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Abstract

LoRa is an emerging technology of low-power wide-area networks (LPWANs)

operating on industrial, scientific and medical (ISM) bands to provide connec-

tivity for Internet of Thing (IoT) devices. As the number of devices increases,

the network suffers from scalability issues. Therefore, we design a cloud radio

access network (C-RAN or Cloud-RAN) with multiple LoRa gateways to solve

this problem. Furthermore, we develop novel algorithms to provide accurate

localisation for LoRa devices.

This thesis makes three new contributions to LoRa based communication

and localisation system as follows. The first contribution is a compressive

sensing-based algorithm to reduce the uplink bit rate between the gateways

and the cloud server. The proposed novel compression algorithm can reduce

the bandwidth usage for the fronthaul without decreasing LoRa packet delivery

rates. Our evaluation shows that with four gateways up to 87.5% PHY samples

can be compressed and 1.7x battery life for end devices can be achieved.

The second contribution is a novel algorithm to improve the resolution of

the radio signals for localisation. The proposed algorithm synchronises multi-

ple non-overlapped communication channels by exploiting the unique features

of the LoRa radio to increase the overall bandwidth. We evaluate its perfor-

mance in an outdoor area of 100 m × 60 m, which shows a median error of 4.4

m, and a 36.2% error reduction compared to the baseline.

ii



iii

The above approach improves the accuracy of outdoor localisation; how-

ever, it does not work for indoor localisation due to the increase of multiple

radio propagation paths. Therefore, our third contribution is an improved

super-resolution algorithm for indoor localisation. By exploiting both the

original and the conjugate of the physical layer, the algorithm can resolve

the multiple paths from multiple reflectors in clustered indoor environments.

We evaluate its performance in an indoor area of 25 m × 15 m, which shows

that a median error of 2.4 m can be achieved, which is 47.8% and 38.5% less

than the baseline approach and the approach without using the conjugate in-

formation, respectively. Our evaluation also shows that, different to previous

studies in Wi-Fi localisation systems that have significantly wider bandwidth,

time-of-fight (ToF) estimation is less effective to LoRa localisation systems

with narrowband radio signals.
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Chapter 1

Introduction

1.1 Research Background

Low-Power Wide-Area Network (LPWAN) is an emerging wireless technology

providing long range signal coverage for low-power Internet of Things (IoT)

devices. LPWAN has long communication range, low communication band-

width, small packet sizes and a long battery lifetime [1]. LoRa is one of the

major LPWAN technologies operating on unlicensed Industrial Scientific and

Medical (ISM) bands. LoRaWAN is a media access control (MAC)-layer proto-

col based on LoRa to provide reliable and secure wireless communications [2].

Since LoRaWAN is a major LPWAN standard,1 this thesis will focus on Lo-

RaWAN as a representative of LPWANs to study the Cloud Radio Access

Network (Cloud-RAN) architecture.

LoRaWAN is generally deployed with 125 kHz or 500 kHz narrowband

channels (this bandwidth may vary in different regions). Such narrowbands

limit the bit rate down to several kilo-bits or hundred-bits per second, but they

benefit the demodulator’s sensitivity, making it possible to detect and decode

1LoRa Alliance 2020 Annual Report. https://lora-alliance.org/about-lora-alliance/

1
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LoRa signals significantly lower than the noise floor and have high signal pen-

etration in an urban environment. Further, LoRaWAN devices can have up to

10 years of battery life. Therefore, LoRaWAN is widely used in commercial and

industrial applications, such as smart agriculture and intelligent building [3].

Although LoRaWAN has had many successes, concerns about its scalabil-

ity [4] and localisation accuracy [5] have been raised.

A commercial LoRaWAN network typically engages one gateway with many

end devices. The gateway processes and demodulates wireless packets locally

and cooperates with cloud servers for message delivery and device control.

LoRaWAN follows ALOHA [6] or slotted ALOHA [7] protocols for packet

transmissions, with the maximum channel utilisation rates of 18.6% and 37.2%,

respectively, since the probability of collision increases with the increase in

wireless packet transmissions, limiting the network capacity [8,9]. For example,

a LoRaWAN gateway with a single channel can support from 200 to 1,000

nodes only, depending on applications [8, 10] and, will struggle with network

congestion when there are thousands of devices. Commercial gateways can

support up to eight channels, and, thus, they can increase the capacity by

eight times compared to a single channel. To further increase the capacity, a

naïve approach is to use several gateways simultaneously in one spot. However,

such an approach is expensive (one commercial gateway may cost 1,000 USD)

and difficult to maintain. To this end, an economical radio access network with

more than eight LoRaWAN channels is proposed to address this challenge.

Another challenge for LoRaWAN is localisation. As millions of IoT devices

are deployed with valuable assets, localisation becomes an important service

to enable a wide range of location-based applications [10–12]. GPS can pro-

vide location information outdoors, but it requires extra, specialised hardware

(i.e., GPS receiver) and does not work indoors. Alternatively, the existing in-
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frastructure (i.e., LoRaWAN gateways) can be utilised to provide localisation

service [13, 14]. However, the localisation performance of the state-of-the-art

LoRaWAN localisation approach is poor. According to the LoRaWAN ge-

olocation whitepaper,2 received signal strength (RSS) based localisation can

only produce 1,000-2,000 m accuracy, and time difference of arrival (TDoA)

based localisation algorithms claim to produce 20-200 m accuracy. Such poor

accuracy cannot meet the requirement of asset localisation applications, and

further research is required to exploit the existing LoRaWAN infrastructure

for better localisation accuracy.

Recent research shows that processing radio PHY samples jointly in the

cloud can improve the battery life for LoRaWAN end devices [15], and such a

system is easy to implement and cost-efficient to deploy [16]. Further, multiple

gateways can facilitate device localisation by utilising radio path triangulation.

Inspired by the recent research, this study proposes a Cloud-RAN architecture

for LoRaWAN as a feasible solution to achieve high network capacity and

accurate indoor and outdoor localisation.

However, Cloud-RAN brings new challenges. First, the high bandwidth of

(PHY) samples from gateways to the cloud via internet infrastructures may

result in back-haul network congestion and a high cost of data usage, limiting

the deployment of such gateways. Second, even with multiple gateways for

triangulation, localisation accuracy is still poor because a narrowband signal

has poor raw resolution [17].

2LoRaWAN geolocation whitepaper. https://lora-alliance.org/sites/default/files/2018-
04/geolocation_whitepaper.pdf
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1.2 Research Objectives

This study aims to achieve high network capacity and high localisation ac-

curacy for LoRaWAN, focusing on Cloud-RAN architecture with novel algo-

rithms. Cloud-RAN architecture was originally proposed for cellular networks

to improve network flexibility and reduce capital expenditure (CAPEX) [18,

19]. Cloud-RAN for LoRaWAN can also improve signal strength and provide

a localisation service. However, new algorithms must be developed for Lo-

RaWAN Cloud-RAN to overcome new challenges. The details of objectives for

the proposed systems are listed as follows.

The first aim is to achieve high network capacity. With Cloud-RAN, the

processing of radio signals is moved from the (gateway) site to the remote cloud.

Gateways are replaced with commercial off-the-shelf (COTS) radio heads such

as software-defined radios (SDRs). Since the cloud server has significantly

more computing power than a single gateway, the number of channels sup-

ported by Cloud-RAN can reach well beyond that of a gateway. Further, the

bandwidth of a radio front-end in Cloud-RAN is typically tens of megahertz

(the details of bandwidth can be found in the datasheets of typical SDRs such

as USRP,3 bladeRF4 and hackRF5), which can cover all narrowband channels

that are assigned for LoRaWAN (e.g., 64 × 125 kHz channels in many regions).

Nevertheless, to achieve the goal of supporting all LoRaWAN channels with

Cloud-RAN, the following two tasks needs to be accomplished:

• the reduction of the network data usage during offloading PHY samples

to the cloud from the gateways, and

3USRP N210. https://www.ettus.com/all-products/un210-kit/
4BladeRF 2.0. https://www.nuand.com/bladerf-2-0-micro/
5HackRF One. https://greatscottgadgets.com/hackrf/one/
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• the accurate recovery of the information (i.e., the decoding of the Lo-

RaWAN packets) from the offloaded PHY samples in the cloud.

The first task is to reduce the data usage between the gateways and the

cloud with PHY sample compression. Cellular Cloud-RAN gateways are nor-

mally connected with optical fibres; however, the cost of optical fibres may be

unaffordable for many low-cost or ad hoc IoT applications. Another solution is

to detect channel activity and upload active PHY samples only. However, for

large-scale deployments (i.e., tens of thousands of nodes), the probability of

simultaneous multi-channel transmission is high. Therefore, PHY compression

is a feasible solution.

The second task is to extract useful information (i.e., decoding of the Lo-

RaWAN packets) from the offloaded PHY samples, whose performance de-

pends on the selection of compression algorithms. Compression can be ei-

ther lossless or lossy. Our study found that common lossless compression

algorithms [20] (e.g., LZ77) have a poor compression ratio for LoRa PHY

samples, which indicates that the radio signal is not sparse in the time do-

main. Conversely, the original signal is modulated with chirp spread spectrum

(CSS), which is sparse in the frequency domain. Therefore, we can apply

a compressive-sensing (CS) technique to exploit signals’ sparsity in the fre-

quency domain to achieve high compression efficiency while maintaining the

information in the original PHY samples. In summary, this thesis will intro-

duce Nephelai, a CS-based technique for LoRaWAN PHY sample compression,

to address the aforementioned two tasks for the first aim.

The second aim is to reduce LoRaWAN localisation errors from tens of

metres to less than 10 metres without additional hardware requirements (e.g.,

GPS). As discussed in Section 1.1, TDoA-based localisation techniques can-
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not produce metre-level accuracy because of the bandwidth limitation of Lo-

RaWAN. With Cloud-RAN architecture, the radio signals received by different

gateways (access points or APs) can be processed in the cloud jointly to im-

prove the localisation accuracy. LoRaWAN gateways are typically equipped

with two or more synchronised antennas [21], and we can exploit the phase

difference between two antennas to estimate the angle of arrival (AoA) of the

radio signal transmitted from a LoRaWAN end device that needs to be lo-

calised. However, there are two major challenges for AoA-based localisation

for LoRaWAN.

The first challenge is the poor resolution of narrowband radio signals due

to the bandwidth limitation. Unlike wide band signals, providing rich channel

state information (CSI) for localisation, LoRaWAN narrowband signals have

poor raw resolution and typically produce localisation errors of hundreds of

metres. In practice, LoRaWAN gateways can support eight narrowband chan-

nels with an overall bandwidth of 1.6 MHz. Combining all eight narrowbands

can increase the bandwidth by eight times, which can help improve the local-

isation accuracy. However, these channels must be synchronised, which is a

challenge.

The second challenge is the radio multipath effect, especially in indoor en-

vironments, and the localisation result is highly unreliable due to multipaths.

Super-resolution algorithms that are widely used with wide band Wi-Fi sig-

nals can be introduced to LoRaWAN localisation to resolve the direct path.

However, the localisation performance with the measurements from eight Lo-

RaWAN channels is still poor if we apply super-resolution algorithms directly

because of the bandwidth limitation (e.g., 1.6 MHz in LoRaWAN channels v.

more than 20 MHz in Wi-Fi).

To reduce the localisation errors, we need to investigate new algorithms
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that exploits the unique features of LoRaWAN. This thesis will first discuss the

method to synchronise multiple narrowband channels for a wider bandwidth

to increase the raw resolution, and then proposes a novel super-resolution

algorithm to resolve multipaths for indoor and outdoor LoRaWAN localisation.

To summarise, the research aims for this thesis are to achieve high net-

work capacity with CS for Cloud-RAN architecture and to reduce LoRaWAN

localisation errors.

1.3 Research Contributions

This thesis demonstrates Cloud-RAN systems for LoRaWAN with PHY sam-

ple compression and device localisation. PHY sample compression is an essen-

tial enabling technique for Cloud-RAN. Localisation is an important feature

to provide location-based services for LoRaWAN at a low cost. Both show

that Cloud-RAN is beneficial for LoRaWAN compared to the conventional

LoRaWAN architecture. Finally, note that the algorithms proposed in this

thesis are not limited to LoRaWAN, but can also be applied to other LPWAN

technologies.

1.3.1 Nephelai

The first work proposes a novel CS-based compression technique for cloud-

assisted LoRaWAN that significantly reduces the bandwidth between the gate-

ways and the cloud. The system is named Nephelai6, and new dictionary

for CS was designed to achieve high compression ratios without performance

degradation. The proposed dictionary exploits the structure of LoRa radio

6In ancient Greek mythology, Nephelai is the nymph of the clouds.
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signals and achieves improved sparse representation that is more than two

orders of magnitude better than standard discrete Fourier transform (DFT)

and discrete cosine transform (DCT) domains. A prototype of Nephelai is im-

plemented with SDRs, and the empirical evaluation demonstrates its superior

performance on embedded LoRaWAN end devices.

1.3.2 Seirios (Outdoor)

The second work develops a localisation system called Seirios7 for LoRaWAN.

The system achieves significantly higher accuracy than state-of-the-art ap-

proaches outdoors and does not require special hardware in the embedded

LoRaWAN end devices. This thesis proposes a novel interchannel synchroni-

sation algorithm to obtain the synchronised CSI of non-overlapped multiple

channels by exploiting the unique structure of the LoRaWAN PHY. Compared

to prior work [22], this approach does not require two-way communications and

CSI measurements, making it more applicable to LoRaWAN architecture. A

prototype of Seirios is designed and implemented with SDRs and off-the-shelf

embedded LoRaWAN end devices, and evaluation in a 100 m × 60 m outdoor

area shows that Seirios can reduce localisation errors by 36.2% compared to

the baseline and achieves a median localisation error of 4.4 m.

1.3.3 Seirios+ (Indoor)

The third work improves the Seirios localisation system for indoor localisa-

tion. The original system had poor performance indoors. Therefore, the study

proposes to double the amount of channel information in Seirios+ by utilising

7Seirios (Sirius) is the ancient Greek god or goddess of the Dog-Star, which is the
brightest star in the night sky and an important reference for celestial navigation around
the pacific ocean.
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both the original and the conjugate of the CSI to increase the number of mul-

tipaths that the super-resolution algorithms can resolve (up to six reflectors

for the prototype AP implementation with two antennas), thus, improving the

accuracy of localisation. Our evaluation in 25 m × 15 m indoor area shows

that the Seirios+ achieves a median localisation error of 2.4 m, approximately

two-fold smaller than the error from baseline approaches. Compared with ob-

servations in previous studies with Wi-Fi localisation systems, these results

show that time of flight (ToF) estimation is less effective for narrowband Lo-

RaWAN localisation due to bandwidth limitation.

1.4 Thesis Organisation

The rest of this thesis is organised as follows:

Chapter 2 is the literature review. Focusing on Cloud-RAN, the relevant

literature is reviewed on LoRaWAN and PHY compression. For localisation,

the conventional localisation approaches, channel combination techniques and

super-resolution algorithms are reviewed.

Chapter 3 presents Nephelai, a CS-based technique for PHY sample com-

pression.

Chapter 4 presents Seirios (outdoor)—a localisation system with a chan-

nel combination technique for narrow-band LoRaWAN end devices.

Chapter 5 presents Seirios+ (indoor), which improvs the localisation ac-

curacy of Seirios for indoor localisation.

Chapter 6 concludes the thesis.



Chapter 2

Literature Review

This chapter reviews the relevant literature on the foundation of LoRaWAN,

compression techniques and localisation algorithms.

2.1 LPWAN, LoRa, LoRaWAN

LPWAN [1,3,23] has attracted much attention from academia and industry in

recent years. LoRaWAN [3,9,24] is standardised by the LoRa Alliance as one of

the LPWAN technologies on an unlicensed spectrum. LoRa [25–30] is the PHY

foundation of LoRaWAN and defines modulation and radio communication.

Although LoRa is proprietary, recent research has discovered some LoRa

decoding and demodulation procedures [26, 31]. Specifically, LoRa leverages

CSS modulation for long-range wireless communications. CSS was initially

developed for radar applications in the 1940s and has been adopted increas-

ingly in data communication applications over the past 20 years because of

its relatively low transmission power and robustness to channel noise and ra-

dio multipath effects. The CSS signal is modulated by frequency shift chirp

pulses (frequency varying sinusoidal signals), hence improving its resilience

10
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and robustness against interference, Doppler effect, and multi-path issues [9].

2.1.1 LoRa Parameters

LoRa CSS modulation can be configured by spreading factor (SF ), bandWidth

(BW ), and code rate (CR). SF is defined as an integer from 6 to 12, repre-

senting the number of encoded bits per chirp symbol, and BW is the spectrum

constraint of a channel, typically 125, 250 or 500 kHz. CR is an integer from 1

to 4, indicating the scheme for introducing coding redundancy [2]. An up-chirp

has its linearly increasing frequency, whereas a down-chirp has a decreasing

frequency. A chirp is the minimum unit of a LoRa radio signal, and a LoRa

packet is modulated as the concatenation of different chirps. The structure

of a LoRa packet is composed of a preamble, a sync word, the start frame

delimiter (SFD), payload and cyclic redundancy check (CRC). LoRa utilises

up-chirps for the preamble, sync word, payload and CRC, and down-chirps for

the SFD.

The duration of a chirp symbol T is given by,

T = 2SF

BW
(2.1)

and the bit rate (Rb) is therefore derived as [32],

Rb = BW · SF

2SF
· 4

4 + CR
(2.2)

2.1.2 LoRaWAN Parameters

LoRaWAN defines regional parameters such as frequency, channel, SF, BW,

data rate (DR). Possible DR indicated by DR0 to DR4 are shown in Table 2.1.

In the USA, the 902-928 MHz ISM band has 64 × 125 kHz upstream channels
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with DR selected from DR0 to DR3, 8 × 500 kHz upstream channels with DR

selected from DR4, and 8 × 500 kHz downstream channels with DR selected

from DR8 to DR13 [2]. In this thesis, similar to Charm [15], Nephelai focuses

on LoRa upstream traffic only (i.e., only DR0 to DR4 will be discussed).

Table 2.1: US902-928 upstream DR

DR SF BW (kHz) Time (ms)
Indicative Physical

Bit Rate (bit/s)

DR0 10 125 8.192 980
DR1 9 125 4.096 1,760
DR2 8 125 2.048 3,125
DR3 7 125 1.024 5,470
DR4 8 500 0.512 12,500

DR5 - DR7 - - - -
DR8 12 500 8.192 980
DR9 11 500 4.096 1,760
DR10 10 500 2.048 3,125
DR11 9 500 1.024 5,470
DR12 8 500 0.512 12,500
DR13 7 500 0.256 21,900

Note. Adapted from [33]
Abbreviations: bandwidth (BW), data rate (DR), spreading fac-
tor (SF)

2.1.3 LoRa Primer

LoRa is modulated with chirp spreading spectrum (CSS). It is configured by

Spreading Factor (SF ) and Bandwidth (BW ). SF is defined as an integer from

7 to 12, representing the number of encoded bits per chirp symbol, and BW is

the bandwidth of a channel, typically 125 kHz or 500 kHz [2]. An up-chirp has

its frequency increasing linearly, while an down-chirp is the opposite. A chirp is
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the minimum unit of LoRa radio signal, and a LoRa packet is modulated as the

concatenation of different chirps. The structure of a LoRa packet is composed

of a preamble, a sync word, the Start Frame Delimiter payload and Cyclic

Redundancy Check. LoRa utilises up-chirps for the preamble, sync word,

payload and CRC, and down-chirps for SFD. An illustration of an example

LoRa packet is shown in Figure 2.1.

