f e r r e d to h e r e as Y H . He u s e d , as a b a s i s f o r the 

d e f i n i t i o n , e x p r e s s i o n (3.1) due to H u r s t ( 1 9 5 1 ) and F e l l e r ( 1 9 5 1 ) 

R 
n 

f o r an i d e n t i c a l l y w h i c h g i v e s the a s y m p t o t i c v a l u e of E 

d i s t r i b u t e d i n d e p e n d e n t r a n d o m v a r i a t e . G o m i d e p r o p o s e d the f o l l o w i n g 

d e f i n i t i o n of YH 

** YH 
R = 1 .2533 n — ( 6 . 2 
n 

w h i c h by t a k i n g l o g a r i t h m s m a y be r e s t a t e d as 

Y H = (log R^ - log 1 . 2 5 3 3 ) / (log n) (6.3; 

S i d d i q u i (1976) p r o p o s e d a n o t h e r e s t i m a t o r of the s l o p e h 

w h i c h w i l l be r e f e r r e d to h e r e as S H . He also b a s e d the d e f i n i t i o n 

of the e s t i m a t o r on an e x p r e s s i o n f o r the a s y m p t o t i c v a l u e of E 

in this c a s e e x p r e s s i o n ( 3 . 5 ) . T h i s e x p r e s s i o n is g e n e r a l l y a p p l i c a b l e 

to ARMA p r o c e s s e s h a v i n g n o r m a l l y d i s t r i b u t e d r a n d o m c o m p o n e n t s . 

S i d d i q u i d e f i n e d SH as f o l l o w s : 

r **"! 
R 

. n J 
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5H 
a' n — ( 6 . 4 ) 

w h e r e a' is a c o n s t a n t , the value cf w h i c h d e p e n d s upon the a s s u m e d 

u n d e r l y i n g ARMA p r o c e s s as p r e v i o u s l y d i s c u s s e d in sectloi. 3-4 of 

riis r e p o r t . 3y takirrj l o g a r i t h m s , e x p r e s s i o n 6.4 may be r e s t a t e d as 

5H = (log R - log a') / (loq n 
n 

( 6 . 5 ) 

B o t h G o m i d e ' s Y H and S i d d i q u i ' s 5H e s t i m a t o r s give s l o p e v a l u e s 

* * 

d e r i v e d from v a l u e s of R^ and n at a s i n g l e p o i n t as does H u r s t ' s 

e s t i m a t o r K. 

H i p e l and M c L e o d (1978a) e x a m i n e d v a l u e s of K, YH and 5H 

o b t a i n e d f r o m 23 g e o p h y s i c a l s e r i e s of l e n g t h s v a r y i n g from 96 to 

1164 y e a r s . The r e s u l t s of t h e i r s t u d y are s h o w n in T a b l e 6.1 

T A B L E 6 . 1 

V A L U E S OF S L O P E E S T I M A T O R S K, YH & SH F R O M 

2 3 G E O P H Y S I C A L T I M E S E R I E S 

(McLeod &. H i p e l 197ea ) 

Mean 

S t a n d a r d d e v i a t i o n 

K YH SH 

Mean 

S t a n d a r d d e v i a t i o n 

0.701 

0 . 0 8 4 

0.660 

0.131 

0.577 

0.078 

T a b l e 6.1 s h o w s that the YH and SH v a l u e s are l o w e r than K. Mean 

v a l u e s of YH and SH are w i t h i n ^ or 2 s t a n d a r d d e v i a t i o n s of 0.5, the 

t h e o r e t i c a l a s y m p t o t i c v a l u e of each of the esti^nators for 'short 

memory' p r o c e s s e s . M c L e o d and H i p e l ^^uggest that it can be a r g u e d 
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that the 'Hurst Phenomenon' is not significant for the YH and 5H 

statistics. 

The variety of approaches that have been proposed for 

estimating the slope parameter h in expression (6.1) is an indication 

of the difficulties involved. These problems will be further 

illustrated in the next chapter where some sampling experiments 

carried out in this study are described. 
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C H A P T E R 7: 5DME S A M P L I N G E X P E R I M E N T S W I T H AN I N D E P E N D E N T N Q R M A L 

V A R I A T E 

7.1 I n t r o d u c t i o n 

In this c h a p t e r the r e s u l t s are p r e s e n t e d of some s a m p l i n g 

e x p e r i m e n t s i n v o l v i n g the s t a n d a r d n o r m a l i n d e p e n d e n t v a r i a t e . 

S e q u e n c e s of v a l u e s of the v a r i a t e were p r o d u c e d by c o m p u t e r s i m u l a t i o n 

and w e r e e x a m i n e d to d e t e r m i n e v a l u e s of the r e s c a l e d a d j u s t e d range 

s t a t i s t i c . 

The r e s u l t s p r e s e n t e d here show the c o n s i d e r a b l e v a r i a t i o n 
** 

in i n d i v i d u a l v a l u e s of R o b t a i n e d from r e a l i s a t i o n s of t h e o r e t i c a l 
n 

p r o c e s s e s . 

7.2 V a r i a t i o n in the Slope of the L o g - l o g Plot 

* * 
F i g u r e 7.1 shows a l o g - l o g plot of R versus n from a 

n 

s e q u e n c e of 900 v a l u e s g e n e r a t e d using the F O R T R A N routine GENRATE 

w r i t t e n f o r this s t u d y (See A p p e n d i x ) . Each plotted point r e p r e s e n t s 

* * 

the c a l c u l a t e d v a l u e of R^ f o r the single s u b - s e r i e s of length n 

e x t e n d i n g from the start of the s y n t h e s i s e d s e q u e n c e . That is, each 

p o i n t r e p r e s e n t s a s i n g l e s a m p l i n g of R f o r each value of n . T h e r e 
n 

is c o n s i d e r a b l e s c a t t e r on the plot which i l l u s t r a t e s some of the 

p r o b l e m s in e s t i m a t i n g a Hurst e x p o n e n t . In this case a l e a s t squares 

fit t h r o u g h the p l o t t e d points i n d i c a t e s a slope of .60 . 

F i g u r e 7.2 shows a plot r e s u l t i n g from an approach s i m i l a r 

to the GH p r o c e d u r e d e s c r i b e d by W a l l i s and M a t a l a s ( 1 9 7 0 ) . The 

same s y n t h e s i s e d s e q u e n c e of 900 i n d e p e n d e n t n o r m a l v a r i a b l e s is 

d i v i d e d into as m a n y n o n - o v e r l a p p i n g s u b - s e r i e s as are a v a i l a b l e f o r * * 

each n o m i n a t e d s u b - s e r i e s l e n g t h n. F o r e x a m p l e , the value of R 

p l o t t e d f o r n = 10 is the mean of 90 values and f o r n = 100 is the 

m e a n of 9 v a l u e s . In each case the first o r only s u b - s e r i e s of 
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l e n g t h n s t a r t s at t h e b e g i n n i n g of t h e o v e r a l l s e r i e s . T h e p r o c e d u r e 

u s e d h e r e d i f f e r s f r o m t h a t u s e d b y W a l l i s and M a t a l a s ( 1 9 7 0 ) in t h a t 

o n l y n o n - o v e r l a p p i n g s u b - s e r i e s a r e c o n s i d e r e d . 

E x a c t e x p e c t e d v a l u e s o b t a i n e d f r o m e x p r e s s i o n ( 3 . 3 ) as, 

g i v e n by A n i s and L l o y d ( 1 9 7 6 ) a r e a l s o plotted- in F i g u r e 7 . 2 . T h e 

i n c r e a s e in s c a t t e r a b o u t t h e e x p c t expecte'd v a l u e s c a n be s e e n as n 

b e c o m e s l a r g e r and t h e p l o t t e d p o i n t s represent- a v e r a g e s f r o m s m a l l 

s a m p l e s . T h e d i f f i c u l t i e s of e s t i m a t i o n o f t h e t r u e u n d e r l y i n g s l o p e 

f r o m t h e p l o t t e d p o i n t s is a p p a r e n t . In c o m p a r i s o n w i t h F i g u r e 7.1 

t h e a n a l y s i s of a l l a v a i l a b l e n o n - o v e r l a p p i n g , s u b - s e r i e s i g i v e s , 

* * 

w h e r e n is s m a l l e n o u g h , m o r e t h a n o n e independ-ent s a m p l e of R ^ . 

* * 

T h e r e s u l t i n g m e a n v a l u e s of R p l o t t e d in F i g u r e 7.2 are m o r e 

* * 

r e p r e s e n t a t i v e of t h e 'true' e x p e c t e d v a l u e s of R ^ . Hence, f o r 

s m a l l e r n, a b e t t e r v i e w is g a i n e d of the u n d e r l y i n g r e l a t i o n s h i p 
** 

b e t w e e n R and n . T h e r e s c a l e d a d j u s t e d r a n g e a n a l y s i s w a s c a r r i e d 
n 

o u t u s i n g t h e F O R T R A N r o u t i n e R A N G E w r i t t e n f o r t h i s s t u d y (See 

A p p e n d i x ) . , 

7.3 V a r i a t i o n in R e s c a l e d A d j u s t e d R a n g e V a l u e s 

In C h a p t e r 5 i t w a s p o i n t e d o u t t h a t t w o f a c t o r s c o n t r i b u t e 

to t h e H u r s t e x p o n e n t h b e i n g g r e a t e r t h a n 0 . 5 w h e n . e s t i m a t e d f r o m an 

o b s e r v e d s e r i e s . F i r s t l y the c o m p a r i s o n of o b s e r v e d v a l u e s w i t h t h e 

v a l u e of 0 . 5 d e t e r m i n e d f r o m an a s y m p t o t i c e x p r e s s i o n is e r r o n e o u s , 

and s e c o n d l y , t h e e s t i m a t o r K g i v e s h i g h e r v a l u e s t h a n t h e t r u e s l o p e 
* * 

of t h e l o g R v e r s u s l o g n p l o t . F i g u r e s 7.1 and 7.2 i n d i c a t e a 
n 

* * 

f u r t h e r p r o b l e m , t h a t of t h e c o n s i d e r a b l e v a r i a t i o n in s a m p l e R ^ 

v a l u e s . 

T a b l e ( 7 o 1 ) s h o w s s o m e r e s u l t s f r o m an a n a l y s i s of 12 

s e q u e n c e s of 70 v a l u e s of t h e s t a n d a r d n o r m a l v a r i a t e . T h e t a b l e 
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TABLE 7.1 

12 SEQUENCES OF THE STANDARD INDEPENDENT NORMAL VARIATE 
Sequence length = 70 

Sequence 
* * 

R 
a? n=30 

* * 
R 
ai n=70 

K 
at n=30 

K 
• at n=70 

Least sqs. 
slope H 

from n=10,70 

1 5.009 10.523 .59 .66 .51 

2 3.156 6.485 .42 .53 .39 

3 8.560 15.262 .79 .77 .68 

4 4.559 11.036 .56 .68 .57 

5 4.150 6.292 .53 .52 .45 

6 8.255 9.266 .78 .63 .53 

7 4.938 16.452 .59 .79 .66 

B 4.121 7.818 .52 .58 .47 

9 3.812 9.770 .49 .64 .53 

10 6.39 8 6.506 .69 .53 .49 

11 4.615 9.019 .56 .62 .48 

12 5.921 6.665 .66 .53 .45 

Average 5.29 9.59 .60 .62 .52 

presents a small sample of values but illustrates an important point. 
* * 

The variability of R^ can lead to very high values of K in individual 

realisations of the underlying process even in the case of a process 

consisting of independent random variables. This is illustrated by 

an estimate of K of 0.79 for n = 70 in Table (7.1). The values of H, 

the slope of the least squares fit to the log-log plot, for points 

between n = 10 and n = 70, also have considerable variation but their 

mean lies closer to the asymptotic exponent h = 0,5. This is in 

accord with the results obtained by Wallis and Matalas (1970). 
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* * 
The matter of the variance of R and K for some theoretical 

n 

processes will be examined in detail in a later chapter of this report 
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CHAPTER 8: THE LOG-LOG SLOPE OF THE RE5CALED ADJUSTED RANGE PLOT 

FOR SOME OBSERVED AND SYNTHETIC SERIES 

8. 1 Introduction 

As discussed in Chapter 6, Mandelbrot and Wallis (1968) in 

their approach to the Hurst Phenomenon, concentrated their attention 

on the slope of the log-log relationship between the rescaled 
** 

adjusted range R^ and subseries length n. They developed a 

Fractional Gaussian Noise process which has the implication of 

infinite memory and which is based on the concept of 'self 

similarity'. A consequence of the self similarity concept is that 

the expected value of the Hurst exponent is constant over all time 

intervals. 

A Fractional Gaussian Noise process is defined by its mean, 

variance and Hurst coefficient and consequently the problem of 

obtaining the most appropriate estimate of the Hurst coefficient is 

of vital concern. The argument for this type of process model relies 
* * 

heavily upon the linearity of the log R versus log n plot of 
n 

observed series. It is claimed that the failure of observed slopes 

to approach the value of 0.5, which is the asymptotic slope for the 

'•short memory' process models commonly used in synthetic hydrology, 

is proof of the superiority of Fractional Gaussian Noise models, 

Mandelbrot and Wallis go further than this claim and propose 

'infinite memory' processes as a physical reality. 

It should be noted that this approach of concentrating 

attention on the slope of the log-log plot does not directly cancern 
* * 

itself with the absolute size of R for particular finite values of 
n 

* * series length. However, the magnitude of R^ has a direct implication 

* * 
for reservoir storage design. The magnitude of R is the storage 
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size, expressed in standard deviation units, of an ''ideal' reservoir. 

This ideal reservoir has the minimum storage required to maintain a 

constant discharge equal to the mean inflow over the duration of the 

series while starting and finishing the series with the same storage. 

Many series of the same length can be sampled from a 

theoretical stochastic process. The ideal reservoir size for each 

series will show considerable variation but the mean of the sizes is 

an estimate of the true expected ideal size for the process and for 

the series length nominated. 

It may be that a designer wishes to examine the usefulness 

of a process as a stochastic model of some real data series, say 

with a view to the computer generation of synthetic sequences for 

storage design. The expected ideal reservoir size for the process at 

particular series lengths may be compared with the best estimates 

obtained from the real data series. While it is of interest to 

observe whether the ideal storage size increases with series length 

at a simixar rate in both cases, it is of perhaps more crucial 

importance to observe whether the process values are much higher or 

lower than those obtained from the real data. 

It is important to note that K, YH and 5H, the estimators 

of Hurst's coefficient h, discussed in Chapter 6, are in fact trans-

formations of the magnitude of the ideal reservoir size (R^ ) at a 

particular series length. The other estimators discussed in Chapter 

6, that is, H, GH and FH, are true slopes depending upon values of 

R^ at many different series lengths and hence give no indication of 
* * 

the magnitude of R^ . 
* * 

In this chapter the log R^ versus log n relationships of 

some observed and synthesised data series will be examined. 
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g. 2 The R e s c a l e d Ad.justed R a n g e f o r S o m e S y n t h e t i c S e r i e s 

F i g u r e 8.1 s h o w s the b e h a v i o u r of t h e r e s c a l e d a d j u s t e d 

r a n g e f o r s e r i e s s a m p l e d f r o m t h r e e t h e o r e t i c a l 'short m e m o r y ' 

p r o c e s s m o d e l s . T h e p r o c e s s e s are t h e i n d e p e n d e n t n o r m a l v a r i a t e , a 

l a g - o n e M a r k o v p r o c e s s w i t h l a g - o n e a u t o c o r r e l a t i o n c o e f f i c i e n t 

of 0.3 , and a m i x e d A u t o r e g r e s s i v e - M o v i n g A v e r a g e (ARMA (1,1) ) 

p r o c e s s . T h e a u t o r e g r e s s i v e and m o v i n g a v e r a g e p a r a m e t e r s of t h e 

l a t t e r p r o c e s s are = 0.9 D.7 r e s p e c t i v e l y . A l l p r o c e s s e s 

h a v e a t h e o r e t i c a l mean of zero and u n i t v a r i a n c e . 

The t e r m s used a b o v e in r e l a t i o n to t h e t h e o r e t i c a l 

p r o c e s s e s as w e l l as t h e i r s t r u c t u r e w i l l be f u l l y d i s c u s s e d in 

C h a p t e r 9 . For the t i m e b e i n g t h e y can be r e g a r d e d as b e i n g 

r e p r e s e n t a t i v e of s h o r t m e m o r y p r o c e s s e s or ' m o d e l s ' t h a t h a v e been 

used in h y d r o l o g y to g e n e r a t e s e q u e n c e s of s y n t h e t i c d a t a . 

A r e s c a l e d a d j u s t e d r a n g e a n a l y s i s has been c a r r i e d o u t on 

a s i n g l e r e a l i s a t i o n of 9DD v a l u e s of each p r o c e s s u s i n g the 

p r o c e d u r e d e s c r i b e d in C h a p t e r 7, t h a t i s , each p l o t t e d p o i n t 

r e p r e s e n t s the m e a n v a l u e d e t e r m i n e d f r o m as m a n y n o n - o v e r l a p p i n g 

s u b s e r i e s as are a v a i l a b l e for the s e l e c t e d v a l u e of n . T h e s i n g l e 

s e t s of 900 v a l u e s h a v e been s e l e c t e d to a l l o w a v a l i d v i s u a l c o m -

p a r i s o n b e t w e e n r e s u l t s for r e a l i s a t i o n s of t h e p r o c e s s e s and r e s u l t s 

for s o m e o b s e r v e d s e r i e s w i t h l e n g t h n in the r a n g e BOG to 1 , D 0 a . 

F i g u r e 8.1 s h o w s how i n c r e a s i n g c o m p l e x i t y of t h e p r o c e s s 

a u t o c o r r e l a t i o n i n c r e a s e s the s l o p e of the p l o t p a r t i c u l a r l y in the 

* * 

r a n g e of n l e s s than a b o u t 2 0 0 . T h e s i z e of R is also i n c r e a s e d 
n 

w i t h the i n c r e a s e g e n e r a l l y l a r g e r at g r e a t e r s u b s e r i e s l e n g t h . 

W i t h a s a m p l e of this s i z e t h e r e are c o n s i d e r a b l e f l u c t u a t i o n s in the 

plot but v i s u a l l y one gets the i m p r e s s i o n of the p l o t 'rolling o v e r ' 

or c o n v e r g i n g to a s l o p e of a b o u t 0 . 5 . The p r o b l e m of d e t e r m i n i n g 
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the s l o p e at l a r g e v a l u e s of n is m a d e d i f f i c u l t by t h e l a r g e f l u c t -
** 

u a t i o n s in R . T h e s e are d u e to t h e a v a i l a b i l i t y of o n l y o n e 
n 

i n d e p e n d e n t v a l u e w h e n n is g r e a t e r than h a l f t h e s e r i e s l e n g t h . 

