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Abstract	
  	
  
	
  

The eye is the most natural optical system available to us. Because of the eye, it is 

possible for mankind to inspect the world around us with evaluate motion, color and 

other details. The information obtained from the eye allows us to make decisions that 

range from menial to critical and even life-saving.  

 

However the human visual system seems to lack perfection in adapting to new 

conditions and degrading vision. Aberrations are the major factors that affect the image 

quality of the eye. A large amount of lower order aberrations are found in the peripheral 

visual field and higher order aberrations altered in from the center to the peripheral in 

the visual field. Understanding the aberrations of the eye can help to learn more about 

the optical function of the eye.  The aim of this study was to understand the optical 

function of the human eye by reconstructing the wavefront aberration of the eye and 

investigating the tomography of the optical elements of the eye. 

 

The knowledge of vision, aberration, and the basic optics of the eye is introduced. A 

new ocular wavefront aberration measurement algorithm is investigated and compared 

with the other methods applied by the previous researchers. 

 

The main aim is to investigate the optical function of the eye, particularly the crystalline 

lens. For this purpose, a complex model eye is designed with adjustable lens at both on-

axis and off-axis field; a new computer based ray-tracing algorithm is applied to find 

the wavefront aberration and the refractive index profile of the lens of the eye. At the 

end, the wavefront aberration is reconstructed for the model eye, including those from 

different angles into periphery.  

 

Another objective is to reconstruct the lens by applying tomography algorithms, in this 

thesis; a modified back projection algorithm is introduced and tested, from which the 

refractive index distribution of the lens can be reconstructed, however, at this stage, the 

reconstructing method still needs to be improved to gain a reliable refractive index 

distribution of the lens.  
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1	
  
	
  

1 Chapter	
  One:	
  Introduction	
  
	
  
The major premise of this thesis is that spherical and higher order aberration has a 

severe effect on vision. To what extent and how generally prevalent its effects are is a 

question that has been inadequately answered. Moreover, this effect changes into the 

periphery of vision. Before establishing the solutions from measurement to how 

aberrations affect vision, some background will be laid to understand the fundamental 

functions of the eye. Some common visual aberration will be then introduced and 

discussed along with research experiments. For the purpose described above, the 

primary task of this thesis is to investigate the eye by analyzing the eye data, which was 

taken from the eye measuring devices and custom built instruments. Improving the 

methods for both collecting and analyzing the eye data is another major purpose as it 

can help us to understand the optical function and the optical characteristic of the eye 

better, as well as getting a more reliable result. The eye data includes light wavefront 

images and magnetic resonance imaging (MRI) images. An understanding of the human 

eye is extremely important to designers of the eye measuring equipment in terms of 

optical system, as well as researchers in clinic in finding solutions for curing disease.  

 

In Chapter 2, the fundamental knowledge of the vision, aberration and the correction of 

the human eye are introduced. In particular, in order to measure wavefront aberration, 

adaptive optics is described. Aberration wavefront measurement algorithms are the 

essential part of this thesis, and are introduced in this chapter and are further 

investigated in the following Chapters.  

 

In Chapter 3, to further investigate the description of ocular aberration in the peripheral 

visual field, a new wavefront reconstruction method is introduced, tested, and compared 

with two approaches applied by Atchison and Scott in 2007 and Shen and Thibos in 

2009. The objective is to find the similarities among these three methods and determine 

the cause for differences; the result is very useful for defining a standard for the future 

researchers to identify ad describe the underlying aberration structure. In addition, the 

differences of these three methods can help future researchers to avoid mistakes while 

constructing wavefront of the eye.  
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The major problem of this study is that the aberration projection angle onto the circular 

pupil changes from circular on-axis to elliptical gradually with the field angle increase. 

Zernike wavefront aberration algorithms were used to measure the ocular wavefront 

aberration. However, conventional Zernike analysis for reconstruction wavefront 

aberrations from wavefront slope data can only be specified for circular pupils. 

Therefore, a new method of altering the Zernike polynomial shapes to fit in to the 

aberration calculation algorithms is introduced in detail.  

 

In Chapter 4, understanding the structure of the eye and modelling its optical 

characteristics is considered. This has been subject of interest for decades. Applying ray 

tracing to the schematic eye has improved the understanding of the optical characteristic 

of the eye. After Gullstrand’s work of 1909, many eye models have been developed. 

The geometry of these first eye models used only circular surfaces; more complex 

models have been investigated with the introduction of aspherical surfaces. Regarding 

the optics of the elements, in particular of the crystalline lens, from a homogeneous 

index of refraction, gradient index models have developed to achieve better 

performance modeling of the real lens. In particular, the anterior cornea aberration is 

only partially compensated by the posterior cornea; therefore, the anterior corneal 

surface still contributes to overall optical quality of the eyes more than the crystalline 

lens.  In this Chapter, this work develops a sophisticated structure for a model eye with 

adjustable geometry, adjusted by modeling its optical parameters. Bundles of light rays 

are traced from multiple points on the retina out of the eye; the angles and slopes of 

these rays are recorded and formed into aberrated wavefront. These are compared to 

aberrations from a wide range of angles. To test the sensitivity of the model, changes to 

the aberration wavefront were determined by changing lens parameters during 

accommodation. The aberration caused by the front anterior cornea was compensated 

by the posterior cornea, as would be expected and the more significant contribution to 

variability of any wavefront aberrations are the optical characteristics of the lens.  

 

To build the eye model, it is essential to be familiar with the features of the optical 

elements of the eye. Therefore, the features and the function of the crystalline lens 

optics are described in detail, such as the changes in the crystalline lens with age and 

accommodation, thus in this research, all the participating subjects were chosen from 
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the same age group (20 to 30 years old) to minimize the differences. The modeling 

methods of optimizing the optical elements such as the crystalline lens, cornea, and 

retina are described in detail. And a modified ray-tracing algorithm was introduced, 

tested and discussed. Initialization of the schematic eye model is an essential task, as it 

determines the accuracy of the optical factors of the model. Therefore, there is a high 

accuracy requirement on the data collection. In this study, several eye-measuring 

equipment are used, including Lens measuring instrument (Lenstar LS900), a cornea- 

measuring instrument (Pentacam), and a custom built Phakometer to gain eye 

parameters including lens curvature and MRI images analysis data. The function of 

these is described in Chapter 4. To test the sensitivity of the model, modification was 

made to the model using measured parameters from a real subject’s eye; the result was 

tested and discussed against those from other subjects.  

 

In Chapter 5, the concept of tomography reconstruction algorithm is introduced; the 

major task in this chapter is to reconstruct the refractive index distribution in the 

crystalline lens by improving the tomographic reconstruction method. In this study, a 

modified tomographic algorithm is introduced on the geometrical optics, and the 

reconstruction result is tested and discussed against the MRI image data.  
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2 	
  Chapter	
  Two:	
  Vision,	
  Aberration	
  and	
  Correction	
  of	
  the	
  
Human	
  Eye	
  

2.1 The	
  Human	
  Eye	
  and	
  Vision	
  

 Structure	
  of	
  the	
  Eye	
  2.1.1
	
  
The structure of human eye is shown in Figure 1, the outer layer is composed of anterior 

cornea and the posterior sclera. The middle layer of the eye is the ureal tract with two 

parts: choroid and ciliary body. Iris is important to the optical function through the size 

of its aperture; ciliary body plays a key role to the process of accommodation. The inner 

layer of the eye is retina, “it is considered to be the less sensitive tissue of the eye” 

(Atchison, Smith et al. 2000). 

 

 
Figure 1: The horizontal section of the right eye (Atchison, Smith . 2000). 

In particular, the cornea is transparent and approximately spherical and its radius of 

curvature is about 8mm. The inner layer of the eye is the retina, which contains of a 

number of cellular and pigmented layers with a nerve fibre layer. The retina is an 

extension of the central nervous system and it is connected to the brain by the optic 

nerve. Inside the eye is divided into three compartments. Between the cornea and iris is 

the anterior chamber, which contains the aqueous fluid. The posterior chamber is 

located in between the iris, the ciliary body and the lens, and it contains the aqueous 

fluid as well. The vitreous chamber, between the lens and the retina and contains a 

transparent mass, which is considered as vitreous body. 
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 Optical	
  Structure	
  and	
  Ocular	
  Anatomy	
  2.1.2
	
  
The optical systems of the eye are the same as for artificial image-forming system of the 

camera. The principle to forming the eye image is that when light enters the eye through 

the cornea, it will be refracted by the cornea and the lens to arrive on the retina.   

 

Cornea. Within these two refractive elements, the cornea has the largest constant 

power, whereas the power of lens can be changed when the lens changes its shape to 

focus and defocus. This whole process is called accommodation. The iris controls the 

diameter of the incoming beam of light and forms the aperture stop of the eye, the 

opening in the iris is called pupil. The aperture stop plays a main role in all optical 

systems (Artal, Derrington et al. 1995). 

 

Crystalline Lens. The lens is a crystalline structure, transparent in order to allow light 

to pass through. It is circular and biconvex, and both its surfaces bulge outwards, “it is 

much like the common magnifying glass”(Pierscionek, Chan et al. 1988). The lens has 

two important roles to play in the visual pathway.  The refractive index within the lens 

is not constant; it expresses most in the centre and least in the periphery (Nakao, 

Fujimoto et al. 1968, Pierscionek 1997). There is no accurate measure as it grows 

continually with new epithelial cells forming in the middle throughout life. But the lens 

has the largest variation in the periphery, which produces a continuous refraction of rays 

and may improve the quality of the image by reducing spherical aberration. 

 

Atchison and Smith found that, during accommodation, when the eye changes focus 

from far to near objects, the lens becomes more rounded and increases the surface 

curvature, and the muscle becomes more relaxed. In addition, the range of the 

accommodation is the distance between the nearest objects and the far most objects the 

eye can see. However, how the lens changes its shape with accommodation and age is 

still not fully understood.  

  

Pupil. The size of pupil is determined by two opposite muscles. Pupil size has a great 

effect on vision, which decreases with increase in age and pupils react less to changes in 

light level (Bedell and Katz 1982). For instance, for normal optical systems, the 

diameter of the pupil affects the depth-of-field and retinal light level. Furthermore, 



6	
  
	
  

aberrations change the quality of retinal image for large pupil diameter, whereas 

diffraction limits image quality for small pupil. There is an ideal pupil diameter range 

from 2 to 3 mm, which gives the best balance between these two effects for normal 

young eye (Campbell and Gregory 1960). 

 

Retina. The retina is composed of light-sensitive tissue of which there are two receptor 

cells, known as rods and cones. The names refer to their shapes, but with different 

locations, there occur variations in shape. To simulate a response, cones require 

dramatic amounts of light. Cones are most densely found in the macula and fovea of the 

eye. Comparing to cones, rods are very much sensitive to low light levels and occur 

mostly in the periphery of the eye. There are about 100 million rods in the retina, and 

the maximum density occurs at about 20° from the fovea (Atchison, Smith et al. 2000). 

 

Macula. Macula is the central field of the retina. The light of interest can be focused on 

the macula while eye moving. Although it is common believed that macula is crucial for 

good vision, the actual size of the macula is still in debate. Some researchers argue that 

a small diameter of 2.5mm to 3mm (Greivenkamp 2004), others cite a large diameter of 

5.5mm (Atchison, Smith et al. 2000). The fovea is the centre of macula, and it 

corresponds to the line of light. The line of the light is the line joining the fixation piont 

and the centre of the entrance pupil, it defines the centre of the light beam enters the eye. 

 Refractive	
  Elements	
  and	
  Refractive	
  Errors	
  2.1.3
 

The refractive elements consist of cornea and lens. To obtain good quality retina image, 

those elements must have appropriate curvatures and refractive indices. Refraction 

occurs at 4 surfaces, including the anterior and posterior cornea and the whole lens as 

shown in	
  Figure 1. Minor refraction occurs between the layers of the crystalline lens, but 

at a smaller index change. The shape of the lens can change with age and 

accommodation. The cornea provides the major refracting power. It accounts for 

approximately two-thirds of the total power for the relaxed eye, and the lens increases 

its power during accommodation. 
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Figure 2: The structure of the cornea derived from (Atchison, Smith et al. 2000), Optics of 

the Human eye, page 11. 

2.1.3.1 Refractive	
  index	
  
 

Different methods have been applied by previous researchers in measuring cornea (Salz, 

Azen et al. 1983, Hitzenberger, Baumgartner et al. 1994, Bechmann, Thiel et al. 2001, 

Barkana, Gerber et al. 2005). As for each layer of the cornea, several studies have 

measured the anterior radius of curvature, but rare records on the rear surface. Figure 2 

shows the experimental distributions of the radii of curvature (R). According to (Patel, 

Marshall et al. 1992), it appears a reasonable relationship, linear correlation between the 

anterior 𝑅! and posterior 𝑅! as shown in eq. 1.1:  

𝑅! =   0.81𝑅!                                                                                                                (2.1) 

 By using the eq. 1.1, the surface powers (F) can be calculated as shown in eq. 1.2: 

𝐹 = !!!!
!

                                                                                                                        (2.2) 

where n and n’ are the refractive index of the cornea at incident and refracted side. At 

the anterior surface n=1 and n’=1.376 and at the posterior surface n=1.376 and n’=1.336, 

the figure here was suggested by Atchison and Smith. The total power F of the cornea 

can be calculated from the thick lens equation:  

𝐹 = 𝐹! + 𝐹! −
!!!!!
!

                                                                                                      (2.3) 

,where 𝐹! is the anterior surface power, 𝐹! is the posterior surface power, d is the vertex 

corneal thickness and 𝑛 is the refractive index of the cornea. Since !!!!!
!

 is always really 

small, the power of cornea can be estimated from the sum of the surface powers, 
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𝐹 ≈ 𝐹! + 𝐹!                                                                                                                   (2.4). 

In this thesis, these figures were applied as a guidance to initialise the eye model, for 

instance, the relationship between lens radii of curvature and the lens power can limit 

the changes of radii of curvature at designing the model eye, see detail in chapter 2.  

 

2.1.3.2 Radii	
  of	
  Curvature	
  
 

In spherical surface and in any meridian, the radii of curvature perform the same in any 

points. In contrary to the conicoid surface, the radius of curvature depends more than 

just the distance from the vertex at off-axis points, but also upon on the meridian at that 

point. There are two major meridians, including tangential meridian, which lies along 

the radius line from vertex, and the other one is sagittal meridian, which lies 

perpendicular to the tangential meridian. The corresponding equation for conicoids is 

list as below: 

𝑅! = 𝑅! − 𝑄𝑌! !/!                                                                                                     (2.5)  

𝑅! =
!!!!!!

!
!

!!
= !!!

!!
                                                                                                          (2.6) 

Where 𝑅  is the vertex radius of curvature, 𝑄  is the surface asphericity, 𝑅! is the sagittal 

radius of curvature, and 𝑅! is the tangential radius of curvature (Atchison, Smith et al. 

2000). According to Kasthurirangan et al, the lens becomes more rounded during 

accommodation, and this is known as Helmholtz theory (Kasthurirangan, Markwell, 

Atchison, & Pope, 2011). 

 

2.1.3.3 Surface	
  Radii	
  of	
  Curvature	
  and	
  Shapes	
  
 

The lens radii of curvature change with accommodation and age. Knowing the value of 

all the optical parameters is essential to measure the lens in vivo especially for posterior 

surface due to the uncertainty refractive index distribution in any particular lens. 

Measuring the Purkinje image is the most common method of determining the radii of 

curvature of the testicular surfaces. Purkinje imagary has been widely used to obtain the 

power of the crystalline lens and the change of crystalline lens raddi with 

accommodation since its introduction by Purkinje in 1832. For instance, in 2006, 

Rosales and Marcos compared between measurements of the radius of the anterior and 
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posterior lens surface by applying Scheimpflug imaging and Purkinje imagery (Rosales, 

Dubbelman et al. 2006). The result shows no significant difference in measuring lens 

radii and similar changes with accommodation with both methods. The implement of 

Purkinje images on optical instruments are introduced in detail in section 3.5. 

 

2.1.3.4 Thickness	
  
 

Lens thickness and sharpness of the anterior and posterior lens curvature increase 

during accommodation, which in terms of the deformation of the crystalline lens 

(Koretz, Kaufman et al. 1989). Generally, the lens thickness is about 3.6 mm in relaxed 

condition, and it will increase with increasing age (Atchison, Smith et al. 2000). In 1997, 

Koretz et al has investigated the characterize changes in the sagittal dimension of the 

human crystalline lens (Koretz, Cook et al. 1997). They had discovered that the changes 

along the sagittal axis of the anterior segment with accommodation are independent of 

age. With increasing age, the lens becomes larger and the lens centre of mass is changed 

anteriorly, which is due to the distance from the posterior lens surface and the cornea 

along the pole primarily remains unchanged (Cook, Koretz et al. 1994). As a result, a 

smaller anterior chamber occurs by the same amount of lens thickness increases. 

According to Koretz et al in 1994, the changes of the kens thickness is mainly due to an 

increase in anterior and posterior cortical widths, and an unchanged sagittal thickness of 

the nucleus.  Also, because of the anterior segment length and posterior cortical growth 

are fixed, the change demonstrates that the lens aging is accompanied by an anterior 

translation of the lens nucleus, which equals to the thickening of the posterior cortex. 

The change of lens with accommodation and age is explained in section 3.1.1. 

 

2.1.3.5 Refractive	
  Index	
  Distribution	
  and	
  Equivalent	
  Refractive	
  Index	
  
 

The refractive index of the lens is not fixed, it changes to the greatest in the centre and 

least in the periphery (Nakao 1969, Pierscionek, Chan et al. 1988, Pierscionek and Chan 

1989, Pierscionek 1997). According to Atchison and Smith, then index magnitude is 

almost constant in the nuclear region, but with the greatest variation in the cortex. These 

variation created by the index can produce continuous refraction of rays and it might 

can improve the image quality by reducing spherical aberration. In experiment, the 
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index must be made higher than the maximum index once the real lens are replaced with 

the same thickness, same radii of curvature and a uniform refractive index (Atchison, 

Smith et al. 2000). Commonly, the equivalent refractive index is often set as 1.42 

comparing with the maximum value of about 1.406 (Atchison, Smith et al. 2000). 

 

The refractive index distribution in the lens has been inferred from optical 

measurements (Nakao, Fujimoto et al. 1968, Campbell 1984, Pierscionek, Chan et al. 

1988, Pierscionek 1997).  Later on, the researchers had described noninvasive 

approaches by applying magnetic resonance imaging (MRI) (Moffat, Atchison et al. 

2002, Jones and Pope 2004). The use of MRI technique achieves a much more direct 

process of measuring the refractive index of lens without assumptions of the lens shape 

and the optical characteristics of the lens. Measuring refractive index distribution from 

isolated lenses in vivo can provide important information as well (Moffat, Atchison et al. 

2002). For instance, the tissue can be precisely aligned and the whole measurements 

process allows long duration and free from the blinking and fixation instability, which 

can provide high-resolution data. In this study, the refractive index was created by 

applying the lens optical elements measured from Lenstar, MRI images and a customer 

built Phacometer, described in detail in section 3.1. 

 

2.1.3.6 Refractive	
  Error	
  
 

All optical systems have aberrations. Refractive errors are the ones can reduce the 

vision and are divided in to myopia, hyperopia and astigmatism. They are all symptoms 

when the image does not fall on the retina. But fortunately they can be corrected with 

lenses.  

 

Myopia is when cornea and the lens refract the light more than required and forms the 

image in front of the retina. Then the image on the retina will appear to be blurred, so 

that it is hard for the subject to determine the distance to the objects. A negative power 

lens can be used in this case to spread out the light before it enters the eye and correct 

the myopia. 
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Hyperopia is when cornea and the lens do not refract the light enough and therefore the 

image will be formed behind the retina. Then the image on the retina will be blurred and 

it is difficult for the subject to exam close objects. A positive power lens can be used to 

correct hyperopia to concentrate the light before it enters the eye as shown in Figure 3. 

 

 
Figure 3: The concepts of rays go through myopia and hyperopia retrieved (Lundstrom 

and Unsbo 2005) 

Astigmatism often comes with myopia and hyperopia and it increases irregularly in the 

structure of the optics of the eye. In normal eyes, the surfaces of the eye are smooth and 

equally curved so that the light entering the cornea can be focused symmetrically. 

Astigmatism is when vision is blurred due to the inability of the optics of the eye to 

focus a point object into a sharp focused image on the retina. For instance, with-the-rule 

astigmatism is associated with a cornea which has the greater surface curvature along 

the vertical axis than the horizontal meridian; it can be corrected by a negative cylinder 

axis which is within ±30° degrees of the horizontal meridian. On the contrary, the 

against-the-rule astigmatism is associated with a cornea which has the greater surface 
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curvature at horizontal than the vertical meridian, it can be corrected by a negative 

cylinder axis is within ±30° degrees of the horizontal meridian. Astigmatism is usually 

regular, which means the maximum and minimum power meridians are perpendicular to 

each other, then it is correctable by sphero-cylindrical lenses. Irregular astigmatism 

happens when the maximum and the minimum power meridians are not perpendicular 

to each other, then it is not correctable with the conventional lens.  

2.2 Introduction	
  of	
  Visual	
  Aberration	
  
 

Aberrations are when light that should be focused to a diffraction-limited spot, leads to 

blurred image. Aberrations are due to wavefront distortion, which does not propagate 

towards the same center of curvature as the normal lights. Refractive errors are mainly 

due to lower-order (first and second order) aberration. Refractive errors also results 

from the pupil irregularly such as tilts, decentrations, and irregularities in shape and 

refractive index. The Point Spread Function (PSF) is the image that an optical system 

forms of a point source, which is the most fundamental object, and forms the basis for 

any complex objects. The PSF for a perfect optical system (no aberration) is the Airy 

disc, and a spread tail image with aberration wavefront as show in Figure	
  4 

 

.	
  

Figure	
  4:	
  Relationship	
  between	
  PSF	
  and	
  aberration	
  wavefront	
  (Pictures	
  were	
  derived	
  from	
  Austin	
  
roorda’s	
  Ph.D.	
  thesis) 

The eye operates basically as an imaging system of a camera. In this section, the 

performance of an imaging system and the effects of aberrations on an imaging system 
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will be introduced, with particular interest in the human visual system. 

For high order aberrations, variations in the Point spread function (PSF) observed on the 

retina, vary with pupil size as shown in Figure 5. The principal behind this is that rays 

travel further away from the optical axis of the eye and they will be refracted at larger 

angle by the optical surfaces after entrancing large pupil. In addition, the effect of 

aberrations on foveal image will be lower in daylight than dark because of the change of 

pupil diameter. The change is linked to light level changes. Figure 5 shows a number of 

point-spread functions (PSFs), which performed differently for different pupil size from 

the measurement of one person’s eye.  

 

Figure 5: Point-spread functions with pupil size focused at infinity (Austin, 2004) 

For the first order or paraxial imaging analysis, the location and size of the image are of 

great concern. Conventionally, Gaussian imaging convention is the common system to 

determine the object size and distance.  

 
Figure 6: Gaussian Image Convention system (Greivenkamp 2004) 
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As described in Figure 6, h is the subject, p and p’ are two planes, where one ray is 

coming from and going to the base of each arrow and the other ray is coming from and 

going to the tip of each arrow. Those two rays are set to determine the performance of 

the system. According to (Greivenkamp), the equation can be calculated as: 
!!

!!
= !

!
+ !

!!
                                                                                                               (2.2.1) 

𝑓! = − !!
!
= !!

!

!!
                                                                                                              (2.2.2) 

𝒎 = !!

!
= !!

!!
/(!
!
)                                                                                                       (2.2.3) 

where n and n’ are refractive index before and after refracted, 𝑓 and 𝒎 are the focal 

length and the transverse magnification of the optical system. The power 𝐹 of the 

system is shown in units of Diopters (𝒎!𝟏) and is set as: 

𝐹 = !
!!
                                                                                                                            (2.2.4) 

Aberrations are fundamentally measured on the wavefront that is captured out of the eye 

from a point on the retina along the axis from the point through the centre of the pupil. 

If the eye is perfectly without aberrations, the wavefront will be plane and perpendicular 

to the chief ray to the source at the retina.  

 

For simple quadratic wavefront associated with conventional sphero-cylindrical 

refractive errors, wavefront curvature at the pupil centre specified in dioptres is the 

classical measure of aberration strength. In an astigmatism system, curvature changes 

with meridian and the difference between maximum and minimum curvatures depends 

on the amount of astigmatism in dioptres. However, the concept of dioptres lost its 

appeal to higher-order aberrations, therefore, an alternative metric, root-mean-squared 

(RMSE) wavefront error has been used commonly in wavfefront aberrometry. 

Conventionally, RMSE wavefront is defined as 

𝑅𝑀𝑆𝐸 = ∅ 𝑥,𝑦 !𝑑𝑥𝑑𝑦   ,                                                                                 (2.2.5) 

where 𝑥  and 𝑦  are pupil coordinates, it is the ordinary statistical formula for the 

standard deviation of sample points (𝑥,𝑦) taken over the pupil of the wave aberration, 

∅ 𝑥,𝑦  (Wilson, Decker et al. 2002). For a perfect optical system, RMSE is zero and 

lower wavefront quality will give increasing values of RMSE. RMSE of slopes in the 

horizontal and vertical directions may be interpreted as a measure of the size of the 

blurred retinal image of a point source that we anticipate will be predictive of visual 
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acuity changes. In practice, the slope of a wavefront (tilt-anisoplanatism) can arise at 

different observation angles, therefore, different aberrations, described for each chief 

ray exit angles are measured individually, and eventually, smoothly connect each slope 

to generate a wavefront, and these give information about the volume of the optics in 

the eye. More details about this are found in section 2.2.4. 

	
  

Wavefront	
  Refraction	
  

Refraction is quantifying the refractive error of an ametropic eye by determining the 

combination of spherical and cylindrical lenses that used to correct the refractive errors 

and the eyes. Conventionally, the prescription for the eye treatments including contact 

lens and refractive surgery are intended to correct only the lower order aberrations of 

the eye, the higher-order aberrations, for example, the 4th order spherical aberration. The 

most frequently used approach to perform wavefront refraction is approximating the 

aberration map with an equivalent quadratic surface.  There are several methods can fit 

an arbitrary surface with a quadratic surface. For instance, least-squares fitting minimize 

the sum of squared distances from the incident surface to the equivalent quadratic. This 

is the same technique, which is used in Zernike analysis to correct lens prescription. In 

2002, (Thibos, Hong et al.) proposed the method to correct lens in power vector 

notation in units of dioptres, 

𝒎 = −
𝑐!!4 3  
𝑟! , 

𝐽! = −
𝑐!!!2 6
𝑟! , 

𝐽!" = −
𝑐!!!2 6
𝑟! , 

𝐽 = 𝐽!! + 𝐽!"!                                                                                                            (2.2.6) 

where 𝑟 is pupil radius, 𝑀, 𝐽!, 𝐽!" are three components of a power vector. Particularly, 

𝑀 is the spherical equivalent, 𝐽!  is the astigmatism component with a vertical or 

horizontal axis, and 𝐽!" is the astigmatism component with oblique axes. 𝐽 is the total 

amount of astigmatism.  𝑐!!, 𝑐!!!, 𝑐!!! are second-order Zernike aberration coefficients, 

which correspond equal amounts to power vector components 𝑀, 𝐽!, 𝐽!" with values in 

proportion to 2: 1: 1. 
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According to Thibos, the absolute value of any Zernike coefficient can be interpreted as 

the RMSE produced by its corresponding aberration mode. Then the eq. 2.2.6 can be 

modified to  

𝑀! = 4𝜋 3 !"#$
!"#$%  !"#!

                                                                                                (2.2.7) 

where RMSE is measured in micrometers and pupil radius is in millimetres 𝑀  is in 

dioptres.  𝑀! is the definition of equivalent defocus. In this case the RMSE is directly 

proportional to pupil area, which is very helpful to accurately capture the paraxial 

focusing power of the eye. However, the fitting error for this method can be much larger 

at the pupil margin than occurs for least-squares method. Therefore, in this study, the 

least square fitting method was used to perform the wavefront refraction.  

 

 Properties	
  of	
  Aberration	
  in	
  the	
  Eye	
  2.2.1
	
  
The resolution of the eye is determined by both diffraction and aberration. The goal of 

any Adaptive Optical (AO) system is to correct the aberrations then the resolution can 

be limited by diffraction only. Thus, it is important to know the properties of the 

aberrations. Spatial resolution, dynamic range and the speed of both sensors and 

corrector are required to maintain the diffraction limit. The Rayleigh resolution criterion 

is the minimum separation between the peaks of the two point sources is effectively 

equal to the radius of the diffraction limited intensity point spread function (PSF) and is 

given by 

 𝑃𝑆𝐹!"#$%& =
!.!!!"
!

                                                                                                   (2.2.8)  

Hence, for a fixed wavelength 𝜆, large pupil diameter D will cause smaller PSF width 

and get high resolution (Greivenkamp, Schwiegerling et al. 1995). The study has 

showed that pupil size needs to be greater than around 5.5 mm to solve the resolution 

problem for an eye only limited by diffraction. However, the eye is limited by aberration 

when it approaches the diffraction limit for a pupil diameter is beyond 3 mm area. Thus, 

in order to get a reliable image at the fovea, a proper AO system is required (Chin, 

Hampson et al. 2008).  

 

Monochromatic and Chromatic Aberrations 
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Monochromatic and chromatic aberrations account the main roles in this field. 

Monochromatic aberrations are due to these rays of different location having different 

path lengths in the pupil. In comparison, chromatic aberrations are due to dispersion. 

The effect of wavelength is an important parameter to consider, especially on the 

Zernike defocus term (Greivenkamp, Schwiegerling et al. 1995). Light scatter is another 

issue, which affects image quality. This phenomenon occurs at both retina and ocular 

media areas, and this will reduce the performance of the imaging system and visual 

performance. Normally, in AO systems a narrow bandwidth source such as laser is 

used, as AO manipulates the monochromatic aberrations. There are several advantages 

of using this type of light source. The retina is less sensitive to the light and it interferes 

less with the detection of the stimulus during psychophysical experiments. In addition, 

it is vital that enough light can be reflected back from the retina. Near infrared is less 

damaging to the retina, which means more light can be safely put into the eye and more 

light can be detected by the wavefront sensing.  

 Peripheral	
  Aberration	
  2.2.2
 

Aberrations occur in human eyes in the same manner as other optical systems. 

Peripheral aberrations exist in the off-axis optical systems of the eye. The performance 

of off-axis optics is often worse than fovea optics. The refractive errors in eccentricity 

are larger than fovea errors generally (Atchison and Scott 2002). Among all the off-axis 

errors, astigmatism is the major one and it increases with the oblique angle. In the field 

closer to nose, the peripheral astigmatism becomes larger. In the periphery, high-order 

aberration such as coma shows large visual variation (Guirao and Artal 1999). The 

reduction in retinal image quality will affect the peripheral vision, and the aberration 

varies with visual field angles. However, peripheral vision can be improved by 

correcting the off-axis optical errors. 

 

The reason to examine the eye is to determine whether or not the vision field is affected 

by some diseases. In addition examining the eye can help us to understand the living 

and operating optics of the eye. Conventionally, it is up to 120 degrees on both sides of 

the eye allow us to investigate the human eye. Therefore, in this thesis, the experiments 

of examining the eyes are taken up to 120 degrees on both sides of the eye at horizontal 

meridian. 
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 Adaptive	
  Optics	
  for	
  Measuring	
  Wavefront	
  Aberration	
  of	
  the	
  Eye	
  2.2.3
 

In astronomy adaptive optics is a well-used technology that can achieve diffraction 

limited imagery by removing the changing effects of the turbulent atmosphere. 

Adaptive optics (AO) in vision science for the human eye’s function and retinal imaging 

is also becoming a promising technology, although it is only in an underdeveloped stage 

compared to the achievement attained in astronomy. The reason is that the optics of the 

human eye is a complex system, which cannot be examined easily. The function of 

optical elements is to focus light on the retina while being transparent to any 

light probe. Adaptive optic systems are able to refine the focusing operation. They can 

also provide high quality beacons on the retina, making the scattered light for observing 

the optic elements in operation.  This application has marked significance for disease 

diagnosis, optical correction and physiological understanding within society. In this 

project, a based a simpler method is called Slope Detection and Ranging (SLODAR) 

(Lambert, Birt et al. 2008), which is a wavefront sensing technique, has been applied. 

This technique has been first developed in astronomy but is yet to be used in vision 

science. The use of SLODAR in vision science will allow measuring the eye to find the 

origin of the aberration and hence learning more about ocular optical structure.  

 

Of all the components of the eye, the cornea has the largest refractive power and 

therefore produces some of the greatest aberrations. The eye’s other optical elements 

produce further aberrations that either add to or compensate those generated at the 

cornea. The aberrations produced by the cornea and the complete eye had been 

measured using corneal topography and a wavefront sensor respectively. The 

subtraction of those previous measurements gives internal aberrations (Guirao and Artal 

1999, He, Gwiazda et al. 2005). Artal et al in 1995 and Dubinin et al in 2008 measured 

the internal aberrations by submerging the eye in water with a Hartmann-Shack sensor 

in order to eliminate the effects of the cornea. The result showed that aberrations 

produced by anterior cornea usually can be partly compensated by the aberrations 

generated from the posterior cornea and crystalline lens. Recent work has attempted to 

model the structure and performance of the crystalline lens (Goncharov and Dainty 

2007, Navarro, Palos et al. 2007, Smith, Bedggood et al. 2008). These attempts to 

demonstrate the internal structure and operation of the eye are the forefront of activity 

in vision. 
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Lambert et al in 2008 had successfully employed SLODAR as a method to measure 

aberration in the eye. The Shark-Hartmann sensor is the main instrument to measure the 

wavefront. The microlens array is conjugated to the pupil. The pupil is divided into an 

array of lenslets, with a slightly different image of the binary sources or “stars” being 

formed from each lenslet. If two stars changed identically in the lens i and j, then the tip 

and tilt in the location of each lenslet was due to the common movement of both stars, 

and so the aberration is determined to be in the pupil. The wavefront across the pupil 

could be determined by the different tip and tilt of each lens. The images from the two 

stars with slightly different wavefronts at the sensor gave the movement information 

between these two stars in lenslet i and relative movements within same star itself in 

lenslet i and j. Based on this information, the correlation of the lenslet combinations 

could be calculated. The two stars exhibiting the same tip and tilt in these lenslets 

shared a same aberration in the triangulated region in space. Using this information the 

changing layers of refraction can be described in terms of altitude above the pupil and 

density of aberration can be determined (Lambert et al., 2008). This allows us to know 

the location of the aberration caused by which optical structure. 

