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Abstract

Enterprise networks are both complex and dynamic, with various kinds of servers
(web, email, VPN, storage), clients (fixed, wireless), and Internet-of-Things devices
(cameras, printers, sensors) being deployed, moved, and removed continuously. Fur-
thermore, these assets are spread across various network segments (e.g., VLANs),
often managed by different departments, with complex interconnection rules be-
tween segments, to public/private cloud services, and to the general Internet. It is
therefore not surprising that organizational IT departments struggle to track their
connected assets, monitor their operational health, understand the attack surface
they expose, and protect them from external as well as internal threats.

Current enterprise security systems such as Next-Generation-Firewalls (NGFW)
and intrusion detection systems (IDS) are unable to cope with the growing vol-
umes and diversity of emerging cyber-threats. Hardware appliance based solutions
are not just expensive, but also inflexible as their high-speed performance is opti-
mized for relatively static rulesets. Software solutions on the other hand have great
flexibility, but struggle to cope with high data rates which limit the granularity at
which they analyze traffic for embedded threats. To advance the state-of-the-art
of enterprise asset monitoring and distributed network attack detection, my thesis
proposes a new approach that combines hardware performance with software flex-
ibility, by leveraging the concepts of Programmable Network (PN) and Machine
Learning (ML). Telemetry from Terabit-speed Programmable Switches is used to
extract key attributes of traffic streams, and this is combined with ML models of
enterprise asset behavior to monitor their health and to detect attacks. I make four
key contributions.

My first contribution focuses on the Domain Name System (DNS). I analyze
DNS traffic from two large organizations to identify the behavioral aspects of various
DNS assets. Using the behavioral attributes, I develop a clustering method to clas-
sify assets (e.g., recursive resolvers and authoritative name servers) and track their
health through a set of well-articulated monitoring metrics. I demonstrate that my
method successfully identifies over 100 key DNS assets in the two organizations and
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is further able to make recommendations on how these assets can be better secured
against misuse.

The second contribution extends my enterprise asset classification beyond
DNS to include other asset types such as web servers, VPN servers, and file storage
servers. For this, I develop a system that uses Programmable Network techniques
to extract telemetry efficiently, feeds the attributes to a multi-grained ML-based
scheme that classifies the assets in real-time, and reactively collects packet-level
telemetry of suspicious hosts for forensics analysis. My method identifies hundreds
of typical servers and thousands of less common assets (e.g., LDAP server and Redis
proxy) across the two organizations. It additionally highlights instances of atypical
behavior that provide advance warnings to IT staff on potentially anomalous assets.

The third contribution detects DNS-based network attacks on enterprise hosts.
To this end, I analyze incoming DNS traffic to the two organizations, and develop a
hierarchical anomaly detection method that profiles incoming DNS traffic at various
levels of hierarchy (e.g., host, subnet, and AS) to isolate DNS attackers that could
be stealthy and distributed. The models I train detect DNS attacks in lab data with
over 99% accuracy at each level of the hierarchy, and in a 1-month trial in the wild
reveal hundreds of attacks that were missed by the organizational firewalls.

My fourth contribution expands the attack detection from DNS to the whole
dimension of network traffic. To achieve both detection effectiveness and operational
practicality, I develop a multi-stage progressive inference architecture to optimally
detect network attacks through a series of stages (e.g., active enterprise hosts, vic-
tims, distributed attackers, and malicious flows) each with increasing telemetry cost
but narrowing focus. Evaluations using real distributed denial-of-service (DDoS)
attacks and large-scale enterprise traffic traces demonstrate the ability of my system
in detecting distributed network attacks to the finest flow-level with practically low
computational costs as around 30% CPU and 8% RAM usage on a typical blade
server, which is not achievable by its counterpart solutions.

Taken together, my contributions apply Programmable Network and Machine
Learning to develop new practical and effective ways that give enterprise IT depart-
ments continuous visibility of their assets, advance warning of the threat surface
they expose, and real-time alarms when network attacks unfold.
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In recent years, I have witnessed the revolutionary advances of communication

and network technologies that provide unprecedented connectivity for human soci-

eties, such as high-speed low-latency broadband networks, the fifth generation of

mobile networks (5G), cyber-physical systems, Internet-of-Things (IoT) technology,

and edge computing. Along with the rapid development of network technologies,

cyber-attacks have inevitably become sophisticated, agile, destructive, and stealthy

as malicious actors now have access to a huge pool of resources they can exploit

such as vulnerable communication protocols, insecure devices, and even networked

infrastructures with improper configurations in critical industries like electrical grids.

Therefore, enforcing network security has become a serious task for both industrial

and academic communities.

Enterprises such as universities, research institutes, banks, and hospitals have

complex network environments as they are operating a large variety of critical net-

work assets including websites, authoritative name servers, databases, virtual pri-
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vate network (VPN) servers, application proxies, WiFi access points, IoT appli-

ances, and others. Staff and visitors of an enterprise also connect their personal

Bring-Your-Own-Technology (BYOT) devices like mobile phones and laptops to en-

terprise networks through wired or wireless access gateways. Besides, servers inside

the networks may also archive highly valuable and sensitive data such as user creden-

tials, research manuscripts, financial records, and patient’s bio-information. Thus,

the highly capable assets, complex compositions, and valuable data of an enterprise

network unavoidably make it an attractive target of network attacks. For example,

servers and network infrastructures that provide services via different protocols and

platforms may expose security vulnerabilities of various kinds to malicious actors

on the public Internet. As a consequence, they are popular targets of network at-

tacks such as reconnaissance scans that discover host vulnerabilities and distributed

Denial-of-Service (DDoS) attacks to paralyze certain applications or exhaust net-

work resources of the victim asset. In addition to attacks from the external side,

internal assets and end-host devices (e.g., IoTs, PCs, tablets, and mobile phones)

might also be misused or infected by malware to conduct malicious network activities

such as generating/reflecting attacks, spreading computer virus inside the network,

and exfiltrating sensitive data to external attackers.

To ensure the correct operation of networked assets within an enterprise and pro-

tect them from potential network attacks, IT departments are expected to continu-

ously monitor the behavior of enterprise hosts and effectively detect network attacks

of dynamic patterns and complex forms. For asset network behavioral monitoring,

IT departments nowadays are primarily utilizing static configurations (e.g., DHCP

records, DNS maps, or firewall policies) on their management systems which are hard

to keep updated with the ever-increasing complexity of host functionalities and their

fast-changing communication patterns. There are also many dynamic solutions de-

veloped by the research community that leverage real-time network telemetry and

flow statistics to track traffic between networked hosts. However, such fine-grained

methods are not cost-effective to monitor a large enterprise network with millions
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of concurrent flows, tens of thousands of internal and external hosts, and several

tens of Gbps throughput in real-time. As for the detection of network attacks on

enterprise assets, existing solutions such as Next-Generation-Firewall (NGFW) and

Intrusion Detection System (IDS) often use manual thresholds and static signatures

that only focus on certain critical assets directly operated by the organizational IT

departments. Operators select suitable detection rules, thresholds, or signatures for

a list of enterprise IP addresses each of which may have different attack surfaces.

To this end, enforcing proper configurations often requires a comprehensive under-

standing of connected hosts – it is quite challenging for a large enterprise network

having tens of thousands of internal devices with diverse vulnerabilities. In addition,

given their limited computational resources, providing fine-grained network teleme-

try (e.g., at flow-level) of all enterprise assets that require protection is not scalable.

Thus, collateral damage on legitimate communications are often introduced when

mitigating distributed network attacks.

In this thesis, I present my efforts in advancing the above-mentioned state-of-the-

art to address the two above key problems of enterprise network security, i.e., host

behavioral monitoring and distributed attack detection. For each problem, I start

from domain name system (DNS) protocol that only takes a minor fraction (i.e.,

less than 0.1%) of traffic volume but plays an utmost important role in network

communications, and then extend my scope beyond DNS by developing generic

methods applicable to all network traffic across an enterprise.

Legacy solutions often use static configurations and manual thresholds to track

host roles and detect network attacks. Such methods struggle to precisely capture

the traffic profile of hosts and differentiate attacks from benign instances. In this

thesis, I leverage big data analysis and machine learning (ML) techniques to de-

velop statistical models that automatically learn from the empirical network traffic

patterns of two representative enterprises, namely, a large-sized university (UNSW

Sydney) and a governmental research institute (CSIRO). Through extensive data
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mining, model tuning, training, and evaluation processes, my developed ML schemes

outperform their counterparts in precise and accurate host classification and attack

detection. In addition, existing systems trade off the granularity of network teleme-

try for scalability. Instead of accepting this trade-off, I prototype my systems using

network telemetry that is dynamically collected via programmable switches. The

scope (e.g., protocol and IP address) and resolution (e.g., packet-, flow-, or host-

level) of telemetry are orchestrated in real-time to provide sufficient fine-grained

statistics for host classification and attack detection while guaranteeing the opera-

tional scalability in a large enterprise network.

1.1 Thesis Contributions

In this thesis, I have made four significant contributions in the field of enterprise

network security:

1. First, I develop an automatic method to identify enterprise DNS assets and

continuously track their cyber health. Through a comprehensive analysis of

over 1 billion DNS packets collected from two representative enterprise net-

works, I reveal the network, functional, and service properties of DNS packets

in both organizations, and highlight normal or anomalous profiles of enter-

prise hosts. I articulate key DNS behavioral attributes and develop unsuper-

vised machine learning models that identify DNS assets including authorita-

tive name server, recursive resolver, mixed DNS server, and end-hosts that

are both public Internet facing or behind NAT. I then develop metrics for

tracking DNS traffic health of classified assets that enable operators to detect

various DNS anomalies such as improper configuration, DDoS, reflection at-

tacks, and exfiltrations. On a 32-day dataset, my prototype classifies more

than 100 DNS assets across the two organizations, some of which are operated

by sub-departments thus unknown to the respective organizational IT depart-
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ments. Moreover, a non-negligible fraction of them were involved in various

types of undesirable DNS behavior. The passive analysis methods help orga-

nizations to identify and eventually fix cyber risks associated with their DNS

assets (Chapter 3).

2. Second, I develop a systematic approach to classify enterprise hosts by model-

ing their real-time network behaviors. To understand traffic profiles of enter-

prise hosts with diverse functionalities and communication patterns, I analyze

traffic traces of more than 3 billion packets collected from a large enterprise

network. I then propose a multi-grained scheme to classify enterprise hosts

into either fine-grained functionality types (e.g., web proxy and mail server)

or coarse-grained transport-layer types (e.g., TCP-dominant server). I articu-

late and evaluate a comprehensive set of host-level behavioral attributes, and

train supervised ML models used by the scheme with accuracies of more than

98%. I prototype my approach as a practical system that continuously tracks

asset types and reactively collects packet-level telemetry of hosts with poten-

tial anomalous behaviors through programmable flow rules for fine-grained

post hoc analysis. A one-month campus deployment of my system demon-

strates its ability to identify thousands of typical and non-typical assets, track

their utilization, and isolate anomalous behaviors related to network attacks.

It is proved that my system is scalable to be operated over multiple 10 Gbps

links of a large enterprise network and provide visibility for IT departments to

effectively track their assets and locate potential anomalies (Chapter 4).

3. Third, I develop a system to detect distributed DNS attacks on enterprise

hosts that is effective in isolating external attackers who may be stealthy and

distributed. I start by analyzing over 400 million DNS packets from two enter-

prise networks to highlight profiles of distributed DNS attacks and behaviors of

malicious external hosts. I then design a hierarchical graph structure that em-

ploys key DNS traffic attributes and well-trained anomaly detection models to
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detect anomalous DNS profiles of external entities at various levels of hierarchy

with more than 99% accuracy. I prototype my method as a real-time system

and demonstrate its merits in detecting distributed DNS attacks by compar-

ing its one-month worth of deployment insights against public blocklists and

firewall logs. Results show that my prototype can detect stealthy distributed

DNS attacks that are missed by legacy firewalls, capture aggregation profiles

of distributed attackers, and have satisfying operational performance in a large

enterprise network. (Chapter 5).

4. Fourth, I design and implement a system (named PEDDA) that detects dis-

tributed network attacks on enterprise assets effectively at fine-grained flow-

level and is also practical to process all enterprise traffic. To formally under-

stand the performance bottlenecks of legacy attack detection systems, I model

the traffic processing of legacy static attack detection solutions and formu-

late its time complexity mathematically. Driven by the insights, I develop

a conceptual multi-stage progressive inference architecture that detects dis-

tributed network attacks through a series of telemetry stages orchestrated by

the dynamic control of programmable networks. To guarantee operational ro-

bustness, the granularity of each telemetry stage is adjusted by an optimization

process. I then build a proof-of-concept prototype using three inference stages

that identify active enterprise hosts, victims, and distributed attackers with

malicious flows. The system is evaluated using real network traffic traces from

a large university network and ground-truth DDoS attacks. Results show that

PEDDA outperforms its counterparts in detecting distributed network attacks

effectively at fine-grained flow-level while practical (around 26% CPU and 5%

RAM usage on a typical blade server) to be deployed for a large enterprise

network (Chapter 6).
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1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2, presented in [1], sur-

veys related literature to discuss the taxonomy of distributed attacks on enterprise

networks, reviews current state-of-the-art solutions and advances in asset network

behavioral monitoring and distributed attack detection, and highlights the poten-

tial of emerging paradigms including ML techniques and programmable networks.

Chapter 3, presented in [2, 3], elaborates my methods in mapping enterprise DNS

assets and tracking their cyber health. In chapter 4, presented in [4], I develop a

real-time SDN system to classify enterprise hosts for their fine-grained functionality

types or coarse-grained transport-layer behaviors and isolate anomalous changes of

host network behavior for packet-level inspection. In chapter 5, presented in [5], I

propose a hierarchical architecture that profile DNS volumetric queries from exter-

nal hosts and various aggregated levels (e.g., subnets) to detect distributed DNS

attacks. Chapter 6, presented in [6], describes my design and implementation of

PEDDA system leveraging a multi-stage inference architecture to progressively de-

tect distributed network attacks on enterprise assets. Chapter 7 concludes this thesis

and discusses potential future directions.
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Enterprise networks that host valuable assets and services are popular and fre-

quent targets of distributed network attacks. In order to cope with the ever-

increasing threats, industrial and research communities develop systems and meth-

ods to monitor the behaviors of their assets and protect them from critical attacks. In

this chapter, I systematically survey related research articles and industrial systems

to highlight the current status of this arms race in enterprise network security. First,

I discuss the taxonomy of distributed network attacks on enterprise assets including

distributed denial-of-service (DDoS) and reconnaissance attacks. Second, I review

existing methods in monitoring and classifying network behavior of enterprise hosts

to verify their benign activities and isolate potential anomalies. Third, the state-of-

the-art detections against distributed network attacks from external attackers are

elaborated, with highlights on their merits and bottlenecks. Last, as programmable

networks and machine learning (ML) techniques are becoming widely adopted by the

community, their current applications in network security are discussed to inspire

future research especially for enterprise networks.
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Figure 2.1: Key topics covered in this survey.

2.1 Introduction

Enterprises such as universities and research institutes host critical data and offer

public accessible services through their networks. Thus, they often become popular

targets of distributed network attacks that actively probe vulnerabilities of assets

and paralyze their services. With practical defense appliances (e.g., firewalls and

intrusion detection systems) installed and operated by enterprise IT departments,

network attacks are becoming well distributed in sources and agile in attacking pat-

terns to bypass such static detection and increase their effectiveness. To be more

specific, a sophisticated network attack usually employs hundreds and thousands of

botnet devices that are diversified for their geolocations and types (e.g., Internet-

of-Things, laptop, and compromised server), each may send malicious traffic with

changing patterns and protocols. As an example, during Rio 2016 Olympics, the

critical servers from organizations affiliated with the Olympics (such as Brazilian

banks and telcos [7]) were targeted by sustained distributed network attacks with

mixed traffic types such as TCP-SYN, UDP reflection, DNS, chargen, NTP, and

SSDP from millions of compromised devices (e.g., IoTs) all over the world [8]. Suc-

cesses of distributed network attacks cause severe consequences like service failures,

disruption of operations, and degradation of reputation.
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Distributed attacks on enterprise networks often consist of two phases, namely

reconnaissance attacks (also known as scans) to discover the vulnerabilities of net-

worked assets and distributed denial-of-service (DDoS) attacks that paralyze the

targeted victims that are discovered by malicious actors. To cope with the threats,

enterprise IT departments are expected to track the devices within their networks

to ensure their expected behaviors and enforce attack defense mechanisms that can

effectively detect and mitigate attacks on their networked assets without impacting

legitimate communications.

There are many mature products for monitoring the network behaviors of enter-

prise assets and providing protections against distributed attacks via static config-

urations, such as next-generation-firewall (NGFW) appliances and intrusion detec-

tion systems (IDS). These static solutions are practical to be operated in a high-

throughput enterprise network but are not effective in providing precise results (e.g.,

differentiating distributed attackers and malicious flows from their benign counter-

parts), therefore, it is not surprising that the consequential attack mitigation mea-

sures (e.g., randomly drop packets to the victim) introduce non-negligible collateral

damage on benign traffic [9]. For instance, typical next-generation-firewalls (NGFW)

require users to configure rules that specify the list of focused enterprise assets and

the corresponding defense strategies. Such methods are effective in protecting cer-

tain key assets by tracking their network activities of several traffic types but fail

to capture unknown and complex threats from hosts operated by sub-departments,

staff, and visitors. Moreover, the static nature of such methods limits their ca-

pabilities in detecting emerging attacks with dynamic and stealthy traffic patterns

[10].

Legacy static solutions introduce blind spots that are likely to be exploited by

malicious actors and agile attackers. To address this problem, research communities

have developed dynamic telemetry methods for network monitoring via flow-level

statistics and networked graph structures. Those methods have the ability in pro-
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viding fine-grained statistics to track each network flow between enterprise assets and

external hosts without leaving any blind spot. However, maintaining fine-grained

flow-level telemetry unavoidably introduces high computational overheads. There-

fore, they are not scalable to be operated for a large enterprise network with hundreds

and thousands of hosts that send millions of concurrent flows.

In the meantime, current developments of two emerging paradigms, namely Pro-

grammable Networks and Machine Learning (ML) have given new promises in im-

proving the flexibility of network monitoring and accuracy of attack detection. The

concept of programmable networks includes network function virtualization (NFV)

and software-defined networking (SDN). It changes the static nature of network

traffic processing that is often carried by proprietary hardware, instead, dynamic

network functions on generic servers and programmable switches are used to achieve

high responsiveness and real-time orchestrations. Researchers have leveraged this

technology to address the inflexibility problem of legacy network monitoring and

protection in various aspects such as real-time defense orchestration for ISP net-

work [11] and elastic control of virtual firewalls [12] that provide inspirations in

solving the current problems of enterprise network security. The recent advances of

ML techniques that build learning-based models to make accurate predictions on

statistical attributes have proven their supremacy in many disciplines such as image

processing and language recognition. Despite the existing challenges in applying

ML methods for network security [13], researchers have used ML algorithms to de-

velop prototypes that make accurate security inferences on various types of network

telemetry (e.g., system logs or packet headers) in different scenarios (e.g., IoT at-

tack or SSH brute-forcing). I believe that their efforts provide valuable lessons for

us to address issues associated with asset classification and attack detection in an

accurate and precise manner.

In this survey, by systematically reviewing related research articles as well as

industry practices, I provide comprehensive guidance towards the current develop-
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ment, challenges, and future directions of asset management and distributed attack

detection in the field of enterprise network security. Unlike prior surveys that broadly

studied certain attack types and defense mechanisms, I focus on a narrow aspect of

distributed volumetric network attacks and their countermeasures that are applica-

ble for enterprise networks. In addition, I also review the potential and challenges to

improve the state-of-the-arts by two emerging paradigms (programmable networks

and ML). To this end, I summarize the main topics covered by this survey as fol-

lows, which is also visually shown in Fig. 2.1. First, in §2.2, I reveal the diversity

and variety of distributed network attacks including reconnaissance scans and dis-

tributed denial-of-service (DDoS) attacks; second, in §2.3, I discuss the current

development of enterprise networked asset classification and behavioral monitoring

via either static or dynamic methods; third, in §2.4, enterprise distributed attack

detection systems using proprietary rules, community signatures, and fine-grained

flow statistics are elaborated; fourth, in §2.5, opportunities introduced by the two

emerging paradigms, i.e., flexibility by programmable networks and accuracy by

machine learning are discussed as to inspire future research.

The related surveys on other different aspects of network security are discussed

in §2.6. I highlight several research gaps as valuable future directions in §2.7, and

conclude this survey in §2.8.

2.2 Surveying Distributed (Volumetric) Network At-

tacks on Enterprise Assets

Network attacks that probe, congest, or paralyze enterprise assets such as public-

facing servers are becoming distributed in sources, versatile in traffic patterns, and

diversity in underlying mechanisms [14–16]. Such attacks often occur sequentially

– an enterprise asset is first probed for its availability and vulnerability by recon-
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Command & Control

Backbone Networks

Bot group 1
TCP SYN, ~100 pkt/s

Bot group 2
DNS, ~3 pkt/s

Bot group 3
HTTP GET, ~300 pkt/s

Bot group 4
TCP SYN on SSH port, ~2 pkt/s

A Malicious Actor Command & Control

An Enterprise Network

The Victim Host

Figure 2.2: An visual example of distributed network attacks on a victim inside an
enterprise.

naissance attacks (i.e., host or port/service scans) followed by distributed denial-of-

service (DDoS) attacks.

Both scans and DDoS are often operated in a distributed manner instead of

from a single source to increase their attack power and make them hard to be

blocked. Such distribution is achieved by recruiting botnets that consist of massive

compromised devices like personal computers, powerful workstations, public-facing

servers, or compromised IoT appliances [17–21]. To avoid detection, malicious actors

often split an attack into small segments each performed by a single bot device. For

example, in a powerful but stealthy DDoS attack – each bot device only generates

low rate traffic which makes it difficult to be differentiated from benign instances.

Thus, such attacks are hard to be precisely blocked by identifying all attack sources

[22]. I show a visual example of distributed network attacks in Fig. 2.2, where

a malicious actor commands and controls four distributed bot groups to attack a

victim within an enterprise network. Each group uses different traffic types and rates

so that some fraction of the attack traffic (sent by bot groups 1 and 2 in Fig. 2.2)
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may successfully bypass defense appliances (e.g., firewalls operated in backbone and

enterprise networks that are not optimally tuned to detect those stealthy malicious

traffic) on the path and reach the victim.

2.2.1 Reconnaissance Attacks

Reconnaissance attacks (also known as scans) are used by malicious actors to con-

struct their understanding of the targeted hosts and services (ports). Those attacks

probe the availability of enterprise networked hosts and discover their potential vul-

nerabilities [23]. The discovered hosts may not only become victims but may also

be exploited as attack amplifiers/reflectors to paralyze other victims. For exam-

ple, a discovered NTP server with high reflection capability (i.e., generate response

packets with sizes larger than the received requests) can be used to amplify attack

volume in reflection-based DDoS attacks [24].

Apart from the malicious purposes, security researchers also develop tools to

identify potential cyber threats faced by enterprises such as open ports and vulner-

able services that could be exploited in network attacks. For example, Nmap [25] is

developed as a comprehensive scanning tool to discover active hosts and ports (i.e.,

services). To increase the speed and effectiveness of scans, the authors of Zmap [26]

optimized the scanning process by tuning the probing rate, pre-connection state, and

re-transmission, which can probe the entire IPv4 space within 45 minutes. Scan-

ning techniques have evolved to become scalable at 10 Gbps throughput [27] and

can perform vulnerability scans towards protocol banners through user queries [28].

Reconnaissance attacks have also been studied for certain scan types such as critical

cyber-physical infrastructures [29] and DNS utilities [30].

To detect reconnaissance attacks targeting hosts and services, the community

has developed various methods such as tracking port scanners on the IP backbone

[31], detecting subtle port scanning via interactive visualization [32], disrupting re-
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connaissance attacks via address mutation [33], constructing distributed network

telescope to capture scanners [34], and optimizing backscatter [35] technique for

scan detection in massive IPv6 address space [36]. However, according to [37, 38],

few enterprise has adopted proper defensive measures in practice, thus, service and

host scans are still prevalent in today’s Internet. It leads to the exposure of service

and device vulnerabilities (e.g., Linksys routers, OpenSSL, and NTP). As a conse-

quence, the exposed hosts may be utilized by malicious actors on the Internet to

generate/reflect attacks or become direct victims in future attacks.

2.2.2 Distributed Denial-of-Service Attacks

Distributed denial-of-service (DDoS) is one of the most popular network attacks

on the Internet [39]. Attackers command a massive number of controlled devices

to generate an excessive amount of traffic on victims to exhaust their network or

computational resources. Both large-sized global enterprises and small-sized local

industries are frequent targets for such attacks. As already shown in Fig. 2.2, ma-

licious actors may choose to flood the targeted victim directly from botnet devices

using various protocols and headers (e.g., HTTP, ICMP, and TCP-SYN). Besides,

they may also choose to launch a reflection-based DDoS that have larger attack

volumes – bot devices send packets with crafted IP addresses (as that of the victim)

to the discovered reflectors (e.g., DNS and NTP servers), these reflectors will then

respond to the victim with larger packet sizes.

DDoS attacks are becoming more complex, distributed, and agile. Their char-

acteristics are extensively studied in the prior research literature. First, according

to [40], DDoS attacks are becoming complex in protocols and traffic types, and the

involved botnets are likely to be independent. Such trends introduce difficulties in

isolating malicious traffic and attack sources. Second, the increasing adoption of

cyber-physical devices (e.g., IoTs) brings new vulnerabilities and attack surfaces yet
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to be addressed [41]. Therefore, a significant number of IoT devices connected to

the Internet have been compromised as botnet and caused more powerful and fre-

quent DDoS attacks on a global scale [42]. For example, in late 2016, Mirai [43], an

IoT malware that hijacked hundreds of thousands of IoT devices has caused many

unprecedented DDoS attacks globally. During an attack, each compromised IoT

device generates malicious traffic at a low rate, making them hard to be differen-

tiated from benign traffic. Third, DDoS attacks are becoming more dynamic and

agile in traffic patterns to evade detection. As identified in [44], they are usually

launched with changing temporal and spatial patterns to bypass detection, which

is quite effective for static rule-based and signature-based detection methods. Bot-

nets of different families also work collaboratively, and the same bot might adapt

its attacking strategy provided by different malware families [45]. Last, the concept

of DDoS-as-a-service is becoming popular as it lowers the barrier for generating an

effective distributed attack [46]. Botnet owners can lease their controlled devices for

financial benefits so that malicious actors with fewer resources (e.g., controlled bot)

can rent their large botnet to launch powerful attacks.

2.2.3 Highlights

I now summarize three highlights in this section.

First, network attacks such as DDoS and scans are becoming distributed by

recruiting botnets to generate attack traffic from different logical affiliations (e.g.,

subnets) and geolocations, complex by leveraging a wide set of protocols and vul-

nerabilities, and dynamic by shifting active bot groups or traffic patterns randomly

to bypass possible detection. All the above characteristics increase the difficulties in

effectively detecting distributed attacks.

Second, potential vulnerabilities of network-connected hosts (e.g., BYOT de-

vices, enterprise servers, or IoTs) within an enterprise network may be identified and
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exploited by malicious scripts (e.g., links contained in phishing emails) or malware.

Such compromised devices are used as bots to perform further infections within

its network or participate in attacks on other networked assets. Thus, monitoring

network traffic behaviors and enforcing proper security management are important

tasks for IT departments. Therefore, later in §2.3, I will discuss related tools and

techniques for asset network behavioral monitoring.

Third, apart from malware infections and misuses, assets such as servers and

databases within an enterprise network may be direct targets of distributed at-

tacks. If such an attack happens, public-facing servers may not respond to requests

from external clients since their networking and computational resources are ex-

hausted. In addition, network vulnerabilities of hosts in an enterprise network may

be exposed and recorded by external hackers for further cyber-crimes. Therefore,

defending against distributed attacks on enterprise assets is a critical job for security

operations. In §2.4, I will elaborate on state-of-the-arts enterprise attack detection

systems and mechanisms.

2.3 Surveying Asset Classification and Network Be-

havioral Monitoring

To cope with the increasing trends of distributed network attacks targeting or uti-

lizing enterprise assets, IT departments need to classify and monitor the roles and

network behavioral patterns of hosts connected to their networks (i.e., fingerprinting

enterprise host types and their behavioral patterns) so that proper security enforce-

ment could be installed.

However, this task is not straightforward as enterprise hosts have diverse and

complex functionalities and behaviors. For example, an enterprise has servers of

various types that serve internal or external clients; visitors and staff may have
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Table 2.1: Classifying host types in a large enterprise network by DNS names.

Asset type # hosts
Website server 61
Authoritative name server 15
VPN gateway server 13
Remote computing platform 16
File storage server 14
Mail exchange server 18
DNS recursive resolver 7
Web proxy 4
NAT gateway 256
Personal computer and BYOTs 1961
Other unclassified or minor host 18920

their personal devices (e.g., mobile phones and laptops) connected through wireless

gateways; and IoTs such as smart cameras and sensors may also be installed in a

typical enterprise network [47]. Let us take a glance at Table 2.1 that shows the

total number of ten popular host types identified by their DNS names in a large

university network. As shown by the last row in Table 2.1, there are also many

other unclassified and minor host types such as LDAP server and Redis proxy which

are hard to enumerate. I note that those identifiable assets are only accountable for

less than 10% of active hosts in the enterprise, and the functionality of the remaining

hosts is mostly unknown to the university IT department.

The massive amount of connected devices unavoidably introduce security prob-

lems and threats to an enterprise network. Devices that are carried by visitors and

staff may be infected by malware and then conduct malicious network activities

[48], which may not be fully understood by organizations [49, 50]. Besides, insecure

network management, improper configurations, and unprofessional operations of IT

infrastructures (e.g., public-facing servers) may give external attackers opportunities

to hijack or penetrate internal hosts for malicious purposes. As for organizations

with less-restricted network management like universities and research institutions

that allow sub-departments to configure their own IT infrastructures, this problem

is more prevalent since their IT departments may not be fully aware of the roles of
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all connected network assets.

To classify roles and monitoring network behavioral profiles of enterprise hosts,

there are many solutions developed by both industrial and academic communities,

which can be categorized into either static monitoring via generic configurations or

dynamic monitoring via specific networked graphs.

2.3.1 Static Monitoring via Generic Configurations

Current practical solutions for enterprise network asset classification and monitor-

ing are usually achieved by static configurations such as access control list (ACL),

security rules, and system records in their management devices like border firewalls,

DHCP gateways, DNS servers, and other specialized commercial management plat-

forms. Using such methods, IT departments can set up certain specifications or

limitations on the monitored hosts to regulate their network traffic and detect po-

tential anomalies. An IT department that is fully aware of all assets connected to

its network may set up strict configurations to stop illegitimate communications [51,

52]. Network traffic not following those configurations will be marked as abnormal,

thus, trigger further defense actions such as alerts and mitigation. For example, all

non-HTTPS traffic towards an enterprise HTTPS server could be blocked by the

broader firewall as they are unwanted by the server, or inbound DNS packets are

only allowed if their destinations are enterprise DNS servers. To protect a critical

asset operated within an enterprise, the IT operator may also set up a rate limit for

the host on its management platform. Whenever the host receives network traffic

with rates higher than the limit, the management system (i.e., border firewall) will

partially or fully drop those inbound packets to prevent potential volumetric damage

on the protected host.

Static configurations enable administrators to manage and monitor their enter-

prise assets by specifying their generic network profiles. However, with the explosive

20



Chapter 2. Literature Review on Enterprise Network Security: Asset Behavioral
Monitoring and Distributed Attack Detection

growth of network applications that are developed using different protocols and

the adoption of networked devices with heterogeneous architectures, designing com-

prehensive and proper generic configurations becomes increasingly difficult for IT

departments, especially for those loose-federated enterprise networks [53]. As high-

lighted in [54–57], configuring specifications or rules for a large enterprise network

with complex host composition is error-prone, and potential misconfigurations may

introduce expensive operational costs in bug fixing and conflict resolving. This prob-

lem is even worse with the adoption of BYOTs and IoTs which are massive in amount

and diverse in communication patterns [58] – the complex behavioral profiles of such

hosts are hard to be precisely concluded by several generic configurations. Therefore,

asset monitoring via generic configurations tailored for each device type inevitably

leaves many blind spots and becomes impractical during operations [59, 60].

Besides, the roles and behaviors of connected hosts in nowadays’ enterprise net-

works are quite dynamic. For example, sub-departments may operate multiple

public-facing services (e.g., DNS and website) with different network profiles on

the same physical machine; existing services may get terminated and new function-

alities may be added in an on-demand fashion. As a result, static asset monitoring

methods cannot responsively and automatically cope with the changes of connected

assets and their network behaviors [61–63].

As motivated by the current problems in asset classification and monitoring,

researchers have developed dynamic methods using specific networked graphs, which

will be discussed next.

2.3.2 Dynamic Monitoring via Specific Networked Graphs

To monitor activities of enterprise hosts at fine-grained visibility, networked graphs

have been used in prior works to profile host types each may display unique commu-

nication patterns. For example, in Fig. 2.3, I show the flow graphs (in the format of
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(a) A website server.
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(b) A DNS recursive resolver.

Figure 2.3: Sankey diagrams: example traffic profiles of two enterprise assets using
1000 continuous flows.

Sankey diagram) of two enterprise assets in my university network (i.e., a website

server and a DNS recursive resolver) using their 1000 continuous flows. The website

22



Chapter 2. Literature Review on Enterprise Network Security: Asset Behavioral
Monitoring and Distributed Attack Detection

servers use only two TCP ports (i.e., TCP/443 and TCP/80) to communicate with a

large range of TCP ports on external hosts, while the DNS recursive resolver sent

traffic via a large scope of its UDP ports to only UDP/53 on external DNS servers.

I note that about 20% flows of the website server are from one port of an external

host. After looking into their flow contents, I confirm that those TCP flows only

contain TCP handshakes and are likely to be TCP-SYN attacks.

Using Graphs for Host Classification

Based on such facts, in [64], the authors pointed out that the type of enterprise

host can be inferred from its IP- and port-level activities. They used networked

graphs that profile communications between hosts and ports to classify host roles

such as HTTP servers, DDoS attackers, and P2P clients. To effectively monitor

communication patterns of hosts, the authors of [65] proposed visualization tech-

niques using an interpretable graph that help operators to easily classify networked

entities. Apart from the legacy graphs that only cover flow profiles, researchers

have developed advanced graph structures that can model network communications

with more descriptive features, such as attributed graph models in [66]. The graph

structure is generated to cover both network structural properties and correlated

attributes which hold both efficiency and accuracy when classifying host roles in

real-world networks.

Using Graphs to Model Host Dependency

Understanding host dependencies and classifying roles of networked entities at scale

from complex graphs require extensive tuning and optimization of existing statis-

tical methods which are computationally expensive. In [67], the authors analyzed

dependency graphs in terms of their computational resource consumption and ex-

pressiveness in modeling network attacks. Authors of [68] used the method of con-
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nection graph analysis to discover cooperating hosts in P2P networks, which start

from a single known node to identify other associated hosts. Their methods pro-

cessed unified NetFlow data and were demonstrated to have short processing times,

which could scale for large networks. Besides, statistical methods such as cluster-

ing algorithms are a natural fit for grouping host types and identifying different

types of behaviors in a networked graph. In [69], the authors used bipartite graphs

with one-mode projections that model network traffic between hosts, and developed

clustering algorithms to identify behavior groups and typical application types. As

in [70], the authors grouped IP addresses within the same enterprise network with

strong inter-IP connectivity (i.e., similar behavior) as the basis of network monitor-

ing and management, which significantly reduced the number of tracked entities for

scalability.

Using Graphs for Anomaly Detection

It is noted that network asset monitoring with fine-grained graphs is especially use-

ful for security purposes such as locating infected hosts and identifying involved

parties in distributed attacks [71–74]. For example, authors in [50] mentioned that

securing a large enterprise network that has a fluidic structure is complicated and

error-prone technically. Therefore, they proposed a probabilistic graph to model the

defense strategies of a network to reduce the possibility of successful attacks that

target improper and vulnerable network configurations. SpotLight [75] achieved

accurate detection of anomalies in streaming graphs that describe network commu-

nications between entities. The anomalies (e.g., port scans and DoS) are identified

by the sudden changes in large dense subgraphs. It leveraged randomized sketching

algorithms to make a cost-effective inference with optimal memory consumption.

Noracle [76] can classify service roles of networked entities and identify anoma-

lous behavioral changes by applying stochastic block models on networked graphs.

Whereas TRACE [77] builds a distributed enterprise-wide causal graph to track
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network activities between enterprise hosts for advanced persistent threat (APT)

detection.

2.3.3 Highlights

In summary, asset monitoring using static configurations on border firewalls and

management middleboxes is the de facto method in industrial practices. Such meth-

ods are practical in terms of computational costs as they usually do not maintain

complicated real-time data structures for a large number of monitored entities. This

method prioritizes practical deployment but makes it impossible for fine-grained

classification (e.g., flow-level) and effective monitoring of host behaviors that are

dynamic or unknown to IT departments.

In contrast, dynamic network behavioral monitoring by specific graphs is proven

to be effective in providing comprehensive visibility and granularity of network traf-

fic to classify connected assets and detect potential anomalies. However, the use of

complex graphs incurs high computational costs that make such methods not scal-

able to be deployed in a large enterprise network with a massive number of active

hosts and concurrent flows.

2.4 Surveying Enterprise Distributed Network At-

tack Detection

Detecting distributed attacks is critical for enterprise network operations. The se-

curity community comes up with solutions from various deployment considerations.

For those attacks that aim to congest the entire edge link of an enterprise network by

Giga or Tera bit-per-second traffic throughput, handling attack at ISP-level (near-

source and on-the-path) appear to be the only choice [11, 78–81]. As for distributed
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attacks targeting certain enterprise assets, that is, the focus in this survey, de-

tection systems operated by the targeted enterprise (near-victim) is proven to be

effective [78]. Therefore, enterprise IT departments usually set up in-line security

middleboxes near their network edge that connect internal networks and the pub-

lic Internet. To this end, attack detection policies can be implemented for each

critical enterprise server [82] that is vulnerable to network attacks. Such enterprise-

level attack detection solutions can be categorized into three types in terms of their

methodologies, including threshold rules, traffic signatures, and flow statistics, which

are comprehensively reviewed as follows.

2.4.1 Proprietary Rule-based Detection

Simple Thresholds

Rule-based (also known as query-, specification-, or configuration-based) distributed

attack detection is the most popular type in the market. Proprietary hardware

products such as next-generation-firewall (NGFW) deployed at an enterprise’s bor-

der uses such mechanisms as the basis of attack and intrusion detection. Users

(e.g., IT departments) set up a list of rules that define access policies of certain

connected hosts, which indicate the normal and abnormal traffic levels by thresh-

olds. In Fig. 2.4, I present three screenshots of configuration pages on a firewall

appliance (by Palo-Alto Networks) operated in a large-sized university. They are for

defenses against reconnaissance attacks (Fig. 2.4(a)), DDoS attacks via SYN flood

(Fig. 2.4(b)), and DDoS attacks via UDP flood (Fig. 2.4(c)), respectively. For the

reconnaissance protection, as shown in Fig. 2.4(a), IT departments who want to pro-

tect their assets from host reconnaissance or port scans may set up a security rule to

block all external IP addresses that have sent packets to more than a certain number

of hosts within the monitored network. As for the protection against DDoS via SYN

flood in Fig. 2.4(b), an administrator may set up thresholds for inbound TCP-SYN
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(a) Reconnaissance attack.

(b) DDoS – SYN flood. (c) DDoS – UDP flood.

Figure 2.4: Configuration pages of a Palo-Alto firewall appliance for distributed
attack detection.

packet rates towards certain IP zones, surpassing this threshold indicates volumet-

ric anomalies and corresponding alerts or actions would be triggered. As shown in

Fig. 2.4(c), similar detection and mitigation thresholds can also be configured for

UDP-based DDoS attack.

Although legacy proprietary security middleboxes leveraging administrator-defined

rules have been widely deployed by the industry for distributed attack detection,

their mechanisms are quite simple via several thresholds thus not flexible to cope

with emerging security needs such as detecting distributed attack sources with versa-

tile traffic patterns. Besides, rules and policies for security appliances manufactured
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by different companies are not compatible with each other, which introduces prac-

tical difficulties for operators to express complicated logic effectively [83].

Expressive Queries

Considering the above problems, researchers have developed expressive rule-based

security middleboxes that support a larger scope of detection logic than simple

thresholds. To make network attack detection sustainable and versatile under fast-

changing environments, the authors of Marple [84] designed a query language to per-

form monitoring tasks via key-value store primitives on programmable P4 switches.

To make a rule-based security mechanism suitable in coping with cyber-attacks that

involve various logical steps and a large number of networked entities, SAQL [85]

was developed as a stream-based query system that provides an anomaly query

engine for users to specify their complicated detection logic using domain-specific

languages. By leveraging both programmable P4 switches and software stream pro-

cessors, Sonata [86] was proposed as a network telemetry system that is scalable

and expressive in performing security tasks (e.g., detection of SSH brute force, port

scan, DDoS, or slowloris attack) with fewer configurations compared with existing

systems. Although those research ideas still have a far way to go before being fully

accepted by the industry, they are valuable steps towards a low cost, easy to upgrade,

and expressive rule-based detection system.

While rule-based security systems are quite popular in the industry, configuring

effective and error-free specifications require administrators to have sufficient secu-

rity expertise and a full vision of connected assets within their networks, without

which they can hardly set up proper thresholds, queries, or actions. Besides, for

medium or large enterprises that have complex host compositions and behaviors,

managing manual configurations are challenging in handling unavoidable redundan-

cies, logical conflicts, and errors.
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Performance Evaluation and Optimization

To optimize the placement of security rules/queries and solve potential redundan-

cies, an extensive amount of research efforts have been made by the community.

The authors of [87] conducted experiments to evaluate performance degradation of

placing firewall policies such as to permit or deny certain services unless explicitly

specified. They concluded that the setup of firewall rules (e.g., sequence of rules

and their applied subnet range) has a significant impact on networking metrics such

as latency and throughput, thus, optimization of firewall technologies is critical in

reducing performance losses. In [88], a quantitative analysis of firewall configuration

data draws the conclusion that corporate firewalls are often not properly configured

to provide sufficient security protection. Although examples and guidelines are pre-

sented by vendors, network administrators still face great challenges in following

them manually. To better understand the performance issues of rule-based firewalls,

the authors of [89] constructed a queuing model with a Markov chain to investigate

key performance features of firewalls when handling normal or DoS traffic flows. In

[90, 91], performance bottlenecks such as CPU and memory usage under different

network conditions such as traffic rate, packet size, and the number of connections

are extensively studied.