T h e i m p r e s s i o n is g a i n e d a l s o t h a t m o r e c o m p l e x a u t o c o r r e l a t i o n 

c a u s e s t h e c o n v e r g e n c e to a s l o p e of 0.5 to o c c u r at l a r g e r n . 

F i g u r e 8.2 c o n f i r m s t h e s e i m p r e s s i o n s w i t h p l o t s of m e a n v a l u e s of 

R c a l c u l a t e d f r o m 150, i n d e p e n d e n t r e a l i s a t i o n s , of l e n g t h n , of 
n 

the t h r e e p r o c e s s e s . 

8.3 T h e R e s c a l e d A d j u s t e d R a n g e f o r s o m e O b s e r v e d S e r i e s 

F i g u r e s 8.3 to 8.5 s h o w the r e s u l t s of s o m e of t h e 

r e s c a l e d a d j u s t e d r a n g e a n a l y s e s c a r r i e d out in t h i s s t u d y . R e s u l t s 

a r e p r e s e n t e d here f o r f i v e l o n g d a t a s e r i e s as f o l l o w s : 

(i) :^ud v a r v e t h i c k n e s s e s at L a k e 5 a k i in the C r i m e a . 

T h e s o u r c e for this s e r i e s is 5 h o s t a k o v i t s c h ( 1 9 3 4 ) . T h e 

data a n a l y s e d c o v e r s the p e r i o d 2 2 9 0 B . C . to 1889 A . D . , a 

c o n t i n u o u s r e c o r d of 4 , 1 8 0 y e a r s . T h e m u d v a r v e s are 

b e l i e v e d to be c o r r e l a t e d w i t h a n n u a l l a k e i n f l o w s , 

vii^ T r e e Ring Index - F i n l a n d . T h i s s e r i e s is d u e to 

S i r e n ( 1 9 6 1 ) and t h e d a t a is r e p r o d u c e d in L a m b ( 1 9 7 7 ) . 

T h e s e r i e s c o v e r s the p e r i o d 1181 to 1 9 6 0 , a t o t a l l e n g t h 

of 7uC y e a r s . T h e d a t a is b e l i e v e d to be c o r r e l a t e d w i t h 

s u m m e r m e a n t e m p e r a t u r e . 

(iii) S t a n d a r d i s e d m o n t h l y f l o w v o l u m e s f o r t h e S n o w y 

R i v e r at 

J i n d a b y n e N . S . W . ( 1 9 0 5 - 1 9 7 7 ) . F l o w s in t h e post-

S n o w y M o u n t a i n s S c h e m e p e r i o d h a v e b e e n c o r r e c t e d f o r 

r e a u l a t i o r on the b a s i s of c a r e f u l o p e r a t i o n a l w a t e r 

• a l a n c e s . 

(iv/ S t a n d a r d i s e d m o n t h l y f l o w v o l u m e s f o r the M a c q u a r i e 
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River at Burrendong N.5.W. (1B86-1964). 

(v) Standardised monthly flow volumes for the Kiewa River 

at Kiewa V I C . (1893-1970). 

The monthly flow series have been rendered stationary as 

far as their means and variance are concerned by the commonly used 

process of subtracting monthly means from the data and dividing by 

monthly standard deviations. This 'standardising' process is an 

efficient way of removing deterministic periodicities or cyclicities 

in d a t a . 

The results of the analysis of series (ii) and (iii) are 

shown in Figure 8.3. The two plots give the visual impression of 

their slope decreasing with n . This result, particularly for the 

tree ring series, is surprising in the light of the extensive analysis 

presented by Mandelbrot and Wallis (1969d) who make the following 

statement : 

"Were the records in question generated by a random 

process such that observations far removed in time can be considered 

** 0.5 
independent, (R ) would become asymptotically proportional to (n * ), 

which means that Hurst's law would have to 'break' for large enough 

lags. No such break has been observed. Thus for practical purposes, 

geophysical records must be considered to have an 'infinite' span of 

statistical interdependence." 

It should be pointed out again that the procedure for 

plotting R values used here differs from that used by Mandelbrot 

and Wallis (1969d). In this study, when the sub-series length n is 

greater than half the total available series leaving only one 

* * 

independent sub-series, one determination of R^ is made. In each 

case the sub-series starting at the beginning of the record is used. 
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In their work Mandelbrot and Wallis make several determinations of 
** 

R by sliding the start of the sub-series forward in the record 

* * 

from the beginning. The resulting values of R^ are highly correlated 

as they result from overlapping series and hence exhibit only a 

s m a l l amount of variation. 

The analysis of series (i), (iv) and (v) is shown in 

Figures 8.4 and 8.5. For these series no 'rolling over' of the 

plot is apparent. A feature of the Lake S a k i plot (Fig. 8.4) is the 

distinct 'break' to a greater slope at about n = 600. Mandelbrot 

and Wallis (1969d) state that such a break in slope is characteristic 

of a strongly periodic series. Figure 8.6 shows some of the results 

obtained by Hurst (1951) which also show no strong indication of convergence 

to a slope of 0.5. 

8.4 Further Comments on the Work of Ma.-idelbrot and Wallis 

The weight of the evidence available points to the apparent 
** 

failure of slopes of log R^ versus log n plots of long observed 

series to converge to 0.5. Mandelbrot and Wallis (1969d) carried out 

a comprehensive analysis of about 70 observed data series of which 

only five have an apparent Hurst Coefficient H of 0.5. Their analysis 

is how^ever open to the following comments. 

Many of the series analysed by Mandelbrot and Wallis are 

too short for the theoretical asymptotic behaviour to develop. As 

an example the reader is referred to Figure 6.1 presented earlier in 

this report. Figure 6.1 is taken from Mandelbrot and Wallis (1969d) 

and shows results for the series of annual flows in the St. Lawrence 

River at Ogdensburg, New York (1860-1957). As part of this study 

the same data was obtained from the acknowledged source, Yevjevich 

(1963), and a rescaled adjusted range analysis of it was carried out. 
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The results are shown in Figure 8.7. 

Figure 8.7 also shows a plot of estimated expected values 

* * 
of R derived from a stochastic model. The model is a constrained 

n 

three-lag autoregressive process. The autoregressive parameter 

values , and are shown on the figure. Such stochastic 

models will be discussed in detail in the next chapter of this report. 

The three-lag autoregressive model was used to generate, 

by computer, 500 synthetic sequences of length n . The model structure 

and parameter values were proposed for the St. Lawrence River data 

by McLeod et al (1977). 

In Figure 6.1 Mandelbrot and Wallis contrast the slope of 

their 'pox' diagram with a line of slope 0.5, the theoretical asymp-

totic slope for the general class of Gaussian 'short memory'' 

processes. They use the apparent discrepancy in slopes as evidence 

of the non-Gaussian nature of real data. The slope estimator H is 

seen to have the high value of 0.98. 

Figure 8.7 shows the irrelevance of the comparison of 

slopes made by Mandelbrot and Wallis. In fact the 'short memory' 

* * 

model generates sequences giving mean values of R^ which are quite 

close to the observed values. At the available series length 

(n = 98 years) of the observed data it is seen that the asymptotic 

slope of the theoretical process has not yet developed. 

Further comments on the work of Mandelbrot and Wallis and 

the 'Hurst Phenomenon' in general will be made later in this report. 

The next chapter will deal with the structure of various 'short 

memory' stochastic processes and how models based on these processes 

can be fitted to observed data series. The discussion therein will 

allow further comparisons of theoretical and observed rescaled 

adjusted range values» 
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CHAPTER 9: SYNTHETIC DATA GENERATION MODELS AND FITTING PROCEDURES 

9 o1 Introduction 

In summary, the areas of discussion covered and the findings 

in this report so far are as follows: 

(i) The definition of the rescaled adjusted range was 

, presented showing the analogy with the residual mass curve 

approach to storage design. Next, the available analytical 

results for the rescaled adjusted range and related range 

statistics for some theoretical processes were presented. 

The discussion of Hurst's work which followed showed that he 

found the rescaled adjusted range statistic (R ) could be 
n 

used to reveal complexities of real data series. These 

complexities he typified with K, the slope of the log-log 

plot of the rescaled adjusted range versus the series 

length n. 

(ii) A close look at Hurst's methodology and the definition 

of K, showed K to have a dual character, that of a slope and 

* * 

that of a logarithmic transformation of R at a single 

point. 

Later chapters discussed the approach of some invest-

igators, notably Mandelbrot and Wallis, who concentrate on 

the slope nature of K replacing it with more refined slope 
* * 

estimators. They see the behaviour of the R^ slope in long 

observed series as proof of the 'self-similar' nature of 

real data - a theory which carries an implication of infinite 

memory. Fractional Gaussian Noise models are proposed which 

approximate such an infinite memory process and produce 

linear log-log slopes. Some reservations were expressed in 
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the report about this approach and it was pointed out that 

perhaps a more pressing concern for the hydrologist is the 

question of whether or not familiar 'short memory' models 

preserve the observed magnitudes of the rescaled adjusted 

range. 

The remaining part of this report will concentrate on the 

question of the ability of 'short memory' models to preserve the 
* * 

observed magnitudes of R , Observed data series will be analysed ^ n 
* * 

and sample R values compared with those expected from theoretical 

stochastic processes. It will be shown that such a comparison provides 

a powerful means of process model evaluation. However, before such 

an exposition can proceed, it is necessary to examine the structure 
of various 'short memory' process models and the properties of the 
** 

R^ statistic. This will identify the detail in which data generation 

models must be specified in order to allow valid comparisons between 
* * 

observed and theoretical R values, n 

The discussion which follows, of autoregressive (Markov) and 

general autoregressive-moving average (ARMA) models, relies heavily 

on the general exposition of Box and Jenkins (1970) and because of 

this will retain most of their notation. Box and Jenkins provide a 

lucid and unifying treatment of data generation methods which have 

developed in a rather ad hoc fashion within the field of Hydrology. 

It seems also that hydrologists do not as yet generally perceive of 

the familiar Markov models as being members of a wider family of 

stationary autoregressive-moving average (ARMA) processes. 

9.2 Autoregressive Models - General 

A general autoregressive process can be described as 
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Z, = Z + — + 0 Z^ + a^ (9.1 ) 
t 1 t-i ^ p t-p t 

where Z = z - z is the deviation of the process from its mean z . 
L L 

is therefore the weighted sum of the p past deviations and a 

random shock a , where a is a realisation of an uncorrelated random 
L L 

2 
variate with mean zero and constant variance s . The 0 . are 

a 1 

w e i g h t i n g parameters. These processes will be designated cjs AR(p). 

The above is a generalisation of a concept introduced by 

the Russian m a t h e m a t i c i a n Markov (1856-1922). The term 'Markov 

model' is commonly applied in the hydrological literature to auto-

regressive models, sometimes with the connotation of p = 1 ; i.e. 'lag-

one Markov' models. 

Expression (9»1) may be multiplied throughout by "to 

obtain 

^t-k ^t = ^t-k ^t-1 ^^ 2 ^t-k ^t-2 - — 

0 Z + Z^ , a^ — ( 9 . 2 ) 
^ p t-k t-p t-k t 

and taking expected values in expression (9.2) gives 

noting that ^^ is the autocovariance at lag k, that is, 

and that E vanishes when k ^ D 

as Z can only involve the shocks a. up to the time t-k, which are 
"b" k J 

uncorrelated with 

2 
Dividing expression (9.3) by the variance = s 

^ D z gives 
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^ = " ^ 2 P y - 2 * •• * ^ p ^ ' k - p — ( 9 . 4 ) 

w h e r e P ^ =•• lag k a u t o c o r r e l a t i o n = - S u b s t i t u t i n g 1< = 1 , 2 . . . p in 

e x p r e s s i o n (9.4) g i v e s a set of l i n e a r e q u a t i o n s f o r 0 ^ , ^ ^ ^^ 

t e r m s of p ^ , p ^ , p ^ , as f o l l o w s , (noting t h a t " P 

p - 1 

« 2 = 0 1 P i - 0 2 ^ ••• ^ V 2 — ( 9 - 5 ) 

/^p = " - ••• + 0 p 

The e x p r e s s i o n s (9.5) are k n o w n as the Y u l e - W a l k e r e q u a t i o n s 

and f o r m the b a s i s of the t r a d i t i o n a l h y d r o l o g i c a l a p p r o a c h to m o d e l 

f i t t i n g . T h e o r e t i c a l a u t o c o r r e l a t i o n s ^ ^ are r e p l a c e d by the 

e s t i m a t e d a u t o c o r r e l a t i o n s r, f o r an a s s u m e d o r d e r of p r o c e s s p. The k 

e q u a t i o n s m a y t h e n be s o l v e d f o r 0-] 2 p* 

T h e v a r i a n c e of the p r o c e s s is d e r i v e d as f o l l o w s . On 

t a k i n g e x p e c t e d v a l u e s in e x p r e s s i o n (9.2) w i t h k = 

e F Z a 1 = E ^ a" : = s i n c e the o n l y p a r t of Z w h i c h w i l l be L l ^^ ^ 

c o r r e l a t e d w i t h a is the m o s t r e c e n t s h o c k a,. T h e r e f o r e f o r k = 0, 
t t 

on d i v i d i n g t h r o u g h by = s^ and s u b s t i t u t i n g = 6 t h e variance 

3 mav be w r i t t e n 

1 - p^ - - ... - p 
— (9.6) 

2 " 2 ^ p " p 



51. 

9.3 Lag-one Markov Processes 

The familiar lag-one Markov (AR(1) ) process may be written 

as 

and for p = 1, expression (9.4) becomes 

which with = 1 gives 

= k ^ 0 (9.9) 

Equation (9.9) gives the theoretical expression for the 

AR(1) autocorrelation function (correlogram) indicating that the 

function decays exponentially to zero when 0 ^ is positive. 

Putting k = 1 in expression (9.9) gives 

— ( 9 . 1 0 ) 

Expression (9.6) gives the variance of the process as 

s ^ g 2 

= ^ ^ ^ . = ^ — ^ 9 . 1 1 ) 
z \ - P^ ^^ ^ - ^ \ 

The lag-one Markov model proposed by Brittan (1961) is now 

evident. Equation (9.7) can be expressed as 

(z^ - z ) 0 . (z . - 7 ) + s V — ( 9 . 1 2 ) 
"t I u — I a x 
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w h e r e is an i d e n t i c a l l y d i s t r i b u t e d i n d e p e n d e n t r a n d o m v a r i a t e of 

z e r o m e a n and u n i t v a r i a n c e . Now f r o m e x p r e s s i o n (9.11) 

s ^ V s^ ( 1 - = s \J ^ - p] (9.13) 

a ^̂  z 1 z V 1 

S u b s t i t u t i n g ( 9 J u j and (9.13) in (9.12) g i v e s 

ana if p r o c e s s p a r a m e t e r s z , s , Pj. are r e p l a c e d by e s t i m a t e s z , s , r 
z 1 ^ 

t h e n 

z^ - z' = r, U , . - z") + s V 1 - r^ v^ _ _ _ ( 9 . 1 5 ) 
t 1 t- I z i t 

As p r o p o s e d oy B r i t t a n , was a n o r m a l i n d e p e n d e n t v a r i a t e 

of zero mean and u n i t v a r i a n c e . The d e r i v a t i o n s h o w s t h a t e x p r e s s i o n 

(9.15) p r e s e r v e s the p r o c e s s mean and v a r i a n c e f o r any i d e n t i c a l l y 

d i s t r i b u t e d i n d e p e n d e n t v a r i a t e of zero m e a n and u n i t v a r i a n c e . 

F i e r i n g (1967) o r e s e n t s the f o l l o w i n g a n a l y s i s to show that 

for s k e w e d s e r i e s the s k e w n e s s of the r a n d o m c o m p o n e n t and the 

s k e w n e s s of the v a l u e s g e n e r a t e d by the p r o c e s s m o d e l are r e l a t e d 

t h x Q u q n the c o r r e l a t i o n s t r u c t u r e of the p r o c e s s . 

C o n s i d e r s t a n d a r d i s e d v a l u e s s u c h t h a t 

= (9 .16) 

'Mow d i v i d i n g e x p r e s s i o n (9.14) by g g i v e s 

q t = /«'i - — ( 9 . 1 7 ) 
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and by d e f i n i t i o n 

E = 0 

2 

^t - = E i 
r 2 

L ^t-i_ 
= 1 

T' 

L ^t^J 
E 

3 

L V 1 . 
= ¿r 

z 

- "t -
• 

(9.18) 

F " 2 
' - ^ J 

t -i 
1 = <r 

w h e r e ^ and ¿T ̂  are the s e r i e s and r a n d o m c o m p o n e n t s k e w n e s s e s 

r e s p e c t i v e l y . 

3y c u b i n g e x p r e s s i o n (9.17) 

+ v ^ V ( 1- — (9.19) 

and by t a k i n g e x p e c t a t i o n s 

^t J 
= (T 

H - 1 tJ 

and 
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= yz ^̂  " (9.20) 

The skewness ¿T of the random component of the process is seen 
V 

therefore to be modified by serial correlation as in expression (9.20) 

to give a different skewness ^ of the process values. 
/ / 

If the series skewness is estimated as , then can be z V 

calculated from (9.20). The following transformation due to Wilson 

and Hilferty (1931) can be used to convert a normal independent 

variate n with zero mean and unit variance to a random variate v X L 

which is distributed like the gamma distribution with zero mean, unit 

variance and skewness V 

2 iiv "t !(v 
^ ^ " l " - — J 

This transformation has been shown by McMahon and Miller 
/ 

(1971) to become unstable for values of ¿T greater than about two 
V 

and for such values a modification due to Kirby (1972) should be used. 

Other approaches have been taken to generating skewed series, 

One method is to transform the observed series by taking logarithms. 

Expression (9.15) is used with moments of the transformed log series 

and the resulting generated log values are re-transformed by taking 

anti-logs. Other normalising transformations can be used. There is 

an inherent drawback in this approach in that moments of the trans-

formed, rather than the original, series are maintained. 