2.2.3.1 Introduction	
  of	
  the	
  AO	
  System	
  	
  
 

The human eye can be considered to be a biological adaptive optics (AO) system. An 

AO system is essentially one in which the optical element is adapted to correct for the 

image blur present at the point in time. As shown in Figure 7, such a system composes 

of three main subsystems: the sensor, corrector and controller (Hampson 2008).  
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Figure 7: AO system for eye measurement (Hampson 2008) 

As shown in Figure 7, according to Hampson, the retina, the sensor of the eye’s AO 

system, contains an array of image sampling elements called photoreceptors. The 

refractive power is provided by the lens and cornea. Especially the cornea, which gives 

the largest refractive power and is around 40 D. (The focal power in diopters D is the 

inverse of the focal length in metres.) The lens has the ability to bring the different 

distances objects into focus, and its power is around 10 D. Thus, the lens is the corrector 

of the eye’s AO system. The CiIiary body increases the lens power by contraction to 

focus closer objects. Therefore, it is considered to be the actuator of the corrective 

device. The controller of the eye’s AO system is the brain, which determines how much 

power of the lens to accommodate to get better resolution. 
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Figure 8: Schematic of the human eye highlighting the components that are analogous to 

an adaptive optic system (the colour version of this figure is retrieved from(Hampson 

2008))  

The performance of the eye’s AO system is not perfect. Although the lens aims to 

maintain a sharp image on the retina, there are limits such as what shape it can take on. 

The main ability of the lens is to reduce aberration of defocus; however, in the eye there 

are numerous other imaging degrading aberrations, for instance spherical aberration and 

coma. Leaving these additional aberrations uncorrected inevitably limits both the 

quality of the image on the retina and resolution at which the retina can be imaged in 

vivo.  

 

In addition, the fovea, which is the part of the retina that provides the highest spatial 

resolution for the eye, is off axis by 5 degrees and the pupil is decentred (Hampson 

2008). Furthermore, the eye is a biological optical system in which the aberrations are 

continually changing with time as a result of a variety of factors such as blood flow. 

Due to all the reasons above, over centuries the eye’s optical quality has been known, 

but how the system works still leaves lots of questions. Therefore, a more perfect AO 

system is needed to assist that of the eye.   

 

The origin of the AO systems was first proposed by Babcock in astronomy to 

compensate for the unwished effects of the atmospheric turbulence on image quality 
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(Babcock 1990).  As a result of the lack of proper technology, the first AO system for 

astronomical applications was realised in practise in 1977 (Hardy, Lefebvre et al. 1977). 

The first AO system applied to the human eye was in 1989 by Dreher and his colleague. 

A deformable mirror was applied to improve the resolution and the mirror was used to 

impart only a static correction of astigmatism in one subject’s eye. Artal and Navarro in 

1989 were the first to prove that obtaining objective information using AO of the 

spacing within the photoreceptor mosaic was possible.  

 

The first Shack-Hartmann wavefront sensor as a part of AO for ocular aberration 

measurements in the eye was demonstrated by Dreher et al in 1989, Liang et al. in 

1994. This system has both merits and demerits. For example, it is the first key 

improvement of the AO in the human eye, due to its ability to measure the eye’s high-

order wavefront aberrations with great accuracy, and corrected for these using 

deformable mirror. Then, unprecedented resolution of the retinal images can be 

obtained by resolving individual photoreceptors, and the benefits to vision of correcting 

higher-order aberrations can be demonstrated. However, this system did not track the 

dynamic changes in the aberration. Since then, the AO system in vision science has 

been improving system. They also became much cheaper, allowing the technology to 

move forward. 

2.2.3.2 The main components of AO system 

	
  
As mentioned above, AO system contains three main components, in which wavefront 

sensing is the first key step. Thus, a few parameters of the sensor need to be considered, 

such as the speed of the sensor, which has an effect on capturing the aberration 

dynamics if one wants to correct for them in real time. According to Dreher et al in 

1989, the sensor needs to be objective enough to sample at around 20-30 Hz. Another 

element is spatial resolution which needs to accurately capture the wavefront, as the 

corrector cannot correct what the sensor does not measure. Then it comes to the 

dynamic range, which gives both the largest and the smallest wavefront delay that can 

be measured and the sensitivity. However, increasing the dynamic range will cause a 

decrease in the sensitivity, as larger wavefront delay will bring more noise and will 

result in lower resolution and lower sensitivity; therefore, there is generally a trade-off 

between these two parameters.   
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 Shack-­‐Hartmann	
  Sensor	
  and	
  Pyramid	
  Sensor	
  2.2.4
	
  
There are many instruments that can measure the wavefront of the light exiting of the 

eye; in general, the Shack-Hartmann sensor and the pyramid sensor are used for Vision 

AO system. The pyramid sensor is a relatively new wavefront sensor suggested by 

Ragazzoni in 1996 for use in astronomy. The pyramid sensor measures the slope of 

wavefront and is proposed to have a higher sensitivity than the Shack-Hartmann sensor. 

Also, the beam rotates around the tip of the pyramid, which can be achieved by moving 

the pyramid back and forth along the axis or using a steering mirror. The change in the 

measured signal for a given wavefront depends on the amplitude of rotations, which can 

easily be changed on-line (Artal and Navarro 1989).This is the main advantage of the 

pyramid sensor compared to the Shack-Hartmann sensor; however, it may require a 

much more complex algorithm calculation.  

 

In terms of Shack-Hartmann sensor, which is composed of an array of lenslets placed in 

a plane conjugate to the eye’s pupil and a detector at the focal plane of the array. The 

lenslets are normally square and the detector is normally a CCD camera. The array 

effectively samples the slope of the wavefront at discrete intervals across the whole 

pupil of the eye.  A regular spot will be formed on the camera if the wavefront is plane; 

if the wavefront is aberrated, the spots will be displaced according to the slope of the 

wavefront across its corresponding lenslet. The wavefront of the pupil can be 

determined by measuring the x and y shift in position of the spots. The location of the 

spot can be calculated by its centroid.  

 

Many elements will limit the result from Shack-Hartmann sensor. For instance, the 

slope of wavefront in the x direction across a given lenslet as suggested by Hampson is: 
!"
!"
≅ ∆!!

!!
= ∆!

!
,                                                                                                      (2.2.4.1) 

where  𝑙!  is the diameter of the lenslet and 𝑓  is the lenslet focal length. From this 

equation, the slope of the wavefront will determine the position of the spot on the 

lenslet. The spatial resolution of the sensor is determined by the number of the lenslets 

sampling the pupil (Goncharov, Dainty et al. 2005). In the practical experiment, the 

number of lenslets should be equal to the number of radial Zernikes. According to Liang 
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and colleagues, 42 lenslets in the pupil are required to measure accurately. This is 

because Zernike polynomial modes up to and including at least 8th radial order should 

be corrected in order to reach the diffraction limit for a 7.3mm dilated pupil. 

 

Regarding the beam into the eye, that creates a “star “on the retina is normally smaller 

than 1mm in diameter, which means a large but diffraction-limited spot is provided. 

Therefore, the quality of the Shack-Hartman spot will be good and with better accuracy 

location. Specially, in this thesis, the “star” on the retina provides the wavefront, which 

will be collected by SH sensor. In real practice, the beam enters the eye with a slightly 

off-axis, so to prevent corneal reflections from reaching the sensor, an aperture to 

remove these is placed in the conjugate retinal plane (Hofer, Carroll et al. 2005). 

 

For ocular measurement, some additional optical equipment is required to build a SH 

sensor. There are some elements need to be concerned such as light intensity and 

exposure time to avoid damaging the eye. In general, the exposure time is less than 0.5 

s, the wavelength is often in the near infrared to achieve higher intensities (Hedvall and 

Erlandsson 1996). The light, which sent to the eye, is usually from a beam splitter, and 

some parts of the light will be reflected by the cornea. This may affect the measurement, 

so to prevent the reflex the light is sent into the eye slightly to the side of the corneal 

vertex, and the lenslet array will be conjugated at the entrance of the pupil with the help 

of deformable mirrors.   

 Corrector	
  2.2.5
	
  
The corrector is the next component so that the light can be corrected after the 

wavefront measurement. Several factors are very important when selecting a corrective 

element, such as sensor, speed, spatial resolution and dynamic range are of concern. 

Spatial resolution is primarily affected by the number of actuators. Normally, there are 

two main types of correction devices, which are deformable mirror and liquid crystal 

spatial light modulators. Both type of device work on the principle of phase 

conjugation. The optical beam can be explained by its electric field: 

𝐸 = 𝐴𝑒𝑥𝑝 −𝑖Φ ,                                                                                                  (2.2.5.1) 

where 𝐴 is the amplitude and Φ is the phase, and both can vary spatially. The corrector 

compensates the phase distortions by imparting a reversed phase (Hampson 2008).  
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Deformable mirror  

	
  
Deformable mirrors are the most common correction devices, as they are easy to use 

and control. It is composed of a mirrored surface with a deformed shape. In AO system, 

it is used to correct the aberrated wavefront by deforming the mirror into the same shape 

and half the phase of the wavefront. Normally the deformable mirror consists of 

actuators, which will expand when applying a voltage, causing the deformation. 

2.3 Aberration	
  Wavefront	
  Measurement	
  Algorithms	
  
 

Assume the optics of the eye simply as a thin phase plane, the wavefront that exits the 

eye can be calculated as  

Φ!! !,! = Φ!"!!"! 𝑥,𝑦 − 𝑛 − 1 𝑑! 𝑥,𝑦                                                                     (2.3.1)  

where  Φ!"!!"! 𝑥,𝑦  is the sphere wavefront, which is generated by refractive 

wavefront error,  𝑛  is the refractive index, 𝑥 and 𝑦 are the pupil coordinates, and 𝑑 𝑥,𝑦  

is the thickness of the phase plane (Hampson 2008).  

In order to find the accurate wavefront measurement at the entrance of the pupil, some 

considerations are necessary. For example, the wavefront should be imaged accurately 

on the lenslet array, which could somehow compensate for the incident wavefront 

changes applied by the optical system. To calibrate the SH sensor, a flat undisturbed 

wavefront will be sent from the eye position. Then the spot pattern on the detector can 

be considered as a reference of the aberration wavefront. In addition, the centroids need 

to be calculated at the centers of the spots, and they have to be located to calculate the 

tips and tilts of the wavefront. However, aberrations and speckles can be the reason for 

inappropriate centroids calculation due to the irregularly spots pattern. Therefore, 

conventionally, the localization is assumed as the center of gravity, which works well 

with high density sampling detector and high level light (Llorente, Barbero et al. 2004).  

Furthermore, the spots of the detector need to be set to the corresponding lenslet to 

avoid the unwrapping problem which may give rather large spot movement. Some 

software introduced by Lundström et al in 2002 can be used to solve the unwrapping 

problem, or some optical implementation can compensate the defocus and some highly 

aberrated spot patterns (Lundström et al, 2002). Finally, the centroids can be collected 

by sampling the local tilts, and the standard data analysis is to plot a least square fit with 
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Zernike polynomials (see next section). To express the details of the wavefront, many 

Zernike polynomials were applied in this thesis. And the reconstructed wavefront can be 

checked by comparing the raw data and by calculating backward from the wavefront to 

the spot pattern. In next section the Zernike polynomials will be introduced in detail. 

 Zernike	
  Polynomials	
  2.3.1
 

From SH sensor, the shapes of wavefront are described in the forms of tilts and tips, 

which are averaged over the area of each lenslet. In this thesis the Zernike polynomials 

are used to reconstruct the actual wavefront. We followed the notation used by 

Malacara et al in 2013.  

Zernike polynomials, also known as 𝑍!!, are defined over a unit circle, and it is first 

named by Frits Zernike in 1934. 𝑍!! 𝑥,𝑦  are a complete orthogonal set of functions, 

where 𝑥 and 𝑦 are the pupil coordinates normalized with the pupil radius and with order 

𝑛 , 𝑚 = ±𝑛 ± 𝑛 − 2 ,± 𝑛 − 4 … .  

There are even and odd Zernike polynomials. The even ones are defined as  

  𝑍!! 𝜌,𝜑 = 𝑅!! 𝜌 cos 𝑚𝜑                                                                                   (2.3.2) 

The odd ones as 

  𝑍!!! 𝜌,𝜑 = 𝑅!! 𝜌 sin 𝑚𝜑                                                                                      (2.3.3) 

Where 𝑚  𝑎𝑛𝑑  𝑛  𝑎𝑟𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  with 𝑛 ≥ 𝑚, ∅ is the azimuthal angle, and  𝜌 is 

the radial distance  0 ≤ 𝜌 ≤ 0.5.  

The radial function is defined as  

𝑅!! 𝜌 = !! ! !!! !
!! !.! !! ! !! ! !.! !! ! !! !

𝜌!!!!
!!|!|
!

!!!     .                                                (2.3.4) 

The normalization factor is 

𝑁!! = !(!!!)
!!!!"

  
𝛿!" = 1  𝑖 = 𝑗
𝛿!" = 0  𝑖 ≠ 𝑗                                                                                       (2.3.5) 

Then the Zernike Polynomials can be rewritten as following condition: 
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𝑍!! 𝑥,𝑦 𝑍!! 𝑥,𝑦 𝑑𝑥𝑑𝑦 = 𝑝𝑢𝑝𝑖𝑙  𝑎𝑟𝑒𝑎×  𝛿!"𝛿!" = 𝜋𝛿!"𝛿!"                                (2.3.6) 

 

Figure 9: The first fifteen Zernike polynomials (Hampson 2008) 

 
Figure 10: Zernike Modes and common name (Malacara-Hernández and Malacara-

Hernández 2013) 
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2.3.1.1 Zernike	
  Coefficients	
  
 

Figure 10 shows the first fourth order Zernike polynomials. Piston has no relevance to 

the aberrations of the eye. Refractive errors can be expressed by the second-order terms, 

and spherical aberration and Seidel aberrations can be represented by the third and 

fourth-order aberration. As the eye is not rotationally symmetric many terms have no 

Seidel counterparts. Zernike coefficients are the expression of the weight of that 

polynomial contribution in the wavefront. Therefore, over a circular pupil, any 

wavefront can be expressed by the combination of the Zernike polynomials and their 

corresponding Zernike coefficients (Lundstrom and Unsbo 2005).  

Φ 𝑥,𝑦 = 𝑐!!𝑍!! 𝑥,𝑦         !,!                                                                                  (2.3.7) 

From the perspective of SH measurement, the coefficients of the wavefront are found 

by a least square fit of the derivative of the Zernike polynomials to the tilts in local 𝑥 

and 𝑦-directionof each lenslet as following: 

𝑇𝑖𝑙𝑡! 𝑥!,𝑦! =
𝐶!!

𝑟!"!#$!,!

𝜕𝑍!! 𝑥!,𝑦!
𝜕!

                           

𝑇𝑖𝑙𝑡! 𝑥!,𝑦! = !!!

!!"!#$!,!                                                                                        (2.3.8) 

where 𝑥,𝑦  are the lenslets’ position at the plane of the normalized pupil.  

2.4 Research	
  Section:	
  Ocular	
  Wavefront	
  Aberration	
  Measurements	
  
Algorithms	
  

 

Peripheral optics of the eye with normal fovea vision has been studied by in a large 

number of researchers, such as Narvarro et al in 2000, Jennings et al in 1981. Among 

those, R. Navarro et al in 2000 were the first group of measuring the off-axis 

aberrations in detail and expressed them with the help of Zernike Polynomials. Atchison 

is the first researcher to publish off-axis wavefront measurement with a SH sensor 

(Atchison and Scott 2002). These oblique measurements need additional concerns due 

to the large aberrations and the misalignment of the subject’s retinal position with the 

measurement axis, and even the elliptical shape of the pupil when see off-axis. 

 

For off-axis wavefront measurement, it is harder than it is on-axis, as the peripheral 



29	
  
	
  

aberrations are larger, which may lead to irregular spot patterns and severe unwrapping 

problems. A method called extrapolation was introduced by L. Lundström and P. Unsbo 

in 2005 which makes a simple connection between the lenslets and the spots in the 

centre of the pupil and it matches the polynomials to these displacements and then 

extrapolates to fit the spot locations for the other lenslets. Extrapolation will be 

continually stepped out from the centre of the pupil until no more spots can be 

associated with a lenslet. 

 Near recently, Mitchell Yuwono in 2012 had applied artificial centroid injection 

method to gracefully unwrap the images. In particular, the initial centroid extraction is 

calculated with the help of Laplacian of Gaussian (LoG) and thresholding. Centroids on 

the outlier can be filtered by using Adaboost algorithm. A Kalman filter is used to 

observe the performance of centroid sequences. Artificial centroids can be created by 

taking the intersection points from the sequences of approximated regression neural 

networks, which appear inside an elliptical region of interest, and optimise with 

regrouping particle swarm. The purpose of applying the artificial centroids is to 

predictively recover missing and unrecognized spots. This process is extremely 

necessary to process more accurate wavefront reconstruction from the centroids 

calculation during the wavefront reconstruction, as the missing centroids can carry 

essential slopes to form the wavefront.  

 Existing	
  Measuring	
  Instrument	
  2.4.1
	
  
Aberrometers, known as wavefront sensors, have been used by scientists for many years 

to study monochromatic aberrations of the human eyes (Grimm, Goelz et al. 1994, 

Salmon, Thibos et al. 1998). By applying those instruments, much valuable information 

about the optics of the human eye (Thibos, Hong et al. 2002), the effect of aberration on 

age (Artal, Berrio et al. 2002) and accommodation (Pallikaris, Panagopoulou et al. 

2001) have been provided. Among all the types of wavefront sensors, SH sensor based 

devices have been widely used. One of the first clinical SH aberrometers, the Complete 

Ophthalmic Analysis System (COAS, manufactured by Wavefront Sciences) was made 

in late 2000. In this study, the COAS-HD was applied to obtain the wavefront 

aberration data of the eye. 

2.4.1.1 Existing	
  methods	
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With respect to existing measurements and instruments, several different techniques 

have been applied to measure the aberrations of the eye. For instance, the double-pass 

method, the Smirnov technique, the interferometric method and the aberroscope etc. 

Figure	
   11 below summarise the details of when the methods was introduced, and 

whether the data measured in the modulation transfer function (MTF), the wave 

aberration (WA) or the point spread function (PSF). 

Method Year Technique Data 

Double-pass 1955 Objective PSF 

Smirnov 1961 Subjective WA 

Interferometry 1965 Subjective MTF 

Aberroscope 1977 Subjective/Objective WA 

Hartmann-Shack 1994 Objective WA 

Figure	
  11:	
  Summary	
  of	
  the	
  methods	
  of	
  aberration	
  measurements 

 
In this thesis, the SH sensor together with the wavefront aberration reconstruction 

method were applied to measure the wavefront in peripheral, details were introduced in 

Chapter 3.  Regarding the performance of peripheral measurements, the pupil will 

inevitably to appear to be more elliptical with the increasing angle of observation off-

axis. The ellipse equivalent to the radius of the circular pupil multiplied with the cosine 

of the off-axis angle within 40 degree observations from both sides of the eye (Atchison 

et al. 2007).   

In addition, Mathur states that the changes in pupil size and shape are relevant to 

peripheral imagery by influencing the performance of aberrations, which can affect the 

amount of light entering and exiting the eye as shown in Figure 12 (Mathur, Gehrmann 

et al. 2013). 
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Figure 12: Pupil diameter ratio as a function of observation angles, and the cosine of the 

field angle and the comparisons with different data (Retrieved from Mathur, Gehrmann et 

al. 2013 ) 

The elliptical pupil images should be stretched to match the shape of Zernike 

polynomials by applying the algorithm as: 

𝑦 𝜃 = 0.987± 0.002 ∗ cos !!!.!±!.!
!.!"#±!.!!"

                                                                      (2.4.1) 

where 𝜃 is the visual field angle measured with respect to meridian axis. With the eq. 

2.4.1, the off-axis pupil shape is well described but there are minor influences of 

refraction (Shen and Thibos 2009). 

To explore the effect of pupil shape on wavefront aberration in this study, the Zernike 

coefficients were investigated with various pupil sizes. The reason of the applying 

Zernike coefficients is because Zernike coefficients are the standard factor of comparing 

wavefront aberrations, therefore, to find out the effect of pupil shape on aberrated 

wavefront is to compare the Zernike coefficients. Conventionally, to find out the 
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differences is just to recalculate the Zernike coefficients from different adapted shape of 

pupil at the time of the measurement of a real pupil size. This can be achieved by a least 

square fit of Zernike coefficients to a real pupil size of the original spot pattern. This 

process has been researched by many researchers in the past; it is called concentric 

scaling as shown in Figure 13 (Campbell 2003, Dai 2006, Atchison, Scott et al. 2007, 

Mathur, Gehrmann et al. 2013). As shown in Figure 13, using different pupil diameter 

for on-axis measurement can have dramatic effects on wavefront aberration. 

 
Figure 13: Aberrated wavefront differences between pupil size of 5.5 mm and 6mm with 

standard deviation from the 3rd to the 4th order Zernike terms (retrieved from (Mathur, 

2009) Ph.D. thesis) 

The main steps of this process are: 

1. Get the wavefront tips and tilts from SH images with 5.5mm pupil size by using 

eq. 2.3.7, combine all the tips and tilts to generate the centroids matrix  𝑊, and 

combine all the centroids matrix into 𝒁 matrix. 

2. Apply Zernike reconstruction algorithms to reconstruct the wavefront by 

sampling 5.5mm pupil size and 6 mm pupil size respectively.  

3. Get the Zernike coefficients by using  

𝑨 = (𝒁!𝒁)!!𝒁𝑻𝑾                                                                                            (2.4.2) 

4. Compare the Zernike reconstructed wavefront by comparing the Zernike 

coefficients.   
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The pupil size in off-axis situation is given the most concern due to its unreliably 

measured elliptical pupil shapes. Sometimes, the wavefront needs to be constrained in a 

rotated pupil shape. For instance, the alignment errors of an aberration correction are 

evaluated due to its robustness concern. In conclusion, the effect of pupil shape on 

wavefront aberration is dramatic as presented in Figure 13. This result shows a great 

agreement with the result published from Mathur et al in 2013. Those concerns are 

addressed in the following chapter. 

2.4.1.2 A	
  Brief	
  Summary	
  of	
  Measuring	
  methods	
  Used	
  in	
  This	
  Work	
  
	
  
Modification was made to a commercially available Shack-Hartmann wavefront 

aberrometer, COAS-HD (Complete Ophthalmic Analysis System – High Definition, 

Wavefront Sciences Inc., Albuquerque, USA) to measure aberrations across 60 degree 

on both sides of the central visual field of the eye. This measurement was conducted in 

QUT laboratory with full help from QUT staff.  

 

The COAD-HD comes with a lenslet array of 83 x 62 lenslet and a CCD camera as 

detector. Being a Hartmann-Shack type wavefront sensor, COAS-HD can suffer with 

problem of image wrapping when measuring eyes with high amount of aberrations. 

COAS-HD overcomes this problem with the help of a range limiting aperture, which is 

conjugate with the retina and prevents highly aberrated rays from reaching the CCD, 

and a software algorithm that ignores the highly aberrated rays that pass through the 

aperture. The detailed algorithm is described in Mathur’s paper in 2008 (Mathur, A. et 

al., 2008). However, this limits the ability of the aberrometer to measure high amounts 

of aberrations. Aberrations in the periphery are often much larger than axial aberrations 

(Atchison, 2006a). If rays from a part of the pupil are vignette by the range limiting 

aperture or ignored by the software algorithm, this will result in incorrect determination 

of pupil centre and hence aberrations. To allow most of the rays from the pupil to make 

it to the CCD, the 1.4 mm range-limiting aperture of COAS-HD was replaced with a 2.5 

mm range-limiting aperture. The detail of how a new measurement of ocular wavefront 

aberration was applied and compared with two existing methods is listed in detail in the 

next section.  
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3 Chapter	
  Three:	
  A	
  New	
  Ocular	
  Wavefront	
  Aberration	
  
Measurement	
  Algorithm:	
  Compressed	
  Zernikes	
  (CZ)	
  
Algorithm	
  

 

In order to describe the ocular aberration in the peripheral visual field, a new method 

called Compressed Zernikes (CZ) is introduced and is compared with two approaches, 

applied by Atchison and Scott in 2007 and Shen and Thibos in 2009. The main 

objective is to find out the similarities between these three methods. The result is very 

constructive to defining a standard for the future works to describe the underlying 

aberration structure, as various approaches had been used by different groups of 

researchers but without consistency between all of those methods. 

 The data used for testing are Hartmann-Shack images from many observations along 

the horizontal meridian of the visual field with AO system corrections, obtained from 

QUT group of Atchison.  

As described above, the main problem in this study of the aberration at peripheral field 

angles is that with the field angle increase, a projection of the pupil on to the sensor 

changes from circular on-axis to elliptical gradually. However, conventional Zernike 

analysis for reconstructing wavefront aberrations from wavefront slope data can only be 

derived for circular pupils, thus sampling of the wavefront slopes across the pupil must 

be adjusted to a reasonable shape which can normalise the wavefront data to a circular 

pupil. Technically, to fit the Zernike polynomials, the original imagery data of eyes, 

which is an imperfect ellipse, needs to be stretched to a perfect circle (Atchison & 

Scott), or as we propose, alternatively the Zernike polynomials need to be squeezed 

down to fit the elliptical pupil of the images. The new method is our rearrangement of 

Atchison and Scott’s technique. Shen & Thibos by contrast consider area outside the 

elliptical pupil as missing data in a circular pupil. 

Atchison and Scott’s approach is to stretch the array of SH spots along the short axis 

until it changes the elliptical pupil to a circular form. The reconstructed wavefront then 

needs to be compressed back into an elliptical pupil to obtain the true wavefront 

aberration map. This stretching follows the rule as described in eq. 2.4.1. 

Atchison’s first step is to calculate the centroids of the SH images. After that, the 
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centroids of the original data are warped to a circle, so the Zernike coefficients can be 

obtained by applying the equation of eq. 2.4.2. The new method here is to, instead, 

compress the Zernike polynomials for the normalized circular pupil into aberrations for 

the true elliptical pupil; we call it Compressed Zernikes (CZ). In this case, it would be 

possible to use Zernike coefficients to describe a changing shape elliptical pupil with a 

diameter in main axis equal to the circular pupil. As described in Figure 14, Atchison 

and Scott’s main method was to stretch the centroid images along the short axis of the 

elliptical pupil by an amount of 𝑦 𝜃  in equation 2.2.4 (θ is the angle of eccentric 

viewing) to fill a circular analysis pupil. We propose this new method is squeezing the 

circular Zernike Polynomials to the same size of the changing ellipse pupil as discussed 

later in this paper. 

 

Figure 14: Geometry graph of circular pupil transformed in to ellipse (Atchison, Scott et 

al. 2007) 

Thibos fits the Zernike aberration over real circular pupils, and chose to consider the 

area between the circumscribed circle and the elliptical pupil as a region of missing 

data, which means they would have more data than was needed to determine a 

reasonable number of Zernike aberration coefficients. The wavefront can be 

reconstructed over the smaller circle as shown in Figure 15 (B), which is cut out along 

the dash line of the elliptical pupil in Figure 15 (A). During the reconstruction, the 

region outside the dash line is of no interest.  



36	
  
	
  

 

Figure 15: Reconstructed wavefront image for an off-axis elliptical pupil (Shen and Thibos 

2009) 

3.1 Research	
  Process	
  
	
  
To obtain data for this experiment, a probe beam pattern is imaged into the eye and is 

scattered from the retina to provide the necessary point source star. The light of the star 

travels through all the refractive index media and finally is captured by each lenslet of 

the SH sensor in the form of an aberrated wavefront. The sensor was conjugated at the 

pupil during measurement. 

 

The advantage of applying the SH sensor is that necessary information can be collected 

by a single exposure, which effectively minimises the effect of the subjects’ random 

movement. Also, multiple snapshots of the eye may be used with different capturing 

angles. In this experiment, snapshots had been taken at 24 observations from both sides 

of the eye ranging from -60 degree to +60 degree with intervals of 5 degrees. The 

Hartmann-Shack data for testing was obtained from Atchison’s group at QUT using 

COAS HD instrument. 

 

1. The first step with all SH system is the determination of the image centroids 

corresponding to each lenslet of the SH sensor. The centroids relate to the slope of the 

wavefront in its region of the plane where the lenslet array is conjugated. In our case, 

the SH sensor was conjugated at the cornea of the subject. As shown in Figure 16, the 

pupil image is composed of numerous “stars”, the displacements of the “stars” are 

determined by the centroids. 
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Figure 16: SH image with size of 1040 by 1392 pixels at observation+5 degree data (Data 

were collected from David Atchison QUT laboratory) 

To calculate the centroids of the original SH images, the centre to locate the images and 

the starting points to start the centroid calculation need to be set up. As all the data had 

been collected on a subject’s eye, the centre of the SH images may not match with the 

centre of the pupil images due to the possible movements of the subject. Thus, to 

maintain the accuracy of the centroid calculation, the whole SH image is divided into 

numerous blocks, with each block containing exactly one “star”. As shown in Figure 17, 

the 9 blocks in red colour are an example of dividing the SH image for centroid 

calculation with numerous blocks.     

 

Figure 17: Magnified image of Figure 16 showing 9 adjacent centroid calculation blocks. 
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The width of each block was the same as the mean space between adjacent “stars”. The 

centroid calculation was processed within each block and collected all the blocks into 

matrix 𝑊 to complete the centroid calculation of the entire SH image. Note: the space 

between adjacent stars may be different due to the aberration of the image. In this case, 

the space between adjacent stars needs to be calculated precisely.  

With all these concerns, we applied the two dimensional Fourier Transform algorithm 

using MATLAB to all SH images and take the position of the first order in frequency 

domain as the mean spacing between all the adjacent stars. Back with the SH images 

then determine the starting point, expressed as the distance from the beginning block of 

the image to the edge of image. However, centroids of the “stars” may be affected by 

Purkinje images (more details of Purkinje images are in section 4.5.1 Phakometer). 

Considering this situation, the centroid calculation starts from the centre of the block to 

both edges within the entire calculating block, and continually collects all the blocks to 

complete the calculation of the whole image. In addition, in Matlab, data can only be 

analysed with integer numbers. For example, if the space between one pair of adjacent 

lenslets is 16.4 pixels, we assume it is 16 pixels by rounding the accumulated spacing to 

the nearest pixel.  

The result of the centroid calculations forms the 𝑊 matrix, which will be used for all 

three methods in the following steps. 

2. A pupil that is circular for the on-axis case will become increasingly elliptical as the 

field angle increases. However, during data collecting, some errors will inevitably occur 

as a result of the viewing field of the subject; the edge of the pupil image might lack 

some information due to the blocked viewing field of the subject’s eyelashes etc. Thus, 

the shape of the pupil images might be neither perfectly circular on-axis nor evenly 

elliptical off-axis. Hence, the shape of the elliptical images needs to be calculated 

individually. An algorithm was employed to blur the SH image using convolution with 

a block, whose size was set to larger than the space between adjacent stars. In our case, 

the average space between adjacent lenslets is around 17 pixels, so the size of each 

block was set to 25 pixels to cover the entire space between adjacent lensets. After that, 

the formula to gain the shapes of the pupil images, the minor and major axes, the center 

and the angle of the circular pupil can be obtained by using Matlab. Furthermore, 

integer numbers were considered in the entire calculation, hence, the edge of the pupil 
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image will appear irregular elliptical, expressed with a toothed edge in particular. 

Finally, the pupil size can be corrected for the spread of the convolution.  (The formulas 

obtained here also can be used for later squeezing the elliptical pupil up from a perfect 

circular pupil.) 

3. 28 Zernike polynomials were selected to accomplish the wavefront reconstruction 

process. The reason for choosing 28 Zernike polynomials, which includes 6 orders of 

aberration modes, is that after reconstruction, the wavefront images showed rarely any 

changes after the 6th order, and so can be expressed in the form of the first Zernike 

coefficients. 

 

4A. Method of Compressed Zernikes (CZ) 

The phase images of the selected Zernike aberration modes were generated as ab image 

on a circular pupil which was squeezed down into elliptical shapes, whose size equals 

the original SH image by using the algorithm described in step 2. The centroid values of 

shape-fitted Zernike polynomials were calculated on the same lenslet spacing in 

measurement and placed into one Z matrix. After that, the wavefront aberration was 

reconstructed from the centroids, where Zernike coefficients can be obtained by using 

the eq. 1.2.5.  

 

4B. Method from Shen & Thibos 

The wavefront aberration was reconstructed by using the same centroids values W 

matrix from step 1, but with its original perfect circular shape for each of the original 

Zernike Polynomials, assuming a circular pupil with diameter equal to the major axis of 

the ellipse and the area outside of the ellipse assumed as missing data. After the phase 

images were cut to the same size of the elliptical image of the original SH images.  

 

4C. Method from Atchison & Scott 

 Stretch the centroid value of the elliptical pupil by a factor of 𝑦(𝜃) (θ is the eccentricity 

field angle) along the minor axis so that the pupil again appears to be circular for 

analysis purpose. The wavefront aberration is then reconstructed by using the stretched 

centroids values with its original perfect circular shape for each of the original Zernike 

Polynomials. After that, the aberration map obtained here needs to be compressed back 

to its original ellipse. We applied the method from (Lundström and Unsbo, 2004) to 
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convert the Zernike coefficients obtained with the circular pupils to those for the 

stretched elliptical pupils. Finally, the circular aberration map was compressed into its 

original elliptical shape by using the inverse formula of stretching the elliptical pupil up 

to a circle.  

      

5. The wavefront reconstructed phase images were compared by applying three methods 

and determining the similarities between them. In the entire process, the center of the 

ellipse needs to be lined up with the center of the SH images for all three methods. 

Hence, a reliable shift to match the center before calculation is necessary. 
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3.2 Result	
  Analysis	
  and	
  Discussion	
  

 Zernike	
  Aberration	
  Reconstructed	
  Images	
  Comparison	
  	
  3.2.1

   
(a)                                                    (b) 

 
(c)                                                     (d) 

 
                                          (e)                                                     (f) 

Figure 18: Reconstructed up to 28 Zernike polynomials from original SH images by 

applying three methods from Atchison and Scott, Shen and Thibos and the method here 

CZ at -5 degree and +60 degree . Reconstructed image from Atchison at -5 degree (a); 

Reconstructed image from CZ at -5 degree (b); Reconstructed image from Thibos at -5 

degree (c);  Reconstructed image from Atchison at +60 degree d); Reconstructed image 

from CZ at +60 degree (e ); Reconstructed image from Thibos at +60 degree (f ). The scale 

bar on the right hand side is in microns. 
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As shown in Figure 18, the methods from CZ and Atchison showed a similar 

performance on Zernike aberration wavefront reconstruction at small angles like -5 

degree off-axis. Which means stretching the centroids of the elliptical pupil into circular 

gives a similar set of Zernike coefficients with compressing the circular Zernike 

polynomials into a referenced ellipse at small angle field observations. In addition, the 

phase images among all three approaches have the same scale from 0 to 1 micron with 

similar patterns. However, the method from Atchison gives a different wavefront 

constructed map at +60 degree off-axis.  