Considering the above operational difficulties and performance bottlenecks of

rule-based solutions, optimization methods have been developed using various tech-

niques. As legacy firewalls check the received packets against each placed rule, the

increasing number of firewall rules unavoidably delays the overall processing time,

in [92], the authors proposed a data mining approach to predict hit probabilities of

rules which significantly reduces packet processing time up to 40%. To tackle redun-

dancies in rule placements, the authors of [93] proposed an optimization algorithm

to locate and reduce redundant configurations within an enterprise firewall. The

work described in [94] designed a stateful firewall architecture that is able to classify

network traffic according to their application types, each is mapped to a customized
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processing pipeline to achieve better performance on CPU utilization, throughput,

and queue delay. In [95], a hash-based packet classification algorithm was developed

to significantly reduce the delays caused by the rule matching processing in a typical

firewall appliance. Although there are a handful of prior research for optimizations

on errors and performance degradation introduced by redundant firewall rules via

manual configurations, according to [96], rule-based firewall performance issues are

still key concerns yet to be solved.

2.4.2 Community Signature-based Detection

With the increasing complexity of attack types and vectors, implementing effective

security rules by administrators has become quite challenging than ever before. To

ease this pain point, the security community developed various software intrusion

detection systems (e.g., Bro [97] and Snort [98]) that do not require complicated con-

figurations. Instead, users could simply import security signature files that contain

features of malicious traffic articulated by experts and researchers in the open-source

security community.

Merits: Compared with rule-based detection via proprietary systems, signature-

based attack detection usually leverages CPU-based generic software that supports

highly flexible traffic processing functions. In addition, software IDS does not re-

quire a tedious process for upgrading security functions including negotiations be-

tween users and vendors, instead, administrators can customize functionalities and

deployment settings. As stated in [10], hardware appliances are designed for high

performance (e.g., sustain Tbps traffic) thus sacrifice operational flexibility in dy-

namic network environments, while software-based systems tackle those limitations

by elastically scaling or replacing detection functions based on operational needs

and traffic composition.

Problems: However, there are also problems in using community signature-
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based IDS software for a practical operation. First, creating security signatures that

capture traffic patterns and features of diverse attacks is a complicated process that

introduces high labor costs. Besides, the threat surfaces of each network may be

quite different, signatures developed by third-parties may not be reliable and directly

applicable to an enterprise network, thus, have low detection effectiveness. In addi-

tion, such systems are often operated as software tools that incur high computational

costs (thus not scalable) when processing high throughput enterprise traffic. Around

the three problems, researchers have developed methods in automatic generation of

signatures, benchmarking and increasing detection effectiveness, and improving the

scalability of signature-based IDS.

Automatic Generation of Signatures

Many research works aim to develop automatic methods that generate reliable signa-

tures. C. Kreibich et al. [99] presented a system to automatically generate signatures

for pattern matching and protocol conformance check. To this end, they set up hon-

eypots to capture malicious network traffic signatures passively. Security signatures

may be evaded by smart attackers who vary payload contents of malicious packets,

to address this issue, Polygraph [100] is proposed to automatically generate signa-

tures that contain multiple disjoint content sub-strings for polymorphic worms (i.e.,

an example attack that vary its packet payloads frequently). AutoRE [101] captures

spam emails and their involved entities (e.g., bot members) by extracting signatures

from spam traffic that does not require a labeled dataset and extensive labor efforts

for training purposes.

Detection Effectiveness

To improve the detection effectiveness of signature-based detection systems, re-

searchers have identified various related problems and proposed corresponding solu-
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tions. In [102], S. Patton et al. reported the “Squealing” vulnerability of signature-

based IDS. Attackers may craft malicious packets according to the observed signa-

tures on a targeted IDS to generate high false-positive events which makes the alert-

ing system near useless. R. Sommer et al. [103] observed that the legacy signatures

using byte sequences suffered from high false-positive rate due to the dynamicity

of attacks. To address this issue, they designed a signature engine based on Bro

IDS [97] that can generate signatures with enhanced visibility such as dependencies

of networking events (e.g., requests and replies). The works described in [104] and

[105] compared the accuracy and performance of IDS designed for single-threading

and multi-threading computing environments (i.e., Snort and Suricata respectively).

They concluded that the latter IDS have higher accuracy under a multi-core setup,

while within a single-core networking system, the former IDS achieved fewer false

negative instances. Besides, according to [106, 107], the adoption of emerging net-

work ecosystems such as IoT and sensor networks also makes legacy security signa-

tures less effective in capturing malicious activities, as they exhibit different traffic

patterns compared with typical networked hosts.

Scalability Issues

Compared with well-designed hardware appliances, software-based IDS generally in-

cur high computational costs thus not scalable under high-throughput environments

[10], ineffective design of software components makes this problem even worse [108].

Therefore, signature-based IDS on software platforms are mostly used by enterprises

with small network sizes and low traffic throughput. Researchers use various tech-

niques to increase the scalability of software IDS. First, the concept of distributed

computing has been exploited by many prior works. The NIDS cluster described in

[109] used distributed computational nodes with optimized coordination approaches

to achieve software-based stateful intrusion detection with high performance. The

authors of [110] proposed a domain-specific model that distributes traffic analysis
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across different processing units with specific functions to achieve both scalability

and detection efficiency on multi-core hardware. Researchers have also developed

methods to reduce the overheads by signature-matching. For example, the work

in [111] developed an alphabet compression table that can combine distinct input

signature symbols that have identical behavior into a single one to reduce memory

usage. O3FA [112] was proposed to achieve packet ordering and flow reassembly

during pattern-matching phases with low buffer consumption, which is particularly

useful in reducing computational overheads when handling attack traffic with long

sequences of out-of-order packets. Besides, with the increasing popularity of virtu-

alization technologies, network intrusion detection on virtualized platforms is also

proven to be useful in reducing overheads, as it supports dynamic scaling of com-

putational resources and flexible deployment of detection functions. For example,

in [12], J. Deng et al. built a virtualized IDS that is regulated by a virtualized con-

troller for semantic consistency, correct flow update, buffer overflow avoidance, and

optimal scaling in real-time. vNIDS [113] employed a detection state sharing mech-

anism to reduce the virtualization overhead of IDS, therefore, it achieves elasticity

in detecting attacks with various profiles and also guarantees acceptable scalability.

2.4.3 Fine-grained Flow Statistic-based Detection

Both rule-based and signature-based detection systems barely maintain flow-level

telemetry for the protected networks. Therefore, they are facing challenges in pro-

viding fine-grained statistics to precisely detect external attackers and malicious

flows in distributed attacks. Many researchers have proposed methods to address

the problem by exploring graph data structure for network anomaly detection using

flow-level statistics so that they can achieve precise attack mitigation (i.e., on only

malicious flows) without causing collateral damage.
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Scalability Issues

However, fine-grained flow statistics of a large network may become excessively mas-

sive and hard to be analyzed for distributed attack detection practically. To this

end, many research efforts have been made by developing lightweight data structures

that maintain flow statistics. Kronecker graph [114] is designed to model network

flows using graphs generated by a non-standard matrix operation named Kronecker

product, which is both realistic and practical. The authors of [115] leverage dis-

tributed in-memory graphs to maintain flow statistics by different computing nodes

that collectively detect DDoS attacks cost-effectively. Many prior works take ad-

vantage of streaming (or online) algorithms to achieve attack detection with low

computational cost. STONE [116] maintains flooding-related attributes for each

protected group through continuous queries that merge current statistics with the

past ones without creating new data points. The authors of [117] systematically re-

viewed processing methods for streaming graphs, such as ‘insert-only graphs’, ‘graph

sketches’, and ‘sliding window’ that are helpful to reduce the computational costs

in processing flow statistics. In [118], the authors developed an adaptive online

classification scheme that detects network attacks on aggregated flow statistics.

Extracting Important Features

Extracting important and useful features from flow statistics for attack detection

is another popular research direction. Principal component analysis (PCA) is a

method to identify and extract important features in a classification task. The

authors of [119] developed an augmented PCA model using Leibler divergence that

outperforms the legacy methods in detecting anomalous network flows. To reduce

redundant and irrelevant attributes, the authors in [120] proposed a multi-stage

feature selection method that utilizes filters and stepwise regression wrappers. 41

commonly used features for network anomaly detection are examined and only 16
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of them are proven to be effective in attack detection. The work in [121] introduced

five groups of descriptive features (such as flow metadata features, sequence packets

features, and general statistical features) of network flows. The supremacy of those

attributes is demonstrated in detecting seven types of network attacks including

SSH patator, DDoS, and port scan.

Statistical Methods using Flow Statistics

Besides, developing novel (statistical) methods using flow characteristics for better

attack detection has also been explored by the community. For example, S. Jin et

al. discuss their work in detecting SYN flooding attacks using a covariance analysis

model in [122]. They have shown that the model can effectively distinguish benign

and malicious flows by profiling their TCP headers. K. Lee et al. [123] applied

clustering algorithms on a set of parameters that describe traffic features such as

randomness of source and destination IP to differentiate DDoS traffic from nor-

mal communications. The authors in [124] employ a statistical metric named total

variance distance that quantitatively measures the similarity between flows, which

achieves better performance in detecting attack traffic than legacy methods.

2.4.4 Highlights

In this section, I classify existing attack detection methods into three types including

proprietary rule-based, community signature-based, and fine-grained flow statistic-

based detection.

Rule-based detection is widely adopted by the current industry for its scalability

in deployment and operation. However, due to the increased agility and dynamicity

of attack surfaces, such static methods are becoming less effective in precisely isolat-

ing malicious entities from the benign ones and insufficient to protect enterprise hosts
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that are larger in quantity and diverse in functionalities by manual configurations.

Signature-based detection often relies on input (i.e., signature files) from open-

source communities. Selecting proper and updated signatures developed by security

experts can help IT departments quickly respond to emerging threat types. However,

such open-source signatures may not be specifically designed for enterprise thus

introduce compatibility issues. Besides, they are often packaged as software tools

that provide higher management flexibility than proprietary solutions but also make

them expensive to scale for a large network.

Attack detection leveraging fine-grained flow statistics have shown their supremacy

in precisely identifying victims, attackers, and malicious flows of a distributed attack.

However, maintaining and processing fine-grained statistics for the massive number

of concurrent flows going through a large enterprise is not scalable especially in

real-time. Therefore, achieving scalability while not compromising the fine-grained

visibility of flow statistic-based methods is the key challenge to address before they

could be widely deployed in practice.

2.5 Surveying Opportunities for Network Security

by Emerging Paradigms

The advances of programmable networks and machine learning (ML) techniques

bring new opportunities to address current problems in enterprise network security.

In recent years, researchers have applied the two techniques in other aspects of net-

work security, such as developing orchestration systems for flexible attack detection

in ISP networks or proposing accurate algorithms to detect attacks of a certain type.

Those prior works provide lessons for us to develop practical and effective security

systems for a large enterprise network. In what follows, I discuss related research

on network security using programmable networks and ML, respectively.
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2.5.1 Using Programmable Networks for Network Security

The concept of programmable networks is the collection of techniques that make

network functions flexible through network function virtualization (NFV) [125] and

software-defined networking (SDN) [126]. Such technologies enable the run-time

configuration and responsive update of flow rules and network functions. Thus,

IT departments can flexibly customize security functions and orchestrate defense

utilities to cope with their dynamic network and threat surfaces.

Practical Challenges

Although programmable networks hold promise in improving the current security

ecosystem, several practical challenges slow its adoption [127], such as performance

bottlenecks of software controllers, potential security issues of programmable net-

works, scalability issues of software-based network functions, and incompatibility

with existing networked systems.

To this end, many efforts have been made to address some of the above problems.

For example, R. Sommer et al. [128] proposed an NFV architecture that can fully

utilize multi-core processors to achieve scalable network intrusion detection. O3FA

[112] is presented as a lightweight engine for finite automata-based deep packet in-

spection that matches packets without reassembling flows. Thus, the system requires

less buffer space compared with its counterparts. StateAlyzr [129] identifies and re-

duces the unnecessary operation processes for state clones in security middleboxes

to achieve low computational overheads. NetBricks [130] employs a zero-copy soft-

ware isolation mechanism that significantly reduces the performance overheads of

typical NFV platforms. OpenNetVM [131] is developed as an NFV framework with

high-level abstractions so that users can deploy their customized network functions

without complex configurations. ParaBox [132] is designed as a hybrid packet pro-

cessing pipeline that distributes incoming traffic into parallel network functions that
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outperform existing serial function chaining mechanisms. StatelessNF [133] sepa-

rated the architecture of legacy virtual network functions into a state management

component (i.e., data store layer) and a stateless packet processing component which

are orchestrated by SDN utilities so that the in-line traffic is processed in a more

scalable manner. vNIDS [113] addresses ineffective detection and expensive pro-

visioning of SDN/VNF-based systems by state sharing between detection modules

and dynamic slicing of detection logic programs.

Current Research Prototypes

Apart from the research works aiming to address practical challenges, many proto-

types have been developed to address various real-world attack detection problems

using programmable networks.

For example, R. Braga et al. [134] developed a system using programmable

switches to extract flow statistics for flooding attack detection. S. Lim et al. dis-

cussed their work in [135] that utilizes OpenFlow-based programmable switches to

achieve flexible isolation of bots in DDoS attacks. In [136], K. Giotis et al. devel-

oped their system via a combination of OpenFlow and sFlow utilities to collect and

process network statistics for scalable anomaly detection. FlowTags [137] uses SDN

architecture to achieve flexible security enforcement through network-wide middle-

boxes that impose low computational overheads. Bohatei [11] uses SDN proactive

and reactive flow rules to dynamically orchestrate network traffic forwarding at ISP-

level so that attacks could be handled by the optimal security middleboxes in real

time. C. Yoon et al. [138] demonstrated the feasibility of using programmable net-

works for cyber security by prototyping SDN-based in-line firewalls, passive IDS,

network anomaly detectors, and specialized security functions. Atlantic [139] lever-

ages the flexibility of SDN to jointly detect, classify, and mitigate malicious flows

in a small-sized network of 100 hosts and two switches. The authors of [140] use

SDN reactive routing to only forward the first several packets of each network flows
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for deep packet inspections. J. Deng et al. [12] built a virtual firewall architecture

using SDN and NFV to achieve elastic rule placement and flexible detection func-

tionalities. Sonata [86] achieves scalable traffic processing by offloading heavy and

repetitive network functions from software processors to hardware programmable

switches.

2.5.2 Using Machine Learning Techniques for Network Secu-

rity

Machine learning techniques have proven their usefulness in making accurate classi-

fication and precise detection under various scenarios such as image processing and

speech recognition. While the maturity of ML applications in network security is

still in its early stage of industrial adoption [13, 141], researchers have developed

many ML approaches for a large range of topics in cybersecurity [142] that provide

insightful lessons for the community.

For example, MADAM ID proposed in [143] is a framework that uses ML-based

data mining to process network audit data for intrusion detection. J. Shum et al.

[144] leveraged simple neural networks to detect Internet attacks. BotMiner [40]

employs clustering algorithms to identify botnet groups by analyzing network traffic

patterns without a priori knowledge of their behavioral signatures. L. Koc et al.

[145] proposed a Hidden Naive Bayes (HNB) method for network intrusion detec-

tion that outperforms other machine learning models that are either not effective for

handling high dimensional data, identifying dependent features, or incurring high

computational overheads. M. Javed et al. [146] designed a scheme that specifically

detects SSH brute-forcing using a beta-binomial distribution model. The authors

in [147] developed an ensemble model that uses Bayesian Network with Gain Ratio

for feature selection Artificial Neural Network for attack detection. C. Hsieh et al.

[148] proposed a DDoS attack detection system using neural networks on Apache
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Spark big data computing clusters, which can handle traffic with large volumes.

DeepLog [149] leverages deep learning algorithms for anomaly detection on system

logs collected from enterprise hosts. H. Siadati et al. [150] used ML-based anomaly

detection algorithms to identify anomalous logins within an enterprise network. D.

Tang et al. [151] developed data-driven models to detect low-rate DoS attacks that

have abnormal patterns in frequency, fluctuation, and distribution of TCP flows.

I note that most of the existing works focus on developing high-accuracy models

and algorithms to detect a certain type of attacks, which prove the effectiveness of

ML-based methods in solving network security problems and pave the way for devel-

oping data-driven solutions in asset management and distributed attack detection

specifically and practically for large enterprises.

2.5.3 Highlights

In this section, I have discussed the advances and adoptions of programmable net-

working and ML techniques in the area of network security.

Programmable networking paradigms support flexible and real-time traffic rout-

ing and processing compared with legacy systems. Although there are still many

practical problems to solve, ranging from the scalability issues due to limited soft-

ware and hardware resources (e.g., data-plane switch memory and flow entries), the

difficulty for administrators to acquire related skills, and compatibility with exist-

ing network infrastructures. The techniques enable IT departments to adjust the

visibility and granularity of network telemetry for security inference in real-time so

that precise fine-grained statistics can be collected based on the status of networks

and the evolution of attacks.

ML and its associated data-driven techniques give promises in classifying traffic

patterns of hosts and detecting attacks through automatic models developed from

network big data instead of manually defined thresholds and signatures. However,
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applying ML algorithms in network security is still in its early stage due to many

existing barriers [13], such as balancing attribute descriptiveness and scalability, han-

dling false positives that may lead to serious security implications and explainability

of detection results by performant models. Carefully addressing the above problems

is a prerequisite for the success of an ML-based solution in network security.

2.6 Related Surveys on Network Security

I now discuss related survey articles that focus on different aspects of network secu-

rity.

Categorizing attack detection methods: A group of literature reviews fo-

cuses on the categorization of detection methods that have the potential to handle

network attacks. J. Mirkovic et al. [14] systematically introduce the taxonomy of

DDoS and their corresponding defense mechanism. The authors in [141] categorized

the architectural types of network intrusion detection systems that use different un-

derlying techniques. S. T. Zargar et al. [78] highlighted DDoS defense mechanisms

categorized by their deployment location and the action time in which defense takes

place. The authors in [152] comprehensively discussed vulnerabilities existing in

the networking ecosystem that are targeted by emerging cyber-attacks and their

countermeasures. The types and mechanisms of data mining and machine learn-

ing methods and their applications in cyber-security research have been discussed

in [142]. Flow-based intrusion detection techniques, datasets, and prototypes are

summarized in [153]. A. Voronkov et al. [56] provided a systematic review on the

usability aspect of firewall configurations. A. Tundis et al. [23] reviewed existing

tools that scan network vulnerabilities for benign or malicious purposes. The au-

thors in [154] discussed functionalities of popular next-generation firewalls (NGFW)

and their capabilities in coping with emerging network threats. C. Chen et al. [155]

focused on the architecture of situational awareness systems for network security,
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which include data collection, situational understanding, prediction, and visualiza-

tion. S. Sengupta et al. [156] comprehensively discussed the effective methods to

defend against attacks originated from moving targets.

Attacks on certain network types: There is also a cluster of literature reviews

focused on attacks on emerging network types that hold different characteristics and

vulnerabilities compared with legacy networks. X. Chen et al. [157] systematically

discussed security problems in wireless sensor networks and evaluate the effective-

ness of existing defense techniques. The authors in [158] and [159] discussed security

issues and requirements for an effective defense architecture in the era of software-

defined networks. The works in [106], [107], and [160] focused on network intrusion

detection and DDoS detection for IoT networks. N. Agrawal et al. [16] particu-

larly focus on the defense mechanisms against DDoS attacks for cloud computing

networks. J. Cao et al. [161] summarized the security challenges introduced by

various aspects of 3GPP 5G networks and their security requirements which are not

addressed by current solutions. A. Bhardwaj et al. [162] surveyed scientific and

industrial solutions in DDoS detection for cloud networks.

The focus of this survey: To the best of my knowledge, prior surveys cate-

gorized certain type of attacks (i.e., DDoS) and their defenses by the broad aspects

such as target locations, attacking mechanisms, and exploited network vulnerabili-

ties. Instead, this survey narrowly focuses on the distributed (volumetric) network

attacks, their countermeasures, and opportunities by emerging paradigms that are

specifically applicable for enterprise networks. Therefore, this survey provides an

important reference for the further research on enterprise network security which

has not been fully covered by prior surveys.
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2.7 Discussion on Research Gaps

After an extensive review of current techniques in asset behavior monitoring and

distributed attack detection for enterprise networks, I now articulate open issues

that are yet to be solved by future research.

Dynamic and scalable host monitoring: The large complexity of networked

assets and dynamicity of their communication patterns are hard to be fully captured

by legacy methods through static configurations. Dynamic networked graphs are ef-

fective in covering host behavioral profiles but infeasible to be maintained for an

entire large enterprise. Therefore, developing methods to achieve scalable monitor-

ing of assets while guaranteeing dynamic fine-grained visibility into necessary traffic

fractions is a valuable research direction. In Chapter 4 and 6), I show my efforts

in achieving this objective for host monitoring and attack detection using the pro-

grammable networks technique, which enables us to reactively collect fine-grained

telemetries when necessary.

Role-aware attack detection: Different types of networked assets exhibit dis-

tinguishable communication patterns and vulnerabilities that make them potential

targets of distributed attacks. Detection mechanisms enforced for each enterprise

host are expected to be properly customized according to their roles and vulnera-

bilities. Current attack detection methods either leave this job to operators who

configure policies on certain IP addresses or simply apply a generic detection mech-

anism to the entire network. Therefore, smart configurations of attack detection

mechanisms based on the traffic profile of enterprise hosts would be a significant

contribution. In Chapter 3 and 4, I will discuss my proposed systems that continu-

ously classify and monitor the roles of enterprise hosts to help IT departments locate

their internal network vulnerabilities and configure proper security enforcement ac-

cordingly.

Explainability of ML-based methods: Although ML methods have proven
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their high accuracy in host classifications and attack detection, due to the limita-

tion of training datasets, imperfection of statistical features, and biases from algo-

rithms, such methods may not perform well in operational networks. Therefore,

the results from ML-based systems have to be explainable so that IT departments

can understand the reason for each classification/detection to avoid mishandling of

false-positives. In Chapter 3,4, and 5, I develop explainable ML-based methods

for host classification and attack detection by conducting systematic network big

data analysis to extract descriptive attributes, developing post hoc reasoning for

each classification result, and performing fine-grained inspections on the detected

anomalous hosts/attacks for further verification.

Self-driving enterprise security: Current enterprise network security and

management systems often require configurations from IT departments to specify

their protected devices, protection types (e.g., scans or DDoS), detection thresholds,

and mitigation mechanisms which may become quite complex for a large organiza-

tion. Manually maintaining such a large volume and sophisticated policies may lead

to improper configurations such as inconsistencies and conflicts. To reduce the po-

tential risks introduced by human errors, it is worthwhile to develop self-driving

security systems that can be operated in a complex enterprise network with mini-

mum configuration. Driven by this idea, in the rest of this thesis (i.e., Chapter 3, 4,

5, and 6), I develop my systems to classify enterprise assets and detect distributed

attacks in an automatic manner without requiring complex configurations to specify

inference mechanisms and the protected IP lists.

2.8 Conclusion

This survey focuses on the distributed network attacks on enterprise assets and

countermeasures including asset monitoring and attack detection systems. I dis-

cuss the diversity of distributed attack (reconnaissance and DDoS) on enterprise
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assets, review existing industrial and research methods in monitoring network pro-

files of enterprise hosts and detecting distributed attacks, and highlight two emerging

techniques (i.e., programmable networks and ML) that bring new opportunities in

addressing enterprise network security problems. Lastly, I highlight several research

gaps as valuable directions that are worthwhile to be explored.
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The Domain Name System (DNS) is a critical service that enables domain names

to be converted to IP addresses (or vice versa); consequently, it is generally permit-

ted through enterprise security systems (e.g., firewalls) without restriction. This

has exposed organizational networks to DDoS, exfiltration, and reflection attacks,

inflicting significant financial and reputational damage. Large organizations with

loosely federated IT departments (e.g., Universities and Research Institutes) often

do not even know all their DNS assets, let alone the attack surface they expose to

the outside world.

In this chapter, I address the “DNS blind spot” by developing methods to pas-

sively analyze live DNS traffic, identify organizational DNS assets, and monitor

their health on a continuous basis. My first contribution performs a comprehensive

analysis of all DNS traffic in two large organizations (a University Campus and a

Government Research Institute) for over a month, and identifies key behavioral pro-

files for various asset types such as recursive resolvers, authoritative name servers,

and mixed DNS servers. For my second contribution, I develop an unsupervised ML

model that classifies enterprise DNS assets using the behavioral attributes identified,

and demonstrate that my method successfully classifies over 100 DNS assets across

the two organizations. My final contribution continuously tracks various health met-

rics across the organizational DNS assets and identifies several instances of improper

configuration, data exfiltration, DDoS, and reflection attacks. I believe the passive

analysis methods in this chapter can help enterprises monitor organizational DNS

health in an automated and risk-free manner.
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3.1 Introduction

Enterprise networks are large in size with many thousands of connected devices and

dynamic in nature as hosts come and go, and servers get commissioned and decom-

missioned to adapt to the organization’s changing needs. Enterprise IT departments

track such assets manually today, with records maintained in spreadsheets and con-

figuration files (DHCP, DNS, Firewalls, etc.). This is not only cumbersome, but also

error-prone and almost impossible to keep up-to-date. It is, therefore, not surpris-

ing that many enterprise network administrators are not fully aware of their internal

assets [163], and consequently do not know the attack surface they expose to the

outside world. The problem is even more acute in University and Research Institute

campus networks for several reasons [164]: (a) they host a wide variety of sensitive

and lucrative data, including intellectual property, cutting-edge research datasets,

social security numbers, and financial information; (b) their open-access culture,

decentralized departmental-level control, as well as federated access to data makes

them particularly vulnerable targets for unauthorized access, unsafe Internet usage,

and malware; and (c) they typically have a high-speed network infrastructure that

makes them an attractive launchpad for volumetric attacks on other entities.

DNS is a protocol of choice exploited by cyber-criminals and botnets as it can

readily bypass firewalls and security middleboxes. Due to the open nature of DNS,

it is common for organizations to apply few (if any) restrictions (e.g., firewall rules)

to DNS traffic. Thus, it is unsurprising to see the increasing frequency and quantity

of malware compromised devices and attacks that leverage DNS protocol [165–169],

such as DDoS attack, DNS tunneling and sensitive data exfiltration.

Enterprises typically host various kinds of DNS assets. They will typically host a

small number of recursive resolvers that proxy DNS requests from internal hosts to

external DNS servers, and also cache results to reduce the number of external queries.

Individual hosts may choose to over-ride the enterprise recursive resolvers, such as by
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manually changing their preferred resolver to a public one (such as Google’s 8.8.8.8

and CloudFlare’s 1.1.1.1), but in general, a majority of hosts will use the default

recursive resolver provided by their organization. In addition, enterprises typically

host a number of authoritative name servers to serve the various domains belonging

to the organization. For example, organization-wide services (like email, VPN, etc.)

may be managed by central IT. At the same time, each department may operate

its own authoritative name server to resolve department-specific web pages. It is

not uncommon for the various IT entities to operate in silos, often unaware of the

assets being managed by the other. To make matters worse, on-campus retail stores

(bookshops, food outlets, etc.) that lease connectivity from the campus may also

be housing their own DNS assets, which are often poorly secured as they lack the

skills.

Existing enterprise network security appliances such as border firewalls and intru-

sion detection systems do not provide fine-grained visibility of internal DNS-related

hosts and assets, creating significant “blind spots” for the IT department [170]. While

there is a significant body of existing academic research on DNS traffic analysis and

DNS security, existing works either focus on forensic analysis of logs collected from

DNS servers, such as recursive resolvers on the Internet [171–174] and domain regis-

trars [175], or concentrate on packet-level domain names [176–179]. This work is the

first to develop data-driven methods to automatically map and monitor DNS assets

in an enterprise. Commercial security appliances can consume insights obtained

from my methods. My contributions are three-fold:

First, in §3.3, I perform a comprehensive forensic analysis of DNS traffic from two

large organizations collected over 32 days, comprising nearly a billion queries/responses.

I examine their network properties (IPv4/v6, UDP/TCP, etc.), functional proper-

ties (unpaired queries/responses, errors, etc.), and service properties (lookup types,

record types, etc.). These enable us to build behavioral profiles of how various DNS

assets (recursive resolvers, authoritative name servers, and mixed servers) behave.
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Second, in §3.4, I use the behavioral profiles learned above to identify key at-

tributes of each type of DNS asset, extract such attributes efficiently in real-time,

and develop an unsupervised machine learning model using clustering algorithms to

dynamically and continuously classify asset types, including recursive resolvers, au-

thoritative name-servers, mixed DNS servers, and regular end-host clients that may

or may not be subject to enterprise network address translation (NAT). I apply my

method to identify over 100 different DNS assets across the two organizations, and

validate my results by cross-checking with IT staff. My method further identifies

assets that were commissioned/decommissioned or changed during the monitoring

period, further validating its utility in dynamically changing environments.

Third, in §3.5, I develop data-driven metrics that commercial SIEM1 platforms

can consume to track the cyber health of DNS assets or identify their anomalous

behaviors – the metrics are inspired by the insights obtained from §3.3. My methods

reveal a prevalence of poor server configurations in both organizations, allowing

attackers to exploit them for reflection attacks. Further, my methods are able to

identify the organizational DNS assets that are complicit in scans, DDoS, and data

exfiltration. I give proposals on how these DNS threats can be mitigated.

Taken together, my contributions help enterprises address their current blind

spot in monitoring their DNS assets and the threats they are exposed to. The

passive analysis I propose is automated, risk-free, and particularly beneficial to large

organizations with numerous assets managed by diverse personnel.

3.2 Related Work

I now discuss related works on DNS traffic analysis (§3.2.1) and DNS attacks (§3.2.2)

with highlights on the novelty of my work.

1Security Information and Event Management.
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3.2.1 Analysis of DNS Traffic

DNS traffic has been analyzed for various purposes, ranging from measuring perfor-

mance (effect of Time-to-Live of DNS records) [173, 178, 180] to identifying malicious

domains [175, 177, 181] and the security of DNS [182–185]. In this chapter I have

profiled the pattern of DNS traffic for individual hosts of two enterprise networks

to map DNS assets to their function and thereby identify their relative importance

and health for efficient monitoring and security.

DNS data can be collected from different locations (such as from log files of recur-

sive resolvers [173, 186] or authoritative name servers) or with different granularity

(such as query/response logs or aggregated records). Datasets used in [182–184]

contain DNS traffic for top level domains such as .com, and .net. The work in [187]

studies the root cause of query failures by analyzing DNS logs collected from recur-

sive resolvers operated by three Internet service providers. I collect my data at the

edge of an enterprise network, specifically outside the firewall at the point of inter-

connect with the external Internet. I note that while using data from resolver logs

can provide detailed information about end hosts and their query types/patterns,

this approach limits visibility and may not be comprehensive enough to accurately

establish patterns related to the assets of the entire network.

Considering studies related to domain names, [181] inspects DNS traffic from

top-level domain servers to detect abnormal activity and identifies key character-

istics of malicious domains in terms of their resource records and lookup patterns,

PREDATOR [175] derives domain reputation using registration features to enable

early detection of potentially malicious DNS domains without capturing traffic, and

[188] gives practical recommendations for using public domain ranking lists in secu-

rity research, based on their temporary changes. As for detection of such suspicious

domain names, [171] investigates into the coexistence of names in distributed DNS

recursive resolvers, [189] explores the value of game theory in detecting malicious
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domain names generated by hidden Markov models and probabilistic context-free

grammars, which can bypass legacy detection methods.

Key novelty of this work: Prior works analyzed DNS traffic collected from

different vantage points with various objectives. This paper measures traffic at the

edge of an enterprise network. I am the first to profile the behavior and health of

enterprise hosts by identifying patterns in DNS communications and distribution

of various DNS packets. I highlight some interesting observations like when benign

query names like google.com are misused in cyber-attacks (scans and query-floods)

targeting enterprise networks and services.

3.2.2 Studies on DNS Attacks

From the aspect of DNS attacks, DNSSEC [190] has been proposed for more than

a decade to deprecate information integrity attacks such as cache poisoning [191],

however, the authors of [182] study the adoption of DNSSEC, highlighting that

only 1% of domains have implemented this secure protocol due to difficulties in the

registration process and operational challenges – it is also verified from my results

of two enterprises that very little fraction of DNS traffic are mapped to DNSSEC.

The introduction of DNSSEC brings more potentials for volumetric attacks, and

some researchers [185] have reported that the amplification factor of DNSSEC is

quite high (i.e., up to 44 to 55) whereas this measure is 6 to 12 for regular DNS

servers. Besides, [183, 184] focus on authoritative name servers used as reflectors in

DNS amplification attacks – it indicates the potential vulnerabilities of enterprise

DNS servers to be mis-used in DDoS attacks. Work in [5] proposed a hierarchical

graph structure with anomaly detection models to identify distributed DNS attackers

outside an enterprise network at various levels of aggregation (e.g., host, subnet, and

AS).

Key novelty of this work: Existing works focus on highlighting certain vul-
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nerabilities of the DNS protocol or developing methods for detecting DNS attacks.

My work, instead, systematically profile and track the DNS-related behavior of con-

nected hosts in an enterprise. The system I develop and insights I draw will help

IT departments better map their assets, discover potential DNS vulnerabilities, and

detect misbehaved (potentially infected) hosts on their network.

3.3 Analysis of DNS Traffic from Two Enterprises

In this section, I analyze the characteristics of DNS traffic collected from the bor-

der of two enterprise networks, a large University campus (i.e., the University of

New South Wales (UNSW)) and a national research institute (i.e., Commonwealth

Scientific and Industrial Research Organisation (CSIRO)). I start by introducing

my measurement setup is described in §3.3.1. In §3.3.2, I discuss the “network”,

“functional”, and “service” properties of one-week DNS packets collected from both

organizations to highlight their normal and abnormal profiles. I then (in §3.3.3)

focus on the distribution of DNS packets among each enterprise host to reveal their

DNS behavioral patterns and unhealthy traffic compositions.

3.3.1 Measurement Setup

In both organizations, the corresponding IT department provisioned a full mirror

(both inbound and outbound) of their Internet traffic (each on a 10 Gbps interface)

to my data collection system, shown in Fig. 3.1, from their border routers (outside

of the firewall), and I obtained appropriate ethics clearances for this study2. I

extracted DNS packets from each of the enterprise Internet traffic streams in real-

time by configuring rules for incoming/outgoing IPv4 and IPv6 UDP packets for port

53 on a programmable network switch. It is worth noting that a tiny fraction of DNS

2UNSW Human Research Ethics Advisory Panel approval number HC17499, and CSIRO
Data61 Ethics approval number 115/17.
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Figure 3.1: My DNS measurement setup.

lookups might be carried by TLS [192] and HTTPS [193] that are beyond the scope of

this chapter. The mirrored DNS traffic was processed by a virtual network function

running on a generic server (with DPDK [194]) which parses headers (network,

transport, application) and payload of each DNS packet, and stores them into my

database. The study in this chapter considers the data collected over a month period

of 3 June to 4 July 2019 (i.e., beginning of an academic term in the university). In

this section, I focus on the analytic results for 1 week worth of DNS traffic capture

from both organizations during 3 June to 9 June 2019.

3.3.2 Understanding DNS Traffic at Enterprise Network Bor-

der

I begin by examining “network”, “functional”, and “service” properties of DNS pack-

ets, which provide answers for the following three questions related to DNS traffic

profiles of an organization. How does each DNS packet get carried at network-level?

Is each DNS packet with correct or error functionality? What is the service type of

each DNS packet?
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Table 3.1: Network properties of DNS packets in my dataset.

Incoming Outgoing

query response malformed query response malformed
U
n
iv
er
si
ty

IP
v4 TCP 258, 315 217, 210 298,979 (38%) 244, 633 553, 097 4, 824(0.3%)

UDP 166, 492, 688 181, 610, 373 56,665,050 (14%) 190, 974, 279 38, 321, 129 2, 158, 933(0.9%)

IP
v6 TCP 1, 223 23, 080 5, 261(17%) 25, 525 1, 203 38(0.1%)

UDP 10, 989, 944 53, 592, 304 200, 323(0.3%) 54, 673, 191 7, 182, 025 207(0.0006%)

R
sr
ch
.
In
s.

IP
v4 TCP 25, 829 175, 786 18, 542(8%) 200, 269 28, 421 3, 375(1.4%)

UDP 48, 629, 262 53, 423, 998 1, 034, 531(1.0%) 59, 638, 578 22, 344, 154 2, 493(0.003%)

IP
v6 TCP 425 11, 445 14, 394(55%) 19, 708 338 274(1.3%)

UDP 5, 889, 648 14, 068, 272 82, 050(0.4%) 16, 455, 764 6, 502, 566 224(0.0009%)

Network Property

DNS packets can be carried by either TCP or UDP at the transport layer via IPv4

or IPv6 protocols. Table 3.1 summarizes the composition of DNS packets (in my

dataset) by their network properties.

Unsurprisingly, the majority of DNS packets are carried by IPv4 protocol, and it

is clear that the adoption of IPv6 in DNS communications has become non-negligible

in both organizations. I found that 21.03% and 21.84% of outgoing DNS packets in

the university and research networks, respectively, are IPv6, while this measure for

incoming DNS traffic of the two organizations is 13.78% and 16.26%.

Considering the transport layer, DNS over UDP seems to be default for enterprise

hosts, accounting for more than 99% of outgoing and incoming packets in both

organizations, while DNS over TCP is still staying minority (less than 0.3%). I note

that DNS occasionally uses TCP when the size of the request or the response is

greater than a single packet such as with responses that have many records or many

IPv6 responses.

Focusing on the correlation between DNS queries and responses, I highlight four

pairs of query/response in Table 3.1, as examples – each pair is color-coded for

identification. It can be seen that the number of outgoing queries is slightly higher
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than the number of incoming responses, suggesting unanswered DNS lookups made

by enterprise hosts (green and purple pairs in Table 3.1). I also observe that count

of incoming queries over IPv4 UDP is more than double the count of outgoing

responses in both organizations (e.g., red and yellow pairs in Table 3.1), highlighting

the prevalence of DNS scans and floods on enterprise networks. However, this is not

substantiated in IPv6 packets. Lastly, I note that in the university network, the

count of outgoing TCP-based responses over IPv4 is more than double the number

of their corresponding queries (the gray pair in Table 3.1), indicating non-negligible

malicious unsolicited IPv4 TCP responses generated by the internal university hosts

(e.g., involved in DNS reflection attacks).

I found that 9.82% and 0.54% of total DNS packets in the university and research

institute dataset, respectively, are malformed. These packets cannot be correctly

parsed as their DNS header information mismatched the payload content. There

are various reasons for having malformed DNS packets mentioned in [14, 195, 196]

such as malicious traffic crafted by attackers and packet truncation or distortion

during transmission. It can be seen that there are more malformed incoming packets

compared to outgoing packets, as highlighted by percentage values (computed per

row per direction) under malformed columns in Table 3.1.

Another observation is that malformed DNS packets are more likely carried over

TCP. For example, an inbound packet over IPv4 TCP in the university network is

malformed with a probability of 38%, while that is 14% over IPv4 UDP (bold text

in Table 3.1). Besides, when comparing the two organizations, I observed that the

university network sends more malformed packets in total fraction than the research

institution, particularly for outbound IPv4 UDP packets (0.9% versus 0.003% for the

university and the research institute, respectively). It indicates frequent malicious

activities originated from university hosts, as the university network is open and

less restricted, while the research institute does not allow BYOT (bring-you-own-

technology) devices and has strict enforcement for network security.
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Table 3.2: Functional properties of DNS packets.

Incoming Outgoing
IPv4 IPv6 IPv4 IPv6

U
n
iv
er
si
ty

Unanswered qry. 130, 683, 135 3, 813, 677 11, 431, 123 1, 105, 818

Unsolicited resp. 2, 039, 794 22, 486 2, 806, 358 5, 738

NameError pairs 7, 493, 599 1, 885, 742 5, 164, 713 1, 532, 410

Serv.Failure pairs 3, 897, 549 34, 643 1, 363, 391 112, 618

Qry.Refused pairs 24, 820, 580 16, 409, 541 2, 102, 724 26, 130

OtherError pairs 113, 291 90 794 0

Non-enterprise pairs 9, 153, 748 252, 860 178, 234, 417 53, 096, 280

Enterprise pairs 26, 914, 120 6, 924, 630 1, 553, 372 496, 618

R
es
ea
rc
h
In
st
it
u
te

Unanswered qry. 29, 159, 158 182, 886 9, 912, 604 2, 843, 892

Unsolicited resp. 3, 673, 541 448, 137 2, 876, 642 795, 717

NameError pairs 2, 730, 158 974, 480 3, 775, 508 1, 011, 591

Serv.Failure pairs 248, 275 19, 715 2, 389, 070 5, 601

Qry.Refused pairs 1, 390, 138 245, 390 781, 259 133, 599

OtherError pairs 17, 061 50 621 230

Non-enterprise pairs 2, 071, 310 558, 205 48, 754, 035 13, 275, 249

Enterprise pairs 17, 424, 623 5, 148, 982 1, 172, 208 356, 331

Functional Property

In terms of functional property, I categorize DNS packets into three clusters: (a)

unpaired packets (i.e., queries with no reply or responses without a corresponding

query), (b) DNS lookups with a reply containing errors, and (c) successful DNS

lookups.

Unpaired packets: This category is captured by two rows labeled as “unan-

swered qry.” and “unsolicted resp.” in Table 3.2. Unanswered queries (highlighted

by red cells in Table 3.2), carried over both IPv4 and IPv6, contribute to a large

fraction of total incoming DNS packets – 40.4% and 30.8% in the university and

research institute, respectively – this is due to frequent DNS scans and query floods

targeting enterprise DNS infrastructure. On the other hand, unanswered outgo-

ing queries only account for a relatively smaller fraction in each organization (i.e.,

2.4% and 7.9%). Moving to unsolicited responses, their fraction in both inbound

and outbound traffic are quite similar. This is mainly because of packet drop dur-
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ing transmission, misconfiguration of external DNS servers or DNS-based reflection

attacks from/to the enterprises [197],[198].

DNS lookups with error reply: Now I focus on the DNS lookups with error

replies, classified by their errorCode in the headers of response packets. Top 3 popular

error types in both enterprises are listed as NameError, ServerFailure and QueryRefused

in Table 3.2. Other minorities are combined as OtherError. NameError, also known as

Non-Existence Domain, are triggered if the requested domain name is not correct. It

might be because of typo errors from legitimate users or malicious queries sent from

malware-infected hosts as reported in [172, 179]. ServerFailure and QueryRefused

indicate that target DNS servers are not able to provide resolved answers for various

reasons such as zone restrictions or incorrect query formats. NameError is the most

popular reason for error responses of inbound and outbound DNS lookups in the two

enterprises, except for inbound traffic of university network, whose top error reason

is QueryRefused.

Successful DNS lookups: Given a successful pair of DNS packets (i.e., DNS

query-response pair with NoError flag), their requested domain names can be clas-

sified as either relevant (i.e., belong to services provided by the organization) or

irrelevant. For organizations running their authoritative name servers for their do-

main names, I expect that all inbound DNS lookups are relevant to the enterprise.