Another approach, due to Matalas (1967), assumes a three-

parameter log-normal distribution and transforms the parameters z, s', 

r, in expression (9.15) while sampling y from a normal distribution. 
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F r o m the p r e c e d i n g d i s c u s s i o n it can be seen t h a t this a p p r o a c h m a s k s 

the c l e a r f u n c t i o n a l r e l a t i o n s h i p s b e t w e e n the t e r m s in (9.15) and 

a l s o l a c k s g e n e r a l i t y as the t r a n s f o r m a t i o n of the p a r a m e t e r s d e p e n d s 

on the a s s u m p t i o n of an u n d e r l y i n g t h r e e - p a r a m e t e r l o g - n o r m a l 

d i s t r i b u t i o n . On the o t h e r h a n d , e x p r e s s i o n (9.20) w h i c h p r e s e r v e s 

the t h i r d m o m e n t is f r e e f r o m an a s s u m p t i o n r e g a r d i n g d i s t r i b u t i o n 

t y p e and h e n c e y m a y be d r a w n f r o m a range of d i s t r i b u t i o n s . The 

r o l e of a t r a n s f o r m a t i o n s u c h as that of W i l s o n - H i l f e r t y (1931) is to 

p r o v i d e an a l g o r i t h m f o r c o n v e r t i n g the m o r e e a s i l y s a m p l e d n o r m a l 

v a r i a t e to one h a v i n g the d e s i r e d d i s t r i b u t i o n of 

9.4 M u l t i - l a g M a r k o v P r o c e s s e s 

The a p p r o a c h of 9.2 can be e x t e n d e d to p r o c e s s e s c o n t a i n i n g 

m o r e a u t o r e g r e s s i v e t e r m s . This is i l l u s t r a t e d by the f o l l o w i n g 

r e l a t i o n s h i p s for a t w o - l a g M a r k o v p r o c e s s . A g a i n f o l l o w i n g Box and 

J e n k i n s (1970), s u c h a p r o c e s s can be w r i t t e n as 

z , = 0 , . 0 _ . a^ — ( 9 . 2 2 ) 

w h i c h now has two a u t o r e g r e s s i v e p a r a m e t e r s ' Y u l e -

W a l k e r e q u a t i o n s (9.5) b e c o m e for p = 2 

^ 2 

— (9.23) 

E q u a t i o n (9.23) can be s o l v e d to give 

1 1 - yC 2 
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Py ~ A 
0 , = — f T (9.24) 
2 ^ -

From expression (9.6) the variance of the process is given by 

9 s 2 
s = ^ ^ ^ (9.25: z 1 ^ - P2 

In practice and are replaced by estimates r^ and r ^ . 

9 . 5 ARMA (Autoreqressive Moving Average Models) 

Box and Jenkins (1970) describe a wider class of stationary 

linear stochastic processes which they label autoregressive moving 

average (ARMA). These processes have the general form 

= . + .. + 0 Z^ + a^ - 0. a, 9 a (9.26) 
t 1 t-1 p t-p t 1 t q t-q 

Z^ is seen here to be the sum of a random shock and weighted sum of 

previous values of Z and previous values of random shocks a . . The a. 
^ ^ 1 1 

are as before identically distributed with zero mean and constant 

variance jhe above process is described as ARMA (p,q). 
3 

If all the 9. are zero the process is pure autoregressive 

of order p, i . e . AR(p) or A R M A ( p , 0 ) . If all the are zero, then 

the process is pure moving average of order q, i . e . MA(q) or ARMA(0,q) 

The theoretical autocorrelation function (correlogram) of 

pure MA processes truncates after q lags while that of AR processes 

a t t e n u a t e s . The mixing of AR and MA terms provides a flexible modelling 

tool for preserving observed autocorrelation f u n c t i o n s . 

The ARMA (1,1) process has received c o n s i d e r a b l e attention 

in the hydrology literature and can be written as 
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^t = ^ ^ - V , — ( 5 . 2 7 ) 

Such a p r o c e s s can be seen as a s i m p l e e x t e n s i o n of the M a r k o v lag-

one c a s e . The p r o c e s s 'remembers' not o n l y the p r e v i o u s v a l u e but 

the p r e v i o u s r a n d o m d i s t u r b a n c e . 

The f o l l o w i n g r e l a t i o n s h i p s are o b t a i n e d f o r the ARMA (1,1) 

p r o c e s s by an a p p r o a c h s i m i l a r to t h a t f o r the p u r e AR p r o c e s s . 

(1 - 0 1 01) (01 _ 9i) 
p^ = ^ ^ ^^ (9.28) 

1 -

'2 = ^ 

V a l u e s of ^ and ^ ^ have the f o l l o w i n q l i m i t a t i o n s 
1 1 ^ 

- 1 ^ 8 ^ + 1 — ( 9 . 2 9 ) 

_1 ^ + 1 

w h i c h m e e t s t a t i o n a r i t y and 'invertability' c o n d i t i o n s d e f i n e d by 

Box and J e n k i n s ( 1 9 7 0 ) . 

The p a r a m e t e r s 0 8 of an ARMA (1,1) p r o c e s s may be 
1> 1 

e s t i m a t e d by r e p l a c i n g , jj^ w i t h estimates r ^ , r^ in e x p r e s s i o n 

( 9 . 2 8 ) . 

The s e r i e s and random c o m p o n e n t v a r i a n c e s are related as 

f o l l o w s : 

^ 1 ^ --' ^ . • - . - ( 9 . 3 0 ) 
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Srikanthai' and McMahon (19 ) presef't an p^^.ie.-^iop +oi th(-

random component skewness of an ARMA (1,1) p r o c e s s . 

L 1 - 0 
.2 

1 - 0 
X 
7 (9.3i: 

The r e a d e r is referred to Nelson (1973) who gives a quite 

readable account of ARMA processes and m o d e l f i t t i n g . 

9.6 M o d e l Fitting 

The h y d r o l o g i c a l approach to d e t e r m i n i n g data generation 

m o d e l p a r a m e t e r s , such as in an AR(2) m o d e l , is generally to 

solve the Y u l e - W a l k e r equations (9.5). The appropriate n u m b e r p of 

autoregressive terms is assumed and sample autocorrelation estimates 

p 
(e.g. r , , r ) inserted in the e q u a t i o n s . The variance s of the 

I ^ 3 

random component is estimated from the sample series variance and a 

relationship such as expression (9<.30). This dpproach which relies 

on sample moments and a u t o c o r r e l a t i o n s w i l l be referred to as the 

'moment-estimation' p r o c e d u r e . 

The m o m e n t - e s t i m a t i o n procedure is heavily dependent on the 

estimated values r ^ , r^ .... r ^ . These sample autocorrelations have 

considerable uncertainty about them as is shown in Figure 9.1 where 

the sample a u t o c o r r e l a t i o n s c a l c u l a t e d from a set of 100 values of an 

independent n o r m a l variate are s h o w n . The t h e o r e t i c a l value of the 

autocorrelation coef-^icient is of c o u r s e zero at a l l lags f j r an 

independent p r o c e s s . The point is f u r t h e r illustrated by Figure 9.2, 

which shows a sequence of 100 values generated by a lag-one Marko 

process with a t h e o r e t i c a l laq-one a u t o c o r r e l a t i o n coef"'"iciert 0.15. 

Box and Jenkins '19 70) p r e s e n t an alternati^p '.o the moment-
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estimation ' ype approach to nriudel fittingo They propose a s y s t e m a t i c 

method of analysis c o n s i s t i n g of three distirrCt p h a s e s 

(i) Identification 

(ii) Estimation 

(iii) D i a g n o s t i c C h e c k s 

In phase (i) the m o d e l s t r u c t u r e is inferred from the 

sample a u t o c o r r e l a t i o n function (correlogram) and the sample p a r t i a l 

autocorrelation f u n c t i o n . These sample f u n c t i o n s are compared with 

the t h e o r e t i c a l f u n c t i o n s for A R , MA or ARMA m o d e l s . The t h e o r e t i c a l 

p a r t i a l a u t o c o r r e l a t i o n function comes from the s u c c e s s i v e solution 

of the Y u l e - W a l k e r equations (9.6) for an i n c r e a s i n g number of lags k. 

The value of the p a r t i a l autocorrelation function at lag k is 

the last p a r a m e t e r of a pure a u t o r e g r e s s i v e process if it was of the 

order p = k. Far a pure a u t o r e g r e s s i v e process of lag p the theoret-

ical partial autocorrelation function truncates at p . Figurqs 9.3 and 9.4 

show autocorrelation an j partial autocorrelation f u n c t i o n s from a 

sample oi 900 values of a lag-one Markov process with /O^ = 0 . 5 . 

McLeod and Hipel (1977) propose two other f u n s t i o n s , the 

'inverse autocorrelation function' and 'inverse p a r t i a l autocorrelation 

function' , as an aid to model ide'^tification. 

ir phase (ii) the parameters of the proposed m o d e l are 

estimated by an approximate m a x i m u m likelihood method in which a 'sum-

of-squares' -f^unction is m i n i m i s e d . For example the AR(1) m o d e l given 

by expression (9.7) can be written as 

^ = ^t - 't-l — i9.32' 

^na the Z^ are replaced oy a set of observed values ¿^ ther> 
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< = - ^ — (9.33) 

If some starting value Z^ is nominated then the set of 

residuals for the assumed value of 0 , i . e . a'( 0 ) , can be 
1 1 "t 

calculated from 

0 
1 '1 

( 
1 '2 

= Z 

= z. 
ate 

(9.34) 

In this case the sum of squares function is 

5 ( 0 ^ ) 
t=1 ^ 1 t IJ ^^^ L 1 tJ 

9.35) 

Minimising 5(0^) leads to an a p p r o x i m a t e maximum likelihood estimate 

0 ^ . The maximum likelihood estimate of the variance of the residuals 

s ^ is obtained from 

5 ( 0 p 

T 

(9.36' 

The procedure of m i n i m i s i n g the sum of squares function 

involves m u l t i v a r i a t e search in the case of a proposed process with 

more than one a u t o c o r r e l a t i o n p a r a m e t e r e . g . ARMA (1,1). Starting 

estimates for the search are usually determined by the moment-

estimation p r o c e d u r e . (Nelson - 1973) 
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The maximum likelihood estimates of parameters have been 

shown to be insensitive to lack of normality in the residuals 

(McLeod, 1974). McLeod and Hipel (1977) discuss refinements to the 

maximum likelihood estimating p r o c e d u r e . 

Phase (iii) involves the examination of the residuals a! 

determined using the estimated m o d e l p a r a m e t e r s . The residuals are 

checked for the assumptions of i n d e p e n d e n c e , normality and constant 

v a r i a n c e . The most important assumption is the independence of the 

residuals for which several statistical tests are available (McLeod 

and Hipel 1977). The latter two features are less important and it 

is suggested that transformations of the original data may rectify 

problems in this a r e a . If the residuals prove to be not independent, 

then the model structure should be revised by removing or adding AR 

or MA terms and the analysis r e p e a t e d . 

In this chapter the structure of various 'short-memory' 

stochastic process models has been examined in some detail. In the next 

chapter attention will be turned to the effect on the rescaled adjusted 

range,in series produced by such process models^ of the model structures 

and p a r a m e t e r s . 
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CHAPTER 10: SOME PROPERTIES OF THE RESCALL'J AUJUbTED RANGE DF 

T H E O R E T I C A L PROCL^LiLl. 

1 G.1 Introduction 

The present point of interest is the ability of 'short 

memory' data generation models to preserve the size of the rescaled 

adjusted range observed in real data s e r i e s . This question can be 

approached by fitting models to observed s e r i e s and comparing the 

theoretical and observed rescaled adjusted r a n g e . 

The structure of a general class of 'short memory' m o d e l s 

was discussed in Chapter 9 . The next l o g i c a l step is to see in how 

much detail a proposed m o d e l has to be specified if the comparison of 

theoretical and observed rescaled adjusted range values is to be valid, 

For i n s t a n c e , is the rescaled adjusted range affected by the assumed 

distribution of the random c o m p o n e n t of the m o d e l ? If the latter 

were the c a s e , then attention would have to be given to correctly 

inferring the m a r g i n a l distribution of the observed s e r i e s . 

Investigators have in fact examined skewness as a possible explanation 

of the 'Hurst P h e n o m e n o n ' . 

A FORTRAN r o u t i n e D R 5 G E , was written to assist in this 

investigation (see a p p e n d i x ) . DR5GE calculates means and standard 
** 

deviations cf R and K at nominated values of series length n and 

for a nominated number of i n d e p e n d e n t s e q u e n c e s . The programme 

simulates AR(p) and ARMA (1,1) p r o c e s s e s . In the discussion that 

follows, means and standard d e v i a t i o n s have been sampled from a 

maximum of 500 sequences in order to keep computing time to within 

reasonable l i m i t s . 
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'0.2 T h e E f f e c t of P r o c e s s M e a n and V a r i a n c e on the R e s c a l e d 

A d j u s t e d R a n g e 

G i v e n a s e r i e s of v a l u e s z ^ , t = 1,2 n , t h e a d j u s t e d 

r a n g e f o r s e r i e s l e n g t h n is f o r m e d f r o m t h e s e r i e s z ^ - z w h e r e z is 

t h e m e a n v a l u e of t h e t h a t is 

E ^t ^ / " 
t=i ^ 

( 1 G . 1 ) 

he r e s c a l e d a d j u s t e d r a n g e (R ) is f o r m e d f r o m t h e s e r i e s 
n 

w h e r e 

z ^ - z t = 1 , 2 . . . . n — ( 1 0 . 2 ) 

^ - ^ 
- . 2 

n - 1) 
— ( 1 G . 3 ) 

R is o b t a i n e d d i r e c t l y f r o m t h e s e r i e s 

Q, = E q . t = 1 , 2 . . . . n 

i = -1 "" 

— ( 1 0 . 4 ) 

S i n c e z and s^ a r e t h e m e a n and s t a n d a r d d e v i a t i o n of t h e s u b - s e r i e s 

t = 1, 1 . . . . n , t h e a r e s t a n d a r d i s e d e s t i m a t e s of z ^ and 

t h e r e f o r e q i t s e l f w i l l h a v e z e r o m e a n and u n i t v a r i a n c e . 
X» 

* * 

T h e s t a n d a r d i s a t i o n i n h e r e n t in R m e a n s , l o o s e l y s p e a k i n g , 
n 

t h a t the s t a t i s t i c is i n d e p e n d e n t of t h e u n d e r l y i n g p r o c e s s m e a n and 

v a r i a n c e . T h i s is a u s e f u l p r o p e r t y w h e n c o m p a r i n g o b s e r v e d v a l u e s 

of R w i t h t h e o r e t i c a l v a l u e s d e r i v e d by s o m e p r o p o s e d p r o c e s s as is 
n 

s h o w n b e l o w . 

F o r e x a m p l e , t a k i n g the l a g - o n e M a r k o v p r o c e s s s p e c i f i e d by 
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expression (9.14) 

and dividing both sides by s^ gives 

z^ - z U , . - z 
/> ̂  t-1 - L 2 = — ; — -/»I ^ 

that is 

^t = ^t-1 ^ nA - 2 
V (10.5) 

Expression (10.5) is a lag-one Markov process producing standardised 

values q . 
X 

* * 

Because R is independent of the process mean and variance, 
n 

* * 

expected values of R and its higher moments derived from series 

generated by (9.14) and (10.5) will be identical. 

A further simplification can be made by noting from the 
discussion in section 9.3 that the role of the term - in 

expression (10.5) is to scale the random component (v ), which has 

unit variance, so that the process variance equals unity. D i v i d i n g 

{ 1 0 . 5 ) h j J l - g i v e s 

< = ^ C l ^ "t - - ( 1 0 . 6 ) 

* 2 w h e r e ^t " / 

Now for a lag-one Markov model expression (9.11) gives the relation-

2 
ship between the variance of the process s and the variance of the 
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2 
r a n d o m c o m p o n e n t s as f o l l o w s 

a 

s2 

s2 . 
1 - p^ 

2 * 
S u b s t i t u t i n g s = 1 in e x p r e s s i o n (9.11) g i v e s , for the series q , 

9 t 

the v a r i a n c e 

. * 

* 

T h e r e f o r e the v a r i a t e defined in expression (1C.6), while 

r e t a i n i n g a zero m e a n , has a v a r i a n c e of —^— 2 which is finite and 

g r e a t e r thsm. u n i t y f o r 0 P ^ ^ 1 - l ^ p ^ ^ O , 
' i. i 

One may wish to test the validity of a s s u m i n g that an 

o b s e r v e d series can be m o d e l l e d by a lag-one Markov p r o c e s s . If 
i n t e r e s t lies in the ability of such a process to reproduce observed 
** 

R^ v a l u e s , then it is s u f f i c i e n t to examine the values produced by 

the s i m p l i f i e d m o d e l form of e x p r e s s i o n ( 1 0 . 6 ) . This result applies 

g e n e r a l l y and hence p r o c e s s m o d e l s used for this p u r p o s e may be 

s i m p l i f i e d into a form which p r o d u c e s a v a r i a t e having zero mean and 

some f i n i t e v a r i a n c e g r e a t e r t h a n u n i t y . 

It is now n e c e s s a r y to examine the e f f e c t of the d i s t r i b u t i o n 

of the random c o m p o n e n t (v ) on the rescaled adjusted r a n g e . 

10.3 The E f f e c t of Skewness on the Expected Value of the Rescaled 

A d j u s t e d Range 

The skewed nature of real data was seen as one possible 

e x p l a n a t i o n of the 'Hurst P h e n o m e n o n ' , a question which has received 

c o n s i d e r a b l e a t t e n t i o n in the l i t e r a t u r e . 

F e l l e r (1951) showed r i g o r o u s l y that the a s y m p t o t i c value 
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• f the r e s c a l e d a d j u s t e d r a n g e is the s a m e f o r a n y i n d e p e n d e n t 

v a r i a t e h a v i n g f i n i t e v a r i a n c e . L a n g b e i n ( 1 9 5 6 ) a r g u e d t h a t s k e w n e s s 

s h o u l d n o t a f f e c t the e x p e c t e d v a l u e of t h e r e s c a l e d a d j u s t e d r a n g e 

and h e n c e c o u l d n o t p r o v i d e an e x p l a n a t i o n of t h e H u r s t P h e n o m e n o n . 

M a t a l a s and H u z e n ( 1 9 6 7 ) e x a m i n e d t h i s q u e s t i o n b y c o m p u t e r e x p e r i m e n t 

i n v o l v i n g l a g - o n e M a r k o v p r o c e s s e s of v a r y i n g . T h e y f o u n d t h a t 

* * 

the e x p e c t e d v a l u e s of R^ at v a r y i n g s e r i e s l e n g t h s r e m a i n e d 

v i r t u a l l y u n c h a n g e d w h e n the d i s t r i b u t i o n of t h e r a n d o m c o m p o n e n t 

was c h a n g e d f r o m n o r m a l to log n o r m a l . V a l u e s of p r o c e s s s k e w n e s s up 

to 2.0 w e r e c o n s i d e r e d . 