 

                   
(a)                                                    (b) 

         
(c)                                                     (d) 

  
                                         (e)                                                     (f) 

Figure 19: Wavefront reconstructed images that are differenced from all three methods of 

Shen & Thibos, Atchison & Scott and CZ at -5 degree and +60 degree. Atchison vs. CZ at 
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-5 degree (a); CZ vs. Thibos at -5 degree (b); Atchison vs. Thibos at -5 degree (c). Atchison 

vs. CZ at +60 degree (d); CZ vs. Thibos at +60 degree (e); Atchison vs. Thibos at +60 

degree (f). The scale bar on the right hand side is in microns. 

Figure 19 shows the differenced images of three wavefront reconstructing methods from 

Shen & Thibos, Atchison & Scott and CZ. Considering methods from CZ and Thibos, 

the maximum difference occurred at the edge of the differenced images, which was 

affected most by the tip and tilt during image comparison. In particular, fractional pixel 

differences exist during Zernike wavefront reconstructing process for the method from 

Shen & Thibos. The precision that we can apply fractional pixel centroids is limited to 

0.5 pixels, which adds to an error in the reconstruction. In particular, fractional pixel 

was considered when determining the formula to gain the shapes of pupil images, which 

was used to compress the shapes of the Zernike terms into an elliptical pupil to obtain 

wavefront aberration map (CZ). Furthermore, a toothed edge existed when same 

formula was applied to cut the elliptical pupil back from a perfect circular pupil (Shen 

& Thibos).  

These accumulate to fractional pixel differences between those two methods. To 

remove this effect, the reconstructions were made of twice the size as their original 

reconstructed images, and then the centre of the ellipse is shifted from one image one 

pixel away to match the centre of the ellipse from the other image. However, the edge 

of the ellipse from all of the three approaches are not identical, so fractional pixel 

difference always exist at the edge of the images between these three approaches. For 

the purpose of removing the effects of this difference on later data analysis, one pixel 

was removed on the edge from the differenced images.  

Regarding the methods of Atchison & Scott and CZ, a great similar performance was 

shown in the wavefront reconstructed images at observation -5 degree. However, the 

assumption of the method from Atchison & Scott may not perform accurately at larger 

field angles. Thus, a big difference appeared when comparing the methods between CZ 

and Atchison & Scott as shown in the last image of Figure	
  19. The reason is that the 

ratio of the major and minor pupil diameters could not match with the 𝑦(𝜃) relationship 

after 40 degree as shown in Figure	
  20. CZ of course, determines the pupil dimensions 

from the SH images themselves rather than by formula. And the wavefront would be 

distorted when stretching the elliptical pupil to circular.  
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Figure	
  20:	
  Ratio	
  of	
  horizontal	
  to	
  vertical	
  pupil	
  diameters	
  as	
  a	
  function	
  of	
  field	
  angle	
  
θ,	
  from	
  -­‐60	
  degree	
  to	
  +60	
  degree,	
  in	
  total	
  12	
  observations.	
  The	
  curve	
  is	
  a	
  plot	
  of	
  

y(θ). 

Moreover, for both approaches from Shen & Thibos and CZ, a very similar aberration 

map showed in both field angles. The maximum difference occurs at the edge of the 

images, which is due to the tip and tilt caused by misalignment of the pupil form the SH 

images during comparison. This explains where the differences arise and why there 

seemed to be more agreement with Shen & Thibos at small angles. However this is still 

the case for larger angles, therefore, further investigations in the future is recommended. 

 

To examine these differences, the methods of CZ were changed at larger field angles. 

Instead of compressing the Zernike polynomials to the shape of real elliptical pupil, he 

Zernike modes were compressed following the 𝑦(𝜃) relationship from the method of 

Atchison & Scott, this method was called modified CZ. Figure 21 shows the result of 

comparison of the modified method from CZ and method from Atchison & Scott. It is 

obvious that after modification, there is only small difference between these two 

methods modified from CZ and Atchison & Scott.  
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Figure 21: Comparison of modified CZ with method from Atchison & Scott at observation 

+60 degree off-axis. The scale bar on the right hand side is in microns. 

In conclusion, for small angles like -5 degree, all of the three methods yield very similar 

sets of aberration coefficients and lead to similar wavefront constructed maps. However, 

in larger angles like 60 degree, the method from Atchison & Scott did not perform like 

the other two methods, but a great similarity exists between the methods of modified 

CZ and Atchison & Scott. 

 Zernike	
  Polynomials	
  Coefficient	
  Comparison	
  between	
  CZ	
  and	
  Atchison	
  3.2.2
 

As the Zernike aberrations system uses unit pupils, to incorporate the correction when 

determining the higher-order wave aberration coefficients of an eye, the shape of the 

pupil viewed off-axis needs to be taken into account. So in this research, Zernike 

coefficients were used to describe the volume and the shape of the aberration on top of 

an elliptical pupil. To investigate the level of similarity between these three methods on 

reconstructing wavefront aberration in the peripheral field, Zernike coefficients play a 

key role to show the performance of each corresponding Zernike term in the 

reconstruction.  
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Figure 22: Comparison of Zernike coefficients with the absence of the Zernike term Piston 

between two methods of CZ and Atchison & Scott at observations of -5 degree (top) and 

+60 degree (bottom). 
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Observat

ions  

(Degree) 

SSIM RMSE 

(Wave- 

length) 

SR 

 

－60 0.7396 0.1144 0.4832 

－55 0.7328 0.1163 0.4661 

－50 0.7736 0.1186 0.5436 

－45 0.7265 0.1180 0.4501 

－40 0.7893 0.1039 0.5739 

－35 0.7769 0.1059 0.5569 

－30 0.9999 0.0065 0.9988 

－25 0.9992 0.0138 0.9925 

－20 0.9992 0.0139 0.9924 

－15 0.9993 0.0128 0.9935 

－10 0.9991 0.0070 0.9981 

－5 0.9992 0.0139 0.9924 

＋5 0.9996 0.0071 0.9980 

＋10 0.9990 0.0077 0.9976 

＋15 1.0000 0.0040 0.9994 

＋20 0.9999 0.0058 0.9987 

＋25 0.9980 0.0236 0.9779 

＋30 0.6307 0.1197 0.4343 

＋35 0.7734 0.1075 0.5438 

＋40 0.7403 0.1126 0.4996 

＋45 0.7845 0.1046 0.5680 

＋50 0.5434 0.2339 -1.165 

＋55 0.6327 0.1194 0.4373 

＋60 0.5491 0.1292 0.3411 

Figure 23: Similarity (SSIM), Root Mean Square Error (RMSE) and Strehl Ratio (SR) of 

the Zernike coefficients from CZ and Atchison & Scott. 
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At observation -5 degrees, both methods from CZ and Atchison & Scott described a 

very similar wavefront reconstruction result by giving an extremely similar set of 

Zernike coefficients as shown in Figure 22. However, at larger angles like 60 degree, the 

method from Atchison & Scott acts very differently to the method from CZ. The reason 

is that the centroid values from elliptical pupil don’t follow the relationship of 𝑦(𝜃) at 

larger angles like 60 degree, (see eq. 2.4.1). 

 

As shown Figure 23, at small angles (up to 50 degree) from both sides of the eye, both 

methods from CZ and Atchison & Scott expressed as very similar sets of coefficients, 

although a big difference exists at larger field angles. Therefore, it is concluded that at 

small angles up to 50 degree, the methods from CZ and Atchison & Scott have very 

similar expression on Zernike-wavefront reconstruction at peripheral field.   

  

Comparing coefficients for the method from Atchison with different field angles may 

not be valid because the stretching of the pupil changes their values differently, also, 

this method does not perform as accuratly as the other two methods at larger angles. So 

the comparison of the coefficients from methods of CZ and Shen & Thibos at 24 

observations is shown for examples at -5 degree and +60 degree in detail.  
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Figure 24: Comparison of Zernike coefficients with the absence of the Zernike term Piston 

between two methods of CZ and Larry at observations of -5 degree (top), and +60 degree 

(bottom). 

As shown in Figure 24, the difference between the two reconstructing approaches is very 

small, expressed as a very similar set of Zernike coefficients in its corresponding 

aberration form. The data is presented for 3 observations at each angle, and there is 

small variation between methods and observations. A more extensive study of different 

subjects with more observations might evolve this similarity or difference more. 

Although, a slight difference occurred at the first two Zernike modes of tip and tilt, 

which were affected mostly by the fractional pixels difference caused by misalignment 

of the pupil during comparison.  

 Similarity,	
  RMSE	
  and	
  Strehl	
  Ratio	
  	
  Comparison	
  between	
  CZ	
  and	
  Shen	
  &	
  Thibos	
  3.2.3
	
  
One of the most frequently used optical terms for expressing the effect of wavefront 

aberrations on image quality is the Strehl ratio (SR) (Van den Bos 2000). It is the ratio 

of peak diffraction intensities of an aberrated wavefront compared to a perfect 

wavefront. The ratio shows the image quality in the presence of wavefront aberration. 

Conventionally, it is used to define the acceptable level of wavefront aberration for 



50	
  
	
  

observing purpose. In general, an acceptable level is set at 0.80 Strehl (Van den Bos 

2000).  

 

The size of phase errors is highly related to the wavefront deviations from perfect 

spherical. However, a nominal wavefront deviation, which determines the intensity of 

the distribution, only specifies the peak of the deviation, and shows nothing about its 

extent over the wavefront area. Therefore, the root mean square error (RMSE) was 

applied to wavefront phase images to express the averaged deviation over the entire 

reconstructed images of the wavefront. A direct relationship can be established between  

𝑆𝑅 = 1− 𝑘!"   !𝑊!"#!  ,                                                                                           (3.2.3.1) 

where 𝑘!" = 2𝜋/𝜆. A well-designed optical system should not provide a SR below 0.80 

and a maximum limit for RMSE 𝑊!"#   ≤ 0.071𝜆 (Thibos, Applegate et al. 2002). 

Regarding to diffracted images, SR is useful to define the point source image intensity. 

Therefore, a SR of greater than 0.8 is to describe an optical system with minor 

imperfections, which may be referred to as “diffraction limited”. According to Mahajan 

(Mahajan, 1983), exp(−𝜎!!) gives a better approximation by reducing 10% of the error 

for Strehl ratio, where 𝜎! is the root mean square deviation over the aperture of the 

wavefront phase: 

 𝜎! = 𝜙 − 𝜙 !.                                                                                                    (3.2.3.2) 

 

Similarity assessments play an important role in the most cognitive activities. In this 

experiment, the structure similarity (SSIM) between the two reconstructing methods 

compares their corresponding aberration wavefront reconstructed images. The method 

of SSIM applied in this analysis was referenced from A. Hore and D. Ziou in 2010 

(Hore and Ziou 2010). 

 

Figure 25 indicates the Similarity (SSIM), Root Mean Square Error (RMSE) and Strehl 

Ratio (SR) between wavefront-reconstructed images obtained from both methods over 

observation angle range of 120 degree on both sides of the eye. 
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Observ-

ations  

(Degree) 

RMSE 

(Wave- 

length) 

SSIM 

 

SR 

 

－60 0.0451 0.993 0.908 

－55 0.0466 0.997 0.9236 

－50 0.0472 0.9995 0.8686 

－45 0.0552 0.9996 0.9263 

－40 0.0505 0.9984 0.915 

－35 0.0597 0.9983 0.9176 

－30 0.0676 0.9959 0.8291 

－25 0.0427 0.9949 0.9089 

－20 0.0549 0.9923 0.9047 

－15 0.0365 0.9899 0.9403 

－10 0.0519 0.9881 0.9529 

－5 0.0355 0.9849 0.9399 

＋5 0.0363 0.998 0.9231 

＋10 0.0432 0.9979 0.9364 

＋15 0.0395 0.9977 0.9242 

＋20 0.0386 0.9973 0.9379 

＋25 0.0375 0.9957 0.9402 

＋30 0.0406 0.9935 0.9459 

＋35 0.0426 0.992 0.9311 

＋40 0.0237 0.9892 0.9622 

＋45 0.0332 0.9873 0.9595 
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＋50 0.0287 0.9847 0.969 

＋55 0.0373 0.9838 0.9409 

＋60 0.0227 0.9787 0.9691 

Figure 25: Similarity (SSIM), Root Mean Square Error (RMSE) and Strehl Ratio (SR) of 

the differenced constructing images from CZ and Shen & Thibos with 24 observations. 

These two methods show a great amount of similarity in Zernike polynomial wavefront 

reconstruction, with approximately 99 percent of similarity, an average of 0.04 

wavelength RMSE with the difference diminishing for smaller errors, and around 0.92 

SR; a very small relative drop in central intensity of the point spread function; the 

relative amount of energy transferred to the rings area is reasonable, and average 

relative contrast loss is very small as well. Furthermore, around 0.99 SR indicates this 

diffraction-limited optical system is almost free from diffraction; the two reconstructed 

systems have very similar aberration reconstructing results in the peripheral field.  In 

conclusion, these two methods showed a greatly similar performance in the aberration 

wavefront reconstruction.  

Average 

(SSIM) 

Average 

(RMSE)  

Average 

(SR ) 

0.8785 0.1171 0.8884 

Figure 26: Similarity (SSIM), Root mean square (RMSE) and Strehl ratio (SR) of the 

Zernike coefficients between two wavefront reconstructing methods for 24 observations 

from -60 degree to +60 degree 

Figure 26 describes the level of similarity between these two Zernike wavefront 

reconstructing methods by comparing the Zernike coefficients of each reconstruction. 

The result demonstrates that all 28 Zernike terms plays a similar performance in the 

wavefront aberration reconstruction in both reconstructing methods.  

 	
  RMSE	
  vs.	
  Zernike	
  Polynomial	
  Coefficients	
  between	
  CZ	
  and	
  Shen	
  &	
  Thibos	
  3.2.4
	
  
RMSE indicates the variance of the wavefront aberration, which is produced by an 

optical system from the perfect wavefront over some reference plane. The RMSE is the 

deviation of the wavefront error measurement over regular grid of points. Therefore, 

RMSE also can be obtained from the coefficients of the Zernike polynomial modes. So 
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the vector magnitude of their corresponding aberration coefficients gives the sum of 

RMSE from the equation: 

𝑅𝑀𝑆𝐸 = (𝐶!! )! ,                                                                                              (3.2.4.1)  

where 𝐶!!  represents the coefficient of particular Zernike polynomial mode (Hore and 

Ziou 2010).  

 

In this research, the RMSE of the difference-reconstructed images from the two 

methods had been calculated, which theoretically should be equal to the sum of the 

absolute value of the Zernike coefficients differences between the two methods.  Thus 

eq. 3.2.4.2can be obtained from equation2: 

𝑅𝑀𝑆𝐸 = ((𝐶! − 𝐶!)!) ,                                                                                  (3.2.4.2)  

where 𝐶! , 𝐶! represent the Zernike coefficients from the corresponding wavefront 

reconstruction method (Hore and Ziou 2010). On the other hand, the differences of 

subtracted images from Figure 19 should give the same RMSE value. The experimental 

result is shown in Figure 27. 

Observations  

 

(Degree) 

RMSE 

from eq.4 

(Wave 

length) 

RMSE from 

Fig.7 (CZ vs. 

Shen & Thibos)  

(Wave length) 

－60 0.0451 0.0440 

－55 0.0466 0.0473 

－50 0.0472 0.0480 

－45 0.0552 0.0525 

－40 0.0505 0.0519 

－35 0.0597 0.0597 

－30 0.0676 0.0699 

－25 0.0427 0.0442 

－20 0.0549 0.0577 

－15 0.0365 0.0404 

－10 0.0519 0.0557 
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－5 0.0355 0.0407 

＋5 0.0363 0.0373 

＋10 0.0432 0.0399 

＋15 0.0395 0.0361 

＋20 0.0386 0.0379 

＋25 0.0375 0.0383 

＋30 0.0406 0.0405 

＋35 0.0426 0.0454 

＋40 0.0237 0.0254 

＋45 0.0332 0.0328 

＋50 0.0287 0.0369 

＋55 0.0373 0.0450 

＋60 0.0227 0.0367 

Figure 27: Comparisons of RMSE result obtained from eq.2.2.4.2 with RMSE value from 

the differenced images in Figure 19 for the methods of CZ and Shen & Thibos. 

As shown in Figure 27, RMSE value obtained from eq. 3.2.4.2, which is calculated from 

the original Zernike coefficients values, are slightly larger than the RMSE value from 

differenced images from Figure 19. The reason is that Zernike coefficients values were 

obtained from the original aberrated images that were reconstructed by two different 

methods, which contain the half pixels differences at the edge of the images as 

discussed. However in Figure 19, to get reliable results for comparison, the edge had 

been cut out by half pixels to minimise the effect on the RMSE. Therefore, these 

differences of Zernike coefficients that occurred during wavefront reconstruction are 

due to the inevitable simulation error instead of the two reconstructing methods. 

3.3 	
  Conclusion	
  and	
  Future	
  Work	
  
 

Peripheral detection is improved by adaptive optical correction of second order 

aberrations. Further work is required on investigating the influence of higher order 

aberrations on detection tasks. 
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As the pupil becomes elliptical while measuring peripheral aberrations with its minor 

axis parallel to the visual field meridian along which the eye has rotated. Therefore, the 

way of sampling the pupil shape is essential to the wavefront reconstruction at the pupil. 

For small field angles up to 40 degrees the methods from Atchison & Scott, CZ and 

Shen & Thibos yield very similar aberration maps and Zernike coefficients. However, at 

larger angles like 60 degrees, the method from Atchison acts very differently to the 

methods from CZ and Thibos. The reason is that the centroid values from elliptical 

pupil don’t follow the relationship of 𝑦(𝜃)  after 50 degrees. At all field angles, 

approaches from CZ and Thibos showed a similar performance in Zernike wavefront 

reconstruction at small observation angles in peripheral field. Some differences 

occurred in comparing the reconstructed images, this is due to the error from image 

sampling. After those errors are removed, the results express a great commonality 

between the methods from Shen & Thibos and CZ, approximately 80 percent similarity 

in Zernike coefficients up to 50 degrees. Therefore, both approaches from CZ and Shen 

& Thibos described similar ocular aberrations with an elliptical entrance pupil at small 

observation angles (up to 50 degrees at both sides of the eye) in peripheral field. The 

results can be interchanged. As discussed in earlier this chapter, as the viewing angle 

increases, the entrance pupil moves forward, tilts and curves towards the observer’s 

direction. And the tangential pupil size becomes smaller and exhibits asymmetric. 

Therefore, pupil at large angle has to be more accurately modelled rather than use a 

simple formula for 𝑦(𝜃), details can be obtained from (Fedtke C, 2010). 

 

Peripheral aberration is essential to the further investigating of the eye’s optical 

function, therefore, the method of wavefront reconstruction needs to be improved. To 

gain sufficient information of the 3D tomography reconstruction, the refractive index 

distribution in crystalline lens must be determined from subtle variations in 

reconstructions. 

 

In the next step to be investigated, is therefore important to investigate the method for 

describing wavefront where the pupil is non circular, to fully understand the refractive 

system of the eye, especially during accommodation. Therefore, in next chapter, how to 

obtain the refractive index distribution and how each refractive optical element 

performs during accommodation will be studied in detail. Especially, the optical 



56	
  
	
  

modeling of schematic eye as a starting point and further investigation with adjusted 

inner optics will be introduced. 
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4 Chapter	
  Three:	
  Exploring	
  Gradient	
  Refractive	
  Index	
  of	
  the	
  
Crystalline	
  Lens	
  with	
  Optimization	
  Methods	
  

 

The refractive index distribution of the lens has been inferred from optical 

measurements that are either invasive in vivo (Fagerholm, Philipson et al. 1981, 

Pierscionek 1997) or involve a priori assumptions concerning lens shape and internal 

structure (Campbell 1984, Pierscionek, Chan et al. 1988, Pierscionek 1997, Barbero, 

Glasser et al. 2004) until the method published for measuring the refractive index 

distribution in the lens non-invasively in vivo using MRI (Jones and Pope 2004, Jones et 

al, 2005), which has shown the same capability of measuring age-dependent changes of 

isolated human lenses in vitro (Beers 1996) and their refractive index distribution. 

 

The advantage of measuring the refractive index distribution in vitro is to gain high-

resolution data free from artifacts associated with blinking and fixation instability. 

However, in vitro measurements cannot adequately provide information on how the 

Gradient index (GRIN) may vary with state of accommodation. Therefore, this study, a 

method of tracing a ray inside of the eye has been investigated to aid in investigation of 

the refractive function of the optical elements in terms of refractive index, using data 

from the wavefront aberration of the eye.  

 

The crystalline lens of the eye is the biconvex lens located behind the iris that accounts 

for approximately one third of the total power of the optical system of the eye. The lens 

will change its shape while accommodating, which allows the eye to focus from the far 

objects to near objects. However, the lens will lose its ability of accommodating with 

age increases, which is called presbyopia (Helmholtz 1924).  

 

The understanding of the concept of gradient index distribution of the crystalline lens 

on the optics can help to gain the knowledge of the optical properties of the lens and 

their variation with age and accommodation.  

 

In this thesis, we propose and develop a method for gaining the refractive index 

distribution and the effects on the wavefront reconstruction while changing the 
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properties of the modelled refractive elements. In particular, a sophisticated schematic 

eye model with adjustable inner optics is designed to obtain the gradient refractive 

index (GRIN) distribution and to help understand the refractive function of the eye. An 

optimisation algorithm is applied to achieve a best fitting from the parameters of the eye 

model to the experimental data, so that the GRIN distribution can be retrieved.  

 

In this chapter, the optical system of the eye will be introduced. The literature of the 

schematic eye model will be presented and followed by an introduction of the model 

eye designed for ray-tracing method in detail. The algorithms of obtaining the GRIN 

with a best fitting solution will be described. 

4.1 	
   Crystalline	
  Lens	
  Optics	
  and	
  Structure	
  
	
  
The eye has two refractive elements, the cornea and the crystalline lens, which can 

refract the light. The light can form an image on the retina after going through the 

optical elements, and the cones and rods on the retina sample the light distribution. The 

diameter of the incoming beam of light is controlled by the iris, which can contract and 

dilate when needed as shown in Figure 28. Around two thirds of the power is 

contributed from the cornea for a relaxed eye (Land and Fernald 1992). In addition, the 

optical surface of the anterior cornea is not smooth and its average shape is not spherical 

but flattens in the periphery (Klein and Mandell 1995). In general, the posterior cornea 

in optical terms is functional subtracting six diopters (D) from the power of the cornea, 

which results from the lower refractive index in the aqueous humor. 

 

The crystalline lens is responsible for changing the refractive state of the eye to achieve 

accommodation from far to near objects. The lens accommodation changes have been 

extended to the measurement of the changes in shape and size of the lens. The lens 

grows continuously with age, and these changes affect refractive power and refractive 

index distribution. To further investigate the function of the optics of the eye, the 

fundamental knowledge of the internal optics of the lens is necessary.  
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Figure 28: The image of the human eye adapted from an image of the National eye 

Institute Catalog (number NEA09), derived from 

http://www.visionaware.org/info/your-eye-condition/eye-health/anatomy-of-the-

eye/125  

As shown in Figure 28, the shape of the crystalline lens was reported by Helmholtz in 

1924 to investigate the magnification of the reflected images on the lens surfaces. It is a 

biconvex lens with aspheric surfaces. In anatomy, the crystalline lens is embraced in the 

transparent capsule and attached to the ciliary body by the zonules. In the late seventies, 

researchers like  Howcroft and Parker (Parker 1972, Howcroft and Parker 1977) used a 

thin section of the unretracted frozen lens to study the lens shape (asphericity) and avoid 

deformation. They found that the anterior lens surface was hyperbolic and the posterior 

lens surface was parabolic. Recently, the lens shape, thickness was investigated in vitro 

with the images of sagittal and meridional plane (Manns, Fernandez et al. 2004, Rosen, 

Denham et al. 2006, Borja, Manns et al. 2008). The lens is continuously growing with 

age in the way of a layer of epithelial cells that extend from the anterior pole to equator 

is renewedly forming at the equator with ages (Liu, Wormstone et al. 1996).    

 Changes	
  in	
  the	
  Crystalline	
  Lens	
  with	
  Age	
  and	
  Accommodation	
  4.1.1
 

Phakometry systems were first used to obtain the crystalline lens radius of curvature, by 

investigating the magnification of the third and fourth Purkinje images that were formed 

by reflection in the anterior and posterior crystalline lens surface (Smith and Garner 
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1996, Garner 1997). The power of the lens and its tilt and decentration with respect to 

the optical axis had been studied by many researches (Mutti, Zadnik et al. 1992, Rosales 

and Marcos 2006, Atchison, Markwell et al. 2008).  

 

Scheimpflug photography was used to record the images of the anterior segment of the 

eye; however, the geometrical and optical distortion was the major problem to solve for, 

in this method due to its inconstant magnification (Rosales,	
  P.	
   and	
  S.	
  Marcos	
  2006). 

Later on the problem of distortion was corrected with an approximation of a constant 

refractive index in the lens, which allowed the study of the crystalline lens and its shape 

with age and accommodation (Koretz, Handelman et al. 1984, Rosales and Marcos 

2006, Rosales and Marcos 2008). The technology of ultrasound is used in clinical 

applications to obtain the intra ocular (IO) distances. With the help of ultrasound the 

change of thickness of the lens with age and accommodation was studied by (Beers and 

Van der Heijde) in 1996.   

 

In vivo study, a constant decrease of anterior and posterior surface of the crystalline lens 

with age was detected by measuring the radii of the curvature of the lens surface in 

unaccommodated status, especially for the anterior surface, around 12 mm at 15 year 

old to 9mm at 70 years old. The lens thickness, however, increased with age from 

around 3.5 mm in 20 to 30 years group to 4.5 mm in 60 to 70 years group (Brown 1974, 

Dubbelman, Van der Heijde et al. 2003).  With respect to accommodation, the average 

changes in anterior and posterior radii of curvature of the lens from around 12 mm and 

6.5 mm (unaccommodated) to 7.5 mm and 5 mm (6D accommodated) have been 

detected (Dubbelman, Van der Heijde et al. 2003, Dubbelman, Van der Heijde et al. 

2005, Rosales, Dubbelman et al. 2006). 

4.2 	
  GRIN	
  Modelling	
  Method	
  
 

Understanding the structure of the eye and modelling its optical characteristics have 

been subject of interest for decades (Gullstrand 1924, Lotmar 1971, Navarro, 

Santamaría et al. 1985, Thibos, Hong et al. 2002). The first model eye was introduced 

in  in 1953 by Huygen. The schematic eye was proposed by Gullstrand was intended to 

describe the characteristic of the eye on axis (Gullstrand 1924). Atchison and Smith in 

2000 studied this model and found a method to transform a gradient index distribution 
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into a shell model with differing refractive index. However, this is not a precise way to 

study the aberrations with the association of the GRIN distributions. In 1999, Masajada 

investigated the spherical aberration of the model with a 300 layers GRIN model 

proposed by Al-Ahdali and El-Messiery in 1995.   

 

Pérez, Bao et al (2003) modelled the refractive index distribution in the paraxial region 

for the calculation of paraxial power, cardinal points and the dependency of paraxial 

properties, and later, the magnification, transmittance and the point spread function 

were studied by Rama, Pérez et al. in 2005. At the same year, Jones, Atchison et al 

found that the exponent of the power equation varied with age and followed a fourth-

order power law, by fitting the refractive index of the centre and the surface of the lens, 

the thickness of the anterior hemisphere and the exponential value of the power 

equation to the data of different ages. In 2007, Goncharov and Dainty proposed a GRIN 

model with a fourth-order equation at axial and meridional axis. Manns, Ho et al. built a 

model with the lens centre placed at a distance from the anterior surface vertex equal to 

0.41 times the lens thickness, and the GRIN distribution was designed with a power 

equation (Eq.2.1.2.1) based on Smith’s model, built in 1992.     

𝑛 𝑟 = 𝑛! − ∆𝑛 ∗
!!
!!

!
 ,                                                                                     (4.2.1) 

where 𝑛! is the nucleus refractive index, ∆𝑛 is the difference between nucleus and 

surface refractive index, 𝑟! is the distance from an incident point to the centre of the 

lens, 𝑟! is the distance from the centre of the lens to the surface in the direction of the 

that incident point (Manns, Ho et al. 2010). In 2012, Bahrami and Goncharov proposed 

a model eye with conic external surfaces in terms of a higher-order aspheric term, and 

the GRIN distribution was designed with a power law. They used the paraxial ray 

tracing method to calculate the optical power and the third order aberration coefficients.  

 

Most recently, in 2014, Bahrami, Goncharov et al reconstructed a rotationally 

symmetrical crystalline lens with adaptable internal geometry, the optics of the lens can 

be altered with ageing. Some researchers previously attempted to develop wide-field 

models applying a lens with constant index. Escudero-Sanz and Navarro in 1999 

proposed a lens with a homogenous index, which agrees with experimental data for off-

axis aberrational properties of the real eye in relation to its anatomical structure.  
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Later on, Thibos, Ye et al in 1999 created a customized schematic model eye that is 

anatomically similar and functionally equivalent to the individual eye over a large field 

of view. However, the study of the eye model with adjustable inner optical structures 

with wide field observations is still a new field. The purpose of this chapter is to 

develop a rudimentary understanding of the refractive function of the eye, that will 

further incorporate interaction of the aberration from the model eye with that from the 

measured Shack-Hartmann wavefronts at different field angles into the periphery of real 

subjects, and form the forward propagation pass in a tomographic reconstruction of the 

real eye. A sophisticated model with adjustable internal optics will be introduced later 

this chapter. 

4.3 GRIN	
  Reconstruction	
  
	
  
In 1972, Pomerantzeff, Fish et al proposed the reconstruction of the GRIN distribution 

using spherical aberration and the focal length of the eye. They applied a shell model 

with numerous layers, where the radii of curvature, thickness and refractive index 

changed by following a third order polynomial function.  

 

Phakometry was used to study GRIN distribution, (Hemenger, Garner et al. 1995). 

Hemenger et al in 1995 assumed a nucleus refractive index of 1.406 and a surface 

refractive index of 1.386, and a polynomial equation with only one variable describing 

the changes of refractive index from nucleus to surface. In 2004, 	
  Barbero,	
  et	
  al	
  used 

global optimisation algorithms to reconstruct non-spherical GRIN by using the direction 

cosine of the rays deflected by the lens. The refractive index distribution through the 

isolated human eye lens was measured non-invasively using a novel magnetic resonance 

imaging (MRI) technique developed by Moffat et al. 2002. 

 

Optical Coherence Tomography (OCT) images were used by Verma, Rao et al in 2007 

to reconstruct the GRIN distribution of a spherical fish lens. As the fish lens is 

spherical, the shape of the lens can be obtained with a corrected OCT image. As the 

optical path difference (OPD) can be provided by OCT scan that each passing ray can 

be traced.   
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In 2002, Magnetic resonance imaging (MRI) was used by Moffat, Atchison et al to find 

the transverse spin-spin relaxation time, which was correlated with the relaxation time 

measured from the refractive index. As the time from those two methods are both 

related linearly with protein concentration, this technique can be used to extract two-

dimensional maps of the gradient refractive index of the crystalline lens. As shown in 

Figure 29 the help of MRI, the nucleus refractive index was also found to change 

linearly with age (from 1.44 to 1.41 at 15 and 80 year old respectively) (Jones, Atchison 

et al. 2005). 

 

 
Figure 29: Difference of gradient index distribution of human crystalline lens with ages 

(Jones, Atchison et al. 2005). 

In 2010, Hoshino, Uesugi et al used an X-ray interferometer to measure the gradient 

refractive index of the crystalline lenses. As X-ray can tolerate large density differences, 

it was used to estimate the protein density of the sample and provided a possibility of 

measuring the whole eye in vivo. The gradient refractive index of the porcine lens was 

measured from 1.45 in the centre to 1.35 in the periphery. 
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4.4 Research	
  Section:	
  Methodology	
  	
  
 

Applying ray tracing to the schematic eye has the potential ability to understand the 

refractive distributions of the eye, which will further contribute to reconstructing the 

wavefront aberrations of the eye. In this thesis, a schematic eye was built to study the 

refractive function of the eye; the model was designed with a sophisticated structure 

with adjustable geometry, and can be adjusted by modifying its optical parameters. To 

test the sensitivity of the model, changes to the aberration wavefront were determined 

after changing lens and cornea parameters during accommodation. The aberration 

caused by the front anterior cornea was compensated by the posterior cornea and the 

more significant contribution to variability of any wavefront aberrations are the optical 

characteristics of the lens compared to the cornea.  

 

In this research, a bundle of rays start from retina, travel through the optical elements of 

an eye and designed to be captured by a Shack-Hartmann (SH) sensor, which is 

conjugated at the pupil. Assuming rays will be bent only when they pass through lens 

and cornea and stay constant at the anterior chamber and vitreous chamber of the eye, as 

it would be appropriate for further ray tracing process, otherwise, it is impossible to 

trace or measure the ray path inside the eye. To allow a wide range of observation 

angles, rays are traced from various starting points at the retina. 

 

A ray bundle is described by a 62 by 82 matrix to cover all the lenslets of a SH sensor, 

the number is chosen to match real observation on a COAS-HD images. The optical 

system is constructed with aspheric surfaces. The global aspheric surfaces, described in 

matrix form, were restricted to quadric surfaces, so that the intersection of the surfaces 

can be calculated by solving a quadratic equation. However, the local region of the 

aspheric surfaces, were joined by pixels with tilt and tip, therefore, to alter the curvature 

of the certain point of the surface, simply by modifying the tilt and tip of that pixel in 

terms of the angle of the surface at that point. To smooth the surface of the lens 

curvature, the tips and tilts of each pixel are connected from heads to ends, and a 

quadratic curve plotting function in Matlab is applied to pick up the smooth surface of 

the lens curvature. All the initial properties were applied based on a modified Navarro’s 

model with six refracting surfaces including inner 2 core surfaces, 2 outer cortexes, and 

one front and one back corneal surfaces. After the six major refractive surfaces were 
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built, the lens was embedded with 4 layers with equivalent refractive index between 

inner core surfaces and cortex isolated at equal interval distances. The eye model was 

modified to match its wavefront aberration with a real subject’s eye. The refractive 

index distribution obtained in this study will further contribute later to the wavefront 

aberration reconstruction. The entire ray-tracing process is roughly described in Figure	
  

30. 

 

	
  
Figure	
  30:	
  Ray-­‐tracing	
  process	
  graphical	
  representation 

 Ray	
  Tracing	
  Algorithm	
  	
  4.4.1
	
  
When ray tracing through a homogeneous media, there are two main steps in the 

process: transmission and refraction. In particular, transmission is to find the position of 

the incident ray at the surface where the ray is to be refracted; refraction implements 

Snell’s law to calculate the way that the ray direction will be refracted. 