Fig. 2.1: An example physical-layer CSS of LoRa packet in time-frequency domain.
(X-axis is time, and y-axis is frequency)

Although the payloads of LoRa packet varies, the preambles are identical to

facilitate the packet detection. Preambles consist of predefined number (e.g.,

eight for LoRaWAN) of up-chirps, and the frequency of an up-chirp is defined

as,

f(t) = λt− BW

2 , t ∈ [0, T ), (2.3)

where λ = BW 2

2SF is the chirp rate, and T = 2SF

BW
is the duration of the chirp.

The phase of up-chirp φ(t) can be obtained by integrating f(t) as,

φ(t) = 2π
∫ t

0
f(τ)dτ = 2π(λ

2 t2 − BW

2 t), t ∈ [0, T ) (2.4)

Then, an up-chirp with magnitude of 1 can be represented as,

u(t) = ej φ(t), t ∈ [0, T ). (2.5)
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Eq. (2.3) shows that LoRa CSS modulation utilises the entire bandwidth,

making it possible to measure the channel state of the whole band

with high resolution by comparing the received chirps with the up-

chirp reference, which can facilitate the inter-channel synchronisa-

tion (Section 4.4.3).

2.1.4 Modulation and Demodulation

LoRa modulates payload and CRC data into different chirp symbols [26]. In

the frequency domain, a modulated chirp symbol starts at a specific frequency,

from one of 2SF equally divided steps of the bandwidth BW , indicating the

value λ ∈ {0, 1...2SF − 1} that it represents. The chirp then increases linearly

through the whole channel, wrapping at the upper bandwidth bound (BW/2)

to the lower bound (−BW/2). In the time domain, the derivative of phase

φλ(t) of a sinusoidal wave with an instantaneous frequency f(t) represents the

linear increment of a chirp symbol λ. Defined on [0, T ) for the modulation of

symbol λ, the instantaneous frequency f (λ)(t) is represented as

f (λ)(t) =


µt + f

(λ)
0 0 ≤ t < tp

µt + f
(λ)
0 −BW tp ≤ t < T

(2.6)

where µ = BW/T is the chirp rate, f
(λ)
0 is the initial frequency for mod-

ulating λ, and tp is the time when frequency wraps at the upper bound. We

have,

f
(λ)
0 = BW

2SF
λ− BW

2 (2.7)

tp = T (1− λ

2SF
) (2.8)
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The phase φ(λ)(t) can be derived by integrating 2πf (λ)(t) as

φ(λ)(t) =
∫ t

0
2πf (λ)(τ)dτ

=


2π(µ

2 t2 + f
(λ)
0 t) 0 ≤ t < tp

2π(µ
2 t2 + f

(λ)
0 t)− 2π ·BW (t− tp) tp ≤ t < T

(2.9)

Note that the second equation in Equation (2.9) above is empty when

tp = T and λ = 0 (see Equation (2.8)). Namely, LoRa symbol λ = 0 has one

line (linear chirp) only, while the other symbols ({1, 2, ... 2SF − 1}) have two

lines.

Thus, the in-phase component I (zI(φ(λ(t)))) and the quadrature component

Q (zQ(φ(λ(t)))) of the modulated band-pass waveform are represented as

zI(φ(λ(t))) = cos(φ(λ)(t) + Γ) (2.10)

zQ(φ(λ(t))) = sin(φ(λ)(t) + Γ) (2.11)

where Γ ∈ [−pi, pi) is an unknown phase offset caused by the radio multipath.

zI(φλ(t)) and zQ(φλ(t)) will be used in the CS dictionary design for Nephelai,

and CSI estimation for Seirios.

To modulate a packet, LoRa concatenates consecutive chirp symbols as a

complete LoRa payload. By adding the preamble with a pre-defined number

(e.g., eight preambles for LoRaWAN) of identical up-chirps, the SFD of 2.25

down-chirps and the CRC, a complete LoRa PHY packet is constructed.

To decode a LoRa packet on the receiver, a procedure of digital signal pro-

cessing (DSP), including filtering, detection, frequency calibration, and symbol

segmentation must be performed to obtain a chirp symbol from a noisy radio

channel.



2.1. LPWAN, LoRa, LoRaWAN 16

After DSP, a chirp symbol is ready for demodulation. One commonly

used method for demodulation is fast Fourier transform (FFT) [26]. The

chirp symbol is first multiplied by a down-chirp in the time domain, and then

transformed into the frequency domain with FFT. The demodulation result

is indicated by the maximal component in the frequency domain. A series of

demodulated results will be used to recover the LoRa packet sent by a trans-

mitter. Open-source software such as gr-lora [26] provides a packet recovery

process for demodulated LoRa symbols, and Nephelai focuses on LoRa symbol

demodulation only.

2.1.5 Synchronised Symbols

Inspired by LoRaWAN class B [2] and slotted ALOHA [34], we can synchronise

end nodes and gateways so gateways can receive with non-overlapped windows

as shown in Figure 2.2.

Fig. 2.2: Synchronised receiving for chirp symbols

However, perfect synchronisation is neither possible nor necessary. Here,

we use synchronised reception to improve the compression performance only,

and further digital signal processing is performed in the cloud for fine-grain

symbol segmentation. Thus, the synchronisation error tolerance is high. This

will be discussed further in Section 3.3.4.
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2.2 PHY

2.2.1 Spatial Diversity

The diversity scheme, referring to improving the reliability of message signals

by using more communication channels, has long been used in communication

systems [35]. A recent system called Charm has exploited the diversity scheme

to improve LoRa decoding by coherently combining signals captured by var-

ious LoRaWAN gateways in different locations [15]. As a result, Charm can

improve the signal-to-noise ratio (SNR) of the combined signal, which enables

faster transmission rates for the end devices and, in turn, improves the battery

lifetime of the devices.

One contribution of Charm has been the technique of coherently decoding

PHYs in the cloud. Similar concepts were studied in Wi-Fi [36], [37] and

cellular networks [19], [38], but Charm was the first to introduce this approach

into LoRaWAN, showing that signals with 30 dB below noise floor could be

decoded [15]. Dongare et al. also discussed the challenges of implementation.

One is that commercial LoRa gateways often have no synchronisation, which

may introduce mismatch or failure in signal combination. To overcome this

challenge, a new hardware platform was proposed by Dongare et al. with a

LoRa RF front-end SX1257, a low-power FPGA IGLOO and a Raspberry Pi

3. After pre-processing with the FPGA and the Raspberry Pi, the I and Q

component streams of the radio signal were encapsulated in ethernet packets

and sent to the cloud for joint decoding. The modification of gateways was

transparent to transmitters, and there was no requirement for other changes in

the original LoRaWAN system. Therefore, Charm was backward compatible

with the conventional LoRaWAN end devices.

A major challenge for Charm has been the high bandwidth requirement
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in sending the I/Q streams to the cloud. The minimum requirement for two

streams is 9 Mbps [15], limiting the scalability of such a system when there

are more gateways.

Overall, Charm represents one of the main research trends in LPWANs,

and the general idea can be introduced to other LPWAN technologies (e.g.,

LoRaWAN and SigFox) for embedded LPWAN end device battery life im-

provement.

2.2.2 Compressive Sensing

Misra et al. demonstrated an energy-efficient computing framework for GPS

acquisition via sparse approximation [20]. The motivation was to move GPS

computation from low-power end devices to a powerful central processor to

make the end devices more power efficient. Here, the GPS radio signal mea-

surements have a large size, but are sparse in the information that indicates the

ranging information between the GPS device and a satellite. Therefore, a com-

pressive sensing method was applied [20] to reduce the size of the radio signal

measurements. Specifically, for an oversampled GPS signal, a random mea-

surement matrix was applied for compression to reduce storage in the end de-

vices. After the compressed measurements (i.e., projections) were transferred

to the central processor, a sparse approximation algorithm was applied for

GPS ranging information reconstruction. Typical sparse approximation algo-

rithms included matching pursuit (MP), orthogonal matching pursuit (OMP),

and ℓ1-minimisation. The design of dictionaries (i.e., domains) for compressive

sensing was to maximise the sparsity of the original signal and the incoherence

between the dictionaries and the measurement (compression) metrics, which

may be learned from historical measurements.
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2.3 Localisation

2.3.1 Localisation Algorithms

With the rapidly increasing popularity of LPWANs and the importance of ge-

olocation applications, recent research has attempted to address the challenges

and error sources for localisation methods based onLPWAN gateway infras-

tructure [39] to improve their accuracy. Table 2.2 reviews related work and

then groups localisation approaches into categories as follows.

Table 2.2: Comparison of related work

Research Technology Low Power Range Accuracy
[17,22,40,41] Wi-Fi - 12-25 m <0.9 m

[42–44] Bluetooth ✓ 10 m ≈ 1 m
[45,46] Cellular ✗ 35-60 m ≈ 0.85 m
[47–49] Backscatter ✓ <10 m <0.5m
[50,51] LPWAN ✓ 500 m+ >100 m

OwLL [52] LPWAN ✓ 500 m+ ≈ 9 m
Seirios (outdoor) LPWAN ✓ 100 m ≈ 5 m

WideSee [53] LPWAN ✓ 40 m 4.6 m
Seirios+ (indoor) LPWAN ✓ 25 m 2.4 m

2.3.1.1 RSS or CSI-Based Algorithms

RSS is measured at each LoRa packet reception. It indicates the signal strength

and can be used for distance estimation with the path loss model of different

environments or as the fingerprints of different locations [54–57]. However,

RSS has large variations due to environmental multipath factors and wireless

signal interference, resulting in hundreds of metres’ in distance estimation.

Further, the need for frequent and labour-intensive labelling and training is
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the major drawback of RSS fingerprinting via machine-learning approaches.

CSI provides finer-level channel information than RSS, and CSI-based lo-

calisation has been well studied in Wi-Fi [22,40,41,58–60]. It achieves a higher

localisation accuracy than RSS by providing abundant information to mitigate

radio signal multipath effects; however, it suffers from similar drawbacks as

RSS because of the bandwidth limitation of LPWANs, which results in poor

localisation accuracy, and the requirement of labeling and training for machine

learning-based approaches.

2.3.1.2 TDoA

TDoA is measured by comparing the radio arrival time differences among

multiple gateways. An accurate time source such as a GPS module must

be equipped with each gateway to synchronise the radio measurements. The

transmitter’s location can then be estimated with the hyperbolic localisation

method [51, 61]. However, according to the LoRaWAN geolocation whitepa-

per 1, multipath radio propagation and the limited radio bandwidth of Lo-

RaWANs fundamentally limit the accuracy of such systems. An empirical

evaluation using GPS-synchronised gateways demonstrated a poor localisation

performance of TDoA approaches in LPWANs [51]. Recent research presented

OwLL [52], a LoRa localisation system that proposed to utilise TV whitespace

band to improve the bandwidth for TDoA-based localisation. It utilised a

method in Chime [62] to employ an extra transmitter to synchronise multiple

base stations. It achieved approximately nine metres accuracy with a range of

500 m. This thesis will discuss OwLL further in Section 2.3.2.

1LoRaWAN geolocation whitepaper. https://lora-alliance.org/sites/default/files/2018-
04/geolocation_whitepaper.pdf
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2.3.1.3 RTT

Recent research has investigated round-trip time (RTT)-based ranging meth-

ods for LPWAN [63, 64]. For example, a new LoRa chip (SX1280) operating

at 2.4GHz ISM band supported RTT-based ranging with 1.6 MHz bandwidth

in hardware. However, it required hardware upgrading and is not compati-

ble with legacy embedded LoRaWAN end devices. To this end, Seirios re-

quires a hardware update in LoRaWAN gateways only, which is significantly

more cost-effective. Further, the transmission performance of low power radio

transceivers at 2.4 GHz is inferior to their sub-GHz (e.g., 900 MHz) counter-

parts, which does not meet the requirements of many LPWAN applications.

2.3.1.4 AoA

AoA localisation with triangulation has been well studied in wider band radio

standards such as Wi-Fi [65–67]. The AoA localisation system can be combined

with other techniques such as ToF to produce fine-grained localisation accuracy

(i.e., decimetre or centimetre) [17, 68–72]. However, because of bandwidth

limitations, to the best of our knowledge, such an approach has not been

investigated in LPWAN yet. Seirios is inspired by these approaches that utilise

AoA-based triangulation for localisation with multiple APs, and it addresses

the bottleneck bandwidth limitation by exploiting multiple communication

channels enabled by a novel channel synchronisation algorithm. The super-

resolution algorithms in Seirios can then distinguish multipaths and achieve

accurate localisation. We hope this humble step can inspire further research

in the area of AoA-based localisation in narrowband LPWAN.
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2.3.1.5 Amplitude-based Algorithms

Karanam et. al. propose a localisation mechanism with Wi-Fi magnitude mea-

surements [67, 73]. Chen et. al. propose an amplitude-based anti-multipath

method using LoRa signal to achieve 4.6m accuracy in a 42m × 48m outdoor

area [53], a size approximately one-third of our evaluation (see Chapter 4 for

more details). Further, this approach required specially designed antennas in-

stead of the common omnidirectional antennas used by Seirios and mounting a

LoRa receiver in a flying drone to collect the radio signal from a transmitter at

multiple locations, which is not suitable for conventional, stationary LPWAN

gateways deployments.

2.3.2 Channel Combination

Increasing the bandwidth is an effective approach to increasing the localisa-

tion accuracy. Xiong et al. proposed ToneTrack to utilise a channel-combining

algorithm to increase the bandwidth for finer radio multipath resolution [17].

However, this approach is for overlapped wideband (Wi-Fi) signals only. Nev-

ertheless, it inspired us to combine non-overlapped narrowband LoRaWAN

signals to increase the bandwidth for localisation, as discussed in Chapter 4.

However, the resolution of the combined bandwidth signal was still poor (i.e.,

125 m), which cannot be used in localisation directly. Bansal et al. proposed

OwLL [52] to exploit TV whitespace band (up to hundreds of MHz) to increase

the accuracy of localisation. There are two major differences between OwLL

and Seirios. First, OwLL sends hundreds of packets to cover up to tens or

hundreds of MHz, while Seirios uses limited bandwidth (i.e., 1.6 MHz with

eight channels). Thus, there are energy consumption implications for trans-

mitting such a large number of packets for localisation (80 to 120 packets).
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In comparison, Seirios transmits eight packets only (a fraction, i.e., 1/15 to

1/10, as that of OwLL). For limited bandwidth scenarios (e.g., 1.6 MHz), this

thesis argues that ToF-related algorithms are less effective, and, thus, Seirios

is designed with AoA algorithms. Second, for synchronisation, OwLL follows

Chime [62] and uses an extra transmitter to synchronise the phase of multiple

base stations (i.e., gateways), whereas Seirios exploits the microstructure of

chirps to synchronise the phase of multiple channels instead of synchronising

base stations. See Table. 2.3 for details.

Table 2.3: Comparison of OwLL and Seirios

Features OwLL [52] Seirios

Bandwidth 400 MHz 1.6 MHz
Localisation time 20.97s 0.24s
Localisation technique TDoA AoA
Packets per localisation 80-120 8
Battery life (request twice a day) 1-1.8 years 10+ years
Synchronisation Base stations Multiple channels
Range 500 m 100 m
Accuracy ≈ 9 m ≈ 5 m (outdoors)

Abbreviations: time difference of arrival (TDoA), angle of arrival (AoA)

2.3.3 Virtual Antennas

Kotaru et al. proposed SpotFi to create a virtual antenna array with the num-

ber of virtual antennas greater than the number of radio signal multipaths,

thus, overcoming the constraint posed by a limited number of antennas [40].

That said, the model proposed in SpotFi was designed for ToF-AoA joint es-

timation, which produced poor accuracy for LoRaWAN. Therefore, this study
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proposes a novel model for accurate AoA estimation only to avoid unreliable

ToF estimation. Moreover, this study proposes to utilise the conjugates of

the channel measurements to further increase the number of virtual antennas

(Chapter 5), which can further improve localisation accuracy in radio signal

multipath rich environments (e.g., cluttered indoor environments).

2.3.4 Spatial Smoothing

The spatial smoothing scheme was proposed by Evan et al. to solve coher-

ent signal classification [74]. ArrayTrack [68] is a uniform linear array (ULA)

with eight antennas that utilises spatial smoothing by averaging two adjacent

antennas to resolve multipaths to improve the accuracy of AoA estimation.

Theoretical studies by Pillai et al. [75] and Pan et al. [76] showed that using

both forward and conjugated backward spatial smoothing can further improve

the number of coherent signals that can be resolved. However, this method

does not work for ULAs with a small number of antennas (e.g., two or three

only), which are available in low-cost hardware. To this end, SpotFi [40] pro-

posed to use a special Wi-Fi signal model with multiple channels for spatial

smoothing with three antennas. We note that SpotFi does not use the con-

jugate information because of a significantly larger number of communication

channels available in Wi-Fi (e.g., 30, compared with eight in LoRaWAN).

Therefore, the bandwidth constraint problem is unique to the LoRa signals

studied in this thesis. Seirios is inspired by both SpotFi and conjugated-

backward techniques and proposes a novel LoRa signal model, which solves

coherent multipath signals with a small number of antennas (i.e., two) and a

limited number of channels (i.e., eight).
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2.4 Background

2.5 Chapter Summary

This chapter reviewed the foundation of LoRaWAN, relevant techniques for

PHY sample compression and conventional algorithms for device localisation.

PHY sample compression is an enabler for a Cloud-RAN architecture for LP-

WAN, such as LoRaWAN. Localisation is an important service for LoRaWAN

devices that can benefit from Cloud-RAN architecture to improve performance.

The work in this thesis is inspired by the prior research to develop novel al-

gorithms based on Cloud-RAN architecture to enable efficient packet delivery

and accurate device localisation.