M a n d e l b r o t and W a l l i s ( 1 9 6 9 c ) r e p o r t e d on the d i s t r i b u t i o n -

f r e e n a t u r e of the e x p e c t e d v a l u e of the r e s c a l e d a d j u s t e d r a n g e and 

d e c l a r e d it to be a v e r y r o b u s t s t a t i s t i c . T h e i r r e s u l t s h o w e v e r a r e 

s u b j e c t to the c o m p u t e r p r o g r a m m i n g e r r o r r e p o r t e d by T a q q u ( 1 9 7 0 ) . 

M c L e o d and H i p e l ( 1 9 7 B a ) s h o w e d t h a t e x p e c t e d v a l u e s of the r e s c a l e d 

a d j u s t e d r a n g e do n o t v a r y s u b s t a n t i a l l y f r o m one d i s t r i b u t i o n to 

a n o t h e r . T h e y e x a m i n e d i n d e p e n d e n t v a r i a t e s w i t h the n o r m a l , g a m m a , 

s t a b l e and c a u c h y d i s t r i b u t i o n s . 

T a b l e s 1 0 . 1 , 10.2 a n d 10.3 p r e s e n t t h e r e s u l t s of s o m e 

c o m p u t e r s i m u l a t i o n e x p e r i m e n t s c a r r i e d o u t u s i n g t h e F O R T R A N r o u t i n e 
* * 

D 5 R G E d e v e l o p e d f o r this s t u d y (see A p p e n d i x ) . M e a n v a l u e s of R^ 

are shown f o r a l a g - o n e M a r k o v p r o c e s s and an A R M A (1,1) p r o c e s s . 

The m e a n v a l u e s w e r e o b t a i n e d f r o m 500 i n d e p e n d e n t s e r i e s g e n e r a t e d 

by the p r o c e s s m o d e l . R e s u l t s a r e s h o w n f o r t h e c a s e of a n o r m a l l y 

d i s t r i b u t e d r a n d o m c o m p o n e n t and f o r the r a n d o m c o m p o n e n t d i s t r i b u t e d 

l i k e g a m m a . S k e w n e s s e s of the r a n d o m c o m p o n e n t w e r e s e l e c t e d u s i n g 

e x p r e s s i o n s (9.20) and ( 9 . 3 1 ) to g i v e s e r i e s s k e w n e s s v a l u e s of 2 . 0 , 

4.0 and 6 . 0 . K i r b y ' s (1972) m o d i f i c a t i o n of the W i l s o n - H i l f e r t y 

t r a n s f o r m a t i o n was used to g e n e r a t e the s k e w e d r a n d o m c o m p o n e n t v a l u e s . 



l A H L E 1 D . 1 

E S T I M A T E D V A L U E S OF Ei R 
n 

F O R A L A G - O N E M A R K O V 

P R O C E S S (/?!= 0 . 5 ) - S a m p l e S i z e 500 

S e r i e s 

l e n g t h 

20 

40 

60 

80 

100 

* * 

R 
n J 

N o r m a l 

5 . 8 8 

9 . 6 4 

1 2 . 6 7 

1 5 . 4 9 

1 7 . 6 5 

2.0 

5 . 89 

9 . 7 5 

1 2 . 8 5 

1 5 . 4 1 

1 7 . 6 3 

Y = 4 . 0 
z 

5 . 9 7 

9 . 6 3 

1 2 . 7 1 

1 5 . 2 4 

1 7 . 4 1 

6.0 
z 

5 . 9 8 

9 . 6 9 

1 2 . 6 7 

1 5 . 1 8 

1 7 . 4 6 

T h e v a l u e s s h o w n in T a b l e s 1 0 . 1 and 1 0 . 3 at e a c h v a l u e of n 

d i f f e r f r o m e a c h o t h e r b y l e s s t h a n o n e o r two s t a n d a r d e r r o r s of 

e s t i m a t e . T h e a p p r o x i m a t e v a l u e of t h e s t a n d a r d e r r o r of e s t i m a t e i s , 

f o r e x a m p l e , 0 . 1 5 in t h e c a s e of n = 1 0 0 , ^ ^ = 6 . 0 and t h e l a g - o n e 

M a r k o v p r o c e s s . T h e d i f f e r e n c e s b e t w e e n v a l u e s s h e w a l s o , no 

c o n s i s t e n t t r e n d s w i t h c h a n g e s in n o r 

T a b l e 1 0 . 2 s h o w s a s i m i l a r a n a l y s i s f o r s e r i e s l e n g t h s up 

to n = 1 0 0 0 . In t h i s c a s e s a m p l i n g is l i m i t e d to 150 i n d e p e n d e n t 

s e q u e n c e s . T h e d i f f e r e n c e s in v a l u e s are a g a i n n o t s i g n i f i c a n t f o r 

t h e s m a l l e r s a m p l e s i z e . T h e a p p r o x i m a t e s t a n d a r d e r r o r of e s t i m a t e 

f o r n = 1 0 0 0 a n d X = 4 . 0 is 1 . 2 3 . 
z 

T h e r e s u l t s s h o w n in T a b l e s 1 0 . 1 , 1 0 . 2 and 1 0 . 3 c o n f i r m 

t h a t t h e e x p e c t e d v a l u e of t h e r e s c a l e d a d j u s t e d r a n g e is q u i t e 

u n a f f e c t e d by p r o c e s s s k e w n e s s . 
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TABLE 10.2 

ESTIMATED VALUES OF E 
r ** "1 
R n FDR A LAG-DIME MARKOV PROCESS 

= 0.5) - Sample Size 150 

Series 
len gth 

n 

E R 
** q 
n -

Series 
len gth 

n Normal ^ = 4.0 z 

200 26.24 26.28 

400 38.58 39.41 

600 47.58 49.05 

800 55.13 58.10 

1 000 63.39 64.47 

ESTIMATED VALUE OF E 

TABLE 10.3 

r 
R L n FOR AN ARMA (1 J ) PROCESS 

(0^= .9 , 0^= .7 ) - Sample Size 500 

Series 
length 

n 
n J 

Normal K = 4.0 z 

20 

40 

60 

80 

100 

5.37 

9.96 

14.25 

18 .16 

21 .79 

5.44 

9.81 

14.00 

17.84 

21 .65 
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10.4 The Effect of Skewness on the Standard Deviation of the Rescaled 

Adjusted Range 

It will be shown in the next chapter that plots of expected 
** 

values of R and confidence limits obtained from the standard 
n 

* * * * 
deviations of R^ i.e. s ( r ) provide a powerful tool for model 

evaluation. To the writer's knowledge the effect of process skewness 
** 

on 3(R ) has not been discussed in detail in the literature. Strictly 

* * 

speaking, s(R ) refers to estimated values of the standard deviation, 
n 

Exact values have not been derived for other than the case of an 

independent normal variate with n = 3 and n = 4. (Anis and Lloyd -

1977). 

The problem of a general expression for the exact value of 

* * 

the standard deviation of R for larger values of n or for dependent 

variates is one of great difficulty and has not yet been solved. 

(E. H. Lloyd 1978 - private communication). 
* * 

Values of s(R ) determined by computer simulation for 
n 

independent processes distributed like normal, gamma, stable and 

cauchy, may be inferred from Table 5 of McLeod and Hipel (1978), 
r- * * -I 

R 
L n These authors present estimates of the expected values E 

* * -] 

together with standard errors of estimates of E R^ • These standard 

* * ^ 
errors can be converted to s(R ) by multiplying by y N = 100 where N 

n 
4 ** 

is the sample size of 10 . The inferred values of s(R^) from this 

source indicate that there is little variation between the different 
* * 

distributions. A slight reduction in s ( R ^ ) is apparent in the gamma 

case compared with the normal distribution. 

Tables 1Do4, 1 •. , 10.6 and 10.7 show the results of the 

computer simulation experiments carried out in this study to determine 

values of s(R ). The skewed random components are distributed like 

gamma 

* * I 
n 

and cjre obtained as des..ribed in Section 10.3. 
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TABLE 1D.4 

ESTIMATED VALUES OF s(R ) FOR AN INDEPENDENT VARIATE n 

Sample Size 500 

Series 
length 

n 

* * 

s(R ) n Series 
length 

n Normal 
(McLeod 

Hipel) 

Normal X = 2 . 0 z y = 4 . 0 z 
= 6 . 0 z 

2 0 1 . 0 0 .99 . 9 6 . 8 4 . 7 5 

4 0 1 . 5 8 1 . 5 6 1 . 5 3 1 . 3 2 1 . 2 5 

6 0 1 . 9 8 1 . 8 4 1 . 8 7 1 . 7 8 1 . 6 3 

8 0 2 . 3 3 2 . 3 5 2 o 2 1 2 . 1 8 1 . 9 0 

1 0 0 2 . 6 2 

(Sample of 
1 0 4 ) 

2 „ 7 4 2 . 6 0 2 . 5 0 2 . 2 5 

TABLE 10.5 

ESTIMATED VALUES OF s ( R ) FOR A LAG-DNE MARKOV PROCESS n ^ 

( 0.5) - Sample Size 500 

Series 
length 

n 

* * 

s( R ) n Series 
length 

n Normal X = 2 . 0 z = 4 . 0 z 
i = 6 . 0 z 

2 0 1 . 1 9 1 . 1 0 0 . 9 9 0 . 8 6 

4 0 2 . 1 4 1 o 9 7 1 . 8 2 1 . 5 9 

6 0 2 . 8 3 2 . 8 1 2 . 5 9 2 . 2 9 

8 0 3 . 5 0 3 . 4 5 3 . 0 7 2 . 8 8 

1 0 0 4 . 0 9 3 . 9 2 3 . 3 9 3 . 3 7 
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TABLE 10.6 

* * 
ESTIMATED VALUES OF s(R ) FDR A LAG-ONE MARKOV PROCESS 

0.5) - Sample Size 1 50 

Series 
length 

n 

s( R ) n 
Series 
length 

n Normal ^ = 4.0 z 

200 5.80 5.39 

400 8.43 9.13 

600 10.73 1 1 o59 

BOO 12.69 .13.48 

1 000 13.65 1 5.03 

TABLE 10.7 

ESTIMATED VALUES OF s(R ) FDR AN ARMA (1,1) PROCESS P 1 

= . 9 , 0 ^ = .7 ) - Sample Size 500 

Series 
length 

n 

s( R 
* * 

) n Series 
length 

n Normal X = 4.0 z 

20 1 .22 1.13 

40 2.48 2. 24 

60 3. 80 3.45 

80 4.98 4. 56 

1 00 6.01 
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Standard errors of the estimates of s(R^ ) in Tables 10.4, 

10.5, 10.6 and 10,7 have not been calculated and hence the 

significance of the differences between values for the same series 

length can not be determined. There are however some apparent trends. 

In Tables 10.4, 10.5 and 10.7, there is an apparent reduction in 

s(R**)as the skewness increases. There is an apparent opposite trend 
n 

in the results shown in Table 10.6 which may result however, from 

sampling error due to the smaller sample size. 
* * 

This study of the effect of process skewness on s(R^ ) has 

certainly not been an exhaustive one but it does appear that the 

standard deviation of the rescaled adjusted range is only slightly 

affected by process skewness. As an example, the coefficient of 

variation, which is the ratio of the standard deviation to the 

expected value, changes from 0.23 to 0.19 for the lag-one Markov case 

with n = 100 and skewness changing from zero to 6.0. 

10.5 Distribution of the Rescaled Adjusted Range 

Mandelbrot and Wallis (1969b p.253) state that the 

distribution of the rescaled adjusted range is 'markedly skew'. 

Their Figure 11, showing results obtained by computer simulation, 

* * 

indicates a median value of R of about 11 at n = 100 for the normal n 

independent variate. The authors compare this with a value of 12.5 

obtained from Feller's (1951) asymptotic expression and conclude that 

the difference between the mean and median is indicative of high 

skewness. The comparison is however not valid as the exact expected 

value from Anis and Lloyd (1976) is 11.45. In fact this tendency to 

compare observed values of the rescaled adjusted range or Hurst's 

coefficient K with expected values obtained ^rom expressions which 

are only asymptotically valid, pervades much of the literature 



as-

relating to the 'Hurst Phenomenon'. Hurst h±n.self made thxs 

error. 

Wallis and O'Connel refer to the above-mentioned Mandelbrot 

and Wallis conclusion stating - "The distribution of R/s (i.e. R**) 
n 

is known to be highly skewed when n is small." They go on to state 

that in using the rescaled adjusted range statistic as a test of 

statistical independence it is insufficient to know its expected 

value and standard deviation. They suggest that a knowledge of the 

whole empirical distribution is required and then proceed to produce 

this with an extensive computer simulation experiment, 5en(1977a) 

also refers to Mandelbrot and Wallis (1969b) and states that the 

distribution of the rescaled adjusted range is highly skewed. Hipel 

and McLeod (1978a - microfiche version) present the full empirical 

cumulative distribution functions for the rescaled adjusted range for 

lag-one Markov models with f̂ ^ varying from 0.1 to 0.9 and various 

series length. 

Anis and Lloyd (1977) have obtained the exact distribution 
* * 

of R^ for the case of an independent normal variate with series 

lengths n = 3 and n = 4. The distributions they obtained were 

complex and highly skewed. It has been found in this study however, 

that in all cases examined using computer simulation and with n 
* * 

greater than 20, the distribution of R is only moderately skewed. 

The skewness is generally insufficient to invalidate making statistical 

inferences on the basis of a knowledge of expected values and standard 
* * 

deviations. Table 10.8 shows the calculated skewness of R for 
n 

several different processes. 

* * 

The values of the skewness of R shown in Table 10.8 n 

exhibit some variation due to the relatively small sample size of 

500. Hcwev/er "̂'"'e / su'̂'"'" ice +o show the morierate degree of skewness 
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TABLE 10.8 

ESTIMATED 5KEWNE55 DP R FOR VARIOUS PROCESSES n 
Sample Size 500 

Series 
Estimated Skewness R 

* * 
- ^ F n 

* * 
^ ) n 

length 
n 

Independ-
ent 
normal 

Lag-one 
Markov 

ARMAd ,1 ) 
01 = .82 
0^= .40 

Independ-
ent gamma 
% = 4.0 z 

Skewed 
lag-one 

0.5 
2.0 

20 .50 .01 -.25 .53 -.15 

40 . 50 .22 .01 .56 .03 

60 .49 .27 .15 .59 .28 

80 .66 .33 .18 .68 .38 

100 .68 .50 .26 .41 .28 

evident» It appears that as the complexity of the correlation 

structure of the process increases,the skewness tends to decrease. 

The following check was carried out on the loss of accuracy 

likely to result from using the assumption of normality when making 

inferences about the rescaled adjusted range. Hipel and McLeod 

(1973a - microfiche version) present tables derived from a sample size 
4 

of 10 , giving the full empirical cumulative distribution functions 

of the rescaled adjusted range for lag-one Markov processes with 

normally distributed random components. They present values for 

processes with ranging from 0.1 to 0.9 and series length n up to 

200. For the case of Q^ = 0.5, values of R^ at the 84.13 percentile 

and 15.87 percentile were interpolated from the table. These percent-

iles correspond to the mean plus or minus one standard deviation on 
the assumption of the normality of R . The interpolated values were 
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T A B L E 10.9 

'E5il,\b THE E R R O R AT ONE S T A N D A R D D E V I A T I O N IN A S S U M I N G R TO BE — j-,  
N O R M A L L Y D I S T R I B U T E D L a g - o n e M a r k o v P r o c e s s 0.5) 

S e r i e s 
I n t e r p o l a t e d f r o m 
H i p e l M c L e o d ( '78a) 

Cotnpruije-r s i m u l a t i o n 
S a m p l B size of 500 

l e n g t h 
n 

84.13 
perc^g^tile 

Rn 

1 5 . 8 7 
perc^i^tile 

Rn 

m e a n + std. 
devi^-^ion 

Rn 

m e a n - std. 
devi^-^ion 

Rn 

20 7,34 4.71 7.50 4.67 

40 12.14 7.63 11.86 7.46 

60 1 5 . 8 7 9.88 1 5.62 9.97 

80 19.15 11 .78 1 8.81 11 .77 

100 21 .79 1 3.50 21 .62 13.39 

t h e n c o m p a r e d w i t h the e x p e r i m e n t a l r e s u l t s o b t a i n e d in this s t u d y 

f r o m a m u c h s m a l l e r s a m p l e of 500. Table 10.9 s h o w s the r e s u l t s 

o b t a i n e d . 

A s i m i l a r e x e r c i s e was c a r r i e d out c o m p a r i n g the v a l u e s of 
** ** 

R at the 9 7 . 7 2 and 2.28 p e r c e n t i l e s w i t h v a l u e s of R at plus or 
n ^ n 

m i n u s two s t a n d a r d d e v i a t i o n s f r o m the m e a n . The r e s u l t s are shown 

in T a b l e 1 0 . 1 0 . 

T a b l e 10.11 s h o w s the d i f f e r e n c e s b e t w e e n mean and m e d i a n 

v a l u e s of the r e s c a l e d a d j u s t e d r a n g e from three l a g - o n e M a r k o v 

p r o c e s s e s . The v a l u e s are taken f r o m M c L e o d and H i p e l (1978) and 

H i p e l and M c L e o d ( 1 9 7 8 a ) . 

A v i s u a l i m p r e s s i o n of the n e a r - n o r m a l i t y of the d i s t r i b u t i o n 

* * 
of R is o b t a i n e d from F i g u r e 10.1. This f i g u r e shows a c o m p u t e r 

* * 

l i n e - p r i n t e r p l o t of r e l a t i v e f r e q u e n c i e s for 1000 v a l u e s of R^ at 

n = 50 f o r an i n d e p e n d e n t n o r m a l v a r i a t e . The s l i g h t p o s i t i v e 
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TABLE 10.10 

TT -TT 

TESTING THE ERROR AT TWO STANDARD DEVIATIONS IN ASSUMING R TO BE 
——— n 

NORMALLY DISTRIBUTED Lag-one Markov Process { = 0 . 5 

Series 
Interpolated from 

Hipel &. McLeod ( '78a) 
Computer simulation 
Sample size of 500 

length 

n 
97.22 

percggtile 

R 
n 

2.28 

perc|gtile 

Rn 

mean + 2x atd 

devig;^ion 

R 
n 

mean-2x std 

deviation ** 

Rn 

20 8.26 3.66 8.20 3.50 

40 14.17 6.01 14.06 5.26 

60 1 8.86 7.79 1 8.43 7.15 

80 23.06 9.29 22.33 8.25 

100 26.47 10.71 25.74 9.28 

TABLE 10.11 

* * 
MEAN AND MEDIAN VALUES OF R FOR THREE LAG-ONE MARKOV PROCESSES — p • — — 

Values obtained from McLeod &. Hipel (1978) and Hipel L McLeod (1978a! 