However, a non-negligible portion of inbound non-error DNS lookups asks for irrel-

evant domain names in both enterprises (21.7% and 10.4%, respectively). They are

likely to be malicious DNS queries involved in scans or floods; furthermore, improp-

erly configured DNS servers in the enterprise resolved those irrelevant questions.

Outbound DNS lookups for two organizations contain a tiny portion of questions

for the enterprise services (0.8% and 2.4%). As verified in my dataset, the top des-

tinations of those queries are public recursive resolvers such as 8.8.8.8 and 8.8.4.4

operated by Google. It shows some hosts (for some reason) bypassed the local DNS

caches, operational within each enterprise, by choosing public resolvers for their
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Table 3.3: Service properties of DNS packets in my dataset.

Incoming Outgoing
IPv4 IPv6 IPv4 IPv6

U
n
iv
er
si
ty

A pairs 19, 986, 211 3, 692, 671 111, 896, 351 29, 538, 537

AAAA pairs 7, 782, 897 2, 014, 541 32, 223, 426 6, 615, 980

PTR pairs 2, 927, 101 594, 635 24, 749, 068 15, 775, 549

MX pairs 1, 413, 019 210, 452 831, 571 192, 365

SPF pairs 43, 943 8, 600 109 28

TXT pairs 723, 796 64, 690 4, 415, 435 659, 723

CNAME pairs 79, 235 23, 408 11, 708 1, 693

SRV pairs 599, 022 197, 023 2, 678, 513 103, 494

SOA pairs 220, 711 88, 752 714, 524 299, 316

NS pairs 1, 057, 700 223, 808 727, 438 358, 427

ANY pairs 1,205,822 46, 315 114, 584 9, 592

Other pairs 21, 990 10, 305 1, 209, 553 3, 754

R
es
ea
rc
h
In
st
it
u
te

A pairs 7, 664, 442 1, 585, 811 21, 571, 867 6, 174, 823

AAAA pairs 2, 287, 039 755, 134 23, 774, 650 6, 107, 818

PTR pairs 7, 677, 620 2, 998, 552 2, 040, 424 599, 030

MX pairs 441, 075 117, 015 301, 651 84, 904

SPF pairs 3, 782 662 15, 974 3, 984

TXT pairs 120, 308 13, 198 1, 099, 786 342, 250

CNAME pairs 43, 399 5, 556 19, 933 116

SRV pairs 230, 046 33, 483 364, 039 79, 366

SOA pairs 222, 796 40, 515 0 0

NS pairs 683, 641 132, 410 532, 757 179, 340

ANY pairs 101, 867 23, 012 830 447

Other pairs 18, 054 988 1, 512 165

DNS server.

Service Property

Successful DNS lookups are asking for various types of services, such as IPv4 address

(A type), IPv6 address (AAAA type), and reverse lookup for domain names (PTR

type). Statistics for success inbound/outbound lookup pairs are shown in table 3.3.

I start with the popularity of successful lookup types in both networks. It is clear
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that for both organizations, requests for IPv4/IPv6 addresses and reverse lookups

for domain names are dominant types towards either inbound or outbound DNS traf-

fic. The corresponding texts are marked as blue in Table 3.3. Similarly, significant

amount of email-related (i.e., MX and SPF), text exchange (TXT), DNS service-related

(i.e., CNAME, NS and SOA) and location (SRV) lookups are also observed in both orga-

nizations. Besides, no outbound DNS lookup is observed for SOA (that asking for

authoritative information of a zone) in the research institute, while few outbound

lookups for SPF (requesting authorized email servers of a domain) were observed in

the university network.

I discovered the occurrence of DNS lookup types that are not suggested by the

industry. Although the deprecation of ANY type requests has been announced by

the networking community since 2019 [199][200] for their lack of legitimate purpose

and abundant misuse in reflection attacks, I still find a large number of ANY type

DNS lookups exist for the inbound traffic in both organizations, particularly for

the university network (marked as bold red text). Focusing on the outbound traf-

fic, university hosts sent out many such types of deprecated requests. In contrast,

hosts in the research institute rarely had such activities (relevant cells are marked

as red). Besides, many A6 (deprecated version of lookups for IPv6 address) and

NAPTR (mapping domain names to host URLs) are found in outbound requests in the

university network, respectively contributing to 0.15% and 0.31% of the total count

of outbound queries.

I now look at statistics of DNS lookups related to DNSSEC in both organizations.

DNSSEC [190] has been proposed for more than a decade to strengthen information

integrity of DNS data, prior measurement studies [182] on domain registrars resulted

that the adoption of such extension is still in early stage. Fairly similar observa-

tions were made in both networks, as there are 0.005% inbound lookups and 0.1%

outbound lookups are associated with DNSSEC services in the university campus,

including DNSKEY, DS, RRSIG, NSEC, NSEC3 and DLV. The fraction value of such inbound

60



Chapter 3. Analyzing Enterprise DNS Traffic to Classify Assets and Track
Cyber-Health

and outbound lookups for the research institute are 0.005% and 0.2%, respectively.

3.3.3 Profiling DNS Behaviors of Enterprise Hosts

Enterprises typically operate two types of DNS servers: (a) recursive resolvers are

those that act on behalf of end-hosts to resolve the network address of a domain name

and return the answer to the requesting end-host (recursive resolvers commonly keep

a copy of positive responses in a local cache for time-to-live of the record to reduce

frequent recursion), and (b) authoritative servers of a domain/zone are those

that receive queries from anywhere on the Internet for the network address of a sub-

domain within the zone for which they are authoritative (e.g., organizationXYZ.net).

In order to better understand the DNS behavior of various hosts (and their role)

inside an enterprise network, I divide the DNS dataset into two categories: (a) DNS

queries from enterprise hosts that leave the network towards a server on the Internet

along with DNS responses that enter the network, (b) DNS queries from external

hosts that enter the network towards an enterprise host along with DNS responses

that leave the network.

This analysis helps us identify important attributes related to host DNS behav-

ior, characterizing its type/function, including authoritative name server, recursive

resolver, or end-host inside the enterprise that may not always be fully visible to

the network operators. This also enables us to capture the normal pattern of DNS

activity for various hosts and identify the abnormal traffic status of DNS infrastruc-

tures.
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(a) Outgoing DNS queries.
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(b) Incoming DNS responses.

Figure 3.2: University campus: outgoing queries and incoming responses, measured
during 3 June to 9 June 2019.

Outgoing Queries & Incoming Responses

Fig. 3.2 shows a time trace of DNS outgoing queries and incoming responses for the

university campus3, with granularity over 10-minute intervals on a typical semester

week.

The university network handles on average 417 outgoing queries and 408 incom-

ing responses per second. As discussed in Table 3.1, 4.9% of outgoing queries are

“unanswered” (i.e., 12.5M out of 256.2M) during the week. In addition, 2.06% of

incoming responses to the university campus network (i.e., 2.1M out of 99.9M) are

“unsolicited” on the same day.

Query per host: I now consider individual hosts in each enterprise. Unsurpris-

ingly, the majority of outgoing DNS queries are generated by only two hosts, A and

B, in the network, i.e., 66.8% of the total in the university campus (shown by blue

and yellow shades in Figures 3.2(a)). These hosts are also the primary recipients of

incoming DNS responses from the Internet. I have verified with the IT department

of the enterprise that both hosts are primary recursive resolvers of this organization.

In addition to these recursive resolvers, I observe a number of hosts shown by red

3I omit results for the research institute in this section, as fairly similar observations were made.
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Figure 3.3: University campus: (a) CCDF of # unwanted (outgoing queries and
incoming responses) DNS packets and (b) their total fractions per host, measured
during 3 June to 9 June 2019.

shades in Fig. 3.2(a) that generate DNS queries outside of the enterprise network.

The 6,089 other University hosts in Fig. 3.2(a) are either: end-hosts configured by

public DNS resolvers that make direct queries out of the enterprise network, or sec-

ondary recursive servers operating in smaller sub-networks at the department level.

I found that 301 of these 6,089 University hosts actively send queries (at least once

every hour) over the day and contact more than 10 Internet-based DNS servers (re-

solvers or name-servers). These 301 hosts display the behavior of recursive resolvers

but with fairly low throughput; thus, I deem them secondary resolvers. The remain-

ing 5,788 hosts are only active for a limited interval (i.e., between 5 min to 10 hours)

and contact a small number of public resolvers (e.g., 8.8.8.8 or 8.8.4.4 of Google)

over the day.

Response per host: Considering incoming responses (Fig. 3.2(b) for the uni-

versity network), a larger number of “other” hosts in the organization are observed

– approximately 196K IPs that are about full 3 “/16” subnets owned by the uni-

versity. Most of these “other” hosts (i.e., 97%) are the destinations of unsolicited

responses, which indicates that either misconfiguration of external DNS servers, or

the university network is suffering from DNS reflections.
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Unwanted DNS packets per host: To better understand these potentially

abnormal unanswered outgoing queries, unsolicited incoming responses, and error

outgoing DNS lookups, I analyze their distribution among hosts in the two enter-

prises.

Fig. 3.3(a) shows the CCDF plot of the distributions per host for the university

campus. All enterprise IP addresses in my dataset received unsolicited responses,

and it is clear from the blue line that 99.9% of them are associated with 10 to 100

such packets – they did not have any outbound queries over the week. I observe that

the hosts that have sent outbound queries to the public Internet received more unso-

licited responses than those hosts that have never sent any DNS lookup. Outbound

unanswered queries and error lookups are more concentrated on a small fraction of

hosts, as shown in the tail of black and red lines. 2,140 and 1,812 (out of 6,091) hosts

sent unanswered or error lookups – possibly due to packet drop during forwarding,

typo-error of domain names, or malicious activities such as generating scans and

DoS attacks.

Unsurprisingly, the primary recursive resolvers in both organizations are top

sources and targets. In the University campus, hosts A and B respectively are

the sources 4M (33%) and 3M (25%) unanswered queries, 12M (22%) and 10M

(18%) error lookups, and are the destinations of 66K (3%) and 42K (2%) unsolicited

responses.

Traffic composition of each host: Now I consider the distribution of normal

outbound lookups, unanswered queries, error lookups, and unsolicited inbound re-

sponses within each host. Fig. 3.3(b) is the stack plot for the top 100 internal IP

addresses with the most number of outgoing lookups (more than 35K over a week)

with no error replies, and each bar represents an individual host. Seventy-three

of them have more than 80% normal DNS packets in their outbound queries and

inbound responses. The major unwanted DNS packet type is error lookups (red

shades), such as NameError, ServerFailure and QueryRefused. It might be because of
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Figure 3.4: University campus: incoming queries and outgoing responses, measured
during 3 June to 9 June 2019.

typo error in domain names or malicious DNS activities such as DoS attack or con-

tacting remote attackers using random domain strings [179]. Unanswered queries

(black shades) sent to external IP addresses that do not get a reply back are the

second popular reason. Especially for hosts 13, 14, 15, and 19 with 23.5%, 23.2%,

23.3%, and 50.1% such unwanted outgoing queries, respectively – they are likely

to be infected servers or host hackers that generating DNS scans or DoS attacks.

Besides, three university hosts (order 56, 60, and 62) are also suffering from many

unsolicited responses, occupying 9.29%, 3.96%, and 6.92% of their total number of

packets for outbound queries and inbound responses. They suffered from small-scale

DNS reflection attacks; for example, 99.04% unsolicited responses targeting host 56

are from only one recursive resolver configured by a private company located in

China.

Incoming Queries & Outgoing Responses

Enterprises commonly receive DNS queries from the Internet that are addressed to

their authoritative name servers.

It can be seen that two hosts of the University campus (i.e., hosts C and D
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Figure 3.5: University campus: (a) CCDF of # unwanted (incoming queries and
outgoing responses) DNS packets and (b) their total fractions per host, measured
during 3 June to 9 June 2019.

in Fig. 3.4(b)) are the dominant contributors to outgoing DNS responses – I have

verified (by reverse lookup) that these hosts are indeed the name servers of the

organization. Interestingly, for both organizations, I observe that a large number of

hosts (i.e., 197K IP addresses (shown by red shades in Fig. 3.4(a) for the university

network) receive queries from the Internet. Still, a significant majority of them are

unanswered (i.e., 75.6%). These hosts are supposed to neither receive nor respond

to incoming DNS queries, highlighting the amount of unwanted DNS traffic that

targets enterprise hosts for scanning or DoS purposes.

Unwanted DNS packets per host: To better understand hosts involved in

incoming queries and outgoing responses, I show the distribution of inbound unan-

swered queries, lookups replied with error responses and unsolicited outgoing re-

sponses from hosts inside the two enterprises.

Fig. 3.5(a) shows the CCDF plot of the distributions per host for the university

campus. More than 99% enterprise IPs (including unassigned IP addresses) received

unanswered queries from the Internet. As shown as the black line, almost all IPs

are targeted by a small number (i.e., less than 100) of such queries over a week –

it indicates active and frequent DNS scans toward the organization. Some internal
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hosts received a massive amount of inbound queries at a high packet rate, located

at the tail of the black line in Fig. 3.5(a), are likely to be victims of query flooding

attacks. For example, a mixed DNS server (i.e., performs as both authoritative

name server and local recursive resolver) operated by a school in engineering faculty

received 102M (75.5% of all unanswered incoming queries) lookups asking for non-

enterprise services such as “google.com” and “163.com”.

Moreover, 59 hosts sent unsolicited outbound responses (due to server miscon-

figuration, used as a reflector by internal attackers or packet drop); 47 hosts sent

responses with errors (due to typos in domain names by outside users or being as

victims in query-based attacks). In Fig. 3.5(a), the hosts that send unsolicited out-

bound responses are shown as blue dots, and the hosts that send responses with

errors are shown as red dots. The top 3 hosts that sent most of the unsolicited

responses (86.1%) are all servers operated by sub-department (verified by reverse

lookups), and the organizational IT department does not have knowledge and con-

trol over them, highlighting the security blind spots for a large enterprise network.

Traffic composition of each host: Now I look at the distribution of normal

inbound lookups, unanswered queries, outbound error lookups, and unsolicited re-

sponses within each host, as shown in Fig. 3.5(b) for 47 university hosts that sent

outbound responses. It is clear that only six hosts are associated with more than 80%

normal inbound lookup packets, and 45 hosts generated responses with error code

other than NoError. Interestingly, 2,083 out of 2,085 outbound responses from the

45th host are labeled as error lookups – it is likely to be an idle authoritative name

server, which received irrelevant questions such as “researchscan541.eecs.umich.edu”,

“www.qq.com” and “www.wikipedia.org” and respond with QueryRefused. Three hosts

(ranked 26, 27, and 44 in terms of the number of outgoing responses) are occupied

by more than 90% unsolicited responses. They are all operated by sub-departments

and are potential error-configured (such as unsynchronized timing) or reflecting DNS

responses for internal attackers, as I observed a significant amount of unsolicited re-
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sponses for question name miep under the deprecated service type ANY and other

irrelevant to the enterprise zone. Finally, three internal hosts suffered from a large

fraction (more than 50%) of unanswered queries, especially for the 7th host – it is

the mixed DNS server in engineering faculty as mentioned above, which was consis-

tently under DoS attacks by irrelevant queries. The exhaustion of server resources

led to it becoming unresponsive to most incoming queries (and only about 1% of

queries got answered, including relevant and irrelevant questions).

3.4 Classifying Enterprise DNS Assets

In this section, I first articulate key attributes that can effectively differentiate types

of DNS-related enterprise hosts (§3.4.1). I then develop a machine learning technique

to determine if an enterprise host with a given DNS activity is a “name server”,

“recursive resolver”, “mixed DNS server", or a “regular end-host” (§3.4.2). Finally, I

rank the enterprise DNS servers into “name server” and “recursive resolver” by their

importance, whereas mixed DNS servers are ranked in both types (§3.4.3).

My proposed system automatically generates lists of active servers into three cat-

egories located inside enterprise networks and rankings in terms of their name server

and resolver functionalities, with the real-time DNS data mirrored from the border

switch of enterprise networks. The system first performs “Data cleansing” that

aggregates DNS data into one-day granularity and removes unsolicited responses and

unanswered queries (i.e., step 1); then “Attribute extraction” in step 2 computes

attributes required by the following algorithms; “Server mapping” in step 3 clas-

sify DNS assets of various types; and finally “Server ranking” in step 4 ranks their

criticality. The output is a classification and a ranked order of criticality, which an

IT manager can then use to accordingly adjust management and security policies.
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3.4.1 Attributes

Following the insights obtained from DNS behavior of various hosts, I now identify

attributes that help automatically (a) map a given host to its function including

authoritative name server, recursive resolver, mixed DNS server (i.e., both name

server and recursive resolver), or a regular client; and (b) rank the importance of

DNS servers.

Dataset Cleansing

I first clean my dataset by removing unwanted (or malicious) records including unso-

licited responses and unanswered queries – it removes the large fraction of unassigned

or inactive IP addresses that are only associated with incoming DNS traffic. This

is done by correlating the transaction ID of responses with the ID of their corre-

sponding queries. In the cleaned dataset, incoming responses are equal in number

to outgoing queries, and similarly for the number of incoming queries and outgoing

responses.

Functionality Mapping

As discussed in §3.3, recursive resolvers are very active in terms of queries-out and

responses-in, whereas name servers behave the opposite with high volume of queries-

in and responses-out. Hence, a host attribute defined by the query fraction of all

outgoing DNS packets (qryFracOut) should distinguish recursive resolvers from

name servers. As shown in Table 3.4, this attribute has a value close to 1 for

recursive resolvers and a value close to 0 for name servers.

In addition to recursive resolvers, there are some end-hosts configured to use

public resolvers (e.g., 8.8.8.8 of Google) that have a non-zero fraction of DNS queries

out of the enterprise network. I note that these end-hosts ask a limited number of
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Internet servers during their activity period whereas the recursive resolvers typically

communicate with a larger number of external servers. Thus, I define a second

attribute as the fraction of total number of external servers queried (fracExtSrv)

per individual enterprise host. As shown in Table 3.4, the value of this attribute

for end-hosts is much smaller than for recursive resolvers. Similarly for incoming

queries, I consider a third attribute as the fraction of total number of external hosts

that initiate query in (fracExtClient) per individual enterprise host. Indeed, this

attribute has a larger value for name servers compared with other hosts, as shown

in Table 3.4.

Lastly, to better distinguish between end-hosts and recursive resolvers (high and

low profile servers), I define a fourth attribute as the fraction of active hours for

outgoing queries (actvQryOutTime). For each host, this attribute indicate the

fraction of time it sends outgoing queries. Regular clients have a smaller value of

this attribute compared with recursive resolvers and mixed DNS servers, as shown

in Table 3.4.

Importance Ranking

Three different attributes are used to rank the importance of name servers, recursive

resolvers, and (non-DNS) public-facing servers respectively. Note that I rank mixed

DNS servers within both name servers and recursive resolvers for their mixed DNS

behaviour.

For recursive resolvers, I use QryFracHost defined as the fraction of outgoing

queries sent by each host over the cleaned dataset. As for name servers, I use

RespFracHost as the fraction of outgoing responses sent by each host.
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Table 3.4: Samples of host attributes.

qryFracOut fracExtSrv fracExtClient actvQryOutTime
Univ name server (host C) 0 0 0.26 0
Rsch main name server 0 0 0.42 0
Univ recursive resolver (host A) 1 0.23 0 1
Rsch main recursive resolver 1 0.43 0 1
Univ mixed DNS Server 0.31 0.02 0.03 1
Rsch mixed DNS Server 0.23 0.0003 0.0013 1
Univ end-host 1 0.00001 0 0.041
Rsch end-host 1 0.00001 0 0.25

3.4.2 Host Clustering

I choose unsupervised clustering algorithms to perform the grouping and classifica-

tion process because they are a better fit for datasets without ground truth labels

but nevertheless exhibit a clear pattern for different groups/clusters.

Selecting Algorithms

I considered 3 common clustering algorithms, namely Hierarchical Clustering (HC),

K-means and Expectation-maximization (EM). HC is more suitable for datasets

with a large set of attributes and instances that have logical hierarchy (e.g., ge-

nomic data). In my case however, hosts of enterprise networks do not have a logical

hierarchy and the number of attributes are relatively small, therefore HC is not ap-

propriate. K-means clustering algorithms are distance-based unsupervised machine

learning techniques. By measuring the distance of attributes from each instance and

their centroids, it groups data-points into a given number of clusters by iterations of

moving centroids. In my case there is a significant distance variation of attributes

for hosts within each cluster (e.g., highly active name servers or recursive resolvers

versus low active ones) which may lead to mis-clustering.

The EM algorithm is a suitable fit in my case since it uses the probability of an in-

stance belonging to a cluster regardless of its absolute distance. It establishes initial

centroids using a K-means algorithm, starts with an initial probability distribution
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Figure 3.6: Elbow method: evaluating number of clusters.

following a Gaussian model and iterates to achieve convergence. This mechanism,

without using absolute distance during iteration, decreases the chance of biased re-

sults due to extreme outliers. Hence, I choose an EM clustering algorithm for “DNS

Host Clustering Machine”.

Number of Clusters

Choosing the appropriate number of clusters is the key step in clustering algorithms.

As discussed earlier, I have chosen four clusters based on my observation of various

types of servers. One way to validate the number of clusters is with the “elbow”

method. The idea of the elbow method is to run k-means clustering on the dataset

for a range of k values (say, k from 1 to 9 as shown in Fig. 3.6) that calculates the

sum of squared errors (SSE) for each value of k. The error decreases as k increases;

this is because as the number of clusters increases, the SSE becomes smaller so the

distortion also gets smaller. The goal of the elbow method is to choose an optimal k

around which the SSE reached its maximum absolute second order derivative, i.e.,

the curve point that SSE decrease most rapidly. In Fig. 3.6, the curve points are
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Table 3.5: University campus: host clusters (3 June 2019).

Count qryFracOut fracExtSrv fracExtClient actvQryOutTime
name server 24 0.0004 1e-5 0.03 0.04
recursive resolver 21 0.99 0.04 6e-5 0.77
mixed DNS srv. 22 0.57 0.008 0.01 0.64
end-host 2,518 1.00 3e-5 0.00 0.24

Table 3.6: Research institute: host clusters (3 June 2019).

Count qryFracOut fracExtSrv fracExtClient actvQryOutTime
name server 13 0.00 0.00 0.07 0.00
recursive resolver 25 1.00 0.03 0.00 0.86
mixed DNS srv. 2 0.81 0.05 0.04 0.54
end-host 245 1.00 5e-4 0.00 0.17

obtained at k=4 for both the university and the research institute, hence, four seems

to be a reasonable number of clusters for both organizations.

Clustering Results

I tuned the number of iterations and type of covariance for my clustering machine

to maximize the performance in both enterprises. Tables 3.5 and 3.6 show the

number of hosts identified in each cluster based on data from 3 June 2019. I also

see the average value of various attributes within each cluster. For the cluster of

name servers, qryFracOut approaches 0 in both organizations (some name servers

performed outbound DNS lookups for its own operational purposes), highlighting

the fact that almost all outgoing DNS packets from these hosts are responses rather

than queries, which matches with the expected behavior. Having a high number of

external clients served also indicates the activity of these hosts – in the University

campus and research institute respectively 24 and 13 name servers collectively serve

81.6% and 91% (i.e., 24×3.4% and 13×7%) of external hosts.

Considering recursive resolvers in Tables 3.5 and 3.6, the average QryFracOut

is close to 1 for both organizations as expected. It is seen that some of these

hosts also answer incoming queries (from external hosts) possibly due to their mis-
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configuration. However, the number of external clients served by these hosts is very

small (i.e., less than 5 per recursive resolver) leading to an average fraction near 0.

Also, looking at the number of external servers queried (i.e., fracExtSrv), the average

value of this attribute for recursive resolvers is reasonably high, i.e., 21 and 25 hosts

in the University and the research network respectively contribute to 83% and 89%

of total fracExtSrv – this is also expected since they commonly communicate with

public resolvers or authoritative name servers on the Internet.

Hosts clustered as mixed DNS servers in both organizations have a moderate

value of the QryFracOut attribute (i.e., 0.57 and 0.81 for the University and the

research network respectively) depending on their varying level of inbound/outbound

DNS activity. Also, in terms of external clients and servers communicated with, the

mixed servers lie between name servers and recursive resolvers. Lastly, regular end-

hosts generate only outbound DNS queries (i.e., QryFracOut equals to 1), contact a

small number of external resolvers, and are active for shorter duration of time over

a day (i.e., actvQryOutTime less than 0.5).

Interpreting the Output of Clustering

My clustering algorithm also generates a confidence level as an output. This can

be used as a measure of reliability for my classifier. If adequate information is

not provided by attributes of an instance then the algorithm will decide its cluster

with a low confidence level. The average confidence level of the result clustering

is 98.13% for both organizations, with more than 99% of instances classified with

a confidence-level of more than 85%. This indicates the strength of my host-level

attributes, enabling the algorithm to cluster them with a very high confidence-level.
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(a) Univesity campus.

(b) Research institute.

Figure 3.7: Hosts clustering results across 32 days.

Server Clusters Across 32 Days

I now check the performance of my clustering algorithm over 32 days. Fig. 3.7 shows

a heat map for clusters of servers. Columns list server hosts that were identified in

Tables 3.5 and 3.6 (i.e., 66 hosts in the University network and 40 hosts in the

research network). Rows display the cluster into which each server is classified. The

color of each cell depicts the number of days (over 32 days) that each host is iden-

tified as the corresponding cluster – dark cells depict a high number of occurrences

(approaching 32), while bright cells represent a low occurrence closer to 0.

In the University network I identified 25 name servers, shown by H1 to H25 in

Fig. 3.7(a); the majority of which are repeatedly classified as a name server over

32 days, thus represented by dark cells at their intersections with the bottom row,

highlighting the strong signature of their profile as a name server. An exception is

H25, which was only active for 7 days as name server and 1 day as end-host. It is an

IP addresses belonging to school of physics under department of science, as verified

by reverse lookups.

Among 21 recursive resolvers of the university campus, shown by H25 to H46 in
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Fig. 3.7(a); 7 of them (including hosts A and B in Fig. 3.2) are consistently classified

as recursive resolver, and the rest are re-classified as end hosts (due to their varying

activity). Lastly, 20 mixed servers, shown by H46 to H66 in Fig. 3.7(a), are classified

consistently though their behavior sometimes is closer to a end-host or a name server.

My results from the Research Institute network are fairly similar – Fig. 3.7(b)

shows that hosts H1-H13 are consistently classified as name servers, while hosts H14-

H38 are recursive resolvers and H39-H40 are mixes servers. Unlike the University

Campus, 9 recursive resolvers are classified as mixed-server from 1 to 6 days. They

are owned by business units in the organization, revealing the dynamicity of their

DNS infrastructures.

Clustering of End-hosts: NATed or Not?

Knowing whether an end-host is a standalone device or a NATed gateway that

represents multiple users is also important for enterprise network management. For

example, an IT department could block the Internet connectivity of a standalone

device that has anomalous activities, while such strict measure may not be suitable

for a NATed device since it also serves many benign hosts. To draw more insights

I further applied my clustering algorithm (using the same attributes introduced in

§3.4.1) to IP addresses of end-hosts, determining whether they are behind a NAT

gateway or not (i.e., two clusters: NATed and not-NATed). In both networks, all

WiFi clients are behind NAT gateways. Additionally, some specific departments

of the two enterprises use NAT for their wired clients too. I verified my end-host

clustering by reverse lookup in the respective enterprise network. Each NATed IP

address has a corresponding domain name in specific forms as configured by IT

departments. For example, the University campus wireless NAT gateways are with

their domain-names as “SSID-pat-pool-a-b-c-d.gw.unsw.edu.au”, where “a.b.c.d” is

the public IP address of the NAT gateway, and “SSID is the the WiFi SSID for the

University campus network. Similarly, in the Research institute, NAT gateways
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Figure 3.8: CCDF: fraction of active hour per day for NATed and not-NATed end-
host IP addresses.

use names in the form of “c-d.pool.rsch-primary-domain” where “c.d” is the last two

octets of their public IP addresses.

On 3rd June 2019, my end-host clustering shows that 337 and 42 of end-hosts

IP addresses are NATed in the University campus and the Research institute, re-

spectively. I note that the two clusters of end-hosts are distinguished primarily by

two attributes, namely actvTimeFrac – a NATed IP address (representing a group

of end-hosts) is expected to have a longer duration of DNS activity compared to

a not-NATed IP address (representing a single end-host), as illustrated in Fig. 3.8;

and numExtSrv – a NATed IP address is expected to have more than one queried

public DNS resolvers, as it represents many individual hosts each connected with

their selected resolvers on the Internet. All classified not-NATed hosts contacted

less than 10 external DNS servers in both organizations during 3rd June, while 54%

and 26% NATed IPs in the university and research institute queried more than 10

public servers.

I verified their corresponding domain names configured by their IT departments.

Some IPs with domain-names of NAT gateways are incorrectly classified as not-

NATed end-hosts. This is because their daily DNS activity was fairly low, i.e., less

than an hour with only one external resolver contacted. On the other hand, not-
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NATed end-hosts with long duration of DNS activity (i.e., almost the whole day)

were misclassified. Verifying end-hosts classified as NATed, 77.2% of them in the

University campus and 75.0% in the Research institute have corresponding domain-

names as for NAT gateways allocated by IT departments. For end-hosts classified

as not-NATed, 91.1% and 93.6% in the respective two organizations do not map to

any organizational domain-names.

Looking into the consistency of end-hosts clustering across 32 days, I note that

more than 90% end-hosts in the University campus are consistently labeled as NATed

over 7 days (as show in Fig. 3.9(a)). 52% end-hosts are classified as NATed from 7

days to 15 days. Those IP addresses are owned by sub-departments in the university,

and re-shuffled within their subnets by the organizational DHCP servers periodically.

As for the University IP addresses get classified as not-NATed (e.g., desktops with

public IP addresses through wired connection), majority (63%) of them only appear

once during 32 days. It is because of their low-profile activities and daily IP re-

shuffling.

Similar observations were obtained from the research institute (shown in Fig. 3.9(b)),

except that there are five IP addresses appeared as NATed across the 32 days –

they belong to IT infrastructures controlled by critical scientific basements such as

Australia Telescope National Facilities, which are separated controlled with more

freedom thus not affected by periodically DHCP reallocation.

IT Verification

The IT department in both organizations verified the top-ranked DNS resolvers

(two in the University and one in the Research Institute) and name-servers (two in

the University and one in the Research Institute) found across the 32 days, mean-

ing 100% accuracy for ground-truth DNS assets, as they are directly configured

and controlled by the IT departments. Additionally, as will be discussed next in
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Figure 3.9: CCDF: Consistency of end-hosts clustering across 32 days.

§3.4.3, my method revealed unknown name servers, recursive resolvers, and mixed

DNS servers configured by departments of the two enterprises (I verified their func-

tionality by reverse DNS lookup and their IP range allocated by IT departments).

Interestingly, 3 of the name-servers my method identified were involved as reflectors

in a DNS amplification attack, and IT was able to confirm that these were managed

by affiliated entities (such as retail stores that lease space and Internet connectivity

from the University) - this clearly points to the use of my system in identifying and

classifying assets whose security posture the network operators themselves may not

have direct control over.

3.4.3 Server Ranking

My system discovered 46 authoritative name servers and 43 recursive resolvers in

the University (a mixed DNS server are treated as both name server and recursive

resolver), and 15 authoritative name server and 27 recursive resolvers at the Research

Institute. However, only 6 top ranked DNS servers, in each organization, contribute

to more than 90% of outgoing queries and responses. Servers ranking provides

network operators with the popularity of their DNS assets.
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3.5 Monitoring DNS Asset Health

Having shown how DNS assets in an enterprise network can be identified and classi-

fied based on their network behavior, I now extend the study to monitor their health

on a continuous basis. The objective is to detect anomalous behavior, indicating

that the asset is being misused or attacked, and identify the root cause of such

deviations in behavior. I begin in §3.5.1 by providing two examples of observable

anomalies from my dataset – one attributable to poor configuration, and the other

subject to a DDoS attack. Inspired by these examples, in §3.5.2 I suggest a set of

health metrics that can track the behavior of each asset along various dimensions,

and in §3.5.3 develop a method to label and alert anomalous behaviors based on

these continuous health tracking metrics. Finally, in §3.5.4 I apply my methods to

the 32-day dataset from the two organizations and present results into misuse and

attack patterns detected by my methods.

3.5.1 Examples Illustrating Anomalous DNS Asset Behavior

By manually inspecting my dataset, I could identify several behavioral patterns that

seemed unusual. Therefore, I begin by providing a couple of illustrative examples

of anomalous behavior and subsequently develop methods to automatically detect

misbehaviors by tracking various health metrics.

Example 1 – DNS misuse: I found that one of the Authoritative DNS Severs

from the Research Institute dataset was responding with an unusually high number

of “NXDOMAIN” messages. Upon investigation, I found that it was being queried with

names that were irrelevant to the organization, e.g., “www.taobao.com”. In fact 31.8%

of DNS queries to this server were irrelevant to the organization, yet it was respond-

ing; a further 14.2% were malformed (e.g., “com”), to which the server was responding

with the “NXDOMAIN” message. This obviously represents a poorly configured server
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that is readily responding to every irrelevant and malformed query, rather than just

the domains it is authoritative for – this exposes the server for attckers to launch a

denial-of-service attack, or to use it as a reflector for attacking others.

Example 2 – DNS flood attack: I found one of the Authoritative DNS Servers

in the University dataset to show a sustained 142% increase in inbound query rates

over a 10-day period (7-Jun 0:17AM till 17-Jun 4:43PM). Upon closer inspection, I

noted 3.3M queries, all with the same query name “aids.gov”, had come during this

period from 974 external sources – typically each external source launched around

300 queries within a 20 second period, and then went idle. The DNS server was

unable to keep up with the high rate of requests, and was able to service only about

70% of incoming queries. Further, 40.9% of the responses during this period were

irrelevant to the organization, while 21.6% were with the “NXDOMAIN” error.

3.5.2 DNS Traffic Health Metrics

Having seen some examples of poor behavior from DNS servers, I now propose several

metrics that can be used to track the health of each DNS asset in the organization.

I categorize them into service, functional, network, and volumetric behaviors.

Service behavior: From a border perspective, authoritative name servers are

expected to only serve DNS queries seeking to resolve domains relevant to the en-

terprise. Conversely, recursive resolvers should only send outbound queries for do-

mains outside of the enterprise – queries for internal domains are internally sent

to the enterprise authoritative name servers without crossing the network border.

We therefore define Non-Enterprise Lookup Fraction (NELF) as the fraction of query

names that are irrelevant to the enterprise services. A properly configured author-

itative name server should have NELF of 0, while for a recursive resolver this metric

should be 1.
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Functional behavior: Under ideal conditions, responses of a properly func-

tioning DNS server are expected to carry “NoError” as response code. However, a

DNS query may fail due to some errors, such as the domain name queried does

not exist, an answer cannot be given, or the server refuses to answer due to policy.

Therefore, we define Lookup Error Fraction (LEF) for a DNS server as the fraction of

its responses that carry an error code – a value significantly larger than 0 indicates

potential misbehavior.

Network behavior: Under normal circumstances a query is associated with

a response. However, the network trace often reveals inbound responses with no

outbound queries (e.g., a reflective attack to a victim whose IP address was spoofed),

as well as outbound queries with no inbound response (e.g., a malicious internal host

launching a DoS attack via the DNS cache/proxy). To track such anomalous network

behavior, we define the Query Service Ratio Inbound (QSRI), i.e., ratio of outbound

responses to inbound queries, and Query Service Ratio Outbound (QSRO), i.e., ratio

of inbound responses and outbound queries. All DNS assets should ideally have these

two metrics as 1, showing the balanced profile of queries and responses.

Volumetric behavior: Sudden increases in the rates of DNS packets can in-

dicate that enterprise assets are being targeted by attacks. I therefore track the

inbound and outbound rates of queries and responses for each DNS asset over

each epoch (of one hour), respectively QryRateIn (QRI), RespRateOut (RRO), QryRateOut

(QRO), and RespRateIn (RRI), and flag those epochs in which the rate shows an increase

above a prescribed threshold value (discussed below), which could be indicative of

volumetric attacks.

3.5.3 Using Health Metrics to Detect Anomalies

Using the health metrics identified above, I build a simple mechanism to detect and

alert various anomalous behaviors of DNS assets. The set of anomalies I consider in
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Figure 3.10: Some examples of my observed DNS anomalies and their related traffic
health alerts.

this chapter, illustrated pictorially in Fig. 3.10, include:

• Misconfiguration: Consider an authoritative DNS server that has been

poorly configured and resolves queries for domains that it has no authority

over (i.e., do not belong to the enterprise). The exploitation of this by at-

tackers (e.g., as a reflector) will manifest in an alert when the NELF metric

becomes high, while LEF could also be high (in case the queries are malformed

or non-existent). Conversely, a misconfiguration alert is triggered when the

NELF metric falls below a threshold value for a poorly configured recursive

DNS resolver.

• DDoS Attack: A distributed denial-of-service attack on an enterprise DNS

server will manifest in the form of a volumetric rise in QRI, potentially accom-

panied by a high value in NELF and/or LEF. Most queries in DDoS attacks

tend to be either fixed or random domains instead of customizing query names

specific to the victim enterprise.

• Reflection attack: An inbound reflection attack on an enterprise asset usu-

ally targets the DNS cache/proxy, by bombarding it with unsolicited traffic.

This will manifest in the form of a rising incoming response rate (RRI), as well

as low ratio of outbound queries to incoming responses (QSRO).
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• DNS exfiltration: An infected enterprise host that is trying to exfiltrate

data via DNS will cause the QRO to rise, potentially accompanied with unan-

swered queries (rise in QSRO) and/or lookup errors (rise in LEF). These can

be used as triggers to conduct deeper investigation into exfiltration, e.g., using

my method in [201]. One may argue that QRO is expected to be relatively

high for legitimate recursive resolvers. Therefore, we infer from a combina-

tion of metrics, each with specific thresholds (value ranges) to cater for some

reasonable deviations (discussed in §3.5.4).

• Scans: Presence of malware in the enterprise that performs outbound scans

can be detected by monitoring for a rise in outbound queries (QRO), poten-

tially accompanied with unanswered queries (rise in QSRO) and/or lookup

errors (rise in LEF).

In what follows I continuously track the health metrics of the various DNS assets

identified in the two enterprise networks by my earlier clustering algorithm, and

evaluate my ability to identify anomalous behaviors indicative of misconfigurations

and/or attacks. Note that our proposed metrics and alerts from DNS behavioral

monitoring could be consumed by SIEM platforms and/or combined with security

appliances to verify whether an enterprise host is indeed involved in malicious com-

munications or not. Such combined inferences are beyond the scope of this thesis.

3.5.4 Insights in two Enterprise Networks

I applied the proposed traffic health metrics to my 32-day DNS traces captured

from both organizations, comprising the assets as identified earlier in Tables 3.5

and 3.6 for the University (67 DNS assets) and Research Institute (40 DNS assets)

respectively. The metrics are computed each epoch (of one hour), and my first

step is to identify epochs wherein the health metrics deviate significantly from their

expected values. In general, DNS assets in the University raise more alerts than
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Table 3.7: Alerts and occurrence frequency (in the fraction of epochs) for my two
example DNS assets.

Direction Profile Alert Example 1 Example 2
Inbound ↓ Service high NELF 83.7% 85.6%
↓ Functional high LEF 6.6% 0.1%
↓ Network low QSRI 94.5% 15.6%
↓ Network high QSRO 0.1% 0.3%
↓ Volmetric high QRI 0.0% 29.7%
↓ Volmetric high RRI 5.1% 9.8%

Outbound ↑ Service low NELF 0.0% 0.0%
↑ Functional high LEF 100.0% 20.2%
↑ Network high QSRI 0.8% 0.3%
↑ Network low QSRO 0.0% 84.4%
↑ Volumetric high RRO 5.6% 7.7%
↑ Volumetric high QRO 1.0% 31.1%

the research institute. In order to limit the number of alerts, I choose a margin

value that is at the elbow points in a curve, which is at around the 30% mark.

This is also consistent with the threshold values used by many state-of-the-arts

security appliances, e.g., from Palo Alto [202], Fortinet [203] and Cisco [204]. While

organizations are free to tune the threshold alerting values for each health metric to

suit their environments, in this work for simplicity I will maintain it at 30%. In what

follows I first examine two DNS assets that exhibited high rates of alerts (as shown

in Table 3.7), followed by a general overview of alerts across the two organizations. I

then design an inference engine that combines the health metric alerts and deduces

the nature of the underlying anomaly causing these alerts using the relationships

identified earlier in §3.5.3.

Example 1: A DNS server in the University Law Department serves as both

authoritative name server and recursive resolver. It exhibited unhealthy elevated

NELF metric for 83.7% of epochs, and unhealthy depressed QSRI for 94.5% of

epochs, indicating its misconfiguration was being exploited by attackers for a

potentialDDoS attack. Queries for “d.c.b.a.in-addr.arpa” were coming from many
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Table 3.8: DNS anomalies considered in this chapter and their indicative alerts and
required post-hoc analysis.

DNS Anomaly Type Indicative Alerts Post-hoc Analysis
A1: Misconfiguration ↑ NELF & LEF None
A2: Query DDoS ↑ QSRI & QRI Flow profile
A3:Response DDoS ↓ QSRO & ↑ RRI Flow profile
A4: Attack reflector ↑ QRI & RRO Flow profile
A5: Generating scan ↑ LEF & ↓ QSRO Flow profile
A6: Data exfiltration ↑ LEF & QRO & ↓ QSRO Query content

A4’: Reflector (after fix) ↑ QRI & RRO Flow profile

external IP addresses, and the server was responding to a vast majority (over 90%)

of them, thereby wasting its resources. The asset also exhibited many epochs (6.6%)

of unhealthy LEF metric, indicating that it might proxy scans. On 29-Jun, this

server sent queries to 131 external IP addresses, of which 18 responded – this asset

is likely being utilized as a proxy to perform slow reconnaissance scans to discover

availability of DNS servers on the Internet.

Example 2: A DNS server in the University Engineering Department also ex-

hibited many inbound health alerts, such as high NELP for 85.6% of epochs, low

QSRI for 15.6% of epochs, and high QRI for 29.7% of epochs. Investigation con-

firmed that it was misconfigured and exploited by attackers using it to launch

reflection attacks with queries for domain names such as dnsscan.shadowserver.org,

researchscan541.eecs.umich.edu, and nil. The sever was also giving outbound health

alerts for high LEF, QSRO, and QRO, indicating a potential for DNS exfiltration.

Indeed, my post-hoc analysis showed that on 30-Jun it sent out 709K DNS queries

with pattern SARICA[10digits].com towards an IP address in Turkey, and on the next

day, another 964K DNS queries to the same server with pattern akbank[9digits].com.tr

– the random 9 or 10 digits very likely encode exfiltrated data as highlighted in [201].