Chapter 3

Nephelai: Towards LPWAN

Cloud-RAN with Physical Layer

Compression

In this chapter, we propose Nephelai, a Compressive Sensing-based Cloud Ra-

dio Access Network (Cloud-RAN), to reduce the uplink bit rate of the physical

layer (PHY) between the gateways and the cloud server for multi-channel LP-

WANs. Recent research shows that single-channel LPWANs suffer from scala-

bility issues. While multiple channels improve these issues, data transmission

is expensive. Furthermore, recent research has shown that jointly decoding raw

physical layers that are offloaded by LPWAN gateways in the cloud can im-

prove the signal-to-noise ratio (SNR) of week radio signals. However, when it

comes to multiple channels, this approach requires high bandwidth of network

infrastructure to transport a large amount of PHY samples from gateways to

the cloud server, which results in network congestion and high cost due to

Internet data usage. In order to reduce the operation’s bandwidth, we propose

a novel LPWAN packet acquisition mechanism based on Compressive Sensing

26
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with a custom design dictionary that exploits the structure of LPWAN packets,

reduces the bit rate of samples on each gateway, and demodulates PHY in the

cloud with (joint) sparse approximation. Moreover, we propose an adaptive

compression method that takes the Spreading Factor (SF) and SNR into ac-

count. Our empirical evaluation shows that up to 93.7% PHY samples can

be reduced by Nephelai when SF = 9 and SNR is high without degradation

in the packet reception rate (PRR). With four gateways, 1.7x PRR can be

achieved with 87.5% PHY samples compressed, which can extend the battery

lifetime of embedded IoT devices to 1.7.

3.1 Introduction

Low-Power Wide Area Networks (LPWANs) are emerging wireless technologies

with features such as comprehensive signal coverage, low bandwidth, poten-

tially small packet sizes, and long battery life [1]. One of the representatives is

LoRa, which has been widely used in commercial and industrial applications,

such as logistical tracking, smart agriculture and intelligent building [3].

LoRaWAN is a recognised MAC-layer LoRa protocol for reliable data trans-

fer, and it is generally deployed on unlicensed ISM bands with 125 kHz or 500

kHz narrow band channels. Such narrow bands limit the bit rate down to sev-

eral kilo-bits or hundred-bits per second, while they benefit the demodulator’s

sensitivity, making it possible to detect and decode LoRa signals significantly

lower than noise floor.

Previous research demonstrates that if only one channel is used, LoRaWAN

coverage drops exponentially as the number of end devices grows [4] and may

only support approximately 120 nodes for a typical smart city deployment [55].

Some other research similarly indicates that LoRaWAN can support from 200-
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1000 nodes in different applications [8, 10], which raises concerns about the

scalability of LoRaWAN. To this end, by extending from single to multiple

channels similar to frequency division multiple access (FDMA), the scalabil-

ity can be increased [8]. Typical LoRaWAN gateways equipped with Semtech

SX1301 chips1 can operate with up to 8 × 125kHz channels, which provides

greater network capacity than a single channel network by eight times. Fur-

thermore, in the USA, up to 64 × 125kHz narrow-band channels are allocated

on unlicensed ISM bands for LoRaWAN. A naive approach to cover more than

eight channels is to use several gateways simultaneously in one spot. A com-

mercial outdoor LoRaWAN gateway costs approximately US$1,000. Therefore,

covering all 64 channels would be expensive and difficult to maintain.

Beyene et al. propose the implementation of NB-IoT via Cloud-RAN,

which are easy to implement and cost-efficient to deploy [16]. NB-IoT and

LoRa/LoRaWAN are both LPWAN technologies and share many common

features. Inspired by the Cloud-RAN of NB-IoT, we propose a Cloud-RAN

architecture for LoRaWAN as an affordable solution to support as many Lo-

RaWAN channels as possible. Thus, with the help of software-defined ratios

(SDR), parallel gateways are replaced with a single remote radio head, and

PHY processing is offloaded to the cloud.

As an extra benefit of Cloud-RAN, the opportunity to increase the bat-

tery life for end devices is provided. Some other approaches such as optimal

frequency selection [62] and backscatter [12] have been proposed, while our

approach is based on spatial diversity gains. Similar to the architecture of

cellular networks [19], multiple LoRaWAN gateways are commonly deployed

to provide wide-area network coverage. Therefore, the signal from one end

1SX1301 datasheet. https://www.semtech.com/products/wireless-rf/lora-gateways/
sx1301

https://www.semtech.com/products/wireless-rf/lora-gateways/sx1301
https://www.semtech.com/products/wireless-rf/lora-gateways/sx1301
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device can be received by multiple gateways and processed jointly. In a recent

research, Dongare et al. implemented such a system to exploit the spatial di-

versity gain to improve SNR by coherently combining PHY samples captured

by various gateways in different locations [15]. Thus, an end device may trans-

mit with a faster bit rate, which results in a shorter transmission duration for a

fixed packet/data payload length. Their evaluation shows that increasing the

number of received gateways improves the SNR of packets in an approximately

logarithmic manner.

Although the aforementioned Cloud-RAN is a promising architecture with

many benefits for IoT wireless networks, such a system has a huge impact on

the PHY offloading network between the gateways and the cloud. According to

Charm [15], when a moving average compressed technique is applied for PHY,

9 Mbps is required for each 500kHz channel and 2.25 Mbps is for each 125kHz

channel respectively, which produces 2.25 Mbps × 64 = 144 Mbps data traffic

to the cloud if a gateway supports 64 × 125kHz LoRa channels. For lossless

Nyquist sampling and data stored as 24-bit I/Q samples (12-bit for I/Q each,

same as SX1301), a minimal bit rate of 24 bit×(64× 125kHz) = 192 Mbps is

required for the PHY offloading network. Both settings require gigabit band-

width for reliable data transmissions, which is challenging in both outdoor or

indoor scenarios such as pastures and buildings with sub-100-megabit Internet

connections. Moreover, in some rural areas, Internet can only be provided via

satellites, the bandwidth of which is very limited. On the other hand, a large-

scale LoRaWAN (e.g., with hundreds of gateways) will pose a significant traffic

to the data center. It may influence the real-time delivery of PHY samples

and reduce the performance of joint decoding that requires synchronised PHY

samples from different gateways.

One solution is to equip optical fibers as part of the infrastructure of the
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PHY dispatching network. However, the cost is unaffordable for many low-

cost or ad hoc IoT applications. Another solution is to upload active channels

only. However, for large-scale deployment (i.e., tens of thousands of nodes),

the probability of simultaneous multi-channel occupation is high. Moreover,

because low SNR signals can benefit from joint processing in the cloud, the

channel activity detector becomes more sensitive and uploads PHY samples of

idle channels to the cloud due to ‘false alarms’.

Therefore, PHY compression is the key enabler for LPWAN Cloud-RAN.

To this end, we propose a Compressive Sensing (CS)-based technique, called

Nephelai, to reduce the network bandwidth between gateways and the cloud.

Figure 3.1 shows the overview of Nephelai, which leverages the sparsity of the

PHY for signal compression and (joint) reconstruction.

Fig. 3.1: The overview of Nephelai decoding in the cloud with compressed PHY
samples.

Dictionaries and measurement matrices in Nephelai are custom-designed

to exploit the structure of LoRa radio signals to achieve the best compression

and reconstruction performance. Nephelai is designed to run in real-time and
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is implemented with SDR2. Our testbed evaluation in our campus has shown

that, 1) up to 93.7% samples can be reduced without packet reception rate

(PRR) reduction; 2) Nephelai can improve battery lifetimes to 1.7x with four

gateways and 87.5% PHY samples compressed.

The contributions of this paper are as follows.

• We propose a novel CS-based compression technique for cloud-assisted

LPWAN that significantly reduces the bandwidth between the gateways

and the cloud.

• We propose a new dictionary to achieve high compression ratios without

performance degradation. The proposed dictionary exploits the structure

of LoRa radio signals, and achieves more than two orders-of-magnitude

better sparse representation than standard Discrete Fourier transform

(DFT) and Discrete Cosine transform (DCT) domains.

• We implement a prototype of Nephelai with software-defined radios, and

our empirical evaluation demonstrates its superior performance on em-

bedded devices.

3.2 Architecture

The Nephelai system has one cloud server equipped with GPU for ℓ1 minimi-

sation acceleration, and inexpensive single-board computers with SDRs as the

edge gateways. Physical-layer radio samples are transferred from gateways to

the cloud server via conventional Internet infrastructure. Figure 3.2 depicts

the overall architecture of Nephelai.

2One limitation for Nephelai is the front-end hardware. Although our prototype discussed
in Section 3.2 later can support 64 channels, if Nephelai is implemented on legacy front-end
SX1257, it can support 8 channels only.
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Fig. 3.2: Baseband block diagram showing the architecture of Nephelai
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The gateway clocks are synchronised via PPS from GPS modules with the

accuracy of several microseconds. The accurate timestamp can help synchro-

nise LoRa chirp symbols (see Figure 2.2) and help the cloud server detect

coherent LoRa packets easily. To analyze the complexity of our encoding al-

gorithm in edge devices3, suppose we have N samples per symbol (this will

be discussed in Section 3.3.4.2, N = 128 in practice), M samples per com-

pressed vector, C as the number of channels and P as the number of low pass

filter (LPF) taps. Then, the frequency conversion block together with LPF

is O(NP ), the down-sampler is O(N), and the CS block is O(MN). The

overall complexity in the edge devices is O(NPC + NC + NMC). Therefore,

fewer taps for LPF and higher compression ratio for CS block can improve

the performance of the embedded system. In order to support multiple 125

kHz channels as discussed in Section 3.1, the SDR of the gateway captures the

whole 13 MHz LoRa spectrum, and the embedded system filters each chan-

nel and compresses using a shared measurement matrix. Compressed bits of

each channel are packed together and uploaded to the cloud server. The cloud

server then performs decompression and demodulation to recover the LoRa

chirp symbols or jointly process all coherent symbols to improve their accu-

racy.

3We omit the complexity analysis of the proposed decoding algorithm in the cloud (i.e.,
ℓ1 minimisation solver) since the cloud can be seen as having unlimited resources.
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3.3 Compression

3.3.1 Lossless Compression

We compare the compression performance of Nephelai against a conventional

lossless compression LZ77-based algorithm, gzip [20]. Gzip can only achieve a

7.5% compression ratio for Nyquist-sampled LoRa PHY, which means 92.5%

of samples are not compressible. Such a low compression ratio is due to the

fact that chirps spread across the whole spectrum, and general compression

algorithms cannot exploit this sparsity in the frequency domain. In the follow-

ing discussion, we consider the lossless compression ratio as the baseline, and

investigate a novel CS-based algorithm to increase the compression ratio.

3.3.2 Compressive Sensing

CS is an information theory [77–79] that proposes an approach to recover high

dimensional sparse signals from low dimensional measurements. Table 3.1

summarizes the mathematical symbols in this discussion.

For a predefined dictionary Ψ ∈ CN×D, any signal x ∈ CN can be a linear

combination of Ψ as:

x = Ψs (3.1)

where s ∈ CD is a coefficient vector of x in the Ψ domain. If N < D, given

x and Ψ, we can not solve Equation (3.1) to obtain s in a general form because

it is an undetermined problem.

CS imposes the requirement that vector s is sparse; namely, most of the

elements in s are zeros. Let K denote the number of non-zeros in s, then s is

sparse if K << D. K in CS is termed as sparsity. CS theory states that vector

s can be recovered accurately by solving the following stable ℓ1 minimisation
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Table 3.1: The summary of mathematical symbols used in this chapter.

Symbol Definition
Ψ CS dictionary
Φ CS measurement matrix
U Diagonal matrix for up-chirp
Fs Sampling rate
T LoRa symbol duration
x Raw samples before compression
y Compressed vector of measurement
s Sparse vector
α Compression ratio
K The degree of sparsity
D The number of items in dictionary
N The number of complex samples in LoRa symbol
M The length of compressed vector y

problem:

ŝ = arg min ∥s∥1 s.t. ∥x−Ψs∥2 < ϵ (3.2)

where ϵ is noise, and provided that Ψ satisfies the Restricted Isometry Prop-

erty (RIP) condition. Note that RIP is only a sufficient but not a necessary

condition. Therefore, ℓ1-minimisation may still be able to recover the sparse s

accurately, even if Ψ does not satisfy RIP. In fact, ℓ1 minimisation has a rich

history as it has been used to efficiently obtain useful sparse information in

the signals from a compressed representation [80,81].

Common ℓ1 minimisation algorithms are Matching Pursuit (MP), Orthog-

onal Matching Pursuit (OMP), Homotopy, ℓ1-magic, etc., and the reconstruc-

tion performance of the algorithms depends on the sparsity of the signal and

the incoherence between the measurement (compression) matrix and the sig-

nal itself, which is application dependent. Therefore, Nephelai uses a custom-
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designed dictionary Ψ to exploit the structure of LoRa signal and a custom-

designed measurement matrix Φ to maximize the incoherence between the

matrix Φ and the dictionary Ψ. Furthermore, Nephelai features a unique joint

decoding process to exploit the spatial diversity of the LoRa signals received by

the gateways in different locations to further improve the signal reconstruction

(i.e., the decoding of the LoRa packets) performance.

3.3.3 Dimension Reduction

Johnson-Lindenstrauss Lemma shows that random projections can preserve

the ℓ2 distance of vector x ∈ CN in a compressed domain y ∈ CM , where

M < N with a high probability [77] as:

y = Φx = Φ(Ψs) (3.3)

where Φ ∈ CM×N is a random compression matrix (recall that x = Ψs from

Equation (3.1), Ψ ∈ CN×D). Since the sparsity of s is K (see Section 3.3.2),

Wright et al. show that the minimum dimension of M for a successful ℓ1

minimisation recovery in practice is [82]:

M ≥ 2Klog(D/K). (3.4)

Substituting Equation (3.3) to (3.2), ℓ1 minimisation can be used to recover

sparse vector s from compressed measurement y as:

ŝ = arg min ∥s∥1 s.t. ∥y− Φ(Ψs)∥2 < ϵ. (3.5)

Therefore, instead of uploading raw LoRa radio samples x ∈ RN to the
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cloud, a Nephelai edge gateway uploads compressed measurements y ∈ RM ,

and achieves a compression ratio of α as:

α = 1−M ÷N. (3.6)

3.3.4 PHY Compression

LoRa gateways can compress physical layer radio samples with a predefined

measurement matrix (Φ ∈ CM×N , where M < N) before transmitting the

compressed samples (y ∈ CM) to the cloud server, where (joint) demodulation

is performed based on the compressed signals by solving an ℓ1 minimisation

problem, i.e., Equation (3.5).

For SF ∈ {7, 8, 9, 10}, we propose one dictionary for each SF covering

two scenarios: 1) synchronised chirp symbol; 2) unsynchronised chirp symbol.

Generally, scenario 2 is more common, and scenario 1 can be considered as a

special case of scenario 2. Thus, a dictionary for unsynchronised should also

be feasible for synchronised chirp symbols. However, based on our simulation

and evaluation (see Sections 3.3.4.1 and 3.6.2.1), the compression ratio of the

synchronised chirps is better than that of the unsynchronised, and thus we rec-

ommend the implementation of the synchronisation mechanism for LoRaWAN

to achieve a better compression performance.

3.3.4.1 Dictionary Design

Rao et al. have proposed the continuous, direct compression of physical layer

radio samples with non-overlapped windows, in an attempt to fully recover the

signal from the cloud [83]. Normally, radio signals are sparse and compressible

in conventional domains such as DFT and DCT. For LoRa, such methods
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are applicable but a more sparse domain can be obtained by exploiting the

structure of the signals.

As discussed previously in Section 2.1.4, we demodulate the symbols by

multiplying the symbols with an ideal down-chirp in the time domain and

then by performing FFT on the de-chirped symbol. Both synchronised and

unsynchronised blocks are sparse in frequency after being multiplied by a down-

chirp. Here we define block as any T -length clip of a LoRa PHY, where T is

equal to the duration of one chirp. A block is a combination of parts from

two consecutive symbols. In the following sections, block and unsynchronised

symbols are interchangeable. First, by letting φ(t) stand for the phase of an

ideal up-chirp, we define matrix U as having a diagonal made of an ideal

down-chirp (opposite phase to an up-chirp),

U = diag(e−jφ( 0
BW

), e−jφ( 1
BW

), ..., e−jφ( 2SF −1
BW

)) (3.7)

Second, we define W as the DFT matrix for N = 2SF ,

W = ( ωik

√
N

)i,k=0,...,N−1 (3.8)

where ω = e−2πj/N . Therefore, we can write a sparse representation for any

LoRa block x as,

s = WUx (3.9)

where s represents the frequency domain and has only a few non-zeros. Com-

paring Equation (3.9) and (3.1), we can then derive the dictionary Ψ as,

Ψ = UHWH (3.10)
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where (.)H is the conjugate transpose. Therefore, the dictionary based on

the sparsity of LoRa chirps is generated. We produce dictionaries according

to SF ∈ {7, 8, 9, 10}, and store them in the cloud server.

As a comparison with DFT, DCT, and the proposed chirp dictionary, Fig-

ure 3.3a and 3.3c show the sparsity of typical synchronised and unsynchronised

LoRa symbols (SF = 9) with channel noise in different domains by sorting

the samples by order of magnitude. The fastest decay characteristic (or the

smallest K) is observed in the proposed dictionary (Ψ), and therefore offers

the most sparse representation; which means that the most accurate approxi-

mations (or LoRa symbol value estimations) can be obtained in this dictionary

by using the smallest number of measurements M (Equation (3.4)). The spar-

sity in synchronised symbols is slightly better than the unsynchronised, which

means that the accuracy in recovering synchronised symbols is better than the

unsynchronised. The figure also shows that the proposed Ψ has two-order-

of-magnitude fewer significant coefficients (e.g., the normalized magnitude is

larger than 0.1) than those of DFT and DCT.

For the down-chirps in PHY, similar dictionaries can be obtained by replac-

ing U with a matrix with a diagonal made of an ideal up-chirp. Due to the fact

that most chirps in LoRa PHY are up-chirps, we first solve ℓ1-minimisation

with the up-chirp dictionary, and then try the down-chirp dictionary if no

satisfactory result is obtained. Both dictionaries have similar features and

performance. For brevity, we skip the discussion of the down-chirp dictionary.
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Fig. 3.3: (a) Sparsity for synchronised symbols based on DFT, DCT and the pro-
posed chirp dictionary. It is more sparse in the proposed dictionary (Ψ) than the
DFT and DCT by two orders-of-magnitude. The dashed line denotes the threshold
for the coefficients with significant magnitude (0.1). (b) Sparse approximation with
magnitude (Section 3.4.1). (c) Signal sparsity for unsynchronised chirps, less sparse
than synchronised chirps but more sparse than the DFT and DCT. (d) Sparse ap-
proximation with residuals (Section 3.4.1); the residual domain is more sparse than
the magnitude domain.

3.3.4.2 Measurement Matrix

As discussed in CS theory [77–79], zero-mean Gaussian matrix and balance

symmetric random Bernoulli matrix achieve favorable compression performance.

For the computational efficiency on embedded devices, we choose random

Bernoulli(±1) as the measurement matrix Φ with a fixed seed that is shared
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by both gateways and the cloud server.

Each symbol has N = 2SF samples, i.e., N =128, 256, 512, 1024 for SF =

7, 8, 9, 10 respectively. If we process SF separately, we have to compress PHY

four times with Φ7, Φ8, Φ9, Φ10 for each SF , which is against our motivation for

compression. To solve this problem, we only measure with Φ7. For SF = 8,

we can simply concatenate two compressed vectors from Φ7. Similarly, we

concatenate four compressed vectors for SF = 9 and eight for SF = 10.