 

A ray is defined with a point P and a direction vector  𝑃!, and then any point of the ray 

can be given by 

 𝑃 = 𝑃 + 𝜆𝑃! .                                                                                                      (4.4.1) 

Rays	
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Design	
  

Crystalline	
  Lens	
  
Design	
  

Lens	
  Surface	
  
Optimism	
  

Cornea	
  Design	
   Cornea	
  Surface	
  
optimism	
  

Retina	
  Design	
  

Ray-­‐tracing	
  
Algorithm	
  	
  

Shell	
  law	
  

Refractive	
  
Media	
  

Algorithm	
  

Refractive	
  Index	
  
Algorithm	
  

Refractive	
  Index	
  
Collection	
  



66	
  
	
  

In each ray matrix, there are three coordinates  𝑥 , 𝑦 and  ℎ. 𝑥!  and 𝑦!  describes the 

location of the ray, ℎ indicates the height of the ray, ℎ! determines the height of the ray 

that above or below the optical axis. In particular, the plane of 𝑥  and 𝑦  axes is 

perpendicular to the plane of  ℎ, and is tangent to the refracting surface at the point 

where axis and the surface intersect.  

 

In the beginning, we designed a rotationally symmetrical optical system with conic 

refracting surfaces. The conic surfaces to the anterior lens surface and cornea surfaces, 

described as a second-order surface 𝑆!  

𝑆! 𝑥,𝑦, 𝑧 = 𝐴𝑂𝑥! + 𝐵𝑦! + 𝐶𝑧! + 2𝐷𝑥𝑦 + 2𝑦𝑧 + 2𝐹𝑥𝑧 + 2𝐺𝑥 + 2𝐻𝑦  + 2𝐼𝑧 + 𝐾

= 0  , 

                                                                                                                                   (4.4.2) 

where x, y, z refer to Cartesian coordinates. The eq. 4.4.2 can be simplified as  

𝑆! = 𝑐𝑘𝑧! + 𝑐 𝑥! + 𝑦! − 2𝑧 = 0                                                                                   (4.4.3) 

𝑠! = 𝑐𝑢! − 𝑐 1− 𝑘! 𝑢 ∗ 𝐴𝑂 ! − 2 𝑢 ∗ 𝐴𝑂 = 0                                                 (4.4.4) 

where 𝐴𝑂  the unit is vector of the optical axis and 𝑢 is the point of the conic surface. 

Put eq. 4.4.1 into 4.4.2 will yield  

𝑃! =
!!"!!!! !!! !∗! !

!!!! !!! !∗! !
!
!

 .                                                                                        (4.4.5) 

 

Snell’s Law 

 

Snell’s law was applied to define the refractive function, which can be expressed as  

𝑳!!×𝑳𝝀 = 𝜇(𝑳!!×𝑳!)                                                                                (4.4.6) 

where 𝑳!′ is the direction vector of the refracted ray, 𝑳! is the direction vector of the 

unrefracted ray, 𝑳!! is the direction of the normal to the surface, 𝜇 is the ratio of the 

refractive indices of both sides of the refracting surfaces. That is, 𝑛 is the refractive 

index of the coming ray, 𝑛′ is the refractive index of the refracted ray, then 𝜇 = 𝑛/𝑛′. 

The refractive ray direction vector can be calculated as  

𝑳!′ = 𝜇𝑳!! + 𝛾𝑳!                                                                                                       (4.4.7) 

where 𝛾 = −𝜇 𝑳!!×𝑳! + 𝑠𝑞𝑟𝑡 1− 𝜇! 1− 𝑳!!×𝑳! ! . 
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 Refractive	
  Media	
  4.4.2
	
  
In an inhomogeneous media, the ray-tracing algorithm was composed of two steps: 

tracing the ray going through GRIN medium; calculating the intersection of the ray at 

the refractive surface. 

 

As mentioned above, the ray was defined as 

𝑹 = (𝑥,𝑦, 𝑧), 

𝑇 = 𝒅𝑹
!"
= !"#

!"
, !"#
!"
, !"#
!"

= (𝑛𝛼,𝑛𝛽,𝑛𝛿), 

where 𝛼,𝛽and 𝛿 are the components to define the direction of the ray, which are the 

direction cosines of the ray. According to (Sharma, Kumar et al.), the ray through 

gradient index media can be expressed as  
!!𝑹
!!!

= 𝐷 𝑹 .                                                                                                              (4.4.8)  

Then the next point can be expressed as  

𝑹!!! = 𝑹! + Δ𝑡[𝑇! + (𝐴 + 2𝐵)/6], 

𝑇!!! = 𝑇! + (𝐴 + 4𝐵 + 𝐶)/6, 

where  

𝐴𝑂 = Δ𝑡𝐷 𝑹!  

𝐵 = Δ𝑡𝐷(𝑹! + Δ𝑡𝑇! +
1
8Δ𝑡𝐴) 

𝐶 = Δ𝑡𝐷(𝑹! + ΔtT! +
1
2Δ𝑡𝐵) 

Δ𝑡 is the extrapolation distance, it also represent the accuracy, the smaller value of Δ𝑡 

the more accurate the result. 

 

To find the optimal size of Δ𝑡, (Stone and Forbes, 1990) proposed a method to transfer 

from the point to  surface by applying the numerical ray equation with accuracy of 

Δ𝑡!and three order polynomial (Sharma and Ghatak 1986). The coefficients of those 

polynomials can be found by calculating the ray positions and ray slopes at Runge-

Kutta points, 

𝑹!!! = 𝑹! + 𝑡𝑇! +
!
!!
!!"

!!
+

!
!!!

!!!!!!!"

!!!
+ ! !"!!!!!

!!!
.                           (4.4.9) 

 

Optical Path 
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The optical path length (OPL) in the media can be calculated as the multiplication of the 

geometric length of the path by the index of refraction  

𝑂𝑃𝐿 = 𝑛(𝑠)𝑑𝑠, 

Where 𝑠 is the surface, the height of the ray h 𝑞!  from the optical axis is  

h 𝑞! = h!(1+ 𝑛(𝑟)/ 𝑛! −
!!(!)!!

!
𝑞!!                                                                (4.4.10) 

where 𝑞! is the surface at sagittal plane, h! is the entrance height of the ray (the height 

of the ray at the starting point at retina above the optical axis), in this study,  h! is 0 at 0 

degree observation angle, and 3.7 mm at 60 degree off axis (calculated from the radius 

of curvature of the retina in coordination with the angle of 60). 

Refractive index 

The refractive index n  of point (x! ,y! ) can be found from (Smith, Atchison et 

al,1992.)’s equation 

N 𝑟 = c! + 𝑐!𝑟! + 𝑐!𝑟! + 𝑐!𝑟! + 𝑐!𝑟! +⋯.                                                       (4.4.11) 

where 𝑟 is normalized distance from the center of the lens (i.e., the edge always has an 𝑟 

value of 1). 𝑐!, 𝑐!, etc. are coefficients which set the form of the refractive index 

distribution inside the lens, and r is related to the point (𝑥,𝑦) within the lens by 

𝑟 = !!!! !

!!!
+ !!

!!
                                                                                                      (4.4.12a) 

and 

 𝑟 = !!

!!!
+ !!

!!
                                                                                                            (4.4.12b) 

where 𝑎!, 𝑎! are the semi-axis lengths along the optical axis, and 𝑏 is the z-direction 

semi-axis length, the equatorial radius of the lens ( Figure	
  31: 10a applies to the front of 

the lens, 10b to the back). The reason of choosing these equations above to calculate the 

refractive index is to simplify ray-tracing calculating process, as 5000 of rays will be 

refracted at all the conic refractive surfaces of the inner layers of the lens. 
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Figure	
  31:	
  Diagrammatic	
  representation	
  of	
  the	
  lens	
  of	
  the	
  eye	
  in	
  the	
  sagittal	
  section,	
  

derived	
  from	
  Atchison,	
  D.	
  A.	
  and	
  G.	
  Smith	
  (1995). 

The corresponding surface vertex radii 𝑅! and 𝑅! can be calculated by 

 𝑅! =
!!

!!
,        𝑅! = − !!

!!
                                                                                               (4.4.13)  

Applying all the representations, in 1995 Atchison and Smith showed that the Gradient 

index contribution to the power of the anterior and posterior portions of the lens are 

given by  

𝐹!" = −
!!! !!!

!
!!!!

!
!!!

!!
  ,                                                                                       (4.4.14a)  

and 

 𝐹!" = −
!!! !!!

!
!!!!

!
!!!

!!
  .                                                                                      (4.4.14b) 

𝐹!"#$ can be calculated by the sum of equations 4.4.14a and 4.4.14b as  

𝐹!"#$ = 12(𝑑!/𝑏!)(𝑐! +
!
!
𝑐! +

!
!
𝑐!)                                                                   (4.4.15) 

The lens surface power can be expressed as  

𝐹! =
!!"!!!"

!!"
+ !!"!!!"

!!"
− (𝑑 ∗ !!"!!!"

!!"
∗ !!"!!!"

!!"
)/𝑛!" ,                                         (4.4.16) 

where 𝑑 is the lens thickness, 𝑛!" , 𝑛!", 𝑛!" and 𝑛!" are refractive indexes of anterior 

lens surface, posterior lens surface, anterior chamber and vitreous chamber . 

If 𝑐! and 𝑐!are put equal to zero, the value of 𝑐! can be determined by minimizing the 

merit function  
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𝑴 = !!!!!!"
!!"

+ !!"!!!"
!!"

−
!∗!!"!!!"!!"

∗
!!"!!!"

!!"

!!

!

− 𝐹! +
!!
!!
𝑐!

!
                             (4.4.17) 

The refractive index profile in the equatorial plane can be expressed as 

𝑛 𝑥 = 𝑐! + 𝑐!
!
!

!
                                                                                                 (4.4.18)  

After passing through the convex surface of the lens, the ray direction will be changed 

from W! to  W!
! as shown in Eq. 3.4.5, and will continue to the next refractive surface. 

After passing through the surface of the lens, the ray direction will be changed from ∆Q 

to  ∆Q′ as given by eq. 3.4.6, and will continue to the next refractive surface. In addition, 

for both front and rear half lens, the radius of curvature was proportional from the outer 

layer to the core layer, which means once the outer layer changes, it can lead to a 

proportional change to the inner layers; the shape of asphericity of the inner layers was 

set the same as the outer layer.  

 

For further comparison of the aberration with the real eye, an assumption was made 

when collecting aberration data from the model eye that a SH sensor was conjugated to 

the pupil, which follows the same principle of the COAS-HD instrument (Complete 

Ophthalmic Analysis System). Therefore, to compare with the result from COAS, 

before the ray traveled through the cornea, it was captured at the pupil as shown in	
  

Figure 32. This is of course easy to do in modelling but physically impossible. The 

COAS-HD attempts to do this but cannot observe any aberration introduced at the 

corneal we therefore must include the corneal influence for direct comparison.  
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(a)

 

(b) 

Figure 32: the structure of ray tracing schematic eye 

As shown in Figure 32 (a), the SH sensor from the COAS-HD instrument is conjugated 

at the pupil to catch the wavefront of the coming light. Therefore, to compare the data 

from COAS-HD with that obtained from our modelling, we need to collect the same 

wavefront at the same position. A convex lens was placed at one focal length to the 

pupil outside the eye, and at second focal length to the convex lens, a SH sensor was 

placed to monitor the wavefront as shown in Figure 32 (b). 
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In this study, only the angle of the ray passing closest to the center of each lenslet was 

recorded to achieve the accuracy of the centroids’ calculation. Especially, to ensure the 

possibility of the ray passing close to the center of the lenslet where the centroid 

calculation was conducted, a large number of rays applied in the ray tracing process are 

necessary to start with at the beginning point on the retina.  

In this study, approximately 5000 rays at each field angle were traced from the retina; 

the number was tested manually to satisfy the requirement above and it can be reduced 

at large angles to the axis.  

The tilt of each lenslet was finalised with the average tilt of the rays, which crossed 

closest to the centre of each lenslet. Since only tilts are measured, the SH cannot detect 

discontinuous steps in the wavefront, therefore a smoothing program in pixels executed 

in Matlab was applied to ensure the continuity of the wavefront. In this experiment, the 

lens designed contains only 10 elliptical layers with discrete distribution. The reason of 

ten layers was chosen is to simplify the calculation progress.  In detail, all the tips and 

tilts of each pixel were joined together from head to end, and a smooth plot was applied 

across the entire lens surface to remove the sharp edge of the curvature. Specially, these 

tilt angles were used to determine centroids values W  from the derivative of wavefront 

W(x, y) in x and y by 

!!(!,!)
!!

= ∆!
!

, 

  !!(!,!)
!!

= ∆!
!

                                                                                                             (4.4.19) 

where f is the focal length of the SH sensor. The same method was applied to calculate 

the centroids values 𝐖 from each Zernike polynomial, 𝒁, used in a reconstruction. After 

that, Zernike coefficients, 𝑨, describing the aberrated wavefront can then be obtained, 

𝐀 = (𝐙!𝐙)!!    𝐙!𝐖.                                                                                               (4.4.20) 

After that the Zernike coefficients matrix can be used for further wavefront comparison, 

details as described in the following section. 

4.5 Experimental	
  Result	
  and	
  Discussion	
  

 Data	
  Collection	
  4.5.1
 

To initialize the parameters of the eye model, five patients’ eye data were collected 

from a lens measuring instrument (Lenstar LS900), a cornea measuring instrument 
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(Pentacam), a custom built Phakometer (built in Queensland University Technology, 

Brisbane, Australia (QUT)), and MRI images analysis data. In detail, most subjects are 

ranging from 20 to 30 years. Specially, the changes of the lens parameters during 

accommodation were analyzed from MRI images. 

 

A Phakometer was built in QUT group on a 450mm x 300mm optical table with a 

forehead platform for easy alignment as shown in Figure	
  33. It includes a semicircular 

ring of thirteen 890 nm LEDs with 20° angle inwards. The ring arrangement was used 

as a reference to make images more easily distinguishable, and they are conjugated at 

the pupil.  

 

	
  

Figure	
  33:	
  Structure	
  of	
  phakometer	
  optical	
  system.	
  Purkinje	
  images	
  are	
  formed	
  as	
  
ring	
  source.	
  The	
  equipment	
  was	
  built	
  by	
  QUT	
  group;	
  this	
  graph	
  is	
  retrieved	
  from	
  

(Adnan,	
  2014)’s	
  Ph.D.	
  thesis	
  

Theoretically as described in Figure	
  33, this phakometer was built with three modes of 

fitting ellipses, a merit function to calculate lens radii of curvature, and photorefraction 

to measure refraction.  The fitting ellipse mode fitted ellipses to Purkinje images PI, PIII, 

PIV, the pupil and the limbus. , PI can be easily seen at the focusing plane, but the PIII 
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and PIV needed to be calculated. Heights of PI, PIII and PIV were estimated from the 

image which was taken when the participant was looking at the central fixation target. 

These heights were the averages of horizontal and vertical components of the ellipse 

fitted to the Purkinje images. Three images were analyzed for each participant and the 

heights were averaged. 

A merit function was used to calculate lens radii of curvature and equivalent refractive 

index from Purkinje image heights together with the refraction determined from the 

comptometer setting, corneal radii of curvatures obtained from Pentacam, and corneal 

thickness, anterior chamber depth, lens thickness, vitreous and axial length obtained 

from Lenstar.  

Refraction errors are shown in Figure	
  34, for positioning errors of 5 mm and 10mm. In 

practice, the positioning error should not be greater than (–) 5 mm, which is not likely to 

result in errors of refraction or accommodation greater than 0.5 D. 

	
  

Figure	
  34:	
  Refraction	
  error,	
  as	
  a	
  function	
  of	
  refraction	
  given	
  on	
  Optometer	
  scale	
  
from	
  the	
  Phakometer,	
  caused	
  by	
  Phakometer	
  being	
  too	
  colse	
  to	
  the	
  eye	
  by	
  -­‐5	
  mm	
  to	
  

-­‐10	
  mm.	
  

During the MRI procedure, participants were positioned supine on the table and heads 

were stabilised with appropriate padding. An adjustable mirror which was able to move 

up and down was mounted at approximately 45° angle to the vertical in the magnetic 

bore. Participants were asked to focus (through the mirror) on a white Maltese cross 

fixation target on a black background presented on a translucent screen at the end of the 

magnet bore at approximately 0.93 m from the eye. 
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A  standard  4.0  cm  (Siemens)  receiver  coil  was  taped  over  the  examined  eye  so  

that  the  target  was  visible  through  the  coil  hole.  A  thin  spacer  made  from  self-­‐‑

adhesive  felt  glued  to  the  surface  of  the  coil  body  to  minimise  skin  contact  with  

the  coil.  The  non-­‐‑examined  eye  was  occluded  using  a  patch.  Participants  were  

instructed  to  focus  and  fixate  on  the  target,  and  minimize  blinking  during  data  

acquisition.   They  were   advised   to   blink   and/or   close   their   eyes   between   data  

acquisitions   to   avoid   eye   dryness.   Participants   were   advised   to   focus   on   the  

target  without  excessive  effort  and  to  avoid  any  head  movement.  

	
  
Corneal Radii of Curvature 

Corneal radii of curvatures were obtained from Pentacam, and corneal thickness, 

anterior chamber depth, lens thickness and axial length were obtained from Lenstar. 

Each parameter was averaged from 3 sets of data, and the merit function was set to 

determine when further improvement was not possible; 2000 cycles was set to ensure 

that the function was determined with its optimum value. Two algorithms have been 

used to determine the lens radii of curvature from the Purkinje image: the equivalent 

mirror function and the merit function. The merit function is more accurate than the 

equivalent mirror function because the latter overestimates the posterior radius of 

curvature (Rosales, Dubbelman et al. 2006). For this the merit function used was from 

(Atchison, Markwell et al. 2008). 

Lens Anterior Surface  

According to P. Rosales’s Ph.D. thesis, the radius of curvature 𝑅!′ of the equivalent 

mirror for the anterior lens surface is given by 

  𝑅!′ = 𝑅!(𝒉𝟑/𝒉𝟏)                                                                                                (4.5.1) 

where 𝒉𝟏 and 𝒉𝟑 are the heights of first and third Purkinje images, and 𝑅! is the radius 

of curvature of the anterior cornea. 
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Figure 35: Equivalent mirror method for determining anterior radius of curvature of lens. 

In Figure 35, 𝐴!′is the vertex and 𝐶!′ is the centre of curvature of the anterior surface of 

equivalent mirror, 𝐴!is the vertex and 𝐶! is the centre of curvature of anterior lens 

surface, 𝑑!is the apparent anterior chamber depth, 𝑑!is the real anterior chamber depth, 

𝑅!′is the radius of curvature of the equivalent mirror, 𝑅! is the radius of curvature of the 

anterior lens surface, and 𝑛! and 𝑛! are the refractive indices of air and aqueous humor.  

𝐴!𝐶! = 𝑑! + 𝑅!′ 𝐴!𝐶!! = 𝑑! + 𝑅!                                                                            (4.5.2) 

Since 𝐶! and 𝐶!′ are conjugate by refraction at the corneal surface 

 𝐿!! − 𝐿! =
!!

!!!!!
− 1/(𝑑! + 𝑅!′)                                                                              (4.5.3) 

Then 𝑅!′ can be determined. 

Lens Posterior Surface 

According to P. Rosales’s Ph.D. thesis, the radius of curvature of the equivalent mirror 

corresponding to the posterior surface is given by 

𝑅!! = 𝑅!(𝒉𝟒/𝒉𝟏)                                                                                                       (4.5.4) 

where ℎ! and ℎ! are the heights of first and fourth Purkinje images, and 𝑅! is the radius 

of curvature of the cornea. The method described for the anterior lens surface can be 

modified for the posterior lens surface in Figure 36. 
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Figure 36: Structure of posterior radius of curvature of lens. 

Alternatively, if the ocular refraction K, the intraocular lengths, the corneal and anterior 

lens surface radii of curvature are known, ray-tracing can be done from the far point (l = 

1/K) to the posterior lens surface. The image reduced vengeance 𝐿!!  and posterior lens 

surface power 𝐹! are given by 

𝐿!! = 𝑛!/𝑑! ,𝐹! = 𝐿!! − 𝐿!                                                                                     (4.5.5) 

and the posterior lens surface radius of curvature is given by  

𝑅! = 𝐹!/(𝑛! − 𝑛!)                                                                                                   (4.5.6) 

 Initiation	
  of	
  the	
  Schematic	
  Eye	
  Model	
  4.5.2
 

After collecting the data from the instruments introduced above, the data was analyzed 

as averaged. Parameters of the eyes’ structure from the patients were averaged to 

determine the parameters for a schematic eye, as shown in Figure 37.   
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Patients  1 2 3 4 5 Average 
Anterior cornea R (mm) 7.79 7.79 7.79 7.79 7.79 7.758 

Anterior cornea 
R(Accommodated) (mm) 

7.84 7.84 7.84 7.84 7.84 7.84 

Posterior Cornea R (mm) 6.34 6.34 6.34 6.34 6.34 6.34 

Posterior Cornea R 

(Accommodated)(mm) 

6.36 6.36 6.36 6.36 6.36 6.36 

Retina radius of curvature (mm) 11.7 11.7 11.7 11.7 11.7 11.7 

Cornea asphericity (Q) 

( rear/front) 

-.35/-

.33 

-.35/-.33 -.35/-.33 -.35/-.33 -.35/-.33 -.35/-.33 

Lens thickness(mm) 3.72 3.72 3.72 3.72 3.72 3.72 

Lens thickness (Accommodated) 

(mm) 

4.20 4.20 4.20 4.20 4.20 4.20 

Cornea thickness (mm) 

(unaccommodated/accommodate

d) 

.574 .574 .574 .574 .574 .574 

Anterior chamber  

(Unaccommodated) (mm) 

3.37 3.37 3.37 3.37 3.37 3.37 

Vitreous chamber 

(Unaccommodated) (mm) 

2.95 2.95 2.95 2.95 2.95 2.95 

Vitreous chamber 

(Accommodated) (mm) 

16.38 16.38 16.38 16.38 16.38 16.38 

Anterior lens R 

(Unaccommodated) (mm) 

16.37 16.37 16.37 16.37 16.37 16.37 

Anterior lens  R 

(Accommodated) (mm) 

11.86 11.86 11.86 11.86 11.86 11.86 

Lens surface curvature 

(Unaccommodated) (front/rear) 

0.06/0.

17 

0.06/0.17 0.06/0.17 0.06/0.17 0.06/0.1

7 

0.06/0.17 

Lens surface curvature 

(accommodated) (front/rear) 

0.165/0

.171 

0.165/0.1

71 

0.165/0.1

71 

0.165/0.1

71 

0.165/0.

171 

0.165/0.1

71 

Posterior lens R 

(Unaccommodated) (mm) 

-6.67 -6.67 -6.67 -6.67 -6.67 -6.67 

Posterior lens R 

(Accommodated) (mm) 

-5.34 -5.34 -5.34 -5.34 -5.34 -5.34 

Figure	
  37:	
  The	
  real	
  eye	
  data	
  of	
  refractive	
  elements	
  from	
  5	
  patients	
  with	
  accommodation	
  (6D),	
  ranging	
  
from	
  20	
  to	
  30	
  years	
  old	
  group
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To activate the model, the initial data was chosen based on these 5 patients’ data. The 

purpose of using the average data from the 5 patients to initiate the model is to make 

later comparison between the model and the individual subject’ data easier. This is 

executed in model testing process. Furthermore, the uncertainty of the data was not 

applied in this thesis, because first of all, there is limited in data collection; secondly, 

the purpose of this research is to test the model, in another words, the main aim is not to 

find out the trend of the changing optical parameters of the eye but the actual figures of 

the optical characteristics of the eye.  

 

In particular, the initial data for the schematic eye Figure	
  38 was set up based on the 

average unaccommodated data of those 5 patients from Figure	
   38, the Zernike 

aberration coefficients 𝐴!"!!"#$%&  up to 6th order from the schematic eye were 

calculated by ray tracing in the model for each field angle referenced to the center of the 

pupil, with the refractive index of each lens layer calculated from eq. 3.4.16. In the 

meanwhile, the five patients were examined over the horizontal median using a COAS-

HD instrument while observing targets at prescribed angles off-axis. Then the Zernike 

coefficients 𝐴!"#$"%" from the SH images of one subject’s eye was analyzed.  
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Radius of curvature (retina) (mm) 11.99 

Anterior cornea R (mm) 7.758 

Posterior cornea R(mm) 6.366 

Cornea anterior conic constant 𝒌𝒂𝒄 -0.156 

Cornea posterior conic constant 𝒌𝒑𝒄 -0.308 

Cornea central thickness (mm) 0.546 

Anterior chamber depth (mm) 3.152 

Lens thickness (mm) 3.588 

Lens anterior radius of curvature (mm) 11.47 

Lens posterior radius of curvature (mm) -6.28 

Lens anterior conic constant 𝒌𝒂𝒍 -4.8 

Lens posterior conic constant 𝒌𝒑𝒍 -0.30 

Vitreous chamber depth (mm) 16.53 

Refractive Index Profile 

Lens layer number r (normalized distance) n(refractive index) 

0  1.3837 

1 1 1.391 

2 0.8 1.3967 

3 0.6 1.4009 

4 0.4 1.4038 

5 0.2 1.4054 

5* 0.2 1.4058 

4* 0.4 1.4053 

3* 0.6 1.4045 

2* 0.8 1.4033 

1* 1.0 1.4017 

0*  1.3998 

Figure	
  38:	
  Initial	
  figure	
  of	
  the	
  schematic	
  eye	
  model	
  (*	
  is	
  the	
  layer	
  at	
  the	
  back	
  half	
  of	
  
the	
  lens)	
  

In Figure	
   38, 𝑐! is 1.406, 𝑐! is -0.020, the refractive indexes were calculated from 

eq.3.4.16. To test the function of the model, we manually match the 𝐴!"!!"#$%& with 

𝐴!"#$"%"  by changing the parameters of the schematic eye, including lens radii of 
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curvature (including inner lens layers), lens thickness, lens curvature (including inner 

lens layers), cornea curvature, cornea radius of curvature etc. In particular, when the 

radius of curvature of the lens surface was changed, the inner lens surfaces will be 

modified accordingly, as they were designed to be proportional of outer lens surface (i.e. 

Assume the radii of curvature of the outer layer is 11.47 mm, the second outer layer will 

be 11.47*5/6=9.56 mm).  

 Modification	
  of	
  the	
  Average	
  Schematic	
  Eye	
  Model	
  with	
  a	
  Real	
  Subject’s	
  Eye	
  4.5.3
	
  
There were two steps of changing the curvature of both lens and cornea. One is called 

‘global adjusting’, which means that the curvature of the entire conic surface of the lens 

layer will be modified as an integral. The other one is called ‘patch adjusting’, which 

means that the conic surface of the lens layer will be broken into several patches, each 

patch consists of 4 pixels, the curvature of the patch can then be modified into pixels 

without changing the global curvature, as shown in Figure 32. In this case, the curvature 

of the path can be changed without altering the entire surface, modifying the curvature 

at the point, in order to get a better fitting of the 𝐴!"!!"#$%& with 𝐴!"#$"%" at large field 

angles like 60 degree and leaves small field angles unchanged. 

 

At the end, a smoothness fit was applied to the refractive surfaces across all the pixels. 

Particularly, the Zernike terms were matched individually with all the field angles at a 

time, and averaged the final result to get the best fit cross the field angles. Therefore, 

some trade-off during the matching process is necessary. For instance, assume that 

increasing the lens radius of curvature by 10 percent can increase the matching rates of 

𝑍!" from 0.7 to 0.8 but will drop the matching rates of 𝑍!" from 0.7 to 0.65, therefore, 

to balance among all Zernike polynomials, it is optimal to increase the lens radius of 

curvature by 5 percent to achieve 0.75 in 𝑍!" and 0.675 in 𝑍!"(Matching rate ranges 

from 0 to 1 and the closer to 1 the better match, which was calculated from the 

‘similarity test’, explained in detail at the end of section 4.5.3).  

 

Furthermore, during the matching process, all the parameters of the schematic eye were 

modified within the differences between unaccommodated and accommodated values 

from one selected subject in Figure	
   38, the purpose of this is to obtain a functional 

similar eye model to the selected real eye. For example, the instrumental data of the 
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anterior lens radii of curvature ranges from 11.86 mm to 7.63 mm during 6D 

accommodation, therefore during the matching process, the anterior radii of curvature 

cannot exceed this range. In particular, the lens radii of curvature, lens curvature, lens 

thickness cannot be changed outside the boundary.  

 

Moreover, a small amount of changes in the first and second order Zernike terms, the 

majority energy, may cause a dramatic changes in higher order Zernike polynomials. 

Therefore, in the modelling, Zernike coefficients up to the second order gain the most 

consideration. Specially, to change the thickness of the lens, more refractive lens layers 

can be added to the surfaces of the lens or simply changing the radius of curvature of 

the lens surface if there is only small changes of the lens thickness (both anterior and 

posterior surfaces were considered), in return, the anterior and vitreous chamber depth 

will decrease. In this study, we did not considering adding more lens layers.  

 

To modify the radius of curvature of the lens layers is to change the distance of the 

incident surfaces to the core surfaces of the lens in coordination with the 𝑥 and 𝑦 

position of the incoming ray, which also in turn will change the ‘global’ curvature of the 

surfaces.  To modify the ‘patch’ curvature of the lens refractive layers is to adjust the 

refracting angle of the incident pixel of the lens layer with the incoming rays.  
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Figure	
  39:	
  Comparison	
  of	
  the	
  Zernike	
  Coefficients	
  up	
  to	
  2nd	
  order	
  between	
  
Schematic	
  eye	
  and	
  measured	
  eye	
  from	
  -­‐60	
  degree	
  to	
  +60	
  degree	
  along	
  the	
  

horizontal	
  visual	
  field	
  with	
  5mm	
  pupil	
  size	
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Figure	
  39 shows the matching result of the first and second Zernike coefficients from a 

schematic eye model to a real eye. It is obvious that the small field angles up to 50 

degree matched better than larger field angles. And the scale of the schematic eye is 

much smoother than the real eye, as some specific intersections between rays of the real 

eye cannot be detected with the model eye. In addition, as it was claimed by (Mathur, 

Gehrmann et al., 2003) that a change in pupil size can affect the aberrations 

dramatically. In this study, 5 mm pupil size was set in investigating both schematic eye 

and real eyes. In particular, regards to schematic eye is to ensure the size of the exit for 

the rays at the pupil that can reach to the SH sensor as shown in Figure 32. With respect 

to real eye data, the pupil size can be set as 5mm while calculating the wavefront 

aberrations.  Finally, first and second order Zernikes gained a major match rate of 0.826 

(82.6%), and 0.639 (63.9%) match rate was obtained across all Zernike terms up to 6th 

order at the best optimisation for the model. A “similarity test” was performed in 

Matlab to investigate the agreement between the results from the schematic model and 

the real eye where value of 1 represents perfect match (100%). More details are stated 

in next section.  Therefore, this schematic model had a reasonable response in the 

aberrations when its optical elements were changed.  

 Model	
  Testing	
  4.5.4
 

To test the sensitivity of the model with 6D accommodation, the parameters of the 

model eye (averaged unaccommodated data from those 5 patients) were adjusted with 

all the changes of the real eyes during accommodation that were investigated by using 

the instruments and analysing the MRI images (Figure	
  39). The lens data was analysed 

from MRI images and the changes of cornea data was collected from Pentacam. To find 

the functional differences to the aberration of the lens and cornea of the adjusted model 

eye, the changes of first and second Zernike aberration coefficients of the adjusted 

model eye were recorded in both conditions of increasing its parameters of lens and 

cornea separately. 

 

In particular, in Figure	
  40, the changes of Zernike coefficients up to the second order 

were plotted with increasing the lens thickness to 9.1% (0.32mm); decreasing the radius 

of curvature of the anterior lens by 36.1% (4.15mm) and posterior lens to 19.2% 
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(1.2mm); increasing the lens curvature by 0.091 (front) and 0.002 (rear); During the 

changes of lens thickness, the anterior chamber depth was reduced by 11.1 % (0.32mm) 

and vitreous chamber depth was reduced by 0.02mm. Furthermore, the ‘patch adjusting’ 

method was not applied while modifying the curvature of the lens. Regarding the 

cornea, no significant changes were observed during accommodation, therefore, the 

refractive factors of cornea were set unchanged.  
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Figure	
  40:	
  The	
  absolute	
  value	
  of	
  first	
  and	
  second	
  Zernike	
  coefficients	
  in	
  response	
  to	
  
(top)	
  changing	
  the	
  entire	
  lens	
  parameters	
  of	
  the	
  model	
  eye;	
  (2nd)	
  changing	
  the	
  
anterior	
  lens	
  parameters	
  of	
  the	
  model	
  eye;	
  (3rd	
  )	
  unchanged	
  entire	
  cornea	
  of	
  the	
  

model	
  eye;	
  (4th) 

As illustrated in Figure	
   40, a small average value of the first and second Zernike 

aberrations for the entire cornea of the model eye during accommodation (6D) was 

observed, but among all the Zernike terms, astigmatism was relatively larger at off axis; 

about 0.06𝜇𝑚. The absolute value of astigmatism observed in the lens was much larger, 
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about 0.6𝜇𝑚. For the model eye designed in this study, the differential effect for the 

entire cornea and the entire lens suggests that the first and second order Zernike 

aberrations were mainly contributed by the lens.  And the first and second order Zernike 

coefficients between the anterior half lens and the whole lens suggests that the anterior 

half lens accounts for around 60% of the whole lens during accommodation. The 

difference between the front cornea and the whole cornea indicates that the aberration 

caused by the front cornea was compensated most by the back of the cornea. 

Furthermore, the changes of refractive index with accommodation in the lens (555nm 

wavelength) were recorded during the model testing as shown in Figure	
  41. 

 

	
  
Figure	
  41:	
  	
  Refractive-­‐index	
  profiles	
  for	
  lens	
  of	
  the	
  model	
  eye	
  as	
  a	
  function	
  with	
  

normalised	
  distance	
  from	
  0	
  to1	
  (centre	
  to	
  surface	
  of	
  the	
  lens)	
  with	
  accommodation	
  
(6D)	
  (20-­‐30	
  age	
  group) 

As shown in Figure	
   41, during accommodation, the refractive index was slightly 

increased at the near surface layers of the lens, but not much was found at the inner lens.  

 

A wide-field schematic eye model with adjustable inner optical structure was proposed 

and tested in order to provide a better understanding of the optical system of the eye. 