Alerts across the two organizations: Certain DNS assets – 35% in the

University and 13% in the research institute – were consistently flagged by alerts

in each epoch. These turn out to be largely Authoritative DNS servers that are
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Figure 3.11: Severity of DNS anomalies of each enterprise asset in both organiza-
tions.

publicly facing, and hence exposed to inbound DNS attacks (interesting, most of

these were managed by sub-departments or third-parties, rather than central IT in

the organization). Recursive resolvers in both organizations raised relatively fewer

alerts, typically in QRO and RRI during some epochs.

Inferring anomalies from alerts: Tracking the health metrics (aka “symp-

toms”) allows us to make inferences about the underlying anomalies (aka “diseases”).

I built a simple inference engine using the Codebook Correlation technique used ex-

tensively in Network Management for event correlation [205]. A causality graph was

built as per Fig. 3.10, a codebook correlation model was derived, and then “alerts”

from the 32-day dataset were looked up in the codebook to determine the underlying

“anomaly”. The outcomes, in terms of the health of the DNS assets across the two

organizations, are shown in Fig 3.11.

My first observation is that misconfiguration is a significant problem across both

organizations – 56% and 33% of DNS assets in the University and research institute,

respectively, serve DNS queries not relevant to the enterprise. This is a serious

concern – Authoritative DNS servers are resolving non-enterprise queries and thereby

being exposed to random queries, which can lead to denial-of-service; while recursive
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resolvers are resolving queries for non-enterprise hosts, thus being made available

to attackers as reflectors for DDoS attacks on spoofed victims. Indeed, my analysis

shows that if these DNS configurations were to be rectified, the number of DNS

assets being used as reflectors falls from 25% to 3% in the University, and from 20%

to 0% in the Research Institute (as shown in the rightmost bar of Fig 3.11).

The second most significant concern is that there is evidence of scans emanat-

ing from both organizations, as indicated by epochs of high lookup failures (LEF)

and low success of responses (QSRO). These indicate that there is malware lurk-

ing within the organizations that is using DNS to perform scans on other Internet

hosts. Identifying malware-infected hosts would require access to traffic within the

organization, which is beyond the scope of this chapter.

Finally, I note that there are epochs with evidence of DNS data exfiltration from

the University network. Again, knowing the hosts complicit in this requires analysis

of traffic within the organization (my traffic feed at the border does not tell us which

internal host made the DNS request to the organizational cache/proxy), which is

beyond the scope of this chapter. Similarly, a few assets in the Research Institute

are occasionally launching DDoS attacks on external victims.

While I do not intend to diagnose every DNS problem, it is continuously assessing

the health of each DNS asset in the organization, and flagging potential issues that

can be investigated further by the network operator, providing them actionable

intelligence to rectify misconfigurations, amend firewall policy rules, rate-limit query

rates, etc., to better protect their assets.

3.6 Conclusion

Enterprise networks are often vulnerable to DNS-based cyber attacks due to insuf-

ficient monitoring of DNS traffic. In this chapter, I have developed methods to
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classify enterprise assets and continuously track their cyber-health by passively an-

alyzing DNS traffic crossing the network border of an organization. I performed

a comprehensive analysis of DNS packets from two large organizations to identify

asset profiles by network, functional, and service characteristics. I highlighted the

behavior of enterprise hosts, either benign and anomalous. I then trained unsu-

pervised machine learning models by DNS traffic attributes that classify the DNS

assets, including authoritative name server, recursive resolver, mixed DNS server,

and end-hosts behind or not behind the NAT. Lastly, I developed metrics to track

the cyber health of enterprise DNS assets continuously. I identified several instances

of improper configurations, data exfiltration, DDoS, and reflection attacks. Results

of my real-time application have been verified with IT departments of the two orga-

nizations while revealing unknown knowledge that helps them enhance their security

management without incurring risks and excessive labor costs.
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Enterprise networks continue to grow in scale and complexity, encompassing a

wide range of connected end-points including web servers/proxies, DNS servers/proxies,

VPN/mail servers, and other special-purpose devices. Monitoring this dynamically

evolving set of assets, for the purposes of ensuring operational efficiency as well

as cyber security, poses a significant challenge for IT personnel. In this chapter I

develop, prototype, and evaluate a system that automatically identifies and classi-

fies enterprise connected assets in a continuous manner by analyzing their network

activity, thereby reducing blind spots for organizational IT departments.

My contributions are three-fold: (1) I conduct off-line analysis on traffic traces

of over 3 billion packets taken from a large enterprise network to deduce fine-grained

behavioral profiles of the most popular asset types like website servers, DNS servers,

and file storage systems and transport-layer communication patterns of less popular

ones such as non-standard TCP/UDP servers, proxies, and NAT gateways; (2) I

systematically develop host-level behavioral attributes, train multi-class classifiers

in a multi-grained classification scheme to categorize connected assets, and evaluate

them via cross-fold validation as well as open set to demonstrate overall accuracy

of more than 98%; and (3) I prototype my system using software-defined networks,

deploy it to operate for a month on multiple 10Gbps Internet links of a real enterprise

network, and present insights such as the ability to identify hundreds of typical

servers and their utilization, as well as thousands of non-typical assets, and highlight

anomalous behaviors pertinent to possible cyber-threats. My solution provides a

dynamic and scalable way for IT personnel to reduce their blind spots in effectively
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tracking enterprise assets.

4.1 Introduction

Enterprise networks host a variety of connected devices ranging from website servers,

web proxies, DNS proxies, mail servers, and VPN servers to remote computing plat-

forms and desktops. Organizational IT departments struggle to keep track of their

complex environment [163, 206], which continuously evolves as assets get decommis-

sioned, and new ones are added. Consequently, it is common for organizations to

be unaware of under-utilized and orphaned assets contributing to operational inef-

ficiencies, as well as diverse device-specific vulnerabilities exposing the organization

to cyber threats. First-hand experience has shown that the problem is particularly

acute in Universities, wherein connected assets are managed in a loosely federated

manner across departments. For instance, the requirements of research groups limit

the ability to enforce a standard operating environment (SOE), and the culture

is attuned to staff and students connecting their own devices into the campus net-

work. These blind spots have handicapped IT departments and exposed Universities

to cyber-risks ranging from malware and botnets to reflection-based DDoS attacks

[207].

Maintaining an up-to-date inventory of connected assets is very challenging in

practice. Manually updated spreadsheets become obsolete very quickly and are

rarely synchronized across IT team members, let alone across the organization (for

example, Facilities Management in my University deploys security cameras and

smart monitors, and IT only finds out later). Enterprise IT managers have built

home-grown tools to track assets by ingesting logs from various network services

like DHCP servers, RADIUS authentication servers, DNS servers, firewalls, and

web proxies; however, each of these provides a narrow and independent view of

the connected assets [208, 209], leaving many hosts undiscovered. This can be very
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problematic, given that enterprise operators largely rely on device-specific rules (e.g.,

access control lists) on their border security appliance (e.g., firewall) to protect their

assets, and having blind spots in their assets inventory can result in exposing a large

attack surface [163, 210, 211].

Prior research works on classifying connected hosts and monitoring their behav-

ioral patterns have relied on either: (a) processing packet contents for “signatures”

[97, 212, 213]; or (b) deducing end-to-end communication graph patterns to iden-

tify host types by correlations of networked entities [64, 70, 75, 76, 214–217]. With

the increasing adoption of packet encryption, packet content inspection is becom-

ing infeasible. With enterprise assets numbering tens of thousands and traffic rates

growing to tens of Gbps, construing a reliable graph structure of all communica-

tion flows between internal hosts, and external services can be computationally very

expensive.

Therefore, in this chapter, I propose a new method that leverages programmable

networks capability and data-driven learning algorithms to analyze network traf-

fic in real-time. Specifically, my method: (1) captures transport-layer behavior for

all enterprise hosts without any packet content inspection, and analyzes these to

classify with high confidence a vast majority of assets that exhibit well-known be-

havioral patterns; and (2) conducts a deeper investigation of only a small dynamic

subset of hosts exhibiting unfamiliar behavior to identify their non-standard roles

(such as a web server using non-typical ports). My approach has the advantage

of being encryption-resistant, scalable, and easy to deploy without putting network

operations at risk. My work makes three specific contributions elaborated below:

First, by analyzing a large representative traffic trace of over 3 billion packets

collected from a University campus network, I summarize the typical network behav-

ior of the ten most common host types in an enterprise network, such as web server,

mail server, and DNS server. I identify the presence of non-typical hosts such as

servers that use less common protocols or non-standard services (ports), and hosts
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that serve multiple purposes. I further categorize enterprise hosts into six coarse-

grained types based on their distinct transport-layer behaviors, including: TCP- and

UDP-based public-facing servers that provide enterprise content to external users;

TCP- and UDP-proxies that act as relays (e.g., for DNS and HTTPS); NAT gate-

ways that represent internal clients with private IP addresses; and end-hosts that

have unique public-facing IP addresses.

Second, I develop a multi-grained classification scheme that uses a rich set of

host-level attributes and supervised machine learning (ML) models to deduce the role

of enterprise hosts. To this end, I first systematically profile host network behavior

using a host-specific rooted-graph structure and identify descriptive attributes of

network behaviors. I then optimize my data structures and behavioral attributes by

balancing their predictive power against computational cost. I lastly develop ML

models by tuning various algorithms, model parameters, input attribute sets, and

retention periods. My fine-grained model classifies enterprise hosts into N common

specific types (N = 10 in my use-case), and the coarse-grained model classifies

hosts into six generic types labeled by their dominant services, highlighting their

functionality. Well-tuned models yield a high accuracy (close to 99%) in cross-fold

validation while providing cost- effectiveness (scalable and practical).

Third, I prototype my system using a commodity programmable hardware

switch and virtual network functions (VNF) on a generic server. I deploy it at

the edge of my University campus network, and highlight insights obtained over a

one-month trial period. My system was able to uncover over 300 web servers, along

with several DNS servers, mail servers, NAT gateways, and proxies. Additionally,

my system was able to detect unexpected behavior from several assets indicative of

scans and malware, though a deeper study of these is beyond the scope of this thesis.

I also profile the performance of my solution in terms of CPU and memory usage,

responsiveness, and inspection load, validating that the system can easily scale to

large enterprises.

94



Chapter 4. Classifying and Tracking Enterprise Assets via Network Behavioral
Analysis

The rest of this chapter is organized as follows: §4.3 describes insights from my

analysis of a traffic traces of over 3 billion packets captured from the Internet bor-

der router of my university campus network. In §4.4 I describe attribute extraction,

machine learning model training, and my multi-grained scheme for enterprise host

classification based on network behavior. Prototype design, development, and eval-

uation is described in §4.5. Prior work is summarized in §4.2, and the chapter is

concluded in §4.6.

4.2 Related Work

I now discuss prior works on topics, including analysis of network traffic, classifica-

tion of host behaviors, and systems with programmable networks, highlighting the

novelty of my work.

4.2.1 Analysis of Network Traffic

Analysis of network traffic has been a hot topic for more than two decades. Port-

based analysis methods [218, 219] that map traffic type by source/destination transport-

layer port numbers are widely used in many commercial solutions, for its low compu-

tational cost and high accuracy in identifying certain application types and servers

like website (HTTP/HTTPS) and name resolutions (DNS). However, with the com-

plexity of modern applications and host roles in using a variety of transport services

[220], purely port-based approaches fall short in effectively classify all hosts in an

enterprise network. Analysis of network traffic using statistical methods such as

machine learning is increasingly gaining interest from the research community [221–

223]. Several works have been done in detecting and classifying various types of

traffic such as video streaming [224], coflows from cloud computing [225], DNS [2],

and email service [226].
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4.2.2 Classification of Host Behaviors

There are many research works on classifying host types [64, 70, 75, 76, 214, 217,

227]. Work in [70] constructed networked graphs that represent interconnections

between hosts; G. Tan et al. [215] proposed two effective algorithms in obtaining

the similarity between host communication patterns to identify their social groups;

and BLINC [64] classified host types using flow statistics to summarize host roles

including attackers and victims in cyber-crimes. Authors of [76] utilized a stochastic

block model to identify pattern changes in the networked graph of host connections

for potential anomalous changes. Baywatch [228] identified malware-infected hosts

in an enterprise network by analyzing their beaconing behavior (the process for

infected hosts communicating with remote Command-and-Control servers). Beehive

[216] performed large-scale analysis on logs collected from key IT infrastructures

such as DHCP servers, VPN gateways, and web proxies to detect suspicious host

activities.

4.2.3 Systems with Programmable Networking

Software-define and programmable networking techniques (i.e., SDN and NFV) have

been employed to address various research problems such as dynamic telemetry and

security enforcement [125]. Their use-cases range from measuring network-wide

flow-level statistics elastically [229, 230], satisfying operators’ dynamic needs for

network telemetry via general-purpose query-driven system [86], identifying and

fingerprinting specific network traffic like video streaming [224, 231] to detecting

network attacks and threats reactively [11, 140, 232].
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4.2.4 My Key Novelty

My first key novelty stems from profiling the network behavior of hosts by a rich,

cost-effective, and descriptive graph structure and attributes. Prior works use graphs

with nodes identified by either only IP addresses [70, 75, 76, 214, 227] to discover the

relationship across network hosts, or both IP addresses and port numbers (services)

but simple edge attributes representing their connectivity [64]. To comprehensively

characterize the network behavior of connected hosts (assets), I develop a 4-layer

rooted-graph structure with nodes representing internal/external active hosts (IP

addresses) and services (transport-layer port numbers) interconnected by attributed

edges of inbound/outbound packets and flows. A total of 256 attributes are identified

from this graph structure that collectively profile the behavior of connected hosts. I

optimize my data structure and attributes by selecting 36 cost-effective yet predictive

attributes and reducing the complexity of graph structure to two sub-graphs (each

two-layer) to achieve both effective and scalable classification.

My second key novelty is the multi-grained inference scheme. Existing traffic

classification methods focus on detecting certain applications (e.g., video streaming

[231]), discovering social relationships (e.g., hosts that contact similar set of servers

[215]), identifying certain popular host types (e.g., website server, gaming server,

P2P server [64]), or classifying host types that have fairly static and simple behav-

ioral profiles (e.g., IoT devices [47]). The inference scheme not only identifies known

specific host types (N fine-grained classes) of an enterprise network, but also classi-

fies non-typical unknown host types by six generic classes labeled by their dominant

services. The coarse-grained model enables enterprises to detect emerging classes of

assets on their network, potentially extending their fine-grained model. With this

approach, every host is continuously classified, and the quality of network visibility

can be dynamically adjusted by customizing the N-class fine-grained classifier.
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Table 4.1: Summary of one-hour traffic trace data.

TCP packets UDP packets Internal hosts External hosts
In↓ 908,836,429 225,435,536 217,708 462,573
Out↑ 1,118,082,263 440,546,587 21,258 294,279

4.3 Understanding Network Behaviors of Enterprise

Hosts

By analyzing one-hour traffic trace captured from two (one inbound and one out-

bound) 10 Gbps Internet border links, in this section, I: (a) highlight traffic statistics

at the border of enterprise network in terms of distribution of inbound/outbound

TCP/UDP traffic across the entire IP block of my organization and the variety of

network services1 (by transport-layer protocols and port numbers) on which inter-

nal hosts offer/access; (b) summarize network behavioral patterns of ten types of

common enterprise networked assets (hosts) including website server, authoritative

name server, VPN server, remote computing server, file storage server, email server,

website proxy, recursive domain name resolver, and NAT gateway. In addition to

these common types, there exist some non-typical assets with a diverse usage of

custom transport-layer services. Therefore, I: (c) identify six aggregate classes of

enterprise hosts based on their behavior regardless of the usage of transport ser-

vices. These classes include TCP and UDP public-facing servers, TCP and UDP

application proxies, NAT proxies, and end-hosts.

4.3.1 Overview of my PCAP Traces

To understand the behavioral profile of various enterprise hosts, I collected one-hour

full traffic trace (inbound and outbound) from the two 10 Gbps Internet links outside

1I also use the term “transport service” to represent the combination of transport-layer protocol
and port number, such as TCP/443.
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(a) in versus out pkts per host. (b) out fraction of pkts per host.

Figure 4.1: Dynamics of bidirectional traffic volume across internal hosts of the
enterprise network: (a) count of incoming versus outgoing packets per host, and (b)
CCDF of outgoing fraction of packets per host.

the border firewall of my university campus network. Appropriate ethics clearances2

were obtained for this study.

Basic Statistics of my Dataset

My university owns three IPv4 blocks of size /16, giving a total of more than 196K

public addresses. Using tcpdump tool, the first 96 bytes of all packets were recorded

during the peak hour of a typical weekday (9-10am on 11 March 2019) – I verified

that only 0.1% of packets were missed during this measurement. All headers of

Ethernet, network, and transport layers are well-preserved, resulting in a total of

1.1 billion packets inbound and 1.6 billion packets outbound. The TCP/UDP com-

position of my dataset is shown in Table 4.1, and traffic rate of my collected data

was about 10 Gigabits-per-second (Gbps) with an average 800K packets per second

(pps).

2UNSW Human Research Ethics Advisory Panel approval number HC17499, and CSIRO
Data61 Ethics approval number 115/17.
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Outgoing versus Incoming Traffic for Enterprise Hosts

Focusing on the hosts inside the enterprise network, as illustrated in Fig. 4.1(a),

I observe that some hosts have almost equal amount of inbound and outbound

packets (distributed across line y=x), whereas many other internal hosts display

unbalanced behaviors. Also, there are “inactive” IP addresses (within the enterprise

IP space) which receive packets from the Internet without sending any reply packet.

For illustration purpose, I overlay inactive addresses by red dots along the y-axis in

Fig. 4.1(a).

Fig. 4.1(b) shows the CCDF plot of the outgoing fraction of total packets per

internal host. In this plot, I can see three main regions: outgoing fraction (i.e.,

x-axis) less than 0.4, between 0.4 and 0.6, and more than 0.6, partitioned by vertical

dashed lines (blue and orange). The first region, accounting for about 90% of internal

IP addresses, represents internal assets which are either completely inactive (zero

outgoing packet), or have much less number of outgoing packets than incoming – they

seem to be target of scans or DoS attacks. The second region (i.e., 0.4 ≤ outFrac ≤

0.6) represents the majority of active internal hosts which have almost same amount

of incoming and outgoing packets – such behavior is often normal and expected.

Lastly, the third region represents those enterprise hosts, each having a majority of

their packets leave the network (i.e., outFrac > 0.6) – seemingly participating in

malicious activities (scans or DoS) which target external networks/hosts.

Note that a total of 217,708 enterprise hosts (i.e., internal IP addresses) appeared

in my dataset. However, only 21,258 of these addresses are active (i.e., sending at

least a packet to external entities). For the rest of my analysis, I produce a “cleaned

dataset” by excluding packets of completely inactive hosts (those IP addresses that

send no packet to the outside of the enterprise network but are probably the subject

of incoming scans from the Internet). Therefore, my study will only be on those

21,258 enterprise hosts (IP addresses) with non-zero outgoing packets.
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(a) TCP port numbers. (b) UDP port numbers.

Figure 4.2: Wordcloud of: (a) TCP, and (b) UDP, source port numbers in outgoing
traffic of the enterprise network to the Internet.

Diversity in Transport-Layer Behavior

I now analyze the headers of outgoing packets sent by internal hosts, and zoom into

their transport-layer services and source port numbers. This enables us to identify

the role (i.e., client or server?) of individual enterprise hosts at a high level, and infer

the type of services (e.g., HTTPS, SSH, or QUIC) they may offer. Similar insights

can also be obtained from incoming packets and their destination port numbers – I

omit this analysis to avoid redundant explanations.

To better visualize the diversity of transport-layer services, I use their word-

cloud representation in Fig. 4.2. A weight is associated to each internal service

(TCP/UDP port numbers) using the count of packets sent per service port number.

It can be seen that most frequently used port numbers are either occupied by well-

known services (ranging from 0 to 1023 [233] like TCP/443 for HTTPS, assigned

by the Internet standard RFCs) or certain de-facto servers (e.g., UDP/443 used for

Cisco VPN application), or randomly selected client ports (e.g., UDP/44247 and

TCP/56392 ) for a variety of network applications.

Let us have a closer look at some of these transport-layer ports which dominate

my traffic trace. Considering TCP/443, highlighted by dark green in Fig. 4.2(a), I

observe that about 500 enterprise hosts serve close to 20000 unique external hosts (IP

addresses) by this top most popular web service. I manually verified (by performing
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reverse DNS lookup within the enterprise network) that 382 of these enterprise

hosts are public-facing servers (such as the main student web-portal of university,

VPN server, or web servers of various faculties/schools). Interestingly, UDP/443,

highlighted by yellow in Fig.4.2(b), is also among popular UDP services provided

by enterprise hosts to the public Internet – this port number corresponds to Cisco

AnyConnect VPN service, handling more than 200 remote users during the one-hour

traffic capture. Note that QUIC (developed by Google and predominantly used by

Google servers) also operates on UDP/443 – my university network, however, does

not have any QUIC servers in operation.

Port numbers greater than 1023 are typically used on the client side (randomly

chosen by operating systems) when attempting to contact their TCP/UDP servers.

Interestingly, I found that TCP/5375, highlighted by dark purple in Fig.4.2(a), is the

source port in about 9 million packets – almost all of these packets are sourced from

an internal NAT gateway3, having replied by approximately equal number of packets,

which is an expected behavior. I examined the headers of packets sent/received

by this NAT gateway, found that the vast majority (98.6%) of the packets sent

are 60-byte TCP ACK packets in response to packets (average size of 117 bytes)

received from an HTTPS (i.e., TCP/443 ) server operated by Microsoft Azure Could

Computing Platform – probably a large download requested by an enterprise host

behind the NAT gateway.

Similarly, UDP/44247 is highlighted by dark blue in Fig.4.2(b) – 7 million pack-

ets generating a total volume of ≈10 GB to a Google cache server (operating on

QUIC via UDP/443 ). This outgoing traffic was sourced from an internal host while

its Google server consistently replied by small packets (of size 85 bytes on average)

during this interaction – most likely, automatic sync with Google drive or uploading

a video onto YouTube.

3I obtained the role of this host from its DNS name, consistent with the pattern of NAT gateway
(will be discussed in §4.3.2)
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As discussed above, the usage of network services (transport-layer port numbers)

can be quite diverse, suggesting many types of roles (functionalities) across enterprise

hosts. I, next, focus on popular host types that are commonly found in large typical

enterprise networks.

4.3.2 Fine-grained Behavioral Profile of Enterprise Hosts

There are diverse types of hosts in an enterprise network that are trivial and not

practical to enumerate. I now discuss ten popular fine-grained host types which are

quite common in a large enterprise network (to prepare readers who may not be in

this particular area), highlight their typical network behaviors using a rooted graph,

and illustrate the existence of non-typical host types and behaviors.

Ten Popular Fine-grained Types of Enterprise Hosts

Website server is one of the most commonly used asset types that can be found in

enterprise networks. These networked assets serve contents to public users via HTTP

(TCP/80 ) or HTTPS (TCP/443 ). To retrieve enterprise web contents, external

users initiate short TCP connections to these servers, sourced from randomly selected

transport-layer services (i.e., port numbers).

The second essential network asset for most of large enterprise networks is an

authoritative name server which maps the organizational domain names to their

respective IP addresses configured by the network administrator. This type of servers

often operate on UDP/53, answering DNS queries from many external entities which

use random source port numbers.

To enable their employees and users (e.g., staff and students in case of university

networks) who need to remotely access protected IT resources, enterprises often set

up VPN servers (virtual private network servers). These servers provide tunnel-
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ing connections (usually with longer duration) between remote endpoints and their

internal networked resources.

Remote computing servers such as workstations and virtual machines, that

provide enterprise staff with powerful resources to execute computationally-intensive

tasks, are commonly used by research groups and departments. These networked as-

sets typically offer remote accessing services like SSH (TCP/22 ) and Telnet (TCP/23 ).

Enterprises often need to store and manage their business-critical information,

and make it available to their trusted departments and individual employees. File

storage servers are therefore configured centrally and/or by sub-departments, so

that staff and trusted entities can upload or access such critical data via bulk-transfer

protocols like FTP (TCP/21 ).

Large organizations like an university may host their own email domains. Mail

servers which are authoritative for email domains and handle the delivery of emails,

are another common host type in an enterprise. They obviously operate on Email-

related protocols such as SMTP (TCP/25, TCP/465, TCP/587 ) and others.

To secure and facilitate DNS lookups from enterprise hosts to public resolvers,

large enterprises often have central and/or department-level DNS proxies config-

ured, that only send DNS queries (sourced from random UDP ports) to external

resolvers that listening on UDP/53.

Similarly, website proxies may also get configured to perform web lookups on

behalf of enterprise regular end-hosts. These proxies use random source TCP port

numbers to retrieve contents using short connections from Internet-based website

servers that offer HTTP (TCP/80 ) or HTTPS (TCP/443 ) services.

In addition to application-specific proxies, NAT gateways [234] are usually

configured as agents to provide outbound Internet connectivity (TCP/UDP) for

hosts (often WiFi-connected devices) without public IP addresses, protecting them
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Table 4.2: Ten popular host types identified from DNS names and their high-level
network behavior.

Type # hosts sample DNS name # internal services # external services flow duration pkt. size
Website srv 61 www.unswlawjournal.unsw.edu.au small, fixed large, random short medium
Authoritative name srv 15 ns1.sdn.unsw.edu.au small, fixed large, random short small
VPN srv 13 securevpn.nida.edu.au small, fixed large, random long medium
Remote computer srv 16 analyticalcentre2.chem.unsw.edu.au medium, fixed large, random long small
File storage srv 14 files.be.unsw.edu.au small, fixed large, random medium large
Mail srv 18 smtp.garvan.unsw.edu.au medium, fixed large, random short medium
DNS proxy 7 ns6.unsw.edu.au large, random small, fixed short small
Web proxy 4 wwwproxy2.library.unsw.edu.au large, random small, fixed short medium
NAT gateway 256 uniwide-pat-pool-a-b-c-d.gw.unsw.edu.au large,random large,random medium medium
End-host 1961 minzhaos-macbook-pro.ad.unsw.edu.au medium, random small, random medium medium

from unsolicited incoming connections from the Internet.

Lastly, some enterprises may allocate certain end-hosts with their organizational

public IP addresses, allowing them to directly communicate with the Internet. In

my university network, machines connecting via Ethernet cable to wall ports in staff

offices and certain labs will get public IP addresses.

In addition to these popular asset types (discussed above), I note that some other

hosts like SNMP agents, video conferencing hubs, and Key management servers are

not necessarily common in every enterprise network, hence not explicitly studied in

this section. I will later in this section (§4.3.3) analyze the behavior of enterprise

hosts by broadly considering their network activity over transport-layer services.

Inferring Host Types from Their DNS Name

DNS names associated with enterprise hosts can be helpful to some extent for in-

ferencing their roles. In my 1-hour PCAP dataset, I extracted the domain name

of each enterprise host (IP address) from outgoing DNS responses captured on the

same day4. I managed to obtain the DNS name for 11,039 out of the 21,258 ac-

tive enterprise hosts – more than 50% are found with a corresponding DNS name.

However, by analyzing their DNS name (a combination of automatic string search

and manual inspection), one may identify the role (type) of only 2,365 hosts (11%)

4I cross-checked against a separate dataset of daily DNS packets (incoming/outgoing), recorded
at the border of my university campus network.
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Figure 4.3: Rooted graph structure visualizes the network behavior of an enterprise
host.

– only those servers and proxies that are directly managed by my university central

IT department, public servers operated by certain departments/divisions (e.g., a

journal website maintained by the Law School of my university, as shown in the

top row of Table 4.2), and NAT gateways or end-host devices that have names

with identifiable patterns. For example, website servers usually use “www” in their

name prefixes; some authoritative name servers in my university network have their

names starting with “ns” followed by a number less than 5; the domain names of

some DNS proxies contain “ns” followed by a number larger than 5; and NAT gate-

ways configured by my IT department would have names with a certain pattern like

“uniwide-pat-pool-a-b-c-d.gw.unsw.edu.au”, given their static IP address is “a.b.c.d”.

The second and third columns of Table 4.2 summarize the count of hosts and a

sample of their DNS names across the ten popular types.

I note that though DNS name may be used to label (identify the role of) some

of the active hosts (mostly those which the central IT department manages), a large

fraction of enterprise hosts (especially those which are managed by subdivisions or

departments) do not have an identifiable name, hence remain unclassified. Therefore,

a more comprehensive approach is required to profile the behavior of active hosts

and identify their functionalities.
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Profiling Network Behavior of Enterprise Hosts using Rooted Graph

Structure

I profile the behavioral characteristics of each enterprise host by a rooted graph

structure shown in Fig. 4.3, illustrating the communications between the enterprise

host and external entities. As shown in this graph, the enterprise host (the leftmost

node in Fig. 4.3) connects with external hosts (the rightmost nodes) via intermediate

nodes (internal and external transport-layer services) and their corresponding edges.

Edges on the graph represent statistical attributes (i.e., count, size, and direction

of packets; count, rate, volume, direction, and duration of flows) for unidirectional

traffic exchanged across transport-layer services used by the enterprise host and

corresponding external hosts. The direction of a flow is determined by the (internal

or external) host which initiates the flow – for an “inbound” flow, the first packet is

sent by an external host to the internal host. Thus, for every flow, I model inbound

and outbound packets by separate edges.

I now generate and analyze the network behavioral profile of those popular host

types (as ground-truth data) are identified by their DNS name. The last four

columns in Table 4.2 briefly summarize the graph pattern (behavior) of each host

type based on the features of nodes (i.e., internal and external transport-layer ser-

vices) and edges (i.e., flow duration, and packet sizes).

Generally speaking, I observe both distinct and common behaviors across differ-

ent host types. For example, servers like website server, authoritative name server,

and remote computing server display a relatively focused set of internal transport

services and fairly spread/broad set of random external transport services, while

proxies (web and DNS) exhibit an opposite behavior – a wide range of random in-

ternal services and a narrow set of fixed external services). Furthermore, in terms of

flow and packet characteristics, I observe some distinct patterns. For example, VPN

servers typically maintain long flows with medium-size packets, while file storage

107



Chapter 4. Classifying and Tracking Enterprise Assets via Network Behavioral
Analysis

servers generate medium-duration flows carrying large packets. To make my discus-

sion more concrete, I next zoom into the behavioral profile of three representative

host types, including website servers, web proxies, and NAT gateways.

Website servers: In summary, such servers are likely to offer a small set of

internal TCP services to a wide range of external user TCP ports. The top internal

services (by either packet or flow count) in both directions are likely to be TCP/443

and TCP/80, while external port numbers are pretty random, distributed relatively

evenly. Also, compared to other types of servers that predominantly operate over

TCP services, website servers often maintain short flows with less than a few seconds.

Let us take a closer look at the behavior of an example website server (i.e., stu-

dent portal of my university), captured in my 1-hour PCAP trace. Starting with

high-level observations on its packet-level characteristics, I found that the packet

count is almost equal in both directions (i.e., 917K for inbound and 913K for out-

bound). In contrast, the average size of outbound packets (245 Bytes) is more

significant than that of inbound packets (62 Bytes). In terms of flow-level charac-

teristics, the server received far more flows from the Internet (18K inbound flows)

than it initiated towards external hosts (1K outbound flows). Also, the average

duration of inbound flows is larger than that of outbound flows (i.e., 1.4s and 0.2s,

respectively). The server is found to use a total of 458 internal services (i.e., ports),

while about half of them (209 transport services) only appear in the inbound pack-

ets. Apparently, it is the victim of unsolicited traffic from the Internet. I further

investigated those remaining 247 services (excluding unsolicited ones), and ranked

them by their contribution to the number of packets and flows in each direction.

Table 4.3 shows the top five services of the website server by four traffic charac-

teristics (inbound/outbound packets and flows). The number in square brackets

highlights the contribution of the corresponding service. Blue cells indicate services

that are common among the top-5 across the four columns, while red cells indicate

uncommon services which are not necessarily among the top-5 across all columns.
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Table 4.3: Utilization of top-5 internal transport-layer services of a representative
website server.

In↓ packets Out↑ packets In↓ flows Out↑ flows
TCP/443 [97.2%] TCP/443 [98.1%] TCP/443 [73.0%] TCP/443 [52.0%]
TCP/80 [2.7%] TCP/80 [1.8%] TCP/80 [24.9%] TCP/80 [24.3%]
TCP/0 [0.0%] TCP/50923 [0.0%] TCP/50923 [0.9%] TCP/50923 [0.2%]
TCP/23 [0.0%] TCP/21631 [0.0%] TCP/21631 [0.0%] TCP/21631 [0.2%]
TCP/137 [0.0%] TCP/8641 [0.0%] TCP/8641 [0.0%] TCP/8641 [0.2%]

It is clearly seen that a vast majority of packets and flows in both directions are

contributed by a small set of services that collectively characterize the behavior of

this website server. I also analyzed external transport-layer services communicated

with this asset5. I observed a wide range (more than 12K) of TCP services utilized

fairly evenly – none of the top-5 external services contributed more than 0.5% across

the four metrics of inbound/outbound packets and flows. Further, by analyzing the

behavior of other website servers, I observed very similar patterns with slight vari-

ations in their use of transport-layer services TCP/80 and TCP/443. Some use a

mix of HTTP and HTTPS. In contrast, others prefer one of these TCP services.

Additionally, I note that website servers share certain network behaviors with

public-serving assets like authoritative name servers, VPN servers, remote comput-

ing servers, and file storage servers. They all have a small set of internal services

communicated with a wide range of external transport services. That said, each of

these individual asset types is differentiated by their unique transport-layer services

(e.g., UDP/53 for authoritative name servers, or TCP/22, TCP/23 or TCP/3389

for remote computing servers). Also, they exhibit different characteristics of packets

and flows (e.g., VPN servers often maintain longer flows with an average duration

of about a minute, and file storage servers typically use larger packets of average

size over 350 Bytes).

Web proxies: These hosts use a wide range of random internal TCP ports,

accessing TCP/443 and TCP/80 services offered by Internet servers.
5I omitted the table of results for external transport services.
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Table 4.4: Utilization of top-5 internal transport-layer services of a representative
web proxy.

In↓ packets Out↑ packets In↓ flows Out↑ flows
TCP/39762 [3.6%] TCP/33280 [3.5%] TCP/3128 [0.2%] TCP/42108 [0.4%]
TCP/40576 [3.5%] TCP/41801 [2.6%] TCP/51771 [0.1%] TCP/51769 [0.4%]
TCP/58355 [3.4%] TCP/8513 [2.6%] TCP/2869 [0.1%] TCP/15833 [0.3%]
TCP/44379 [3.3%] TCP/40576 [2.4%] TCP/7253 [0.1%] TCP/3985 [0.3%]
TCP/53718 [3.2%] TCP/39762 [2.4%] TCP/48782 [0.1%] TCP/48471 [0.3%]

As an example, let us highlight the traffic profile of a web proxy in my university

network. At a high level, this proxy exchanged an almost equal number of pack-

ets in each direction (1.2M outbound and 1.5M inbound), while it had far more

outbound flows (36K) than inbound flows (3K). Table 4.4 provides relatively fine-

grained insights into the behavior of this type of host by listing its internal top-5

transport-layer services along with their respective contribution to the host traffic at

packet and flow levels. I can see that all cells in this table are highlighted by red color,

suggesting uncommon services across the four metrics. Also, it is seen that these

top services are utilized fairly evenly by individual columns of inbound/outbound

packets and flows. As for external transport services (i.e., the services on external

hosts), instead, a vast majority of packets and flows (i.e., more than 99%) are nar-

rowly focused on TCP/443 and TCP/80. I saw earlier this set of dominant services

on the internal side of the website server.

Other application proxies in my dataset displayed similar behavioral patterns,

except their usage of transport services – for example, DNS proxies primarily use

UDP for their transport-layer protocols, with UDP/53 dominating their external

service.

NAT gateways: Unlike website servers and proxies described so far, NAT gate-

ways use a much more random set as well as a broader range of transport services,

both internally and externally, across TCP and/or UDP protocols. Unsurprisingly,

they behave very much like clients that initialize flows towards external hosts.
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For example, a WiFi access point (NAT gateway) on my campus network ex-

changed almost the same number of packets in each direction (i.e., 2.2M inbound

and 2.3M outbound) as captured by my 1-hour traffic trace. In terms of flows, I

observed about 50K outbound flows and 30K inbound flows. This large count of

incoming flows is unexpected. Further investigation revealed that 28K (91%) of the

inbound flows are unsolicited and not responded. The responded incoming flows

(remaining 2K) found during the first five minutes of my trace – probably they were

initiated (as outbound) just before the commencement of my traffic capture. Note

that I will discuss in §4.4 that why my final classifiers will be trained by attributes

of outbound traffic of individual hosts.

Analyzing the internal transport-layer services of this network asset does not

manifest any pattern (a wide range of seemingly random TCP/UDP port numbers).

For external transport-layer services, instead, more than 99% of inbound/outbound

packets and flows are contributed by top-5 services including HTTPS (TCP/443 ),

QUIC (UDP/443 ), HTTP (TCP/80 ), DNS (UDP/53 ), and IMAPS (TCP/993 ),

while strongly dominated (more than 90%) by HTTPS and HTTP.

Other NAT gateways are found to exhibit similar behavior with slight variation

in their use of transport services. Note that end-hosts also share this behavior, but

with lighter activity in traffic volumes and range of transport services.

Enterprise Hosts with Non-Standard Behavior

By further analysis of my PCAP dataset, I identified some other types of network

assets that either fundamentally differ from typical hosts (Table 4.2) or display

significantly new patterns in addition to the expected behavior of typical hosts.

Non-typical host types: Some enterprise hosts utilize transport-layer services

that are less popular in a typical enterprise IT infrastructure. For example, one host

has two internal TCP services (TCP/636 for LDAP and TCP/389 for LDAPS) that
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together contribute to more than 97% of outbound/inbound packets and flows. Also,

I found another server with a distinct internal service TCP/11371 for HKP (used

by Key management servers). I verified that this host is operated by a non-profit

organization within my university campus by inspecting its DNS name.

Non-standard variants of typical host types: Among the hosts labeled (by

their DNS name) as one of the ten typical types, some display distinct behaviors

(the use of additional services) compared to their respective cohort. A website server

configured by a research group in an engineering department, has 5 distinct inter-

nal services, namely TCP/443 and TCP/80 (expected standard services), as well

as TCP/3306, TCP/2222, and TCP/23 that respectively correspond to MySQL,

SFTP, and Telnet (non-standard services) – respectively, contributing to 28.1%,

24.6% 11.0%, 4.4%, and 3.6% of outbound packets. Indeed, running a server with

multiple roles is not a best practice [235], since various services demand specific

policies (for their particular vulnerabilities and risks) to be enforced at the network.

Another example is a name server managed by an engineering department (not the

central IT) in my university. I found this host to function as both authoritative

name server and DNS proxy – UDP/53 is the most dominant in both internal and

external transport-layer services. In addition to a combined role, it is not a rec-

ommended security practice for an enterprise host to resolve DNS queries from the

public Internet [236].

4.3.3 Coarse-grained Behavioral Profile of Enterprise Hosts

at Transport-Layer

From what I have observed from my traffic traces, a growing set of profiles (classes)

will exist for enterprise hosts, considering the specific transport-layer services (“fine-

grained”) they offer and/or consume. This makes it practically challenging to capture

and maintain those individual classes for a real-time asset classification task, to
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function continuously. However, it is possible to cap the number of host classes by

considering their “coarse-grained” behavior at transport-layer by aggregating their

fine-grained transport services. In what follows, I discuss how enterprise hosts can be

categorized under six coarse-grained types, including TCP-dominant server, UDP-

dominant server, TCP-dominant proxy, UDP-dominant proxy, NAT gateway, and

end-host.

Six Coarse-grained Host Types by Transport Services

Enterprise hosts that offer network services to users on the public Internet can be ei-

ther a TCP-dominant or UDP-dominant server, depending on the distribution

of transport-layer services (i.e., TCP or UDP) in their network traffic. They expose

a small set of internal transport-layer services (either TCP or UDP) contacted by a

wide range of external transport services initiated by Internet clients. For instance,

the website servers mentioned above primarily operate on HTTP (TCP/80 ) and/or

HTTPS (TCP/443 ) and thus are TCP-dominant servers. An organizational VPN

server can operate on both TCP/443 and UDP/443. Still, a vast majority of packets

and flows belong to TCP protocol, and thereby a TCP-dominant server.

Proxies that access certain services like Web (TCP/443 ) or DNS (UDP/53 )

on the Internet can be categorized as either TCP-dominant proxy or UDP-

dominant proxy. They tend to use a highly diverse and random set of internal

transport-layer services, either TCP or UDP. Also, proxies (depending upon their

role) consume a narrow set of external transport services. For example, DNS prox-

ies (as UDP-dominant proxies) use a wide range of internal UDP service numbers

to send DNS query packets to external servers operating on the network service

UDP/53.

Lastly, NAT gateways and end-hosts are relatively distinct by their use of a

wide range of internal services, consuming a mix of external services over both TCP
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(a) Packet sent. (b) Internal transport services.

Figure 4.4: UDP versus TCP outgoing traffic per internal host: (a) count of packets
sent, and (b) unique internal transport-layer service used.

and UDP protocols.

Grouping Enterprise Hosts by Coarse-grained Behavior of Transport-

layer

I now analyze the coarse-grained transport-layer behavior of all active enterprise

hosts that appeared in my 1-hour cleaned dataset. I compute the number of packets,

flows, internal transport services, and external transport services of both directions

(TCP and UDP separately) for a given enterprise host. In what follows, I elabo-

rate on the coarse-grained types (discussed above) by highlighting some of network

behaviors for the hosts with ground-truth label.

Let us concentrate on the outgoing traffic of individual hosts and analyze their

distribution of packets and services6. Fig. 4.4(a) is the scatter plot of UDP versus

TCP packets per host. Fig. 4.4(b) displays UDP and TCP ports distributed across

individual hosts. Each green star highlights a ground-truth host identified by their

DNS names, and blue dots represent other hosts.

I observe that hosts (with ground-truth label) from various coarse-grained types

6I omit the insights obtained from inbound packets and flows for brevity.
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display distinct behavior at least by the two distributions illustrated in Fig. 4.4.

TCP-dominant servers appear on the narrow region P1 in Fig. 4.4(a) and narrow

S1 in Fig. 4.4(b), indicating their heavy and concentrated activities via specific

TCP services, that is, sending out many TCP packets through a limited set of TCP

services. Similarly, UDP-dominant servers are expected to appear on regions P2 in

Fig. 4.4(a) and S2 in Fig. 4.4(b). TCP-dominant proxies are located on P1 and

S3 regions (large number of TCP packets, and heavily distributed in TCP services),

while UDP-dominant proxies sit on the regions of P2 and S4 in the two scatter

plots. NAT gateways, given they represent a large number of end-hosts, appear in

the upper right corner of both figures (i.e., P3 and S5 ). Lastly, end-hosts mainly

fall in two broader regions ( P4 and S6 ) for their diverse and less-concentrated use

of TCP and UDP transport-layer services.