Sample Size 10,000 

Series 
length 

n 

0.3 

mean median 

= 0.5 

mean median 

0.7 

mean median 

20 

40 

60 

80 

1 00 

5.43 

8.50 

10.87 

12.92 

14.62 

5.36 

8.35 

10.66 

12.65 

14.31 

6.04 

9.87 

12.85 

1 5.43 

17.60 

6.05 

9.76 

12.65 

15.18 

17.29 

6.73 

11.66 

15.63 

19.12 

22.07 

6.84 

11 .68 

15.58 

1 8.92 

21 .82 
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skewness is apparent. 

The preceding discussion shows that it should be generally 
* * 

sufficient for practical purposes to assume that R is normally 

distributed for the purpose of making statistical inferences about 

its preservation by a particular process model. This assumption 

leads to a considerable saving in computing effort and assists in the 

graphical presentation of results of analysis. Inferences may be 

drawn on the basis of standard deviations calculated from smaller 

samples than that required to adequately define a complete empirical 

distribution. 

10.6 Useful Properties of the Rescaled Adjusted Range 

The discjssion up to now has shown the rescaled adjusted 

range statistic to have a great deal of promise as a time series 

analysis tool for the hydrriogist. Its useful properties can be 
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summarised as follows: 

(i) It provides a measure of the 'storage' character of a 

series. 

(ii) The sample value at various values of sub-series 

length n can be readily determined from an observed series. 

(iii) The exact expected value has been obtained in 

analytical form for some theoretical processes, 

(iv) Means and standard deviations or complete empirical 

distributions can be obtained to a desired accuracy by 

computer simulation for specified theoretical processes. 

(v) Its distribution may be considered to be approximately 

normal for medium and large n. 

(vi) Expected values and standard deviations are independent 

of the assumed mean level and variance of the theoretical 

process. 

(vii) Expected values are apparently independent of the 

marginal distribution of the theoretical process, 

(viii) Standard deviations are only slightly affected by 

changes in the marginal distribution of the theoretical 

process. 

In the next chapter it will be shown that comparison of 
** 

observed values of R^ with those produced by theoretical processes 

provides a powerful method of checking the adequacy of proposed 

process models. It will also be seen that properly identified 'short 

memory' processes are generally capable of preserving observed values 
** 

of R^ up to large values of n. This latter feature and sampling 

variability go much of the way to accounting for the claimed 

unexplained behaviour or 'Hurst Phenomenon' in observed data series. 
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CHAPTER 11: MODELLING THE RE5CALED ADJUSTED RANGE IN SOME AUSTRALIAN 

AND OVERSEAS DATA 

11.1 Introduction 

In Chapter 10 it was seen that the rescaled adjusted range 

statistic in theoretical processes has properties which should make 

it a useful tool for investigating the performance of data generation 

models. In particular the available evidence points to mean values 

and standard deviations of the rescaled adjusted range being sensitive 

only to the autocorrelation structure of the process. The statistic 

has considerable significance for the hydrologist due to the close 

analogy with residual mass curve storage analysis. 

In this chapter observed hydrologic data series from 

Australian and overseas locations will be analysed and inferences 

made about underlying autocorrelation structures on the basis of 

sample autocorrelation functions and partial autocorrelation functions. 

Moment estimation type procedures as described in Chapter 9 will be 

used to fit data generation models. The rescaled adjusted range 

values obtained from these models will be compared with those obtained 

from the observed series. 

It should be noted once again that the rescaled adjusted 

range values obtained from the model being examined are sensitive 

only to the model's autocorrelation structure. To investigate the 

adequacy of the model as far as the rescaled adjusted range is 

concerned, it is sufficient to specify the autoregressive and moving-

average term parameters. The estimation of parameters relating to 

the liiaan, variance ^nd skewness of the process is therefore not 

required. In this study the models used assume a process mean of 

zero and a normally distributed random component with a variance of 



S2, 

unity. 

11.2 Annual Flows in the St. Lawrence and Niger Rivers - Models 

Proposed in the Literature 

Carlson, MacCormick and Watts (1970) examined the annual 

series of flows of the St. Lawrence River at Ogdensburg, New York for 

the period 1860-1957. This series is given by Yevjevich (1963). 

The authors used the sample autocorrelation function to identify the 

series as a lag-one autoregressive process and using the maximum 

likelihood approach to model fitting proposed the following equation 

as the best model 

Z^ = 0.69 + a^ (11.1) 

where Z , Z are series values expressed as deviations from the 
"t t ~ I 

process mean at times t, t-1, and a is a realisation of an 

uncorrelated random variate with a mean of zero and constant variance. 

McLeod, Hipel and Lennox (1977) examined the same series of 

flows. They used the sample autocorrelation function and partial 

autocorrelation function to identify the process structure as well as 

two additional functions, the inverse autocorrelation and inverse 

partial autocorrelation functions. These authors suggest the follow-

ing constrained three-lag autoregressive model as being superior to 

that proposed by Carlson et al. 

Z = 0.62 Z + 0.18 Z + a — ( 1 1 . 2 
X X*" I L^w u 

McLeod et al showed that their model is superior to equation 

11.1) on the grounds of the comparison of parameter estimates with 
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their standard errors, the likelihood ratio test (Hipel, McLeod and 

Lennox - 1979) and the Akaike information criterion (Akaike 1974). 

In this study expression (11.1) was replaced by the 

following 

q^ = 0.69 + v^ — ( 1 1 . 3 ) 

and expression (11.2) replaced by 

q^ = q^.l - ^ ^ — ( 1 1 . 4 ) 

where q , i ^^^ t values of the process at times t, t-1 , 
t t "" 1 X"" 3 

t-3 and v is a value sampled from the standard normal variate at 

time t. A differentiation has been made between process values Z^ 

and q because the random components in each process have different 

variance. The processes represented by Z^ and q^ will have different 

variance but the same rescaled adjusted range properties. (See 

section 10.2 of this report for discussion.) 

Expression (11.3) and (11.4) were used to generate 500 
* * 

sequences of various lengths n from which estimates R , s(R ) were ^ = n n 

made of the mean value of the rescaled adjusted range and its standard 

deviation respectively at each n value. A FORTRAN routine D5RGE 

(see appendix) was written to perform this task. Figures 11.1 and 

11.2 show curves drawn through the mean values of the rescaled 

adjusted range and the mean plus and minus two standard deviations. 

The area between the two outlying curves corresponds to a 

95% confidence region assuming that R^ is appro -imately normally 

distributed (See section 10.4 for discussion). 
• • 

Also plotted on Figures 11.1 and 11.2 are R^ 
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v a l u e s o b t a i n e d f r o m an a n a l y s i s of t h e 5 t . L a w r e n c e R i v e r a n n u a l 

f l o w s e r i e s . T h e d a t a used w a s t h e s e r i e s g i v e n by Y e v j e v i c h ( 1 9 6 3 ) ; 

t h e s o u r c e a c k n o w l e d g e d by M c L e o d et a l and C a r l s o n et a l . T h e 

F O R T R A N r o u t i n e R A N G E (see a p p e n d i x ) w a s u s e d f o r the a n a l y s i s . 

As d i s c u s s e d in s e c t i o n 7.2 of t h i s r e p o r t the m e t h o d u s e d 

in t h i s s t u d y to e v a l u a t e the r e s c a l e d a d j u s t e d r a n g e in an o b s e r v e d 

d a t a s e r i e s is as f o l l o w s . A s u b - s e r i e s l e n g t h n is n o m i n a t e d . T h e 

o b s e r v e d s e r i e s is s u b d i v i d e d i n t o as m a n y a d j a c e n t n o n - o v e r l a p p i n g 

s u b - s e r i e s as t h e l e n g t h of t h e r e c o r d p e r m i t s and w i t h t h e f i r s t 

* * 

s u b - s e r i e s c o m m e n c i n g at the s t a r t of the r e c o r d . R is then 
^ n 

e v a l u a t e d f o r e a c h s u b - s e r i e s . W h e r e m o r e than o n e s u b - s e r i e s is 

* * 

a v a i l a b l e f r o m the r e c o r d , t h e v a r i o u s v a l u e s of R^ o b t a i n e d 

can be r e g a r d e d as i n d e p e n d e n t e s t i m a t e s of t h e t r u e e x p e c t e d v a l u e 

* * . r. 
of R f o r the u n d e r l y i n g s t o c h a s t i c p r o c e s s . A s a m p l e f u n c t i o n of 

n 

the r e s c a l e d a d j u s t e d r a n g e can be d e v e l o p e d f r o m t h e o b s e r v e d s e r i e s 

by r e p e a t i n g the a b o v e p r o c e d u r e f o r v a r i o u s v a l u e s of n . A 

n e c e s s a r y f e a t u r e of s u c h a f u n c t i o n is the d e c r e a s i n g n u m b e r of 
* * 

i n d e p e n d e n t s a m p l i n g s of R as t h e v a l u e of n i n c r e a s e s . F o r n 

g r e a t e r than o n e h a l f of t h e o b s e r v e d s e r i e s l e n g t h t h e r e is of 

* * 

c o u r s e o n l y o n e i n d e p e n d e n t s a m p l e of R a v a i l a b l e . 

T h e s a m p l e r e s c a l e d a d j u s t e d r a n g e f u n c t i o n f o r the S t . 

L a w r e n c e R i v e r d a t a w a s p l o t t e d in F i g u r e s 11.1 and 1 1 . 2 . T h e v a l u e s 

o b t a i n e d f r o m s u b - s e r i e s c o m m e n c i n g at t h e b e g i n n i n g of the s e r i e s 

are c o n n e c t e d w i t h a d o t t e d l i n e as an aid to v i s u a l i n t e r p r e t a t i o n . 

As m i g h t be e x p e c t e d t h e r e a p p e a r s to be a c o n s i d e r a b l e a m o u n t of 
* * 

d e p e n d e n c e b e t w e e n the R v a l u e s at a d j a c e n t v a l u e s of n . T h i s is 

* * 

p a r t i c u l a r l y so f o r the v a l u e s of R j o i n e d by the d o t t e d l i n e . 

* * 

A d j a c e n t v a l u e s of R so m a r k e d aie d e r i v e d f r o m s u b - s e r i e s w h i c h 
n 

i n c l u d e c o m m o n t e r m s up to the s m a l l e r v a l u e of n . 



57. 

A comparison of figures 11,1 and 11,^ sriows "chat the 

claimed superiority of the three-lag model proposed by McLeod et al 

is reflected in an apparent improvement in the ability of the model 

to generate series which have values of the rescaled adjusted range 

which agree with those obtained from the historical data series. 

The word apparent has been used because in the area of greatest 

interest where the value of n approaches the series length, there is 

only one independent estimate of the rescaled adjusted range 

available. It is not possible therefore to infer in a strict 

statistical sense that the rescaled adjusted range is better preserved 

by either m o d e l . One gains the visual impression however that the 

constrained three-lag process models the observed rescaled adjusted 

range values more successfully. It will be seen on carrying out a 

similar analysis of other series and models, that when components 

are added to a model so that the model better preserves the auto-

correlation structure of the historical data series, there is a 

consistently better fit between the theoretical confidence region of 

the rescaled adjusted range values and those values obtained from the 

historical data. 

Carlson, MacCormick and Watts (1970) examined the series 

of annual flows in the Niger River at Koulicoro ( 1906 -1957 ) . This 

data is also obtained from Yevjevich (1963). The authors identified 

a number of possible models? among them a lag-one autoregressive 

model : 

q^ . Û.55 + v^ — i n . 5 ) 

and a mixed a.jtoregres---.i v e moving au'er^gc modea o+ order o^e 

'ARMA '1,1, ): 



58. 

q^ = 0.82 ^ ""t " ""t-l — ( 1 1 . 6 ) 

The a u t h o r s s h o w e d that e q u a t i o n (11.6) is the s u p e r i o r m o d e l on the 

b a s i s of a least s q u a r e s fit c r i t e r i o n . 

F i g u r e s 11.3 and 11.4 c o m p a r e t h e o r e t i c a l and o b s e r v e d 

r e s c a l e d a d j u s t e d range v a l u e s and again there is some a p p a r e n t 

i m p r o v e m e n t . i n the m o d e l l i n g of the r e s c a l e d a d j u s t e d range by the 

c l a i m e d s u p e r i o r m o d e l . 

It s h o u l d be n o t e d t h a t the above c o m p a r i s o n b e t w e e n 

t h e o r e t i c a l and o b s e r v e d v a l u e s of the r e s c a l e d a d j u s t e d range is a 

c o m p a r i s o n of the fit b e t w e e n the s a m p l i n g s p r e a d of o b s e r v e d v a l u e s 

and a t h e o r e t i c a l c o n f i d e n c e r e g i o n . The c o m p a r i s o n s b e t w e e n o b s e r v e d 

* * 
and t h e o r e t i c a l v a l u e s of R or H u r s t ' s c o e f f i c i e n t K that have been 

n 

made in the l i t e r a t u r e to date have, it w o u l d s e e m , only been m a d e on 

the basis of m e a n and e x p e c t e d v a l u e s . It is s u g g e s t e d that the 

a p p r o a c h used in this study is s u p e r i o r b e c a u s e of the c o n s i d e r a b l e 

* * 
s a m p l i n g v a r i a b i l i t y in R and K. 

11.3 A n n u a l F l o w s in Some A u s t r a l i a n Rivers 

The c o m p a r i s o n of the t h e o r e t i c a l and o b s e r v e d r e s c a l e d 

a d j u s t e d range f u n c t i o n s a p p e a r to give an i n s i g h t into m o d e l 

b e h a v i o u r in the case of the St. L a w r e n c e and N i g e r R i v e r m o d e l s . 

A t t e n t i o n will now be f o c u s s e d on annual flow s e r i e s of some 

A u s t r a l i a n rivers. 

The s e r i e s of annual f l o w s in the D a r l i n g River at 

W i l c a n n i a (1886-1971) was a n a l y s e d to o b t a i n the s a m p l e a u t o c o r r e l a t i o n 

and p a r t i a l a u t o c o r r e l a t i o n f u n c t i o n s w h i c h are shown as F i g u r e s 11.5 

and 11.6. The s e r i e s e x h i b i t s a l a g - o n e a u t o c o r r e l a t i o n c o e f f i c i e n t 
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of 0.25 and hence a model of the form: 

might be proposed. However the autocorrelation function shows 

similarly large values at lags three and four while the partial auto-

correlation function has values outside the 95^ confidence interval 

at lags one and three. The value at lag three is unlikely to result 

by chance if the 'underlying' process is assumed autoregressive and 

of order less than three. A three lag autoregressive process would 

therefore seem a better model than equation (11.7). Solving the 

Yule-Walker equations for a three lag process (see section 9.2 of 

this report) yields the following model form: 

(11 .B 

The observed and theoretical rescaled adjusted range 

functions for the two models are shown as Figures 11.7 and 11.8. 

Once again it appears that plots of this kind can discriminate 

between models as regards, the appropriateness of their autocorrelation 

structure. The three lag model appears to give an improved fit to 

the observed rescaled adjusted range values. 

It should be noted that, in this study, models have not 

been rigorously identified and estimated. The aim here is not to 

find the best model but to observe trends in the rescaled adjusted 

range function plots with increased model component identification 

effort. Accordingly model parameters have been determined by solution 

of the Yule-Walker equations (9.5) rather than by the more efficient 

maximum likelihood techniques. 
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Figures 11.9 to 11.13 show rescaled adjusted range function 

plots for annual flow series of the Snowy, Barron, Brisbane, 

Burdekin and Kiewa Rivers. In these cases the evidence available 

from the sample autocorrelation and partial autocorrelation functions 

points to either independent random processes or lag-one autoregress-

ive (Markov) processes being appropriate models. This finding is 

reinforced in each of the cases by the rescaled adjusted range 

function plot. These simple models appear to preserve the resfealed 

adjusted range quite well. 

A comparison of Figures 11.13 and 11.14 illustrate the 

sensitivity of the rescaled adjusted range to autocorrelation. In 

Figurell.l4 the sample range function of the Kiewa River annual flow 

series is superimposed on the theoretical function for an independent 

random process. The fit is substantially poorer than for the model 

with the appropriate degree of autocorrelation. 

The remaining Australian annual stream flow series analysed 

was the Macquarie River at Burrendong (1886-1964). The sample 

autocorrelation and partial autocorrelation functions are shown as 

Figures 1 1 . 1 5 and 11.16 . The partial autocorrelation function shows 

no values outside the 95̂ o confidence interval and hence there is no 

strong indication that the appropriate model would be other than an 

independent random process. However the rescaled adjusted range 

function pi t (Figure 11.17) shows that an independent random process 

mcdel does not appear to yield satisfa.t.ry rescaled adjusted range 

values. The disparity could be due t- ciance but the modeller might 

be advised to re-examine the data and should certainly be cautious in 

suci- a modelc 



104. 

I 6.0 r 

12 .O 

e-o 

4-0 

VALUES O F Rj^ FROM THE O B S ^ v t c 
S E R I E S SHOWN o ^ 

SHOW VALUES 
DERIVED FROM AN INDEPENDENT 
RANDOM PROCESS 
CSOO SEQUENCES OF LENGTH N ) 

6 0 2 0 4 0 

F I G U R E 11.9 
SNOWY RL VER AT J ) NDABYNE 
ANNUAL FLOWS (I905-1977) 

( CORRECTED FOR REGULATION) 

eo IM 100 

2 -o 

B ' O 

^ N 

4- O 

VALUES OF R ^ F R O M THE OBSERVE I^ 
S E R I E S SHOWN 

,FULL L I N E S SHOW VALUES 
DERIVED FROM AN INDEPENDENT 
RANDOM PROCESS 
CSOO S E Q U E N C E S OF LENGTH N ) 

20 4 0 6 0 

F I G U R E I M O 
B A R R O N R IVER AT MAREEBA 
ANNUAL FLOWS 0916-1969) 

80 N 100 



105. 

16 'O 

12 • O 
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11,4 Monthly Flows in Some Australian Rivers 

Monthly flows are of great practical interest to the 

hydrologist and water resource system designer as the period of one 

month allows for realistic simulation and analysis in many cases. 

Monthly flows of course have the complication of periodicity and often 

high autocorrelation. One commonly used approach to the modelling of 

monthly flow series is to transform the observed periodic series into 

one which is approximately stationary by subtracting monthly mean 

values and dividing by monthly standard deviations. The resulting 

•standardised* series can then be modelled with the type of models 

already discussed in this report. The standardised series is 

stationary with respect to mean and standard deviation. Periodicities 

may remain however in higher moments such as skewness and also in 

the autocorrelations from one monthly value to the next. It is of 

great interest therefore to know whether the observed series can be 

adequately modelled by viewing it as a single 'standardised' entity. 