The first and second order of Zernike aberrations of the model eye with accommodation 

were found attributed mainly to the lens compare to the cornea, in particular the anterior 

half lens. The aberrations that caused by the anterior cornea was compensated by the 

posterior cornea. Among all the lower order Zernike aberrations, ‘astigmatism’ was 

observed relatively larger than the others for the entire cornea. Furthermore, a slight 

increase of refractive index of the lens was found during accommodation. 
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 Wavefront	
  Reconstruction	
  of	
  the	
  Crystalline	
  Lens	
  4.5.5
	
  
Figure 42 shows the wavefront aberration up to 6th order of the crystalline lens with 

accommodation (0D to 6D). The crystalline lens has negative spherical aberration peaks 

at the core and reduces towards the cortex due to a gradient index of refraction. In 

addition, in unaccommodated state, the whole eye aberrations are dominated by the 

positive spherical aberrations of the cornea. With accommodation, the negative 

spherical aberration of the lens increases and compensates the positive spherical 

aberration that generated from the cornea. The reason of this is possibly due to the lens 

shape becomes more spherical with accommodation, which can result in lens spherical 

aberration becoming more positive (Figure 42). 

 

 
Figure 42: Wavefront aberration map of cornea (unaccommodated state) (top left); (top 

right) crystalline lens (0D); (bottom left) crystalline lens (2D); (bottom right) crystalline 

lens (6D) 

4.6 Conclusion	
  and	
  Future	
  Works	
  
	
  

Ray tracing a schematic eye can help to understand the optical structure and anatomical 

characters of the human eyes. A more reliable result can be obtained by combining the 
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instrument results and the software simulating results together. A sophisticated lens 

with adjustable parameters designed in this study can imitate the real subject’s lens, 

which can help to find the contribution in terms of wavefront aberration between the 

lens and cornea of the eye. In addition, tracing the light path of the rays through the 

entire eye achieved the possibility of obtaining the refractive index profile. Moreover, 

there are some limitations of using a discrete GRIN profile while designing the lens 

structure, for instance, the rays only get refracted at the 10 lens layers, which limited the 

precision of average tilts value of the rays that pass the entire lens. 

 

There are still some future works left from this study. For instance, this study focused 

on the investigation on the lower order Zernikes wavefront reconstruction, however 

some important higher order aberrations like spherical aberration in peripheral field, 

coma etc. need to be investigated in the future, which requires more precise ray tracing 

algorithms. Regarding the lens structure of the model eye, the inner lens layers need to 

be added to provide more information of the lens, which requires better algorithms to 

describe the surface of the lens layers.  Besides, in the real eyes, there exists some 

decentration between the anterior cornea and the posterior cornea, which can severely 

affect the refraction of the rays coming out of the eye, however, in this study, no 

decentration was considered and it was left for future works.  

 

In the next chapter, the reconstruction of the refractive index of the crystalline lens from 

MRI images is introduced and a new tomographic method is applied and discussed.   
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5 Chapter	
  Four:	
  Tomographic	
  Reconstruction	
  of	
  the	
  Refractive	
  
Index	
  

 

Many researchers measured the distribution of the refractive index in the crystalline lens 

since Thomas Young proposed the existence of the variable index in 1801. The first 

researcher in measuring the refractive index inside the lens was (Matthiessen) in 1885. 

In this chapter, the theory based upon which a tomographic algorithm for reconstruction 

of the gradient index will be formulated to fit the observed wavefront to the MRI 

dimension limited path length as discussed in Chapter 3. In particular, this base includes 

geometrical optics and tomography. Some important concepts of light propagation 

under the approximation of geometrical optics in inhomogeneous and isotropic medium, 

in particular, optical path and ray of light can be bent at each refractive surface inside 

the eye, therefore, the conventional tomography cannot be applied to the wavefront 

reconstruction of the eye. In this thesis the modified tomographic method is introduced 

based on back projection to reconstruct the optical path that a ray of light follows 

through the eye. 

5.1 Basic	
  Tomography	
  Algorithms	
  
 

Tomography is the reconstruction of the distribution of a given physical magnitude, 

𝑓(𝑥, 𝑧), from line integrations of that magnitude. Conventionally, the Radon transform 

is the operator of the tomography algorithm, it represents the integration of the function 

𝑓(𝑥, 𝑧)along a line with certain angle, 𝜃, to the origin of the coordinate system, 

𝑅[𝑓 𝑝!,𝜃 ] = 𝑓(𝑥, 𝑧)𝛿(𝑝 − 𝑧𝑐𝑜𝑠𝜃 − 𝑥𝑠𝑖𝑛𝜃)𝑑𝑥𝑑𝑧!
!!

!
!!                                  (5.1.1) 

where 𝛿 𝑝 − 𝑧𝑐𝑜𝑠𝜃 − 𝑥𝑠𝑖𝑛𝜃  is the Dirac delta function in the line defined by (𝑝,𝜃).  

 

Projection is the main concept in tomography. As shown in Figure 43, a projection is 

defined as the set of values of the Radon transform with an angle 𝜃 for 𝑝 ∈ 𝑝!,𝑝! , 𝑝! 

and 𝑝! are the values of where 𝑝 traverses the surfaces Σ. With all the values from a 

range of the angles 𝜃 ∈ [0,𝜋], the distribution 𝑓(𝑥, 𝑧) can be tomographically retrieved.  
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Figure 43: Surface where a Radon transform is calculated along the line defined by 

coordinates  (𝒑,𝜽) (Epstein, 2008). 

 Transform	
  Algorithms	
  5.1.1
	
  
The Radon transform (R) is used to reconstruct f(x, z) zonally at each point of the 

surface Σ (Epstein, 2008). The inverse Radon transform R!! is shown for all square 

integral functions f(x, z) as: 

[R!!Rf] x, z = f(x, z).                                                                                      (5.1.2) 

The requirement of Radon transform is that the input data needs to be close to the 

theoretical ideal of having projections and transforms for all 𝜃  and 𝑝. If there is 

incomplete input information, an alternative algorithm is needed to compensate the lack 

of information. Assume the distribution 𝑓(𝑥, 𝑧) can be approximated by a series of 

modal functions 𝑏!(𝑥, 𝑧): 

𝑓 𝑥, 𝑧 = 𝑎!𝑏!(𝑥, 𝑧)!
!!!                                                                                       (5.1.3) 

where 𝑎! are the modal coefficients. Then the reconstruction of the function 𝑓(𝑥, 𝑧) can 

be stated as a series expansion, which is based on the properties of linearity of the 

Radon transform: 

𝑅𝑓 = 𝑎!𝑅𝑏!!
!!! .                                                                                                (5.1.4) 

To calculate the coefficients values  𝑎!, Bayesian estimation, least variance fitting or 

least squares fitting can be applied (Epstein, 2008). 

5.2 Tomographic	
  Algorithm	
  on	
  the	
  Geometrical	
  Optics	
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In our case, the surface S is considered that shows a distribution of the refractive 

index  𝑛(𝑥, 𝑧), which was measured in section 4.5.2. According to eq.5.1.1, the Radon 

transform of the gradient index 𝑛(𝑥, 𝑧) at the point (𝑝,𝜃) can be defined as 

𝑅! 𝑝,𝜃 = 𝑛 𝑥, 𝑧 𝜎 𝑝 − 𝑧𝑐𝑜𝑠𝜃 − 𝑥𝑠𝑖𝑛𝜃 𝑑𝑥𝑑𝑧 = 𝑛(𝑥, 𝑧)𝑑𝑙!!(!,!)
!!(!,!)

!!
!!

!!
!!

.  (5.2.1) 

 

Assume that along the optical path there were two points 𝐴  and 𝐵 , which were 

described by a ray of light in a medium with a refractive index 𝑛(𝑟), then the surface 

𝑆  can be defined as 

𝑆 𝐴,𝐵 = 𝑛(𝑟)𝑑𝑠!
!                                                                                              (5.2.2) 

By comparing eq.4.1.5 and 4.1.6, the Radon transform of 𝑛(𝑥, 𝑧) for a certain direction 

is equivalent to the optical path covered by a pre-assumed ray of light that travels along 

that direction 

𝑆 𝑃!𝑃! = 𝑅! 𝑝,𝜃 = 𝑛(𝑥, 𝑧)𝑑𝑙!!(!,!)
!!(!,!)

                                                           (5.2.3) 

Thus, for a set of parallel rays that entered the surface S with an entry angle 𝜃, the 

tomographic projection of 𝑛(𝑥, 𝑧) at the angle 𝜃 can be measured by its corresponding 

optical path covered for each one of the rays inside the lens. Then the projection can be 

calculated as a function of the incidence angle of the incoming rays. Gathering all the 

possible projections covering every point of the surface  S, travelled by the rays in all 

directions.  

 

In our case, the tomographic reconstruction has several limitations. Regarding the input 

data, there will be limited amount of projections, with an angular distribution limited in 

its maximum values, due to the difficulty in data collection. This problem will be 

addressed with the discretisation of the tomographic information by applying the 

expansion algorithms in section 5.2.1. In addition for the refractive index 

distribution  𝑛(𝜌, 𝑧), where 𝜌 is the radial coordinate at the optical path direction and 𝑧 is 

the coordinate of the axis at the boundary of front and rear lens, since 𝜌 = 𝑥! + 𝑦!, for 

𝑦 = 0 without loss of generality, the 𝑛 𝜌, 𝑧 was replaced by 𝑛(𝑥, 𝑧). 

 Tomographic	
  Algorithm	
  of	
  the	
  Gradient	
  Index	
  Reconstruction	
  5.2.1
	
  
As described in section 4.1, the lens was designed with a thickness  𝑡, anterior radii of 

curvature 𝑅! , posterior radii of curvature 𝑅!. For each half lens, it was inbuilt with 5 
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refractive layers between front and rear layers with equivalent isolation in between each 

layer.  From the gradient index at any of its sagittal or meridional planes, the refractive 

index can be calculated by using eq. 4.4.15. As shown in Figure 44, the entry rays and 

the exit rays are registered to obtain the position of 𝐵 and 𝐶at the intersection of the lens 

surfaces, with entry angle 𝜃  and the deflection angles of 𝛼  at the exit, then the 

distribution of the sines of the angles of deflection sin  (𝛼 𝑥, 𝑧 ) can be obtained. The 

propagation of these initially parallel rays, whose wavefront inside the lens is referred to 

𝐿(𝑥, 𝑡). The angles also can be related as  

𝑛!"#$sin  (𝛼 𝑥, 𝑡 ) = !" !,!
!"

                                                                                       (5.2.4) 

The integration of this equation is 

𝐿 𝑥, 𝑡 = 𝑛!"#$ sin  (𝛼 𝑥, 𝑡 )𝑑𝑥 + 𝐿(0, 𝑡)!
! .                                                           (5.2.5) 

 

 
Figure 44: Sagittal plane of a lens with refractive index 𝒏(𝒙, 𝒛) illuminated by a ray 

buddles with angle 𝜽 with respect to 𝒛 coordinates. 

Assume 𝑃!and 𝑃!  are two points at the lens surface as 𝑆(𝑃!,𝑃!), the optical path 

between these two points was defined as the difference of the eikonal value between 

those two points as  

𝑆 𝑃!𝑃! = 𝑛(𝑥, 𝑧)𝑑𝑠!!
!!

                                                                                       (5.2.6) 

,where 𝑑𝑠 is the differential arc length along the ray. Assume from 𝑃! to 𝑃!, the path 

way was divided in to 3 parts (AB,BC,CD) due to the refraction of each lens layers 

inside the lens. Assume  

𝑆 𝐴𝐷 = 𝐿 𝐷 − 𝐿(𝐴),  

𝑆 𝐴!𝐷! = 𝐿 𝐷! − 𝐿 𝐴!                                                                                       (5.2.7) 
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since 𝐴 and 𝐴! are points of the same wavefront 𝑊, then  

𝐿 𝐴 = 𝐿(𝐴!). 

Therefore, the eq.4.2.7can be written as  

𝑆 𝐴𝐷 = 𝑆 𝐴𝐷 − 𝐾,                                                                                            (5.2.8) 

where 𝑆 𝐴𝐷 = sin  (𝛼 𝑥, 𝑡 )𝑑𝑥!
!  and = 𝑆(𝐴!𝐷!). 𝑆(𝐴𝐷) can be calculated from the 

deflection angles, which represents the optical path of each ray from the entry point to 

the exit point of the wavefront. K in this study is referred as piston. 

Since  

𝑆 𝐴𝐷 = 𝑛!"#$𝐴𝐵 + 𝑆 𝐵𝐶 + 𝑛!"#$𝐶𝐷,                                                                  (5.2.9) 

to calculate the path of 𝑆(𝐴𝐷) requires to calculate the path 𝑆(𝐵𝐶). 𝑆(𝐵𝐶) can be 

divided into numerous path as well, the path will continually being divided into certain 

paths until it reaches at the core of the lens, then the path can be calculated with 𝑛!"#$ 

as 

𝑆 𝐴𝑁 = sin  (𝛼 𝑥, 𝑡 )𝑑𝑥 − (!
! 𝑛!"#$𝐴𝐵 + 𝑛!"#$𝐵𝐶…𝑛!"#$ …+ 𝑛!"#$𝐴𝑁) =

𝑛 𝑥, 𝑧 𝑑𝑠 − 𝐾!
!
! .                                                                                                 (5.2.10) 

𝑆(𝐴𝑁)  measured each ray of each projection, which are the input data that the 

tomographic algorithm will retrieve the distribution of the refractive index 𝑛(𝑥, 𝑧), 

including the constant value of 𝐾!. 

 

Assume 𝑃 is the total number of projections, 𝑁! is the number of rays projected, and 

𝑑𝑠!" is the differential arc length along the ray 𝑟 of the projection 𝑃, then a least square 

fitting can be a good option to obtain the propagation path as 

𝑛!"𝑥!!
!!"
!!"

! !!!
!!!

!
!!! 𝑧!𝑑𝑠!" − 𝐾! − 𝑆 𝐴!"𝑁!"

!!!
!!!

!
!!! ,              (5.2.11) 

where 𝑀 in this thesis is equal to 12, due to 12 refractive lens layers; 𝑁! is 5000, as 

5000 rays were traced from chapter 4. 

 

With the eq. 5.2.11, another task is to find the trajectories of the rays. The number of the 

deviated rays from a straight line is unknown, thus in this case, we assume that for those 

gradients where the rays are much curved are considered as big gradients. On the 

contrary that for those gradients where the rays are hardly curved were called small 

gradients. To minimise the computer calling time and to simplify the algorithms, we 



95	
  
	
  

assume that all the crystalline gradients are not very big, therefore, a few iterations and 

a limited number of rays need to be justified while tracing the rays. From the 

experimental result, it was found that the ray curvature depends on the variation of 

𝑛(𝑥, 𝑧) between its extreme values and the maximum values reached by the gradient of 

the distribution  𝑛(𝑥, 𝑧).  

 

It is assumed that for straight lines,  𝑄 = 0, the ray path can be easily calculated by the 

two intermediate points at the lens refractive surfaces, where for 𝑄 = 1, the two 

intermediate points are interpolated for the trajectory of each ray. Therefore, the value 

of 𝑄 determines the number of the turning points of the rays inside the lens. In this 

thesis, we assume the value of the gradients is equal to the value of the turning points. 

To calculate the position of these interpolated points, it is important to consider the 

(Sharma, Kumar et al., 1982) algorithm; however, this algorithm doesn’t consider 

spatial coordinates, so in this thesis, some approximations were applied to calculate the 

joining points of the interpolated segments (Vazquez, Acosta et al. 2006).  

 

We developed the analysis that for instance shown in Figure 45, from point 𝐴 to point  𝐷, 

the ray passes through 3 (the number 3 here is an example) layers with refractive index 

from 𝑛! to 𝑛!, then the ray path will be divided into 3 parts, AB, BC, CD and with entry 

angle of 𝜃!, refractive angles of 𝜃!,𝜃!,𝜃!, and exit angle of 𝜃! at point D, the distance 

of each layer are 𝑑!,𝑑!,𝑑!, the projection of this ray can be expressed as 

[( 𝑛!"𝑓!"#$
! − 𝐾!)− 𝑆(𝐴!"𝐷!")]

!(!!!)
!!!

!
!!!

!
,                                                    (5.2.12) 

where 

𝑓!"#$
! =

𝑄𝑥!!𝑧!𝑑𝐴𝐵 +!!!"#(!!)
! 𝑥!!𝑧!𝑑𝐵𝐶 +(!!!!!)!"#  (!!)

!!!"#  (!!)
!!!
!!!

   𝑄𝑥!!𝑧!𝑑𝑄𝐶𝐷(!!!!!!!!)!"#  (!!)
(!!!!!)!"#  (!!)

   .                                                                      (5.2.13) 

Since the ray will be refracted at every layer it passes through in the lens, in this thesis, 

𝑄 is used to count the times the ray has been refracted. For instance, when  𝑄 = 0 there 

is no turning point, which means the ray is a straight line and never has been refracted; 

when 𝑄 = 1, the ray has 1 turning points, which means the ray has been refracted once 

in the lens; and 𝑄 = 10 was set as the maximum turning points. Therefore, 𝑄 is the 

symbol of defining straight rays or curved rays, and its value determines the turning 
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number of the ray inside the lens; the thickness d was calculated with the lens thickness 

and the ray height, (section 4.4.1) as shown in Figure 45. 

 

 
Figure 45: Optical ray path inside the lens 

Noting that if we take one small step of AB for example, considering the coordinate 

system of the coming rays was rotated with the angle  𝜃! , then the 𝑥!0𝑧′ plane for 𝐴𝐵 

was referred as  

𝑥 = 𝑥! cos 𝜃 − 𝑧′sin  (𝜃),                                                                                 (5.2.14) 

𝑧 = 𝑥! sin 𝜃 + 𝑦′cos  (𝜃),  

then eq.3.2.12 can be expressed as  

𝑓!!"#
! =

𝑄𝑥!!𝑧![(𝑥!𝑐𝑜𝑠𝜃 − 𝐵𝑠𝑖𝑛𝜃, 𝑥!𝑠𝑖𝑛𝜃 + 𝐵𝑐𝑜𝑠𝜃)]𝛿(𝐵 −!!!"#(!!)
!

!!!
!!!

𝑧′)𝑑𝑥′𝑑𝑧′+ 𝑥!!𝑧!(𝑥!𝑐𝑜𝑠𝜃 − 𝐶𝑠𝑖𝑛𝜃, 𝑥!𝑠𝑖𝑛𝜃 + 𝐶𝑐𝑜𝑠𝜃)𝛿(𝐶 −(!!!!!)!"#  (!!)
!!!"#  (!!)

𝑧′)𝑑𝑥′𝑑𝑦′+ 𝑄𝑥!!𝑧!(𝑥!𝑐𝑜𝑠𝜃 − 𝐷𝑠𝑖𝑛𝜃, 𝑥!𝑠𝑖𝑛𝜃  + 𝐷𝑐𝑜𝑠𝜃)𝛿(𝐷 −(!!!!!!!!)!"#  (!!)
(!!!!!)!"#  (!!)

            𝑧′)𝑑𝑥′𝑑𝑦′                                                                                                   (5.2.15) 

5.3 Tomographic	
  Reconstruction	
  Result	
  and	
  Discussion	
  
 

The method proposed in this study requires the information of the lens shape before 

reconstruction; therefore, a separate method for determination of the lens shape was 

applied. In this study, we difference the magnitude from the lens and the surroundings 

in the MRI images to find the lens shape, to minimise the searching area. Firstly, we 
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manually selected the whole lens shape from the MRI images of the patients introduced 

in Chapter 3 as shown in Figure	
  46. 

 

	
  
Figure	
  46:	
  Selecting	
  the	
  analysing	
  field	
  of	
  crystalline	
  lens	
  in	
  MRI	
  image	
  

After	
   the	
   entire	
   lens	
  has	
  been	
   selected,	
   the	
  boundary	
  of	
   the	
   lens	
  was	
   cleared	
  by	
  

differencing	
   the	
  magnitudes	
   from	
   its	
   vitreous	
   humour,	
   as	
   shown	
   in	
   Figure	
   47.	
   In	
  

particular,	
  first	
  of	
  all,	
  transfer	
  the	
  MRI	
  images	
  in	
  to	
  its	
  magnitude	
  field	
  by	
  applying	
  

Fourier	
  Transform	
  (FT).	
  Secondly,	
  to	
  distinguish	
  the	
  lens	
  out	
  margin	
  layer	
  from	
  the	
  

vitreous	
  humour,	
  a	
  binary	
  image	
  with	
  an	
  index	
  slightly	
  higher	
  than	
  it	
  is	
  in	
  vitreous	
  

humour	
  was	
  subtracted	
  from	
  the	
  FT	
  image	
  to	
  set	
  the	
  area	
  outside	
  the	
  lens	
  to	
  zero	
  

(the	
  magnitude	
   index	
   at	
   the	
   vitreous	
   humour	
   is	
   smaller	
   than	
   inside	
   the	
   lens)	
   as	
  

shown	
  in	
  Figure	
  47.	
  After	
  that,	
  plot	
  the	
  average	
  magnitudes	
  of	
  the	
  crystalline	
  lens	
  to	
  

find	
  out	
   the	
   range	
  of	
  magnitude	
  values	
  which	
   can	
   set	
   the	
   lens	
   surface	
   and	
   inner	
  

lens	
  apart,	
   and	
   then	
  apply	
   the	
   smallest	
  magnitude	
   filter	
   to	
   the	
   selected	
  MRI	
   lens	
  

image	
   to	
   clarify	
   the	
   lens	
   shape.	
   Finally,	
   inverse	
   Fourier	
   Transform	
  was	
   used	
   to	
  

recover	
  the	
  lens	
  shape	
  as	
  shown	
  in	
  Figure	
  48.	
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Figure	
  47:	
  Crystalline	
  lens	
  shape	
  selection	
  

	
  
Figure	
  48:	
  Crystalline	
  lens	
  shape	
  determination	
  in	
  Matlab	
  

To analyse the performance of the tomographic algorithm for the eye model designed in 

section 4.4.1, the rays were separated into 12 groups based on the refractive gradients 

inside the lens, referred as value  𝑄. Twelve were selected is because in chapter 4, the 

crystalline lens of the eye model was designed with 10 refractive layers inside the lens, 

therefore, to sum up, there are 12 refractive layers in total including lens surfaces. In 

particular, the more times that the ray has been refracted inside the lens, the bigger 

value of  𝑄. In this study, the value of 𝑄 ranges from 0 to 12. As shown in Figure 49, the 

RMSE of each ray groups referred to different 𝑄 values was plotted with  𝑄. 
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Figure 49: RMSE of estimating the tomographic propagation path by applying the method 

from section 4.2.1 

As described in Figure 49, the value 𝑄 was plotted with the RMSE of the ray path by 

applying the method discussed above in section 5.2.1. Specially, the re ray propagation 

path was simulated in Zemax.  The RMSE of the tomographic algorithm increases with 

the 𝑄 value increases, in the other words, the error increases with the times of the ray 

being refracted to determine the optical path of the ray.  

 

The reconstruction of the lens is shown in Figure 50 (top), which is analysed from MRI 

data set. In particular, the image was reconstructed horizontally and vertically. In 

particular, each crystalline lens pixel was associated with a refractive index, which was 

first discussed by Jones et al in 2005. Specially, the relationship can be described by a 

second order polynomial: 

𝑛 = 1.3554 ±0.0017 + 1.549 ±0.0072 ×10!!𝑅𝑆! − 6.34(±0.65)×10!!𝑅𝑆!! , 

                                                                                                                                  (5.3.1)                                

 where  𝑅𝑆! is the inverse of the spin relaxation time for each lens pixel in 𝑠!!. And the 

𝑅𝑆! can be estimated by applying the decay function  

𝐼 = 𝐼!𝑒!!!!!",                                                                                                   (5.3.2) 

where TE is the echo time.  The refractive index of horizontal axis is shown in Figure 50 

(bottom). Therefore refractive index reconstruction map can be obtained as shown in 

Figure 50. 
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Figure 50: the tomographic reconstruction of the refractive index (top) the units of the 

colour bar is the level of refractive index, refractive index distribution horizontally 

(bottom) 

 

As it is shown in Figure 50, some errors of the refractive index distribution occurred at 

the centre of the crystalline lens, this can be possibly due to the noise of the MRI 

images.   

 

The reconstruction of the GRIN of the crystalline lens in vitro, using MRI images as 

input data to the search algorithm, which based on the best GRIN profile fitting the 

optical disturbances generated from the rear surface of the lens by the front surface and 

the GRIN, described in section 5.2. In addition, the lens surfaces are calculated within 
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sufficient accuracy, so it is possible to obtain a different GRIN form from the different 

ray optical path, therefore, accuracy in the GRIN reconstruction of RMSE equals 0.025 

was assumed before reconstruction as shown in Figure 49, as there were 4 turning points 

in the experiments.  

 

There are still some drawbacks in this method, as mentioned above, the method 

proposed in this study requires knowledge of the rear lens shape, therefore, the quality 

of the lens shape determination can possibly affect the reconstruction result. Besides, 

the distortion of the MRI images can affect the reconstruction result as well. 

5.4 Conclusion	
  and	
  Future	
  Work	
  
	
  

In this chapter, we have tested the reconstruction method and have gained the 

reconstruction of the gradient refractive index of the crystalline lens. Same method can 

be applied to the off-axis refractive index reconstruction of the lens, which is left to the 

future work. In addition, the method of obtaining the resolution of the MRI images can 

be improved so that to achieve a much precise lens shape. Furthermore, the refractive 

index map gained in section 5.3 is for further crystalline lens wavefront reconstruction. 

In particular for future work, the typical noise levels in the MRI images can be 

characterised and possibly compensated through optimising the Phakameter design and 

MRI collection process. The accuracy of the refractive index map can affect the ray 

propagation path, which is associated with the 𝑄 level. Also, inaccurate refractive index 

map can cause a failure ray path with incorrect turning points. And the turning points 𝑄 

affects the reconstruction algorithms as described in eq.5.2.12 and eq.5.2.13. Therefore, 

for the future work, improving the accuracy of the refractive index is possible to 

improve the accuracy of the crystalline lens wavefront reconstruction.  

 

During reconstruction, the across field of the rays propagation can determine the 

location and the height of the ray passed through the lens as described above, this 

technique can be applied to the wavefront cross field among observation field angles to 

gain valuable information of the ray path propagation in 3D images reconstruction. 

 

Furthermore, the tomographic reconstruction method needs to be improved, at this 

stage, limited refractions were applied to the rays inside the lens due to the calculation 
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complexity. However, in vivo, the lens contains hundreds of refractive layers which will 

result in hundreds of refractions of the rays, this will make the reconstruction 

calculation inevitably complex; therefore, this issue was left to be investigated in the 

future.  
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6 Chapter	
  Five:	
  Conclusion	
  and	
  Achievement	
  
	
  
The essential knowledge of vision, aberration and the optical function of the eye have 

been investigated. A new ocular wavefront aberration measurement algorithm is 

developed and compared with the other two methods applied by the previous 

researchers. The result will help the researchers in the future to reconstruct the aberrated 

wavefront of the eye efficiently and accurately, and it was a necessary step to allow 

information to be gained from subtly different wavefronts. 

 

One of the main tasks in this research study is to investigate the optical function of the 

eye particularly the crystalline lens. A complex schematic eye is designed with 

adjustable lens at both on-axis and off-axis field; A new computer based ray-tracing 

algorithm is applied to find the wavefront aberration and the refractive index profile of 

the lens of the eye. At the end, the wavefront aberration is reconstructed for the model 

eye, including those from different angles into periphery.  

 

The reconstruction of the refractive index variation of the crystalline lens from MRI 

images is investigated and a new tomographic method is applied and discussed. This 

result can improve the accuracy of reconstructing the crystalline lens by using 

tomographic methods. In addition, the model eye can provide a better understanding of 

the optical function of the real eye, in particular, the pathway of the refracted light 

inside the eye. 

 

There are still great amounts of future works are left to be continued. For instance, the 

wavefront reconstruction method should be improved, the algorithms of obtaining the 

refractive index need to be further investigated, and tomography reconstruction 

algorithms, MRI reconstruction methods need to be improved. For instance, the number 

of projections 𝑁! can be increased to increase the precision of ray-tracing process, and a 

more complex algorithm can be applied in designing GRIN lens distribution to gain 

general aspheric surfaces. Lastly, different imaging modalities such as OCT can be used 

to measure optical path length in the eye along different directions to constrain the eye 

model, which might possibly improve then convergence of the reconstruction 

algorithms. 
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Appendix	
  	
  
	
  
In	
   this	
   section,	
   there	
   are	
   a	
   number	
   of	
   Matlab	
   codes	
   included	
   here.	
   Specially,	
  
"Zernike	
  Creation"	
  "Centroids	
  of	
  the	
  wavefronts"	
  "	
  Centroid	
  calculation	
  extension	
  
",	
   "	
   Obtain	
   final	
   elliptical	
   pupil	
   shape	
   for	
   Atchison	
   &	
   Scott	
   method	
   "appear	
   to	
  
chapter	
   one,	
   where	
   introduced	
   the	
   wavefront	
   aberration	
   and	
   the	
   algorithms	
   of	
  
calculating	
  wavefront	
  centroids.	
  
	
  “Fit	
   the	
   wavefront	
   aberration	
   (Atchison	
   &	
   Scott's	
   method)"	
   "Fit	
   the	
   wavefront	
  
aberration	
  (CZ	
  method)"	
  “Fit	
  the	
  wavefront	
  aberration	
  (Shen	
  &	
  Thibos	
  method)	
  "	
  
belong	
   to	
  chapter	
  2	
   ,	
  where	
  3	
  ways	
  of	
  SH	
   images	
  wavefront	
  reconstruction	
  were	
  
compared.	
  	
  
	
  “Assumption	
  of	
  rays	
  (Schematic	
  eye)”	
  “Design	
  the	
  lens	
  (Schematic	
  eye)"	
  "Find	
  h0	
  
matrix	
   (Schematic	
   eye)"	
   "Adjusted	
   patching	
   modification	
   "are	
   from	
   chapter	
   3,	
  
where	
   a	
   schematic	
   eye	
   was	
   designed,	
   and	
   aa	
   new	
   ray	
   tracing	
   algorithm	
   was	
  
introduced.	
  	
  
"	
  Tomography	
  lens	
  refractive	
  index	
  reconstruction	
  "	
  "	
  Refractive	
  index	
  estimation	
  
code	
  horizontal/vertical	
  lines	
  going	
  across	
  the	
  lens	
  "	
  "Tomography	
  (Refractive	
  
index	
  estimates)"appear	
  in	
  chapter	
  4,	
  where	
  refractive	
  index	
  was	
  reconstructed	
  
from	
  MRI	
  images.	
  
	
  
Zernikes	
  creation	
  (P.30-­‐P.50)	
  
%This code is originally written by DR. Andrew Lambert, and it was modified for the use 
%of Zernike wavefront reconstruction in section 1.3.3 
function [ myimage ] = AJLZernike( numx,numy,orderr,ordertheta,orderi, phi ) 
%AJLZernike Summary of this function goes here 
%   Detailed explanation goes here 
%if (m == 0) then no sine theta component 
if (orderi < 0) orderi = 0; end; % orderi is the sign on the polynomial 
if (ordertheta < 0) ordertheta = -1*ordertheta; orderi = 0; end; % negative sign poly 
if (ordertheta > orderr ) error('ERROR: m > n'); end; 
if (mod((orderr-ordertheta),2) ~= 0) error('ERROR: n-m is ODD'); end; 
  
%if (mod(i,2) == 0) i.e. even then use cos(m*theta) 
%if (mod(i,2) ~= 0) i.e. ODD then use sin(m*theta) 
% if m==0 then different multiplier out the front 
  
myimage = zeros(numx,numy); 
  
%work out the polynomial coefficeients for B 
[Br] = zernike(orderr,ordertheta); 
  
[X,Y] = meshgrid(-1:2/(numx):1-1/numx,-1:2*1/(numy):1-1/numx); % make sure centred at 
numx/2+1 etc. 
  