4.4 Classifying Enterprise Hosts

In this section, I develop a multi-grained classification scheme that classifies enter-

prise hosts into ten popular fine-grained types (discussed in §4.3.2) and six aggre-

gated coarse-grained types (discussed in §4.3.3) with highlights of their dominate

services at transport-layer. I discuss host-specific traffic attributes used as inputs of

my models, and quantify their importance, independence, and computational cost.

Next, I train, tune, and validate two multi-class ML models (as my baseline models)

for both fine-grained and coarse-grained classifications. I enhance the practicality of

my method by judiciously selecting subsets of attributes and adjusting retention du-

ration to enable it for real-time operation at scale. Their classification performance

is compared with that of my baseline models. Lastly, I quantify the efficacy of my

inference scheme by applying it to a fresh set of traffic instances not seen during the

training phase of my ML classifiers.
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Figure 4.5: My multi-grained classification scheme.

4.4.1 Multi-Grained Classification Scheme

Ideally speaking, every enterprise host is expected to be labeled by their fine-grained

type (e.g., website server, authoritative name server, or web proxy). However, it

becomes a challenging task in practice when many operational hosts may not display

a narrowly identified behavior (using less-common network services or having mixed

roles). Therefore, those hosts can at least be classified as one of the six coarse-

grained types (e.g., TCP-dominate server or TCP-dominate proxy) by aggregating

transport-layer services.

Therefore, my classification scheme infers the type of enterprise hosts at two

levels of granularity, namely fine-grained and coarse-grained. Fig. 4.5 illustrates the

structure of my scheme where I take two groups of statistics computed from the

rooted graph of each host (§4.3.2) as inputs. The first group pertains to “numerical

traffic attributes” that describe the activity behavior of the host without inclusion

of specific transport-layer service name (e.g., “TCP/443 ”), while the second group

highlights “top transport-layer services” (internal and external) of the host. My

classification scheme contains three functional modules. The fine-grained model is a

N -class classifier that receives both input groups and generates a fine-grained class

(e.g., website server) a confidence value for the input host. For the use-case of my

campus network, I considered ten popular host types (N = 10). I note that various

enterprises may want to customize the number of fine-grained classes (extending my
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ten classes or choosing a subset of these ten classes) depending on their preference

and composition of their network. The other two modules are designed for coarse-

grained inference. A six-class classifier model gives an intermediate prediction (e.g.,

TCP-dominate server) with a confidence level by processing numerical traffic at-

tributes of a host. A rule-based annotator will take the intermediate prediction as

well as top transport-layer services of the host to generate the final coarse-grained

host type (e.g., “a TCP-dominate server by TCP/443 and TCP/80 ”).The rule-based

annotator uses my insights obtained in §4.3.3 to annotate servers by their top inter-

nal services, proxies by their top external services. NAT gateways and end-hosts are

not annotated. It is important to note that the coarse-grained inference model is

generic, and hence applicable to any enterprise setting. When the prediction is anno-

tated, it enables the network operator to discover emerging asset classes, potentially

extending the fine-grained model by new classes (if desirable).

Each of the two predictions (fine-grained and coarse-grained) will contain a class

label and confidence level, helping network operators better manage their assets

by choosing certain inference results. A coarse-grained label is accompanied by

top transport-layer services per host, providing additional information for further

investigation post automatic inference. I note that various enterprises may want to

customize the number of fine-grained classes (extending my ten classes or choosing

a subset of these ten classes) depending on the variety of asset types they may have

on their network. Coarse-grained classes, on the other hand, are generic to any

enterprise setting.

4.4.2 Attributes of Host Network Behavior

I now discuss and evaluate my host-specific attributes required for the inputs of my

multi-grained host behavior inference scheme.
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Attributes

Having understood various host profiles in §4.3, I identify a set of attributes that are

computed from the rooted graph of an enterprise host (shown in Fig. 4.3) to cap-

ture their comprehensive network behavior. Given nodes (enterprise host, internal

transport-layer services, and external transport-layer services) in Fig. 4.3, I extract a

total of 256 attributes, including 176 numerical traffic attributes and 80 categorical

attributes indicating top transport-layer services. To better describe them, I choose

the name of each attribute according to a pattern “metricType-direction-resolution”,

where “metricType” capture statistical measures of traffic volume and utilization of

transport services, “direction” highlights inbound↓ vs. outbound↑, and “resolution”

is packet-level or flow-level. In what follows, I discuss three groups of numerical

attributes, namely aggregate host activity, utilization of internal transport-layer

services, and utilization of external transport-layer services), along with categorical

attributes (i.e., top transport-layer services).

Aggregate host activity: The leftmost node in Fig. 4.3 is the enterprise host

with edges of inbound and outbound packets/flows representing its aggregate net-

work activity. I use two metrics AvgSize and VarSize to highlight the average size

and variance of the traffic units (packet-level or flow-level) for a given host.

My analysis in §4.3 revealed that various enterprise hosts could exhibit different

traffic distribution in each direction (i.e., inbound↓ or outbound↑) across resolutions

(i.e., packet or flow). Therefore, I compute the above two metrics for both directions

and both resolutions, resulting in 8 attributes for this group. An example of these

attributes is AvgSize-↓-Pkt, indicating the average size of inbound packets.

Utilization of internal transport services: Moving to attributes of the sec-

ond leftmost node in Fig. 4.3, I find various services via protocol type TCP or UDP,

distributed across inbound and outbound directions. For this group of features, I

identify 21 statistical metrics.
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I start by two aggregate metrics, namely DominTypeInSrv (i.e., the dominant

protocol type of enterprise services by packet/flow count), and FracMinorTypeIn-

Srv (i.e., the fraction of packet/flow count associated with internal services of the

protocol type at minority).

To capture the distribution of host traffic across internal services, I consider

two ways, namely (i) packet/flow count, and (ii) unique external service count, for

ranking their individual contributions. First, by considering the total count of pack-

ets/flows, I identify nine statistical metrics. Given a list of services ranked by their

packet/flow count from largest to smallest, I compute: (a) traffic fraction of the top

service (highest activity), the first quartile service, the second quartile service and

the third quartile service, denoted by FracTopInSrv, FracQ1InSrv, FracQ2InSrv,

and FracQ3InSrv, respectively; (b) the variance of traffic fraction across internal

services denoted by VarInSrv ; (c) fraction of internal services above average, above

average plus one-sigma, above average plus two-sigma, and above average plus three-

sigma, denoted by FracAbvAvgInSrv, FracAbvAvg1SigInSrv, FracAbvAvg2SigInSrv,

and FracAbvAvg3SigInSrv, respectively. Second, by considering the count of cor-

responding unique external services, I identify ten statistical metrics. Nine of the

metrics are computed in the same way as described above. Additionally, I use the

ratio of internal service count and external service count, denoted by RatioIntExtSrv.

For this group, I identify a total of 21 metrics across two directions and two

resolutions, resulting in 84 numerical attributes.

Utilization of external transport services: Similar to the characterization

of internal services (discussed above), I capture the distribution of host traffic across

external services by 21 metrics (each with two directions and two resolutions), re-

sulting in a total of 84 attributes. For brevity, I omit details of attributes.

Top transport-layer services: As discussed in §4.3.2, various host types may

focus on certain transport-layer services, appeared as dominant internal and/or ex-
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ternal services. I use the top five internal and external services ranked by certain

properties of edges in the graph depicted in Fig. 4.3. Top-ranked internal services

are determined by: (i) the volume of traffic (packet, flow) in each direction (out-

bound, inbound) on the left edges connecting them to the enterprise host, and (ii) the

count of non-zero (inbound/outbound/ packet/flow) middle edges connecting them

to the external services. Similarly, top-ranked external services are determined by:

(i) the volume of traffic on the right edges connecting them to external hosts, and

(ii) the count of non-zero middle edges connecting them to the internal services.

For example, the attribute TopInSrvVol-↑-Pkt indicates the top internal transport

service ranked by the volume of outbound packets, while TopInSrvNZExSrv-↑-Pkt

is ranked by the count of external services with non-zero edges of outbound packets.

As a result, 80 attributes are identified. I note that this group of attributes are

categorical and can not directly be fed to numerical machine learning models. I

use a method called integer encoding that maps categorical attributes to numerical

values to address this issue. This lightweight method is suitable for a wide range of

categorical values [237] compared to its alternatives like one-hot encoding. It can

also be handled well by tree-based classifiers.

Dataset Preparation

I compute attributes of hosts with the ground-truth label (fine-grained and coarse-

grained types) identified by DNS names in §4.3.2. A run-time rooted graph for each

of those hosts is tracked with a retention duration of 1 hour (i.e., edges that are

inactive for more than 1 hour will get removed), and host attributes are calculated

every minute. A dataset consisting of 928,946 records is developed from 24 hours

(between 11am on 31st May 2019 and 11am on 1st June 2019) worth of traffic traces.

The number of instances for each host type is balanced through resampling, which

is a common strategy to handle imbalanced dataset.
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Merit of Attributes

I now evaluate the merit of individual attributes (a total of 256 attributes: 8 for ag-

gregate host activity, 84 for utilization of internal transport service, 84 for utilization

of external transport service, and 80 for top transport-layer services) in predicting

the type of their corresponding host. I also quantify the dependency between each

pair of attributes and the cost for computing each attribute in real-time. The in-

sights gained from this section will guide us (later in §4.4.3) to balance the cost

against the accuracy of my ML classifiers.

Importance: To quantitatively justify the efficacy of my identified attributes, I

use “information gain” to measure their importance. InfoGain of an attribute indi-

cates how much information the attribute provides with respect to the classification

goal.

InfoGain(a) = Entropy(h)− Entropy(h|a) (4.1)

Entropy(h) = −
∑
h∈h

p(h) log2 p(h) (4.2)

Entropy(h|a) = −
∑
a∈a

p(a)
∑
h∈h

p(h|a) log2 p(h|a) (4.3)

As shown in Eq. 4.1, InfoGain [238] of attribute a is derived as the difference

between the entropy of original (unsorted) host type (i.e., h) (Eq. 4.2) and the

entropy of host type sorted by the attribute a (Eq. 4.3).

Normalized importance of each attribute is calculated and labeled by their direc-

tion (i.e., inbound or outbound), resolution (i.e., packets or flows), and associated

node (i.e., internal or external transport-layer services). Fig. 4.6 summarizes the

importance of attributes across these three perspectives as box plots where each box

highlights a range from the first quartile to the third quartile of merit values within

their respective group. It can be seen that all attributes contain some information
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Figure 4.6: The merit of attributes across different perspectives.

for predicting the type of hosts. Only a few attributes display a low importance

(InfoGain values smaller than 0.2) – these attributes are primarily pertinent to the

protocol type of transport layer (e.g., DominTypeInSrv-↓-Pkt). As indicated by the

leftmost subplot in Fig. 4.6, outbound attributes are slightly more predictive than

their inbound counterparts – possibly because inbound traffic may contain noises

such as scans or unsolicited traffic, providing information not indicative of the role

of internal hosts. Moving to the middle subplot, packet-level attributes (given their

higher resolution) relatively outweigh flow-level ones. Lastly, the rightmost subplot

shows that attributes pertinent to internal transport services yield a higher power

in predicting the type of enterprise hosts than external services.

Independence: Certain attributes may positively or negatively correlate with

others. To quantify the correlation between a pair of attributes, I use the projection

coefficient p calculated by Eq. 4.4, where a1 and a2 are the two attribute arrays,

each containing a set of instances (e.g., a10 and a20). As an simple example, if I have

three hosts with their two attribute values as [a10, a20], [a11, a21], and [a12, a22], the

two attribute arrays a1 and a2 are then written as [a10, a11, a12] and [a20, a21, a22],

respectively.
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Figure 4.7: Correlation of attribute pairs.

p =
a1 a2
|a1||a2|

, a1 = [a10, a11, .., a1n], a2 = [a20, a21, .., a2n] (4.4)

Fig. 4.7 shows the CCDF plot of the projection coefficient across all
(

256
2

)
= 32640

attribute pairs (shown by blue dots), 128 corresponding pairs in two directions like

FracTopInSrv-↓-Pkt versus FracTopInSrv-↑-Pkt (shown by black dots), and 128 cor-

responding pairs in two resolutions like FracTopInSrv-↓-Flow versus FracTopInSrv-

↓-Pkt (shown by red dots). I observe that packet-based attributes are largely corre-

lated with their corresponding flow-based attributes – 70% of pairs on the red curve

display a correlation value greater than 0.6. On the other hand, outbound attributes

are loosely correlated with their inbound counterparts. Almost 80% of pairs on the

black curve display a correlation value smaller than 0.5 – probably because inbound

traffic is relatively polluted by unsolicited traffic.

Computational cost: To compute the attributes of an enterprise host in real-

time, I need to continuously maintain and update their data structure with run-time

statistics. Therefore, I use the complexity of the data structure required to obtain

an attribute as a proxy of its cost.

As illustrated by Fig. 4.3, a fine-grained graph contains four key layers includ-
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ing enterprise hosts, internal transport-layer services, external transport-layer ser-

vices, and external hosts. Flow-based attributes (e.g., AvgSize-↑-Flow) require all

four key layers of metadata (i.e., enterprise host, internal transport-layer service,

external transport-layer service, external hosts); hence, they are computationally

heavier. Attributes like those that pertain to both internal and external transport

services (e.g., TopInSrvNZExSrv-↑-Pkt) need three key layers of metadata (i.e.,

enterprise host, internal transport-layer service, external transport-layer service).

Lastly, packet-based attributes may only need one or two layers of metadata (e.g.,

enterprise host for AvgSize-↑-Pkt ; enterprise host and internal transport-layer service

for FracTopInSrv-↓-Pkt); hence, they are computationally lighter.

I, therefore, associate qualitative costs of the low, medium, high, and ultra-

high to attributes that require one, two, three, and four key layers of metadata,

respectively. As a result, of the 256 attributes, 4 are low cost, 68 are medium cost,

56 are high cost, and 128 are ultra-high cost.

Maintaining host attributes can be practically challenging at scale, particularly

for the high traffic rates of a large enterprise network. Therefore, one may choose

to focus on a subset of attributes that give more predictive power, are independent,

and incur a reasonable cost. For example, attributes of outbound packets that carry

significant information and can be computed at low/medium cost.

4.4.3 Training, Tuning, and Cross-Validating Classifiers

I train and evaluate my ML classifiers for both fine-grained and coarse-grained host

types using two famous algorithms, namely multi-layer perceptron (i.e., MLP, a

neural network algorithm) and Random Forest (a collection of decision trees). My

models are trained and cross-validated using my ground-truth dataset (discussed in

§4.4.2). Parameters of each model are tuned to achieve their best performance. I also

train models with subsets of attributes considering computing costs and compare
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Figure 4.8: Performance of models: (a) tuning parameters of RF models for host
types, (b) accuracy of the best RF model for fine-grained host classification, and (c)
accuracy of the best RF model for coarse-grained host classification.

their accuracy with that of best performing models.

Performance of Models

I now describe the training and validation of my classification models for predicting

fine-grained and coarse-grained host types. My classifiers are generated using two

popular algorithms: multilayer perceptron (MLP) and random forest (RF). MLP

classifiers are tuned by varying the number of layers and the number of nodes in

each layer. Random forest algorithms are tuned by varying the number of trees and

the number of attributes for each tree. As a visual illustration, the accuracy (ranging
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from 0 to 1) of MLP and RF classifiers for host types are shown in Fig. 4.8(a) and

4.8(b), respectively. The best performance of the fine-grained classifiers is 84.69%

(MLP) and 99.62% (RF). For the coarse-grained classifiers, the best performance

for MLP and RF are 98.15% and 99.72%. It is clear that my RF models outperform

the MLP models at both angularities. I, therefore, use the two best RF models as

a baseline for the rest of this chapter.

Let us now zoom into the accuracy of my baseline models in predicting the type

of hosts. I observe in Fig. 4.8(c) that more than 96% of fine-grained instances are

correctly classified. The performance is higher (more than 99%) in certain classes

such as website servers and authoritative name servers. I note that 1.90% of file

server instances are misclassified as website servers. Also, 2.08% of web proxy in-

stances are misclassified as end-hosts. Moving to the coarse-grained classifier in

Fig. 4.8(d), almost all classes receive an accuracy of more than 99%, while 2.60% of

TCP proxy instances are misclassified as end-hosts.

Confidence Levels

My models output a measure of confidence (a value between 0 and 1) with each

prediction. Let us start with the fine-grained host type classification whereby every

predicted instance (correct and incorrect) is accompanied by a confidence level of

more than 0.60, while correctly classified instances come with fairly higher confidence

greater than 0.85. A fraction (9%) of misclassified instances receive a confidence

level of more than 0.80 (relatively high). By analyzing their attributes, I found

that affected hosts indeed displayed a different network behavior other than their

expected type. For example, a NAT gateway is classified as a web proxy with an 0.87

confidence. This host only had a small number of TCP flows destined to external

services TCP/443 and TCP/80, representing the typical behavior of a low-profile

web proxy. The majority of misclassified fine-grained instances carry a confidence

level lower than 0.80. They are likely to be associated with non-typical behavioral
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patterns; hence, they require further analysis such as inference by the coarse-grained

classifier, annotation of their popular transport-layer services, or deeper pack-based

investigation. As another example, a website server is classified as end-host with

low confidence of 0.61. After looking into its attributes, I found that it holds mixed

functionalities including DNS, remote accessing, file storage, and accessing external

servers via an extensive range of internal transport-layer services. I made similar

observations with the coarse-grained classifier.

Recall that my multi-grained classification scheme (§4.4.1) classifies a given en-

terprise host into ten fine-grained types and six coarse-grained types. When the

confidence of the fine-grained model is not high enough, network operators may

choose to resort to the prediction of the coarse-grained model. However, the coarse-

grained classifiers may still give a low-confidence prediction, requiring further inves-

tigations. In my prototype deployment (will be described in §4.5), enterprise hosts

that receive a low confidence level7 from the coarse-grained model will be isolated

for deeper packet-level investigation.

ML Classifiers with Partial Information

I now analyze the performance of my models trained on subsets of the 256 attributes

considering computing costs and retention period, making them more suitable and

scalable for real-time operation in large enterprise networks.

Optimizing attribute selection: I first train and tune RF models for both

classification tasks using various combinations of attributes considering their quali-

tative costs. Table 4.5 summarizes the performance of best performing fine-grained

models at various configurations – I have omitted results of the coarse-grained mod-

els as similar observations were made for both types of models. Note that the number

of attributes in hyper parameters are not previously defined and randomly selected

7I set the confidence threshold to 0.80 for both models.
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Table 4.5: Fine-grained models using subsets of attributes.

Configuration Best model Hyper parameters
Full attribute set 99.62% 80 attributes, 300 trees
Outbound↑ only 99.51% 50 attributes, 200 trees
Inbound↓ only 83.27% 50 attributes, 150 trees
↑ excluding ultra-high costs 99.42% 50 attributes, 200 trees
↑ low & med. costs only 98.88% 30 attributes, 200 trees
↑ low costs only 35.32% 5 attributes, 50 trees

by the RF training algorithm.

The baseline model with 99.62% accuracy (top row in Table 4.5) is trained on

the full set of attributes (§4.4.3). Interestingly, only outbound attributes (half of

the attributes) yield a model with a very similar accuracy of 99.51% (second row).

However, inbound half of the attributes cannot achieve better than 83.27% accu-

racy (third row). This is probably because outbound traffic is less polluted than

inbound. Focusing on the outbound traffic, I can still achieve fairly high accuracy

of 99.42% if I exclude ultra-high attributes (fourth row). The overall accuracy is

slightly compromised to 98.88% by considering only low and medium-cost attributes

of outbound traffic (fifth row). However, as highlighted by the sixth row, I cannot

further optimize the cost when only low-cost attributes are used to train the model

since the obtained accuracy is far unacceptable. Therefore, I choose to continue

with the best models trained on low-cost and medium-cost attributes of outbound

traffic, given a combination of performance and cost metrics.

Tuning retention period: As mentioned earlier in §4.4.2, my attributes are

computed by setting the retention period to 1 hour, which is relatively expensive to

maintain states, particularly at scale. Therefore, I investigate the impact of shorter

retention period on the accuracy of my models. Table 4.6 shows various settings

and their corresponding impact on both fine-grained and coarse-grained models.

In addition to model accuracy, I compute the average number of entries (i.e.,
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Table 4.6: Size of data structure and accuracy of models as a function of retention
period.

Retention period Avg. # entries Fine-grained Coarse-grained
60 min 43.5M 98.88% 98.86%
30 min 32.4M 98.88% 98.86%
15 min 15.9M 98.91% 98.89%
5 min 5.4M 98.89% 98.82%
1 min 959K 98.38% 98.53%
30 sec 433K 86.84% 87.19%
15 sec 254K 72.58% 60.35%

key-value pairs) in the data structure for maintaining graphs in my dataset. It can

be seen that both the model accuracy and the average number of entries (size of

data structure) fall as the retention period gets shorter. The retention period of one

minute seems to be the sweet spot in terms of accuracy (more than 98%) and size

of data structure (less than a million entries), apparently, the one-minute period

carries enough but not redundant information that reveal distinguishable patterns

of each host type. For the rest of this chapter, I set the retention period to a minute.

Testing my Models on a Fresh Open Set

To evaluate the efficacy of my classification scheme, I test its performance against

an open set derived from my 1-hour PCAP trace (which contains more than 2B

packets from 21K enterprise hosts as discussed in §4.3) not shown to the model

during the training phase. Attributes of hosts (with my ground-truth label) for

both granularities are selected and calculated in the same way discussed above (i.e.,

1-min retention period with low-cost and medium-cost attributes of outbound traffic

only).

Performance of the two models: Both models give high accuracy of 99.76%

(fine-grained) and 98.57% (coarse-grained), interestingly slightly higher than those

obtained during the cross-validation phase (in §4.4.3). Note that my open set (testing
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data) was obtained from the traffic of a busy working hour (i.e., 9-10 am) when

enterprise hosts are likely to be highly active and display clear network behavioral

patterns. In contrast, the closed set (training and cross-validation data) corresponds

to host behaviors during the entire day (covering both working and off-work hours).

Mis-classified instances: For those instances that were misclassified, the mod-

els display low confidence levels below 0.70. Manually investigating into their packet

traces, I found two reasons for misclassification: (i) mixed functionality: a website

proxy configured by a school also provides DNS resolution, file storage, remote ac-

cessing, and Redis proxy services, which are not recommended best practices for

asset management and network security; and (ii) compromised and targeted by at-

tacks: an end-host was correctly classified with high confidence levels (i.e., ≥ 0.9)

consistently for 13 minutes, and thereafter its predicted class with relatively low

confidence levels (between 0.4 and 0.6) fluctuates between UDP server and UDP

proxy for 47 minutes. I inspected its traffic during the low-confidence period and

found that this host, in addition to its regular activities, was sending repeated DNS

queries (asking for “10.129.14.2xy.in-addr.arpa”)8 at a constant rate of 2 packets-

per-second to a public recursive resolver managed by ARIN. The host behaved like

a bot-infected device in a query flooding attack [5] (possibly distributed across many

bot devices).

Therefore, to help network administrators better identify cyber risks associated

with their “suspicious” hosts (displaying unexpected behaviors and receiving low

confidence scores from trained models), later in §4.5.1, I introduce a reactive mecha-

nism using programmable networks that dynamically and selectively collects packets

specific to the “focused” hosts for deeper investigation.

8I have partially obfuscated the IP address.
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Figure 4.9: Prototype implementation.

4.5 Prototype Design, Implementation and Campus

Field Trail

In this section, I prototype a practical system to: (a) classify enterprise hosts in

real-time via my multi-grained classification scheme, and (b) dynamically isolate

and inspect full traffic of “suspicious” hosts that are with low-confident predictions

for a deeper packet-level diagnosis. Dynamic and reactive diagnosis is enabled by

software-defined networking (SDN) techniques. I begin with the design of my pro-

totype. I next draw insights into results of host classification and forensic analysis

on the isolated traffic of suspicious hosts. Finally, I explain the system performance

from a one-month trial (between 18th November and 18th December 2019).
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4.5.1 Design and Implementation of my Prototype

I implemented my system using commodity hardware and open-source tools/libraries,

and deployed it at the edge of my university campus network. Implementation de-

tails are shown in Fig. 4.9. My system receives inbound and outbound live traffic

of the entire campus network (provisioned by the IT department of my university)

via two 10 Gbps links. For my deployment, each functional block runs as an inde-

pendent micro-service [239], and hence my system is more resilient to the failure of

individual modules.

An SDN switch (NoviFlow 2122 [240]) is instructed by two separate SDN appli-

cations I developed for the Faucet SDN controller (inserting only proactive static

rules) and the Ryu SDN controller (managing only run-time reactive rules). The two

SDN controllers are logical independent so that the failure of one application (e.g.,

inserting reactive rules) would not affect the other one (e.g., inserting proactive

rules). Proactive rules mirror outbound traffic to a generic server configured with

Ubuntu version 16.04.4, which hosts my virtual network function (VNF) written in

Golang using DPDK (data plane development kit) framework and the NFF-Go [241]

library. The VNF parses packets, extracts required metadata, and updates my host

data structure. Attributes of each host are calculated and periodically forwarded to

the trained models (multi-grained classification scheme developed in Python3) via

a messaging system (NATS) that acts as a data broker for information exchange.

Predictions (classified labels and confidence levels) are published to the messaging

system.

The hosts that receive a low confidence score (i.e., less than 0.8) from the coarse-

grained model (suspicious hosts) will need further and deeper investigation to de-

termine the cause of deviation from their expected behavior. Such deep inspections

for a host last till it receives a high confidence score. To achieve this, the SDN

component of my system dynamically inserts reactive rules to mirror both inbound
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Table 4.7: Summary of hosts with fine-grained types from the one-month campus
field trial.
Fine-grained host type # host avg consistency avg consistency (wrk) avg utilization # previously unknown hosts
Website server 362 0.93 0.98 0.33 306 (85%)
Authoritative name server 17 0.96 0.99 0.65 2 (12%)
VPN Server 13 0.94 0.98 0.41 0 (0%)
Remote computing platform 159 0.83 0.89 0.34 147 (93%)
File storage server 18 0.93 0.95 0.26 4 (22%)
Mail server 19 0.98 0.92 0.34 1 (5%)
DNS proxy 9 0.81 0.88 0.37 2 (22%)
Web proxy 7 0.76 0.79 0.44 3 (43%)
NAT gateway 272 0.61 0.89 0.61 13 (5%)
End-host 18,891 0.99 0.97 0.17 18,128 (96%)

and outbound traffic of those suspicious hosts – rules are initiated by the SDN app

to the Ryu controller through RESTful APIs.

To demonstrate the selective packet inspection of suspicious hosts, I set up Zeek

[242] (a popular open-source security analyzer previously known as Bro). This

software-based deep packet analyzer does not scale to a large volume of traffic.

My system, instead, feeds Zeek with a minor fraction of the entire traffic, only that

belongs to the hosts that are flagged suspicious by the inference models.

4.5.2 Insights into Campus Host Types

I now draw insights into the types of campus hosts predicted by my trained models

and the consistency of their prediction by analyzing results of my system during the

trial.

Fine-Grained and Coarse-Grained Classes

By analyzing the prediction results of my system during the field trial, I obtained

the label (of network roles and behaviors) for a large set of hosts not managed by

my organizational IT department. Table 4.7 and 4.8 summarize the classification

results of fine-grained and coarse-grained types, respectively.

The hosts I determined their ground-truth type by DNS name (discussed in
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Table 4.8: Summary of hosts with coarse-grained types obtained from the one-month
campus field trial.

Coarse-grained host type # host avg consistency avg consistency (wrk) avg utilization Low-conf. predictions Low-conf. hosts
TCP-dominant Server 2,005 0.55 0.77 0.19 65,978 231 (11%)
UDP-dominant Server 144 0.79 0.81 0.25 23,061 81 (56%)
TCP-dominant Proxy 0 0 0 0 0 0 (0%)
UDP-dominant Proxy 8 0.17 0.81 0.38 2,919 8 (100%)
Non-typical NAT Gw. 19 0.43 0.85 0.56 971 18 (94%)
Non-typical End-host 1,946 0.88 0.92 0.24 230,029 486 (24%)

§4.3.2) have been cross-checked and validated. Note that some of those hosts (5

website servers, 4 remote computing platforms, and 1198 end-hosts) were not present

on the network during the field trial – data used in §4.3.2 was collected nine months

prior to the field trial. In addition, a total of 18,619 previously unknown hosts are

classified to their fine-grained types for at least half of their active life during working

hours (i.e., 9am – 5pm), as shown by the rightmost column of Table 4.7, including

306 website servers, two authoritative name servers, 147 remote computing platform,

four file storage servers, one mail server, two DNS proxies, three web proxies, 13 NAT

gateways, and 18,128 end-hosts.

As expected, the fine-grained type can be determined confidently for a portion

(i.e., not all) of active hosts. The hosts, which do not receive a confident predic-

tion from the fine-grained models, are classified by the coarse-grained model with

relatively high confidence (above 0.80). I have found 1,774 TCP-dominant servers,

63 UDP-dominant servers, a non-typical NAT gateway, and 1,460 non-typical end-

hosts. The coarse-grained predictions are accompanied by their dominant transport-

layer services. For example, two TCP-dominant servers consistently used TCP/3306

(used by MySQL servers) as their top services, and one UDP-dominant server that is

heavily active on UDP/427, suggesting a CIM server for managing hardware health

information.

Behavioral Consistency of Enterprise Hosts

I note that some hosts may display different behavioral patterns during certain peri-

ods. Main servers (e.g., organizational servers configured by the IT department) are
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(a) Main website server: it is either classified as website server or end-host.
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(b) NAT gateway: it is either classified as NAT gateway or end-host.

Figure 4.10: Time-trace of model confidence per class for two host examples: (a)
website server and (b) NAT gateway.

consistently found to behave as their expected class with high confidence. However,

subsidiary servers (managed by sub-departments) displayed variable behaviors dur-

ing different hours. As an illustrative example, I show in Fig. 4.10(a) the time-trace

of the model confidence for a server (the student web portal of my university), which

is mostly classified as a website server with a few instances misclassified as end-host

throughout my field trial. It can be seen in Fig. 4.10(a) that the model confidence

is fairly high (close to 1) when this host is classified as a website server (dashed blue

lines). I observe that the model confidence for predicting it as an end-host (solid

red lines) is fairly low (mostly <0.4), with a few instances crossing 0.6 – only an in-

stance exceeds 0.8, resulting in misclassification. I manually verified that this server

undertakes routine maintenance (i.e., fetching updates from the Internet) around

midnight.

Proxies and NAT gateways tend to display varying profiles as their network

activities depend highly on internal user behaviors. Therefore, these networked

assets will likely get predicted as end-hosts during off-peak hours. For example,

Fig. 4.10(b) illustrates the model prediction for a NAT gateway in my field trial.

During working hours (9am – 7pm) on weekdays and weekends between 18th Nov

and 7th Dec, the host was classified as a NAT gateway with high confidence (the blue

dashed line). In contrast, it gets labeled as end-host with high confidence (the solid
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red line) during idle hours, including night time and days of study period (before

final examinations of the academic term).

Note that each host may receive different predictions (classes) from the trained

models during its lifetime. Therefore, the “consistency” of my inference models

per enterprise host is an important metric to measure. I compute a measure of

consistency (per host), which is the fraction of time the host is classified as its most

frequent type (class). For illustration purpose, within a particular class (fine-grained

and coarse-grained) I compute the overall average consistency (third column) and the

average consistency during working hours 9am – 5pm that are respectively reported

in the third and fourth columns of Tables 4.7 and 4.8. The average utilization (active

fraction of lifetime) per class is shown in the fifth column of the two tables.

End-hosts and servers display a fairly consistent behavior compared to other

types. Proxies and NAT gateways may behave as end-hosts during the inactive

time, resulting in relatively low behavioral consistency. Hosts across all types (fine-

grained and coarse-grained) display a more distinct behavior of their type (hence

receive consistent prediction) during working hours.

Another observation is that many servers (especially those configured by sub-

departments) are fairly under-utilized (the probability of being active is less than

30%). For example, four of 9 DNS proxies are adequately utilized (more than 16

hours a day), while others are relatively idle (i.e., less than 2 hours of activity

per day); thus can be candidates for getting merged (for economic and security

management reasons) with other proxies on the network.

Lastly, for those hosts whose reliable prediction is only available by the coarse-

grained model, 824 of them receive a low confidence score (less than 0.8) for a total

of 322K prediction instances (details are shown in Table 4.8). Once a host receives a

low-confidence prediction from the coarse-grained model, its entire traffic (inbound

and outbound) is mirrored for a deep packet inspection – I use Zeek in my prototype.
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The host remains under the deep-inspection mode until it receives a high-confidence

prediction.

4.5.3 Insights into Suspicious Hosts from Deep Packet In-

spection

During the field trial, the Zeek packet inspector raised a total of 381,499 packet-level

alarms for 714 suspicious hosts, including 465 end-hosts, 18 NAT gateways, 6 UDP

proxies, 45 UDP servers, and 159 TCP servers. Resulted alerts are from 32 types.

The top alert types are “truncated tcp payload” indicating TCP-based attacks using

crafted packets, “possible split routing” indicating single directional flows that may

belong to scans and DDoS floods, “data before established” for potential volumetric

anomalies, and “inappropriate FIN” for TCP-FIN based anomalies.

The distribution of alerts per host would help IT departments infer the root cause

of their abnormal behaviors. For example, I found that a third of all resulted alerts

correspond to only 11 suspicious hosts, suggesting extra attention in the forensics

analysis. In what follows, I discuss my manual investigations specific to suspicious

hosts whose behaviors triggered 8% (UDP proxy) and 5% (TCP server) of alerts,

respectively. I emphasize that a more systematic forensic analysis is beyond the

scope of this thesis and is left for future studies.

Let us start with the suspicious DNS (UDP) proxy, configured by an affiliated

organization of my university, that consistently displays typical behaviors of UDP

proxies most of the time. However, every 5 to 10 minutes (periodically), this host

is misclassified (with low confidence) as a NAT server during peak hours and as an

end-host or even TCP proxy during off-peak hours. Analyzing the Zeek logs, I found

this host generates many TCP SYN-ACK packets followed by empty ACK packets

targeting a range of TCP ports on external victims (on Microsoft Azure cloud) for

a minute and then goes idle for 5-10 minutes. Such behaviors result in a large
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number of alerts of “truncated tcp payload”, “SYN with data”, and “TCP seq underflow -

or mismatch” for malformed TCP packets and incomplete connections. This host

seems to be infected by malware to participate in TCP ACK-based scans [243] or

flooding [244] activities.

Moving to the suspicious TCP server that purely offers TCP/3274 was classified

as TCP server for most (86%) of its active time. For other times, I found the

prediction of this host fluctuates between end-host and TCP server with fairly low

confidence scores (about 0.3). Analyzing the alerts generated by the Zeek tool, I

see that in addition to its typical inbound traffic, the server sent many outbound

TCP SYN packets (without any response) targeting TCP/443 on a wide range of

external victims (from a block of /16 IP address dedicated to Amazon cloud services)

– about 5 packets per victim. These suspsicious packets led to frequent alerts such as

“window recision” and “TCP ACK underflow or mismatch”. This pattern suggests that the

host is possibly involved in SYN reconnaissance attacks, probing the availability on

HTTPS service on external hosts as a preliminary step before launching reflection-

based DDoS attacks [245].

4.5.4 System Performance

I now report the real-time performance my system during my field trial. As shown

in Fig. 4.11(a), the throughput of the entire outbound network traffic (proactively

mirrored) processed by the Network Function engine (which only processes packet

headers). The rate of analyzed traffic varies between 0.3 Gbps to 10 Gbps, where

daily peaks occur around mid-day on weekdays. In Fig. 4.11(b), CPU utilization of

my server (which hosts traffic parsing VNF, host graph data structure, classification

scheme, and SDN controller) follows a periodic pattern and is bounded between 24%

and 36%, as shown by solid blue lines. Also, the memory usage varies from 0.2 GB

to 1.3 GB, as shown by dashed red lines – note that the host-based data structure
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(b) CPU & memory usage.

18 Nov 25 Nov 02 Dec 09 Dec 16 Dec

45

50

55

60

65

Cl
as

sif
ica

tio
n 

re
po

ns
iv

en
es

s (
m

s)

(c) Responsiveness.
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(d) Reactive mirrored load.

Figure 4.11: Real-time performance of my system: (a) proactive mirrored load, (b)
CPU and memory usage of the server hosting VNF, host data structure, inference
engine and SDN controller, (c) responsiveness of the classifier (per epoch), and (d)
reactive mirrored load.

contributes to majority of memory usage. Fig. 4.11(c) illustrates the responsiveness

of the classification scheme called every minute, which is less than 65 ms even during

peak hours, proving that my system can give real-time inference of enterprise hosts

behavior. Lastly, reactively mirrored traffic load (to fine-grained packet inspection

engine via my SDN-based mechanism) for “focused” enterprise IP addresses is shown

in Fig. 4.11(d). It was light enough (i.e., typically below 300 Mbps) to be processed

by a computational extensive deep packet inspector.
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4.6 Conclusion

Real-time classification of hosts and tracking their behavior are critical for enterprise

network operators to manage their network assets effectively and securely. In this

chapter, I developed an intelligent system that continuously classifies and monitors

the network behavior of enterprise hosts. I conducted a large-scale analysis on traffic

traces of an enterprise network and characterized network behavioral patterns of

various host types at two levels of granularity. I then identified 256 attributes of

host behavior and developed a multi-grained inference scheme consisting of a ten-

class classifier and a six-class classifier that yields a high accuracy of 99%. Finally, I

prototyped a practical system empowered by software-defined networking and virtual

network functions and deploy it in a large university campus network. I presented

insights obtained over a month field trial, such as the ability to identify hundreds

of typical servers and their utilization and thousands of non-typical assets, and

highlight anomalous behaviors pertinent to possible cyber-threats.
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Domain Name System (DNS) is a critical service for enterprise operations, and

is often made openly accessible across firewalls. Malicious actors use this fact to

attack organizational DNS servers, or use them as reflectors to attack other victims.

Further, attackers can operate with little resources, can hide behind open recursive

resolvers, and can amplify their attack volume manifold. The rising frequency and

effectiveness of DNS-based DDoS attacks make this a growing concern for organiza-

tions. Solutions available today, such as firewalls and intrusion detection systems,

use combinations of blocklists of malicious sources and thresholds on DNS traffic

volumes to detect and defend against volumetric attacks, which are not robust to

attack sources that morph their identity or adapt their rates to evade detection.

I propose a method for detecting distributed DNS attacks that uses a hierarchical

graph structure to track DNS traffic at three levels of host, subnet, and autonomous

system (AS), combined with machine learning that identifies anomalous behaviors at

various levels of the hierarchy. My method can detect distributed attacks even with

low rates and stealthy patterns. My contributions are three-fold: (1) I analyze real

DNS traffic over a week (nearly 400M packets) from the edges of two large enterprise

networks to highlight various types of incoming DNS queries and the behavior of ma-

licious entities generating query scans and floods; (2) I develop a hierarchical graph

structure to monitor DNS activity, identify key attributes, and train/tune/evaluate
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anomaly detection models for various levels of the hierarchy, yielding more than 99%

accuracy at each level; and (3) I apply my scheme to a month’s worth of DNS data

from the two enterprises and compare the results against blocklists and firewall logs

to demonstrate its ability in detecting distributed attacks that might be missed by

legacy methods while maintaining a decent real-time performance.

5.1 Introduction

The critical role of DNS infrastructure in large enterprises makes it a popular target

for cyber-criminals. In recent years, distributed denial-of-service (DDoS) attacks

based on DNS have risen in frequency, volume, and sophistication [246], and it is

likely to worsen further as the attack surface expands with bring-your-own devices

(BYOD) and Internet-of-Things (IoT) appliances [43, 247]. As an example, more

than 100K compromised IoT devices were enslaved in 2016 for a global-scale DDoS

attack on Dyn’s DNS infrastructure [248] which prevented Internet users from ac-

cessing more than 1.2K web services such as Netflix, Spotify, and Twitter. According

to EfficientIP [249], in 2020, nearly 79% enterprises suffered from DNS attacks which

cost on average $924K per attack.

In spite of these growing risks, organizations today have huge DNS “blind spots”

[170] that leave them exposed to DNS-based attacks. Large enterprises have many

departments, each with their own information technology (IT) personnel, indepen-

dently managing DNS servers/caches (this is particularly true in loosely-federated

organizations like Universities), so it becomes very challenging to track and lock-

down internal DNS infrastructure at a central firewall. Small businesses often rely

on their Internet Service Provider (ISP) for security, and the ISP is quite likely to

allow all DNS traffic through as they may not have visibility of the DNS infrastruc-

ture of the business, which can be dynamic. Further, even for organizations that do

try to restrict incoming DNS traffic, malicious entities can spoof well-crafted DNS
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queries to reach and exploit their internal DNS services. New methods are therefore

needed that are robust to dynamic DNS infrastructures and morphing attacks.

DNS-based attacks are broadly categorized into three groups: (1) query floods

(also known as DNS flooding), mainly sourced from botnets that directly bombard

victim servers (mainly authoritative name servers or recursive resolvers) with a large

number of queries to exhaust the victim’s resources, (2) DNS reflection/amplification

attacks that utilize open DNS resolvers as proxies [250] by sending spoofed source

address queries (using the intended victim’s IP address), and (3) DNS scans [251,

252] that actively probe a target network to identify potential victims for future

DNS floods and/or reflections. As emphasized earlier, current intrusion detec-

tion/prevention and firewall systems rely on static configurations, and are not robust

enough to detect and block these attacks in the presence of dynamic DNS infras-

tructures and morphing attacks.

Most security solutions, both software-based tools and hardware-based appli-

ances, typically use static signatures of known attacks. However, signature-based

detection approaches are difficult to scale cost-effectively and require regular updates

since attack vectors evolve rapidly [113]. Existing commercial intrusion detection

systems often use threshold methods [202–204, 253] whereby they search for recur-

ring patterns in traffic by counting the number of certain events occurring within a

“defined period”, and take action if the configured “threshold values” are exceeded.

Existing methods require IT departments to configure static policies and set

threshold values for counting periods. Determining suitable thresholds is a non-

trivial task since it is not obvious what the optimal values for effective defensive

policies should be applied – high thresholds allow attacks to go undetected while

small thresholds can result in a large number of false positives, incurring a high cost

of investigation. If thresholds are specifically configured by administrators (e.g.,

120% of empirical peak load for a critical server as suggested by firewall vendors

[202]), then existing firewalls can protect specific servers (or IP subnets) from being
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overwhelmed by an excessive rate of inbound packets affecting their normal service

operation. However, they are still unable to identify and defend against distributed

attacks (i.e., identifying attack sources), since each source generates malicious traffic

at low rates [26] (and may appear legitimate). I note that low-rate attacks (e.g.,

CPU-exhaustion DoS attacks [254]) are still important to detect since they may be

powerful enough to adversely affect servers with less resources. Also, distributed

attacks often begin at a low rate before causing serious disruption or damage [255].