If so, autocorrelation structure may be typified by say, a single 

overall value of lag-one autocorrelation rather than different values 

between different pairs of calendar months, 

Wright (1975) analysed monthly flows from 12 Australian 

streams including the Kiewa River at Kiewa and the Macquarie River 

at Burrendong, He removed periodicities from the series and found 

that the partial autocorrelation functions of the resulting series 

indicated that autoregressive models of order greater than one were 

indicated in nine of the cases. Models of various lags were fitted 

•to each of the series and sequences of flows generated. Wright 

found that the marginal statistics of the observed series such as the 

means, standard deviations and skewness were reasonably well 

preserved by the models irrespective of the number of lags included 
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in them. He c o n c l u d e d that there is little j u s t i f i c a t i o n for using 

a u t o r e g r e s s i v e s t r u c t u r e s of order higher than one unless the 

p r e s e r v a t i o n of the serial c o r r e l o g r a m ( a u t o c o r r e l a t i o n function) is 

i m p o r t a n t . 

The i m p o r t a n c e of p r e s e r v i n g the series a u t o c o r r e l a t i o n is 

clearly seen in F i g u r e s 11.18 and 11.19. These figures show the 

sample rescaled adjusted range function of the s t a n d a r d i s e d s e r i e s of 

monthly flows ir the Kiewa River at Kiewa (1893-1970) t o g e t h e r w i t h 

the range values obtained from the appropriate one lag and three lag 

a u t o r e g r e s s i v e models. The three lag modal c l e a r l y appears s u p e r i o r 

as regards preserving the rescaled adjusted range. A similar effect 

is noticed in F i g u r e s 11.20 and 11.21 for the M a c q u a r i e River at 

P u r r e n d o n g (1886-1964) s t a r d a r d i s e d m o n t h l y series. E x a m i n a t i o n of 

the partial a u t o c o r r e l a t i o n f u n c t i o n in this case indicates that a 

12 lag model is appropriate. This multilag model also appears to be 

more successful than the lag-one model in p r e s e r v i n g the rescaled 

adjusted range. 

In the case of the s t a n d a r d i s e d n'onthly flow series for the 

inowy River at Jindabyne (1905-1977) the sample autoccDrrelation £nd 

partial autocorrslation functions j.nGicate that a lag-one auto-

regressive model should be appropriai:e. Figure 11.22 shows that in 

this case such a model appears to adequately p r e s e r v e the rescaled 

adjusted range. 

11.5 Annual Rainfalls at Soine Australian L o c a l i t i e s 

Figures 11.23 to 1''.26 show rescaled adjusted range 

"^unct.ion ploT.G fnr annual r a i n f a l l series at Adelaide, Alice Springs, 

Windsor (N.S.W.) and Balranald. The sample a u t o c o r r e l a t i o n and 

partial autocorrelation f u n c t i o n s indicate that an i n d e p e n d e n t 
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random process w o u l d be an a p p r o p r i a t e m o d e l for the Adelaide (1839-

1963) and Alice Springs (1B74-196D) series. F i g u r e s 11.23 and 11.24 

indicate that in both cases the r e s c a l e d a d j u s t e d range appears to be 

rather well p r e s e r v e d by such a m o d e l . The a u t o c o r r e l a t i o n and 

p a r t i a l a u t o c o r r e l a t i o n f u n c t i o n s of the W i n d s o r (1898-1971) s e r i e s 

indicate a lag-one a u t o r e g r e s s i v e model w i t h an a u t o c o r r e l a t i o n 

c o e f f i c i e n t of 0.25. F i g u r e 11.25 shows that the i n d i c a t e d m o d e l 

appears to p r e s e r v e the rescaled adjusted range in this case also. 

In the case of the B a l r a n a l d (1879-1970) series a r a n d o m 

i n d e p e n d e n t process m o d e l is i n d i c a t e d . The rescaled adjusted range 

function plot (Figure 11.26) h o w e v e r shows a lack of fit which, while 

being possibly due to chance, may cause the m o d e l l e r to doubt the 

adequacy of the model. F i g u r e 11.27 shows the p e r f o r m a n c e of a l a g -

one a u t o r e g r e s s i v e m o d e l with an a u t o c o r r e l a t i o n c o e f f i c i e n t of 0.25. 

In this case the fit between the t h e o r e t i c a l and observed rescaled 

adjusted range values is quite good. Given that the p r e s e r v a t i o n of 

the storage c h a r a c t e r i s t i c s of the series is i m p o r t a n t , a n d in the 

light of u n c e r t a i n t i e s s u r r o u n d i n g m o d e l i d e n t i f i c a t i o n on the basis 

of sample a u t o c o r r e l a t i o n and p a r t i a l a u t o c o r r e l a t i o n f u n c t i o n s , it 

is suggested that the m o d e l l e r m i g h t c o n s i d e r s e l e c t i n g the auto-

regressive model as being more s u i t a b l e . 

Potter (1976) examined six annual r a i n f a l l series ranging 

in timespan from 100 to 155 years for l o c a t i o n s along the east coast 

of the United S t a t e s . In c o n t r a s t to the A u s t r a l i a n series d i s c u s s e d 

above, Potter f o u n d the U.S. series to be quite highly a u t o c o r r e l a t e d 

with lag-one c o e f f i c i e n t s r a n g i n g from 0.22 to 0.59. He also 

c a l c u l a t e d the Hurst c o e f f i c i e n t K for the series and found values 

ranging from 0.73 and 0.88. From this and o t h e r analysis Potter 

c o n c l u d e d that the series e x h i b i t e d n o n s t a t i o n a r i t y of the mean which 
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was a reflection of shifts in climate. He claimed that the series 

could not therefore be modelled by Markov (lag-one autoregressive) 

models. This conclusion is not well supported by the results for 

the Australian series examined in this study. Independent and lag-

one autoregressive models appear quite satisfactory for at least the 

Adelaide, Alice Springs and Windsor series. 

As discussed in detail earlier in this report, considerable 

caution must be used in interpreting one-point Hurst coefficient (K) 

values. For example the K value in the case of the Windsor series 

(Figure 11.25) as determined from the single rescaled adjusted range 

value at the end of the series is 0.76 and is obviously subject to 

large sampling error. 

11.6 Tree Rings and Mud Varves 

* * 

In section 8.3 of this report, plots of log R^ versus log n 

were examined for two very long annual series believed to have 

climatic or hydrologic significance. The series were the North 

Finland Pine Tree-Ring index (Siren 1961) of 780 years timespan and 

the Lake Saki Mud Varve series (Shostakovitsch 1934) of 4,180 years. 

The tree ring index is believed to correlate with mean summer 

temperatures and the mud varve thicknesses with annual lake inflows. 

These two series are further examined by means of rescaled 

adjusted range function plots drawn to natural scales in Figures 

11.28 and 11.29. 

The sample autocorrelation and partial autocorrelation 

functions of the tree ring data indicate that a four lag auto-

regressive model might be appropriate. The rescaled adjusted range 

function plot (Figure 11.28) indicates that such a model produces 

rescaled adjusted range values which appear rather high. This is an 
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i n t e r e s t i n g r e s u l t as 'short m e m o r y ' a u t o r e g r e s s i v e m o d e l s h a v e o f t e n 

b e e n c i t e d in t h e l i t e r a t u r e as b e i n g i n c a p a b l e of r e p r o d u c i n g t h e 

h i g h r e s c a l e d a d j u s t e d r a n g e v a l u e s o b s e r v e d in v e r y l o n g g e o p h y s i c a l 

s e r i e s . 

T h e r e s c a l e d a d j u s t e d r a n g e f u n c t i o n p l o t f o r t h e L a k e S a k i 

d a t a ( F i g u r e 1 1 . 2 9 ) s h o w s a q u i t e d i f f e r e n t r e s u l t . T h e s a m p l e 

a u t o c o r r e l a t i o n f u n c t i o n f o r t h i s s e r i e s s h o w s a r e l a t i v e l y s m a l l 

l a g - o n e c o e f f i c i e n t of 0 . 2 4 a n d a l a g - t w o c o e f f i c i e n t of 0 . 1 7 . 

B e y o n d t h i s v a l u e t h e a u t o c o r r e l a t i o n f u n c t i o n a t t e n u a t e s e x t r e m e l y 

s l o w l y . T h e p a r t i a l a u t o c o r r e l a t i o n f u n c t i o n e x h i b i t s a p p a r e n t l y 

s i g n i f i c a n t v a l u e s o u t to a b o u t l a g 20 a n d h e n c e a 20 l a g a u t o -

r e g r e s s i v e m o d e l w a s f i t t e d b y s o l u t i o n of t h e Y u l e - W a l k e r e q u a t i o n s 

( 9 . 5 ) . F i g u r e 1 1 . 2 9 s h o w s c l e a r l y t h a t s u c h a m o d e l g i v e s v a l u e s of 

t h e r e s c a l e d a d j u s t e d r a n g e w h i c h a r e t o o l o w f o r v a l u e s of t h e s u b -

s e r i e s l e n g t h n g r e a t e r t h a n a b o u t 1 6 0 0 . T h e s h a p e of t h e a u t o -

c o r r e l a t i o n a n d p a r t i a l a u t o c o r r e l a t i o n f u n c t i o n s in t h i s c a s e g i v e 

s o m e i n d i c a t i o n t h a t a m i x e d a u t o r e g r e s s i v e m o v i n g a v e r a g e (ARMA) 

p r o c e s s m i g h t be a p p r o p r i a t e . An A R M A m o d e l w i t h o n e a u t o r e g r e s s i v e 

a n d o n e m o v i n g a v e r a g e t e r m w a s f i t t e d b u t t h e r e s c a l e d a d j u s t e d 

r a n g e v a l u e s p r o d u c e d w e r e c o n s i d e r a b l y s m a l l e r t h a n f o r t h e 20 l a g 

a u t o r e g r e s s i v e m o d e l . A R M A m o d e l s of h i g h e r o r d e r t h a n A R M A (1,1) 

w e r e n o t e x a m i n e d b u t s u c h a s t u d y w o u l d be of i n t e r e s t . 

1 1 . 7 T h e R e s c a l e d A d j u s t e d R a n g e F u n c t i o n 

T h e p r e c e d i n g a n a l y s i s of v a r i o u s d a t a series' an'd m o d e l s 

s h o w s q u i t e c l e a r l y the v a l u e of t h e r e s c a l e d a d j u s t e d r a n g e f u n c t i o n 

as a n o t h e r w e a p o n in t h e t i m e - s e r i e s m o d e l l e r ' s a r m o u r y . T h e t e r m 

' r e s c a l e d a d j u s t e d r a n g e f u n c t i o n ' h a s b e e n u s e d d e l i b e r a t e l y b e c a u s e 

of t h e a n a l o g y w i t h t h e a u t o c o r r e l a t i o n f u n c t i o n . T h e r e is a l s o an 
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analogy between the comparison of the t h e o r e t i c a l and sample 

autocorrelation functions and the t h e o r e t i c a l and sample rescaled 

adjusted range f u n c t i o n s . The f o r m e r are f u n c t i o n s in the domain of 

lag and the latter in the domain of series l e n g t h . 

The analyses carried out in this c h a p t e r could perhaps have 

been performed using the autocorrelation f u n c t i o n . An inferred model 

structure could have been used to generate many sequences of the same 

length as the observed s e r i e s . For each lag value the mean and 

standard deviation or if n e c e s s a r y , the full e m p i r i c a l distribution 

of the autocorrelation c o e f f i c i e n t , could be determined and a 

theoretical autocorrelation function plot prepared in the same way as 

for the rescaled adjusted r a n g e . The sample autocorrelation function 

could then be superimposed on the t h e o r e t i c a l function to see whether 

the model appeared to adequately preserve the observed autocorrelation. 

5uch a procedure might be regarded as assisting in model identification 

as w e l l as diagnostic c h e c k i n g , two tasks kept separate in the Box 

and Jenkins approach to m o d e l l i n g (see section 9.6 of this r e p o r t ) . 

The theoretical rescaled adjusted range and autocorrelation 

functions have been seen to be r e l a t e d . The expected value of the 

autocorrelation coefficient as w e l l as presumably its sampling 

distribution depend only on the process autocorrelation s t r u c t u r e . 

The expected value of the rescaled adjusted range appears also to 

have the same attribute whilst its sampling variance has been seen 

to be largely unaffected by changes in the m a r g i n a l distribution of 

the process as seen in Chapter 10. 

The close r e l a t i o n s h i p between the two functions raises the 

question as to what a d d i t i o n a l insight is gained by the use of the 

rescaled adjusted range f u n c t i o n . Indeed Hipel and McLeod (1978a) 

show that in a sample of 23 g e o p h y s i c a l time series the construction 
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of a u t o r e g r e s s i v e and m i x e d a u t o r e g r e s s i v e - m o v i n g a v e r a g e m o d e l s 

i n v o l v i n g c l o s e a t t e n t i o n to the p r e s e r v a t i o n of the s a m p l e 

a u t o c o r r e l a t i o n , led to t h e g e n e r a l p r e s e r v a t i o n of the r e s c a l e d 

a d j u s t e d r a n g e . It can be a r g u e d that good m o d e l l i n g p r a c t i c e , w h e r e 

'good' i m p l i e s the p a y i n g of c a r e f u l a t t e n t i o n to a u t o c o r r e l a t i o n 

w i t h o u t e x p l i c i t c o n s i d e r a t i o n of the r e s c a l e d a d j u s t e d range, w i l l 

in f a c t l e a d to m o d e l s w h i c h p e r f o r m s a t i s f a c t o r a l l y as far as the 

r e s c a l e d a d j u s t e d range is c o n c e r n e d . 

T h e v a l u e of the use of the r e s c a l e d a d j u s t e d r a n g e f u n c t i o n 

in m o d e l b u i l d i n g lies in the d i r e c t h y d r o l o g i c a l s i g n i f i c a n c e of the 

r e s c a l e d a d j u s t e d range s t a t i s t i c . A u t o c o r r e l a t i o n c o e f f i c i e n t v a l u e s 

m e a s u r e the d e g r e e of a s s o c i a t i o n b e t w e e n s e r i e s v a l u e s at d i f f e r e n t 

l a g s . The r e s c a l e d a d j u s t e d range s t a t i s t i c h o w e v e r m e a s u r e s the 

c o n s e q u e n c e of the v a r i o u s d e g r e e s of a s s o c i a t i o n at all lags as they 

a f f e c t the a m o u n t of s t o r a g e r e q u i r e d to d e l i v e r a yield equal to 

the s e r i e s m e a n . The m o d e l l e r is able t h e r e f o r e to work d i r e c t l y 

w i t h a s t a t i s t i c w h i c h is c l o s e l y r e l a t e d to w h a t is in m a n y c a s e s 

the aim of the m o d e l l i n g e f f o r t , that of g e n e r a t i n g r e a l i s t i c s y n t h e t i c 

s e q u e n c e s for s t o r a g e a n a l y s i s . Even if s t o r a g e a n a l y s i s is not the 

aim, it is d i f f i c u l t to i m a g i n e a s i t u a t i o n in t i m e - s e r i e s m o d e l l i n g 

w h e r e the p r e s e r v a t i o n of the s a m p l e a u t o c o r r e l a t i o n w o u l d not be 

d e s i r a b l e . The r e s c a l e d a d j u s t e d range f u n c t i o n assists by p r o v i d i n g 

an a l t e r n a t i v e i n t e g r a t e d view of the s a m p l e a u t o c o r r e l a t i o n . 

It s h o u l d be n o t e d that in the case of two of the s e r i e s 

a n a l y s e d (Figures 11.17 and 11.26), the a u t o c o r r e l a t i o n s t r u c t u r e s 

i n d i c a t e d by the a u t o c o r r e l a t i o n and p a r t i a l a u t o c o r r e l a t i o n f u n c t i o n s 

led to m o d e l s g i v i n g a p p a r e n t l y u n s a t i s f a c t o r i l y low v a l u e s of the 

r e s c a l e d a d j u s t e d range. It is p o s s i b l e that m o r e r i g o r o u s m o d e l 

i d e n t i f i c a t i o n and p a r a m e t e r e s t i m a t i o n p r o c e d u r e s w o u l d have 
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corrected this. At the very least the modeller is warned of apparent 

deficiencies in his moael. 

In the situation where a particular time series is to be 

modelled it would be desirable to be able to show by statistical test 

that a particular model preserved the rescaled adjusted range. 

However, the main interest in model performance as regards the rescaled 

adjusted range is at higher values of the sub-series length where 

only one independent value is available and statistical testing is 

not possible. The autocorrelation function also suffers this draw-

back as only one independent value of the autocorrelation coefficient 

is available at each lag for the particular sample series length. 

Statistical inference can be used however in both cases to reject, 

but not accept, the null hypothesis that the sample value is drawn 

from the theoretical population. Rescaled adjusted range function 

values falling more than, say, two standard deviations away from the 

mean theoretical value would be unlikely to occur by chance given the 

truth of the null hypothesis. This would indicate at the 95^ 

significance level, given the approximate normality of the distrib-

ution of the rescaled adjusted range, that the particular model 

does not preserve the statistic. 

This chapter has presented a rather exploratory examination 

of the usefulness of the rescaled adjusted range function in time 

series modelling. Model fitting has been of necessity approximate 

but hopefully adequate for the purpose of illustrating the worth of 

the approach. The remaining chapter will conclude this report with 

some general discussion on the rescaled adjusted range and the 'Hurst 

Phenomenon'. 
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CHAPTER 12: CONCLUDING REMARKS 

12.1 Introduction 

This report has presented a study which might be regarded 

as a general exploration of the usefulness of the rescaled adjusted 

range statistic in the field of stochastic hydrology. An inseparable 

part of the study has been an examination of the so-called 'Hurst 

Phenomenon', 

The main thrust of the study has been towards the comparison 

of observed and theoretical rescaled adjusted range values presented 

in Chapter 11. It is in this series of figures that the real value 
* * 

of the statistic R in synthetic hydrology can be seen. n 

This chapter will present some concluding remarks about the 

three main areas of interest in the study; 

(i) Properties of the rescaled adjusted range which 

provide a basis for the comparisons of observed and theoretical 

rescaled adjusted range functions presented in Chapter 11. 

(ii) The results of the comparisons presented in Chapter 11 

(iii) The 'Hurst Phenomenon', 

12.2 Properties of the Rescaled Adjusted Range 

A large part of this report has been concerned with 

properties of the R^ statistic in theoretical processes and the 

structure of the processes themselveso This has been necessary to 

establish the validity of the comparisons made in Chapter 11 and the 

conclusions drawn from them. 