Thus, the gateway simply compresses every 128 samples with Φ7 for each

channel, and in the cloud the server concatenates compressed vectors for solv-

ing different SF s.

3.3.4.3 Compression Ratio

Compression ratios are defined by Equation (3.6), and thus a smaller M results

in a better compression ratio. Theoretically, M should be bounded on its lower

end by Equation (3.4). However, the noise from the original signal is hidden

in compressed vectors, which may make it challenging to recover the original

signals (i.e., ℓ1 minimisation algorithm fails to solve Equation (3.5)). Thus, M

is not only bounded by Equation (3.4), but is also affected by the signal SNR.

We perform a simulation to investigate this phenomenon. As N = 2SF is an

exponent of 2, to simplify the DSP process, M is selected among exponents of

2 (e.g., 16, 32, 64, etc.). Here, we define low, medium and high SNRs as -6, 0

and 6 dB.

Figure 3.4 shows that higher SF s outperform their lower counterparts,

and increasing SNR can improve the compression ratio. When SNR is high,

SF = 9 and SF = 7 can be compressed to 1/16 and 1/8 respectively without

significant Symbol Error Rates (SERs), and the compression ratio is mainly

bounded by Equation (3.4). When SNR is medium and low, SF = 9 can be
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Fig. 3.4: Simulation with synchronised symbols: SER affected by compression ratio
and SNR for different SF

compressed to 1/16 and 1/4 respectively without significant SERs, and the

compression ratio is mainly affected by SNR.

We summarize M/N in Table 3.2 to represent the acceptable compression

ratio α if SER is small (e.g., ≤ 0.04). Then, the empirical compression ratio

based on Figure 3.4 and Table 3.2 can be derived as:

α = max{min{1− 2−
⌊

SNRdB
3 +SF −5

⌋
, 1− 2 · SF

2SF
}, 0}. (3.11)

For unsynchronised symbols, as shown in Figure 3.5, the performance is



3.4. Nephelai in the cloud 43

Table 3.2: Reliable compression ratios based on simulations of synchronised symbols
represented by M/N

SF7 SF8 SF9 SF10

low SNR (-6 dB) 1 1/2 1/4 1/8
medium SNR (0 dB) 1/4 1/8 1/16 1/32
high SNR (6 dB) 1/8 1/16 1/32 1/32

slightly poorer than that of the synchronised symbols. An unsynchronised

symbol is composed of fractions of two consecutive chirp symbols (i.e., the

last few samples from the first chirp and the first few samples from the second

chirp). Thus, sparsity K is increased from 1 to 2, and the lower bound Equation

(3.4) is slightly larger than that of the synchronised symbols. We modified

Equation (3.11) to select an appropriate compression ratio for unsynchronised

symbols accordingly:

α = max{min{1− 2−
⌊

SNRdB
3 +SF −6

⌋
, 1− 4(SF − 1)

2SF
}, 0}. (3.12)

3.4 Nephelai in the cloud

3.4.1 Decoding (Single Gateway)

Most conventional ℓ1-minimisation algorithms require real-valued vectors and

dictionaries, while communication systems always use complex values for I/Q

modulation. To solve this problem we transform the vectors from complex-
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Fig. 3.5: Simulation with unsynchronised symbols: SER affected by compression
ratio and SNR for different SF

valued to real-valued as,

y′ = [ℜ{y}T ℑ{y}T ]T (3.13)

s′ = [ℜ{s}T ℑ{s}T ]T (3.14)

Θ′ =


ℜ{Θ} −ℑ{Θ}

ℑ{Θ} ℜ{Θ}

 (3.15)

where Θ = ΦΨ. Then, we solve the problem with a real-valued ℓ1-minimisation
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algorithm for Equation (3.5) as,

ŝ′ = arg min ∥s′∥1 s.t. ∥y′ −Θ′s′∥2 < ϵ (3.16)

After obtaining the sparse vector ŝ′ with Equation (3.16), we recover the

complex-valued sparse vector sopt by reversing Equation (3.14), and thus we

solve not only the magnitude but the phase of the chirp symbol.

Instead of using FFT for demodulation as described in Section 2.1.4, we

proceed to estimate the most likely value λ by using residual r. The residual

for symbol candidate i ∈ {0, 1, ..., 2SF -1} is:

r(i)(y) =
∥∥∥y− ΦΨδ(i)(sopt)

∥∥∥
2

,∀i (3.17)

where operator δ(i) : RD → RD indicates a vector containing the only

coefficient related to candidates i (the coefficients related to other candidates

are set to be zeros). Then the final symbol estimation is determined by:

λ̂ = argmin
i

r(i)(y),∀i (3.18)

i.e., the λ with the minimal residual representing the modulation value. Fig-

ure 3.3d shows the result of Nephelai decoding with Equation (3.17) for a noisy

chirp symbol. The highest peak (i.e., 1−r(i), suppose r(i) is normalized) repre-

sents the modulated value (e.g., 300) of the LoRa symbol correctly. Note that

in sopt, the phase of the highest peak may be used for radio-based ranging,

which is beyond the scope of this paper.
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3.4.2 Joint Decoding

We have discussed how Nephelai recovers value λ from single compressed mea-

surement y. In this section, we discuss how Nephelai exploits spatial diversity

for gateways and improves performance with joint decoding.

Suppose that we have G gateways, and each gateway captures a transmitted

copy of the same LoRa symbol independently. Next, Nephelai estimates the

SNR level γg and produces residuals r(i)
g ( g ∈ {0, 1, ...G− 1}) for G gateways

with Equation (3.17). One of the ways to fuse these residuals among gateways

is to perform a weighted summation. Based on the selection of combining

weights, we have four algorithms: 1) weighted equally, aka. equal gain com-

bining (EGC); 2) weighted by the
√

SNR; 3) weighted by the SNR aka. the

maximum ratio combining (MRC), and 4) weighted by the SNR2. We evalu-

ate the algorithms with collected samples by four gateways (further discussion

in Section 3.6.2.3), and the results are shown in Figure 3.6. All algorithms

succeed in improving the PRR, and the algorithm weighted by the SNR has

the best performance especially when the compression ratio is high. Thus,

we choose the MRC algorithm with SNR γg as the weight in the following

evaluation.

Following this, the final symbol estimation is determined by:

λ̂ = arg min
i

G−1∑
g=0

γgr(i)
g (y),∀i (3.19)

Nephelai’s joint decoding algorithm can be found in Algorithm 1.
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Fig. 3.6: Joint decoding algorithm comparison

Algorithm 1: joint-decoding
Input: M -length measurements {yg}g=0..G−1, estimated SNR

{γg}g=0..G−1

Output: An integer λ, the decoding result

1 for g ← 0 to G− 1 do

2 sg ← solve_ℓ1_minimisation(yg, Θ, ϵ)

3 for i← 0 to 2SF − 1 do

4 r(i)
g (y) =

∥∥∥yg −Θδ(i)(sg)
∥∥∥

2

5 end

6 end

7 λ← argmini
∑G−1

g=0 γgr(i)
g

8 return λ

3.5 Prototype Implementation

The Edge Gateway The Nephelai gateway shown in Figure 3.7 has a radio

front-end to capture signal samples on given LoRa channels, and an embed-

ded computer to pre-process and compress the received signal samples before
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uploading to the cloud. In our prototype, we select BladeRF 2.0 SDR as the

radio front-end to capture radio signals on LoRaWAN uplink channels (e.g.,

902 MHz to 915 MHz in the USA). The output of SDR is a stream of I and

Q components, which can be regarded as complex values where I denotes

real and Q denotes imaginary parts respectively. The SDR can sample up

to 61.44 mega samples per second (MSps), which are capable of capturing all

the information in the whole 13 MHz upstream spectrum for USA defined by

LoRaWAN. The Nyquist sampling rate for one channel is 125 kHz for complex

samples (i.e., 250 kHz for real samples), and therefore the sample rate for 64

channels is 8 MSps (note the 75 kHz guard band between consecutive 125kHz

channels, meaning that 8 MHz is for LoRa channels on a 13 MHz spectrum).

Fig. 3.7: Nephelai gateway and a LoRa transmitter

The SDR is connected to a Odroid-N2 (6-core single board computer with

quad-core Cortex-A73@1.8GHz and dual-core Cortex-A53@1.9GHz) via a USB

3.0 port, through which the LoRa radio samples are transferred. Next, the

Odroid-N2 processes (see Section 3.2) and compresses (see Section 3.3.4) the

samples before transferring them to the cloud server. The sampling rate of
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our prototype is 13 MHz, which is sufficient to cover the 13 MHz LoRaWAN

spectrum. Without loss of generality, we demonstrate the compression perfor-

mance of Nephelai in a single LoRa uplink channel. If one single channel is

compressible, so are 63 other channels.

We design and implement the software for Nephelai gateways, called gr-

Nephelai based on the open-source software-defined ratio platform GNU-Radio.

The frequency conversion and low pass filter shown in Figure 3.2 are imple-

mented in C++ and complied with single instruction multiple data (SIMD)

optimisation. Although there are 64 parallel branches in Figure 3.2, we im-

plement one block for all 64 channels instead of one block for each of the 64

channels to reduce the handover between blocks. The low-pass filter taps are

selected as 47 to maintain real-time performance. The passband is designed to

be 275 kHz, which works well to avoid inter-channel interference. When the

gateway is running at full capacity (processing 64 channels), the overall CPU

usage is approximately 60%.

The transmitter We program Multitech mDot4, which comprises a LoRa

wireless chip (SX1272), to periodically transmit 4 predefined bytes. The mDot

with STM32F411RET uses 31 mA @100 MHz in the maximum power setting.

The Cloud Server Although the Nephelai cloud server can be any kind of

general server, we use a 12-core CPU, 32 GB RAM and Nvidia 2070 GPU server

in our prototype. It can perform ℓ1-minimisation algorithms for joint sparse

LoRa signal reconstruction (i.e., LoRa packet decoding, see Section 3.4.2) in

real-time.

4MDot datasheet. https://www.multitech.com/brands/multiconnect-mdot

https://www.multitech.com/brands/multiconnect-mdot
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3.6 Evaluation

3.6.1 Goals, Metrics and Methodologies

We deployed a Nephelai testbed with four Nephelai gateways (see Section 3.5)

on our campus as shown in Figure 3.8, where gateways are connected to a

Nephelai cloud server (see Section 3.5) via Wi-Fi. We programmed seven

mDots (see Figure 3.7) as LoRa motes to periodically transmit predefined

LoRa packets with power from 2 dBm to 14 dBm. We installed the LoRa motes

in several representative positions in the campus to emulate real applications,

and collected LoRa radio samples with each gateway simultaneously. During

our evaluation, we collected more than one million LoRa chirp symbols among

SF7 to SF10 to evaluate the performance of Nephelai.

We deployed LoRa motes to emulate real use cases. Mote-1 was an indoor

temperature and humidity sensor; mote-2 acted as a passive infrared sensor

(PIR), which functioned as an occupancy detector for the warehouse; mote-3

behaved as a smart water meter; mote-4 represented a simple outdoor weather

station; mote-5 was attached to a stair handrail and counted people; and mote-

6 and mote-7 measured the soil’s humidity to control a watering system for the

lawn. In this evaluation we were not interested in application data but instead

focused on PHY compression and potential battery lifetime improvement with

joint decoding.

Nephelai is designed to implement the physical layer compression for cloud-

assisted LoRa demodulation/decoding and to potentially improve transmitters’

energy efficiency. Therefore, the goals of our evaluation were:

1. to study whether Nephelai can reduce the network bandwidth of the

front-haul in LPWAN Cloud-RAN,
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Fig. 3.8: Nephelai test-bed on our campus. The gateways are marked with the
letter A/B/C/D and stationed inside buildings near windows to simulate a customer-
deployed scenario. The transmitters (motes) are labeled from 1 to 7, and marked
with green circles. Mote-1 is on the same floor (the 4th floor) as gateway C; mote-2
is on the 3rd floor; mote-3 is hidden in the basement, 5 floors below gateway C.
Motes-4/5/6/7 are placed outdoor without any cover.

2. to study the impact of compression ratio (α) on the system’s perfor-

mance, and

3. to study whether Nephelai can demonstrate similar energy improvements

for the LoRa transmitter as the state-of-the-art LPWAN Cloud-RAN,

but with fewer front-haul data rates.

The metric for network bandwidth reduction is bits per second (bps), and

that for energy reduction is battery lifetime extension. For methodologies,

firstly, on the symbol level we evaluate how SNR and compression ratios affect

SER in order to compare these with the simulation in Section 3.3.4.3. And

then on packet level, we evaluated the PRR for single gateway scenarios with

three LoRa motes and different power transmission levels. Furthermore, we

evaluated the joint processing gain with four gateways and four transmitters

to demonstrate that an equivalent SNR improvement can be achieved as the

state-of-the-art [15], i.e., to extend the battery lifetime to approximately 1.7x

(equivalent to 2.3 dB SNR improvement) with four gateways, but with greater
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PHY compression. As there are different SFs resulting in different PRRs, we

assumed that each SF was equal likely to be selected, and we calculated the

expected PRR by averaging the PRRs of all SFs.

3.6.2 Empirical Results

3.6.2.1 Compression ratio
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Fig. 3.9: Synchronised symbols from testbed: SER affected by compression ratio
and SNR for different SFs

As discussed in Section 3.3.4.2, the compression ratio (α) is calculated
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using the dimension of measurement matrix Φ ∈ CM×N (see Equation (3.3)).

In this section, we are only interested in how SNR affected the compression

ratios, and in evaluating the compression ratio determination equations (i.e.,

Equation (3.11) and (3.12)) for synchronised and unsynchronised symbols. We

programmed motes-1/2/3 to transmit with power varying from 2 dB to 14 dB,

and collected 50,000 synchronised and unsynchronised symbols respectively.

We grouped symbols with respect to their low (-6 dB), medium (0 dB) and

high (6 dB) SNR. Figure 3.9 and 3.10 compare the compression performance

of different SFs and SNRs based on the symmetric Bernoulli matrix(Φ) of ±1

and our proposed chirp dictionary Ψ (see Section 3.3.4). For example, for

medium SNR (0 dB, i.e., the signal energy is equivalent to the noise floor)

with synchronised symbols in Figure 3.9, SF9 achieves an SER below 0.04

with a compression ratio of 93.7%. This represents approximately 16 times

the bandwidth reduction in the Cloud-RAN front-haul.

With a small SER value (e.g., ≤ 0.04) as the reliable transmission thresh-

old, we can summarize that the evaluation matches the simulation, when re-

ferring to M/N in Table 3.3 based on Figure 3.9, which compares Table 3.3 to

Table 3.2. Therefore, we can use Equation (3.11) in compression ratio selec-

tion. We observed similar patterns in the results of unsynchronised symbols

in Equation (3.12), however we omit the discussion here for brevity.

Furthermore, we performed PRR evaluation for synchronised packets with

different SNRs, SFs and compression ratios as shown in Figure 3.11. The

LoRa packets transmitted in the evaluation had fixed length and their payloads

consisted of 4 bytes (equivalent to 8 symbols). We defined PRR 75% as the

threshold for reliable transmission [84] and used it in our compression ratio

selection. With the PRR criteria, Figure 3.11 implies a similar compression

ratio selection as that with SER in Table 3.3. Thus, we can use Equation (3.11)
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Fig. 3.10: Unynchronised symbols from testbed: SER affected by compression ratio
and SNR for different SFs

in compression ratio selection. For unsynchronised symbols, similar to the

discussion with SER, Equation (3.12) is used for compression ratio selection.

In summary, compared to the benchmark of lossless algorithm LZ77 that

achieves a compression ratio of 7.5% (see Section 3.3.1 for more details), the

proposed approach can improve the compression ratio by approximately 10

times, depending on the parameter settings. For example, when SNR is high,

a compression ratio up to 93.7% can be achieved for most SFs. Therefore,

Nephelai achieves a significant reduction in traffic between gateways and the

cloud server, which makes the cloud-assisted LoRa decoding scheme more scal-
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Table 3.3: Reliable compression ratio based on testbed collected data represented
by M/N .

SF7 SF8 SF9 SF10

low SNR (-6 dB) 1 1/2 1/4 1/8
medium SNR (0 dB) 1/4 1/8 1/16 1/32
high SNR (6 dB) 1/8 1/16 1/32 1/32

able.

3.6.2.2 The performance of single gateway

In the single gateway evaluation using a real case, our goal was to compress

PHY without PRR degradation. As discussed in Section 3.3, over-compression

means that the ℓ1 minimisation algorithm fails to solve Equation (3.16), which

increases SERs and decreases PRRs.

Firstly, as shown in Figure 3.8, LoRaWAN transmitter motes-1, 2 and 3

were installed in a fixed position and were programmed to transmit 4 bytes

with different spreading factors (SF = 7, 8, 9, 10) at 2 dBm, 8 dBm and 14

dBm respectively. We collect packets via one gateway in either synchronised or

unsynchronised mode. Secondly, with the algorithm proposed in Section 3.4.1,

we calculated the PRR for different compression ratios. Instead of SER, we

were more interested in PRR which describes the performance of end-to-end

data transmissions. For example, if PRR is halved, the energy required to

successfully deliver one packet is doubled, as the embedded node needs to

transmit the packet twice. Therefore, the battery lifetime is halved. It is

evident that PRR is more intuitive than SER in describing battery lifetime.

In our synchronised scenario, the compression ratio of 87.5% for motes-1

and 2 produced more than 90% PRR when power transmission was medium.
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Fig. 3.11: PRR affected by SNR, SFs and compression ratios for synchronised sym-
bols/packets

For mote-3 in the basement, the compression ratio of 75% produced more than

50% PRR. We note that mote-3 was over-compressed with the compression

ratio of 87.5% because the PRR is only 30% (see Figure 3.12). Increasing

power transmission could have increased the compression ratio for mote-3 from

75% to 87.5%, allowing it to maintain its PRR above 50% (Figure 3.12(c)).

According to the mDot datasheet, increasing power transmission from medium

to high consumes 3.7% extra energy, which provides another acceptable option

for scalability improvement.
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Fig. 3.12: The single gateway evaluation with 3 transmitters and synchronised
symbols shows that PRR is affected by compression ratios in different power trans-
mission scenarios. Motes-1/2/3 were placed according to Figure 3.8.

In summary, Figure 3.12 shows that PRR does not decrease with appro-

priate compression ratios, and increasing power transmission can improve the

compression performance of Nephelai. Therefore, if all motes transmit at 14

dBm, we can select 87.5% as the compression ratio. For 64 channels, only

64 × 24 × 125000 × (1 − 0.875) = 24 Mbps is required for a single gate-

way in LPWAN Cloud-RAN. Consequently, such a gateway can operate with

bandwidth-limited Internet connections, widely extending the deployment re-
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gion and application scenarios.

3.6.2.3 The performance of joint decoding

Compressing PHY without PRR degradation is possible as shown in Sec-

tion 3.6.2.2 above. In this section, we evaluate the improvement of PRR with

joint decoding under compression. Our goal was to achieve an equivalent per-

formance to the state-of-the-art Charm system (i.e., 2.3 dB SNR improves

with four gateways, see Section 3.1 for the details), but with less front-haul

bandwidth between the gateway and the cloud.