They often originate from bot devices under a subnet or autonomous system (AS)

[256] that can only be detected by maintaining information for external entities at

multiple levels of aggregation.

To address these shortcomings, I develop, implement, and evaluate an anomaly-

based detection system, incorporating a dynamic and hierarchical graph structure of

well-selected attributes, to capture real-time volumetric behavior of external hosts

and detect external anomalous entities at various levels of aggregation. There exist

prior works which detect attacks at destination networks, but their primary focus is

to identify “victims”. To the best of my knowledge, this work the first to propose a

victim-side method for isolating “ attack sources” in distributed DNS attacks (i.e.,

DDoS floods and reconnaissance scans) depending on their nature of distribution

across hosts, subnets, or AS.

My key contributions are summarized as follows. Firstly, in §5.3, I highlight

the characteristics of malicious Internet hosts that launch DNS volumteric scans

and flooding attacks on enterprise networks by analyzing datasets of real DNS traf-

fic, consisting of approximately 400 million DNS queries and responses, collected

from two enterprises over a week. Secondly, in §5.4, I develop a hierarchical graph

structure with dynamic nodes and edges for monitoring the DNS query behavior

of external entities at various levels of aggregation (namely host-, subnet-, and AS-

level), identify attributes that can be computed cost-effectively in real-time, generate

anomaly detection models using benign traffic only, and evaluate them using benign
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traffic as well as synthetically generated attack traffic. Finally, in §5.5, I demon-

strate the efficacy of my scheme especially in detecting low-rate DNS-based attacks

by replaying a month’s worth of DNS traffic to my prototype, and validate my re-

sults by checking flagged external hosts against public blocklists of malicious IP

addresses, as well as against logs from a commercial firewall.

5.2 Related Work

In this section, I survey related literature for the scopes my work falls in (i.e., DNS

security and defense of distributed network attacks) and highlight the research gaps

that are addressed in this chapter.

5.2.1 DNS Security

DNS security has been an attractive topic for both industry and academia, especially

on integrity of DNS records [179, 257, 258], and vulnerabilities of DNS infrastructure

to volumetric attacks [2, 245, 259].

As for the integrity of domain names, malicious users on the Internet exploit DNS

protocol to signal and control malicious network infrastructures such as DDoS bot-

net. Authors of [260] analyzed DNS responses to detect unusual behaviors (anomaly

detection) related to domain names such as typo squatter domains and fast flux

domains. Kopis [261] can accurately detect malware-related domains by using sta-

tistical features (such as distribution of requesters) at top-level domain servers. In

[172], authors point out that attackers use domain generation algorithm to bypass

detection systems, and they come up with a detection approach using clustering and

classification algorithms for domain names and their requesters. Furthermore, as dis-

cussed in [174], malicious entities are able to launch resource-exhaustion attacks on

DNS infrastructures by using disposable domains. Integrity problems can also arise
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during DNS lookups from legitimate users. Unsecured DNS communication can be

easily hijacked and manipulated by third parties [257]. To address this problem,

secured extensions such as DNSSEC [262] and DNS-over-HTTPS [193] have been

proposed. However, Chung et al. revealed that the adoption of DNSSEC is still in

early stages [182].

Researchers have also investigated vulnerabilities of DNS services and infras-

tructure to volumetric attacks including DDoS and reconnaissance scans. DNSSEC

is seen more attractive by DNS amplification attackers. Rijswijk-Deij et al. [185]

showed that DNSSEC can be mis-used for larger amplifications (in reflection attacks)

compared to standard DNS. Work in [259] actively probed DNS resolvers available

on the Internet and quantified their reflective capabilities.

In this work, I develop data-driven models, trained by real enterprise data, to

detect and identify external anomalous sources (at three hierarchical levels including

host, subnet, and AS) that attempt to discover, attack, or exploit enterprise DNS

infrastructure, even when they reduce their activity profile by getting distributed

and reducing their traffic rates.

5.2.2 Defense of Distributed Network Attacks

Efficient defense of distributed network attacks have been widely-studied by many

researchers. Works can be classified based on where they are deployed regarding

the anatomy of attacks, i.e., at-source, at-destination, or at-network [78]. At-source

methods are deployed at the place where attacks originated, D-WARD [80] looks

for suspicious traffic patterns (e.g., source IP spoofing on incoming traffic) and

applies rate-limiting to corresponding hosts at the network edge. ShadowNet [263]

measure traffic attributes (e.g., rate of HTTP GET requests) from edge routers

serving IoT devices to detect IoT botnets. For at-network solutions, LADS [264] uses

lightweight SNMP and NetFlow statistics collected from an ISP’s backbone routers,
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and Bohatei [11] uses SDN to reroute suspicious traffic (e.g., excessive number of

TCP SYN packets) to IDS middleboxes on ISP networks. PSI [232] is an example

of at-destination approach. It is deployed at the edge of an enterprise network

which dynamically applies security rules of firewalls or IDS to traffic of interest

(e.g., certain protocols) for detecting attacks towards enterprise hosts with optimized

accuracy and cost. With emerging SDNs, denial-of-service attacks on controllers

start ramping up. SWGuard [265] defenses against control-plane reflection attacks

by monitoring victim’s down-link control messages.

Note that both at-source and at-network systems are effective in both detection

and mitigation but they require automatic coordination (signaling) between network

operators on the path between source and destination, while legacy at-destination

methods can well isolate victims but not source of attacks. My work is the first

to develop a novel hierarchical graph structure for detecting attacks at-destination

that can precisely identify external attack sources at IP-level to subnet and AS

levels, even the sophisticated distributed attackers which keep their individual attack

traffic rates so low, bypassing network firewalls. Comparing my work with systems

against volumetric distributed attacks in particular, existing methods primarily aim

to detect potential victim servers (instead of identifying attack sources) [10, 232,

266, 267]. Moreover, their objective upon detection of an attack is to either isolate

or rate-limit the victim, affecting malicious and benign traffic sources alike. My

work, instead, aims to detect distributed attacks and identify their sources which

can be precisely blocked (automatically or manually) for remedial action without

affecting benign/legitimate sources.

5.2.3 Summary of Research Gaps

I have identified three research gaps in relevant existing works. First, no prior work

systematically characterized the behavior of malicious entities that generate dis-
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tributed DNS attacks on enterprise networks. In §5.3, I highlight the anatomy of

distributed DNS attacks on enterprise assets. Second, no prior solution considered

the context of attack sources in terms of their subnets and ASes. I, instead, develop

a hierarchical data structure (§5.4) to track the behavior of attackers at various ag-

gregate levels. Third, existing enterprise-side defense systems predominately aim to

detect victim internal servers which are under attack (i.e., identifying “destination”

of attacks), and hence do not distinguish between malicious and benign external

sources (i.e., unable to identify “source” of attacks, especially when they are dis-

tributed). I, instead, detect distributed attack sources (§5.5) even those which keep

their traffic rates relatively low to bypass security appliances.

5.3 Profile of DNS Volumetric Queries to Enterprise

Networks

In this section, I analyze the DNS traffic collected from the border of two enter-

prise networks, a large University campus and a medium-size research institute to

profile incoming queries to enterprise hosts. My data analysis primarily focuses

on the behavior of external source entities (i.e., hosts, subnets, and ASes outside

the protected enterprise network) that may contact or attack DNS servers in any

enterprise settings. Note that the two studied networks have rich DNS facilities

(i.e., authoritative DNS servers, recursive resolvers and public-facing servers with

assigned domain names) which are frequently targeted by distributed DNS attacks.

Smaller organizations with fewer DNS servers can become target of similar inbound

attacks, perhaps at relatively lower frequency.

In both instances the IT department of the enterprise provisioned a full mirror

(both inbound and outbound) of their Internet traffic (each on a 10 Gbps interface)

to my data collection system from their border routers (outside of the firewall),
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Table 5.1: Summary of dataset during 1-7 May 2018.

University Campus Research Institute

Query In 139,136,237 99,847,262

Response Out 97,008,082 61,164,416

Unanswered Query 42,127,345 35,332,068

Invalid Query 5,335,019 9,335,751

NameError 4,935,385 4,154,238

ServerFailure 264,100 490,045

Refused 135,404 4,640,829

and I obtained appropriate ethics clearances1 for this study. I extracted all DNS

packets from each of the enterprise Internet traffic streams in real-time by configuring

OpenFlow match rules for incoming/outgoing IPv4 port 53 packets on an SDN

switch. My dataset was collected during the full month May 2018, though my

analysis in this section focuses on a one week period (1-7 May 2018), consisting of

139.1M and 99.8M incoming DNS queries to, along with 97M and 61.2M outgoing

DNS responses from, hosts of the university and research networks respectively – a

brief summary of the dataset for the first week of May 2018 is shown in Table 5.1.

As an additional note, the work described in this chapter is done prior to the work

in §3, thus, the dataset used in this chapter is collected earlier than that in §3.

5.3.1 Incoming DNS Queries

A benign incoming DNS query to an enterprise network typically targets an authori-

tative name server and the corresponding server responds with a NoError flag. There

are, however, other types of incoming queries observed in real networks: unan-

swered queries (i.e., DNS queries with no response) and invalid queries, those

answered with flags other than NoError, for various reasons such as the query packet

is malformed or corrupted, the query name does not exist or is not relevant for

1UNSW Human Research Ethics Advisory Panel approval number HC17499, and CSIRO
Data61 Ethics approval number 115/17.
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the organization (and thus does not resolve to any IP address), or an unintended

recursive resolver is queried.

Unanswered queries: During the first week of May 2018, I found a total of

42M and 35M unanswered incoming queries to the networks of the university and

the research institute respectively – approximately one third of the total incoming

queries in both organizations. I have verified that these queries typically targeted

non-DNS servers inside the organization (by performing reverse DNS lookups) or

IP addresses that are not active/present in the network to receive the query, and

therefore were not answered.

Invalid queries: I also found a total of 5.3M and 9.3M invalid incoming queries

to the networks of the university and the research institute respectively – accounting

for 4% and 9% of the total incoming queries. For the university network, 92.5%

of invalid queries were answered with a NameError flag, indicating that the DNS

server was not able to resolve the queried name. Also, 5.3% of responses had an

error code of ServerFailure and 2.5% an error code of Refused. Additionally, a tiny

fraction of responses had NotImplemented and FormatError flags set (118 and 12 invalid

queries respectively) – these error codes indicate incorrect messages contained in the

queries or incorrect destination name servers (e.g., a wrong domain name for the

authoritative name server of the organization).

For the research institute, the distribution of error codes was as follows: 44.4%

with NameError, 5.2% with ServerFailure, 49.6% with Refused, 0.4% with FormatError

and only 117 instances of NotImplemented with additional codes including NotAuth

and NXRRSet seen in 31,540 and 24 of responses to invalid queries. The last two error

codes correspond to wrong destinations or messages in the queries.
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(a) Unanswered queries. (b) Invalid queries.

Figure 5.1: CCDF of: (a) unanswered, and (b) invalid, query counts per external
host for a duration of one week (to university network).

5.3.2 External Hosts Sending Unwanted DNS Queries

Considering all external hosts sending DNS queries to the university network2, I

counted a total of 168,538 unique hosts (i.e., IP addresses) in my dataset for the

first week of May 2018. These external hosts come from 46,729 distinct subnets

and 16,775 unique autonomous systems. I found a total of 112,704 external hosts

sent some form of unwanted query: 41,893 external hosts sent both unanswered and

invalid queries; 59,907 sent only unanswered queries and 10,904 sent only invalid

queries.

Interestingly, I observe that only a tiny fraction of external hosts are very active

in sending unwanted queries. In Fig. 5.1, I show CCDF plots of unwanted queries

counts per external host. Note that there are 29 external hosts each generated

more than 100K unanswered queries, as shown in Fig. 5.1(a), with three hosts each

generating more than a million unanswered queries over the week. Similarly, only 6

external hosts each sent more than 100K invalid queries, as shown in Fig. 5.1(b). I

will see later in this section that these heavy hosts are indeed involved in volumetric-

based DNS attacks in the form of host scanning and/or query flooding.

2In this subsection, I have omitted analysis of the research institute data so as to concentrate
on insights. Similar observations were made for both organizations.
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(a) Pkt count vs queried hosts count. (b) Variance of query packet size.

Figure 5.2: Query behavior of external hosts during a week: (a) number of packets
sent versus number of internal hosts contacted per individual external host, and
(b) CCDF of query packet size (Bytes) per external host – normal and suspicious
external hosts are highlighted in blue and red respectively.

I now divide the external hosts into two groups: hosts with “normal” and hosts

with “suspicious” behavior in their DNS queries – normal hosts do not send any

unwanted DNS queries to the network. Note that some of the suspicious hosts may

just have typographical errors in their DNS queries. Suspicious hosts are distributed

across 30,295 subnets of 11,539 autonomous systems. I found that 73 ASes each with

more than 100 hosts account for 59% of all suspicious IP addresses, of which the

top 5 heavy ASes contain 19% of all suspicious hosts. This is not surprising as

approximately half of all cyber-attacks originate from compromised devices in a

small number of countries with insecure infrastructure [256]. On the other hand,

55,834 normal hosts are distributed across 10,706 unique ASes – the number of

normal hosts for each AS is evenly distributed.

Fig. 5.2 illustrates the difference between the query behavior of normal and

suspicious external hosts. Starting with the scatter plot of query packets count

versus number of unique internal hosts queried for each external host, shown in

Fig. 5.2(a), a cluster of normal hosts (shown by blue cross markers) is clearly visible

at the bottom left corner of the plot – a normal external host does not send more
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than 10,000 queries in a week. On the other hand, suspicious hosts (shown by red

circle markers) display two clusters (i.e., suspicious hosts lying on the line y = x that

send one query to a large number of internal hosts, and suspicious hosts clustered

on the left that send a large number of queries to a limited set of internal hosts).

Moving to the variance of the queries, I show in Fig. 5.2(b) the CCDF plot of

the standard deviation of packet size sent by each of the normal and suspicious

external hosts. It can be clearly seen that suspicious hosts (as shown by dashed

red lines) display a smaller variation in the size of their query packets compared to

normal hosts, highlighting a set of repopulated query names were automatically sent

by suspicious hosts (i.e., a bot). More importantly, I observe that a large fraction

(i.e., 42%) of suspicious hosts had identical packet size (i.e., zero variation) for their

queries during the week.

I also analyzed the payload of queries sent by each external host. Among suspi-

cious hosts (excluding 4,436 hosts with just one query), I identified 19,551 hosts each

used identical query names for all queries during the week, with many of these hosts

having a large number of queries sent to the university network (e.g., an external IP

address sent 13,144,130 identical query packets to one internal IP address). I also

observed that most of these suspicious query names are not relevant to the services

provided by the enterprise. For example, one IP address (located in Russia) sent

763K queries with the query name “com” to the campus network, and another IP

(located in Lithuania) sent 397K queries for “nrc.gov” during the week.

It is important to note that using identical query names is also seen for normal

hosts. I note that 8,836 normal external hosts each queried only one domain name,

but each of these hosts generated only a small number of queries during the week.

Another observation for these specific normal hosts is that the DNS ID (i.e., a 16-bit

identifier in the DNS header) varies over time, whereas for suspicious hosts only one

DNS ID was consistently used for successive DNS queries. Next, I analyze in more

detail the properties of the two types of unwanted DNS queries.

154



Chapter 5. Hierarchical Anomaly-based Detection of Distributed DNS Attacks on
Enterprise Hosts

(a) Periodic (an external host
from Russia).

(b) Focused (an external host
from China).

(c) Low-rate (an external host
from US).

Figure 5.3: Weekly time-trace of various types of DNS scans: (a) periodic, (b)
focused, and (c) low-rate; on enterprise hosts from the Internet.

5.3.3 DNS Query Scans

The first cluster of suspicious hosts shown in Fig. 5.2(a) corresponds to scanners

that sent one query packet (i.e., probe) to a large number of (potentially all) inter-

nal IP addresses. I note that the university owns three “/16” IPv4 address prefixes,

which represents more than 196K unique IP addresses for internal hosts, as indi-

cated by the largest number of hosts contacted in Fig. 5.2(a). Scans are typically

performed by malicious entities to make a list of available DNS servers inside enter-

prises that could subsequently be used as reflectors for DDoS attacks [252]. Also,

there are a number of “white hat” researchers who conduct DNS query probing to

only detect (not attack) vulnerable DNS servers available on the Internet [35, 259,

268]. Scan queries are typically crafted packets with the query name field most

likely not relevant for the enterprise network. If this query reaches an operational

DNS server, a response may or may not be returned (depending on the particular

name server configuration). Scanners can choose various strategies (in terms of the

query rate) to perform reconnaissance tasks. Next, I consider three types of scans –

a representative of each type is shown in Fig. 5.3.
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Periodic Heavy Scans

Some scanners choose to scan the network on a periodic basis. Fig. 5.3(a) shows a

scanner from Russia that conducted 4 large-scale scans during the week by sending

queries to a total of 196,865 IP addresses (i.e., almost the full three /16 prefixes)

inside the university campus. Each scan lasted for about 2 hours and the query name

“com” was repeatedly used in all query packets. Forty one DNS servers (i.e., recursive

resolvers and authoritative name servers) inside the organization responded to this

scanner – a majority of servers were not able to respond with a NoError flag to these

queries: 24 servers responded with error code Refused, 7 with ServerFailure, and 2

with NameError. Surprisingly, 8 DNS resolvers (verified by reverse lookups) inside the

enterprise network responded with NoError flag to the scanner, resolving the queried

name “com”. I note that the answers to this top-level domain name are fairly large,

resulting in an attractive amplification factor (i.e., ratio of response size to query

size) of up to 43. I will see later in §5.3.4 that some of these servers were used as

reflectors.

Focused Scans

Instead of blindly sweeping the entire IP range of a target network, some scanners

(those with prior knowledge) may focus on selected IP addresses in their dictionary.

Focused scans aim to validate the availability of potential DNS servers that can

be used as reflectors/victims – some vulnerable DNS servers may subsequently be

secured by a change of configuration or may no longer be operational.

A sample of focused scans is shown in Fig 5.3(b). This scanner (located in China)

targeted 18 IP addresses from 2 subnets of the university network by periodically

looping over a static list of hosts. Each scan round consisted of sending one cus-

tomized query with the name “d.c.b.a.in-addr.arpa” to each IP address “a.b.c.d”

– this reverse lookup query causes the victim (i.e., potential DNS server) to return
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its own DNS name inside the organization. I observed that the same loop was re-

peated 760 times during the week. I verified (by manual reverse lookup) that 2 of

these IP addresses are the university’s main recursive resolvers, 3 of which are re-

solvers at Faculty/Department-level, and 13 IP addresses are WiFi gateways inside

the enterprise network. Among these 18 internal hosts, only one department-level

DNS resolver responded with the “NoError” flag, revealing its identity. Other DNS

resolvers were securely configured and did not respond to this scanner – enterprise

resolvers are meant to serve only internal hosts.

Slow-Rate and Distributed Scans

As heavy scans (i.e., high rate queries) can be easily detected by current firewalls

and intrusion detection systems, sophisticated scanners may choose to go under the

radar by lowering their query rate or distributing the probing task across a number

of hosts. Fig. 5.3(c) shows an example of a low-rate scan. The external host (located

in US) consistently sent approximately 40 queries per hour with the question name

“VERSION.BIND” – in total 5831 queries were sent to 5806 IP addresses during the

week (i.e., on average one query per internal host). I note that this query (specific

to the most widely deployed DNS server application BIND) asks the server’s version.

I found that only one host (i.e., a department-level DNS resolver) replied to this

query with error code Refused. Interestingly, right after this response, the scanner

sent another query with question name “direct.shodan.io” and the DNS resolver

successfully responded with NoError.

Impatient low-rate scanners tend to distribute their task across multiple sources

(more likely from a subnet/AS under their control). In my dataset from the uni-

versity network, I found (via manual analysis) 6 distributed scans each originating

from a distinct subnet. For each of these scans I observed a similar scan pattern

(time-series, total count, query name) across all hosts involved. For example, in

one of these distributed scans, 16 external hosts from a /22 prefix (located in US)
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each sent about 75K queries (one query per internal host contacted) asking for

“dnsscan.shadowserver.org”.

I also found a distributed scan sourced from multiple prefixes within a distinct AS

– manually finding this type of distributed attack is a non-trivial task. In this scan,

only three external hosts each from a different subnet (i.e., one in /17, one in /12,

and one in another /12 subnet) all associated with AS4134 (located in China), each

generated about 130K queries to 65K internal hosts (i.e., two queries per internal

host) asking two domain names “www.163.com” and “version.bind”.

5.3.4 DNS Query Floods

I now consider the second cluster of hosts generating unwanted queries, shown in

Fig. 5.2(a). These external hosts flood (sending a large number of queries to) a small

number of enterprise hosts. I note that some flooders aim to exhaust the resources

of the enterprise host (primarily DNS servers) [43, 269] whereas others aim to use

enterprise servers to reflect/amplify volumetric DNS traffic to third party victims

[184]. In the latter scenario, the attacker spoofs the source IP address of the query

by using the intended victim’s address.

Similar to scanners (described in §5.3.3), flooders may use one or a list of query

names which may or may not be relevant to the enterprise network. Due to the

objective of flooders, I expect to see a higher rate of queries coming from external

hosts to the enterprise network. Next, I analyze two types of DNS query floods with

supporting examples from the two enterprise networks.

Flooding Enterprise Servers

DNS flooders may target a DNS server of an enterprise to exhaust its computational

resources (by asking it to resolve an excessive number of queries) or a non-DNS
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(a) Targetting an internal name server. (b) Targetting an internal web server.

Figure 5.4: Weekly time-trace of DNS flooding on enterprise hosts from the Internet,
targeting an internal (a) name server, and (b) web server.

server to consume its network resources. Fig. 5.4(a) shows the DNS traffic pattern

(incoming queries and outgoing responses) for one of the main authoritative name

servers inside the research institute. I can see that this server typically handled

approximately 50K query packets per hour for domain names associated with the

research organization – number of queries and responses are almost the same during

normal operation (i.e., except for the spike period of an attack on 2 May). However,

between 06:48AM to 08:11AM on 2 May, this server received a surge of queries

(i.e., about 1.7M queries per hour) sourced from 29,614 external hosts, 4,053 of

which kept sending repeated queries with the research organization domain name

(the characters were randomly in capital or lower case, e.g., “reSeaRChInstituTe.OrG”

and “ResEaRchINSTituTe.oRG”). The highly suspicious external hosts were associated

with 432 ASes (122 in U.S., 40 in Australia, 17 in Canada, and 17 in Brazil), where

26 ASes cover 3183 (78.5%) flooders. I note that the top two ASes (both in US)

account for 1,211 and 510 flooders.

I can see that this large scale attack resulted in no query (legitimate or malicious)

being responded to, as shown by red lines hitting zero during the attack period

in Fig. 5.4(a). I note that this might be because either the server became non-

operational, or the enterprise border firewall had detected the attack and possibly
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dropped all queries to protect the server.

Fig. 5.4(b) shows a sample time-trace of DNS traffic for the second type of

victims (i.e., a non-DNS host). The victim host is a department-level web server in

the university network. I can see that this web server does not typically receive DNS

traffic but two instances of query floods hit this server: spikes on 5 May and 6-7 May.

During 04:33 to 05:51 on 5th May, 18 external IPs each generated about 800 queries

with the question name of either “qjnntx.eleximg.com” or “static.mobike.com”. These

suspicious external hosts are associated with 4 ASes, of which 2 heavy ASes (AS20473

and AS36351 located in US) account for 10 and 6 attackers – it is a common practice

for attackers to develop their botnets within a compromised subnet or AS [256].

For the second instance, between 19:03 on 6th May till the end of the week,

11 flooders from 2 ASes (7 IP addresses from AS36351 in the US and 4 IP ad-

dresses from AS132203 in China) each sent about 15K queries to the web server

with irrelevant query names from the list of “qjnntx.eleximg.com”, “c.afekv.com”, and

“global-ldns.v3.apsv1.com”.

Reflective DNS Floods

As mentioned earlier, internal DNS servers of enterprises are targets for cyber-

attackers for reflecting volumetric DNS traffic to third party victims on the In-

ternet. Enterprise DNS servers are often discovered prior to this type of attack (as

explained in §5.3.3). I note that the source IP address of queries in reflective DNS

floods are spoofed using the intended victim’s IP address, therefore external victims

are perceived as external flooders by the border device of enterprise network.

I found one example of such an attack in my dataset for the university network

that was well coordinated and persisted for almost a week by involving five internal

DNS resolvers reflecting to three victims on the Internet, as shown in Fig. 5.5. 5 DNS

resolvers (those that successfully responded to periodic scans) inside the university
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(a) Behavior of an internal resolver. (b) Aggregate queries from 3 victims to 5 inter-
nal DNS servers.

Figure 5.5: Weekly time-trace of a reflective DNS flooding attack: (a) one attack
reflector (an internal DNS resolver), and (b) three external victims.

network simultaneously received a surge of DNS query packets (i.e., around 4K-5K

per hour) at around 11pm on 1st May with the question name “ietf.org”. I note

that the response size (in bytes) varies in the range of 15 to 45 times (i.e., the

amplification factor) the query size. Fig. 5.5(a) shows the query count (and the

corresponding response count) for one of these DNS resolvers – others displayed

almost the same pattern with a slight variation in their traffic rate.

Considering aggregated query traffic (with the victims’ addresses as source) in

Fig. 5.5(b), it is evident that the three victims were targeted consecutively (each

shown by unique line color). I note that all of three victims are servers associated

with AS49453 located in The Netherlands.

5.4 Volumetric Profiling and Detection Scheme

In this section, I present my methodology in profiling and detecting distributed

DNS attacks by developing a dynamic volumetric behavior model, and employing

anomaly detection algorithms. Fig. 5.6 illustrates the schema of my method. I first

develop (§5.4.1) a binary-hierarchical attributed graph data structure to describe the
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Figure 5.6: Architecture schema of my methodology.

volumetric traffic profile of external entities and mathematically show its efficacy in

detecting attacks (especially distributed ones) by simple thresholding at multiple

levels of the hierarchy. My data structure is applicable to generic volumetric scans

and attacks. In this chapter, I only demonstrate its merits specifically to DNS-based

attacks. I prove by mathematical analysis that my scheme is able to detect scans

and floods of various forms (e.g., distributed attacks are detected at an aggregated

level) and varying rates (e.g., low-rate attacks are detected within a guaranteed

time period). Legacy threshold-based diagnosis methods only consider traffic rate

as attribute for attack detection that makes it relatively easier for stealthy attackers

to subvert the diagnosis systems. To address this shortcoming, I identify (§5.4.2) key

attributes of network traffic that are collectively able to distinguish benign versus

malicious behavior of external sources. Using these attributes, I extend (§5.4.3) my

theoretical threshold-based hierarchy to a practical machine learning-based diagnosis

system that employs anomaly detectors at three layers of host, subnet, and AS. I

evaluate the performance of my scheme (profiling external sources using my novel

data structure combined with ML-based models) in detecting distributed attacks

with high accuracy, and highlight its superior detection ability in comparison with

simple and hierarchical thresholding-based diagnosis methods.
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5.4.1 Hierarchical Data Structure

In order to profile the volumetric behavior of an attacker, I employ a graph-like data

structure to capture the relationship between external source entities and internal

destination hosts of a given network. External source entities can be identified by a

hierarchy of: hosts under subnets under ASes. As noted in §5.3, DNS query scanners

and flooders are likely to be located within certain ASes and/or subnets. Therefore,

it is important to develop a comprehensive model that covers traffic activity of

external sources at various levels of aggregation (as opposed to purely individual

hosts level), enabling us to detect sophisticated attacks that get distributed across

a number of hosts, subnets, or ASes, aiming to evade threshold-based diagnosis by

lowering their traffic rate.

Key Design Rationale

External entities can be identified by a hierarchy of: hosts under subnets under ASes.

As noted in §5.3.2, DNS query scanners and flooders are likely to be located within

certain ASes or subnets. Therefore, it is important to consider a comprehensive

model that covers traffic activity of external entities at various levels of aggregation,

enabling us to detect sophisticated attacks that are distributed or go under the radar

(by lowering their traffic rate). Since the set of external entities can be quite massive

(i.e., potentially the whole IPv4 space on the Internet), it becomes impractical to

keep states forever. On the other hand, forgetting states too quickly may result in

missing slow attackers. Therefore, I need an efficient retention policy to age out

inactive entities in my data structure.
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Figure 5.7: My hierarchical data structure.

Theoretical Framework of My Data Structure

Given the above requirements, I construct a binary hierarchical attributed graph

model [66], as shown in Fig. 5.7. In this diagram, enterprise internal hosts are

represented by circles at the bottom, connected via solid edges to external entities

(shown by filled squares) which themselves get aggregated to upper-level entities via

dashed edges. I apply aggregation to both nodes and edges in this model. Level-1

entities each represents an external host IPv4 address on the Internet (i.e., /32),

while level-2 entities are a group of external hosts created by masking one bit in the

IPv4 address (i.e., /31) – all the remaining levels work by incrementally masking

the IP to get a larger subnet. To visualize the edge aggregation let us focus on two

leftmost level-1 hosts (i.e., eH1 and eH2) shown in Fig. 5.7. They both have a

connection (i.e., e1 and e2) to the first internal host (i.e., iH1). These two level-1

edges are aggregated as a single edge e3 at level 2.
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Dynamic retention policy: Nodes (i.e., an external entity) and edges in my

model each would have a set of attributes (explained in §5.4.2), describing their

profile, and they will be removed dynamically from the graph if they become inactive

for longer than a corresponding retention duration defined in Algo. 1.

Algorithm 1 Multi-thresholding Retention Duration
1: procedure ActionPktIn

2: while PktIn do

3: for n from MaxLevel to 0 do

4: if PktIn not match any node on level n then

5: create corresponding node and edge with

retentionDuration as 2n−1R

6: else

7: update the matched node and edge

8: end if

9: end for

10: end while

11: end procedure

12: procedure ActionAttackerDetected

13: for n from maxLevel to 0 do

14: if noden,i on level n is anomaly then

15: if n > 1 then

16: set retention duration of its child nodes

on level n− 1 to their parent level

17: end if

18: end if

19: end for

20: end procedure

A new node (with an edge) is created at a level where an incoming packet does

not match any existing node at that level in the graph (this needs to be checked

for every level). Note that each node at level n + 1 has two children nodes at level

n because of the binary nature of subnetting operations. I, therefore, choose to
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initialize Tn+1
3, the retention period of nodes at level n+ 1, to the sum of retention

periods of its children (Tn+1 = 2Tn, where T0 = R a constant value set by an

administrator). Upon creation of a node (with an edge), a default retention duration

(i.e., Tn = 2n−1R) of its corresponding level n is assigned to the new node and edge.

One may consider lager factors for the initial retention value (e.g., 3n−1R) set for

levels of the hierarchy. I note that longer retention period can result in improved

visibility, but at much higher computing costs since a larger number of states need

to be maintained. If the incoming packet matches an existing node and edge, then

the corresponding retention duration is re-initialized.

Upon detection of an attacker node (at level n), the retention period of the two

child nodes (i.e., at level n − 1) gets updated to the same value of the level n. I

double the retention period of children for longer monitoring.

Detecting External Scanners & Flooders

I now show how my proposed model can detect scanners, especially those with low

rate probing activity. Let’s assume a simple threshold N is employed to detect

scanners. A scanner node with retention duration Tn can be detected if it probes α

internal hosts per epoch time and the condition (5.1) below is satisfied.

αTn ≥ N (5.1)

Detecting a slow scanner: A slow scanner can go undetected since its node/edge

is removed from the graph every period of retention before hitting the threshold N .

Instead, a higher level node with a larger (i.e., power of two) retention duration

Tn+1 will be flagged as a scanner, and thereby the retention duration Tn of the child

nodes gets updated. The time needed to detect the scanner child node is given by:

3A typical unit for duration value (such as T ) is second.
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2
N

α
− Tn (5.2)

Proof of equation 5.2. It takes N
α

for the retention policy of a scanner node to

get updated to a higher value of its parents (i.e., time taken to detect a parent/root

node as attacker). Since the scanner node has already had αTn edges with internal

hosts, it needs to accumulate N −αTn more edges before being detected. This takes

N
α
− Tn with the probing rate α. Thus, in total, it take 2N

α
− Tn for a successful

detection at the level of scanner node.

This process will be sequentially passed to nodes at lower levels until a successful

detection at the lowest level (n = 1) is achieved. Hence, given the simple detection

criteria (i.e., condition (5.1) above), an external scanner can be detected within a

guaranteed time tdetect:

tdetect =


N
α
, if T1 ≥ N

α

nN
α
−
∑n−1

i=1 Ti, if Tn−1 <
N
α

&Tn ≥ N
α

(5.3)

Proof of equation 5.3. If the probing rate is high enough for the host being

detected within its initial retention period, then the detection time is N
α
. Otherwise,

tdetect is derived by aggregating multiple processes defined in equation 5.2 till the

lowest level.

Detecting distributed scanners: If a scan is performed by k scanners each

having rate α that cannot be detected at host-level by default T1 (i.e., αT1 < N),

it is possible (under certain conditions) to detect them at host-level earlier than

nN
α
−
∑n−1

i=1 Ti, as computed in equation (5.3). In the best-case scenario, if all

scanners are immediate neighbors of each other in Fig. 5.7 (i.e., quickly converge to

one node at higher level), and a root node (a parent covering all scanners) at higher
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levels has a sufficiently large retention period, it takes tdetect given by:

tdetect =
N

α
+

n−1∑
i=1

(
N

2iα
− Ti) (5.4)

Proof of equation 5.4. Detection time tdetect is derived in a similar way as in

equation 5.3, except that the scanning rate for a node at level n is 2n−1α instead of

α due to aggregation. Since the latter case is derived only by aggregating positive

detection times from each level, it is always a positive value.

Otherwise, if the root node cannot be detected within its default retention period,

then the detection process takes longer since the root node needs to be first detected

as a scanner (by updating the retention period from upper layers). In this scenario,

the detection time tdetect is given by:

tdetect =
N

α
+

−1+log2 k∑
i=1

(
N

2iα
− Ti) +

n−1∑
j=log2 k

(
N

2−1+log2 kα
− Tj) (5.5)

Proof of equation 5.5. Recalling that k is the number of scanners at the host-

level, from level 2 to level log2 k, all children of a scanner parent are scanners, while

from level 1 + log2 k to level n, each parent scanner has only one scanner child as

explained in scenario for equation 5.3. Thus, the detection time is a combination of

both processes.

To summarize, a scan can be detected at the host level within the duration

tdetect given by equation 5.6, while the best-case is that all scanners are immediate

neighbors with high scanning rate, and the worst-case is when scanners are located

sparsely on the graph each with low scanning rate. In other words:

N

α
≤ tdetect ≤ n

N

α
−

n−1∑
i=1

Ti (5.6)
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where, n is the level at which the scan is first detected (i.e., αTn ≥ N and

αTn−1 < N).

Proof of equation 5.6. The best-case scenario is when the scanning attack is

detected (at the host level) within default retention period, while the worst-case is

that all attackers can not be detected within default retention period and they are

sparsely distributed.

Detecting distributed flooders at aggregation level: My proposed model

can detect flooders at the highest aggregation level (i.e., root node) when a group of

flooders is involved. This enables us to effectively detect (and mitigate) distributed

attacks.

I define a simple threshold N for detecting flooder hosts, similar to that in con-

dition (5.1) but for the rate of incoming queries. If an external host queries an

internal node with more than N packets per time epoch, it gets detected. Consider-

ing aggregation, a node at level n is detected as a flooder if its query rate α exceeds

N ∗ 2n−1. Hence, given k immediate neighbor flooder hosts with attack rate α, my

data structure is able to detect distributed attacks at the highest aggregation level

ndetect given by:

ndetect = 1 + log2 k (5.7)

Practical Design Choices

I have demonstrated the efficacy of my mathematical-based model to detect challeng-

ing (low-rate and/or distributed) scans and floods. To realize and further improve

this model for detecting volumetric attacks in real networks at scale, I consider three

key design choices as follows.

First, instead of aggregating external source entities sequentially by subset mask,

I track their activities in my model using a three-level hierarchy including AS
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level, subnet level (i.e., registered subnets under the administration of each AS),

and host level (i.e., IP address of individual external source hosts). Second, since

applying thresholds only on the traffic rate of an external host cannot isolate low-

rate attackers from normal users, I use a collection of attributes to accurately

model the behavior of external hosts individually as well as at aggregated levels (i.e.,

subnets and autonomous systems), as explained in §5.4.2. I replace the thresholding-

based detection function with anomaly detection techniques. To enhance resilience

against morphed attacks that deviate from known signatures [13], I train my models

only with the behavior of benign external entities (i.e., hosts, subnets, and ASes)

and hence detect anomalies as described in §5.4.3. Third, to scale my solution it

is important to react quickly, and manage costs of memory access efficiently since

a large amount of data needs to be processed in real-time. I, therefore, use online

algorithms [270] to receive one data point at a time and use it to update a set

of attributes – the required statistics (variance and average) are computed in a

single pass when costs of memory access dominate those of computation. I compute

the variance attribute using Welford’s method [271] and the average attributes are

computed by exponential averaging. After the update, the data point is discarded

and only the updated attributes are kept in memory.

5.4.2 Identifying and Computing Attributes of DNS Traffic

for External Entities

I analyzed the DNS query behavior of external hosts (with their subnets and au-

tonomous systems) in §5.3.2. Given the insights obtained from real attackers, I now

identify and compute important attributes (for each external entity) needed for my

detection models to distinguish normal external entities from anomalous ones.
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Attributes

I showed in §5.3.2, DNS-based attackers tend to craft query packets using a set of

predefined domain names. I define my first attribute as varPktSize (i.e., variance

of packet size sent by the external entity), since the size of query packets sent by

scanners and/or flooders are less variant compared to queries from normal (legiti-

mate) hosts.

Normal external users (including individual clients and recursive resolvers) may

only query a limited number of internal hosts (i.e., DNS servers of the organi-

zation). Scanners, on the other hand, contact a larger number of internal hosts

(especially at relatively large time-scales). I therefore choose my second attribute as

numHostQry (i.e., number internal hosts queried by each external entity).

Both external flooders and heavy scanners send a much larger number of query

packets (in total) to the enterprise network compared to normal external users.

Flooders focus on one or a set of internal hosts, whereas scanners sweep over a wider

range of internal hosts. So, I choose my third attribute as avgPktCountHost which

is the average number of query packets sent to each internal host contacted.

For my last attribute (i.e., varPktCountHost), I compute the variation of

query packet count sent to each internal host by an external entity. Note that the

value of this attribute is smaller for scanners compared to flooders and legitimate

users, since scanners tend to send an identical number of query packets (e.g., one or

two) to internal hosts of interest.

High-profile DNS query-based attacks can be quickly detected by either numHostQry

(for heavy scanners) or avgPktCountHost (for heavy flooders). For relatively low-

profile attacks (i.e., distributed floods and/or slow scans), I need an enhanced vis-

ibility of the behavior of external entities using the collection of four attributes,

aggregated-level models with dynamic retention policies. Next, I discuss how these
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attributes for each external entity (i.e., node in the graph model) are computed in

real-time.

Managing States for Edges

As explained in §5.4.1, an external entity is related to an internal host using an edge

in my graph model. I dynamically update the four attributes of each external entity

every epoch time (e.g., one minute) using a number of states maintained for the

graph edges.

For an edge, I track three main states including total number of packets (denoted

by Np), total volume of packets (denoted by Vp), and variance of packet size (denoted

by σp) during each epoch – arrival of a DNS query updates these three states for the

corresponding edge. Edge states are exponentially averaged (with weighting factor

of 0.9) at the end of each epoch – I employ the Welford’s method [271] to compute

σp in a single pass (i.e., online algorithm).

Computing attributes: Given edge states, the four attributes of an external

node are computed as follows. numHostQry equals the number of edges associated

with the node; varPktSize equals the weighted average of σp across all edges (i.e.,

Σσp.Np

ΣNp
); avgPktCountHost equals the average Np across all edges (i.e.,

ΣNp

numHostQry
);

and, lastly varPktCountHost can be derived by computing the standard deviation

of Np on all associated edges.

5.4.3 Anomaly Detection Model

I now train, tune and validate the accuracy of three anomaly detection models,

namely host-level, subnet-level and AS-level for external source entities. I note that

the intended pattern of inbound DNS traffic can vary across different enterprises,

depending on the richness and size of their infrastructure, and their services offer-
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Table 5.2: Summary of data cleansing for the university network (1 May 2018).

Reason of Removal Number of Packets
Unanswered 9,970,082
NameError 689,422
ServerFailure 40,247

Refused 29,155
NotImplemented 21
FormatError 18

ings. Therefore, each network would have its own set of models trained by their own

records of DNS traffic activity to achieve the best detection performance. To make

the training process portable across enterprises, my engines for data cleansing, pro-

ducing training set, and generating models are fully automated and consume DNS

logs (i.e., PCAP files) as inputs.

Dataset Preparation

Benign instances obtained from real DNS traffic of each enterprise are used for

training anomaly detection models of the corresponding network. Additionally, I

generate and collect data of DNS attacks including scans and floods of varying rates

in my lab testbed. This attack dataset (together with the benign dataset) is used

to evaluate the accuracy of my host-level anomaly detection.

Benign dataset: I clean my raw dataset (of 1st May) by removing unanswered

and invalid queries, and use it for generating benign instances. I acknowledge that

my cleaned dataset can still contain “not purely benign” instances, thus I tune a

hyper-parameter called “contamination level” during model training to reduce the

effect of outliers in the dataset. For example, I extracted 3.6M DNS queries (as

benign) after removing 10.7M queries from the university dataset4 on 1 May – details

of removed queries are shown in Table 5.2. Using cleaned data, I generated 32.4M,

4I omitted results of data cleansing and model training for the research institute. Fairly similar
observations were made in both organizations.
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24.5M, 11.1M benign instances (of 1-minute granularity) for the host-, subnet-, and

AS-level models respectively.

Attack dataset: I set up an isolated testbed in my lab to emulate an enterprise

network communicating with external hosts via a border router. The internal and

external networks were configured with a subnet from a /16 IPv4 address prefix. I

configured a DNS server (running BIND 9) and one regular host inside the enterprise

zone, and 3 DNS servers and 2 attacker machines (running a customized script using

the Python Scapy library) on the external zone – each machine running Ubuntu

16.04.4 and equipped with a 2.1GHz CPU and 8GB RAM.