R=sqrt(X.*X + Y.*Y); 
%%disc = (R <= 1); % not <=1 if we want the border nice 
theta = atan2(Y,X) + phi; 
Radial = polyval(Br,R); 
%%longrun = sum(sum(disc)) 
  
if (ordertheta == 0)  
   myimage = R; 
elseif (mod(orderi,2) == 0) 
        myimage = sqrt(orderr+1).*Radial.*cos(ordertheta.*theta); 
     else 
        myimage = sqrt(orderr+1).*Radial.*sin(ordertheta.*theta); 
     end; 
  
  
end 
	
  
Centroids	
  of	
  the	
  wavefronts	
  (P.30-­‐P.50)	
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% this calculation method was applied to Section 1.3.1.1 wavefront comparison between 
different pupil diameters. 
% this calculation method was applied to Section 2.2.1 Zernike wavefront reconstruction. 
% this calculation method was applied to Section 3.5.4 and 3.5.5 Schematic eye wavefront 
reconstruction  
 
function [xc,yc,intens]=centroid(I,s,gx,gy,prev_intens,varargin); 
J=double(I); 
s=round(s*0.8); % NB 0.5 is a scaling factor, any larger and the region of 
                % begin to over lap the neighbouring spot 
if s<=11,  
    xc=0; 
    yc=0; 
    intens=1000; 
    return 
end 
  
PLT=0; 
if nargin==6, 
    if strcmp('show',varargin{1})==1, 
        PLT=1; 
    end 
end 
  
 [M,N]=size(I); 
  
 [x,y]=meshgrid(1:size(I,2),1:size(I,1)); 
  
gx=round(gx); 
gy=round(gy); 
for i=s:-2:10, 
    if gx-i < 1 | gx+i > N | gy-i < 1 | gy+i > M, 
        if i<=11, 
            xc=0; 
            yc=0; 
            intens=1000; 
            return 
        else 
            continue 
        end 
    end 
  
    [X,Y]=meshgrid(gx-i:gx+i,gy-i:gy+i); 
    wx=X;  
    wy=Y;  
    X=X(:); 
    Y=Y(:); 
    ind=sub2ind(size(I),Y,X); 
  
  
    if sum(J(ind))==0,        xc=0; 
        yc=0; 
        intens=1000; 
        return 
     
    end     
    gx=round(sum(J(ind).*x(ind))/sum(J(ind))); 
    gy=round(sum(J(ind).*y(ind))/sum(J(ind))); 
  
  
    if PLT==1, 
        hold on 
        line([gx-i,gx-i,gx+i,gx+i,gx-i],[gy-i,gy+i,gy+i,gy-i,gy-i]); 
        plot(gx,gy,'+b'); 
        hold off 
        pause(.05); 
    end 
end 
  
if gx-i < 1 | gx+i > N | gy-i < 1 | gy+i > M, 
    xc=0;  
    yc=0; 
    intens=1000; 
    return 
end 
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if PLT==1, 
    hold on 
    [c,h]=contour(wx(1,:),wy(:,1),J(gy-i:gy+i,gx-i:gx+i),10);    set(h,'EdgeColor',[1 0 
0]); 
    hold off 
else 
    c=contourc(wx(1,:),wy(:,1),J(gy-i:gy+i,gx-i:gx+i),10); end 
  
len=length(c); 
if len==0, 
    
    xc=0;    yc=0; 
    intens=1000; 
    return 
else 
    i=1; 
    while 1, 
        if i+c(2,i)+1>len, 
            break 
        else 
            i=i+c(2,i)+1; 
        end 
    end 
  
  

x=c(1,i+1:len); 
    y=c(2,i+1:len); 

    [xc,yc]=poly_com(x,y); 
    if isnan([xc yc])==1, 
        xc=0;) 
        yc=0; 
        intens=1000; 
        return 
    end 
    
    if PLT==1, 
        hold on 
        plot(xc,yc,'gd',gx,gy,'b+'); 
        hold off 
    end 
     
     
    intens=double(I(round(yc),round(xc))); 
    if intens < 0.5*prev_intens, 
        xc=0;          yc=0; 
        intens=1000; 
        return 
    end 
     
    if PLT==1, 
        pause 
    end 
end 
  
function [a,b]=poly_com(x,y) 
 
xc=[]; 
yc=[]; 
area=[]; 
for i=1:length(x)-2, 
    xc(i)=(x(1)+x(i+1)+x(i+2))/3; 
    yc(i)=(y(1)+y(i+1)+y(i+2))/3;    
    area(i)=(((x(i+1)-x(1))*(y(i+2)-y(1)))-((x(i+2)-x(1))*(y(i+1)-y(1))))/2; 
end 
  
if sum(area)==0, 
    a=NaN;    b=NaN; 
    return 
else 
    area=area/sum(area); 
    a=sum(xc.*area); 
    b=sum(yc.*area); 
end 
 return 
 
Fit	
  the	
  wavefront	
  aberration	
  (Atchison	
  &	
  Scott's	
  method)	
  (P.30-­‐P.50)	
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% Reader should consider section (2.1) for foundation of this step 
for theta=-60:5:60 
  if theta ~=0 
%     y=-(0.042*(theta.^2)+0.87*theta-3.6e+002); 
% 
[myimage] = plotzernike(1392,1040,2,0,0,1.0,1.0); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
  
  Z(C,1,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
 %% 
 [myimage] = plotzernike(1392,1040,1,1,0,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,2,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
 %%   
 [myimage] = plotzernike(1392,1040,1,1,1,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,3,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
 %%   
 [myimage] = plotzernike(1392,1040,4,0,0,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,4,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
%% 
%%  
  [myimage] = plotzernike(1392,1040,4,4,1,1.0,1.0); 
   [CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,5,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
    [myimage] = plotzernike(1392,1040,4,2,1,1.2,1.2); 
   [CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,6,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
   [myimage] = plotzernike(1392,1040,2,2,0,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,7,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
   [myimage] = plotzernike(1392,1040,4,4,0,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,8,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
   [myimage] = plotzernike(1392,1040,4,2,0,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,9,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
    [myimage] = plotzernike(1392,1040,3,3,1,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,10,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
     [myimage] = plotzernike(1392,1040,3,1,1,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,11,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
   [myimage] = plotzernike(1392,1040,3,1,0,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,12,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
   [myimage] = plotzernike(1392,1040,3,3,0,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,13,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
   [myimage] = plotzernike(1392,1040,2,2,1,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,14,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
   %% 
   [myimage] = plotzernike(1392,1040,0,0,0,1.2,1.2); 
[CX,CY]=ailsaworkoutcentroids(myimage); 
   Z(C,15,:)=[reshape(CX,1,3844) reshape(CY,1,3844)]; 
  
  
save 'ailsaZ.mat' Z 
 %%  
   load 'ailsaW.mat' W1 
    
  %% 
  a1(C,:)=squeeze(Z(C,:,:))'\W1(3*(C-1)+1,:)'; 
  a2(C,:)=squeeze(Z(C,:,:))'\W1(3*(C-1)+2,:)'; 
  a3(C,:)=squeeze(Z(C,:,:))'\W1(3*(C-1)+3,:)'; 
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newpupil1 = 
a1(C,1)*plotzernike(1392,1040,2,0,0,1.0,1.0)+a1(C,2)*plotzernike(1392,1040,1,1,0,1.0,1.0
)+a1(C,3)*plotzernike(1392,1040,1,1,1,1.0,1.0)+a1(C,4)*plotzernike(1392,1040,4,0,0,1.0,1
.0)+a1(C,5)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a1(C,6)*plotzernike(1392,1040,4,4,1,1.0
,1.0)+a1(C,7)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a1(C,8)*plotzernike(1392,1040,4,4,1,1
.0,1.0)+a1(C,9)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a1(C,10)*plotzernike(1392,1040,4,4,
1,1.0,1.0)+a1(C,11)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a1(C,12)*plotzernike(1392,1040,
4,4,1,1.0,1.0)+a1(C,13)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a1(C,14)*plotzernike(1392,1
040,4,4,1,1.0,1.0)+a1(C,15)*plotzernike(1392,1040,4,4,1,1.0,1.0); 
  newpupil2 = 
a2(C,1)*plotzernike(1392,1040,2,0,0,1.0,1.0)+a2(C,2)*plotzernike(1392,1040,1,1,0,1.0,1.0
)+a2(C,3)*plotzernike(1392,1040,1,1,1,1.0,1.0)+a2(C,4)*plotzernike(1392,1040,4,0,0,1.0,1
.0)+a2(C,5)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a2(C,6)*plotzernike(1392,1040,4,4,1,1.0
,1.0)+a2(C,7)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a2(C,8)*plotzernike(1392,1040,4,4,1,1
.0,1.0)+a2(C,9)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a2(C,10)*plotzernike(1392,1040,4,4,
1,1.0,1.0)+a2(C,11)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a2(C,12)*plotzernike(1392,1040,
4,4,1,1.0,1.0)+a2(C,13)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a2(C,14)*plotzernike(1392,1
040,4,4,1,1.0,1.0)+a2(C,15)*plotzernike(1392,1040,4,4,1,1.0,1.0); 
  newpupil3 = 
a3(C,1)*plotzernike(1392,1040,2,0,0,1.0,1.0)+a3(C,2)*plotzernike(1392,1040,1,1,0,1.0,1.0
)+a3(C,3)*plotzernike(1392,1040,1,1,1,1.0,1.0)+a3(C,4)*plotzernike(1392,1040,4,0,0,1.0,1
.0)+a3(C,5)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a3(C,6)*plotzernike(1392,1040,4,4,1,1.0
,1.0)+a3(C,7)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a3(C,8)*plotzernike(1392,1040,4,4,1,1
.0,1.0)+a3(C,9)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a3(C,10)*plotzernike(1392,1040,4,4,
1,1.0,1.0)+a3(C,11)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a3(C,12)*plotzernike(1392,1040,
4,4,1,1.0,1.0)+a3(C,13)*plotzernike(1392,1040,4,4,1,1.0,1.0)+a3(C,14)*plotzernike(1392,1
040,4,4,1,1.0,1.0)+a3(C,15)*plotzernike(1392,1040,4,4,1,1.0,1.0); 
 
figure,imagesc(newpupil1);    
[x,y] = meshgrid(-520:520,-696:696) 
  
  
v=newpupil1; 
fa=7e-005*C.^3-0.012*C.^2+0.22*C+1.9; 
b = (x).^2+fa*(y).^2 ;  
mask = b < 190096; 
figure,imagesc(mask); 
  
Z = v.*mask; 
figure,imagesc(Z) 
  
C=C+1; 
  end 
end 
 
Fit	
  the	
  wavefront	
  aberration	
  (CZ	
  method)(P.30-­‐p.50)	
  
% Reader should consider section (2.2) for foundation of this step 
clear myimage; 
clear myimage2; 
Z=zeros(72,28,10332); 
myimage=zeros(1392,1040); 
clear CX; 
clear CY; 
  
for C=1:72 
    
load 'parameter' MAAL MINAL XAC YAC ORIEN 
        MAAL=MAAL(1,C); 
        MINAL=MINAL(1,C); 
        xac=XAC(1,C); 
        yac=YAC(1,C); 
        ORIEN=ORIEN(1,C); 
load 'space_between_SHgrid_all' xrealspace1 yrealspace1 
  
cc=xrealspace1(1,C); 
dd=yrealspace1(1,C); 
  
load 'offsetcentral' BB AA 
bb=BB(1,C); 
aa=AA(1,C); 
    
   [myimage] = 
plotzernike(1391,1039,0,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
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m=25; 
d=ones(m); 
convolution_image=conv2(myimage1,d); 
freshimage=convolution_image >  1.17.*mean(mean(convolution_image)); 
 [y11,x11]=size(freshimage); 
y111=(y11-1392)/2; 
x111=(x11-1040)/2; 
freshimage1=freshimage(y111:(end-y111-1),x111:(end-x111-1)); 
freshimage3=freshimage1.*myimage1; 
s=regionprops(freshimage1,'Area', 
'Centroid','Orientation','BoundingBox','Eccentricity','MajorAxisLength','MinorAxisLength
') 
 x=size(s,1); 
s1=zeros(x); 
o=1; 
     
  for v=1:x 
    s1(v)=s(v).Area; 
     
  end 
  
  for z=1:x 
     
    if s1(z)>300000 
           o=z; 
    
     
    end 
  end   
  
 s1=s(o); 
  a=s1.MajorAxisLength./2; 
    b=s1.MinorAxisLength./2; 
    xc=s1.Centroid(1,1); 
    yc=s1.Centroid(1,2); 
    deg=s1.Orientation; 
    phi=deg2rad(deg); 
        XCIMAGE=1040./2; 
        YCIMAGE=1392./2; 
     
        XSHIFT=xc-XCIMAGE; 
        YSHIFT=yc-YCIMAGE; 
     
myimage2=zeros(size(myimage1)); 
  
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
  
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc); 
  
  Z(C,1,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
[myimage] = 
plotzernike(1391,1039,1,1,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
 myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
 myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
 
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
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  Z(C,2,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
[myimage] = 
plotzernike(1391,1039,1,1,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
 Z(C,3,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,3,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
 %%   
    [myimage] = 
plotzernike(1391,1039,2,2,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
 Z(C,4,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,4,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %%  
    [myimage] = 
plotzernike(1391,1039,2,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
   myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
    
   myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
  Z(C,5,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,5,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,2,2,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
  myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
   
  myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
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myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,6,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,6,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,3,3,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
Z(C,7,:)=[reshape(CX,1,5166) reshape(CY,1,5166)];    
[myimage] = 
plotzernike(1391,1039,3,1,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
  Z(C,8,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,8,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,3,1,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,9,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
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%Z(C,9,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,3,3,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,10,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,10,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,11,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,11,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,4,2,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,12,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,12,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,4,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
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myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,13,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,13,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,4,2,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,14,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,14,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = 
plotzernike(1391,1039,4,4,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,15,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,15,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   
%%    
  [myimage] = 
plotzernike(1391,1039,5,5,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
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[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,16,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,16,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,5,3,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,17,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,17,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,5,1,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,18,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,18,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,5,1,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,19,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,19,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,5,3,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
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if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,20,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,20,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,5,5,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,21,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,21,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,6,6,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,22,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,22,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,6,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
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[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,23,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,23,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%%  
[myimage] = 
plotzernike(1391,1039,6,2,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,24,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,24,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,6,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,25,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,25,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,6,2,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,26,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,26,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,6,4,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
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myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,27,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,27,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%% 
  [myimage] = 
plotzernike(1391,1039,6,6,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
% figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_new( myimage2,bb,aa,dd,cc ); 
  
   Z(C,28,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,28,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
  
save 'ailsalarryZ.mat' Z 
%% 
       load 'parameter' MAAL MINAL XAC YAC ORIEN 
        MAAL=MAAL(1,C); 
        MINAL=MINAL(1,C); 
        xac=XAC(1,C); 
        yac=YAC(1,C); 
        ORIEN=ORIEN(1,C); 
 
load 'space_between_SHgrid_all' xrealspace1 yrealspace1 
  
cc=xrealspace1(1,C); 
dd=yrealspace1(1,C); 
  
load 'offsetcentral' BB AA 
bb=BB(1,C); 
aa=AA(1,C); 
clear a1; 
  
a1=zeros(1,28); 
for C=1:72 
load 'ailsalarryZ.mat' Z 
  
   load 'Ailsafix1.mat' Wfix1 
    
  
%   a1(C,:)=squeeze(Z(C,:,:))'\Wfix1(3*(C-1)+1,:)'; 
%   a2(C,:)=squeeze(Z(C,:,:))'\Wfix1(3*(C-1)+2,:)'; 
%   a3(C,:)=squeeze(Z(C,:,:))'\Wfix1(3*(C-1)+3,:)'; 
  
   a1(1,:)=squeeze(Z(C,:,:))'\Wfix1(C,:)'; 
%   a2(C,:)=squeeze(Z(C,:,:))'\Wfix1(C,:)'; 
%   a3(C,:)=squeeze(Z(C,:,:))'\Wfix1(C,:)'; 
  
newpupillarry = 
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a1(1,1)*plotzernike(1391,1039,0,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,2)*plotzernike(1391,1039,1,1,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,3)*plotzernike(1391,1039,1,1,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,4)*plotzernike(1391,1039,2,2,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,5)*plotzernike(1391,1039,2,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,6)*plotzernike(1391,1039,2,2,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,7)*plotzernike(1391,1039,3,3,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,8)*plotzernike(1391,1039,3,1,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,9)*plotzernike(1391,1039,3,1,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a1(1,10)*plotzernike(1391,1039,3,3,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))
+a1(1,11)*plotzernike(1391,1039,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)
)+a1(1,12)*plotzernike(1391,1039,4,2,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL
))+a1(1,13)*plotzernike(1391,1039,4,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAA
L))+a1(1,14)*plotzernike(1391,1039,4,2,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MA
AL));+a1(1,15)*plotzernike(1391,1039,4,4,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*
MAAL))+a1(1,16)*plotzernike(1391,1039,5,5,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.
*MAAL))+a1(1,17)*plotzernike(1391,1039,5,3,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2
.*MAAL))+a1(1,18)*plotzernike(1391,1039,5,1,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(
2.*MAAL))+a1(1,19)*plotzernike(1391,1039,5,1,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./
(2.*MAAL))+a1(1,20)*plotzernike(1391,1039,5,3,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040.
/(2.*MAAL))+a1(1,21)*plotzernike(1391,1039,5,5,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040
./(2.*MAAL))+a1(1,22)*plotzernike(1391,1039,6,6,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),104
0./(2.*MAAL))+a1(1,23)*plotzernike(1391,1039,6,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),10
40./(2.*MAAL))+a1(1,24)*plotzernike(1391,1039,6,2,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1
040./(2.*MAAL))+a1(1,25)*plotzernike(1391,1039,6,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),
1040./(2.*MAAL))+a1(1,26)*plotzernike(1391,1039,6,2,0,(1392)./(((MINAL./MAAL).*2.*MAAL))
,1040./(2.*MAAL))+a1(1,27)*plotzernike(1391,1039,6,4,0,(1392)./(((MINAL./MAAL).*2.*MAAL)
),1040./(2.*MAAL))+a1(1,28)*plotzernike(1391,1039,6,6,0,(1392)./(((MINAL./MAAL).*2.*MAAL
)),1040./(2.*MAAL)); 
 
filename = [  'save ' 'ailsalarryA11111' num2str(C,'%02d') '.mat' ' a1'] 
   eval(filename); 
    filename = [ 'save ' 'ailsalarryIMAGE11111' num2str(C,'%02d') '.mat' ' 
newpupillarry'] 
    eval(filename); 
    clear a1; 
    clear newpupillarry; 
end 
  
break 
  
    
     
Fit	
  the	
  wavefront	
  aberration	
  (Shen	
  &	
  Thibos	
  method)	
  (P.30-­‐P.50)	
  
% Reader should consider section (2.2) for foundation of this step 
Z=zeros(72,28,2779776); 
clear CX; 
clear CY; 
clear myimage2; 
clear myimage; 
for C=1:72 
    
%     if theta ~=0 
  
        load 'parameter' MAAL MINAL XAC YAC ORIEN 
        MAAL=MAAL(1,C); 
        MINAL=MINAL(1,C); 
        XAC=XAC(1,C); 
        YAC=YAC(1,C); 
        ORIEN=ORIEN(1,C); 
%         XCIMAGE=1040./2; 
%         YCIMAGE=1392./2; 
%         XSHIFT=XAC-XCIMAGE; 
%         YSHIFT=YAC-YCIMAGE; 
     
load 'space_between_SHgrid_all' xrealspace1 yrealspace1 
  
cc=xrealspace1(1,C); 
dd=yrealspace1(1,C); 
  
load 'offsetcentral' BB AA 
bb=BB(1,C); 
aa=AA(1,C); 
       % ((x.*cos(ORIEN)-y.*sin(ORIEN)-
YAC).^2)./(MINAL.^2)+((y.*cos(ORIEN)+x.*sin(ORIEN)-XAC).^2)./(MAAL.*2)==1; 
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%% 
   [myimage] = plotzernike(1391,1039,0,0,0,1.0,1.0); 
   %figure(1),imagesc(myimage); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
% find the biggest area s1 of the freshimages  
  
x=size(s,1); 
s1=zeros(x); 
o=1; 
     
  for v=1:x 
    s1(v)=s(v).Area; 
     
  end 
  
  for z=1:x 
     
    if s1(z)>300000 
           o=z; 
    
     
    end 
  end 
  
s1=s(o); 
  
  
    a=s1.MajorAxisLength./2; 
    b=s1.MinorAxisLength./2; 
    xc=s1.Centroid(1,1); 
    yc=s1.Centroid(1,2); 
    deg=s1.Orientation; 
  
    phi=deg2rad(deg); 
        XCIMAGE=1040./2; 
        YCIMAGE=1392./2; 
     
        XSHIFT=xc-XCIMAGE; 
        YSHIFT=yc-YCIMAGE; 
  
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
 %figure(2),imagesc(myimage2); 
 [CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc );  
Z(C,1,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
%   Z(C,1,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
% % Z(C,1,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
%  
  
%% 
  [myimage] = plotzernike(1391,1039,1,1,1,1.0,1.0); 
  
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
 figure(2),imagesc(myimage2); 
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[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
  
Z(C,2,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%   Z(C,2,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,2,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
  
%%  
    [myimage] = plotzernike(1391,1039,1,1,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
  
Z(C,3,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
%  Z(C,3,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,3,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
  
%%   
    [myimage] = plotzernike(1391,1039,2,2,1,1.0,1.0); 
     
    
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1));  
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
 figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
  
  Z(C,4,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
%Z(C,4,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
    
%%  
    [myimage] = plotzernike(1391,1039,2,0,0,1.0,1.0); 
   myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
    
myimage2=zeros(size(myimage1));    
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
 end 
figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
  
Z(C,5,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
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%   Z(C,5,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,5,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = plotzernike(1391,1039,2,2,0,1.0,1.0); 
  myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
   
myimage2=zeros(size(myimage1));   
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
  
Z(C,6,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
%    Z(C,6,:)=[reshape(CX,1,5166) reshape(CY,1,5166)]; 
%Z(C,6,:)=[reshape(CX,1,5103) reshape(CY,1,5103)]; 
   %% 
    [myimage] = plotzernike(1391,1039,3,3,1,1.0,1.0);   
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
  
myimage2=zeros(size(myimage1)); 
if YSHIFT>0 && XSHIFT>0 
myimage2((YSHIFT+1):1392,(XSHIFT+1):1040)=myimage1(1:(1392-YSHIFT),1:(1040-XSHIFT)); 
elseif YSHIFT>0 && XSHIFT<0 
myimage2((YSHIFT+1):1392,1:(1040+XSHIFT))=myimage1(1:(1392-YSHIFT),(-XSHIFT+1):1040); 
elseif YSHIFT<0 && XSHIFT>0 
myimage2(1:(1392+YSHIFT),(XSHIFT+1):1040)=myimage1((-YSHIFT+1):1392,1:(1040-XSHIFT)); 
elseif YSHIFT<0 && XSHIFT<0 
myimage2(1:(1392+YSHIFT),1:(1040+XSHIFT))=myimage1((-YSHIFT+1):1392,(-XSHIFT+1):1040);   
end 
figure(2),imagesc(myimage2); 
  
  
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
  
Z(C,7,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
   
%% 
    [myimage] = plotzernike(1391,1039,3,1,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,8,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
   %% 
    [myimage] = plotzernike(1391,1039,3,1,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,9,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
   %% 
    [myimage] = plotzernike(1391,1039,3,3,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,10,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
  
   %% 
    [myimage] = plotzernike(1391,1039,4,4,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,11,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
   %% 
    [myimage] = plotzernike(1391,1039,4,2,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,12,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
   
   %% 
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    [myimage] = plotzernike(1391,1039,4,0,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,13,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
   %% 
    [myimage] = plotzernike(1391,1039,4,2,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,14,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
  
   %% 
    [myimage] = plotzernike(1391,1039,4,4,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,15,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%%    
  [myimage] = plotzernike(1391,1039,5,5,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,16,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%% 
  [myimage] = plotzernike(1391,1039,5,3,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,17,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
%% 
  [myimage] = plotzernike(1391,1039,5,1,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,18,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%% 
  [myimage] = plotzernike(1391,1039,5,1,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,19,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%% 
  [myimage] = plotzernike(1391,1039,5,3,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,20,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%% 
  [myimage] = plotzernike(1391,1039,5,5,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,21,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%% 
  [myimage] = plotzernike(1391,1039,6,6,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,22,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
%% 
  [myimage] = plotzernike(1391,1039,6,4,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,23,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%%  
[myimage] = plotzernike(1391,1039,6,2,1,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,24,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
  
%% 
  [myimage] = plotzernike(1391,1039,6,0,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,25,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
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%% 
  [myimage] = plotzernike(1391,1039,6,2,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,26,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
%% 
  [myimage] = plotzernike(1391,1039,6,4,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,27,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)]; 
%% 
  [myimage] = plotzernike(1391,1039,6,6,0,1.0,1.0); 
myimage1 = imrotate(myimage,ORIEN,'bilinear','crop'); 
[CX,CY]=ailsaworkoutcentroids_stretch( myimage1,bb,aa,dd,cc ); 
Z(C,28,:)=[reshape(CX,1,1389888) reshape(CY,1,1389888)];   
  
  
save 'AtchisonstectchZ.mat' Z 
%% 
  
  
load 'stretchW.mat' W 
  
    
  
%   a1(C,:)=squeeze(Z(C,:,:))'\Wfix1(3*(C-1)+1,:)'; 
%   a2(C,:)=squeeze(Z(C,:,:))'\Wfix1(3*(C-1)+2,:)'; 
%   a3(C,:)=squeeze(Z(C,:,:))'\Wfix1(3*(C-1)+3,:)'; 
  
   a1(1,:)=squeeze(Z(C,:,:))'\Wfix1(C,:)'; 
%   a2(C,:)=squeeze(Z(C,:,:))'\Wfix1(C,:)'; 
%   a3(C,:)=squeeze(Z(C,:,:))'\Wfix1(C,:)'; 
  
  newpupil4 = 
a1(1,1)*plotzernike(1391,1039,0,0,0,1.0,1.0)+a1(1,2)*plotzernike(1391,1039,1,1,1,1.0,1.0
)+a1(1,3)*plotzernike(1391,1039,1,1,0,1.0,1.0)+a1(1,4)*plotzernike(1391,1039,2,2,1,1.0,1
.0)+a1(1,5)*plotzernike(1391,1039,2,0,0,1.0,1.0)+a1(1,6)*plotzernike(1391,1039,2,2,0,1.0
,1.0)+a1(1,7)*plotzernike(1391,1039,3,3,1,1.0,1.0)+a1(1,8)*plotzernike(1391,1039,3,1,1,1
.0,1.0)+a1(1,9)*plotzernike(1391,1039,3,1,0,1.0,1.0)+a1(1,10)*plotzernike(1391,1039,3,3,
0,1.0,1.0)+a1(1,11)*plotzernike(1391,1039,4,4,1,1.0,1.0)+a1(1,12)*plotzernike(1391,1039,
4,2,1,1.0,1.0)+a1(1,13)*plotzernike(1391,1039,4,0,0,1.0,1.0)+a1(1,14)*plotzernike(1391,1
039,4,2,0,1.0,1.0);+a1(1,15)*plotzernike(1391,1039,4,4,0,1.0,1.0)+a1(1,16)*plotzernike(1
391,1039,5,5,1,1.0,1.0)+a1(1,17)*plotzernike(1391,1039,5,3,1,1.0,1.0)+a1(1,18)*plotzerni
ke(1391,1039,5,1,1,1.0,1.0)+a1(1,19)*plotzernike(1391,1039,5,1,0,1.0,1.0)+a1(1,20)*plotz
ernike(1391,1039,5,3,0,1.0,1.0)+a1(1,21)*plotzernike(1391,1039,5,5,0,1.0,1.0)+a1(1,22)*p
lotzernike(1391,1039,6,6,1,1.0,1.0)+a1(1,23)*plotzernike(1391,1039,6,4,1,1.0,1.0)+a1(1,2
4)*plotzernike(1391,1039,6,2,1,1.0,1.0)+a1(1,25)*plotzernike(1391,1039,6,0,0,1.0,1.0)+a1
(1,26)*plotzernike(1391,1039,6,2,0,1.0,1.0)+a1(1,27)*plotzernike(1391,1039,6,4,0,1.0,1.0
)+a1(1,28)*plotzernike(1391,1039,6,6,0,1.0,1.0); 
  
%   newpupil4 = 
a1(C,1)*plotzernike(1391,1039,0,0,0,1.0,1.0)+a1(C,2)*plotzernike(1391,1039,1,1,1,1.0,1.0
)+a1(C,3)*plotzernike(1391,1039,1,1,0,1.0,1.0)+a1(C,4)*plotzernike(1391,1039,2,2,1,1.0,1
.0)+a1(C,5)*plotzernike(1391,1039,2,0,0,1.0,1.0)+a1(C,6)*plotzernike(1391,1039,2,2,0,1.0
,1.0)+a1(C,7)*plotzernike(1391,1039,3,3,1,1.0,1.0)+a1(C,8)*plotzernike(1391,1039,3,1,1,1
.0,1.0)+a1(C,9)*plotzernike(1391,1039,3,1,0,1.0,1.0)+a1(C,10)*plotzernike(1391,1039,3,3,
0,1.0,1.0)+a1(C,11)*plotzernike(1391,1039,4,4,1,1.0,1.0)+a1(C,12)*plotzernike(1391,1039,
4,2,1,1.0,1.0)+a1(C,13)*plotzernike(1391,1039,4,0,0,1.0,1.0)+a1(C,14)*plotzernike(1391,1
039,4,2,0,1.0,1.0);+a1(C,15)*plotzernike(1391,1039,4,4,0,1.0,1.0)+a1(C,16)*plotzernike(1
391,1039,5,5,1,1.0,1.0)+a1(C,17)*plotzernike(1391,1039,5,3,1,1.0,1.0)+a1(C,18)*plotzerni
ke(1391,1039,5,1,1,1.0,1.0)+a1(C,19)*plotzernike(1391,1039,5,1,0,1.0,1.0)+a1(C,20)*plotz
ernike(1391,1039,5,3,0,1.0,1.0)+a1(C,21)*plotzernike(1391,1039,5,5,0,1.0,1.0)+a1(C,22)*p
lotzernike(1391,1039,6,6,1,1.0,1.0)+a1(C,23)*plotzernike(1391,1039,6,4,1,1.0,1.0)+a1(C,2
4)*plotzernike(1391,1039,6,2,1,1.0,1.0)+a1(C,25)*plotzernike(1391,1039,6,0,0,1.0,1.0)+a1
(C,26)*plotzernike(1391,1039,6,2,0,1.0,1.0)+a1(C,27)*plotzernike(1391,1039,6,4,0,1.0,1.0
)+a1(C,28)*plotzernike(1391,1039,6,6,0,1.0,1.0); 
%    newpupil5 = 
a2(C,1)*plotzernike(1392,1040,2,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a2(C,2)*plotzernike(1392,1040,1,1,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a2(C,3)*plotzernike(1392,1040,1,1,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a2(C,4)*plotzernike(1392,1040,4,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a2(C,5)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a2(C,6)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a2(C,7)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a2(C,8)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a2(C,9)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+



132	
  
	
  

a2(C,10)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))
+a2(C,11)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)
)+a2(C,12)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL
))+a2(C,13)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAA
L))+a2(C,14)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MA
AL))+a2(C,15)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*M
AAL)); 
%   newpupil6 = 
a3(C,1)*plotzernike(1392,1040,2,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,2)*plotzernike(1392,1040,1,1,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,3)*plotzernike(1392,1040,1,1,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,4)*plotzernike(1392,1040,4,0,0,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,5)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,6)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,7)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,8)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,9)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))+
a3(C,10)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL))
+a3(C,11)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL)
)+a3(C,12)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAAL
))+a3(C,13)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MAA
L))+a3(C,14)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*MA
AL))+a3(C,15)*plotzernike(1392,1040,4,4,1,(1392)./(((MINAL./MAAL).*2.*MAAL)),1040./(2.*M
AAL)); 
  
  
  
%      figure(C);imagesc(newpupil4); 
figure(C+12);imagesc(newpupil5);figure(C+24);imagesc(newpupil6); 
  
%figure(C+100);imagesc(newpupil4); 
  
     %% 
     
    filename = [  'save ' 'ailsaarchisonA11111' num2str(C,'%02d') '.mat' ' a1'] 
   eval(filename); 
    filename = [ 'save ' 'newpupilarchisonIMAGE11111' num2str(C,'%02d') '.mat' ' 
newpupil4'] 
    eval(filename); 
%     filename = [ 'save '  'newpupillarryfix' num2str(C+12,'%02d') '.mat' ' newpupil5'] 
%     eval(filename); 
%     filename = [ 'save '  'newpupillarryfix' num2str(C+24,'%02d') '.mat' ' newpupil6'] 
%    eval(filename); 
  
    
    
  
%    C=C+1; 
  
end 
  
break; 
  
   %% 
    
   g = ginput(4); 
y0 = round(g(1,2)); 
x0 = round(g(1,1));  
y1 = round(g(2,2)); 
x1 = round(g(2,1));  
y2 = round(g(3,2)); 
x2 = round(g(3,1));  
y3 = round(g(4,2)); 
x3 = round(g(4,1));  
  
load 'myfile666666' 
  
    hold on; plot(x0,y0,'g+'); 
  
hold off; 
  
  
    n(C)=(y3-y2)/(x1-x0); 
  
 save 'myfile22222' n 
  x=[5:5:60 -5:-5:-60]; 
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for i=(0:(length(x)-1)),x1(3*i+1)=x(i+1);x1(3*i+2)=x(i+1);x1(3*i+3)=x(i+1); end; 
figure(2), scatter(x1,n); 
figure(300), scatter(C,n);  
C=C+1; 
    end 
end 
%% 
 L=1:24 
    load 'myfile22222' n 
    k=n; 
figure, scatter(L,k); 
 
Centroid	
  calculation	
  extension	
  (P.30-­‐P.50)	
  
 
%function [ CX,CY ] = ailsaworkoutcentroids( myimage ) 
%Reader should consider section (2.2) 
 
count1=11;count=1; 
  f = fopen (['C:\Users\z3310242\Desktop\Cochrane Luci\Cochrane_CO210712_OD_+' 
num2str(5*count1) '_' num2str(count,1) '.BX']); 
  
 b = fread(f);fclose(f);imoa = reshape(b,[1392,1040]);%reshape(b,[1392,1040]); 
 figure(1),imagesc(imoa); 
img1=fftshift(log(abs(fft2(fftshift(imoa))).^2+eps)>25); 
 figure(2),imagesc(img1); 
%  f = exp(j.*2*pi*imoa); 
  
 img=fftshift(abs(ifft2(fftshift(img1)))); 
  figure(3),imagesc(img); 
  
 [y1,x1]=find(img==max(max(img))); 
y2=1392/2; 
x2=1040/2; 
offset_y=y1-y2; 
offset_x=x1-x2; 
bb=offset_y; 
aa=offset_x; 
load 'space_between_SHgrid_all' xrealspace1 yrealspace1 
dd=yrealspace1(1,1); 
cc=xrealspace1(1,1); 
temp=zeros(size(imoa)); 
for y=bb:dd:1392 
          for x=aa:cc:1040   
          temp(round(y),round(x))=1;   
          end 
      end 
      newimgaecompare=255*temp+imoa; 
  
 figure(1100), imagesc(newimgaecompare); 
clear ramppx 
clear ramppy 
for r=1:17 
        for s=1:17 
            ramppx(r,s) = s; 
            ramppy(r,s) = r; 
   
        end 
end 
  roi = zeros(17,17); 
 for p=720:736 
          for q=487:503          
             for r=1:17 
                for s=1:17                
            roi(round(r),round(s)) = imoa(round(p+r),round(q+s)); 
                end 
             end 
   M = sum(sum(roi)); 
imagesc(roi); hold on; 
   pCY=round(p./16.95); 
   qCX=round(q./16.5); 
        if pCY==0 
            pCY=pCY+1; 
        end 
        if qCX==0 
            qCX=qCX+1;   
        end 
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      if M>4000 
         CX(pCY,qCX)= sum(sum(ramppx.*roi))/M; 
         CY(pCY,qCX)= sum(sum(ramppy.*roi))/M; 
        else  
            CX(pCY,qCX)=0; 
            CY(pCY,qCX)=0; 
        end  
          plot(CX(pCY,qCX)*16+9,CY(pCY,qCX)*16+9,'rx'); hold off; drawnow; 
    end 
 end 
  
Obtain	
  final	
  elliptical	
  pupil	
  shape	
  for	
  Atchison	
  &	
  Scott	
  method	
  (P.30-­‐P.50)	
  
% Reader should consider section (2.2) 
 
 clear all; 
close all; 
clear CX; 
clear CY; 
  
% CX=zeros(81,62); 
% CY=zeros(81,62); 
C=1; 
for pppp=1:2  
     
 for count1=(1:12) 
      
    for count=(1:3) 
      
% read all the files    
   
  if C>=36   
       
      ['/Users/XiaoyuLiu/Desktop/Cochrane Luci/Cochrane_CO210712_OD_+' num2str(5*count1) 
'_' num2str(count,1) '.BX']  
       
  
 f = fopen (['/Users/XiaoyuLiu/Desktop/Cochrane Luci/Cochrane_CO210712_OD_+' 
num2str(5*count1) '_' num2str(count,1) '.BX']); 
  else 
  