The process models examined were of the general class of 

short-memory autoregressive and moving average models of which the 

simple lag-one Markov model is a member. These models are in 
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common use in synthetic hydrology. It has been repeatedly claimed 

in the literature that they are not capable of generating s y n t h e t i c 

'M-'K' 

sequences which have R^ values similar to those observed in real 

data series. 

It was shown in the report that for the processes examined 

the rescaled adjusted range is approximately normally distributed for 

medium to large values of series length n. This feature enables the 

construction of an approximate 95^ confidence region around the 

expected values by drawing confidence lines at plus or minus two 

standard deviations distant from the expected values. 

It was also shown for the processes examined that the 
• * 

exnected values and variance of R are unaffected by the process 
^ n * * 

mean or variance. The expected values of R^ are also unaffected, 

and the variance of R only slightly affected, by changes in process 
n 

* * 

skewness. These properties of R^ mean that the rescaled adjusted 

range function of a process depends only on the autocorrelation 

structure of the process. The confidence region around the function 

is as well quite insensitive to factors other than the autocorrelation 

structure of the process. It is not necessary therefore to determine 

model parameters relating to process mean, variance and skewness 

when examining the rescaled adjusted range function of the process. 

It was noted that the sample rescaled adjusted range 

function obtained from the observed series can be regarded as an 

alternative view of the underlying autocorrelation structure to that 

provided by the sample autocorrelation function. 

12 c 3 Comparison of Observed and Theoretical Rescaled Adjusted Range 

Functions 

The figures in Chapter 11 presenting comparisons of observed 
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* * 

and theoretical R functions show the sample function from the 
n 

observed series superimposed on the approximate theoretical expected 

value function and its surrounding confidence region. Thé comparison 

does not provide a statistical test designed to prove that the • 

proposed model preserves the rescaled adjusted range of the observed 

series, but it does give an indication of the model's performance in 

this regard. 

Twenty different data series were examined in Chapter 11. 

They consisted of annual and standardised monthly river flows, annual 

rainfalls, North Finland tree ring indices and the Lake Saki mud 

varves. The autocorrelation and partial autocorrelation functions of 

each series were used to identify an appropriate short-memory process 

model, 

Reasonable agreement was found between the observed and 
** . 

process R functions for sixteen of the twenty cases. In these 

cases the sample R values all lie within plus or minus two standard 
* * 

deviations of the estimated expected value of R^ for the process. 

* * 

In nine of the cases the sample R^ values lie largely within plus or 

minus one standard deviation. 
* * 

In the remaining four cases it was found that sample R^ 

values fall outside the approximate 95^ confidence region indicated 

by lines at plus or minus two standard deviations from the process 

expected value. The series in question are the annual flows and 

standardised monthly flows in the Macquarie River at Burrendong 

(Figures 11.17 and 11.21), the annual rainfalls at Balranald (Figure 

11.26) and the s-eries of Lake Saki mud varves (Figure 11.29). It was 

pointed out in the report that, for the first three of these series 

at least, the assumption of a moderate increase in the degree of 

autocorrelation above that indicated by the sample autocorrelation 
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and partial autocorrelation functions would lead to reasonable 

* * 

agreement between the sample and process R^ functions. The 

uncertainties surrounding the identification of the true underlying 

autocorrelation from the sample autocorrelation and partial auto-

correlation functions were pointed out. The suggestion was made that 

in such cases, and where the storage character of generated synthetic 

sequences is of importance, the autocorrelation structure of the 

assumed model should perhaps be adjusted to give reasonable agreement 

between the sample and process R^ functions. 

In the case of the Lake Saki mud varve series (Figure 11.29) 

the assumed 20-lag autoregressive model is clearly quite incapable of * * 
generating sequences having values of R^ large enough to match those 

of the observed series. The inadequacy of the model is apparent at 

values of series length n above about 16D0. The distinguishing feature 

of the Lake Saki series is its very long length compared with the other 

series examined. The reasons for the inadequacy of the assumed model 

are certainly an interesting area of further investigations. 

From this study it appears that short-memory autoregressive 

and moving average models are quite adequate in most cases for 

generating sequences which have realistic values of the rescaled 

adjusted range. This is particularly so for the range of series 

lengths likely to be of interest in hydrological design. In any case 

** 

the comparison of sample and process R^ functions provides a method 

for judging the adequacy of the model in this regard. 
It was also seen in the report that a valuable feature of the 

** 

comparison of R^ functions is the ability to discriminate between 

various models proposed for a given series. This is clearly seen in 

Figures 11.18 and 11.19 for example, in which the advantage in using 
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the appropriate three-lag autoregressive model for the series of 

standardised monthly flows in the Kiewa River at Kiewa, rather than 

the single lag model, is quite apparent. The single lag model would 

* * 
generate sequences having unrealistically low values of R which 

n 

could have serious implications for hydrological design. 

12.4 The Relevance of the Rescaled Adjusted Range to Reservoir 

Storage Design 

This study has been very much concerned with the problem of 

choosing models which generate synthetic sequences having realistic 

values of the rescaled adjusted range. The question which now arises 

is that of just how important is this aspect of model performance, 

particularly in the area of reservoir storage design. 

The role of a stochastic model in reservoir storage design 

is to generate many realistic synthetic sequences, all equally likely 

to occur in the future. The length of each sequence might be set 

equal to some assumed 'economic' life of the project. The operation 

of the reservoir system can be simulated using each of the synthetic 

sequences and a relationship obtained between risk of failure to 

supply and storage size for some assumed release rule. This relation-

ship can then be used in an economic study involving benefit and cost 

functions to determine the economic optimum storage size. 

Now assume that the above-mentioned stochastic model 

preserves the rescaled adjusted range in the observed series. The 

many synthetic sequences generated by the model can be analysed and 
** 

the value of R determined from each at n equal to the sequence 
n 

* * 

length. Each value of R represents the minimum reservoir size 

required to deliver a constant supply equal to the mean inflow for the 

sequence. The mean of all the reservoir sizes determined from the 
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sequences will approximate € (R^ ), the expected value of R^ for 

the stochastic process underlying ti.e observed series. It is apparent 

therefore that the model preserves the 'storage character' of the 
* * 

observed series. However a knowledge of the value of E(R^ ) gives no 

information about the probability that a reservoir of such size will 

fail to deliver a constant supply equal to the mean inflow in the 

case of a single sequence sampled from those generated by the model. 

It is this latter type of information that is required for economic 

decision making. 

The value of preserving the rescaled adjusted range lies 

however in the need for realistic synthetic sequences in the design 

procedure. Fiering (1967) stated this point quite clearly in terms 

* 

of the adjusted, but not rescaled, range R^. "It is appropriate to 

* 

repeat that no special nobility is ascribed to E(R^) as a design 

decision; rather any generating model recommended for design purposes 

should, as a matter of consistency, be capable of reproducing the 

essence of observed storage behaviour " 

12.5 The Fiering (1967) Approach to Synthesis of Streamflow Data 

Fiering (1967) discussed synthetic data generation in the 

context of the reservoir storage design problem. As the statement 

quoted in the previous section reveals, he saw the preservation of 

the adjusted range as a necessary attribute of a stochastic model if 

it is to produce realistic data to be used in economic decision making. 

* * 

The technique presented in this study, of comparing R^ 

functions to establish whether or not a particular model appears to 

prasirvi the rescaled adjusted range, is to some extent a refinement of 

the approach used by Fiering, 

Fiering saw a need to consider multi-lag autoregressive 
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models in some cases to preserve the adjusted range. He established 

a set of criteria unrelated to the adjusted range statistic for 

deciding the number of autoregressive terms to be used in the model. 

The maximum number of terms considered was twenty. Additional 

autoregressive terms were added until there was no improvement in the 

degree of multiple correlation between the actual terms in the data 

series and the preceding terms at the lags included in the model. 

Numerical instability in the calculated autoregressive parameters was 

another criteria for ceasing to add additional terms. 

Tiering used the approach described above to fit models to 

fifteen data series. For each of the models identified he obtained 
* 

by computer simulation the expected value of the adjusted range, E(R^), 

at the value of n equal to the length of the observed series. He 
* 

prepared a plot of the log E(R^)/s versus log n values in the 

same manner as Hurst (1951). He found that the regression equation 

fitted by Chow (1.951) to Hurst's data also was a close fit to his own. 

Fiering took this result to be an indication that models fitted using 

his technique would in general reproduce the 'Hurst Phenomenon' or, 

expressed differently, would preserve the adjusted range. 

The difference between Fiering's approach and that presented 

in this study is that in the latter the ability of the individual 

model to preserve the rescaled adjusted range is explicitly examined. 

Fiering's (1967) results have been incorrectly used by 

other authors to argue that short-memory models in general require 

very many autoregressive terms to preserve the rescaled adjusted 

range for even short series lengths. D'Connel (1977) makes the 

following statement. "In applying multi-lag autoregressive models 

Fiering (1967) found that he required a 20-lag model to ensure Hurst's 

law .... with h 0.5 held for n ^ 60. Computational, not 
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statistical, grounds prevented an extension of this approach". A 

similar statement is also made by Mandelbrot and Wallis (1968). In 

fact Fiering may well have chosen other criteria leading to models with 

fewer autoregressive terms and still have found that they preserved 

the 'Hurst Phenomenon' . The results of this study show that simple 

short-memory models are in general capable of preserving the rescaled 

adjusted range over the series lengths of interest in hydrological 

design. 

12.6 The Hurst Phenomenon 

It would appear from the discussion in this report that 

much of the behaviour of the rescaled adjusted range in real data 

series can be simulated by simple short-memory stochastic models. It 

has been strongly argued in the report that such models are generally 

satisfactory for hydrological design purposes. It is not surprising 

however that simple stochastic models may not be able to reproduce all 

the complexities of real data series. Stochastic models are, of 

course, mere mathematical abstractions and their structures bear no 

relationship to the real physical processes they attempt to mimic. 

The important question is that of whether the synthetic data produced 

by the model is realistic enough to be useful for the purpose at hand. 

Some authors have argued that there are important differences 

between the behaviour of the rescaled adjusted range in long series of 

real data and that in long synthetic series produced by short-memory 

process models. In particular it is claimed that the slope of the log 

** . . I 
R versus log n plot constructed for real series does not exhibit the 
n 

convergence to an asymptotic slope of 0.5 that is exhibited by series 

produced by short-memory models. It has been illustrated in this 

study (Sections 5.3 and 8.3) that with short-memory processes the 
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convergence to 0.5 occurs very slowly and is slower with increasing 

process autocorrelation. Real data series can be thought of as o*ne 

realisation of an underlying stochastic process. It was shown also 

(Section 8.1) that for single series realisations of short-memory 

* * 
processes, the sampling variability of R^ led to large fluctuations 

** 

in the slope of the log R^ versus log n plot, particularly at larger 

n values. This was seen to make estimation of the true underlying 

* * 

slope quite difficult. In this study log R^ versus log n plots of 

five different series were examined. Two of the five plots (Figure 

8.3) gave the visual impression of convergence of the slope to some-

thing of the order of 0.5. The other three plots (Figures 8.4 and 

8.5), which included the results of the analysis of the longest series 

available, the Lake Saki mud varves (n = 4l80), did not indicate 

convergence of the slope to 0.5. All plots showed large fluctuations 

in slopes at the higher n values. 

From the results of this study it would appear that it can 

not be stated without doubt and as a general truth that short-memory 
* * 

processes fail to preserve the behaviour of the slope of the log R^ 

versus log n plot in long series of real data. However, shculd this 

be the case, the question remains as to the significance to 

hydrological design of such a failure. 

One physically plausible reason why short-memory process 

models may not fully reproduce the behaviour of the rescaled adjusted 

range in long geophysical series data series is non-stationarity. It 

is possible that climatic changes occur more or less randomly bringing 

about abrupt shifts in the mean level of geophysical processes. 

Models of non-stationary stochastic processes have been proposed by 

Hurst (1957), Klemes (1974), Potter (1975) and Boes and Salas (1978). 

These models are capable of producing synthetic data series in which 
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* * 

convergence of the log R^ versus log n slope to a value of 0.5 occurs 

extremely slowly. These models have been proposed as alternatives to 

complex stationary process models such as fractional gaussian noise 

(Mandelbrot and Wallis, 1968). 

In regard to the relative merits of non-stationary and 

stationary stochastic models, O'Connel (1977) makes the following 

statement. non-stationarity is a rather intractable assumption 

if the ultimate aim is to generate synthetic flows; provided 

stationary stochastic processes which can reproduce the Hurst 

Phenomenon are available, these would appear to be more desirable 

for application in the planning of water resource systems, provided 

strong physical grounds do not inhibit their use". It has been shown 

in this report that simple stationary short-memory stochastic 

processes do, in many cases, "reproduce the Hurst Phenomenon" over the 

range of values of series length encountered in available hydrological 

records, 
* * 

Concern with the slope of the log R^ versus log n plot at 

very large series lengths may be appropriate where it is desired to 

synthesiae a very long record which is to preserve features consistent 

with the possible non-stationary nature of long geophysical series. 

This is not the usual aim of data synthesis for hydrological design. 

The usual aim is to produce many equally-likely sequences of some 

fairly short length equal perhaps to the assumed economic life of the 

project. The use of a stationary short-mBmory model in this setting, 

implies that the short-term past and the short term future may be 

assumeci to be manifestations of a stochastic process which can be 

regarded as stationary at least over such a period of time. Attempts 

to use non-stationary models or complex models such as fractional 

gauasian noise in this setting imply that the uncertainties associated 
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w i t h , say, climatic change in the future are to be gathered into the 

many short term futures used in the design process. The choice 

between the two approaches is a problematical one for the designer. 

It is appropriate to conclude this discussion with the words 

of Klemes (1974), "There is no doubt about the importance of the 

Hurst P h e n o m e n o n . It seems, however, that its import is not in 

reducing the uncertainties of storage reservoir design but rather in 

helping us to understand them, to realise the complexity and 

unpredictability of hydrologic processes and the limits of our know-

ledge". 
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APPENDIX COMPUTER PROGRAMS DE\/ELOPED FOR THIS STUDY 

Gensral Information 

Computer Environment 

Language: 

Control Data CYBER installation at the 

University of New South Wales. KRONOS 

operating system. BATCH mode. 

FORTRAN IV 

Program GENRATE 

Program Description 

Program Listing: 

Further Comments: 

Generates and writes to a file a nominated 

number of values from a specified lag-one 

Markov or ARMA (1,1) process. 

See page 141. 

Sub-routine MHNRAND returns normally distributed 

pseudo-random numbers of zero mean and unit 

variance and was a pre-existing routine used 

within the School of Civil Engineering, 

University of New South Wales. This routine 

contains non-standard FORTRAN IV and it can be 

replaced by an equivalent local library routine. 
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Program RANGE 

Program Description Reads the record to be analysed from a file. 

Determines the rescaled adjusted range and the 

Hurst coefficient K for the available non-

overlapping sub-series at the nominated sub-

series lengths. Determines mean values of the 

rescaled adjusted range and K at each nominated 

sub-series length. 

Program Listing: See page 142 

Program D5RGE 

Program Description Generates a nominated number of independent series 

of nominated lengths using a defined ARMA (1,1) 

process model or autoregressive process model 

of up to 20 terms. The process random component 

may be distributed like GAMMA with a given 

skewness. Values of the rescaled adjusted range 

and the Hurst coefficient K are determined for 

each series. The mean values, standard deviations 

and skewness of R and K at the nominated lengths 
n 

n are then determined. 

Program Listing: See pages 143-146. 

Further Comments: For comments on sub-routine MHNRAND see previous 

comments on program GENRATE. 



Fmi(;KAM C|;.MRATfe:(OUrpUT»TAPE2»OUTPUT,TAFK3) 
COMMON iMT,VtlOO) 
DlMbNSlUN AV(IOOO) 
NisB/b 
lNITzl2i4567 
SNtANsO.O 
STANUsl,0 
PHIS.92 
THETAS.70 
P0MtB,2« 
ir.RNsl 
UU 100 IslflOO 
CAI.L MHNHAND(RN) 
VII)«RN 

100 C O M I N U F 
CAI.L DGDHAND(HN) 
KVNLWsHN 
AVOLOsO, 
UO 200 IslflOO 
HVULOsRVNt* 
CALL U(;i)HAND(BN) 
NVNE'WsRN 
ll-ClGtN.EO.l) WA5TE»SMEANtPHI»(AV0LD-SMF:AN)4STAND*(RVNEW-THETA 

MHVOLD) 
ir(lGEN,EV.2) WASTE«SME.AN*BqNE*CAV0LD-5MEAN)tRVNEW»STAND»SQRT 

Ul-RONt»RUNE) 
AVOLOaWASTK 

200 CONTINUE 
DO 300 Isl,Nl 
KVOLDsPVNEM 
CALL DGORAND(RN) 
HVNfCMsHN 
IFdGKN.Ry.l) AV(I)SSMEAN4PH1»(AV0LD-SMEAN)4STAN0»(R/NEW-THETA 

MHVOLD) 
1F(1GFN,E0,2) AVCl)«SMEANfHONK»(AVOLD-SMEAN)tRVNEW»STAND*SQRT 

1(1-«UNE«R0NE) 
AVOLDsAV(l) 

300 CONTINUE 
WRITE (3,b) (AV(l),I»l,NI) 

b FOHMAT(6X,12F6.2,2X) 
STOP 
END 
SUBROUTINE HHNWAND (RANDNUR) 

C 
C THIS ROUTINE GENERATES NORMALLY DISTRIBUTED PSEUDO-RANDOM NUMBERS 
C OF ZERO MEAN AND UNIT VARIANCE BY A MULTIPLICATIVE CONGHUENTIAL 
C ' PROCEDURE FOLLOWED BY A REVERSE BOX-MULLER TRANSFORMATION, 
C 
C INITIALISING NUMBER SHOULD BE AN ODD INTEGER 
C 

COMMON 1NIT,V(100) 
NIMT 8 SMIET(IN1T,|0) 
INT = INIT+INIT^INITfNlNT 
INT X INT .AND. 00003777777777777777B 
REALNn s FLOAT(INT)»2.0«*(-47) 
NINT a SHIFT(INT,10) 
INIT B INT^INTtlNT^NINT 
INIT 5 INIT .AND. 00003777777777777777B 
REALNP c FLOAT(INIT)*2.0»«(-47) 
RANDNOR s SIN(REALNO»6.2B31853071796)*SORT(-2.0«ALOG(REALNP)) 
RETURN 
END 
Slir^ROUTlNE DGDRAND(R) 
COMMON INIT,V(100) 
IR s 100*RANF(AK) • 1 
R s V(IR) 
CALL MHNRAND(RR) 
V(|R) s RK 
RETURN 
END 
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FRGGPAM RA\GF.(nUTPUT,TAPE2 = OUTPUT,TAPR3 ,TAPfc:4) 
DIMKNSinN 0TS(4500),1N(100),X(4500) ,IFMT(3) 