My attack script running on the two machines (i.e., M1 and M2) generated query

scans (from M1) to the entire IP range and query floods (from M2) on the DNS

server of the internal zone (enterprise network). I generated a diversity of attack

patterns by varying three parameters for each attack type. For query scans, I varied

parameters as follows: the query rate from 1 to 72K (in 12 steps) packets-per-hour;

query names selected randomly from a varying size (1 to 10) of a pre-populated list

of the university sub-domains; and, the number of queries per internal host from 1 to

4. For query floods, the rate varied from 1 to 300 (in 12 steps) packets-per-second;

query names were selected similar to query scan attacks; and, the query types were

chosen from four common types (i.e., A, AAAA, ANY, PTR). In total, I generated 480 scans

and 480 floods with each attack lasting for 3 hours. Note that multiple attacks, each

sourced from a unique crafted IP address, were scheduled in parallel. I collected

data of the attacks on the testbed, computed attributes of external attackers during

their activity, and generated 556,258 instances at host-level and 13,904 instances for

both subnet- and AS-level – all instances associated with one subnet and one AS.
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Figure 5.8: Importance of attributes across the three models.

Attribute Analysis

I now employ “information gain” (IG) metric to quantify the impact of my attributes

in distinguishing benign and anomalous instances. This metric measures the cor-

relation between each of the attributes and the predicted output of decision trees

(valued between 0 and 1, where 0 indicates an irrelevant attribute and 1 highlights

an important attribute). This method calculates the reduction of entropy values by

excluding a certain attribute from prediction. I note that training a model with at-

tributes of low information-gain can lead to issues like overfitting, since the classifier

gets trained by noise or less-relevant information.

I show in Fig. 5.8 the importance of my four attributes for host-level, subnet-

level, and AS-level models. It can be seen that the importance all attributes (across

the three models of my hierarchy) is larger than 0.5, and hence carrying a significant

amount of information in differentiating benign and malicious entities. In addition, I

observe that varPktSize (with importance value equal to 0.772) is a fairly important
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attribute for the host-level model – this is because an anomalous external host will

likely craft DNS packets of the same size, and hence resulting in a low (close to zero)

variance for their packet size. Also, it is seen that the importance of numHostQry

and varPktCountHost slightly increases from the host-level model to subnet-level

and AS-level models, highlighting that these attributes become more influential at

aggregate levels.

Model Tuning and Evaluation

I considered two widely used anomaly detection algorithms, namely isolation Forest

[272] (a decision-tree based algorithm) and one-class SVM [273] (a high dimensional

distribution-based algorithm). I evaluated the accuracy of these algorithms using

10-fold cross validation on the benign dataset (obtaining the True Positive rate) and

testing on the attack dataset (obtaining the True Negative rate). Note that True

Positives indicate benign instances that are correctly classified as benign, and True

Negatives are attack instances that are correctly labeled as attack.

To be more specific, I trained and evaluated my model for each algorithm by

varying the contamination-level parameter5 for the isolation Forest, and kernel func-

tions (i.e., linear, Gaussian, polynomial, sigmod, and RBF) for the one-class SVM.

For each set of tuning parameters or functions, the training dataset (benign only)

is randomly partitioned into ten equal size subsets. Of the ten subsets, nine are

used as training data, and the remaining subset is retained as the validation data

for testing the model. During the testing phase, benign instances from the single

subset of validation is used to compute the rate of True Positive (TP) while the

entire attack dataset is used to compute the rate of True Negative (TN). I found

that the isolation Forest model outperforms the one-class SVM model by both TP

and TN rates. Given the multi-centric distribution of my benign dataset (instances

5A value between 0 and 1 that indicates the fraction of anomalies (i.e., not benign instances)
in the training dataset.
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Table 5.3: Model tuning (host-level).

Cont. Level Accuracy TN TP AUC
0.0001 99.39% 99.98% 65.35% 76.94%
0.0002 99.42% 99.96% 68.41% 89.34%
0.0005 99.54% 99.89% 79.45% 97.05%
0.0010 99.76% 99.81% 97.21% 99.96%
0.0020 99.57% 99.61% 97.43% 99.91%
0.0050 99.03% 99.04% 98.524% 99.74%
0.0100 98.03% 98.03% 98.55% 98.86%
0.0200 96.09% 96.05% 98.74% 97.05%
0.0500 90.16% 90.01% 99.13% 61.34%

Table 5.4: Model tuning (subnet-level and AS-level).

Cont. Level TN of subnet model TN of AS model
0.0001 99.98% 99.98%
0.0002 99.97% 99.96%
0.0005 99.96% 99.90%
0.0010 99.91% 99.82%
0.0020 99.80% 99.63%
0.0050 99.02% 98.97%
0.0100 98.02% 97.94%
0.0200 96.08% 95.87%
0.0500 89.99% 89.91%

are geometrically located in several clusters [274]), the SVM model at best yields an

overall accuracy of 63.6% (TN rate of 63.5% and TP rate of 74.6%).

I tuned and evaluated6 the host-level model of isolation Forest considering both

TP and TN rates, as shown in Table 5.3. I can see that increasing the contamination-

level causes the TN rate to fall monotonically (from 99.98% to 90.01%), since the

algorithm excludes more training instances at the boundary of benign clusters when

the contamination-level gets larger. On the other hand, the TP rate is positively

correlated with the contamination-level, as low-profile attackers become similar to

benign hosts in their attributes. I, therefore, set the contamination-level to 0.001,

resulting in the best overall accuracy among all models and a reasonably high rate

6In my evaluation, I used a mixed dataset (of labeled benign and attack instances) to compute
overall accuracy, true negative rate and true positive rate.
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(a) The host model. (b) The subnet model. (c) The AS model.

Figure 5.9: Confusion matrix of best-performing selected models at: (a) host, (b)
subnet, and (c) AS, levels – columns correspond to true labels and rows correspond
to predicted labels.

of both TN and TP.

By tuning and evaluating models of subnet-level and AS-level, I observe a similar

impact of the contamination-level on TN rate (as shown in Table 5.4) – the TP rate

would be consistently 100% (except for the contamination-level at 0.0001) since my

attack instances at subnet-level and AS-level represent a network of high-profile

attackers. Given the optimal value of the contamination-level (obtained from the

host model), I achieve TN rates of 99.91% and 99.82%, and AUC values of 99.95%

and 99.98% for the subnet-level and AS-level models, respectively. The three best-

performing models trained with a contamination-level equal to 0.0001 are selected for

my university dataset, and their performance is summarized by confusion matrices

shown in Fig. 5.9.

By applying my best-performing models on the proposed graph data structure

to the synthetic attack dataset, all external attackers are detected at the host level –

91.37% are detected immediately (within the first minute of their commencement);

3.45% (low-rate scans and floods) are detected in 2 minutes; and only 1.72% of very

low-rate scans (with the rate of 1 packet per second) are detected after 8 minutes of

their commencement.
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Figure 5.10: CCDF of anomaly score instances in evaluation dataset (host-level
model).

Impact of training data composition on detection performance: I have

so far generated an almost perfect isolation forest model (accuracy of 99.76%) by

training it on the purified data (benign-only). It has been shown in [275] that fine-

tuning the contamination-level (during training) may make no or little difference to

the model performance in certain situations where the training data consists of well-

distinguished malicious and benign instances (mix of “black and white” instances)

with ground-truth labels. I, therefore, quantify the impact of impurified data (i.e.,

raw DNS data, consisting of benign and malicious instances) on the performance of

detection for the host-level model. I tune the contamination-level ranging from 0 to

0.2 is steps size of 0.005. I observe that the model gives its best overall accuracy of

93.33% (true positive 86.94%, and true negative 99.72%) at the contamination-level

set to 0.085. This mis-detection of attack instances (low true positive) highlights the

fact that inclusion of anomalies in the training data can be detrimental to the per-

formance of isolation forest one-class classifier (the boundary of the model becomes

loose), especially in absence of ground-truth labels for relatively uncertain benign

and malicious instances (“gray” instances).
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Understanding false alarms of my model: The isolation Forest algorithm

outputs a score of anomaly (i.e., a value between 0 and 1) for a given instance –

where 0 score means purely normal and 1 indicates a definite anomaly. I use the

anomaly score to quantify the severity of malicious behaviors for external entities –

a high anomaly score indicates that the detected external entity strongly displays

the behavior of an attacker (e.g., high rates attack traffic or highly repetitive packet

contents), whereas lower anomaly scores suggest that the anomalous external entity

has slightly deviated from the expected normal behaviors (e.g., a slow-rate scanner).

I show in Fig. 5.10 the CCDF of anomaly score for my ground-truth evaluation in-

stances (benign and attack). It can be seen that about 90% of benign instances

(shown by blue lines and cross markers) have a low score of less than 0.3. I also ob-

serve that the anomaly score for only a small faction of benign instances (i.e., 0.2%)

exceeds the red boundary line (i.e., 0.5) in Fig. 5.10, separating benign and mali-

cious entities. I found that the reason for benign instances getting larger anomaly

scores was their avgPktCountHost attribute which was slightly higher, compared to

other benign instances. For example, an external host (in the benign dataset) had

sent 9,492 query packets (all responded with NoError flag) to 12 internal hosts in an

hour – I am not able to verify if this host (and it’s behavior) was illegitimate or not.

Moving to the distribution of anomaly score for attackers (shown by black lines

and circle markers in Fig. 5.10), about 85% of attack instances result a score of more

than 0.6. I also see a tiny fraction (2.8%) of attacks (floods and scans) have a score

of less than 0.5 generating False Positive alarms – these instances mainly correspond

to (a) the beginning of low-rate scans depending on the traffic rate, and (b) low rate

floods with a diversified set of query names (e.g., 10 query names). I note that these

low-profile attacks may not be detected by the host model in a short timescale, but

they ultimately get detected by the aggregated-level models (as explained in §5.4.1).

Limitation of my evaluation: Note that my training dataset (benign) was ob-

tained from a “real” production network while the ground-truth attack traffic traces
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were collected from a lab testbed (“synthetic”), and hence the overall evaluation mix

may not necessarily represent realistic traffic instances. For future studies beyond

this thesis, one may want to consider a more comprehensive attack dataset, covering

a wider set of volumetric DNS attacks (direct and/or distributed) that are collected

from real networks.

Testing the Dataset with a Commercial Firewall

I replayed my mixed dataset through a typical enterprise next-generation-firewall

(Palo Alto Networks firewall appliance PA-3020 [276]) which was configured using

the vendor’s official user manual [202]. This firewall generates Host Sweep and UDP

Flood alerts for DNS scans and floods, respectively. I found that the firewall missed

83% of scanners and 16% of flooders (i.e., in total 51% true positives) in my

dataset, according to its threat logs – note that all missed attackers had a low rate

(i.e., below 20 hosts every 10 seconds for scanners and 100 packet-per-second for

flooders) of DNS traffic. Also, the firewall generated no alert for benign instances

(i.e., 100% true negatives) .

Comparing these results obtained from the firewall with those in Table 5.3, it can

be seen that my anomaly detection scheme performs much better than the firewall

by considering the TP metric (i.e., 97.21% in Table 5.3 versus 51% highlighted in the

above paragraph). In terms of the TN metric, the performance of my scheme is very

close to that of the firewall (i.e., 99.81% in Table 5.3 versus 100% stated in the above

paragraph). Note that my scheme raises malicious alarms for a tiny fraction (i.e.,

0.18%) of benign instances due to impurities considered for the training dataset.

Testing the Dataset with Pure Thresholding of My Hierarchical Structure

In order to evaluate the efficacy of my hierarchical structure (with appropriate pa-

rameters R, α, N from §5.4.1), I applied thresholds on the packets rate in my dataset
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(mixed benign and malicious). My thresholds are chosen according to industry best

practices [202] (i.e., 120% of maximum normal value). For detecting flooders, I set

host-level, subnet-level, and AS-level thresholds on avgPktCountHost equal to 51,

64, and 82, respectively. Also, for detecting scanners, thresholds on numHostQry

are set to 8, 13, and 15 at respective levels of the hierarchy.

My evaluation results show that all of the attacks (100%) are detected by AS-

level and subnet-level thresholding, while 89.42% of scans and 64.75% of floods are

detected at the host-level, resulting in an overall true positive rate of 77.08%. Also,

considering the true negative rates, I observe 98.24%, 98.57%, and 99.18% at AS-

level, subnet-level and host-level, respectively.

In summary, applying the thresholding method of my hierarchical structure yields

99.18%TN and 77.08%TP at the host level, while my anomaly detection model gives

99.81% TN and 97.21% TP at the host level (Table 5.3), and the legacy thresholding

employed by a commercial firewall results in 100% TN and 51% TP (§5.4.3). This

shows that my hierarchical data structure significantly improves the performance of

thresholding methods, but it is less performant when compared with my anomaly-

based approach which models more comprehensive dynamic behavioral profiles.

5.5 Implementation and In-the-wild Detection

In this section, firstly, I demonstrate the efficacy of my detection method using a

replay of DNS traffic collected from the two enterprises over a month. I then draw

insights into the severity of attacks detected with a closer look at examples of low-

profile scans and distributed floods. Next, I compare the output of my system using

a public blocklist from Symantec and a commercial firewall from Palo Alto Networks.

Finally, I quantify the performance of my system and show how I can detect DNS

attacks in real-time with acceptable memory and CPU footprints for a one month
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period with real traffic of a large enterprise.

Figure 5.11: Prototype implementation.

5.5.1 Prototype Implementation

Fig. 5.11 depicts the prototype implementation of my real-time system that is de-

ployed in my lab processing full DNS traffic copied from the border of both enterprise

networks. I use an SDN switch (NoviFlow 2122 [240]) that takes a full copy of en-

terprise Internet traffic (both inbound and outbound) and selectively mirrors only

DNS traffic (source or destination port number equal to 53) to a compute node

(i.e., network function). All software modules are implemented on a generic server

(equipped with 16 2.10GHz CPUs and 64GB RAM) running Ubuntu 16.04.4. My

packet processing module (i.e., network function) written in the Golang language

using the Data Plane Development Kit (DPDK) and the Intel NFF-Go library. It

extracts necessary attributes (i.e., source/destination IP/port and packet size) from

incoming query packets, and passes them to update my hierarchical data structure

also written in Golang. I use IPASN data files (i.e., “.dat” files) to map external IPs
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Table 5.5: Summary of in-the-wild dataset – May 2018.

# Qry. in # Resp. out # Resp. in # Qry. out # ext. host # ext. subnet # ext. AS

University Campus 520,229,825 219,095,708 629,058,944 709,593,940 374,348 81,778 25,263

Research Institute 351,733,547 126,321,729 178,292,559 212,671,912 179,568 51,389 18,819

to their corresponding subnets and ASes, which are generated from MRT/RIB BGP

archives [277]. My proposed detection modules are implemented using Python3

to be compatible with machine learning utilities. For decision-making functions, I

use the best-performing anomaly detection models (from §5.4.3) trained with the

contamination-level equal to 0.001 (at all three levels: host, subnet, and AS) – they

perform reasonably well by both TP and TN metrics.

5.5.2 Summary of Dataset

A summary of my in-the-wild dataset collected over the month May 2018 is shown in

Table. 5.5. For the university network, I have a total of 2.0B DNS packets including

520M incoming queries, 219M outgoing responses, 709M outgoing queries and 629M

incoming responses. Focusing on external entities who sent DNS queries to the

network, I see a total of 374K unique hosts associated with 81K subnets and 25K

ASes. For the research institute, there were 867M DNS packets of which 351M

packets were incoming queries sourced from 179M external hosts associated with

51K subnets and 18K ASes on the Internet.

I replayed the dataset of each organization on my system with the corresponding

models. Instances were created at run-time for trained models to predict whether

they are normal or anomalous. I made a log of all anomalous instances detected by

my system for post-analysis and drawing further insights. After evaluating the uni-

versity dataset, I found 14785 external hosts (i.e., 3% of total hosts), 7403 subnets,

and 2415 ASes flagged as anomalous. Also, for the research institute, 4332 external

hosts, 2121 subnets, and 922 ASes were detected as anomalous entities.

184



Chapter 5. Hierarchical Anomaly-based Detection of Distributed DNS Attacks on
Enterprise Hosts

Figure 5.12: Clustering external anomalous hosts.

5.5.3 Clustering Anomalous Entities

In order to distinguish scanners from flooders (at all three levels), I applied an

unsupervised clustering algorithm, i.e., expectation-maximization (EM), to those

entities detected as anomalous. For the clustering model, I used two of my previously

identified attributes (in §5.4.2) namely avgPktCountHost and NumHostQry as they

collectively distinguish flooders from scanners.

As a result of clustering for the university network: 14171 flooders and 621

scanners were found at the host-level; 7493 flooders and 107 scanners were identified

at the subnet-level; and, at the AS -level, 2430 and 47 flooders and scanners were

found. For the research institute, 4332 hosts, 2122 subnets, and 921 ASes were

identified as flooder entities, and also 490 hosts, 63 subnets, and 36 ASes were found

as scanners.

Fig. 5.12 shows the scatter plot of two attributes, clearly separating flooders from

scanners. As expected, flooders (shown by blue circle markers) are primarily located

in the top left region of the plot while all scanners (shown by red cross markers) are

grouped on the lower right region. Interestingly, I observe that several blue circles
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(a) Anomaly score of anomalous instances.

(b) Anomalous host count in anomalous ASes. (c) Anomalous host count in anomalous subnets.

Figure 5.13: Severity of attacks in the university network: (a) anomaly score, and
(b, c) distribution of clustered anomalous hosts in anomalous subnets and ASes.

(clustered as flooders) are located very close to scanners group – this is because

their avgPktCountHost attribute value was higher than other scanners, and thus are

classified as flooders.

5.5.4 Anomaly Scores

I now consider attack profiles by checking the anomaly score as well as the distribu-

tion of flooders and scanners at various levels of aggregation. Higher anomaly scores

indicate a larger deviation from normal values of attributes (e.g., large packet rates,
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Table 5.6: Top scanner ASes.

AS ID Loc. Subnet Host

42570 CH 1 242
60781 NL 1 48
36375 US 1 32

Table 5.7: Top flooder ASes.

AS ID Loc. Subnet Host

32934 US 11 865
16509 US 87 707
14618 US 59 495

highly repeated DNS query size, or numerous internal host contacted). Fig. 5.13(a)

shows the score of anomalous entities detected by my isolation Forest models for

hosts, subnets, and ASes. The first observation is that the anomaly score of de-

tected attackers from real networks are relatively larger (i.e., well above the border

line 0.5) compared to attacks generated in my lab. I also see that at least 10% of

instances (in all three models) have the score value greater than 0.7, highlighting

the confidence of my models in detecting these anomalous entities in the wild.

I show in Figures 5.13(b) and 5.13(c) the distribution of clustered anomalous

entities. Fig. 5.13(b) shows the CCDF plot of the number of anomalous hosts in

anomalous ASes. The majority of ASes cover less than 100 anomalous hosts (both

flooder and scanners). I observe that one AS has about 250 scanners but 7 ASes have

a relatively large number of flooders (possibly distributed). The same observation

is made for anomalous hosts of subnets, as shown in Fig. 5.13(c). I verified that the

tail of curves in Figures 5.13(b) and 5.13(c) correspond to large anomaly scores (i.e.,

between 0.75 and 0.80). The top distributed scanner hosts are located in one subnet,

while the top distributed flooder hosts are spread across many subnets (under the

administration of one AS). I list top scanner ASes and flooder ASes in Tables 5.6

and 5.7 respectively, based on their count of anomalous hosts. It can be seen that

the top distributed scanner hosts are located in one subnet, while the top distributed

flooder hosts are spread across many subnets (under the administration of one AS).

Network administrators may use those alert lists to establish their local knowledge

of external anomalous subnets/ASes and instrument security rules accordingly, e.g.,

applying stricter access controls for external hosts from the suspected subnets/ASes.
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(a) A low-rate scan. (b) A distributed flood.

Figure 5.14: Anomaly detection examples: (a) low-rate scan, and (b) distributed
flood.

5.5.5 Two Representative Attacks

In order to demonstrate the efficacy of my scheme, I focus on two representative

attacks (i.e., a low rate scan and a distributed flood) that are typically missed by

traditional solutions.

Fig. 5.14(a) shows the time-trace of anomaly score at all three levels, tracking

the evolution of my detection. This attack is the low-rate scan which I manually

identified in §5.3.3, shown in Fig. 5.3(c). As mentioned earlier, 37 hosts from a /16

subnet performed a scan of the university network simultaneously each with the

rate of less than 1 packet-per-hour. I observe that this attack is first detected at

the AS-level (shown by red lines in Fig. 5.14(a)). It takes 7 minutes for the subnet

model to raise an anomaly alarm (shown by black lines in Fig. 5.14(a)), and the

host model starts detecting attackers after more than an hour and a half (I plot

the score for only one of 37 scanners as highlighted by blue lines in Fig. 5.14(a)).

This detection was successfully achieved because of my hierarchical aggregation and

dynamic retention policy (explained in §5.4.1) – detection of the attack at AS-

level increased the retention duration of child subnets, leading to a detection at the

subnet-level (with some delay) which in turn elongated the retention policy of child

hosts, enabling the host model to detect the scanner hosts.
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For my second example of attack, I show in Fig. 5.14(b) the time-trace of anomaly

score for one /16 subnet consisting of 7 flooders which participated in a widely

distributed flood that I described in §5.3.4, shown in Fig. 5.4(a). I note that this

subnet is the only subnet under its AS that has anomalous behavior – the AS looks

normal otherwise. I can see in Fig. 5.14(b) that right from the beginning of this flood

(i.e., around 7:07AM on 2nd May), the subnet was detected as a heavily anomalous

entity, while its AS was classified as normal. I observe that the flooder host (one of 7)

is consistently flagged as anomalous with the score 0.64 due to its repeated flooding

pattern, while the anomaly score of the subnet rises in time as more external hosts

join this distributed attack.

5.5.6 Comparison with Blocklist and Commercial Firewall

I selected 200 hosts7 , those that are flagged during the entire month May 2018

– the top 100 hosts with the highest anomaly score and the bottom 100 with the

lowest anomaly score (above the border line 0.5). I checked these hosts against an

IP reputation repository (i.e., blocklist) maintained by Symantec [278]. This web-

based tool takes an IP address as input and reports if it was involved in malicious

activities such as sending spam or spreading viruses. I found that the majority

(i.e., 63%) of hosts in my top 100 list are flagged as malicious IPs in the Symantec

blocklist – 6 of them are scanners and 57 of them are flooders. Also, 58 hosts in my

bottom 100 list are seen in the blocklist – all of these hosts are flooders.

Finally, to compare my system with a commercial firewall, I replayed my in-

the-wild dataset through the Palo Alto Networks firewall appliance PA-3020 [276].

I extracted and analyzed the syslog file produced by the firewall during my traffic

replay. The firewall detected 70 scanner IP addresses for the university dataset and

107 scanners for the research institute – this is a subset (11.3% for the university

7Automatic lookup of all flagged hosts in the blocklist is prevented by anti-robot image test.
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dataset and 21.8% for the research institute) of my detection results. Unsurprisingly,

all of the scanners detected by the firewall had a high rate of probing, while none of

the low-rate scanners were flagged.

For the query floods, the firewall captured 5 distributed attacks in the university

network and two attacks in the research institute, as those victim internal hosts re-

ceived an excessive number of UDP packets within a short time interval. Although

the firewall logged all external IPs that sent packets when the alarm was triggered,

it was not possible to precisely identify and locate attackers. My system, in-

stead, not only detected all those distributed attacks flagged by the firewall, but also

precisely captured the source (i.e., external anomalous hosts, subnets or ASes). Be-

sides, it is important to note that my system detected nine flooding attacks (sourced

from the bottom 100 list) for the university network, but none of them were alerted

by the firewall as the attack rate was relatively low. I manually checked these low-

rate floods and found that they all sent repeated queries (with identical query name)

to six non-DNS servers, two authoritative name servers, and three internal recursive

resolvers.

5.5.7 Real-Time Performance of My Detection System

To demonstrate the practicality of my proposed scheme I quantify the performance

of my system (explained in §5.5.1) with one month’s worth of real traffic from the

university network8. Fig. 5.15 shows the real-time utilization of memory and CPU

in my prototype. The memory consumption is recorded every minute, as shown

in Fig. 5.15(a). Also, I measure the CPU utilization for two separate processes,

namely Updating the graph structure upon arrival of DNS packets (Fig. 5.15(b)),

and Extracting attributes from the graph structure and calling models at three

levels of hierarchy (Fig. 5.15(c)) – each process utilizes one CPU. Additionally I

8I omit results of the research institute since its load was lower than the university network.
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(a) Total memory usage. (b) Updating the graph structure.

(c) Extracting attributes & calling models. (d) Prediction responsiveness.

Figure 5.15: Real-time performance of my detection system under full load of the
university campus network.

quantify the inference responsiveness (i.e., time taken for computing attributes and

obtaining results from models at the end of each epoch) as shown in Fig. 5.15(d).

It is seen that all four metrics are bounded by reasonable values: the memory

consumption is capped at 2.5GB, Updating and Processing respectively use up to

16% and 1.3% of CPU, and the system responds in less than 0.5s. Note that my

system performance fluctuates (within a bounded region) due to the variation in the

traffic. This demonstrates that my system can meet reasonable performance criteria

typically required by enterprise network operators.
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5.6 Conclusion

Enterprise networks are the target of sophisticated DNS attacks in the form of query

floods, reflection and amplification attacks, and scans. Existing security appliances

are not well-equipped to protect network assets from dynamic attacks sourced from

distributed and automated external hosts on the Internet. I have developed a hierar-

chical method using anomaly-based detection models to automatically detect DNS

floods and scans of varying rates sourced from one or a distributed set of external

hosts. I highlighted the characteristics of malicious entities sending query-based

attacks, developed a hierarchical and dynamic graph data structure for scalable

monitoring and detection of scans and volumteric attacks, identified key attributes

to effectively differentiate attacker entities versus normal external users, and em-

ployed anomaly detection models (trained/tuned using benign and attack traffic) in

my dynamic data structure. Lastly, I demonstrated the efficacy of my scheme and

compared my system with a public blocklist and a commercial firewall.
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Network attacks on enterprises are becoming distributed in sources and versatile

in patterns. However, practical solutions such as commercial firewalls are ineffective

in detecting distributed sources and malicious flows. They often focus on enterprise

assets (potential victims), given their limited resources for coarse-grained monitor-

ing. In contrast, fine-grained flow-level detection algorithms proposed in academic

research are impractical to handle high traffic rates with millions of concurrent flows

in a large enterprise at scale.

To address the effectiveness and practicality of attack detection, I present PEDDA,

a multi-stage progressive inference method that optimally selects detection stages

of different visibility and orchestrates their granularity in accordance with the evo-

lution of distributed attacks and available computing resources. First, I formally

model the time complexity of traffic processing in legacy static solutions to high-

light their performance bottlenecks. Second, I develop a progressive method to

detect distributed attacks at multiple inference stages each with an orchestratable

granularity, whereby packet streams are reactively partitioned and processed by dif-

ferent stages depending on the evolution of attacks. The granularity of each stage is

dynamically orchestrated through optimization constrained by available computing

resources. Third, I build a proof-of-concept prototype using three inference stages

that monitor active enterprise hosts, isolate specific victims under attacks, and dif-

ferentiate distributed sources and flows from benign instances. Evaluation results

using real enterprise traffic and DDoS attacks show that PEDDA outperforms its

counterparts in detecting distributed attacks at all stages with the finest granularity

while practical for real-time deployment.
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6.1 Introduction

Distributed network attacks targeting hosts in an enterprise such as DDoS [24, 78,

279–281] have reached an alarming rate with high frequency in occurrence, diversity

in attack patterns and agility in bypassing countermeasures by security appliances

[282–285]. A distributed attack usually exploits different protocols [24, 286] (e.g.,

DNS, HTTPS) and uses large-scale botnet devices each starts with its own attacking

strategy [44, 287, 288]. During attacks, malicious flows generated by distributed

attackers are mixed with legitimate traffic from benign external hosts – a visual

example is shown in Fig. 6.1(a). Therefore, effective detection of a network attack

requires identifying victims from enterprise hosts, distributed sources from a large set

of external hosts, and malicious flows from a high volume of concurrent connections.

As the de facto solutions, firewall appliances and network intrusion detection

systems (IDS) use static security signatures on pre-defined IP lists [202–204, 253].

Although some manufacturers such as Fortinet and Palo Alto starts to implement

machine learning detection in their DDoS detection products, they still require con-

figurations from IT operators based on their expertise to monitor certain hosts or

coarse-grained subnets in their networks. Such approaches are scalable and can de-

tect typical network attacks towards critical assets (as potential victims) specified

in the policies. However, they are not able to differentiate external attackers and

malicious flows versus benign instances since network telemetry of distributed exter-

nal hosts and flows are rarely tracked for scalability concerns. Thus, the consequent

attack mitigation often introduces collateral damage on normal communications.

There are also effective attack detection systems using flow-level telemetry devel-

oped by research communities [64, 66, 75, 115], which can precisely isolate not only

victims but also distributed sources and malicious flows. Such methods maintain

flow-level telemetry between hosts, which provide fine-grained statistics for effective

detection but incur high computational costs. Therefore, they are not applicable to

large enterprise networks with high throughput of millions of concurrent flows.
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Figure 6.1: Introductory – (a) anatomy of distributed attacks, (b) trade-off between
detection effectiveness and practicality, and (c) my idea of multi-stage progressive
inference via dynamic control of programmable networks.

As visually summarized in Fig. 6.1(b), proprietary security middleboxes (the

red ovals) are practical but not effective in identifying distributed attack sources

and flows from benign instances, whereas detection methods on flow-level telemetry

(the green ovals) are effective but not practical for high-throughput enterprise envi-

ronments. Instead of accepting the trade-off, I see opportunities by programmable

networks (i.e., SDN and NFV). As an emerging paradigm, it has shown huge po-

tential in making network defense functions and packet routing elastic and flexible

at run-time. For example, Bohatei [11] proposes ISP-level run-time orchestrations

of proprietary security middleboxes at fixed locations, PSI [232] instruments enter-

prise network traffic to its desired security appliances on-demand, and Poseidon [10]
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achieves flexible reconfiguration and updates of DDoS defense policies. Existing so-

lutions show their promise in various aspects of flexible distributed attack detection

and mitigation, which inspire my idea (visually shown in Fig. 6.1(c)) to address the

dilemma between detection effectiveness and operational practicality for enterprise

networks through a multi-stage progressive inference method.

In this chapter, I present PEDDA, a practical and effective method that detects

distributed attacks through multiple inference stages (e.g., victims, sources, and

flows) progressively. To achieve detection effectiveness while holding practicality,

PEDDA employs multiple inference stages with telemetry of different computational

costs and orchestratable granularity (i.e., fine-grained IP level or coarse-grained sub-

net levels) that are instructed by the reactive control of programmable networks.

During operations, the received traffic is proactively processed by low-cost inference

stages, whereas a high-cost stage reactively performs fine-grained inspection only on

the packet streams partitioned by its prior stage. In addition, the granularity of each

stage is dynamically orchestrated through an optimization problem constrained by

available computing resources and complexities of the traffic. Note that I do not de-

velop novel detection algorithms and functions, but propose a method that manages

them at a progressive manner to achieve practical and effective detection. My proof-

of-concept prototype uses three inference stages to monitor active enterprise hosts,

detect victims with abnormal volumetric profiles, and identify distributed sources

with flows of attacks from their benign cohorts. I make three specific contributions.

First, to motivate my PEDDA design, I model the traffic processing of legacy sys-

tems that matches packet streams, extracts packet information, maintains network

telemetry, and makes detection inference. I mathematically formulate its per-packet

CPU time consumption to highlight their bottlenecks in achieving both operational

practicality and detection effectiveness.

Second, to address the identified bottlenecks, I design a multi-stage progres-

sive inference method as the PEDDA architecture. It detects distributed attacks
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through multiple inference stages (e.g., victims, sources, and flows) progressively.

Those stages are with increasing computational costs as they are maintaining teleme-

try of higher complexity. During operations, the majority of traffic are processed

by low-cost inference stage proactively, driven by the results from prior stages, the

minor fraction of packet streams is inspected by high-cost inference stages for at-

tack detection at further progression (e.g., distributed sources and flows) through

the dynamic controls of programmable networks (i.e., NFV and SDN),. To avoid

PEDDA being overwhelmed by the complex traffic compositions especially for high-

cost stages, an orchestrator is designed to adjust the granularity of each stage from

the finest IP level to aggregated subnet levels by solving a run-time optimization

problem constrained by available computing resources.

Third, I realize PEDDA as a proof-of-concept prototype using a commodity

server and an OpenFlow SDN switch that is ready to be deployed in a large enter-

prise. Driven by the insights obtained by an empirical traffic analysis of a represen-

tative enterprise, it uses three practical inference stages that detect active enterprise

hosts, victims, and distributed attackers with flows progressively and reactively. The

prototype is evaluated on real enterprise traffic traces injected with a public-available

DDoS attack dataset and compared with state-of-the-art systems to highlight its

supremacy in detection effectiveness and operational practicality.

Roadmap: I discuss the background and related works in §6.2, model and

highlight bottlenecks of legacy detection solutions in §6.3, propose my multi-stage

progressive inference method as PEDDA architecture in §6.4, realize and evaluate

a proof-of-concept prototype with three inference stages in §6.5, and conclude this

chapter in §6.6.
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6.2 Background and Related Work

In this section, I highlight key requirements of enterprise network attack detection as

suggested by both industrial and research communities in §6.2.1, and discuss related

works in §6.2.2.

6.2.1 Key Requirements

I now explain the key requirements of an ideal distributed attack detection system

for enterprise networks as suggested by the community, including telemetry visibility

and inference precision for effective detection of attacks; scalability, automaticity,

and deployability for practical operation in an enterprise environment.

Effective Detection

Distributed network attacks such as service probing (i.e., host/port scans [29, 30,

38]) and denial-of-service (i.e., DDoS [282]) toward enterprise assets has been evolved

from a single source and protocol to more complicated forms – one attack may come

from distributed malicious hosts (e.g., compromised PCs and IoT devices [43]) and

use various protocols (e.g., SYN flood via HTTPS protocol or UDP reflection via

Memcached port). Thus, to capture the diversified patterns of potential attacks, an

ideal security solution should have a good visibility into traffic characteristics of

all involved hosts and their network flows [289]. Besides, malicious traffic generated

by attackers are likely to be mixed with legitimate flows from benign external hosts,

which is particular true especially near the victim-side [9]. To sufficiently elimi-

nate malicious traffic while not interrupting benign activities, detection systems are

expected to be precise in differentiating malicious external hosts and flows of an

attack from benign ones.
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Practical Operation

To be practically operated in an enterprise network, an attack detection system

should be scalable for high-throughput networks with several tens of gigabits per

second and millions of concurrent flows. Besides, as highlighted in [2, 47], operators

of large enterprises (e.g., universities and research institutes) may not be fully aware

of hosts connected to their networks. Thus, configuring proper security policies

on IP addresses is challenging or even unpractical. A detection system would be

more operable if it could automatically discover the enterprise hosts that need to

be protected – I refer to this feature as automaticity. Lastly, existing network

topology is reluctant to changes since any update on existing devices may incur high

operational costs (e.g., offline time, error rate, and labor effort) [267]. Therefore, a

practical detection system is expected to be easily deployed (i.e., deployability)

at a single link rather than many vantage points of the protected networks.

6.2.2 Current Detection Solutions

State-of-the-art solutions for distributed network attack detection can be categorized

into three groups, namely practical security middleboxes, flow-level attack detection

methods, and prototypes using programmable networks. In what follows I describe

their merits and gaps regarding the key requirements articulated in §6.2.1.

Practical Security Middleboxes

They are mature products in the market including next-generation firewalls (NGFW)

and intrusion detection systems (IDS). Such systems are packaged as either propri-

etary hardware appliances (e.g., CISCO [204], Fortinet [203], and Palo Alto [202]

firewalls) or software tools (e.g., Bro [97] and Snort [212]). They apply security

signatures [290] (manually configured by IT operators or automatically obtained via
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ML algorithms) such as thresholds on packet arrival rate for a pre-defined asset list

to identify victims of network attacks. Those practical middleboxes take scalabil-

ity and deployability as their top priorities [291, 292]. Thus, they barely support

flow-level telemetry in practice that is necessary in identifying distributed attackers

and malicious flows mixed with benign traffic. As a consequence, collateral damage

to legitimate traffic (e.g., dropping of benign packets [293]) is unavoidable during

attack mitigation processes [9, 232].

Statistical Methods on Flow-level Telemetry

To achieve effective detection and mitigation of distributed attacks, researchers de-

velop statistical methods leveraging fine-grained flow-level telemetry. Graph struc-

tures that profile network flows between hosts are frequently used such as in BLINC

[64], SpotLight [75] and AGM [66]. By having detailed visibility into every single

flow between external and internal hosts of the monitored network, distributed at-

tackers and malicious flows can be detected and mitigated precisely. However, due to

the high computational overheads [16] of complex flow-level telemetry, such methods

are often applied to low-throughput networks of less than a gigabits per second [64]

or a limited range of traffic types such as DNS [5] and HTTP [288] protocols.

Prototypes using Programmable Networks

Programmable networks (i.e., SDN and NFV) make flexible and elastic traffic man-

agement possible through reconfiguration of network functions at run-time. Re-

searchers have developed prototypes using these techniques to achieve objectives

including real-time execution of user-defined network telemetries [86], detecting ma-

licious flows from their first few packets via reactive routing [140], orchestrating

defense middleboxes at fixed locations to handle attacks with changing patterns [11,

232], flexible network intrusion detection functions [113], and reconfigurable defense
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Figure 6.2: Traffic processing pipelines (that process received packet streams) of
legacy solutions.

strategy for volumetric DDoS attacks [10]. Such works break the limitation of pro-

prietary security systems that have fixed locations and detection capabilities through

reactive control of programmable networks, which inspire my design of PEDDA to

address the trade-off between effectiveness and practicality of distributed attack

detection for an enterprise.

6.3 Analysis of Legacy Solutions

In this section, to motivate my design, I analyze legacy detection solutions to high-

light the bottlenecks that hinder them from being both effective in attack detection

and practical in operation. Specifically, I first model the traffic processing pipeline

of legacy systems (in §6.3.1), and then mathematically formulate its per-packet CPU

consumption (in §6.3.2) to identify the performance bottlenecks that could be further

optimized.

6.3.1 Modeling Traffic Processing Pipeline of Legacy Solu-

tions

Traffic processing of existing attack detection solutions can be modeled as a collection

of independent pipelines as shown in Fig. 6.2. Each individual pipeline is responsible

for one detection task (e.g., a firewall policy configured by network operators) and
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consists of four steps to process packet streams, including packet dispatching, packet

parsing, information gathering, and inference making.

Four Traffic Processing Steps

Packet dispatching is the first step that decide what further process(es) should be

applied to each packet given its metadata. The second step (i.e., packet parsing)

extracts specific information from each packet (such as source and destination IP

addresses, port number, and protocol) that is forwarded to the pipeline. In the

third step (i.e., information gathering), those extracted packet information will then

be used to update stateful network telemetry maintained by each pipeline for its

detection task. In the final step (i.e., inference making), inference functions of each

pipeline give detection results on attributes computed from its network telemetry.

A Demonstrative Example

Now I describe a walking example to help us better understand the detection pipelines.

Assuming an enterprise network operator plans to protect its key website server on

the IP address a.b.c.d against TCP-SYN based DDoS attacks.

A practical detection approach: The operator may configure a policy on its

enterprise border firewall [203, 204, 293] to raise alarm if the monitored IP address

a.b.c.d receives more than N TCP-SYN packets during a time interval T seconds

[294]. After installation of this policy, all packets received by the firewall will be

checked for their transport-layer headers for TCP-SYN flag, and destination IPs for

a.b.c.d (i.e., step 1). The matched packet streams are sent to the parser (i.e.,

step 2) that extracts packet count as required by the following network telemetry.

The telemetry (i.e., step 3) maintains a total number of packets arrived on a.b.c.d

during the current time interval . A corresponding inference function (i.e., step

4) checks packet count from the telemetry every T seconds and raise alarms if the

203



Chapter 6. PEDDA: Practical and Effective Detection of Distributed Attacks on
Enterprise Networks via Multi-stage Progressive Inference

current value exceeds the threshold N.

An effective detection approach: If this task is performed by a flow-level de-

tection method [64, 66, 75], the inference results can be more precise through a more

complicated process. In the packet parsing step, instead of only reporting packet

count to the stateful telemetry, all metadata that maps a packet to its associated

flow are extracted, including transport-layer protocol, TCP flags, IP addresses and

port numbers of source and destination. In step 3, the extracted information is used

to update flow graphs (a complex telemetry) between the monitored IP a.b.c.d and

external hosts. In step 4, an external host would be labeled as attacker if its flow

profile appears malicious (e.g., sending excessive number of flows and most of them

are TCP-SYN packets). Although this method is able to identify sources and flows

in distributed attack, as you will see in my following formulation, the per-packet time

consumption of this effective method is too large to be operated at high-throughput

enterprise networks.

6.3.2 Formulating Per-Packet CPU Consumption

I now mathematically formulate its per-packet CPU consumption1 of traffic pro-

cessing pipelines for legacy solutions (discussed in §6.3.1) to formally identify their

performance bottlenecks. To be specific, I formulate the CPU time consumption

for a packet arrived and processed by the four serial steps as the indicator of its

computational complexity.

Let’s use t to denote the CPU time consumption of a packet processed by the

entire pipeline. Intuitively, t can be expressed as the summation of time consump-

tion in each step as formulated by Eq. 6.1, where tr, tp, tg, and tm are the time

consumption for packet dispatching, parsing, information gathering, and inference

1As reported by NitroSketch [230], CPU consumption is the most critical performance metric
deciding the throughput of a networking system, thus, I formulate per-packet CPU consumption
of pipelines in Fig. 6.2.
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making, respectively.

t = tr + tp + tg + tm (6.1)

I note that the inference making step for distributed attack detection is often exe-

cuted periodically (e.g., every 10 seconds in a typical firewall [293]) and not triggered

for each packet. It is usually treated as a independent process and placed outside

the packet processing pipeline. Therefore, I omit tm in my following analysis. In

what follows, I give my formulations for tr, tp, tg, and t, respectively.

Packet Dispatching

I first formulate the time consumption tr for each packet in the first step. A detection

system has its network interfaces that receive packet streams. Each arrived packet

is checked by a set of matching policies (or rules) to decide which parser(s) should

process it. I assume that there are nr packet matching policies and np parsers in the

next step. The best case (i.e., smallest time consumption) tr,min is achieved when

a packet is matched by the first policy and only sent to one parser in the next step.