Firstly, we programmed motes-4,5,6 and 7 to be in synchronised mode and

to send 4 byte messages periodically with high transmission power5 (14 dBm).

We collected LoRa radio samples simultaneously via gateways-A,B,C and D

with different compression ratios (see Section 3.6.1 and Figure 3.8 for testbed

deployment in details). The number of packets for each SF was equal. Sec-

ondly, we calculated the PRR for single gateway decoding and coherent joint

decoding with 4 gateways (according to the algorithm discussed in Section 3.4

under different compression ratios). We averaged PRR for all SFs to get an

expected PRR as discussed previously in Section 3.6.1.

Figure 3.13 shows how much improvement can be seen by joint decoding

with four gateways compared to a single gateway. For battery-powered LoRa

motes, the expected energy consumption per packet is reversely proportional

to the PRR, and thus the expected battery lifetime is proportional to the

PRR. When the compression ratio was 87.5%, mote-4 had PRR above 99%

(since the position of mote-4 was very close to one of the gateways), while

motes-5,6 and 7 had poor PRR with a single gateway. After joint decoding

5We define 14 dBm as high transmission power in this paper, but in fact 14 dBm is a
moderate choice compared to the maximum 22 dBm.
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with four gateways, the PRR of mote-5 was improved from 70% up to 93%,

while mote-6 went from 47% to 77%, and mote-7 went from 36% to 76%. The

improvement factors are 1.33, 1.64 and 2.11 respectively, and the average is

about 1.70. Therefore, on average, joint decoding extends battery lifetime to

approximately 1.70 with four gateways when the compression ratio is 87.5%.

We note that the least improved PRR occurred when the compression ratio is

75%, which is equivalent to a good quality, low power wireless link with a high

Cloud-RAN bit rate. Therefore, 87.5% is the recommended trade-off between

compression ratio and PRR.

For compression up to 93.7%, single gateways experience severe packet loss

for each mote. After joint decoding, the PRR of mote-4 was improved from

40% to 58%, while mote-5 improved from 16% to 22%, mote-6 from 13% to

22%, and mote-7 from 10% to 20%. However, this compression ratio is not

recommended because most of the PRRs are still poor (i.e., less than 50%)

even with joint decoding. Particularly, increasing the compression ratio from

87.5% to 93.7% for mote-4 causes PRR to decrease from more than 99% to

40%, meant that the mote had a shorter battery lifetime by approximately

60%. Finally, we note that when the compression ratio is 75%, with joint

decoding, all PRRs are increased to more than 99%.

In summary, Nephelai with 4 gateways improves the PRR and the battery

lifetime of a LoRa transmitter by 1.7 times on average, with the recommended

compression ratio of 87.5% compared to a single gateway, which is equivalent

to 2.3 dB SNR improvement (10log101.7). The compression ratio of 87.5% also

means that the PHY is compressed from 3 Mbps down to 375 kbps for one chan-

nel, while that of Charm is 2.25 Mbps per channel (see Section 3.1 for details).

This demonstrates that Nephelai has similar functionality in improving the

battery lifetime of embedded IoT devices as Charm [15], while Nephelai reduces
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the bandwidth between gateways and the cloud by 1− 0.375/2.25 = 83.3%.
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Fig. 3.13: PRR improvement by 4-gateway joint decoding with compression ratio

3.6.2.4 Cloud computing overhead

Solving ℓ1 minimisation is computationally intensive, but can be handled with

parallel implementation using multi-threading, GPU, FPGA, etc. in the cloud.

If the demodulation of one symbol is performed in real-time, and the delay

caused by data transmission and computation (from the gateway to the cloud,

and back to the gateway) meets the LoRaWAN requirement for an ACK, the
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Nephelai system is feasible.

We evaluated cloud computing overhead by performing single-threading

tests with MATLAB on Intel Core i7-8700 CPU @ 3.20GHz with 32GB RAM

for 1000 times calculation per case as shown in Table. 3.4. The worst case is

SF10 with a 50% compression ratio. One symbol for SF10 can be solved in less

than 500 ms with a single thread. The length of one symbol for SF10 is 8.2 ms,

and in 500 ms the gateway can receive at most 61 of these symbols. Therefore,

a 64 core server can be used in the cloud to dispatch demodulation tasks to

each core in order to obtain real-time demodulation within 500 ms. For other

SFs and compression ratios, the computational demand is even lower. Note

that the computation can be further optimised for higher efficiency.

LoRaWAN has a relatively loose requirement for ACK delays due to low

bit rates (e.g., 300 bps). There is a parameter called ACK_TIMEOUT in

the LoRaWAN settings with a default value of "2 ± 1s ( i.e., a random delay

between 1 and 3 seconds)”. The demodulation latency is less than 500ms as

discussed above, and the Internet latency is typically less than 100 milliseconds

one way. Processing latency caused by gateways and radio propagation delays

can be ignored. Thus, an ACK can easily be generated in one second to meet

the LoRaWAN requirements discussed above.

Table 3.4: ℓ1-minimisation overhead testing for different SFs and compression ratios.
Unit: millisecond.

α SF7 SF8 SF9 SF10

0.5 5.1± 2.5 10.8±2.7 66.8 ±61.9 297.7±180.5
0.75 2.0± 0.6 4.7± 1.0 16.3±13.7 71.2±32.6
0.875 1.0± 0.2 2.2± 0.4 5.5± 3.3 16.1±6.1
0.937 0.6± 0.1 1.1± 0.2 2.3± 0.9 5.1±1.8



3.7. Conclusion 62

3.6.2.5 Influence of concurrent transmission

Theoretically, multi-channel concurrent transmission may reduce the system’s

performance by leaking energy as noise to other channels. However, through

our evaluation, we have found that concurrent transmission does not cause

system degradation.

We established a LoRa transmitter that sent packets with SF=8 and a

packet length of 41.5 ms every 50 ms periodically in one 125kHz channel, and

another transmitter that sent in the neighbouring channels. We calculated the

PRR based on the collected samples in different interference environments:

no interference, concurrent transmission on a +200kHz channel, concurrent

transmission on a +400kHz channel, ... , and concurrent transmission on

a +1000kHz channel. Our evaluation results show that no significant PRR

reduction is caused by concurrent transmissions. If we have a well designed

filter for each 125kHz channel, the noise caused by concurrent transmissions

can be prevented. In summary, Nephelai is robust against the interference

caused by concurrent transmissions.

3.7 Conclusion

We introduce Nephelai, which is based on CS-theory, to reduce the bandwidth

requirement between edge gateways and the cloud server for cloud-assisted

LoRaWAN. Nephelai exploits: 1) the physical layer structure of LoRa sym-

bols for a custom designed dictionary to significantly improve its compression

performance, 2) the relationship between compression ratios, SNR and SFs to

select an appropriate compression ratio, and 3) radio signal spatial diversity

by joint decoding to improve the PRR as well as the battery lifetime for end

devices. Our empirical results with an edge gateway prototype consisting of
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SDR and Odroid-N2 show that Nephelai can reduce traffic between gateways

and cloud servers by up to 93.7% and can significantly improve the scalability

of cloud assisted LoRaWAN.



Chapter 4

Seirios: Leveraging Multiple

Channels for LoRaWAN

Outdoor Localisation

4.1 Abstract

Geolocation is an important context for a large number of IoT end-point de-

vices connected by LoRaWAN. Due to the bandwidth limitations of narrow-

band LPWANs, existing localisation methods that do not require specialised

hardware (e.g., GPS) produce poor performance. To increase the localisation

accuracy, we propose a super-resolution localisation method, called Seirios,

which features a novel algorithm to synchronise multiple non-overlapped

communication channels by exploiting the unique features of radio physical

layer to increase the overall bandwidth. We design a Seirios prototype and

evaluate its performance in an outdoor area of 100 m × 60 m, which shows

that Seirios can achieve a median error of 4.4 m (80% samples < 6.4 m).

The results show that Seirios produces 36.2% less localisation errors than the

64
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baseline approaches.

Our evaluation also shows, in contrast to previous studies in Wi-Fi local-

isation systems with wider bandwidth, that ToF is less effective for AoA in

narrowband LPWAN localisation.

4.2 Introduction

Low-Power Wide-Area Network (LPWAN) is providing wide-range wireless

network coverage for low-power embedded devices. In order to meet the re-

quirements of long range and power efficiency, LPWAN is designed to transmit

at low bit-rates (e.g. in the order of 100 bps) in narrowband radio. In addition

to low-power communication, geolocation is another important service that

can enable a wide range of IoT applications that require the location infor-

mation of the embedded IoT devices. GPS is a popular technology to acquire

such location information outdoors. However, it requires additional hardware

(i.e., GPS receiver) and cost, as well as is power intensive because a GPS re-

ceiver takes a significant amount of time (e.g., in the order of 10 seconds) to

acquire GPS satellite signals and navigation data from a sleep state (i.e., “cold

start”). Technologies such as assisted GPS and cloud-offloaded GPS [20,85] can

reduce the acquisition time significantly, but they need to download/upload a

significantly amount of data from/to the Internet, which is challenging for low

bit-rated LPWAN.

An alternative is to exploit common localisation algorithms with exist-

ing infrastructure (i.e., gateways) of LPWANs, such as RSS-based fingerprint-

ing, and TDoA or AoA-based triangulation, to localise embedded IoT devices,

which requires no extra hardware (e.g., GPS module) and may work indoors.

However, one major disadvantage of these approaches is their undesirable lo-
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calisation accuracy. Taking LoRaWAN as an example, according to LoRaWAN

geolocation whitepaper1, RSS-based localisation can only provide 1,000 - 2,000

metre accuracy. While TDoA-based localisation algorithms claim to provide

20 - 200 m accuracy, an outdoor evaluation in a public LoRaWAN shows that

such algorithms achieved a median accuracy of 200 m only [51]. Such poor

localisation accuracy can’t meet the requirements of many applications such

as geofencing and asset tracking.

A major performance bottleneck of narrowband LPWAN radio-based lo-

calisation is the radio multipath effect. Previous research shows that both

RSS and TDoA-based localisation methods suffer from significant errors due

to the multipath effect [5]. Recently, researchers have proposed a number of

approaches to improve the localisation accuracy for LPWANs [5, 48, 53, 64].

However, super-resolution algorithms [17, 22, 40, 41, 59, 68, 86] that have been

well investigated to resolve the multipath effect and improve the accuracy of

Wi-Fi-based localisation have not been studied for LPWANs yet. The key be-

hind these algorithms is to extract the significant reflectors (though strongly

coherent) from incoherent channel state measurements, and resolve the direct

path. Incoherent channel state measurements can be provided by an antenna

array [68], multiple sub-carriers in wideband signal [40], and/or multiple di-

mensions [59]. Specifically, The radio signals in different communication chan-

nels naturally out of sync, making it difficult to utilise multiple channels to

increase bandwidth and decrease localisation errors. To this end, Chronos [22]

proposes stitching multiple Wi-Fi channels via two-way CSI measurements and

communications. However, such approach is difficult to apply in LPWANs

since their data rates can be very slow (e.g., 300 bps) that makes two-way

1https://lora-alliance.org/sites/default/files/2018-04/geolocation_whitepaper.pdf
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CSI communication costly and, to be the best of our knowledge, embedded

LPWAN radio transceivers can’t measure CSI yet.

To this end, we propose Seirios, which exploits the channel state infor-

mation of multiple channels as incoherent measurements and utilises super-

resolution algorithms on multiple anchors (i.e., gateways) to provide accurate

localisation for LPWAN devices. It works with legacy LoRaWAN devices, and

the specialised hardware is required for gateways or Access Points (APs) only,

making it cost-effective to deploy.

Seirios exploits the unique structure of the radio signal, i.e., linear chirps

that sweeps the whole band (see Section 2.1.3 for the details), to synchronise

the radio signal in multiple LoRaWAN2 channels without two-way communi-

cations and CSI measurements like Chronos [22]. The contributions of this

paper are as follows.

• We propose Seirios for narrowband LPWAN localisation, which achieves

significantly higher accuracy than state-of-the-art approaches and does

not require special hardware in the legacy embedded LPWAN devices.

• We propose a novel inter-channel synchronisation algorithm to obtain

the synchronised Channel State Information (CSI) of multiple channels

by exploiting the unique structure of LoRaWAN physical layer. Com-

pared to prior work [22], our approach does not require two-way

communications and CSI measurements, which is more applicable

to LPWAN architecture.

• We design and implement a prototype of Seirios with software-defined

radios (SDRs) as the APs and off-the-shelf embedded LoRaWAN devices,

2LoRaWAN, NB-IoT and Sigfox are the major standards of LPWAN.
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and our evaluation in a 100 m × 60 m outdoor area shows that Seirios

achieves a median localisation error of 4.4 m, which is 36.2% smaller

than the baseline approaches. Different to the observation in previous

studies with Wi-Fi localisation systems, our results show that Time-of-

Fight (ToF) estimation is harmful to narrowband LPWAN localisation.

4.3 Background

Table 4.1: The summary of mathematical symbols used in this Chapter 4

Symbol Definition

SF LoRa Spreading Factor
BW LoRa bandwidth
Fs Sampling rate
T LoRa symbol duration
M Number of channels
P Number of multipaths
R Covariance matrix
A Steering matrix
Φ Diagonal matrix of AoA
B Diagonal matrix of random phase offset
Γ Matrix of path attenuation
λ Chirp rate in linear chirps
c Speed of light
d Sensor spacing, i.e., distance between two antennas
fc Carrier frequency
fδ Channel spacing, i.e., frequency between two channel
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Fig. 4.1: A pair of adjacent antennas in a uniform linear array (ULA). The AoA is
defined as the angle between an incident signal and the array’s normal. Antenna
spacing d is the distance between adjacent antennas. The source is far from the
array, and thus the incident signals of the same path are parallel.

4.3.1 Signal Model

Before discussing LoRa, note Table 4.1, which summarizes the mathematical

symbols used in the following sections.

Suppose there are P significant paths between a sender and a receiver.

Since the signal is narrowband, the channel response of each path can be mod-

eled as a complex value αp(p = 1 . . . P ), representing the amplitude attenuation

and phase shift compared to the original signal u(t) that has been sent. The

received signal r(t) is the sum of multipath replicas of the original signal u(t)

as,

r(t) =
P∑

p=1
αpu(t− τp), (4.1)

where τp is the ToF of the p-th path. With a Fourier transform, we can

transfer Eq (4.1) into the frequency domain as,

R(f) = U(f)
P∑

p=1
αpe−j2πfτp , (4.2)

where f is the frequency. Therefore, we can obtain the channel response
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by

H(f) = R(f)
U(f) =

P∑
p=1

αpe−j2πfτp , (4.3)

Suppose we have M equally spaced channels with frequency spacing fδ and

K antennas. We use the central frequency to represent the frequency of the

whole narrowband channel, and Hk,i to represent the channel response of the

i-th (i = 1 . . . M) channel measured by the k-th (k = 1 . . . K) antenna. Each

path has an AoA θp(p = 1 . . . P ), as depicted in Figure 4.1. Therefore, Hk,i

can be represented by

Hk,i =
P∑

p=1
αpe−j2π[fc+(i−1)·fδ]τpe−j(k−1)2πdsin(θp)fc/c, (4.4)

where d is the antenna spacing—that is, the distance between the adjacent

antennas (k and k + 1)—and c is the speed of light. For simplicity, we use

Φ(θp) or Φp to represent the phase shift caused by the AoA θp and Ω(τp) or Ωp

caused by the ToF τp. We have

Φp = Φ(θp) = e−j2πdsin(θp)fc/c, (4.5)

Ωp = Ω(τp) = e−j2πfδτp , (4.6)

γp = αpe−j2πfcτp , (4.7)

Hk,i =
P∑

p=1
γpΦk−1

p Ωi−1
p . (4.8)

If the central frequency is increased by 2 MHz on 915 MHz spectrum, for

τp = 100 ns (i.e., 30m), there is a significant phase change for Ωp of 1.26 radian.

However, Φp is less affected by fδ. For example, if d = 0.14 m, θ = 80◦, an

increment of 2 MHz on 915MHz spectrum causes Φp to change by 0.006 radian

only, which is negligible.
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For linear chirps, as suggested by Eq. (2.3), frequency increases linearly

and monotonically with time. With Eq. (4.3), the channel response for con-

tinuous frequency can be measured with linear chirps. For example, 125 kHz

LoRa chirp with central frequency 920 MHz can be used to measure the channel

response from 919.9375 MHz to 920.0625 MHz. Seirios utilises this microstruc-

ture of LoRa signals to obtain the channel response of continuous frequency

and perform interchannel synchronisation (see Section 4.4.3 for details).

4.3.2 MUSIC and ESPRIT

MUSIC [40, 86–88] and ESPRIT [89, 90] are known as super-resolution algo-

rithms, and have been shown to resolve the multipath effect in wider-band

radio (e.g., Wi-Fi) localisation system.

Previous research has shown that increasing the number of antennas (e.g.,

up to eight) can increase the localisation accuracy [68]. However, Seirios can

work with only two antennas but provides acceptable localisation accuracy,

which achieves low-cost for the hardware. For a pair of antennas (k and k + 1)

with M LoRa channels, the measurements matrix XMU for MUSIC can be

organised as,

XMU = [Hk,1 · · ·Hk,M , Hk+1,1 · · ·Hk+1,M ]T (4.9)
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The steering vector required by MUSIC is,

a⃗ =



1

Ω(τ)

· · ·

(Ω(τ))M−1

Φ(θ)

Φ(θ)Ω(τ)

· · ·

Φ(θ)(Ω(τ))M−1



(4.10)

To this end, we can utilise the measurement matrix XMU and steering vec-

tor a⃗ to estimate each paths by searching the AoA and ToF that can generate

peaks on the pseudo-spectrum span of MUSIC.

Alternatively, we can also use ESPRIT to solve multipaths. The measure-

ment matrices XES,k, XES,k+1 for either antenna in a pair can be organised

as,

XES,k = [Hk,1 · · ·Hk,M ]T (4.11)

XES,k+1 = [Hk+1,1 · · ·Hk+1,M ]T (4.12)

Therefore, we can compose a model to exploit the rotational invariance to
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solve AoA,


XES,k

XES,k+1

 =


A

AΦ

 Γ + ϵ, (4.13)

where Φ = diag(Φ1 . . . ΦP ), Γ = [γ1 . . . γP ]T , ϵ is the noise (can be ignored

for high SNR signal), and A is a steering matrix. By solving Φ, the AoAs are

estimated.

4.4 Design

As discussed in Section 4.2, Seirios utilises triangulation with multiple APs.

The key to improving localisation accuracy is improving AoA estimation. In

this section, we will discuss interchannel packet synchronisation (Section 4.4.3)

and extended super-resolution algorithms (Section 4.4.6 and Section 4.4.5) to

overcome the challenges posed in Section 4.2 to improve the accuracy of AoA

estimation as well as the performance of the system.

4.4.1 System Design

Seirios is designed to exploit multiple LoRaWAN APs to locate a transmitter.