C 
HEAD ( i, 11 ) TlfLK " ' " ' ̂  
PtAD (3,10) Nl 
HEAD (3,10) NT 
READ (3,10) (IN(I),1=1,NT) 
HEAD(3,10) ILIST 
HEAD (3,11) (IFMT(I) ,1 = 1 ,3)̂  
READ (4,IFMT) (OTS( I ) , 1 = 1,NI) 

C 
WRITE (2,19) TITLE 
WRITE (2,20) Nl 
WRITE (2,21) 
WRITE (2,23) (IN(I),1=1»NT)_ 
WRITE (2,22) 

C 
DO 900 1=1,NT 
PSUM=0, 
NA=IN(I) 
KN = NI/NA __ _ 
KR = 0 ' ' ' 
DO 800 K=1,KN _ 
on 7 00 J=1,NA 
KR = KH + 1 
x(j)=(:)Ts(KR) ' 

700 CONTINUE _ 
CALL HART(X,NA,RS) 
IF(KN.GT.1.AND,ILIST,EO.l) WRITE(2,35)RS 
RSIJM = RSUM-»-RS 

800 CONTINUE 
rsum=rsum/kn ' ' " ~ 
WRITE (2,30) NA,RSUM,KN 

900 CONTINUE ' " 
C 

10 FORMAT (1615) " " 
11 FORMAT (3A2)_ 
19 FOPMAT(IOX,*FILE" ^,3AT0777 
20 FOPMAT(lOX, 'NUMBER OF ITEMS IN SERIES*,15) 
21 FORMATdOX,^DETERMINATION OF RESCALED AbjUSfED RANGE FOR N ¿»T 
22 F0RMAT(//,11X,'N',11X,' R/S ',8X,'MEAN OF K VALUES',/, 3 7 X , ' K ) 
23 F0RMAT(54X,6I5) 
35 FORMAT(20X,F10.2) 

5T0P - • - - . . • -
END 
SUBROUTINE MARt(X,NA,~RST~" --- - - . . 
DIMENSION X(l) 
CALL MDEV(X,NA,XM,XD) 
SUMDEV=0. 
SURPLS = 0. • 
DEFICT=0. _ 
DO 900 1 = 1 , NA • 
SUMDEV = SUMDEV-XM + X( I ) 
IF(SUMDbV,GT.SURPLS) SURPLS=SUMDEV " 
IF(SUMDFV.LT.DEFICT) DEFICTsSUMDEV 
RGE = SnpPI,S-DEFICT 
rs=H(;e;/xd 

900 CONTINUE ~ --
RETURN 
END ~ - - -
SURRUUTINE MDEV (X,NA,XM,XD) 
DIMKMSION X d ) 
SUMMrO . 
SUMn=0. 
DO 100 1=1,NA 
SUMM=SUMM+X(I) 

100 CONTINUE 
XM=SUMM/FLOAT(NA) 
DO 2 00 I=1,NA 
SUMD=SUMD+(X(I)-XM)»(X(I)-XM) 

200 CONTINUK 
SU^^n = Si.r,D/FLnAT ( NA-1 ) 
XD=S0HT(SUMD) 
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| O Í 1 § O A M 0 ^ P ^ ( O U T P U T , T A P E ? 8 0 U T P U T , T A P E 3 , T A P E 4 , T A P E 1 ) 

. L S F O J f ? 0 ) , R F I L E ( 4 1 0 0 ) « P H U i g n ) . V A R P t a O ) 

«;AwPLivr> STRUCTUPF 

prfiníi,«;p) NTF:«;T.NTFTLF,LSFOT»NSEO — 
RFAD (i.s?) (L«;FOJ(I) ,1 = 1 ,NTEST) 

MDDFL STPKCTUPF  
ir-f , 1 A DM A ( 1 • 1 ) , A R ( 1 .O) f A P ( K » 0 ) —  
STANO TS FSTIvATPn SERIFS STO, OFV. 

TS MODFi PrPFSPFNT SCALING FACTOR FOR STO.DEV. OF RANDOM 
VADTfiTF F.G «̂ (.DT f !-Pwlj(i )•«?) fqR APMA(I,n) 
NC^HT TS »JU^'f^FP O F A U T O P E G O ^ S S I V E T E P M S 

k-fn 
P F & n n . s ? ) NPHI 
P F t n ( l . = ; 4 ) (PMT J ( T) .1=1 f M P H T ) 
PFAn(i,e;4) SMFA^,:•STAMD•S^PA^I . 
PP An f 1 , > THì^T/1 
PF&n(l,S4> GA^A 
P F i n d . c ? ) W H A , W M f i , W M G 

T F { N T P T L F . N F , 0 ) W P I T F ( ? , " 5 0 ) L S E O J ( N T F I L E ) 
,SMFAN.STAN6,THETA,SL?AN7TPHT7iTrniiI7NPRrT 

W R T T F ( ? . S P > W H A , W H R , W H G -
W P I T F ( ? . 4 7 ) 
W R I T E ( ? . 1 0 ) 

INITIAL LOADING OF pando** VARIATE VECTOR v í D 
on 100 1=1.100 
C A L L " H N » A N O ( P N ) 

100 CONTIMliE 

I N I T I A L L O A D I K J G O F V A P P < I ) 3 S M E A N 
D O f>5 1 = 1 . ? 0 
VA&P(T)=SMEAN 
Cn'jTTMiF 
CfiLL GENOATE (PHTJ,200*VAR,VARP) --
W O T T E ( 4 , A O ) ( V A R ( L U ) . L L B I » P O O ) 
D O f.7 1 = 1 , ? 0 
K = 74.ie;n 
•VACP ( T ) =VAP (K) 

ft? COSTlNifE 
KK = 0 
M = 0 
no so L=1tNTEST -

so, 
OSUV?(L)«0, 
PSU«3(L)«0. 
PLSUM(L)«0. 
RLSUM?(L)«0, 
RLSli"? (L> «0. 
CONTINUE  
MAIM LOOP 

00 QOO Iel,NSEO 
CALL SFFO(INIT) 

GFNRATF SINGLF SEQUENCE LENGTH LSEOT 

CALL r,FNPATE (PHIJ.LSEOT,VAR,VARPT 

ACtjwu|,ATF STATISTICS FOR EACH SUPSERItS-LENGTH 
no fOO L»ltNTFST 
XSlJMaO, ' • • - • 

LsF':=LsrQj(L) , 
DO lioo J = 1 , L S E 0 
XrVAO fJ) 

= - . 

300 rOV'TlM.F 
SS = FLOfcT fLSPQ) - — - — — 

XST^, = COPVP(SN,VSUM?.XMEAN) ... 
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SijDPi «; = n . 

0 0 4 n n J = 1 « L S F 0 
x = V f l P ( J ) 

I F ( « ; u m P E V . G T , S I J P P L S ) S U P P L S s S y M O E V 
I F ( S i : M n r v , L T , n E F I C T ) D E F I C T s S U M D E V -
Pr<;i,)PPl S - P F F I C T 

4 0 0 C O M I M i i E 
P = P / * < ; T D 
I F ( N T F I L E . N E . L ) 6 0 T O 4 S 0 
M = + 1 

I F ( M T F T I F . E O . L ) R F I L E ( M ) = R 
4« ;0 R S U M ( L ) =RSUM(I.)-».R 

P«;iiM? ( L ) = P S U M 2 (D-i-R^R 
RS'JM"^ (L ) ( L ) 

• 0 [ _ s h i n n ( P ) / ALr^G ( S N / ? , ) 
PL<;tjM (L ) = f ^ L S U " ( L ) • P L -

PI ( L ) = R L S U M 3 ( L ) • R L » R L * R l -

f O O C ^ M I f . ' i t F 
Q O n C O M I M i F 

« ? ^ = F L 0 A T ( K S F O ) 

n o 7 0 0 l « i » n t p s t 
L S F O = L S F O J i L ) 
p M F A N r O S U ^ f L ) 

R<;KFw = C;<E:W ( S N . P S U M 3 ( L ) » R S U M ^ i L ) • R M E A N ) 

P L ^ F i ^ s P L S U w ( L ) / 5 N 

R L < ; T n s 5 n E V P ( S N , P L S U M ? ( L ) , R L M E A N ) 

W P I T E ( ? . . 

W R I T T E N T O T A P E 3 ( I O F R . 3 ) • . / / ) 

i S F c S « A T n X ^ ? i G F ^ J = — A R M A i l . l ) . A R t l V O ) Y A R ( N P H I • t ^ ) » ^ / r ; f — 
l V x . M ' : F N = » / l e , ? * ; » N ^ H I = » S E R I F S M E A N » , 4 X , t s E R I E S S T . 

. 1 * . » T M E t a ' t 4 X , t S T . O F V . O F R A N D O M V A R J A T E » , / / , 3 X . F U , 3 , 5 X • 
3 F n I I » P H I ( N L A G ) • , / , ftF I 0 . 3 • / / ) 

F n o ^ A T • S ^ ' E W N E S S OF P A N D O M V A P I A T E = » , ^ 5 . 3 ) ^ ^ 

4 7 F O P ^ A K / , ' S A M P L E OF P O O 6 E N F K A T E 0 V A R I A B L E S W H I T T E N T O T A P E 4 I ) — 
c ? F O O ^ A T ( I M S ) 
C4 F O P ^ A T ( 1 ' ^ F c ; . ? ) ; 

I I F O R M A T ! ^ x l ? M O n T F l E O W I L S O N ' - h l L F E P T Y T R A N S F O R M A T I O N » . 

1 iPArtfi'-'FTF^S ( k I R B Y - W . P F S . O E S 8 ( 5 ) - 1 9 7 2 ) A . R t • • 3 F 1 0 , 5 ) 
1 0 FOD ' ^AT ( / / . S X , iN« .«jx • » « F A N R / S » • ? X , • S TO . DE V P / S • t 4X • • SK EW R / S * f 

K « f ? X * » S T D . D E V K » » S X t t S K E W K i f * S A M P L E S I Z E » ) 
7 0 0 r O M T ' M i ^ - . 

If^ ( M F I L E . N E . O ) W R I T E ( 3 . 4 0 ) ( « F I L E ( I ) t I = l , N S E Q ) 
S T O P 

• Ff-n 
F U N C T I O N S D E V O f S N , S U M X ? , X M E A N ) 
c o m m o n I N I T . V ( I O O ) . S M E A N t S T A N D , T H E T A , N P H I , S p R A N . t 6 A M A , I^OEIl 
C O M M O N W H A t W H R , W H G 
<;nF VP = «iQPT{ ( S U M x ¿ - S N • X M ^ . A N » X M E A N ) / { S N - 1 0 ) ) 
P F T D P M • 
F N T 
Fli^iCTTON S K E W ( S N , S U M X 3 . S l J M X ? , X M e A N ) 
C O M M O N I N I T . V {\ 0 0 ) , S M E A N , S T A N O » T r i E T A t N P H I i S O R A f T i O A M A f l Q C N 
C O M M O N W H A t W H H WHG 
S K F w = S n > ^ X 3 ^ 3 . 0 Ò S N » ( X M E A N » » 3 . 0 ) - 3 . 0 » X H E A N o s u M X a - S N » l X M E A N o f 3 L A Q J _ 
SKF w = ( { SNl-1 , 0 ) » ( SN '-2 . 0 ) ) 
S ' ^ F w r C K E w / ( ( S D E V P ( S N , S U H X 2 , X M E A N ) ) « » 3 . 0 ) 
PFTlli^N -
Ff.O 
S D P O C U T I N E G F N P A T E ( P H T J . N I . A V f A V P ) 
C O M M O N T N I T , V { 1 0 0 ) • S M E A N , S T A N D » T H E T A » N P H ! - , S 0 R A N » G A M A Y I O E N 
COMMON w H A . W M b t ^ H G 
O I ' ^ F N S I O N A V ( 4 1 0 0 ) . P H I J ( 2 0 ) l A V P ( 2 0 ) i T E M P ( 2 0 1 
I F ( I G E N . E 0 , 3 ) G O TO 4 0 0 

n o e A N n ( A N ) P F T i i P N S S I N G L E P A N O O M < 0 » 1 ) V A R I A T E 

C A L L n r . n P A N D ( R N ) 
P 
A v n i n = / \ v p { l ) - . - -
n o ? o o 7 = 1 , 5 0 
R V O L D = PV'JEk _ 

C A L L '•;r.DPAND ( R N ) 
PV\Fw r P N 
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IP ( WA?iTEsSM|:AN*PHlJ(l)#(AV0LD-5MEAN) •STAND» 
l^nOAN^iOVf E «rf-THETA»PVOLn) 
IF(Tr-FN.FO.?) WASTE8S«^EANi*PHIJ(n«(AV0LD-SMEAM) •RVNEW«STANO 
AvnLHsiiASTt -

?f>0 CONTlfJiiP 
DO 3ftft I=1*NI 
PVOLDsPVNFh 
TALL rGDPANO(oN) 
OVNFwrDN 
IP (TGP^J.EO. 1) AV i I) «SHEAN4.PHI J (1) • (AVOLD-SMEAN) •STAND» (RVNEW-THETA 

l#PVOLn)»^DPAN 
iPdGFN.EO.?) AV(I)«SMEAN^PHIJ<1) •(AVOLD-SMEAN) •RVNEW«STAND«SORAN 
AVOtneAVd) 

•iOO CHNTIfJitF 
r,o TO oon 

•no continue -
on 700 1=1,NT _ 
CALL rr.noAND(PN) " ' ' 

AVAL=<:vFAti4STAND«S0RAN»RVNEW 
00 jj=l#NPH| 
AV/ilrAvAL* iAVP( JJ)-SMEAN)«PHIJ(JJ) 
comtt».'UF -
DO fnn jjsl.NPHi 
TP^^Pi JJ)=AV<^(JJ) 

600 continue " 
00 f^O JJ=?,MPHl 
AVP ( JJ) cTEMP (JJ-n 
CO^^TlMlF 
AVP(1)=/5VAL 
IF ( I AVi I-50)»AVAL 

OOP Cî NTISji'F PFT'JOM 

SUfiOOUTINE MHMPANO (RANONOR) 
THI«; POUTINE GENERATES NORMALLY DISTRIBUTFO PSEUDO-RANDOM NUMBERS 
OF 7FP0 MFAN ANO UNIT VARIANCE BY A MULTIPLICATIVE CONGRUENTIAL— 
PROCFnuRE FOLLOWED RY A REVERSE BOX-MULLER TRANSFORMATION. 

INITIALISING NUMBER SHOULD BE AN ODD INTEGER" 
COVMOM INIT.Vf100)«SMEAN»STAN0»THETAfNPHI»S0RAN»GAMA»I6EN 
common wHAtKHR.WHG 
NINT « SHIFT(ImIT,10) 
INT » INIT^INIT^INIT^NINT - -
INT » INT .ANn, 00003777777777777777B 
RFiLNO a FLOAT|INT),O««(-47) 
NINT e SHlFT{lNT,lf)) — 
If/TT « INT^lNT^INT^NPiT 
INIT c INIT .ANO. 00003777777777777777,8 
PFALNP e FLOAT(TMTi»?,0»<»(-47) 
RANONOP a SIN(REALn6®6.?e31«53071796)«SORT(-2.O^ALOG<REALNP)) 

WILSON-HILFERTY TRAN«?F0RMATI0N(KI«BY*S MODIFICATION) ™ 
IF<r,AMa,FO.O,) GO TO 100 — — — " " — 
MafWHp.(?,0/GAMA)/WHA)«»-3333333 
KTsl jO-(K<HG/6,0)«(WH6/6.0)^(WHG/6.0)«HANONOR 
IF MSHT 
PA^.'OSOksxHA« (H«»3«ft-WMB) 
c o m i m i e -
rft'JBK' F^D 
snt^ooMTisF DGOPANnro) 

TN!T,V(100) «^MEANtl^TANDfTHETAfNPHItSnRANtGAMAtlGPN 
COMMON, »HAttoHR.WHG 
TR • 102*RANF(AK) • I 
P m V(IR) 
CALL MHNPANO(PR) 

-- V d » ) • RP ~ 
RFTURN 
FNO 
SUf»POl'TTNF SFfO(TTS) 
COMMON TNIT,V(100)fSMEAN»STAN0tTHETAiNPHI,S0RAN»6AMA,IGEN 
COMMAS iNHA , WHP , WHG 

(T)«ioftO. — 
1TC•T^T(S) 

PFTtIRN 
Fwn .„ 
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C A M . D G I ) M A N D ( R N ) 
k V N t ^ s P f i 
A V A L s i , H E A N ^ & T A N U * S D K A N « K V N f c : « < 
0 0 b b O J J « l , N P H l 
A V A b s A V A L ^ ( A V P ( J J ) - S H E A N ) « P H I J ( J J ) 

5 i > 0 C O N f l ^ i H K 
DO h O O J v t s l . N P H I 
r f c M P ( J J ) = A V P ( J J ) 

b O o c u N r i N U E 
D U 6 5 0 J J « 2 , N P H 1 
A V H ( J J ) r T F M P ( J J - l ) 

6 5 0 C O M T I N l i f c 
A V F C l ) r A V A L 
I K l . G T . b O ) A V ( 1 - 5 0 ) « A V A L 

7 0 0 C U N T l N U t : 
900 C f ) N T l N U t ; 

P K T U K N 
K N t ) 
S U B R U U T i N E M H N R A N D ( B A N D N O R ) 

C 
C T H I S R O H T I N F : G K N t ; R A T F : S N f ) R M A I . L Y D I S T R I B U T E D P S E U O O - R A S P O M N U M B E R S 
C OK Z K M U M E A N A N D U N I T V A R I A N C E B Y A M U L T I P L I C A T I V E C O N G R U E N T I A L 
C F H O C F . r U R K F O L L O W E D B Y A R E V E R S E B O X - H U L L E R T R A N S K O R M A T I O N , 
C 
C I N I T I A L I S I N G N U M B E R S H O U L D B E A N O D D I N T E G E R 
C 

C O M M O N I N I T , V ( 1 0 0 } , S M E A N , S T A N D , T H E T A , N P H I , S D R A N , G A M A , I G E N 
M M s S H I F T ( I N I T , 1 0 ) 
I N T s i m t + i n i t ^ i n i t + n i n t 
I N T s I N T . A N D , O O O O J 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 B 
K L A L N O = F L O A T ( I N T ) » 2 , 0 » » ( - 4 7 ) 
M N l = S M I F T ( I N T , 1 0 ) 
I N I T = I N T f l N T + I N T + N I N T 
I M T s I N I T . A M ) . 0 0 0 0 J 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 B 
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