While the worst case tr,max is met when the packet is checked for all nr policies and

sent to all np parsers. If I define the time consumption for a packet being checked

for a policy is kr,c and being sent to one packet parser is kr,p, the best and worst

case can be derived as in Eq. 6.2.

tr,min = kr,c + kr,p; tr,max = kr,cnr + kr,pnp; (6.2)

After denoting each policy and parser by their hit probabilities, the average time

consumption tr,avg for each arrived packet in this step can be formulated as in Eq. 6.3,

where pr,i is the hit probability for the ith matching policy, and pp,i is the probability

for a packet being sent to the ith parser.

tr,avg = kr,c

nr∑
i=1

pr,i + kr,p

np∑
i=1

pp,i; (6.3)
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Packet Parsing

In this step, parsers extract the required packet information from each layer (e.g.,

network layer, transport layer, and application layer) hierarchically [130]. A simple

parser only processes the top layer while a costly one may extract data from all

layers. Therefore, the CPU time consumption tp for a packet in this step depends

on the number of parsers involved (up to np) and number of packet layers to process

by each parser. Assuming that the ith packet parser extracts data from a total of

nl,i packet layers and the time consumption to process each layer is kl, the total

time consumption by the ith packets is expressed as nl,ikl. The best case tp,min is

achieved when only the simplest parser is used while the worst case tp,max is reached

when all parsers are utilized for a packet. The two cases can be formulated as in

Eq. 6.4, respectively.

tp,min = kl
np

min
i=1

nl,i; tp,max = kl

np∑
i=1

nl,i; (6.4)

The average time consumption tp,avg for each packet is obtained by weighting each

parser by its hit probabilities (pp,i for the ith parser), which can be mathematically

shown in Eq. 6.5.

tp,avg = kl

np∑
i=1

pp,inl,i; (6.5)

Information Gathering

In this step, stateful network telemetry of each detection task may get updated by

packet information from parsers. Telemetry are hold by data structures of each

monitored entity (e.g., hosts and flows). It can be a simple list with keys as the

protected IP addresses and contents as their packet counts, or a complex attributed

graph [66] tracking statistics of each flows [295]. Therefore, CPU time consumed for

updating a telemetry depends on their structure types and current sizes. I use ng

and Ng,i to represent the total number of telemetry in this step and current size of
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the i th telemetry, respectively. The CPU consumption of updating the i telemetry

can be expressed as a fixed function θi(Ng,i) of time complexity2. The best case

tg,min is reached when only the simplest telemetry is updated by a processed packet,

while the worst case tg,max is encountered when all ng data structures are updated

– I formulate them in Eq. 6.6.

tg,min =
ng

min
i=1

(θi(Ng,i)); tg,max =

ng∑
i=1

θi(Ng,i); (6.6)

The average time consumption tg,avg by an arrived packet in this step is obtained

by weighting all data structures by their probability as expressed by Eq. 6.7, where

pt,i is the hit probability of the ith telemetry.

tg,avg =

ng∑
i=1

pt,iθi(Ng,i); (6.7)

The Entire Pipeline

Now I summarize the best (tmin in Eq. 6.8), worst (tmax in Eq. 6.9) and average

(tavg in Eq. 6.10) per-packet CPU time consumption by aggregating the individual

results of each step.

tmin = kr,c + kr,p + kl
np

min
i=1

(nl,i) +
ng

min
i=1

(θi(Ng,i)); (6.8)

tmax = kr,cnr + kr,pnp + kl

np∑
i=1

nl,i +

ng∑
i=1

θi(Ng,i); (6.9)

tavg = kr,c

nr∑
i=1

pr,i +

np∑
i=1

((kr,p + kl + nl,i)pp,i) +

ng∑
i=1

pt,iθi(Ng,i); (6.10)

A detection system reaches its maximum scalability if majority of its processed

packets are mapped to the best case (i.e., tmin) while it becomes not practical

2For instance, if the ith telemetry is built on binary search tree, θi(Ng,i) can be rewritten as
O(log(Ng,i)) or O(Ng,i) for the average and worst case, respectively.
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if most of packets have their processing time as the worst case (i.e., tmax). To

achieve a system’s optimal practicality by converging its tavg to tmin, I can make

the following recommendations. First, minimizing the number of active parallel

modules for a received packet in each step (i.e., reducing nr, np, and ng in Eq. 6.10).

Second, reducing probabilities of packet hit on costly modules (i.e., pr,i, pp,i, and

pt,i). Third, selecting stateful telemetry that have light time complexity (i.e., θi())

and maintaining small number of entries (Ng,i) in the high-cost data structures to

reduce the time consumption introduced by the “information gathering” step.

On the other side, an effective detection that provides precise inference of dis-

tributed attackers and malicious flows requires complex data structures to be in-

volved, which often come with high cost. Recalling the walking example discussed

in §6.3.1, the practical approach only detects victims with simple telemetry (light

θi()) of only protected enterprise hosts, whereas the effective approach detect vic-

tims, distributed sources, and malicious flows through a complex flow graph (heavy

θi()) containing all flow details between hosts. As benchmarked by my evalution (in

§6.5.3) using real enterprise traffic, the effective detection has its per-packet time

consumption teffec. about 21 times larger than the per-packet time consumption

tprac. of the practical method.

Given the above considerations, a detection system is suggested to have complex

data structures for effective detection, which are only used to process the necessary

fraction of traffic, while the majority of packet streams are expected to be handled

by light modules, so that the hit probability and complexity of costly modules will

be significantly reduced for practicality. Next, I show my design of a multi-stage

inference architecture based on this idea that detects distributed attacks progres-

sively, whereby only a small but necessary fraction of packet streams are processed

by high-cost modules and the majority of traffic are handled by low-cost processes.
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Figure 6.3: Design of PEDDA architecture – my multi-stage progressive inference
method.

6.4 The Multi-stage Progressive Inference Architec-

ture

In this section, I present my method as PEDDA architecture (§6.4.1) that em-

ploys multiple low-cost and high-cost inference stages to detect a distributed attack

progressively, so that the only necessary fraction of traffic partitioned by an up-

per (high-cost) stage would be processed by its lower stage – they are dynamically

instructed by reactive controls of programmable networks (§6.4.2). Given the uncer-

tainty of complex traffic compositions, high-cost stages may still get overwhelmed

if the finest granularity (IP-level) of telemetry is maintained during the progressive

detection. To avoid this problem, I design an orchestrator that selects granularity

(IP-level or coarse-grained subnet-level) of each stage by solving a run-time op-

timization problem bounded by available computing resources and current traffic

compositions (§6.4.3).

6.4.1 Design of the PEDDA Architecture

I now describe the design of my multi-stage progressive inference architecture, includ-

ing my design rationale and choices, schematic of the architecture, and its workflows.
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Rationale and Choices

As revealed in Fig. 6.1(a), effective detection of a distributed attack requires a large

scale monitoring of all aspects (i.e., victims in the enterprise network, distributed

external attackers, and malicious flows), which is not practical as the sizes of external

attackers with flows are massive and unbounded. Therefore, legacy solutions either

focus on only victims for practicality, or detect distributed sources and flows with

high processing cost thus do not scale. I note that this trade-off could be resolved

through multiple inference stages each makes a progression, so that telemetry is only

maintained for the necessary fraction of traffic at each stage – an early stage monitors

a simple aspect of the network (e.g., enterprise hosts in Fig. 6.1(a)) through a low-

cost telemetry, while the following stage (with a higher-cost telemetry) processes

only a fraction of traffic partitioned based on the inference results from its prior

stage. This process is recursively executed till an attack is fully detected at all

aspects (e.g., victims, sources, and flows).

Three design choices are made accordingly. First, I use multiple inference stages

each achieves a progression (e.g., victims, sources, or flows) in attack detection.

They are dependent to each other and have logical orders. Second, an inference

stage only processes the packet streams partitioned by its prior stage. Therefore,

the first low-cost stage processes all received packet streams by default, whereas the

stages with higher costs inspect only a minor fraction of traffic isolated by their prior

cohorts. Third, each stage is expected to make its inference at the finest granularity

of IP level. However, given the complexity of traffic and limited available computing

resources, the granularity of each stage may get sacrificed (by aggregating into subnet

level) to guarantee the operational robustness.
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Schematic

Now I describe the schematic of my architecture as shown in Fig. 6.3. Driven by

my design choices, my architecture has a number of dependent inference stages (a

serial of packet matching, parser, telemetry, and inference models) placed by their

logical orders with costs from low to high. An inference manager is used to collect

detection results from all stages and reactively instructs them to expand or reduce

the scope/fraction of traffic they process. To guarantee the operational robustness

with limited computing resources, a granularity orchestrator is designed to digest

run-time system statistics and adjust granularity of each stage accordingly – its

specifications and mechanism will be discussed in §6.4.3.

Workflows

As shown in Fig. 6.3, there are three types of workflow in the PEDDA architecture,

namely packet processing, progressive inference, and granularity orchestration.

Packet processing and progressive inference: During operations, the packet

matching module receives traffic and proactively forwards all packet streams to the

first stage which use the simplest (low-cost) telemetry. Therefore, it can handle

all packet streams without any performance pressure. As an example, let’s assume

that the first stage detects only victims by tracking packet count of each enterprise

host. Once a victim is identified, the first stage will send this result to the inference

manager. The second stage will then be instructed to start processing traffic asso-

ciated with this victim for a further progression (e.g., detect distributed attackers).

This procedure is recursively executed till the last stage to effectively detect all in-

volved entities (e.g., victims, attackers, and flows) in a distributed attack. With this

progressive inference mechanism, only the necessary fraction of traffic is gradually

processed by high-cost stages, which effectively detects attacks while ensuring the

operational practicality.
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Granularity orchestration: I note that the proposed architecture may still not

be capable of process traffic with limited available computing resources under ex-

treme scenarios (e.g., most of the packet streams are malicious and require high-cost

inspection). To maximize the robustness of my design, run-time system statistics

of each pipeline such as traffic rate, CPU consumption, memory usage, and number

of monitored entities are reported to the granularity orchestrator. The orchestra-

tor determines whether to reduce granularity (i.e., from IP level to coarse-grained

subnet levels) of each stage by solving an optimization problem (in §6.4.3). Orches-

trating instructions are sent to the inference manager and then reflected on each

traffic processing stage through run-time configurations.

6.4.2 Choices of Reactive Control

The key enabler of my progressive inference method is reactive control of packet

forwarding and processing, which is naturally matched with the emerging paradigm

of programmable networks (i.e., SDN and NFV). In what follows, I discuss three

possible choices to achieve the reactive control of my proposed architecture using

various technologies of programmable networks.

First, the presented architecture can be realized with only virtual network func-

tions (VNF). The packet matching module and packet parser bank in Fig. 6.3 can

be operated within a software switch (e.g., vSwtich) that interact with other com-

ponents configured as modular services on generic servers. This choice is practical

for small enterprises with low traffic rates and may not have hardware SDN switches

in operation. However, purely software-based packet processing is not practical for

handling high-throughput traffic of large enterprises [10]. Second, to be suitable for

high-rate environments, my architecture can be realized with programmable control

plane hardware switches (e.g., OpenFlow) as its packet processing modules, which

can handle packet streams at line rate. Other components including stateful teleme-
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try are still operated as software services. Third, one may want to offload simple

telemetry to programmable data plane switches (e.g., P4) to save its computing

resources on generic servers. However, this technology is still in its early stage of

industrial adoption, which makes it not very practical for current enterprises.

6.4.3 Orchestrating Stage Granularity

Intuitively, my PEDDA architecture achieves effective detection while satisfying the

requirement of practicality through progressive inference of multiple stages described

in §6.4.1. However, stages especially for those with high-cost telemetry may still get

overwhelmed by extreme traffic scenarios. For example, if the majority of traffic

are malicious and from well distributed sources with massive number of concurrent

flows, they may fail to monitor such complexity of sources and flows at the finest

granularity of IP level.

To guarantee the operational robustness of my PEDDA, I develop an orchestrator

(already shown in Fig. 6.3) that dynamically selects granularity (i.e., at the finest IP

level or coarse-grained subnet levels) of each stage to maintain the size of telemetry

at an acceptable range given the current traffic complexity and available comput-

ing resources. Ideally, all inference stages have their finest granularity at IP-level

(i.e., subnet mask as “/32”), that is, statistics are maintained for each IP address.

However, if the available computing resources are not enough to support IP-level

monitoring, granularity (i.e., subnet mask) of the less important stages defined by

users are reduced to free up more resources. For the worst case, a less important

stage would have its subnet mask as “/0” – it monitors the entire network as one

entity (i.e., 0.0.0.0/0), so that no additional cost will be introduced even if the

complexity of network is high.

Given the above logic, my orchestration approach can be mathematically formu-

lated as a constrained optimization problem described as follows.
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The Objective Function

The objective of my orchestration is to have better granularity (i.e., larger subnet

mask for the monitored network entities) for stages with higher priorities. Assuming

that there are Ns stages, and the ith stage has its subnet mask as Si and priority as

Wi, my objective function can be written as formula.6.11.

max
Ns∑
i=1

(Wi · Si) (6.11)

Constraints

I now articulate the constraints of my orchestration for subnet mask range, switch

resources, and server utilization.

Subnet mask range: Since an IPv4 address has 32 binary digits, the subnet

masks of all stages fall into a fixed range from 0 to 32 as specified in formula.6.12.

For an IPv6 address, the upper bound range is 128 digits which is not considered

in this chapter. Network administrators can also use a customized range within the

interval.

∀i ∈ [1, Ns] : 0 ≤ Si ≤ 32 (6.12)

Switch resources: The “packet matching” module that receives packet streams

and diverts them into each inference stage has its flow rules changed at run-time

by reactive configurations. This module is realized by software of hardware pro-

grammable switches that have limited rule tables. A flow rule could be created for a

single IP address or an aggregated subnet defined by its mask. Therefore, I use Hi

to denote the current number of IP addresses to be tracked by the ith stage, given

the current subnet mask Si, the number of flow rules required by the stage can be
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estimated as Hi

γ(Si)
, where γ() is an approximated bounded coefficient. Ideally, γ()

represents the perfect subnet aggregation, i.e., a flow rule with its subnet mask Si

covers 2Si active IP addresses; while in the worst case, all active IP addresses are

sparsely distributed and one flow rule can only match one host, i.e., γ(Si) = 1. Given

the maximum number of flow rules Fi and changing rates δFi, I have constraints for

the two metrics shown in formula.6.13.

∀i ∈ [1, Ns] :
Hi

γ(Si)
< Fi;∀i ∈ [1, Ns] : δ

Hi

γ(Si)
< δFi; (6.13)

If a programmable data plane switch (e.g., P4) is used as the “packet matching”

module, two additional constraints are introduced for each stage including maximum

SRAM Ri and stateful ALU Ai allocated to the ith stage. I use ri and ai to represent

the SRAM and stateful ALU usage per monitored entity, and the two constraints

are expressed as in formula.6.14.

∀i ∈ [1, Ns] : ri ·
Hi

γ(Si)
< Ri; ∀i ∈ [1, Ns] : ai ·

Hi

γ(Si)
< Ai; (6.14)

Server utilization: The performance of modules operated on commodity servers

are bounded by its allocated CPU and memory utilization. I use Cparser,i, Ctelemetry,i,

Cinference,i to represent the maximum CPU utilization allocated to the parser, teleme-

try, and inference of the ith stage, respectively. Assuming that the packet arrival

rate on the ith stage is λi, and the inference frequency is fi, per packet CPU time

consumption for each step can then be represented as cparser,i ·λi, λi ·θtelemetry,i( Hi

γ(Si)
),

and cinference,i · δ Hi

γ(Si)
· fi, where cparser,i and cinference,i are constant coefficients and

θtelemetry,i() is the estimated time complexity function of the stateful telemetry. Con-

straints for CPU utilization of packet parser, telemetry, and inference are expressed

as in formula.6.15,6.16, and 6.17, respectively.
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∀i ∈ [1, Ns] : cparser,i · λi < Cparser,i (6.15)

∀i ∈ [1, Ns] : λi · θtelemetry,i(
Hi

γ(Si)
) < Ctelemetry,i (6.16)

∀i ∈ [1, Ns] : cinference,i ·
Hi

γ(Si)
· fi < Cinference,i (6.17)

Both parser and inference module are stateless functions, which consume a

roughly constant and negligible amount of server memory. As for stateful telemetry,

I use mtelemetry,i to denote the run-time memory usage per monitored entity of the

ith stage. Therefore, the constraint for memory consumption by telemetry can be

expressed as in formula.6.18.

∀i ∈ [1, Ns] : mtelemetry,i ·
Hi

γ(Si)
< Mtelemetry,i (6.18)

During operations, network administrators of an enterprise specify the priority,

complexity function of telemetry, CPU and memory constant coefficients and limi-

tations of each stage that could be estimated from empirical benchmarking. Later

in §6.5.3, I will demonstrate how the run-time optimization orchestrates granularity

of each stage to achieve system robustness under constrained resources.

6.5 Realizing and Evaluating A Proof-of-Concept

Prototype

In this section, I present my proof-of-concept prototype of the PEDDA architecture.

It uses three practical inference stages driven by the insights from an empirical

traffic analysis of a large representative enterprise (§6.5.1). The prototype imple-

mentation details are discussed in §6.5.2. Through evaluations using one-day worth

of enterprise traffic and ground-truth DDoS attacks, I demonstrate that my proto-
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type outperforms its counterparts in telemetry visibility, detection effectiveness, and

operational robustness (§6.5.3).

6.5.1 Three Practical Inference Stages

Choosing suitable inference stages for enterprise networks is an important task to

realize the PEDDA architecture (discussed in §6.4) as a practical system. To mo-

tivate my selection of inference stages, I perform an empirical analysis on traffic

traces captured from the network edge of a large enterprise during a one-day period

to understand its flow and host profiles. Driven by the insights, I design three prac-

tical inference stages with different telemetry and detection progression that identify

active enterprise hosts, victims, distributed sources with flows of volumetric attacks,

respectively.

Analysis of Traffic from an Enterprise

In my conceptual design, the majority of packet streams are processed by low-cost

stages for early inference while a minority of traffic are reactively inspected by high-

cost stages. To this end, understanding the traffic profile of a typical enterprise is

the prerequisite step to choose a practical and effective approach of progression. In

what follows, I discuss my empirical analysis of flow and host profiles in an enterprise

network and the obtained insights that motivate my stage design.

Dataset: I provisioned a full mirror of inbound and outbound traffic from the

network edge of a large-sized university through two 10 Gbps fiber links separately3.

I collected the first 96 bytes of packets for one working day (31 May 2019 12:00

PM to 1 June 2019 12:00 PM) with negligible dropping rates (i.e., less than 0.05%),

resulting in 13.8B inbound and 21.5B outbound packets. During the busy hours from

3UNSW Human Research Ethics Advisory Panel approval number HC17499, and CSIRO
Data61 Ethics approval number 115/17.
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13:00 to 16:00, the inbound link carried about 9 Gbps traffic with a peak packet rate

as 700K pps, and the outbound link had its throughput as about 2 Gbps with 600K

pps.

Flow profiles: I now analyze the profile of flows crossing the enterprise. The

direction of a flow (i.e., inbound or outbound) is defined by its first packet. In the

entire dataset, I observe 60.8M outbound flows and a much larger number (559.2M)

of inbound flows. Surprisingly, the majority of them (i.e., 72.6% for outbound and

68.8% for inbound flows) only have packets for one direction. By investigating into

those abnormal flows, I found out that 36.4% of single directional flows only have 1

packet, while the rest of them are mostly with repetitive packets – they are likely

to be linked with network scans and mis-configurations that correspond to a small

fraction of packets (4.26% for outbound and 5.57% for inbound).

Host profiles: There are a total of 304K enterprise IP addresses that appeared

in my dataset during the day. I first analyze their packet distribution. The majority

(92.4%) of enterprise IPs only have inbound packets without sending outbound traffic

– they are either unassigned IP addresses of the enterprise or inactive hosts. On

the contrary, I do not observe any enterprise IP address that only sends outbound

packets without receiving inbound traffic.

Next, I consider the flow distribution among each enterprise host. Unsurprisingly,

the majority (84.5%) of inbound single directional flows target unassigned IPs or

inactive enterprise devices, as they are likely to be network scans that randomly

select their target. As for outbound single direction flows, they are all densely

generated by a negligible fraction (0.4%) of enterprise hosts that exhibit abnormal

behaviors such as performing port scans toward hosts on the Internet.

Considering the statistics of external hosts, during the day, 751K external hosts

sent packet towards enterprise IPs while only 59% of them get replied. Besides, I also

observe a small amount (15K) of external IP addresses that only received packets
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from enterprise hosts.

Highlights: I now recap two key insights that inspire the design of my practical

inference stages. First, a small amount of unsolicited packets targeting inactive

enterprise and external IP addresses create a large number of single directional flows

across the network, which is particularly true for the inbound direction. Therefore,

by only focusing on active hosts that need protection against distributed attacks, the

complexity and size of high-cost telemetry could be significantly reduced. Second,

compared with enterprise hosts, external hosts and concurrent flows are massive in

amount (up to 750K and 600M, respectively). Maintaining statistics of external

hosts and flows for all active enterprise hosts becomes impractical. Thus, it is

necessary to limit the number of monitored external hosts and flows through low-

cost stages.

Specification of the Three Stages

Now I discuss the specification of three practical stages designed for an enterprise

network that detect active enterprise hosts, attack victims, and distributed attackers

with malicious flows, respectively.

The first stage: My first stage is designed to detect active enterprise hosts.

The packet matching module sends all outbound packet streams to this stage by

default. The parser of this stage extracts source IP addresses of outbound packets,

which are used to update a list of active enterprise IP addresses (or subnets if its

granularity is reduced). An IP address will get removed from this telemetry if it

has no outbound packet for a user-defined period. Changes of the list are reported

to the inference manager periodically, so that corresponding reactive configurations

will be generated for the subsequent stages.

The second stage: My second practical stage identifies enterprise hosts that are

victims in distributed attacks. As reactively instructed by the inference manager, it
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receives inbound and outbound traffic of only active enterprise hosts identified by the

first stage. The telemetry maintained for this stage monitors traffic statistics of each

active enterprise host to detect victims from benign ones. In my proof-of-concept

prototype, by following the practice of state-of-the-art detection system [202], I track

packet arrival rates of both inbound and outbound directions for each monitored

entity (IP or subnet). If the difference between inbound and outbound packet rates

(i.e., #Pkt.In−#Pkt.Out) of a monitored entity exceeds a user-defined threshold,

the inference module will report it as a victim, so that the inference manager can

instruct the following stage accordingly.

The third stage: My third practical stage maintains high-cost telemetry to

detect distributed attackers and malicious flows in a network attack. This high-

cost stage only receives traffic of identified victims. For each packet, the parser of

this stage extracts its size, protocol, source and destination IP addresses and port

numbers. A streaming graph is used as the telemetry that tracks each network flows

between external hosts and the victims. Attributes of each external host and flow are

computed periodically, so that external sources and malicious flows can be precisely

detected at this final stage. In my prototype, I use the number of active flows between

an external host and the victim as my detection criteria, which is commonly used by

practical security middleboxes [204, 294]. I note that the inference function could

be further improved by more descriptive attributes and precise algorithms [5], which

is not in the focus of this paper.

6.5.2 Implementation Details

To realize my PEDDA architecture with the three practical stages, I implement a

proof-of-concept prototype using an OpenFlow programmable switch and software

modules operated on a commodity server. Fig. 6.4 shows its functional blocks and

their interactions. Inbound and outbound traffic entering and leaving the enterprise
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Figure 6.4: Proof-of-Concept Prototype Implementation.

are mirrored to two 10 Gbps network interfaces of the OpenFlow switch (NoviFlow

2122). The programmable switch annotates each received packet by adding an ex-

tra header indicating the stage it goes. VNF parsers (using DPDK framework and

NFF-Go library), telemetry, and inference modules of my three practical stages are

written in Golang and deployed on a blade server with sixteen 2.10GHz CPUs and

64GB RAM. A publish-subscribe messaging channel (NATS) is used to exchange in-

ference results, reactive configurations, system statistics, and orchestrating instruc-

tions. The granularity orchestrator (written in Golang) updates the subnet masks of

each stage by solving optimization problems using the received system statistics as

discussed in §6.4.3. The inference manager (written in Python3) publishes run-time

configurations for the three inference stages based on detection results and granular-

ity orchestrating instructions received from the messaging channel. Last, there are

two SDN controllers (Faucet and Ryu) that send proactive and run-time reactive

configurations to the switch, respectively.

6.5.3 Evaluation and Comparison

To evaluate the efficacy of my prototype, I first describe a demonstrative distributed

attack detection example by my prototype with three-stage progressive inference; I
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then experimentally compare my prototype with other state-of-the-art solutions to

highlight its merits in three aspects including telemetry visibility, detection accuracy

and responsiveness, and operational robustness.

Demonstrative Attack Detection

I demonstrate the detection workflow of my prototype by replaying a snippet dataset

of real enterprise traffic injected with ground-truth DDoS attacks.

Dataset: To create my demonstration dataset, I first select a publicly available

traffic trace file containing 10 minutes DDoS attacks [296] as the ground truth, and

a 15-minute snippet of my campus trace file (discussed in §6.5.1) as the background

traffic. I load the ground-truth DDoS attacks on three representative servers (i.e., a

website server, a VPN gateway, and a student portal) by changing their destination

IP addresses. As the result, I obtained a 15-minute dataset containing well-labeled

distributed network attacks on three enterprise servers.

Detection thresholds: The detection thresholds of my three practical stages

are configured as suggested by common practices [203, 204, 294] of the security

community. For the first stage, an active enterprise host will get removed if no

outbound packet is sent for 10 seconds. For the second stage, if the difference

between inbound and outbound packet rates of a monitored host exceeds 500 pkt/s,

it will be reported as victim. For the third stage, if an external host contacts the

victim with more than 10 active connections, the host and its flows will be flagged

as anomalies.

Results and statistics: The evaluation dataset is replayed into my proof-of-

concept prototype. The run-time detection statistics are shown in Fig. 6.5, which

demonstrate that my three practical stages are effective in identifying active enter-

prise hosts, victims, distributed sources, and malicious flows by only monitoring the

necessary entities.

222



Chapter 6. PEDDA: Practical and Effective Detection of Distributed Attacks on
Enterprise Networks via Multi-stage Progressive Inference

14:03 14:05 14:06 14:08 14:10
Time

0.0K

1.0K

2.0K

3.0K

4.0K

5.0K

Pk
t a

rri
va

l r
at

e 
(p

ps
) Outbound

Inbound

(a) Traffic rate – a web server.

14:03 14:05 14:06 14:08 14:10
Time

0
100

101

102

103

104

105

Nu
m

be
r

Active enterprise host
Victim detected
Monitored external host
External attacker detected
Monitored flow
Malicious flow detected
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(d) Detection statistics of the entire dataset.

Figure 6.5: Demonstrative detection statistics by my proof-of-concept prototype
with three inference stages.

I first take the website server as a case study. As illustrated in Fig. 6.5(a), the

inbound and outbound packet rate of this server is roughly equal and below 1K

packets per second (pps) during the most of time, while an exception happened

from 14:04 to 14:08 when I load an attack with about 10K concurrent flows from

100 distributed sources. As visually shown in Fig. 6.5(b), my three inference stages

effectively detect all distributed sources and their flows. On the first stage, the

server was consistently labeled as an active host for its outbound activity (shown

by the black line). The second stage tracked its packet rates for both directions and

detected it as a victim (blue line) during the attack period. Inbound and outbound

packet streams of the victim were reactively processed by the third stage to identify

external sources and malicious flows. As shown in Fig. 6.5(b), the majority of

external hosts and flows contacting the victim were labeled as anomalies, whereas a

small number (less than 5, thus looks negligible in the figure) of external hosts still

communicated with the server.

Now I report the overall detection statistics on the entire dataset. As shown
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Table 6.1: The overview statistics of my experimental evaluation for PEDDA and
other state-of-the-art solutions.

Telemetry Visibility Detection Accuracy Operational Cost
Host Victim Attacker Flow Victim Attacker Flow CPU (Avg./Peak) RAM (Avg./Peak)

NGFW Partial Partial None None 100% 0% 0% 20%/42% not measurable
IDS Partial Partial None None 100% 0% 0% 35%/62% 21%/34%
Flow Graph Complete Complete Complete Complete 100% 95.4% 94.1% >700%/Full Full/Full
PEDDA Complete Complete Complete Complete 100% 93.4% 91.7% 24%/57% 8%/11%

in Fig. 6.5(c), a large amount (170K) of IP addresses in my university IP blocks

were targeted by inbound packets during run-time, whereas only about 10% (18K)

of them are active hosts identified by the first practical stage. As instructed by my

progressive inference mechanism, traffic of only active enterprise hosts were processed

by the second stage, which detects victims in a distributed attack. The blue line

in Fig. 6.5(d) shows the number of potential victims detected by the second stage.

All 3 victims in my ground-truth attacks are successfully detected by the second

stage. In addition, there are 13 other enterprise hosts identified as victims. As the

consequence, inbound and outbound traffic of those detected victims are reactively

processed by the third stage. The number of external hosts and flows that are

processed and detected as anomalies by this stage is shown in Fig. 6.5(d). By

comparing with my ground-truth records, all external sources and their malicious

flows are detected by the stage. On average, about 1K external hosts are monitored

at run-time, and only about 1% of them are actual attackers (shown as the blue

lines). Furthermore, as shown by the yellow and red lines in Fig. 6.5(d), the majority

(≥90%) of monitored flows are identified as malicious, which is understandable as

external attackers tend to overload a victim by massive amount of flows, while benign

users do not hold many concurrent connections.

Noting that there are around 260K external hosts and 600K concurrent flows

in my dataset. Through the progressive inference of my three stages, less than

4K external hosts and 1K flows are tracked by the high-cost stage for fine-grained

detection, which achieves both practicality and detection effectiveness.

224



Chapter 6. PEDDA: Practical and Effective Detection of Distributed Attacks on
Enterprise Networks via Multi-stage Progressive Inference

Experimental Comparisons

I experimentally compare my prototype with two widely adopted solutions (i.e., a

NGFW as Palo-Alto firewall appliance PA-3020 [202] and an IDS as Zeek [97] net-

work security monitoring tool of version 3.1.0-dev.280) and one flow graph that is

identical to the one used in my third stage. The NGFW is operated as a standalone

proprietary hardware appliance while the other systems (my prototype, IDS, and

the flow graph) are deployed on the blade server that is already described in §6.5.2.

All systems are configured using the same detection thresholds so that the inference

architecture is the only variable in my comparisons. During my experimental eval-

uations, my ground-truth DDoS attack dataset (discussed in §6.5.3) was replayed

continuously together with the enterprise background traffic of a day. In total, I

obtained 432 DDoS attacks on enterprise servers from 43.2K attackers and more

than 4.32M malicious flows.

Telemetry visibility: The telemetry visibility of each solution into enterprise

hosts, victims, attackers, and malicious flows is reported in the respective region

of Table 6.1. The NGFW often provides telemetry only for key enterprise servers.

IT departments have to manually specify the IP addresses or subnets [297] that

require monitoring. Due to the scalability concern, it does not provide visibility into

external hosts and flows for DDoS detection. Therefore, such systems can handle a

large volume of traffic but also cause collateral damage when mitigating attacks [9].

The software IDS requires IT department to install scripts that specify its detection

logic and matching signatures. It provides flexibility to users who want to have their

customized telemetry for detection. However, such systems are operated on generic

CPUs that cannot handle large throughput traffic for complex logic [10]. Thus, only

monitoring enterprise hosts that are important is recommended by the community

[298]. My prototype provides a more flexible and fine-grained telemetry visibility

than its counterparts. It monitors all active enterprise hosts without specifications

from network administrator, and reactively maintains visibility into external hosts
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Figure 6.6: Detection responsiveness of my prototype.

and flows that contact victims in a distributed network attack. Such visibility can

only be achieved by the flow graph which is too computationally expensive for real-

time operation.

Detection accuracy & responsiveness: I now report the detection accuracy

and responsiveness for victims, external attackers, and malicious flows. As for detec-

tion accuracy, according to Table 6.1, my approach achieved satisfactory detection

results for victims, sources, and malicious flows (100%, 93.4%, and 91.7% respec-

tively). Whereas typical enterprise solutions that are mounted with DDoS detection

rules and signature scripts (i.e., NGFW and IDS) can raise alarms for all victims

(with 100% accuracy) but are not able to differentiate distributed attackers and

malicious flows (resulting in 0% accuracy). Fine-grained detection using flow graphs

achieved the best results (100%, 95.4%, and 94.1% for victim, attacker, and flow

respectively). It is able to detect distributed sources and malicious flows that are

missed by the progressive inference of my prototype. However, maintaining more
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than a half million flow records renders it unable to operate in real-time (i.e., taking

more than 7 days to process my 1-day traffic). I also report the responsiveness of my

system in detecting victims, sources, and malicious flows as shown in Fig. 6.6. The

majority of attacks can be detected within 20 seconds at victim- (81.6%), source-

(71.1%), and flow-level (66.0%), and almost all attacks are detected within a minute

at all three levels (100%, 98.4%, and 96.8%), respectively. I observe that some enter-

prise victims sent more outbound packets than inbound ones during some periods,

thus, they are not able to be responsively detected through my thresholds on traffic

rates. As the result, a small fraction of external attackers (6.4%) and malicious flows

(8.3%) are missed. I note that a more precise behavioral profiling of attacker and

flow could be used to address the problem, which is not in the scope of this chapter.

Operational robustness: As shown in the rightmost region of Table 6.1, com-

pared with its counterparts, PEDDA has a reasonably light consumption on com-

putational resources (i.e., CPU and RAM) while it has better (or equivalent) per-

formance in the other two aspects. I note that the flow graph consumed more than

7 days for a 1-day traffic traces, therefore, its average CPU usage is marked as

“>700%”. To guarantee the operational robustness regardless of traffic compositions

and resource availability, my system uses a granularity orchestrator (described in

§6.4.3) that adjusts subnet masks of each inference stage to regulate its resource

consumption. I now demonstrate its usefulness. My prototype did not face short-

age of computing resources when handling real campus traffic with peak rate of 10

Gbps, as evidenced by the CPU and RAM usage shown in Fig. 6.7. Therefore, all

three stages maintain the finest granularity of IP level with their subnet mask as

/32. To emulate a less powerful platform, the maximum CPU utilization of the

dedicated cores and RAM usage are set from 10% to 80% and 3% to 25% gradually.

My prototype was operated without compromising granularity (i.e., no reduction

on subnet mask) when it was assigned with more than 15% memory and 60% CPU

resources. With stricter limitations applied, the first stage that tracks active enter-

prise hosts did not have any reduction on its subnet mask (in Fig. 6.7(b)) under all
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(c) Mask reduction: 2nd stage.
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(d) Mask reduction: 3rd stage.
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Figure 6.7: Operational robustness: (a). server CPU and RAM usage without
resource constraints; subnet mask reductions of the (b). 1st, (c). 2nd, (d). 3rd
stages during peak traffic rate under various resource constraints; and (e). resource
usage with the constraints of 10% CPU and 3% RAM.

circumstances, as it is granted the highest priority during orchestrations, whereas

the second stage (in Fig. 6.7(c)) that detects enterprise victims and the third stage
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(Fig. 6.7(d)) that identifies external sources with malicious flows have their subnet

masks reduced up to 4 and 7 digits, respectively. In Fig. 6.7(e), I show the real-time

CPU and RAM consumption of my prototype when only 10% CPU and 3% RAM are

available. It is clear that my orchestration effectively controls the run-time resource

consumption below the defined limits. As a summary, the robustness of my pro-

totype is guaranteed through the dynamic granularity orchestration for each stage

given the available computing resources.

6.6 Conclusion

Current distributed attack detection solutions for enterprise networks are either not

effective in identifying sources and malicious flows to avoid collateral damage, or

not practical to be operated under the high-throughput network environment of an

enterprise. In this chapter, I proposed PEDDA, a progressive inference method that

achieves both effective detection and operational practicality via multiple stages

orchestrated by the dynamic control of programmable networks. First, I highlight

the performance bottlenecks of traffic processing in legacy detection solutions by

mathematical formulation of its time complexity. Second, I design my method as

PEDDA architecture that detects distributed attacks progressively through multiple

inference stages, each with a certain cost and orchestratable granularity. During

operations, packet streams are progressively partitioned and processed by the stages

with increasing costs, the granularity of which is orchestrated through optimization

constrained by available computing resources. Third, I implement and evaluate

a proof-of-concept prototype that uses three practical inference stages to detect

active enterprise hosts, victims, sources with flows progressively. Evaluation results

show that PEDDA outperforms legacy solutions and is ready for deployment at an

enterprise scale.
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7.1 Conclusions

Enterprise networks are frequently targeted by distributed network attacks of di-

verse types and patterns. To cope with such ever-increasing cyber threats, enter-

prise IT departments are expected to have a seamless perception toward the profile

of connected assets within their networks and provide well-tailored detection against

network attacks on vulnerable assets accordingly. Existing solutions for asset behav-

ioral tracking and distributed attack detection are either static thus struggle to cope

with the fast-changing behavioral profiles of enterprise hosts and external attackers,

or via costly statistical methods using fine-grained telemetry that are not practical

to be maintained for a large enterprise network.

In this thesis, by leveraging data-driven techniques and programmable network

telemetry, I developed a series of methods and practical prototypes for enterprise
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IT departments to address the above security “blind spot” from DNS to the whole

dimension of network traffic across an enterprise edge, covering asset behavioral

classification and distributed network attack detection.

The key contributions presented in this thesis toward enterprise network security

are briefly summarized below.

• Towards DNS asset profiling and classification, I developed an automatic

method to classify DNS assets using cluster algorithms and track their cyber-

health through a set of well-defined metrics. I analyzed over 1 million DNS

packets from two large organizations to profile the DNS behavior of enter-

prise hosts. I identified key attributes and develop a method using clustering

algorithms to classify DNS assets into authoritative name servers, recursive

resolvers, mixed DNS servers, and end-hosts behind or not behind the NAT.

For those identified DNS assets, I proposed a set of monitoring metrics to

track their DNS traffic health that helps us to identify various types of DNS

anomalies. My method was applied to 32-day DNS traces and reveals unknown

knowledge for the respective IT departments to address their “DNS blind spots”

such as DNS servers configured by affiliations and vulnerability exploited by

external attackers that could be fixed through secure configurations.

• Towards asset network behavioral monitoring and classification, I designed

and prototyped a real-time SDN system using a multi-grained classification

scheme to give fine-grained functional types or coarse-grained transport-layer

behavioral types of enterprise hosts. My system reactively collects packet-

level telemetry of hosts potentially with anomalies for forensics analysis. I

performed a comprehensive big data analysis on over 3 billion packets from

a representative organization to highlight typical and non-typical behavioral

types of enterprise hosts. Driven by the insight, I developed a multi-grained

classification scheme using well-selected attributes and supervised ML models

to classify enterprise hosts into either typical fine-grained types (e.g., website
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server and mail server) or non-typical coarse-grained types (e.g., TCP server

and UDP proxy). I then prototyped a real-time system that classifies enterprise

hosts and reactively inspects packet-level telemetry of suspicious hosts through

dynamic flow rules of programmable switches. My system is practically de-

ployed at an enterprise network for over a month and identifies thousands of

unknown assets and network anomalies of which the IT department are not

aware.

• For the problem of distributed DNS attack detection, I proposed a hierarchi-

cal anomaly-based architecture that effectively detects external DNS attackers

even at distributed and stealthy manner. I started by analyzing over 400 mil-

lion DNS packets from two organizations to profile distributed DNS attacks

including scans and DDoS. I then developed a hierarchical data structure to

profile DNS volumetric queries from external entities at various levels of subnet

aggregations and train/tune/evaluate anomaly detection models to detect ex-

ternal attackers at host-, subnet-, and AS-level. I then prototyped a real-time

detection system and deployed it for over a month. Evaluation results show

that it is able to detect DNS attacks even in a well-distributed and stealthy

manner, which might be missed by the legacy solutions.

• As for the effective and practical detection of distributed network attacks on

enterprise assets, I came up with the design and implementation of PEDDA

system that detects distributed network attacks from light to expensive tasks

through a multi-stage progressive inference architecture. I formally modeled

the traffic processing process of state-of-the-art attack detection systems to

identify their performance bottlenecks. I proposed the PEDDA architecture

that uses a multi-stage progressive inference method to detect a distributed

network attack from simple to complex stages gradually. The telemetry gran-

ularity of each stage is dynamically orchestrated through an optimization pro-

cess. I then designed and built a proof-of-concept prototype for enterprise
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networks using a three-stage detection that identifies active enterprise hosts,

isolates victims, and detects distributed attackers with malicious flows, re-

spectively. PEDDA is evaluated using real enterprise traces and public DDoS

datasets. The results demonstrate its ability in detecting attacks effectively

until the flow level while practical for a large organization, which is hard to

realize with current enterprise solutions.

7.2 Future Work

I believe that the contributions presented in this thesis provide significant references

for effective and practical enterprise network security. It is worth noting that my

methodologies, system designs, and prototypes could be further improved and ex-

tended as the natural follow-ups on this thesis. Several example future directions

are outlined as follows.

• In Chapter 3, I tracked various types of unhealthy DNS traffic characteristics

as an inference for identifying DNS anomaly types. Due to the limitation of my

dataset that only contains two representative enterprises, I used a codebook

method and developed mapping for a limited number of popular anomaly

types. It could be further improved by expanding the coverage of anomaly

types from a more inclusive dataset and developing precise inference methods

through ML techniques.

• My real-time asset classification scheme presented in Chapter 4 gives fine-

grained labels to those enterprise hosts with typical functionality types such

as website servers and proxies, while the rest are assigned with their coarse-

grained types (such as TCP servers and proxies) with notations of their dom-

inant transport-layer services. I believe that the coarse-grained inference re-

sults could be further clustered and refined by their communication patterns
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(e.g., commonly used protocols and destination IP addresses) to provide more

insightful references for asset security management.

• The PEDDA system described in Chapter 6 maintains network telemetry for

distributed attack detection at various levels of dynamic stages such as ac-

tive enterprise hosts, victims, distributed attackers, and malicious flows. I

acknowledge that the attack detection at each stage inherits simple thresholds

from legacy solutions, which could be further enhanced by using more accurate

methods such as statistical learning models on a comprehensive set of features

derived from network telemetries.

• My two contributions on DNS security (in Chapter 3 and 5) focused on unen-

crypted DNS which is predominately adopted by the current ecosystem. With

the growing concerns on data privacy and advances in DNS encryption (e.g.,

DNS-over-TLS [192] and DNS-over-HTTPS [193]), the networking community

starts to accelerate its industrial adoption by addressing related practical chal-

lenges [299]. With encrypted DNS, key attributes computed from DNS query

names will not be available to my inference systems. Therefore, refining my

data-driven methods for compatibility with encrypted DNS is a valuable future

direction.

• Due to the deployment location of my telemetry infrastructure, in this thesis,

I only consider the network traffic across an enterprise edge (i.e., through the

border routers that separate internal networks and the public Internet). Thus,

I could not investigate the communications between hosts within an enterprise

network, which will inevitably lead to significant security findings such as in-

ternal malware spreading, infiltration attacks, and others. I believe that future

explorations of network traffic within an enterprise supported by a telemetry

infrastructure with better visibility would bring astounding knowledge to the

community.
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Apart from the future directions listed above, there are many other aspects of

enterprise network security that are not covered by this thesis, I hope they could be

explored by my community in the near future.
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