The location and antenna direction of APs are known in advance and stored in

the cloud. Here, the APs sense the radio signal transmitted from the transmit-

ter before relaying them to the cloud server. We assume that there is only one

transmitter and no concurrent transmission at the same channel. Then, the

cloud server synchronise the channels and performs an AoA estimation from

the radio signal measured at each AP and locate the transmitter via triangula-

tion. Each AP in Seirios has at least two synchronised antennas. The distance
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between the two antennas is slightly less than the half of the wavelength. If

there is one path only between the transmitter and an AP, the AoA can be

calculated directly by comparing the phase difference of the received signal

between two antennas. However, in reality, there are multiple paths due to

radio signal reflection. Even though the Line-of-Sight (LoS) path exists, other

paths may cause significant errors in the AoA estimation due to radio signal

self-interference.

Prior studies show that the number of significant reflectors in an indoor

environment is 5.05 on average, with a standard deviation 1.95 [22]. For an

outdoor or uncluttered indoor environment, there will be even less number of

significant reflectors (e.g., four). Therefore, one of our research questions is how

to accurately estimate the AoA of a limited number paths in such environments

(both indoor and outdoor) with narrowband radio signal (e.g., LoRa). We will

first discuss indoor localisation in this chapter, and then outdoor localisation

in the next chapter.

Figure 4.2 shows an illustrated example that Seirios decomposes the radio

wave multipaths generated by the tree reflectors, estimates the AoA of the

radio wave in different APs and localises the target successfully.

Fig. 4.2: An example of Seirios. Seirios selects the direct paths via a maximum
likelihood gateway fusion introduced in Section 4.4.7.
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4.4.2 Channel State

Channel state information (CSI) represents how signals at certain carrier fre-

quencies propagate from the transmitter to the receiver along multiple paths [60].

It has been widely used in Wi-Fi signal based localisation systems [17, 40, 41,

58, 59]. To measure CSI, a Wi-Fi transmitter sends packets whose preamble

contains pre-defined training symbols for each subcarrier. When the training

symbols are received, the receiver can measure CSI by comparing the ampli-

tude and phase of the received symbols with the pre-defined training symbols.

For LoRa, similar CSI can be obtained. At the receiver, the radio signal

can be sampled as a complex sequence of I and Q components. Seirios detects

the preamble and applies the digital processing algorithms introduced in [28]

for precise carrier frequency offset (CFO) and sampling time offset (STO)

calibration. In the following discussion, we assume that all LoRa chirps are

well calibrated. Since both the sender and the receiver know the preamble, this

can be regarded as a training sequence. Here, LoRa CSI can be obtained by

comparing the received preambles with the pre-defined preambles (i.e., linear

up-chirps).

Furthermore, we can sum up the repeating up-chirps in the preamble to

improve signal-to-noise ratio (SNR) in CSI estimation. There are two reasons

ensuring that the up-chirps can be summed up as follows. Firstly, since the

frequency modulation for up-chirp is symmetric (see Equation (2.3)), the phase

will roll back to its initial state after the period of one chirp, and thus all these

up-chirps have the same phase. Moreover, the preamble only lasts for a

small amount of time and the channel response does not change during this

period, and thus all these up-chirps have the same CSI. Therefore, we



4.4. Design 76

can combine all the up-chirps by

r̄(t) = 1
NP reamble

NP reamble∑
l=1

r(l)(t), (4.14)

where NP reamble stands for the number of up-chirps in the preamble, r(l)(t)

is the l-th up-chirp received, and r̄(t) represents the summation of received

up-chirps.

To this end, LoRa CSI can be measured by,

CSI = 1
T

∫ T

0
r̄(t) · u∗(t)dt, (4.15)

where u(t) is the zero-phased up-chirp defined in Equation (2.5), and (.)∗

denotes the conjugate transpose. Equation (4.15) is similar to the pulse com-

pression technique, which is used in LoRa demodulation to significantly in-

crease the SNR.

Different to Chronos [22],which estimates the CSI of a wireless link by

comparing the CSI measurements in the two end nodes of the link, Seirios

estimates the CSI by comparing the received up-chirps in the preamble with

the reference on the receivers only. The advantage of our approach is two-fold.

First, none of the embedded LoRaWAN devices (transmitters) is capable of

measuring CSI. Seirios requires CSI measurements in one end (i.e., LoRaWAN

gateway) only, while Chronos requires both ends to measure CSI. This makes

Seirios cost-effective to deploy because the number of embedded devices is

orders of magnitude more than that of gateways. Second, the data rates of

LoRaWAN (can be as low as 300 bps) are orders of magnitude smaller than

those of Wi-Fi (the lowest is 1 Mbps). Therefore, transmitting the CSI mea-

surements between two ends incurs significantly more time and (energy) costs
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in LoRaWAN.

We have discussed the method for LoRa CSI measurements above. Below,

we will discuss how CSI can be used in localisation.

Recall that both MUSIC and ESPRIT utilise channel response to resolve

radio signal multipaths (see Section 4.3.1 and Section 4.3.2). The main dif-

ference between CSI and channel response is a random phase shift that is

introduced in CSI because the transmitter and the receiver are not synchro-

nised. For wideband Wi-Fi signals, CSIs for each subcarrier are measured at

the same time. The phase shift is the same for each subcarrier, so it does not

affect the results of super-resolution algorithms. Therefore, CSI can be used

directly by the super-resolution algorithms.

However, for the i-th narrowband channel of LoRa measured by antenna

k, CSIk,i is phase-shifted from Hk,i (see Equation (4.4)) as

CSIk,i = Hk,i · ej2π(ϕtx
i −ϕrx

i ), (4.16)

where ϕtx
i and ϕrx

i are the initial phases of the transmitter and the receiver,

respectively. Since each channel (here LoRa channels may be viewed as the

Wi-Fi subcarriers) is measured individually, the random phase shift is different

for each channel. Therefore, unlike Wi-Fi signals, LoRa CSI must be calibrated

before it can be used with super-resolution algorithms.

To calibrate phase shift is equivalent to synchronise channels by solving

ϕtx
i − ϕrx

i in Equation (4.16). However, solving the synchronisation problem

between a transmitter and a receiver is challenging. Chronos [22] proposed

measuring CSI on both the transmitter and the receiver to eliminate the phase

shift, yet the method requires extra hardware to measure CSI in embedded

LoRaWAN transmitters, which is undesirable.
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Conversely, in the context of localisation, we do not need to estimate the

absolute value of the phase shifts. Instead, we need an identical phase shift—

say, the phase shift of the first channel—for all calibrated channels to be used

by super-resolution algorithms.

Taking M LoRa channels into consideration, we assume the multipaths are

stable during a short period of time. An AP stores the CSI estimation (see

Section 4.4.2) based on the latest LoRa packet in each channel. Since the

transmitter and the receiver are not synchronised, there is a random phase

offset between the received signals of two packets in the adjacent channels.

We model this random phase offset as a unit complex number βi(i = 1 . . . M).

However, since the antennas are synchronised, they share the same phase offset.

Therefore, the received signal Xk, Xk+1 for two antennas can be modeled as,


Xk

Xk+1

 =


BA

BAΦ

 Γ + ϵ, (4.17)

where B = diag(β1, β2 . . . βM), Φ = diag(Φ1, Φ2 . . . ΦP ), Γ = [γ1, γ2 . . . γP ]T ,

ϵ is the noise, and A is a steering matrix:

A =



1 . . . 1

Ω1 . . . ΩP

...

(Ω1)M−1 . . . (ΩP )M−1


. (4.18)

Note that, since random phase offset B exists, it is difficult to solve Φ

directly by super-resolution algorithms. Figure 4.3 shows an example of the

CSI in synchronised and unsynchronised channels collected by the Seirios



4.4. Design 79

prototype introduced in Section 4.5. In the next section, we will discuss how

to exploit the microstructure of LoRa signal for interchannel synchronisation.
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Fig. 4.3: (a) CSI of unsynchronised channels. Triangles denote the CSI of antenna
k, and squares denote the CSI of antenna k + 1. Eight different colors represent
eight adjacent channels. (b) CSI of synchronised channels. Only synchronised CSI
can be used in spatial smoothing.

After synchronisation, we have βi = βj(∀i, ∀j). Without loss of generality,

we assume βi = 1,∀i. Therefore, the signal model in Equation (4.17) becomes


Xk

Xk+1

 =


A

AΦ

 Γ + ϵ. (4.19)

4.4.3 Interchannel Synchronisation

First of all, let us briefly review the related work discussed in Section 2.3.2.

ToneTrack [17] has proposed a method to align overlapped Wi-Fi channels.

(Adjacent channels are regarded as the special forms of the overlapped channels
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in this paper, to be differentiated from non-overlapped channels.) It first

equalises the phase slope in the frequency domain; then, it aligns the phase of

the last subcarrier of the first wideband channel and the first subcarrier of the

second wideband channel. With these two steps, the second wideband channel

can be concatenated to the first channel to form a wider band. However, this

method only works for overlapped channels. By contrast, Seirios improves the

method to operate on non-overlapped narrowband channels.

Different to a Wi-Fi signal, which has multiple subcarriers to form a phase

slope, a narrowband LoRaWAN signal has only one carrier. To form a similar

phase slope for the LoRaWAN signal, we exploit the microstructure of LoRa

chirps. For illustration, we define g(f) as the channel state for a continuous

frequency range from the lower bound to the upper bound of the bandwidth.

Figure 4.4a shows an example of the phase slopes for three channels (915.2

MHz, 915.3 MHz, and 915.4 MHz). Note the random phase shift in between is

caused by lack of synchronisation (see the discussion in Section 4.4.2). Equa-

tion (2.3) shows that frequency f and time t have a linear relationship.

Therefore, we can estimate gi(f) for channel i as

gi(f) = r̄i(t(f))u∗(t(f)) = r̄i(
f − fi + BW

2
λ

)u∗(
f − fi + BW

2
λ

), (4.20)

where f ∈ [fi−BW
2 , fi+BW

2 ], fi is the carrier frequency of channel i. Figure 4.4a

depicts the phase of gi(f) for i = 1, 2, 3.

However, unlike the stable phase slope illustrated by [17], the phase slope

of the LoRa narrowband channel is full of noise even when the SNR is high (see

Figure 4.4b, where the SNR is 10 dB). This is because that the phase change

in a narrowband (e.g., in channel 1 the phase decreases by approximately 0.05

rad, as shown in Figure 4.4b) is much less than that of a Wi-Fi wideband
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(e.g., approximately 3.0 rad in [17]), and, thus, the narrowband is less robust

to the noise than Wi-Fi even with the same noise level. To better estimate the

phase offset between two channels, Seirios averages the phase offset within the

overlapped frequency to reduce the noise. By compensating the phase offset

of the second channel to align with the first channel, the second channel can

now be concatenated to the end of the first channel, as shown in Figure 4.4b.

For non-overlapped channels, ToneTrack states that estimating the correct

amount of phase offset is challenging. To this end, for narrowband radio sig-

nals, we propose to generate a (virtual) intermediate channel response as a

bridge to assist the synchronisation. In the microbenchmark (See Section 5.4),

we show that the channel response varies slowly with frequency, making it

possible to generate the virtual intermediate channel with small errors by av-

eraging the two adjacent channels. Taking Figure 4.4c as an example, we can

obtain the (virtual) intermediate channel response (shown as a bridging chan-

nel in the figure) by averaging the phases of (co-phased) channel 1 and channel

2. Similar to the overlapped channels, non-overlapped channels can now be

synchronised with the (virtual) intermediate channel (Figure 4.4d).

Unlike Wi-Fi wideband, which measures multiple CSIs in one packet, a

LoRa narrowband can only measure one CSI per packet. To measure the CSI

of multiple channels, at least one packet on each channel should be transmitted

within the coherence time. A LoRaWAN end device has eight channels of 125

kHz with 200 kHz spacing. Eight packets should be transmitted on eight

different channels to measure their CSI. LoRaWAN channels are separated

by 75 kHz guard bands, and the (virtual) intermediate channel has a 25 kHz

overlap with the adjacent channels. In practice, Seirios leaves out the first

and the last 4 kHz because the quality of phase estimation in transient is poor.

Thus, the overlapped frequency of one LoRaWAN channel (with the virtual
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bridging channel) is 17 kHz (13.6% of the bandwidth), which is sufficient for

synchronisation (see our evaluation in Section 5.4.2 for more details). The

synchronised CSI can later be used in super-resolution algorithms for multipath

resolution.
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Fig. 4.4: (a) Lack of synchronisation between transmitters and receivers introduces
random phase shift. (b) Interchannel synchronisation exploits the overlapped band
to eliminate the phase shift. (c) For non-overlapped channel, a bridging channel can
be generated by averaging two adjacent (co-phased) channels. (d) Using a generated
bridging channel to synchronise two adjacent channels.
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4.4.4 Estimating AoA with MUSIC

In the the multipath multi-channel model for MUSIC and ESPRIT as shown in

Section 4.3.2, multipath reflectors are highly correlated so that RΓ = E{Γ ΓH}

is rank-deficient. It will result in failure for the MUSIC algorithm [87]. To

solve this problem, we follow the spatial smoothing approach proposed in

SpotFi [40]. Specifically, Seirios smooths L = 6 consecutive channels in M = 8

synchronised LoRa channels since a typical configuration of LoRaWAN has 8

× 125kHz channels with the channel spacing of 200kHz between the centre

frequencies (fc) of adjacent channels.

Therefore, we first measure the CSI for each channel by two antennas k

and k + 1 (see Section 4.4.2) as

CSI Matrix =


csik,1 csik,2 · · · csik,8

csik+1,1 csik+1,2 · · · csik+1,8

 . (4.21)

Then, we can generate Xk as a 3× 6 matrix

Xk =



csik,1 csik,2 · · · csik,6

csik,2 csik,3 · · · csik,7

csik,3 csik,4 · · · csik,8.


(4.22)

with L − 1 = 5 CSI measurement overlaps. Similar structure can be applied
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to Xk+1. Therefore, the A and Γ become

A =



1 1 . . . 1

Ω1 Ω2 . . . ΩP

(Ω1)2 (Ω2)2 . . . (ΩP )2


(4.23)

and

Γ =



γ1 Ω1γ1 · · · (Ω1)5γ1

γ2 Ω2γ2 · · · (Ω2)5γ2

... ... ...

γP ΩP γP · · · (ΩP )5γP


, (4.24)

respectively.

Since the number of significant multipaths in outdoor or uncluttered indoor

environment is small (e.g., P ≤ 4), the covariance matrix RΓ = E{Γ ΓH} now

has full rank because the number of columns and the number of rows in Γ

(Equation (4.24)) are six and four respectively.

To estimate AoA and ToF with MUSIC, we first calculate the covariance

matrix RX of


Xk

Xk+1

,

RX = E{


Xk

Xk+1


[
XH

k XH
k+1

]
} (4.25)

With the eigen-analysis of covariance matrix RX , we can get L eigenvectors

E = [e⃗1 . . . e⃗L] sorted with their eigenvalues. The first P significant eigenvec-

tors ES = [e⃗1 . . . e⃗P ] represent the signal subspace, and the remaining L − P
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eigenvectors EN = [e⃗P +1 . . . e⃗L] represent the noise subspace.

We further define the column of steering matrix A as a steering vector

a⃗(θ, τ),

a⃗(θ, τ) =



1

Ω(τ)

(Ω(τ))2

Φ(θ)

Φ(θ)Ω(τ)

Φ(θ)(Ω(τ))2



. (4.26)

Then, we can estimate AoA and ToF by maximising the following equation,

PMUSIC(θ, τ) = 1
a⃗(θ, τ)HENEH

N a⃗(θ, τ) (4.27)

With the MUSIC algorithm, AoA and ToF can be estimated. However,

previous research shows that the estimation of ToF is unreliable [40, 91]. Our

evaluation shows that ToF is sensitive to noise. Thus, we only keep the AoA

estimation for localisation.

4.4.5 Estimating AoA with ESPRIT

ESPRIT [89, 90, 92] is another subspace algorithm for AoA estimation but

there was little study about ESPRIT in previous super-resolution localisation

research with Wi-Fi because of its inferior performance compared to MU-

SIC [93]. One of the possible reasons is that ESPRIT doesn’t estimate ToF

as MUSIC. However, since LoRa has orders of magnitude less bandwidth than

Wi-Fi (see Section 4.4.1), our results in Section 4.6 show that the AoA and
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localisation performance of ESPRIT is slightly better than those of MUSIC

because of the poor ToF estimation of MUSIC with LoRa.

ESPRIT uses the same signal model Equation (4.19) as MUSIC. Note that

we abuse the notations in this section against those in Section 4.4.4 to help

simplify the exposition.

Firstly, similar to MUSIC in Section 4.4.4, we apply spatial smoothing

to have a fully ranked covariance matrix. In order to smooth L consecutive

channels from total M channels, we define a partial covariance matrix as

R
(q)
i,j = E{Xi[q : l, q : l] XH

j [q : l, q : l]}, l = M − L + q (4.28)

where q = 1 . . . L and i, j ∈ {k, k + 1}. Therefore, the smoothed covariance

matrix is calculated by

Rsmooth = 1
L
·


∑L

q=1 R
(q)
k,k

∑L
q=1 R

(q)
k,k+1

∑L
q=1 R

(q)
k+1,k

∑L
q=1 R

(q)
k+1,k+1

 (4.29)

The number of channels for smoothing L should not be less than the number

of path (P ). For cluttered indoor environment, P is between six and eight

[94–96]. Therefore, L ≥ 8 and M ≥ 16. we choose L = 4 since M = 8 for

typical LoRaWAN gateway configuration. Therefore, Seirios is designed for

outdoor or uncluttered indoor environment.

Secondly, we apply the TLS-ESPRIT algorithm [90,97] to estimate the AoA

for all significant radio paths. We further define partial covariance matrix Rii

as the left-up quarter of Rsmooth and Rij as the right-up quarter. Then we
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have,

Rii = 1
L

L∑
q=1

R
(q)
k,k, (4.30)

Rij = 1
L

L∑
q=1

R
(q)
k,k+1. (4.31)

The smallest eigenvalue of Rii can be regarded as the noise term σ2, and

we further define a new matrix Cii with noise subtracted as,

Cii = Rii − σ2I. (4.32)

Similarly, we can have Cij calculated from Rij. Then we perform eigen-

analysis for Cii,

UΣV H = Cii. (4.33)

Eigenvalues and eigenvectors are sorted in non-increasing order, and we

take the first P significant eigenvalues and eigenvectors to form new matrics

as U1, Σ1 and V1. After solving the generalised eigenvalues of matrices Σ1 and

UH
1 CijV1, we can solve the phases of Φ(θ) with the phases of the eigenvalues.

Finally, we can estimate AoAs of the multipaths with Equation (4.5).