 ['/Users/XiaoyuLiu/Desktop/Cochrane Luci/Cochrane_CO210712_OD_-' num2str(5*count1) '_' 
num2str(count,1) '.BX']  
  
  
f = fopen (['/Users/XiaoyuLiu/Desktop/Cochrane Luci/Cochrane_CO210712_OD_-'  
num2str(5*count1) '_' num2str(count,1) '.BX']); 
  end 
   
 f1=fread(f); fclose(f);  
 imoa = reshape(f1,[1392,1040]); 
  
 asd=imoa; 
 figure(C),imagesc(imoa); 
%% 
 m=25; % d is the smallest sizeof block to do convalution between each grid of the SH 
image 
 d=ones(m);  
  
% get the size of the images,the size of ellipse 
convolution_image=conv2(imoa,d); 
%figure(C+200),imagesc(convolution_image) 
freshimage=convolution_image >  1.17.*mean(mean(convolution_image)); 
%figure(C+300),imagesc(freshimage); 
  
%s=regionprops(freshimage,'Area', 
'Centroid','Orientation','BoundingBox','Eccentricity','MajorAxisLength','MinorAxisLength
') 
[y11,x11]=size(freshimage); 
y111=(y11-1392)/2; 
x111=(x11-1040)/2; 
freshimage1=freshimage(y111:(end-y111-1),x111:(end-x111-1)); 
%s=regionprops(freshimage1,'Area', 
'Centroid','Orientation','BoundingBox','Eccentricity','MajorAxisLength','MinorAxisLength
') 
freshimage2=imresize(freshimage1,[1388 1036]); 
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 nn=zeros(1392,1040); 
 nn(3:1390,3:1038)=freshimage2(1:1388,1:1036); 
 freshimage4=nn; 
freshimage3=freshimage1.*imoa; 
%figure(C+400),imagesc(freshimage3); 
clear s1; 
clear s; 
s=regionprops(freshimage4,'Area', 
'Centroid','Orientation','BoundingBox','Eccentricity','MajorAxisLength','MinorAxisLength
') 
  
  
%% 
% find the biggest area s1 of the freshimages  
  
  
x=size(s,1); 
s1=zeros(x); 
o=1; 
     
  
  for v=1:x 
    s1(v)=s(v).Area; 
     
  end 
  
  for z=1:x 
    
    if s1(z)>300000 
           o=z; 
    
    end 
  end 
  
 s1=s(o); 
  
    a=s1.MajorAxisLength./2; 
    b=s1.MinorAxisLength./2; 
    xc=s1.Centroid(1,1); 
    yc=s1.Centroid(1,2); 
    deg=s1.Orientation; 
    phi=deg2rad(deg); 
 MAAL(1,C)=a; 
 MINAL(1,C)=b; 
 XAC(1,C)=xc; 
 YAC(1,C)=yc; 
 ORIEN(1,C)=phi; 
  
  
save 'parameter' MAAL MINAL XAC YAC ORIEN  
% get the real shape of the elliptical pupil 
  
zza=m./2; %  major axis distance of the center moved due to convalution 
zzb=m./4; %  minor axis distance of the center moved due to convalution 
 phi = -phi; 
 [X,Y] = meshgrid(1:size(imoa,2),1:size(imoa,1)); 
 X= X -xc ; 
 Y = Y -yc ; 
 F = X.*cos(phi) + Y.*sin(phi); 
 G = -X.*sin(phi)+Y.*cos(phi); 
  
 H = ((F.^2)./((a)^2) + (G.^2)./((b)^2)) < 1; 
 H1 = ((F.^2)./((a)^2) + (G.^2)./((b)^2)) > 0.98; 
  
 dfg=imoa.*H; 
  
  
 figure(C),imagesc(dfg); 
  
  
 %figure(C+700); imagesc(imoa.*H);  
%%  
% find the center of grid of the ellipse 
  
% aa : where the grid should start from x direction 
% bb : where the grid should start from y direction 
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% cc : x space of the SH image between grids 
% dd : y space of the SH image between grids 
% l : integer of x space of the SH image between grids 
% k : integer of y space of the SH image between grids 
% temp : grid name with all ones value 
% temp1 : shifted grid name with all ones value 
  
load 'space_between_SHgrid_all' xrealspace1 yrealspace1 
  
cc=xrealspace1(1,C); 
dd=yrealspace1(1,C); 
  
%find the movement of the center of the image in fft 
  
img1=fftshift(log(abs(fft2(fftshift(imoa))).^2+eps)>25); 
  
img=fftshift(abs(ifft2(fftshift(img1)))); 
  
[y1,x1]=find(img==max(max(img))); 
y2=1392/2; 
x2=1040/2; 
offset_y=y1-y2; 
offset_x=x1-x2; 
bb=offset_y; 
aa=offset_x; 
BB(:,C)=bb; 
AA(:,C)=aa; 
save 'offsetcentral' BB AA; 
%creat the grid with the same center of the image 
temp=zeros(size(imoa)); 
      for y=bb:dd:size(imoa,1) 
          for x=aa:cc:size(imoa,2) 
        
          temp(round(y),round(x))=1; 
          
          end 
      end 
      newimgaecompare=255*temp+imoa; 
   %figure(C+1100), imagesc(newimgaecompare); 
%%text the defferences between grid and imoa 
Newimage111=xcorr2(temp,imoa); 
[x8,y8] = find(Newimage111== max(max(Newimage111))); 
%centroid algrithm 
  
 jj=round(cc); 
 kk=round(dd); 
roi = zeros(17,17); 
  
    for r=1:kk 
            for s=1:jj 
                 ramppx(r,s) = s; 
                 ramppy(r,s) = r; 
            end 
    end 
   
    pyend=size(imoa,1)-dd; 
    pxend=size(imoa,2)-cc; 
    bb=bb-(kk./2); 
    aa=aa-(jj./2); 
  
      if aa<0 
              aa=aa+cc; 
     end 
     if bb<0 
              bb=bb+dd; 
     end 
    for p=(bb):dd:pyend 
          for q=(aa):cc:pxend 
  
             for r=1:kk 
                for s=1:jj                
            roi(round(r),round(s)) = dfg(round(p+r),round(q+s)); 
                end 
             end 
%imagesc(roi); hold on; 
% test routine 
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%roi=zeros(size(roi)); 
%roi(1,2)=255; 
         M = sum(sum(roi)); 
        pCY=round(p./dd); 
        qCX=round(q./cc); 
%         if M>6000 
%          CX(pCY,qCX)= sum(sum(ramppx.*roi))/M; 
%          CY(pCY,qCX)= sum(sum(ramppy.*roi))/M; 
%         else 
%          CX(pCY,qCX)= 0; 
%          CY(pCY,qCX)= 0; 
%         end 
  
  
         if M>6000 
         CX(round(pCY),round(qCX))= sum(sum(ramppx.*roi))/M; 
         CY(round(pCY),round(qCX))= sum(sum(ramppy.*roi))/M; 
        else 
         CX(round(pCY),round(qCX))= 0; 
         CY(round(pCY),round(qCX))= 0; 
        end 
   
      % plot(round(CX(round(p),round(q)))+9,round(CY(round(p),round(q)))+9,'rx'); hold 
off; drawnow; 
      % hold off; 
%CX and CY are in pixles of the center of roi 
  
          end 
  
    end 
    % 
    [sy,sx]=size(CX); 
    sumsCX=sy.*sx; 
    [sy1,sx1]=size(CY); 
    sumsCY=sy1.*sx1; 
    sums=sumsCX+sumsCY; 
    WNEW1(C,1:sumsCX)=reshape(CX,[1,sumsCX]); 
WNEW1(C,(sumsCX+1):sums)=reshape(CY,[1,sumsCY]); 
  
  
 save 'AilsaWNew.mat' WNEW1 
%% 
% s=deg2rad(5); 
% [y3 x3]=size(CX); 
% change=round(y3./cos(s)); 
% change1=round((change-y3)/2); 
%  
% new=imresize(CX,[change x3]); 
%   
%  vv=new(change1:(change1+1367),1:x3); 
%   
%  imagesc(vv); 
%   
%  [y4 x4]=size(CX); 
% change11=round(y4./cos(s)); 
% change22=round((change11-y4)/2); 
%  
% new1=imresize(CX,[change11 x4]); 
%   
%  vv1=new1(change22:(change22+1367),1:x4); 
%   
%  imagesc(vv1); 
%  sumsCX=y3.*x3;sumsCY=y4.*x4;sums=sumsCX+sumsCY; 
%  W(C,1:sumsCX)=reshape(CX,[1,sumsCX]); 
%  W(C,(sumsCX+1):sums)=reshape(CY,[1,sumsCY]); 
%   
%  save 'stretchW.mat' W 
 %% 
    C=C+1; 
    end 
 end 
end 
break; 
  
%  W1(1,1:72)=CX(1,1:72); 
% W1(1,73:)=CY(1,1:72); 
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  Assumption	
  of	
  rays	
  (Schematic	
  eye)	
  (p.58-­‐p.70)	
  
% Reader should consider section (3.4) for foundation of this step 
% this code is to trace the ray before entering and inside the lens, the aim is to find 
the wavefront slopes for the centroids calculation. 
 %------------------------------------------------------------------------------ 
%%RayD:density of ray 
%VHD: density of Vitreous Humors 
%LensD:density of lens 
%vector L : distance from star to front lens 
%M: distance from back lens to conea 
%S :lens surface 
%Rx :Ray 
%Ry:Ray 
%PRx:Positon of ray 
%PRy:position of ray 
%thetaVH:angles of the ray before going in to lens 
%thetalens:angles after refracted by lens equals to the entrance angle of 
%the cornea 
%thetaout:angles afterrefracted by cornea 
%%ray starts from the cental of the retina which points to the exist of the 
%pupil, set this axis as the center of the whole calculation [0,0], the 
%values of the matrix will give how much it has been transfered far from 
%the original position. 
%---------------------------------------------------------------------------- 
clear all; 
clear Np; 
  
R=zeros(63,82); 
for y=1:63 
          for x=1:82 
               
          R(y,x)=1; 
             
          end 
end 
%-----------------------------------------------------------       
% assume the ray travels hamogently in the vitrous humous 
%----------------------------------------------------------- 
%initial theta 
%----------------------------------------------------------- 
thetaVH=zeros(24,63,82); 
  
for OB=1:12 
mediumA=-24/63/82; 
for y=1:63 
    for x=1:82 
         
      if y<=32+(3.*OB) 
        thetaVH1(y,x)=(82-x).*(32+OB-y).*mediumA; 
         
        thetaVH(OB,y,x)=thetaVH1(y,x); 
        
      else 
            thetaVH2(y,x)=-x.*(y-OB-32).*mediumA; 
            thetaVH(OB,y,x)=thetaVH2(y,x); 
             
             
      end 
    end 
     
end 
  
  
  
%refractive index based on age 
n3=0.162*28.^(-2)+1.427; 
Np(:,:)=zeros(1,12); 
Np(1,1)=1.386; 
for C4=2:12 
    Np(1,C4)=Np(1,C4-1)+0.0005; 
end 
  
% Fs=12.31; 
% Fgrin=9.65; 
% nc=1.406; 
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% Fl1=21.98; 
  
r=sqrt(x^2+y^2); 
  
ns=Np(1,1)+Np(1,2)*r^2+Np(1,4)*r^4+Np(1,6)*x+Np(1,8)*x^3+Np(1,10)*x^4; 
phi2=Fl1.^2-(Fs+Fgrin).^2; 
ra=11.51; 
rp=-7.67; 
ka=-0.10; 
kp=-0.30; 
%posterior 
zm=1.8; 
d=3.69; 
t=x; 
z=t+d-zm; 
r=sqrt(2*rp*t-(1+kp)*t^2); 
  
Fs=F3s+F4s-(d2.*F3s.*F4s)./ns; 
%---------------------------------------------------------- 
%scale nbeforelens (1.330~1.340) 
%---------------------------------------------------------- 
%nbeforelens=1.364; 
%nafterlens=1.338; 
%ncornea=1.376; 
 finalair1>10 
     nbeforelens=nbeforelens+0.001; 
     nafterlens=nafterlens+0.001; 
     if nbeforelens>1.381 
         nbeforelens=1.381; 
     elseif nafterlens>1.357 
         nafterlens=1.357; 
     end 
 end 
%--------------------------------------------------------- 
%d is between(3.69-4.11)+-0.41 
%front lens radii is 11.51-2.28)+10.95 
%posterior lens radii is -7.67-7.87)+-0.63 
%----------------------------------------------------------- 
d=4.05; 
  
if d>3.69 && d<3.8 
    f1=0.04; 
    g1=0.03; 
end 
if d>3.8 && d<4.0 
    f1=0.03; 
    g1=0.02; 
end 
if d>4.0 && d<4.11 
    f1=0.02; 
    g1=0.01; 
end 
     
k=-3.06;%-1.0 
R=10.2;%-6.0 
C2=1; 
for x1=4.01:f1:4.05 
    for y1=4.01:f1:4.05 
  
z=((x1.^2+y1.^2).*(1/R))./(1+sqrt((1-(k+1).*(x1.^2+y1.^2).*(1/R).^2))); 
  
nxx(1,C2)=z; 
C2=C2+1; 
    end 
end 
k=-1.0; 
R=-6.0; 
  
C1=1; 
for x1=-2.90:g1:-2.88 
    for y1=-2.90:g1:-2.88 
  
z1=((x1.^2+y1.^2).*(1/R))./(1+sqrt((1-(k+1).*(x1.^2+y1.^2).*(1/R).^2))); 
  
nzz(1,C1)=-z1; 
C1=C1+1; 
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    end 
end 
  
  
thetaVHF=zeros(63,82); 
  
for y=1:63 
    for x=1:82 
        %% 
        if abs(thetaVH(OB,y,x))>11 
            a1=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a1))./(Np(1,12)); 
            B=asin(A); 
            C=rad2deg(B); 
  
             
               G1=Np(1,12).*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
            
            thetaVHF(y,x)=finalair1; 
             
  end 
        %% 
         
        if 10<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=11 
             a2=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a2))./(Np(1,11)); 
            B=asin(A); 
            C=rad2deg(B); 
  
             
                A1=Np(1,11).*sin(deg2rad(C))./nxx(1); 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                D1=nxx(1).*sin(deg2rad(C1))./nzz(9); 
                E1=asin(D1); 
                F1=rad2deg(E1);%comes out arrived at n3 
                G1=nzz(9).*sin(deg2rad(F1))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
             
            thetaVHF(y,x)=finalair1; 
             
 end 
        %% 
        if 9<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=10 
             a3=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a3))./(Np(1,10)); 
            B=asin(A); 
            C=rad2deg(B); 
  
            LK=Np(1,10); 
            LM=nxx(1); 
            [s,r]=size(nzz); 
            LB=nzz(8); 
            for h=1:2 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; 
                LM=nxx(h+1); 
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                LN=nxx(h); 
            end 
             
             
            for o=8:9 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
                if o==r 
                    LB=nzz(o); 
                else 
                LB=nzz(o+1); 
                end 
                LV=nzz(o); 
            end  
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
            
            thetaVHF(y,x)=finalair1; 
             
  end 
        %% 
        if 8<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=9 
             a4=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a4))./(Np(1,9)); 
            B=asin(A); 
            C=rad2deg(B); 
  
            LK=Np(1,9); 
            LM=nxx(1); 
            [s,r]=size(nzz); 
            LB=nzz(7); 
            for h=1:3 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; LM=nxx(h+1); 
                LN=nxx(h); 
            end 
             
             
            for o=7:1:9 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
                if o==r 
                    LB=nzz(r); 
                else 
                LB=nzz(o+1); 
                end 
                LV=nzz(o); 
                 
            end  
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
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                finalair1=rad2deg(O1); 
            
            thetaVHF(y,x)=finalair1; 
 end 
         
        %% 
        if 7<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=8 
             a5=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a5))./(Np(1,8)); 
            B=asin(A); 
            C=rad2deg(B); 
LK=Np(1,8); 
            LM=nxx(1); 
            [s,r]=size(nzz); 
            LB=nzz(1); 
            for h=1:4 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; 
                LM=nxx(h+1); 
                LN=nxx(h); 
            end 
             
             
           for o=1:4 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
               
             
                LB=nzz(o+1); 
              
                LV=nzz(o); 
                 
            end  
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
             
            thetaVHF(y,x)=finalair1; 
  
        end 
         
        %% 
        if 6<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=7 
             a6=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a6))./(Np(1,7)); 
            B=asin(A); 
            C=rad2deg(B); 
LK=Np(1,7); 
            LM=nxx(1); 
            LB=nzz(1); 
            for h=1:5 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; 
                LM=nxx(h+1); 
                LN=nxx(h); 
            end 
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            for o=1:5 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
                LB=nzz(o+1); 
                LV=nzz(o); 
            end % out of lens 
             
            %comes out arrived at n3 
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
           
            thetaVHF(y,x)=finalair1; 
            
 
        end 
         
        
        %% 
        if 5<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=6 
             a8=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a8))./(Np(1,6)); 
            B=asin(A); 
            C=rad2deg(B); 
LK=Np(1,6); 
            LM=nxx(1); 
            LB=nzz(1); 
            for h=1:6 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; 
                LM=nxx(h+1); 
                LN=nxx(h); 
            end 
             
             
            for o=1:6 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
                LB=nzz(o+1); 
                LV=nzz(o); 
            end  
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
            
            thetaVHF(y,x)=finalair1; 
 end 
         
        %% 
        if 4<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=5 
             a9=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a9))./(Np(1,5)); 
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            B=asin(A); 
            C=rad2deg(B); 
 %atan(rad2deg(x))=wideth of lens/length of star to core of lens=4.75/19.15=7.9 
            LK=Np(1,5); 
            LM=nxx(1); 
            LB=nzz(1); 
            for h=1:7 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; 
                LM=nxx(h+1); 
                LN=nxx(h); 
            end 
             
             
            for o=1:7 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
                LB=nzz(o+1); 
                LV=nzz(o); 
            end % out of lens 
             
             
            %comes out arrived at n3 
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
             
            thetaVHF(y,x)=finalair1;end 
         
        %% 
        if 3<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=4 
             a10=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a10))./(Np(1,4)); 
            B=asin(A); 
            C=rad2deg(B); 
             
            LK=Np(1,4); 
            LM=nxx(1); 
            LB=nzz(1); 
            for h=1:8 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; 
                LM=nxx(h+1); 
                LN=nxx(h); 
            end 
             
             
            for o=1:8 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
                LB=nzz(o+1); 
                LV=nzz(o); 
            end  
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                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
             
            thetaVHF(y,x)=finalair1;end 
        %% 
        if 2<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=3 
             a11=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a11))./(Np(1,3)); 
            B=asin(A); 
            C=rad2deg(B); 
             
            LK=Np(1,3); 
            LM=nxx(1); 
            LB=nzz(1); 
            for h=1:9 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; 
                  
                [b,a]=size(nxx); 
                if h==a 
                    LM=nxx(h); 
                else 
                LM=nxx(h+1); 
                end 
                LN=nxx(h); 
            end 
              
             
            for o=1:9 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
               [s,r]=size(nzz); 
                 if o==r 
                    LB=nzz(o); 
                else 
                LB=nzz(o+1); 
                end 
                 
                LV=nzz(o); 
            end  
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
             
            thetaVHF(y,x)=finalair1; 
      end 
%% 
        if 1<abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<=2 
             a12=thetaVH(OB,y,x); 
               
            A=nbeforelens.*sin(deg2rad(a12))./(Np(1,2)); 
            B=asin(A); 
            C=rad2deg(B); 
            LK=Np(1,2); 
            LM=nxx(1); 
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            LB=nzz(1); 
            for h=1:9 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                C=C1; 
                [b,a]=size(nxx); 
                if h==a 
                    LM=nxx(h); 
                else 
                LM=nxx(h+1); 
                end 
                LN=nxx(h); 
            end 
             
             
            for o=1:9 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
                 
                [s,r]=size(nzz); 
                 if o==r 
                    LB=nzz(o); 
                else 
                LB=nzz(o+1); 
                end 
                 
                LV=nzz(o); 
            end  
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
            
            thetaVHF(y,x)=finalair1; 
  
        end 
        %% 
        if 0>abs(thetaVH(OB,y,x)) && abs(thetaVH(OB,y,x))<1 
             a13=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a13))./(Np(1,1)); 
            B=asin(A); 
            C=rad2deg(B); 
             
            LK=Np(1,1); 
            LM=nxx(1); 
            LB=nzz(1); 
            for h=1:9 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                    C=C1; 
                [b,a]=size(nxx); 
                if h==a 
                    LM=nxx(h); 
                else 
                LM=nxx(h+1); 
                end 
                LN=nxx(h); 
            end  
            for o=1:9 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
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                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1;[s,r]=size(nzz); 
                 if o==r 
                    LB=nzz(o); 
                else 
                LB=nzz(o+1); 
                end 
                 
                LV=nzz(o); 
            end  
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 
            
            thetaVHF(y,x)=finalair1; 
  
end 
        %% 
        if abs(thetaVH(OB,y,x))==0 
             a14=thetaVH(OB,y,x); 
            A=nbeforelens.*sin(deg2rad(a14))./(Np(1,1)); 
            B=asin(A); 
            C=rad2deg(B); 
           LK=Np(1,1); 
            LM=nxx(1); 
            LB=nzz(1); 
            for h=1:9 
                A1=LK.*sin(deg2rad(C))./LM; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LK=LM; 
                 
                 C=C1; 
                [b,a]=size(nxx); 
                if h==a 
                    LM=nxx(h); 
                else 
                LM=nxx(h+1); 
                end 
                LN=nxx(h); 
            end 
             
             
            for o=1:9 
                 
                A1=LN.*sin(deg2rad(C))./LB; 
                B1=asin(A1); 
                C1=rad2deg(B1); 
                LN=LB; 
                C=C1; 
                [s,r]=size(nzz); 
                 if o==r 
                    LB=nzz(o); 
                else 
                L=nzz(o+1); 
                end 
                 
                LV=nzz(o); 
            end  
                G1=LV.*sin(deg2rad(C))./nafterlens; 
                H1=asin(G1); 
                J1=rad2deg(H1);%comes out at n2 
                K1=nafterlens.*sin(deg2rad(J1))./ncornea; 
                L1=asin(K1); 
                M1=rad2deg(L1);%at cornea 
                N1=ncornea.*sin(deg2rad(M1))./1; 
                O1=asin(N1); 
                finalair1=rad2deg(O1); 



148	
  
	
  

            
            thetaVHF(y,x)=finalair1; 
             
             
             
             
             
             
        end 
        
        THETAVH(OB,y,x)=thetaVHF(y,x); 
    end 
end end     
Design	
  the	
  lens	
  (Schematic	
  eye)	
  (P.58-­‐P.70)	
  
% this code is simulate the lens of the schematic eye as described in section 3.4.1.1 
	
  
function [ellipse_t, h] = ecllipse_lens(x,y,hE) 
  
orientation_tolerance = 1e-3; 
  
% prepare vectors, must be column vectors 
x = x(:); 
y = y(:); 
  
% to make matrix inversion more accurate.  
mean_x = mean(x); 
mean_y = mean(y); 
x = x-mean_x; 
y = y-mean_y; 
  
% the estimation for the conic equation of the ellipse 
X = [x.^2, x.*y, y.^2, x, y ]; 
a = sum(X)/(X'*X); 
  
  
% extract parameters from the conic equation 
[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) ); 
  
% remove the orientation from the ellipse 
if ( min(abs(b/a),abs(b/c)) > orientation_tolerance ) 
     
    orientation_rad = 1/2 * atan( b/(c-a) ); 
    cos_phi = cos( orientation_rad ); 
    sin_phi = sin( orientation_rad ); 
    [a,b,c,d,e] = deal(... 
        a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,... 
        0,... 
        a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,... 
        d*cos_phi - e*sin_phi,... 
        d*sin_phi + e*cos_phi ); 
    [mean_x,mean_y] = deal( ... 
        cos_phi*mean_x - sin_phi*mean_y,... 
        sin_phi*mean_x + cos_phi*mean_y ); 
else 
    orientation_rad = 0; 
    cos_phi = cos( orientation_rad ); 
    sin_phi = sin( orientation_rad ); 
end 
  
% check if conic equation represents an ellipse 
test = a*c; 
switch (1) 
case (test>0),  status = ''; 
case (test==0), status = 'Parabola found';  warning( 'fit_ellipse: Did not locate an 
ellipse' ); 
case (test<0),  status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an 
ellipse' ); 
end 
  
if (test>0) 
     
    if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end 
     
    % final ellipse parameters 
    X0          = mean_x - d/2/a; 
    Y0          = mean_y - e/2/c; 
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    F           = 1 + (d^2)/(4*a) + (e^2)/(4*c); 
    [a,b]       = deal( sqrt( F/a ),sqrt( F/c ) );     
    long_axis   = 2*max(a,b); 
    short_axis  = 2*min(a,b); 
  
     
    R           = [ cos_phi sin_phi; -sin_phi cos_phi ]; 
    P_in        = R * [X0;Y0]; 
    X0_in       = P_in(1); 
    Y0_in       = P_in(2); 
     
    % pack ellipse into a structure 
    ellipse_t = struct( ... 
        'a',a,... 
        'b',b,... 
        'phi',orientation_rad,... 
        'X0',X0,... 
        'Y0',Y0,... 
        'X0_in',X0_in,... 
        'Y0_in',Y0_in,... 
        'long_axis',long_axis,... 
        'short_axis',short_axis,... 
        'status','' ); 
else 
        ellipse_t = struct( ... 
        'a',[],... 
        'b',[],... 
        'phi',[],... 
        'X0',[],... 
        'Y0',[],... 
        'X0_in',[],... 
        'Y0_in',[],... 
        'long_axis',[],... 
        'short_axis',[],... 
        'status',status ); 
end 
  
h=[]; 
if (nargin>2) & ~isempty( hE ) & (test>0) 
     
    % rotation matrix to rotate the axes with respect to an angle phi 
    R = [ cos_phi sin_phi; -sin_phi cos_phi ]; 
     
    % the axes 
    ver_line        = [ [X0 X0]; Y0+b*[-1 1] ]; 
    horz_line       = [ X0+a*[-1 1]; [Y0 Y0] ]; 
    new_ver_line    = R*ver_line; 
    new_horz_line   = R*horz_line; 
     
    % the ellipse 
    theta_r         = linspace(0,2*pi); 
    ellipse_x_r     = X0 + a*cos( theta_r ); 
    ellipse_y_r     = Y0 + b*sin( theta_r ); 
    rotated_ellipse = R * [ellipse_x_r;ellipse_y_r]; 
     
    
    set(hE(1),'XData',rotated_ellipse(1,:),'YData',rotated_ellipse(2,:)); 
    set(hE(2),'XData',new_horz_line(1,:),'YData',new_horz_line(2,:)); 
    set(hE(3),'XData',new_ver_line(1,:),'YData',new_ver_line(2,:)); 
%    set( axis_handle,'NextPlot',hold_state ); 
end 
 
function [a]=fitellipse(X,Y) 
  
% FITELLIPSE  Least-squares fit of an ellipse (unconstrained). 
   
if nargin == 0 
  % Create an ellipse 
  t = linspace(0,2); 
   
  Rx = 300 
  Ry = 200 
  Cx = 250 
  Cy = 150 
  Rotation = .4 % Radians 
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  x = Rx * cos(t);  
  y = Ry * sin(t); 
  nx = x*cos(Rotation)-y*sin(Rotation) + Cx;  
  ny = x*sin(Rotation)+y*cos(Rotation) + Cy; 
   
  fitellipse(nx,ny) 
    return 
end 
  
% Build design matrix 
D = [ x.*x  x.*y  y.*y  x  y  ones(size(x)) ]; 
  
% Build scatter matrix 
S = D'*D; 
 
C(6,6) = 0; C(1,3) = -2; C(2,2) = 1; C(3,1) = -2; 
  
 [gevec, geval] = eig(S,C); 
  
I = find(real(diag(geval)) < 1e-8 & ~isinf(diag(geval))); 
  
% Extract eigenvector corresponding to negative eigenvalue 
A = real(gevec(:,I)); 
  
par = [ 
  A(1)*sy*sy,   ... 
      A(2)*sx*sy,   ... 
      A(3)*sx*sx,   ... 
      -2*A(1)*sy*sy*mx - A(2)*sx*sy*my + A(4)*sx*sy*sy,   ... 
      -A(2)*sx*sy*mx - 2*A(3)*sx*sx*my + A(5)*sx*sx*sy,   ... 
      A(1)*sy*sy*mx*mx + A(2)*sx*sy*mx*my + A(3)*sx*sx*my*my   ... 
      - A(4)*sx*sy*sy*mx - A(5)*sx*sx*sy*my   ... 
      + A(6)*sx*sx*sy*sy   ... 
      ]'; 
  
% Convert to geometric radii, and centers 
  
thetarad = 0.5*atan2(par(2),par(1) - par(3)); 
cost = cos(thetarad); 
sint = sin(thetarad); 
sin_squared = sint.*sint; 
cos_squared = cost.*cost; 
cos_sin = sint .* cost; 
  
Ao = par(6); 
Au =   par(4) .* cost + par(5) .* sint; 
Av = - par(4) .* sint + par(5) .* cost; 
Auu = par(1) .* cos_squared + par(3) .* sin_squared + par(2) .* cos_sin; 
Avv = par(1) .* sin_squared + par(3) .* cos_squared - par(2) .* cos_sin; 
  
% ROTATED = [Ao Au Av Auu Avv] 
  
tuCentre = - Au./(2.*Auu); 
tvCentre = - Av./(2.*Avv); 
wCentre = Ao - Auu.*tuCentre.*tuCentre - Avv.*tvCentre.*tvCentre; 
  
uCentre = tuCentre .* cost - tvCentre .* sint; 
vCentre = tuCentre .* sint + tvCentre .* cost; 
  
Ru = -wCentre./Auu; 
Rv = -wCentre./Avv; 
  
Ru = sqrt(abs(Ru)).*sign(Ru); 
Rv = sqrt(abs(Rv)).*sign(Rv); 
  
a = [uCentre, vCentre, Ru, Rv, thetarad]; 
 
 
Find	
  h0	
  matrix	
  (Schematic	
  eye)	
  (P.58-­‐P.70)	
  
% this code is to find the depth "h" of the ray, which can help to define the location 
of the ray, as described in section 3.4.1.1, equation 2.4.10. 
global Subject R n np d k Rx Ph G Pz h0 h1  fname dname Nref fid 
 
k=length(R); 
vit=d(k); 
R(3)=P(1); 
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R(4)=P(2); 
np(3)=P(3); n(4)=P(3); 
  
lv=-1/Rx*1000; 
h=1; u=-h/lv;  
[up,hp]=PRT(R,n,np,d,u,h); lvp=-hp/up; 
MF1=(vit-lvp)^2; 
  
clear Rr nr nrp dr 
 
kR=Ph(2,1); h=Ph(2,2); 
for i=1:kR 
    Rr(i)=R(i); nr(i)=n(i);  
    if i<kR 
        nrp(i)=np(i); dr(i)=d(i); 
    end; 
end; 
nrp(kR)=-nr(kR); dr(kR)=-d(kR-1); 
K=2*kR-1;  
for i=kR+1:K 
    j=K-i+1; 
     
    Rr(i)=R(j); nr(i)=-np(j); nrp(i)=-n(j);  
    if i<K 
        dr(i)=-d(j-1); 
    end; 
end; 
 
l=-Pz; u=1; h=-u*l; [up,hp]=PRT(Rr,nr,nrp,dr,u,h); M3=-u/up; hp=M3*h0; 
MF2=(h-hp)^2; 
  
clear Rr nr nrp dr 
kR=Ph(3,1); h1=Ph(3,2); 
  
for i=1:kR 
    Rr(i)=R(i); nr(i)=n(i);  
    if i<kR 
        nrp(i)=np(i); dr(i)=d(i); 
    end; 
end; 
nrp(kR)=-nr(kR); dr(kR)=-d(kR-1); 
K=2*kR-1;  
for i=kR+1:K 
    j=K-i+1; 
     
    Rr(i)=R(j); nr(i)=-np(j); nrp(i)=-n(j); 
     
   if i<K 
        dr(i)=-d(j-1); 
    end; 
     
    
     
end; 
 
l=-Pz; u=1; h=-u*l; [up,hp]=PRT(Rr,nr,nrp,dr,u,h); M4=-u/up; h1p=M4*h0; 
MF=(h-hp)^2; 
  
  
  
Adjusted	
  patching	
  modification	
  	
  (P.58-­‐P.70)	
  
% this code is to achieve the optimisation method as described in section 3.4.1.1 as 
shown in figure 30.  
global Subject R n np d k Rx Ph G Pz h0 h1  fname dname fid 
  
clear Ax; clear Bx;  
R=1.402; 
for  
j=1:Nv  
   
end; 
 
for j=1:Nv V(j)=V2(1,j); end; [Vp,ord]=sort_descending(V); 
for j=1:Nv 
     
end;  
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for j=1:Nv V2(1,j)=Vp(j); end; 
for i=2:Nv 
    for j=i:Nv   
         
        rand=i; 
        V2(i,j)=rand; 
     end 
    for m=1:i-1 
        for q=1:i-1  Ax(m,q)=V2(m,q); R(j)=R(q)-0.01;  end 
        sum=0; 
        for j=i:Nv sum=V2(i,j)*V2(m,j)+sum; R(Nv)=sum-0.01 end; 
        Bx(m)=-sum; 
    end 
    clear X 
    A_inv=inv(Ax); 
    if Ax==0 
        fprintf(fid, 'Ax = 0\n');  
        fprintf(fid,'Dimensions of Ax are %4d %4d\n',size(Ax)); 
    end; 
    X=inv(Ax)*Bx'; 
    for j=1:i-1 V2(i,j)=X(j); Rx=R(i,j)-0.01;end 
    sum=0; 
    for j=1:Nv     sum=V2(i,j)*V2(i,j)+sum; R(i,j)=R(i,j)-R(Nv);  end 
    sum=sqrt(sum); 
    for j=1:Nv     V2(i,j)=V2(i,j)/sum; end; 
    if Nv==5 
        ; 
    end; 
end % i  loop 
     
for i1=1:Nv 
    for i2=1:Nv 
        sum=0; 
        for j=1:Nv    sum=V2(i1,j)*V2(i2,j)+sum; end 
        if i1==i2 
            if abs(sum-1)>1.402 
                 
            end 
        end 
        if i1~=i2 
            if abs(sum)>1.402 
                 
            end 
        end; 
    end %i2 loop 
end % i1loop 
	
  
	
  
	
  
Tomography	
  lens	
  refractive	
  index	
  	
  reconstruction	
  (P.85-­‐P92)	
  
% Reader should consider section (4.2) for foundation of this step 
 
mean_x = mean(x); 
mean_y = mean(y); 
x = x-mean_x; 
y = y-mean_y; 
 X = [x.^2, x.*y, y.^2, x, y ]; 
a = sum(X)/(X'*X); 
  
% extract parameters from the conic equation 
[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) ); 
  
 
if ( min(abs(b/a),abs(b/c)) > orientation_tolerance ) 
     
    orientation_rad = 1/2 * atan( b/(c-a) ); 
    cos_phi = cos( orientation_rad ); 
    sin_phi = sin( orientation_rad ); 
    [a,b,c,d,e] = deal(... 
        a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,... 
        0,... 
        a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,... 
        d*cos_phi - e*sin_phi,... 
        d*sin_phi + e*cos_phi ); 
    [mean_x,mean_y] = deal( ... 
        cos_phi*mean_x - sin_phi*mean_y,... 
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        sin_phi*mean_x + cos_phi*mean_y ); 
else 
    orientation_rad = 0; 
    cos_phi = cos( orientation_rad ); 
    sin_phi = sin( orientation_rad ); 
end 
  
test = a*c; 
 
if (test>0) 
     
    if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end 
     
    % final ellipse parameters 
    X0          = mean_x - d/2/a; 
    Y0          = mean_y - e/2/c; 
    F           = 1 + (d^2)/(4*a) + (e^2)/(4*c); 
    [a,b]       = deal( sqrt( F/a ),sqrt( F/c ) );     
    long_axis   = 2*max(a,b); 
    short_axis  = 2*min(a,b); 
  
    % rotate the axes backwards to find the centre point of the original TILTED ellipse 
    R           = [ cos_phi sin_phi; -sin_phi cos_phi ]; 
    P_in        = R * [X0;Y0]; 
    X0_in       = P_in(1); 
    Y0_in       = P_in(2); 
     
    % pack ellipse into a structure 
    ellipse_t = struct( ... 
        'a',a,... 
        'b',b,... 
        'phi',orientation_rad,... 
        'X0',X0,... 
        'Y0',Y0,... 
        'X0_in',X0_in,... 
        'Y0_in',Y0_in,... 
        'long_axis',long_axis,... 
        'short_axis',short_axis,... 
        'status','' ); 
else 
    % report an empty structure 
    ellipse_t = struct( ... 
        'a',[],... 
        'b',[],... 
        'phi',[],... 
        'X0',[],... 
        'Y0',[],... 
        'X0_in',[],... 
        'Y0_in',[],... 
        'long_axis',[],... 
        'short_axis',[],... 
        'status',status ); 
end 
  
    % rotation matrix to rotate the axes with respect to an angle phi 
    R = [ cos_phi sin_phi; -sin_phi cos_phi ]; 
     
    % the axes 
    ver_line        = [ [X0 X0]; Y0+b*[-1 1] ]; 
    horz_line       = [ X0+a*[-1 1]; [Y0 Y0] ]; 
    new_ver_line    = R*ver_line; 
    new_horz_line   = R*horz_line; 
     
    % the ellipse 
    theta_r         = linspace(0,2*pi); 
    ellipse_x_r     = X0 + a*cos( theta_r ); 
    ellipse_y_r     = Y0 + b*sin( theta_r ); 
    rotated_ellipse = R * [ellipse_x_r;ellipse_y_r]; 
     
    % draw 
    hold_state = get( axis_handle,'NextPlot' ); 
    set( axis_handle,'NextPlot','add' ); 
     
    if isequal(feature(1),'P') 
        PR_PEdgePlot = plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'g-', 
'linewidth', 3); 
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        PR_PCentrePlot = plot( X0_in,Y0_in, 'g+', 'markersize', 10, 'linewidth', 3); 
        set( axis_handle,'NextPlot',hold_state ); 
        set(PR_PEdgePlot, 'tag', 'PR_PEdgePlot'); 
        set(PR_PCentrePlot, 'tag', 'PR_PCentrePlot'); 
    elseif isequal(feature(1),'L') 
        PR_LEdgePlot = plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'w-', 
'linewidth', 3); 
        PR_LCentrePlot = plot( X0_in,Y0_in, 'w+', 'markersize', 10, 'linewidth', 3); 
        set( axis_handle,'NextPlot',hold_state ); 
        set(PR_LEdgePlot, 'tag', 'PR_LEdgePlot'); 
        set(PR_LCentrePlot, 'tag', 'PR_LCentrePlot'); 
    end 
     
% Curve fit to anterior lens 
c = (0.074554*0.0781)*2; 
k = 7.936985; 
Xpoints = []; 
Ypoints = []; 
  
API1= iptgetapi(hline1); 
API2= iptgetapi(hline2); 
  
linecoords1 = API1.getPosition(); 
linecoords2 = API2.getPosition(); 
mid_pt = round([(linecoords1(1,1) + linecoords1(2,1))/2, linecoords2(1,2)]); 
     
x0 = mid_pt(1); 
y0 = mid_pt(2); 
  
Xpoints= linspace(linecoords1(1,1),   linecoords1(2,1),100); 
Ypoints = ((c*(Xpoints - x0).^2) ./ (1 + sqrt(1 - (k*c*c*(Xpoints - x0).^2)))) + y0; 
  
MRI_ALSmooth = [Ypoints', Xpoints']; 
set(gca, 'handlevisibility', 'on'); 
hold on; 
plot(Xpoints, Ypoints, 'r'); 
  
  
% Curve fit for posterior lens 
c = (-0.16015*0.0781)*2; 
k = 0.562194; 
Xpoints = []; 
Ypoints = []; 
mid_pt = round([(linecoords1(1,1) + linecoords1(2,1))/2, linecoords2(2,2)]); 
x0 = mid_pt(1); 
y0 = mid_pt(2); 
  
Xpoints= linspace(linecoords1(1,1),   linecoords1(2,1),100); 
Ypoints = ((c*(Xpoints - x0).^2) ./ (1 + sqrt(1 - (k*c*c*(Xpoints - x0).^2)))) + y0; 
  
MRI_PLSmooth = [Ypoints', Xpoints']; 
set(gca, 'handlevisibility', 'on'); 
hold on; 
plot(Xpoints, Ypoints, 'r'); 
 
	
  
	
  
	
  
% fitting for Posterior Lens surface 
if get(findobj(gcf, 'tag','MRICurvePL'), 'value') == 1  
  
    x = MRI_PostLens(:,2) - mean(MRI_PostLens(:,2)); 
    y = MRI_PostLens(:,1) - mean(MRI_PostLens(:,1)); 
  
    conicmodel = fittype('((c*(x-x0)^2) / (1 + sqrt(1 - k*c^2*(x-x0)^2)) + y0)'); 
    modelopts = fitoptions(conicmodel); 
    modelopts.StartPoint = [0 0 0 0]; 
    modelopts.Robust = 'on'; 
  
    [MRI_PLresult MRI_PLgoodness] = fit(x,y,conicmodel,modelopts); 
  
    MRI_PLxc = mean(MRI_PostLens(:,2)) + MRI_PLresult.x0; 
    MRI_PLyc = mean(MRI_PostLens(:,1)) + MRI_PLresult.y0; 
  
    Xpoints= (linspace(min(MRI_PostLens(:,2)),max(MRI_PostLens(:,2)),hlen)); 
    Xpoints = Xpoints - mean(MRI_PostLens(:,2)); 
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    Ypoints = (((MRI_PLresult.c*(Xpoints - MRI_PLresult.x0).^2) ./ (1 + sqrt(1 - 
(MRI_PLresult.k*MRI_PLresult.c*MRI_PLresult.c*(Xpoints - MRI_PLresult.x0).^2))) ) + 
MRI_PLresult.y0); 
  
    Xpoints = Xpoints + mean(MRI_PostLens(:,2)); 
    Ypoints = Ypoints + mean(MRI_PostLens(:,1)); 
     
    MRI_PLSmooth = [Ypoints', Xpoints']; 
  
    set(axhandle1, 'handlevisibility', 'on'); 
    hold on; 
    plot(Xpoints, Ypoints, 'r'); 
  
    MRI_PLCurve = strcat('C=',num2str(((MRI_PLresult.c)/MRI_CalFactor/2),3),'  
K=',num2str(MRI_PLresult.k,3),'  x0=',num2str(round(MRI_PLxc)),'  
y0=',num2str(round(MRI_PLyc))); 
  
    set(findobj('tag','MRIPLResults'),'string',MRI_PLCurve); 
    set(findobj('tag','MRIPLResults'),'visible','on');    
     
    UserData{56} = MRI_PLresult; 
    UserData{48} = MRI_PLgoodness; 
    UserData{57} = MRI_PLxc; 
    UserData{58} = MRI_PLyc; 
end 
  
  
  
%Left lens interpolation 
maxdiff = 0; 
maxdiffidx = 0; 
for ii = 2:length(MRI_AntLensLeft) 
    diff = MRI_AntLensLeft(ii,2) - MRI_AntLensLeft(ii-1,2); 
    if maxdiff < abs(diff) 
        maxdiff = abs(diff); 
        maxdiffidx = ii; 
    end 
end 
  
inclval = [MRI_AntLensLeft(maxdiffidx-1,1) - (MRI_CalFactor), 
MRI_AntLensLeft(maxdiffidx-1,1),  MRI_AntLensLeft(maxdiffidx,1), 
MRI_AntLensLeft(maxdiffidx,1) + (MRI_CalFactor)]; 
  
xy = []; 
  
for ii = 1:length(MRI_AntLensLeft) 
    if ismember(MRI_AntLensLeft(ii,1), inclval) 
        xy = [xy; MRI_AntLensLeft(ii,:)]; 
    end 
end 
  
xyinterp = zeros(4,2); 
xyinterp(:,1) = inclval'; 
xyinterp(1,2) = mean(xy(find(xy(:,1)==inclval(1)),2)); 
xyinterp(2,2) = mean(xy(find(xy(:,1)==inclval(2)),2)); 
xyinterp(3,2) = mean(xy(find(xy(:,1)==inclval(3)),2)); 
xyinterp(4,2) = mean(xy(find(xy(:,1)==inclval(4)),2)); 
  
XIleft = [inclval(2)+MRI_CalFactor:MRI_CalFactor:inclval(3)-MRI_CalFactor]'; 
YIleft = interp1(xyinterp(:,1), xyinterp(:,2),XIleft, 'cubic'); 
  
%Right Lens interpolation 
  
maxdiff = 0; 
maxdiffidx = 0; 
for ii = 2:length(MRI_AntLensRight) 
    diff = MRI_AntLensRight(ii,2) - MRI_AntLensRight(ii-1,2); 
    if maxdiff < abs(diff) 
        maxdiff = abs(diff); 
        maxdiffidx = ii; 
    end 
end 
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inclval = [MRI_AntLensRight(maxdiffidx-1,1) - MRI_CalFactor, 
MRI_AntLensRight(maxdiffidx-1,1),  MRI_AntLensRight(maxdiffidx,1), 
MRI_AntLensRight(maxdiffidx,1) + MRI_CalFactor]; 
  
xy = []; 
  
for ii = 1:length(MRI_AntLensRight) 
    if ismember(MRI_AntLensRight(ii,1), inclval) 
        xy = [xy; MRI_AntLensRight(ii,:)]; 
    end 
end 
  
xyinterp = zeros(4,2); 
xyinterp(:,1) = inclval'; 
xyinterp(1,2) = mean(xy(find(xy(:,1)==inclval(1)),2)); 
xyinterp(2,2) = mean(xy(find(xy(:,1)==inclval(2)),2)); 
xyinterp(3,2) = mean(xy(find(xy(:,1)==inclval(3)),2)); 
xyinterp(4,2) = mean(xy(find(xy(:,1)==inclval(4)),2)); 
  
XIright = [inclval(2)+MRI_CalFactor:MRI_CalFactor:inclval(3)-MRI_CalFactor]'; 
YIright = interp1(xyinterp(:,1), xyinterp(:,2),XIright, 'cubic'); 
MRI_Lensinterp = [[XIleft YIleft]; [XIright YIright]]; 
 
 
	
  
Refractive	
  index	
  estimation	
  code	
  
%This code is to find the refractive index distribution as described in section 4.3, as 
%shown in figure 47 
%vertical lines and horizontal lines going across the lens (P.85-P92) 
%this code is modified from Dr Kasthurirangan's MRI analysis code from paper 
(Kasthurirangan. et al, 2008) 
  
  
    Xpoints= (linspace(min(MRI_Lens(:,2)),max(MRI_Lens(:,2)),hlen)); 

lenslines = [,];  
for ii = 1: length(MRI_ALSmooth), lenslines(ii,:) = [round(MRI_ALSmooth(ii,1)), 

round(MRI_PLSmooth(ii,1))];end 
 

    x = [0.012 0.024 0.036 0.048]'; 
    xyz = repmat(x,1,hlen); 
     
    eachlineyz = zeros(hlen,4,vlen);     
     
    for ii = 1:4 
         
            MRI_ename(end) = num2str(ii); 
           
            MRI_imdisplay = imrotate(dicomread([MRI_fname MRI_ename]),MRI_TotalRot, 
'bicubic', 'crop');  
            set(axhandle1, 'Handlevisibility', 'on'); 
            hold on; 
                 
                imshow(MRI_imdisplay,[]); 
            hold off; 
        %end 
             
  
         
        
        mid_pt = [round((MRI_ALxc+MRI_PLxc)/2), round((MRI_ALyc+MRI_PLyc)/2)]; 
         
        %MRI_imdisplay = UserData{24}; 
         
        for hcount = 1: hlen 
%             for vcount = 1:vlen 
%                 %eachlineyz(:,ii,count) = improfile(MRI_imdisplay, [mid_pt(1)-hlen/2 
mid_pt(1)+hlen/2], [mid_pt(2)+ (ceil(numpixels/2)-count) mid_pt(2)+(ceil(numpixels/2)-
count)]);  
                  
            vertlength = lenslines(hcount,2) - lenslines(hcount,1) + 1; 
      
            eachlineyz(hcount,ii,(round(vlen/2)-round(vertlength/2) + (1:vertlength))) = 
MRI_imdisplay(lenslines(hcount,1):lenslines(hcount,2),Xpoints(hcount)); 
             
            line( [Xpoints(hcount), Xpoints(hcount)], [lenslines(hcount,1), 
lenslines(hcount,2)]); 
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        end 
  
         
         
    end 
  
 
indPyz = ones(2, hlen, vlen); 
for hcount = 1:hlen 
    for vcount = 1:vlen   
            Y = log(eachlineyz(hcount,:,vcount))'; 
            X = ones(length(xyz(:,hcount)),2); 
            X(:,2) = 0-xyz(:,hcount); 
            indPyz(:,hcount,vcount) = Y'*X*inv(X'*X); 
            indPyz(:,hcount,vcount) =[exp(indPyz(1,hcount,vcount)); 
indPyz(2,hcount,vcount)]; 
    end 
end 
  
  
indRIyz = zeros(hlen, vlen); 
for hcount = 1:hlen 
    for vcount = 1: vlen 
        indRIyz(hcount,vcount) = 1.3554 + 0.001549.*indPyz(2,hcount,vcount)' - 
0.00000634.*indPyz(2,hcount,vcount)'.*indPyz(2,hcount,vcount)'; 
    end 
end 
  
  
%meanindRIy = mean(indRIy,2); 
 
 
     
set(gcf,'Pointer','arrow'); 
  
  
    MRI_HomePath = pwd;     
    [fname,ename] = uiputfile('*.txt', 'Save RI Data'); 
    savefile = strcat([ename fname]); 
    fid = fopen(savefile, 'wt'); 
     
    fprintf(fid, 'Refractive index topography of the crystalline lens\n'); 
    for hcount = 1: hlen 
        fprintf(fid, '%6.4f\t', indRIyz(hcount, 1:vlen)); 
        fprintf(fid, '\n'); 
    end 
  
    fclose(fid); 

cd(MRI_HomePath); 
 

for ii = 1:hlen 
         
            MRI_ename(end) = num2str(ii); 
           
            MRI_imdisplay = imrotate(dicomread([MRI_fname MRI_ename]),MRI_TotalRot, 
'bicubic', 'crop');  
            set(axhandle1, 'Handlevisibility', 'on'); 
            hold on; 
                 
                imshow(MRI_imdisplay,[]); 
            hold off; 
      
MRI_im =fftshift(log(abs(fft2(fftshift(MRI_imdisplay))).^2+eps)>25); 
MRI_im1 =fftshift(abs(ifft2(fftshift(MRI_im)))); 
[y1,x1]=find(img==max(max(MRI_im))); 
y2=1392/2; 
x2=1040/2; 
offset_y=y1-y2; 
offset_x=x1-x2; 
bb=offset_y; 
aa=offset_x; 
hline2 (:,hlen)=bb; 
hline1 (:,hlen)=aa; 
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save '	
  iptgetapi ' hline2 hline1; 
 
temp=zeros(size(MRI_imdisplay)); 
      for y=	
  hline2:1:size(MRI_imdisplay,1) 
          for x=	
  hline1:1:size(MRI_imdisplay,2) 
          temp(round(y),round(x))=1; 
          end 
      end 
     MRI_imdisplay1 =255*temp+ MRI_imdisplay; 
end 
   MRI_ALSmooth= MRI_imdisplay1; 
            hold on; 
                 
                imshow(MRI_ALSmooth,[]); 
            hold off; 
 
% Curve fit to anterior lens 
c = (0.074554*0.0781)*2; 
k = 7.936985; 
Xpoints = []; 
Ypoints = []; 
  
 
API1= iptgetapi(hline1); 
API2= iptgetapi(hline2); 
  
linecoords1 = API1.getPosition(); 
linecoords2 = API2.getPosition(); 
mid_pt = round([(linecoords1(1,1) + linecoords1(2,1))/2, linecoords2(1,2)]); 
     
x0 = mid_pt(1); 
y0 = mid_pt(2); 
  
Xpoints= linspace(linecoords1(1,1),   linecoords1(2,1),100); 
Ypoints = ((c*(Xpoints - x0).^2) ./ (1 + sqrt(1 - (k*c*c*(Xpoints - x0).^2)))) + y0; 
  
MRI_ALSmooth = [Ypoints', Xpoints']; 
set(gca, 'handlevisibility', 'on'); 
hold on; 
plot(Xpoints, Ypoints, 'r'); 
  
  
% Curve fit for posterior lens 
c = (-0.16015*0.0781)*2; 
k = 0.562194; 
Xpoints = []; 
Ypoints = []; 
mid_pt = round([(linecoords1(1,1) + linecoords1(2,1))/2, linecoords2(2,2)]); 
x0 = mid_pt(1); 
y0 = mid_pt(2); 
  
Xpoints= linspace(linecoords1(1,1),   linecoords1(2,1),100); 
Ypoints = ((c*(Xpoints - x0).^2) ./ (1 + sqrt(1 - (k*c*c*(Xpoints - x0).^2)))) + y0; 
  
MRI_PLSmooth = [Ypoints', Xpoints']; 
set(gca, 'handlevisibility', 'on'); 
hold on; 
plot(Xpoints, Ypoints, 'r'); 
 
%function to extract lens data 
  
UserData = get(gcf, 'userdata'); 
MRI_Lens = UserData{37}; 
MRI_HomePath = pwd; 
MRI_CalFactor = UserData{16}; 
  
MRI_LensDat = sortrows(MRI_Lens,2); 
MRI_LensDat(:,1) = (MRI_LensDat(:,1)-min(MRI_LensDat(:,1)))*MRI_CalFactor; 
MRI_LensDat(:,2) = (MRI_LensDat(:,2)-MRI_LensDat(1,2))*MRI_CalFactor; 
  
[fname,ename] = uiputfile('*.txt', 'Save Lens Data'); 
    savefile = strcat([ename fname]); 
    fid = fopen(savefile, 'wt'); 
    fprintf(fid, '%6.2f %6.2f\n',MRI_LensDat'); 
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    fclose(fid); 
  
cd(MRI_HomePath); 
 
 % Minimise geometric error using nonlinear least squares if required 
if params.fNonlinear 
   
    z0     = z; 
    a0     = a; 
    b0     = b; 
    alpha0 = alpha; 
     
    % Apply the fit 
    [z, a, b, alpha, fConverged] = ... 
        fitnonlinear(x, z0, a0, b0, alpha0, params); 
     
       if ~fConverged 
        
        z = z0; 
        a = a0; 
        b = b0; 
        alpha = alpha0; 
    end 
end 
  
z = z + centroid; 
  
end 
 
 
maxdiff = 0; 
maxdiffidx = 0; 
for ii = 2:length(MRI_AntLensLeft) 
    diff = MRI_AntLensLeft(ii,2) - MRI_AntLensLeft(ii-1,2); 
    if maxdiff < abs(diff) 
        maxdiff = abs(diff); 
        maxdiffidx = ii; 
    end 
end 
  
inclval = [MRI_AntLensLeft(maxdiffidx-1,1) - (MRI_CalFactor), 
MRI_AntLensLeft(maxdiffidx-1,1),  MRI_AntLensLeft(maxdiffidx,1), 
MRI_AntLensLeft(maxdiffidx,1) + (MRI_CalFactor)]; 
  
xy = []; 
  
for ii = 1:length(MRI_AntLensLeft) 
    if ismember(MRI_AntLensLeft(ii,1), inclval) 
        xy = [xy; MRI_AntLensLeft(ii,:)]; 
    end 
end 
  
xyinterp = zeros(4,2); 
xyinterp(:,1) = inclval'; 
xyinterp(1,2) = mean(xy(find(xy(:,1)==inclval(1)),2)); 
xyinterp(2,2) = mean(xy(find(xy(:,1)==inclval(2)),2)); 
xyinterp(3,2) = mean(xy(find(xy(:,1)==inclval(3)),2)); 
xyinterp(4,2) = mean(xy(find(xy(:,1)==inclval(4)),2)); 
  
XIleft = [inclval(2)+MRI_CalFactor:MRI_CalFactor:inclval(3)-MRI_CalFactor]'; 
YIleft = interp1(xyinterp(:,1), xyinterp(:,2),XIleft, 'cubic'); 
  
%Right Lens interpolation 
  
maxdiff = 0; 
maxdiffidx = 0; 
for ii = 2:length(MRI_AntLensRight) 
    diff = MRI_AntLensRight(ii,2) - MRI_AntLensRight(ii-1,2); 
    if maxdiff < abs(diff) 
        maxdiff = abs(diff); 
        maxdiffidx = ii; 
    end 
end 
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inclval = [MRI_AntLensRight(maxdiffidx-1,1) - MRI_CalFactor, 
MRI_AntLensRight(maxdiffidx-1,1),  MRI_AntLensRight(maxdiffidx,1), 
MRI_AntLensRight(maxdiffidx,1) + MRI_CalFactor]; 
  
xy = []; 
  
for ii = 1:length(MRI_AntLensRight) 
    if ismember(MRI_AntLensRight(ii,1), inclval) 
        xy = [xy; MRI_AntLensRight(ii,:)]; 
    end 
end 
  
xyinterp = zeros(4,2); 
xyinterp(:,1) = inclval'; 
xyinterp(1,2) = mean(xy(find(xy(:,1)==inclval(1)),2)); 
xyinterp(2,2) = mean(xy(find(xy(:,1)==inclval(2)),2)); 
xyinterp(3,2) = mean(xy(find(xy(:,1)==inclval(3)),2)); 
xyinterp(4,2) = mean(xy(find(xy(:,1)==inclval(4)),2)); 
  
XIright = [inclval(2)+MRI_CalFactor:MRI_CalFactor:inclval(3)-MRI_CalFactor]'; 
YIright = interp1(xyinterp(:,1), xyinterp(:,2),XIright, 'cubic'); 
MRI_Lensinterp = [[XIleft YIleft]; [XIright YIright]]; 
 
 
  
xyinterp = zeros(4,2); 
xyinterp(:,1) = inclval'; 
xyinterp(1,2) = mean(xy(find(xy(:,1)==inclval(1)),2)); 
xyinterp(2,2) = mean(xy(find(xy(:,1)==inclval(2)),2)); 
xyinterp(3,2) = mean(xy(find(xy(:,1)==inclval(3)),2)); 
xyinterp(4,2) = mean(xy(find(xy(:,1)==inclval(4)),2)); 
  
XIleft = [inclval(2)+MRI_CalFactor:MRI_CalFactor:inclval(3)-MRI_CalFactor]'; 
YIleft = interp1(xyinterp(:,1), xyinterp(:,2),XIleft, 'cubic'); 
  
 

Tomography	
  (Refractive	
  index	
  Reconstruction)	
  (P.85-­‐P.92)	
  
	
  
% this code was modified from Dr Jone's MRI analysis code from paper ( Jones, C. & J. 
Pope, 2004) 
 
% Reader should consider section (4.3) for foundation of this step 

 
if get(findobj(gcf, 'tag','User_Happy'), 'value') == 0 
  
    prompt={'Enter Equatorial Diameter:', 'Enter Axial Diameter:'}; 
    name='Input for lens size'; 
    numlines=1; 
    defaultanswer={num2str(8), num2str(4)}; 
    answer=inputdlg(prompt,name,numlines,defaultanswer); 
    hlen = str2num(answer{1}); 
    vlen = str2num(answer{2}); 
         
    hlen = floor(6.4*hlen)+4; 
    vlen = floor(6.4*vlen)+4;           
  
    hline1 = imline(gca, [100 100+hlen], [100 100]); 
    API1 = IPTGETAPI(hline1); 
     
    hline2 = imline(gca, [100 100], [100 100+vlen]); 
    API2 = IPTGETAPI(hline2); 
     
    UserData = get(gcf,'userdata');  
    %UserData{71} = API; 
    UserData{71} = API1; 
    UserData{72} = API2; 
     
    set(gcf,'userdata',UserData); 
     
end 
  
  
if get(findobj(gcf, 'tag','User_Happy'), 'value') == 1 
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    numpixels = 5; 
    UserData = get(gcf,'userdata');  
    %API = UserData{71};     
    API1 = UserData{71};     
    API2 = UserData{72};    
     
    linecoords1 = API1.getPosition(); 
    linecoords2 = API2.getPosition(); 
     
    hlen = round(linecoords1(2,1) - linecoords1(1,1)-4); 
    vlen = round(linecoords2(2,2) - linecoords2(1,2)-4); 
     
    x = [0.012 0.024 0.036 0.048]'; 
    xy = repmat(x,1,hlen); 
    xz = repmat(x,1,vlen); 
  
    y = zeros(hlen,4); 
    smoothy = zeros(hlen,4); 
     
    z = zeros(vlen,4); 
    smoothz = zeros(vlen,4); 
     
    eachliney = zeros(hlen,4,numpixels); 
    eachlinez = zeros(vlen,4,numpixels); 
             
        UserData = get(gcf,'userdata');  
         
        mid_pth = round([(linecoords1(1,1) + linecoords1(2,1))/2, (linecoords1(1,2) + 
linecoords1(2,2))/2]); 
        mid_ptv = round([(linecoords2(1,1) + linecoords2(2,1))/2, (linecoords2(1,2) + 
linecoords2(2,2))/2]); 
         
         
        MRI_imdisplay = UserData{24}; 
         
        for count = 1:numpixels 
            y(:,ii) = y(:,ii) + improfile(MRI_imdisplay, [mid_pth(1)-hlen/2 
mid_pth(1)+hlen/2], [mid_pth(2) - (ceil(numpixels/2)-count) mid_pth(2) - 
(ceil(numpixels/2)-count)]);  
            eachliney(:,ii,count) = improfile(MRI_imdisplay, [mid_pth(1)-hlen/2 
mid_pth(1)+hlen/2], [mid_pth(2) - (ceil(numpixels/2)-count) mid_pth(2) - 
(ceil(numpixels/2)-count)]);  
             
             
            z(:,ii) = z(:,ii) + improfile(MRI_imdisplay, [mid_ptv(1)+ 
(ceil(numpixels/2)-count) mid_ptv(1)+(ceil(numpixels/2)-count)], [mid_ptv(2)-vlen/2 
mid_ptv(2)+vlen/2]);          
            eachlinez(:,ii,count) = improfile(MRI_imdisplay, [mid_ptv(1)+ 
(ceil(numpixels/2)-count) mid_ptv(1)+(ceil(numpixels/2)-count)], [mid_ptv(2)-vlen/2 
mid_ptv(2)+vlen/2]);          
        end 
        y(:,ii) = y(:,ii)/numpixels; 
        smoothy(:,ii) = smooth(y(:,ii),3,'moving'); 
         
        z(:,ii) = z(:,ii)/numpixels; 
        smoothz(:,ii) = smooth(z(:,ii),3,'moving'); 
         
        for count = 1:numpixels 
            line(([mid_pth(1)-hlen/2 mid_pth(1)+hlen/2]), [mid_pth(2) - 
(ceil(numpixels/2)-count) mid_pth(2)-(ceil(numpixels/2)-count)]);  
        end 
     
        for count = 1:numpixels 
            line([mid_ptv(1)+ (ceil(numpixels/2)-count) mid_ptv(1)+(ceil(numpixels/2)-
count)], [mid_ptv(2) - vlen/2 mid_ptv(2)+ vlen/2]);  
        end 
            end 
    
  
rawy = y; 
rawz = z; 
y=y'; 
z=z'; 
  
Py = ones(2, size(x,2));     
Pz = ones(2, size(x,2)); 
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count = 1; 
while count < (size(xy,2)+1) 
    Y = log(y(:,count)); 
    X = ones(length(xy(:,count)),2); 
    X(:,2) = 0-xy(:,count); 
    Py(:,count) = Y'*X*inv(X'*X); 
    Py(:,count) =[exp(Py(1,count)); Py(2,count)]; 
    count = count+1; 
end 
rawPy = Py; 
  
  
count = 1; 
while count < (size(xz,2)+1) 
    Y = log(z(:,count)); 
    X = ones(length(xz(:,count)),2); 
    X(:,2) = 0-xz(:,count); 
    Pz(:,count) = Y'*X*inv(X'*X); 
    Pz(:,count) =[exp(Pz(1,count)); Pz(2,count)]; 
    count = count+1; 
end 
rawPz = Pz; 
  
%RS2 estimates based on exponential fits is converted to refractive index 
%estimates based on equation 6.4 from Catherine Jones' thesis  
RIy = 1.3554 + 0.001549.*Py(2,:)' - 0.00000634.*Py(2,:)'.*Py(2,:)'; 
RIz = 1.3554 + 0.001549.*Pz(2,:)' - 0.00000634.*Pz(2,:)'.*Pz(2,:)'; 
  
% % RS2 maps are calculated based on normalized pixel intensities i.e. the 
% % pixel instensities in SE1 are normalized to 1 and SE2, SE3 & SE4 
% % normalized to SE1. 
normy = rawy; 
normy(:,1) = normy(:,1)./rawy(:,1); 
normy(:,2) = normy(:,2)./rawy(:,1); 
normy(:,3) = normy(:,3)./rawy(:,1); 
normy(:,4) = normy(:,4)./rawy(:,1); 
  
normz = rawz; 
normz(:,1) = normz(:,1)./rawz(:,1); 
normz(:,2) = normz(:,2)./rawz(:,1); 
normz(:,3) = normz(:,3)./rawz(:,1); 
normz(:,4) = normz(:,4)./rawz(:,1); 
  
%y = smooth(y,3,'moving'); 
%y = smoothy'; 
y = normy'; 
%z = normz'; 
  
Py = ones(2, size(x,2)); 
%Pz = ones(2, size(x,2)); 
  
count = 1; 
while count < (size(xy,2)+1) 
    Y = log(y(:,count)); 
    X = ones(length(xy(:,count)),2); 
    X(:,2) = 0-xy(:,count); 
    Py(:,count) = Y'*X*inv(X'*X); 
    Py(:,count) =[exp(Py(1,count)); Py(2,count)]; 
    count = count+1; 
end 
  
normPy = Py; 
  
y = smoothy'; 
Py = ones(2, size(x,2)); 
count = 1; 
while count < (size(xy,2)+1) 
    Y = log(y(:,count)); 
    X = ones(length(xy(:,count)),2); 
    X(:,2) = 0-xy(:,count); 
    Py(:,count) = Y'*X*inv(X'*X); 
    Py(:,count) =[exp(Py(1,count)); Py(2,count)]; 
    count = count+1; 
end 
smoothPy = Py; 
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z = smoothz'; 
Pz = ones(2, size(x,2)); 
count = 1; 
while count < (size(xz,2)+1) 
    Y = log(z(:,count)); 
    X = ones(length(xz(:,count)),2); 
    X(:,2) = 0-xz(:,count); 
    Pz(:,count) = Y'*X*inv(X'*X); 
    Pz(:,count) =[exp(Pz(1,count)); Pz(2,count)]; 
    count = count+1; 
end 
smoothPz = Pz; 
  
normRIy = 1.3554 + 0.001549.*normPy(2,:)' - 0.00000634.*normPy(2,:)'.*normPy(2,:)'; 
  
 % % RS2 estimates based on smoothed pixel intensities considering SE1 
smoothRIy = 1.3554 + 0.001549.*smoothPy(2,:)' - 
0.00000634.*smoothPy(2,:)'.*smoothPy(2,:)'; 
smoothRIz = 1.3554 + 0.001549.*smoothPz(2,:)' - 
0.00000634.*smoothPz(2,:)'.*smoothPz(2,:)'; 
  
%Now calculating R2 maps for each line, with the number of lines equal to 
%numpixels. 
indPy = ones(2, size(xy,2), numpixels); 
for ii = 1:numpixels   
    count = 1; 
    while count < (size(xy,2)+1) 
        Y = log(eachliney(count,:,ii))'; 
        X = ones(length(xy(:,count)),2); 
        X(:,2) = 0-xy(:,count); 
        indPy(:,count,ii) = Y'*X*inv(X'*X); 
        indPy(:,count,ii) =[exp(indPy(1,count,ii)); indPy(2,count,ii)]; 
        count = count+1; 
    end 
end 
  
indRIy = zeros(size(xy,2), numpixels); 
for ii = 1: numpixels 
    indRIy(:,ii) = 1.3554 + 0.001549.*indPy(2,:,ii)' - 
0.00000634.*indPy(2,:,ii)'.*indPy(2,:,ii)'; 
end 
  
  
meanindRIy = mean(indRIy,2); 
 
    MRI_HomePath = pwd;     
    [fname,ename] = uiputfile('*.txt', 'Save RI Data'); 
    savefile = strcat([ename fname]); 
    fid = fopen(savefile, 'wt'); 
     
    fprintf(fid, 'Refractive index estimates along equatorial diameter uncorrected for 
initial pixel intensity\n'); 
    fprintf(fid, '%6.4f\n', RIy); 
    fprintf(fid,'\nRefractive index estimates along axial thickness uncorrected for 
initial pixel intensity\n'); 
    fprintf(fid, '%6.4f\n', RIz); 
     
    fprintf(fid,'\nRefractive index smoothed over 5X3 pixel intensity average along 
equatorial diameter\n'); 
    fprintf(fid, '%6.4f\n', smoothRIy); 
     
    fprintf(fid,'\nRefractive index smoothed over 5X3 pixel intensity average along 
axial diameter\n'); 
    fprintf(fid, '%6.4f\n', smoothRIz); 
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