4.4.6 Limitation of ToF Estimation

In this section, we discuss the limitation of ToF estimation. A typical config-

uration of LoRaWAN has 8 × 125 kHz channels with the channel spacing of

200 kHz between two adjacent channels. Therefore, we can measure the CSI
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for each channels with a pair of antennas k and k + 1 (see Section 4.4.2) as


xk,1 xk,2 · · · xk,8

xk+1,1 xk+1,2 · · · xk+1,8

 . (4.34)

Following the spatial smooth approach used in SpotFi [40] to maximise the

incoherence of measurements for better multipath resolution, we form Xk for

CSI measured on antenna k as a 3× 6 matrix

Xk =



xk,1 xk,2 · · · xk,6

xk,2 xk,3 · · · xk,7

xk,3 xk,4 · · · xk,8


. (4.35)

Xk+1 can be formed similarly. By putting Xk and Xk+1 together, the

measurement matrix for MUSIC is,

XMUSIC =


Xk

Xk+1

 . (4.36)

We can obtain a steering vector a⃗ according to Equation (4.10) with M = 3.

With XMUSIC and the steering vector a⃗, we can use MUSIC to estimate AoA

and ToF jointly. The super-resolution algorithm searches all combinations of

θ and τ for the steering vector, and calculate the value of a pseudo-spectrum

function to find the peaks where locate the most likely estimations.

Nevertheless, in our practical evaluation, the performance is far from sat-

isfactory and sometimes even worse than the baseline. We investigate the

phenomenon with simulation, and find two main reasons.
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• ToF resolution is 625 ns (125 m), making the paths indistinguishable

with ToF difference. On the pseudo-spectrum, those estimations merge

into one peak which is away from the ground truth. Therefore, the

attempt to resolve multipaths fails. With wider bandwidth (e.g., 20

MHz as Wi-Fi), the accuracy can be improved.

• AoA estimation is sensitive to ToF accuracy. If ToF is estimated poorly,

it will be noisy for AoA estimation, making AoA estimation worse than

the baseline.

Therefore, we look for other algorithms that can avoid using ToF estimation

for direct path resolution.

4.4.7 Multiple-AP Fusion

Previous research proposes to determine the direct path based on ToFs [17,

22,40]. However, the ToFs measured with LPWAN is not reliable as discussed

in Section 4.4.6. Therefore, Seirios does not resolve the direct path at the

beginning. Instead, Seirios utilise triangulation with the AoA estimation of

multiple APs to locate the transmitter directly. This method is based on the
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Fig. 4.5: An example for likelihood function with σ = 5. This figure shows four
significant paths. The likelihood function can be translated into a heatmap in Fig-
ure 4.6a given the locations of the APs.
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Fig. 4.6: (Picture view best in color) A heatmap example for multiple-AP fusion.
Green circles indicate the APs, and the red cross indicates the ground-truth of the
transmitter. (a) One AP. Multiple AoAs exist. (b) 2 APs. 7 clusters exist after
fusion. (c) 3 APs. 4 clusters exist after fusion. (d) 4 APs. 2 clusters exist. The one
with stronger likelihood is the location estimation for the transmitter, which is very
close to the ground truth.

fact that the origins of the direct paths are congregated to the transmitter, but

that of the reflectors are diverged (see examples in Figure 4.2 and Figure 4.6).

Different to the classical triangulation algorithm that minimises the 2-norm of

localisation errors, Seirios utilises maximum likelihood algorithm to simplify

the calculation.

First of all, Seirios deals with all estimated AoAs equally, as they can be

either the direct paths or the reflectors. The errors of AoA estimation are

modeled as Gaussian distribution N (0, σ2). Therefore, Seirios can apply a

function ℓ(θ) with Gaussian distribution’s probability density function (PDF)
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f(θ|µ, σ2) to represent the likelihood of a correct estimation for angle θ. l(θ)

is defined as,

ℓ(θ) = max
i=1..P

f(θ|θ̂i, σ2), −85◦ < θ < 85◦. (4.37)

where θ̂i is the AoA of the ith path, and σ is determined by the noise level

and is a tunable parameter of Seirios. We found that the ‘good’ values of σ are

between 3◦ and 5◦ empirically. Figure 4.5 shows an example for the likelihood

function ℓ(θ).

Since the position of APs and the directions of antennas are known, we

can translate the likelihood function into a heatmap L(x, y) demonstrating

the likelihood of the transmitter’s location as shown in Figure 4.6a. As the

size of the antenna array is relatively small compared to the distance between

the transmitter and the receiver, instead of using hyperbolas to translate the

AoAs to the heatmap, we use straight lines to simplify the calculation. To

fusion the likelihood estimated by multiple APs, Seirios merges the heatmaps

by multiplication. Therefore, the heatmap L̂(x, y) as the fusion of G APs is

generated by

L̂(x, y) =
G∏

g=1
Lg(x, y). (4.38)

However, there might be multiple clusters if the number of APs is not

enough. The ambiguity can be reduced with the increase of APs. Figure 4.6

shows the refining of location estimation as the number of APs increases. On

the heatmap with two APs (Figure 4.6b), there are many possible locations for

the transmitter. With four APs (see Figure 4.6d), the transmitter’s location

is estimated as the center of a cluster, which is very close to the ground truth

(i.e., the red cross). With multiple-AP fusion algorithm, it is not necessary

to determine the direct path for each AP, which can avoid inaccurate ToF

estimation discussed in Section 4.4.6.
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LPWAN signals are good at penetration, and thus in most of the cases there

exist direct paths. For the cases that direct paths are completely blocked, we

leave the study and evaluation as future work.

4.5 Implementation

(a) (b)

Fig. 4.7: (a) AP implementation for data acquisition; (b) AP for outdoor deploy-
ment.

Seirios is designed for the transmitter localisation in an outdoor or unclut-

tered indoor environment. According to the architecture shown in Figure 4.2,

we have implemented a Seirios prototype with the APs for wireless data ac-

quisition and the cloud service for data processing.

Seirios AP prototype. We use BladeRF 2.0 SDR, which supports 2 × 2

MIMO as the AP prototype to receive LoRa radio signals between 902 and

928 MHz. The SDR can generate two synchronised I and Q streams of two

antennas with 12-bit resolution. The distance between antennas is fixed as

14cm, which is slightly less than the half of the radio wavelength. Prior cal-

ibration is performed to eliminate the phase offset caused by connectors or
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cables. The SDR is connected to a general-purpose processor (GPP) via USB

3.0, which can be either a PC or a single board embedded computer. To op-

erate Seirios prototype in a mobile manner (e.g., in an outdoor environment),

we choose to use a low-power embedded system Raspberry Pi 4 as the GPP,

which is deployed with signal processing program for LoRa packet detection.

The detection algorithm is implemented in C++ with GNU Radio for high

efficiency. Once a LoRa packet is detected, the GPP uploads the packet to the

Seirios cloud service prototype via high-speed Wi-Fi. The devices are shown

in Figure 4.7a. For outdoor deployment, the devices are packed in a case (see

Figure 4.7b).

Cloud server. The cloud has a TCP server for incoming LoRa PHY that is

uploaded by multiple APs. The server stores the data with its timestamp and

maintains a time window to group the relevant packets for further processing.

For each AP, when at least one packet for each channel is recorded in the

window, the server will start to process the data. It first estimates the CSI

for each channel, and then synchronises the channels. After that, it performs

either MUSIC or ESPRIT for the AoA estimation. After the AoA estimations

for multiple APs are produced, the server will perform multiple-AP fusion to

estimate the location of the transmitter. The flowchart of the the process is

shown in Figure 4.8.
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Fig. 4.8: Flowchart for signal processing in the Seirios cloud service.
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4.6 Evaluation

4.6.1 Goals, Metrics and Methodology

Our goal in this evaluation is to show that Seirios can locate LoRa transmitter

accurately outdoors. For this purpose, we evaluate the performance of our

Seirios prototype developed in Sec 4.5 in a 100m × 60m lawn with a number

of trees and is surrounded by buildings (see Figure 4.9). This is the largest

outdoor space available in our campus.

Fig. 4.9: Outdoor evaluation on 100 m × 60 campus lawn. Red squares marked
with A/B/C/D and antenna direction indicate the APs. Green circles indicate the
ground-truth of transmitter’s locations.

We deployed four APs in the lawn, one of which is shown in Figure 4.7b.

A pair of 5 dBi antennas were mounted on each AP. The devices were battery-

powered and each of them sampled at 2 MSps to cover the 1.6 MHz LoRaWAN

spectrum. We used mDots3 as our transmitters (i.e., the LoRa devices to be

localised), which were configured with frequency hopping at eight LoRaWAN

3MDot datasheet. https://www.multitech.com/brands/multiconnect-mdot
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channels. Specifically, each of them transmitted packets for SF = 7 at 8 × 125

kHz channels with the channel spacing of 200 kHz. It took a device approx-

imately 30 ms to send a pre-defined packet; therefore, it took approximately

30× 8 = 240 ms to cover all the channels.

During the evaluation, we recorded the locations of the transmitters (see the

green dots and the red squares in Figure 4.9 for the locations of the transmitters

and APs respectively). Then, a transmitter transmitted LoRa packets in all

channels for three times. We collected two datasets with different transmission

power levels, 14 dBm and 27 dBm respectively to study the impact of different

transmission power levels to localisation accuracy.

The metrics that we use to evaluate the performance of Seirios are the

errors of AoA (in degrees) and localisation (in metres), which are simply the

absolute differences between estimation and ground truth.

Apart from overall AoA and localisation performance in both MUSIC (see

Section 4.4.4) and ESPRIT (see Section 4.4.5), we had also investigated the

performance of different components of Seirios such as the synchronisation

algorithms in both overlapped and non-overlapped channels as discussed in

Section 4.4.3, and fusion algorithm (see Section 4.4.7).

4.6.2 The accuracy of AoA estimation

The accuracy of AoA estimation determines that of localisation. Therefore,

we start with the AoA accuracy. Figure 4.10 and 4.11 show the Cumulative

Distribution Function (CDF) for AoA estimation errors of ESPRIT and MU-

SIC at transmit power levels 27 dBm and 14 dBm respectively. When the

transmit power level is low (e.g., 14 dBm), the median errors with ESPRIT

and MUSIC are 3.2 and 6.7 degrees, respectively, and the 80% percentile are
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12.0 and 17.4 degrees, respectively (see Figure 4.11). When the transmit power

level is high, the median error of ESPRIT is the same as that of low transmit

power level (i.e., 3.2 degrees), but the 80% percentile of the estimation errors

is improved to 6.0 degrees (vs. 12.0 degrees at the low transmission power

level). For MUSIC, the high transmit power level (i.e., 27 dBm) reduces the

AoA estimation error to 6.0 degrees (from 6.7 degrees produced by the low

transmit power level). Similarly, and the 80% percentile of estimation errors

is reduced to 12.0 degrees (from 17.4 degrees).
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Fig. 4.10: AoA estimation error (Tx: 27 dBm)

Therefore, a higher transmit power level can increase the accuracy of AoA

estimation of Seirios. At the same transmit power level, ESPRIT has better

performance than MUSIC, which is different to the results reported

in Wi-Fi localisation literature. This phenomenon is due to the foundation

of MUSIC model discussed in Section 4.4.4 that an accurate AoA estimation

with MUSIC relies on an accurate ToF estimation, while the ToF estimation

is sensitive to noise and sometimes unreliable in narrow band LoRa channels

that is different to orders-of-magnitude wider band Wi-Fi channels.



4.6. Evaluation 99

0 2 4 6 8 10 12 14 16 18

AoA Estimation Error (degree)

0

0.5

0.8

1

E
m

p
ir
ic

a
l 
C

D
F

ESPRIT

MUSIC

Fig. 4.11: AoA estimation error (Tx: 14 dBm)

An AoA estimation error of 3.2 degrees can be translated to a theoreti-

cal localisation error of 5.5 m at a distance of 100 m. In the next section,

we will evaluate such end-to-end localisation errors with multiple-AP fusion

empirically.

4.6.3 Localisation Accuracy
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Fig. 4.12: Localisation error (Tx: 27 dBm)
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Fig. 4.13: Localisation error (Tx: 14 dBm)

The overall performance of Seirios is shown in Figure 4.12 (at the trans-

mit power level of 27 dBm) and Figure 4.13 (at the transmit power of 14

dBm), respectively. Similar to Section 4.6.2, at the transmit power of 14 dBm,

the performance of ESPRIT is slightly better than that of MUSIC with the

median localisation errors of 7.8 m and 8.8 m for ESPRIT and MUSIC respec-

tively. The 80% percentiles are 14.3 m and 17.1 m for ESPRIT and MUSIC

respectively. When the transmit power level is 27 dBm, the median and 80%

percentile errors (5.0 m and 7.0 m respectively) of ESPRIT are significantly

better than those of MUSIC (7.8 m and 14.8 m respectively). From these

figures, we can also observe that the transmit power levels have a significant

impact to the localisation accuracy, especially with ESPRIT, where the 80%

percentile of estimation error reduced from 14.3 m to 7.0 m (a more than half

reduction) when the transmit power level increased from 14 dBm to 27 dBm.
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4.7 Conclusion

We introduce Seirios, an AoA based localisation system for LPWAN. Despite

the huge success and popularity of AoA based localisation methods in wide

band radio systems such as Wi-Fi, there is no prior studies of such method

in the emerging narrowband LPWAN because of the bandwidth limitation

that results in poor multipath and location estimation. Seirios addresses this

limitation by a novel interchannel packet synchronisation method that exploits

the unique structure of the PHY. Our empirical evaluation shows that Seirios

can achieve 4.4 m accuracy in an area of 100m × 60m.



Chapter 5

Seirios+: Leveraging Multiple

Channels for LoRaWAN Indoor

Localisation with Conjugates

5.1 Abstract

The Seirios localisation system proposed in Chapter 4 can improve the accu-

racy of outdoor localisation; however, it does not work for indoor localisation

due to the increase of multiple radio propagation paths. Therefore, novel al-

gorithms are proposed in this chapter to improve the localisation accuracy for

indoor environment. By exploiting both the original and the conjugate of

the physical layer, the improved Seirios+ can resolve multiple reflectors in

both indoor and outdoor environments. We upgraded the Seirios prototype

to Seirios+ and evaluate its performance in an indoor area of 25 m × 15

m, which shows that Seirios+ can achieve a median error of 2.4 m indoors

(80% samples <6.1 m).The results show that Seirios+ produces 47.8% and

38.5% less error than the baseline approach and the approach without using

102
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the conjugate information, respectively.

5.2 Introduction

In Chapter 4, we have proposed Seirios system for LoRaWAN device outdoor

localisation. Channel combination and super-resolution algorithms are pro-

posed to improve the localisation accuracy. In the evaluation (Section 4.6),

Seirios achieves superior outdoor localisation accuracy. However, it does not

support indoor localisation due to the fact that the number of significant mul-

tipaths indoors is more than that outdoors, making it challenging to resolve

multipaths in clutter indoor environments.

To overcome the challenge, we propose improving Seirios to Seirios+ for

indoor localisation with and upgraded super-resolution algorithm. The key is,

in addition to the original channel state measurements themselves, Seirios+

utilises the conjugate of the measurements, which doubles the total amount of

information for multipath resolution. The number of multipath that can be

resolved by Seirios+ is increased by 50% compared to original Seirios system

without extra measurements, which does not increase energy consumption. In

our evaluation (Section 5.5), Seirios+ can significantly improve the localisation

accuracy for indoor environment compared to Seirios. Therefore, Seirios+ can

provide accurate localisation estimation for LoRaWAN devices both indoors

and outdoors. The contributions of this chapter are as follows.

• We propose doubling the amount of channel information by utilizing both

the original and the conjugate of the CSI to increase the numbers

of multipaths that the super-resolution algorithms can resolve (up to six

reflectors), and thus improve the accuracy of localisation.
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• We upgrade the prototype of Seirios with novel super-resolution algo-

rithms, and our evaluation in a 25 m × 15 m indoor area shows that

Seirios achieves a median localisation error of 2.4 m, which is 47.8%

smaller than the baseline approaches and 38.5% smaller than the algo-

rithm without conjugate (i.e., the algorithm proposed in Chapter 4).

5.3 Multi-channel Model with Conjugate

ESPRIT [89, 90, 92] takes advantage of rotational invariance for AoA esti-

mation. However, there was little application about it in previous super-

resolution localisation with Wi-Fi due to its inferior performance compared

to MUSIC [93]. One of the possible reasons is that ESPRIT does not estimate

ToF as MUSIC does. Since LoRa has orders-of-magnitude less bandwidth than

Wi-Fi (see Sec 4.4.1), ToF estimation is inaccurate and may impair the over-

all performance. With ESPRIT, we can exploit all the information for AoA

estimation only, which may have better performance than AoA-ToF joint esti-

mation. Our results in Section 5.4.1 and Section 5.5 prove that AoA estimation

alone has better performance than AoA-ToF joint estimation.

The signal model for ESPRIT is shown as Equation (4.17). Measurements

are organised in two matrices Xk and Xk+1 (we abuse the notations as in

Section 4.4.6 for brevity). A naïve approach is to follow Equation (4.11) and

(4.12) to form matrices with dimension 8× 1. However, their covariance matrix

R = E{XkXk+1} is rank-deficient with rank only one. The rank indicates that

the number of multipaths the algorithm can solve is only one. With spatial

smoothing, the rank can be increased to four. Our evaluation shows that

solving four paths is acceptable for outdoor environment, but results in poor

accuracy for indoor. To meet the system design (see Section 4.4.1), the rank
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should be increased to six at a minimum.

To this end, we propose to exploit both the original and the conjugate of the

measurements. For convenience, we call this algorithm conjugated ESPRIT.

Xk and Xk+1 become,

Xk =



xk,1 xk,2 xk,3 x∗
k+1,8 x∗

k+1,7 x∗
k+1,6

xk,2 xk,3 xk,4 x∗
k+1,7 x∗

k+1,6 x∗
k+1,5

... ... ... ... ... ...

xk,6 xk,7 xk,8 x∗
k+1,3 x∗

k+1,2 x∗
k+1,1


(5.1)

as a 6 × 6 matrix, and symmetrically,

Xk+1 =



xk+1,1 xk+1,2 xk+1,3 x∗
k,8 x∗

k,7 x∗
k,6

xk+1,2 xk+1,3 xk+1,4 x∗
k,7 x∗

k,6 x∗
k,5

... ... ... ... ... ...

xk+1,6 xk+1,7 xk+1,8 x∗
k,3 x∗

k,2 x∗
k,1


. (5.2)

With Equation (4.17)(5.1)(5.2), A is a 6 × 6 steering matrix,

A =



1 1 . . . 1

Ω1 Ω2 . . . ΩP

... ... . . . ...

(Ω1)5 (Ω2)5 . . . (ΩP )5


. (5.3)

and we can derive Γ,

Γ =
[
Γk Γk+1

]
, (5.4)
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where

Γk =



γ1 γ1Ω1 γ1(Ω1)2

γ2 γ2Ω2 γ2(Ω2)2

... ... ...

γP γP ΩP γP (ΩP )2


, (5.5)

Γk+1 =



γ∗
1(Ω∗

1)7Φ∗
1 γ∗

1(Ω∗
1)6Φ∗

1 γ∗
1(Ω∗

1)5Φ∗
1

γ∗
2(Ω∗

2)7Φ∗
2 γ∗

2(Ω∗
2)6Φ∗

2 γ∗
2(Ω∗

2)5Φ∗
2

... ... ...

γ∗
P (Ω∗

P )7Φ∗
P γ∗

P (Ω∗
P )6Φ∗

P γ∗
P (Ω∗

P )5Φ∗
P


. (5.6)

The rows of Γ represent multipath signals. Normally, multipath signals

(defined in Equation (4.7)) are highly correlated. With Equation (5.5) and

(5.6), the signals are decoupled. As shown in Equation (5.1)(5.2), the amount

of measurement is doubled. Therefore, the rank of covariance matrix is in-

creased from four to six to deal with six multipaths (70% indoor cases, see

discussion in Section 5.2). Generally, given measurements of M channels, the

multipaths that ESPRIT can solve is ⌊2(M+1)
3 ⌋. Our evaluation show that this

algorithm can increase the accuracy of LPWAN indoor localisation.

This approach can also be applied to Wi-Fi signals where CSI of multiple

subcarriers can be used for localisation. For a pair of antennas with W consec-

utive subcarriers, similar to Equation (5.1) and (5.2), the CSI measurements
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can be organised as

XW
k =



xk,1 · · · xk,⌈ W +1
3 ⌉ x∗

k+1,W · · · x∗
k+1,⌊ 2(W +1)

3 ⌋

xk,2 · · · xk,⌈ W +1
3 ⌉+1 x∗

k+1,W −1 · · · x∗
k+1,⌊ 2(W +1)

3 ⌋−1

... ... ... ... ... ...

x
k,⌊ 2(W +1)

3 ⌋ · · · xk,W x∗
k+1,⌈ W +1

3 ⌉ · · · x∗
k+1,1


(5.7)

and symmetrically,

XW
k+1 =



xk+1,1 · · · xk+1,⌈ W +1
3 ⌉ x∗

k,W · · · x∗
k,⌊ 2(W +1)

3 ⌋

xk+1,2 · · · xk+1,⌈ W +1
3 ⌉+1 x∗

k,W −1 · · · x∗
k,⌊ 2(W +1)

3 ⌋−1

... ... ... ... ... ...

x
k+1,⌊ 2(W +1)

3 ⌋ · · · xk+1,W x∗
k,⌈ W +1

3 ⌉ · · · x∗
k,1


.

(5.8)

5.4 Microbenchmark

So far, we have discussed interchannel synchronisation (Section 4.4.3) and

conjugated ESPRIT (Section 5.3) as the key algorithms of Seirios to improve

the accuracy of AoA estimation as well as the localisation of LoRaWAN IoT

devices. To understand the performance of the algorithms on one AP, we

conducted a microbenchmark indoors (25 m × 15 m) with LoS and non-line

of sight (NLoS) to evaluate the AoA estimation accuracy. We compared three

algorithms (i.e., AoA-conjugated using conjugated ESPRIT, Section 5.3; AoA-

ToF joint estimation using MUSIC, Section 4.4.6; and the baseline). The

baseline algorithm is similar to TDoA, but instead of synchronising multiple
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(a) Line-of-sight (LoS)
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(b) Non-line-of-sight (NLoS)
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Fig. 5.1: Microbenchmark: (a) LoS, (b) NLoS, and (c) overlapped and non-
overlapped channels. The accuracy of the two cases is close, with half the error
as the baseline. The performance of the interchannel synchronisation algorithm for
non-overlapped channels is comparable to that for overlapped channels.

AoA: angle of arrival; CDF: cumulative distribution function; ToF: time of
flight
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APs for timestamp measurement, we synchronised two antennas of one AP to

extract the time difference based on the phase difference and further calculated

AoA based on the measurements.

5.4.1 AoA Estimation Accuracy

Figs. 5.1a and 5.1b show the cumulative distribution function (CDF) for AoA

estimation errors of the AoA-conjugated, AoA-ToF, and the baseline, for LoS

and NLoS, respectively. The lab where the data were collected is a typical

cluttered indoor environment. For LoS, AoA-conjugated (median error 1.2◦)

has 3 times superior accuracy compared to AoA-ToF (4.7◦) and 1.5 times com-

pared to the baseline (3.0◦). Compared to the previous observation in a Wi-Fi

localisation system is that AoA-ToF joint estimation has even worse perfor-

mance than the baseline (see Section 4.4.6 for an explanation of this result).

For NLoS, the radio path is completely blocked by walls so that only pene-

trated radio (with much noise) can reach the receiver. The median error (6.0◦,

18.2◦, and 9.2◦ for AoA-conjugated, AoA-ToF and the baseline, respectively)

is larger than those under LoS, but AoA-conjugated still has the best per-

formance. Therefore, we can conclude that AoA estimation with conjugated

ESPRIT can, on average, improve the accuracy by two times compared to the

baseline.

5.4.2 Interchannel Synchronisation

If using customised LoRa protocol [98] instead of LoRaWAN, one may define

overlapped LoRa channels, and exploit them to improve localisation accuracy.

However, the communication channels defined by LoRaWAN do not overlap

(to avoid interchannel interference and improve transmission performance);
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therefore, a virtual intermediate channel must be synthesised to synchronise

LoRaWAN channels, as discussed in Section 4.4.3. Theoretically, synchroni-

sation for non-overlapped channels may introduce extra errors compared to

overlapped channels, which may increase the AoA estimation and localisation

errors. In practice, the extra error is relatively small.

For demonstration, we conducted a microbenchmark to compare the per-

formance of Seirios in non-overlapped and overlapped LoRa channels. To have

overlapped channels, a LoRa transmitter is programmed to transmit packets

in 15 channels of 125 kHz with the channel spacing of 100 kHz, 30 times over.

We selected the odd number of channels (i.e., 1st, 3rd, . . . 15th) from the

overlapped dataset to form a ‘new’ dataset of non-overlapped channels.

Then, we performed conjugated ESPRIT on both datasets for AoA esti-

mation. Figure 5.1c shows that there is insignificant difference between the

two datasets (i.e., overlapped and non-overlapped). Taking the median error

for comparison, the loss (0.2◦) of the non-overlapped dataset is very small and

is only one-eighth of its improvement from the baseline. Therefore, the error

introduced by non-overlapped channels has little effect on AoA estimation.

5.5 Evaluation

5.5.1 Goals, Metrics and Methodology

Our goal in this evaluation is to show that Seirios can locate LoRa transmitter

accurately for both indoor and outdoor with the algorithm proposed in this

chapter. For this purpose, we reuse our Seirios prototype developed in Sec-

tion 4.5 and evaluate its performance in a 100 m × 60 m lawn with a number

of trees and is surrounded by buildings (see Figure 4.9), and in a 25 m× 15 m
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large room with concrete pillar and surrounded by walls (see Figure 5.2).

For outdoor, we deployed four APs in the lawn with the same configu-

rations as discussed in Section 4.6.1. Each of the transmitters transmitted

LoRa packets in all channels for three times. At the same time, we logged

the locations of the transmitters as the ground truth (see the green dots and

the red squares in Figure 4.9 for the locations of the transmitters and APs

respectively).

Similarly, we deployed APs and transmitters in our lab for indoor evalu-

ation. The lab is a cluttered environment with furniture and walls (see Fig-

ure 5.2), and thus all APs and transmitters were placed at the height above

1.5 metres to best avoid obstacles. The transmitters were configured similar

to those for outdoor evaluation.

The metrics that we use to evaluate the performance of Seirios is error of

localisation (in metres), which is simply the absolute difference between the

estimation and the ground truth.

Besides overall localisation performance with conjugated ESPRIT (Section

5.3), AoA-ToF joint estimation (Section 4.4.6) and the baseline (Section 5.4),

we had also investigated the performance of different components of Seirios

such as fusion algorithm (Section 4.4.7), and the effectiveness of conjugated

ESPRIT.

5.5.2 Outdoor Localisation

For the outdoor evaluation on the campus lawn as shown in Figure 4.9, the

overall performance of Seirios is shown in Figure 5.3. The performance of

conjugated ESPRIT is better than that of AoA-ToF joint estimation and the

baseline with the median localisation errors of 4.4 m, 6.4 m and 6.9 m for
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Fig. 5.2: Indoor evaluation on 25 m× 15 large room. The red squares indicate
the APs, and the green circles indicate the ground-truth of transmitter’s locations.
The four black rectangles filled in gray are concrete pillar that may cause strong
reflection. The gray bars are 1.5-metre-high barriers to split the lab into several
zones, which may block the LOS.

Note: Values are measured in metres.

conjugated ESPRIT, AoA-ToF joint estimation and the baseline respectively.

The 80% percentiles are 6.4 m, 10.5 m and 9.4 m for conjugated ESPRIT,

AoA-ToF joint estimation and the baseline respectively.

The results show that the localisation error is reduced by 36.2% comparing

conjugated ESPRIT with the baseline. Furthermore, conjugated ESPRIT

has better performance than AoA-ToF joint estimation, which is

different to the results reported in Wi-Fi localisation literature. This

phenomenon is due to the foundation of the model discussed in Section 4.4.6

that an accurate AoA estimation with AoA-ToF joint estimation relies on an

accurate ToF estimation, while the ToF estimation is sensitive to the raw

resolution limited by the overall bandwidth of LoRa channels that is orders-

of-magnitude smaller than Wi-Fi channels. AoA-ToF joint estimation is even

worse than the baseline, which proves that the error introduced by inaccurate
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Fig. 5.3: Outdoor localisation error

ToF estimation can affect AoA estimation.

The results also indicate that super-resolution algorithms are still useful

for outdoor environment. Even though the number of multipaths is less than

that of indoor, strong reflection can be caused by trees and building, which

may increase the localisation error.

5.5.3 Indoor Localisation

For the indoor evaluation in our lab, as shown in Fig. 5.2, the overall per-

formance of Seirios is shown in Fig. 5.4. The median errors with conjugated

ESPRIT, AoA-ToF joint estimation, and the baseline are 2.4 m, 4.0 m, and 4.6

m, respectively, and the 80th percentiles are 6.1 m, 8.8 m, and 11.6 m, respec-

tively. The results show that with the conjugated ESPRIT, the localisation

error is reduced by 47.8% compared to the baseline, which is slightly more than

that of outdoor evaluation (36.2%, see Section 5.5.2). This is because the mul-

tipath effect is more severe indoors than outdoors, which affects the baseline

algorithm but can be resolved by the conjugated ESPRIT. On average (indoors
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Fig. 5.4: Indoor localisation error

and outdoors), the localisation improvement is 42%, which demonstrates the

superior localisation performance of Seirios (i.e., conjugated ESPRIT) on nar-

row bandwidth radio signals with commercial off-the-shelf (COTS) hardware,

which has two antennas only.

Unlike outdoor evaluation, AoA-ToF joint estimation is better than the

baseline indoors. The reason behind this phenomenon is that ToF estimation

is apt to average the ToF of multipaths if they are not distinguishable, and

indoor paths have relatively similar ToF, so the estimation is relatively more

accurate than those of outdoors evaluations (with significantly larger different

ToF for each path). The relatively accurate ToF estimation can improve the

accuracy of AoA estimation, so that the localisation performance of AoA-ToF

joint estimation is better than the baseline. Nevertheless, multipaths are not

resolvable with AoA-ToF joint estimation, so its performance is worse than

that of conjugated ESPRIT.
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5.5.4 Comparison with RSS and TDoA

As discussed in Section 4.2, RSS and TDoA based LoRaWAN localisation

systems have poor performance. In this section, we evaluate these techniques

in both indoor and outdoor environments as a comparison to Seirios. For the

RSS-based approach, we follow a general path-loss model proposed in [99,100]

with triangulation for evaluation. For the TDoA-based approach, we use the

phase difference of two synchronised antennas in each gateway to calculate

TDoA.

The median outdoor localisation errors are 15.3 m and 6.9 m for RSS and

TDoA based approaches, respectively, while the median indoor localisation

errors are 6.3 m and 4.6 m with for RSS and TDoA based approaches, re-

spectively. Therefore, the AoA-based conjugated ESPRIT of Seirios produces

significantly better performance (4.4 m outdoors, 2.4 m indoors) than these of

RSS and TDoA based approaches.

5.5.5 Impact of AP Fusion

AoA estimation proposes the possible directions of all incoming paths regard-

less of direct path or reflectors. AP fusion is a effective technique to determine

the direct path as well as the location of the transmitter. It is based on the

fact that the direct paths are congregated but the reflectors are diverged.

Seirios uses multiple-AP fusion for localisation. As shown in Figure 4.6,

fusing more number of APs can reduce the ambiguity of localisation estimation

and increase the accuracy. To investigate how the number of APs affects the

overall performance, we evaluate the localisation errors with two, three and

four APs respectively with the collected data.

For outdoor, we first evaluate two APs with C and D as shown in Fig 4.9,



5.5. Evaluation 116

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Localization Estimation Error (m)

0

0.5

0.8

1

E
m

p
ir
ic

a
l 
C

D
F

2 APs

3 APs

4 APs

Fig. 5.5: The impact of APs evaluated for outdoor

1 2 3 4 5 6 7 8 9 10

Localization Estimation Error (m)

0

0.5

0.8

1

E
m

p
ir
ic

a
l 
C

D
F

2 APs

3 APs

4 APs

Fig. 5.6: The impact of APs evaluated for indoor

and then add AP B and A sequentially for the evaluation of three and four

APs. The results are shown in Figure 5.5. With two APs, the median and

80% percentile errors are 14.8 m and 26.0 m respectively. By increasing the

number of APs from two to three, the median and 80% percentile errors are

reduced to 8.8 m and 17.0 m, respectively. With four APs, the median error

is reduced by the 50% of those with three APs and 70% of two APs to 4.4 m,
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and 80% percentile error is reduced to 6.4 m.

For indoor, we observe similar behaviour as shown in Figure 5.6, but the

error reduction for indoor is 31% of three APs and 42% of two APs, which

is less than that of outdoor. The reason is that the indoor area is smaller

than the outdoor, but both are equipped with the same amount of APs, which

means that the indoor area has stronger coverage than the outdoor. Thus, the

improvement with an extra AP for the indoor is not as significant as that for

the outdoor. Based on this phenomenon, we can predict that with more APs,

the localisation error for outdoor can be further reduced significantly.

Overall, the evaluation shows that localisation accuracy relates to the den-

sity of APs (gateways) and proves the effectiveness of AP fusion algorithm

introduced in Section 4.4.7.

5.5.6 Effectiveness of Conjugated ESPRIT
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Fig. 5.7: The impact of multipath for outdoor

In Section 5.3, we propose to use conjugated ESPRIT to handle more
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Fig. 5.8: The impact of multipath for indoor

multipaths. Theoretically, the proposed algorithm can increase the capacity

for multipaths resolution from four to six. In this section, we will evaluate and

compare the performance of the conjugated ESPRIT with the conventional

ESPRIT to prove the effectiveness of our proposed algorithm.

Figure 5.8 shows the localisation accuracy achieved by the conventional

ESPRIT with spatial smoothing, the conjugated ESPRIT, and the baseline

for the indoor evaluation. The median error for three algorithms are 2.4 m,

3.9 m and 4.6 m, respectively. It is obvious that the conjugated ESPRIT

has reduced the error significantly. However, for outdoor, Figure 5.7 shows

the conjugated ESPRIT does not have significant improvement compared to

the conventional ESPRIT. It is due to the fact that outdoor environment has

only a small number of multipath that can even be solved by the conventional

ESPRIT supporting four paths.

Furthermore, Figure 5.8 and Figure 5.7 imply that the number of significant

multipath for indoor is more than four, while that for the outdoor is less than

or equal to four.
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5.6 Conclusion

We introduce Seirios+, an AoA based localisation system for LPWAN. Despite

the huge success and popularity of AoA based localisation methods in wide

band radio systems such as Wi-Fi, there is no prior studies of such method

in the emerging narrowband LPWAN technologies because of the bandwidth

limitation that results in poor multipath and location estimation. Seirios+

addresses this limitation by a novel interchannel synchronisation method and

ESPRIT algorithm that exploits both the original and the conjugate of the

channel state measurements. Our empirical evaluation shows that Seirios+

can reduce localisation error by 41.6%, and can achieve 4.4 m accuracy in an

open area of 100 m × 60 m as well as 2.4 m accuracy in an indoor area of 25

m × 15 m.



Chapter 6

Conclusion and Future Work

This thesis proposed a Cloud-RAN architecture to improve the performance

of LoRaWAN network and provide localisation service. It first discussed PHY

compression as a key technique to facilitate the deployment and maintenance

for the system. Then, it discussed channel combining technique and super-

resolution algorithms to improve the localisation accuracy.

In the study of PHY compression (Chapter 3), we introduce Nephelai,

which is based on CS-theory, to reduce the bandwidth requirement of the in-

frastructure of Cloud-RAN. This work has discovered the relationship between

compression ratios, SNR and SFs to select an appropriate compression ratio,

and it proves that joint decoding can improve the PRR as well as the battery

lifetime for end devices. In an empirical evaluation, 93.7% of PHY can be

compressed which can significantly improve the scalability of cloud assisted

LoRaWAN.

In the second work, we introduce Seirios (Chapter 4), an AoA based lo-

calisation system for LoRaWAN. It addresses the limitation of the bandwidth

of narrow band signals by a novel interchannel packet synchronisation method

that exploits the unique structure of the packets. Our empirical evaluation

120
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shows that the system can reduce localisation errors by 36.2% compared to

the baseline and achieve 4.4 m median accuracy in an area of 100m × 60m.

In the third work, we further improve the localisation system for indoor

environment. We propose Seirios+ (Chapter 5), exploiting both the original

and the conjugate of the channel state measurements with super-resolution

algorithms to improve the localisation accuracy. Our empirical evaluation

shows that Seirios+ can reduce localisation errors by 47.8% compared to the

baseline, and can achieve 2.4 m median accuracy in an indoor area of 25 m ×

15 m.

This thesis proposes to focus on LoRaWAN Cloud-RAN as a humble step

towards greener and more flexible wireless network for IoT devices. However,

there are limitations for future work.

One limitation of our research is that Seirios and Seirios+ focus on one

transmitter only and does not support concurrent transmissions from other

LoRaWAN devices. However, since LoRa networks benefit hugely from the

innate orthogonality of SFs, we believe that concurrent transmissions can be

regarded as the noise and suppressed by the super-resolution algorithms [87,

89, 90]. In this regard, Seirios and Seirios+ can potentially locate multiple

transmitters at the same time. Nevertheless, we leave further research in this

direction as future work.

Another limitation is the number of gateways in practice. Normally, one

LoRaWAN gateway can cover up to 10 km and thus the density of deployment

is low, which is different to our evaluation setup in Sec.5.5.5 with multiple

gateways for high localisation accuracy. However, our research about Nephelai

shows that a dense deployment of LoRaWAN gateways is beneficial in improv-

ing signal quality, battery lifetime and network scalability and robustness. We

envision the dense deployment of LoRaWAN gateways in the future and leave
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how the gateway deployment density influences localisation performance as

future work.
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