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Abstract

Air traffic control is a very dynamic and heavy constrained environment

where many decisions need to be taken over short periods of time and

in the context of uncertainty. Adopting automation under such circum-

stances can be a crucial initiative to reduce controller workload and im-

prove airspace usage and capacity. Traditional methods for air traffic

control have been exhaustively used in the last decades and are reaching

their limits, therefore automated approaches are receiving a significant and

growing attention. In this thesis, the focus is to obtain optimal aircraft

trajectories to ensure flight safety in the short-term by solving optimiza-

tion problems.

During cruise stage, separation conditions require a minimum of 5 Nauti-

cal Miles (NM) horizontally or 1000 feet (ft) vertically between any pair

of aircraft. A conflict between two or more aircraft is a loss of separation

among these aircraft. Air traffic networks are organized in flight levels

which are separated by at least 1000 ft, hence during cruise stage, most

conflicts occur among aircraft flying at the same flight level. This thesis

presents several mathematical formulations to address the aircraft conflict

resolution problem and its variants.

The core contribution of this research is the development of novel mixed

integer programming models for the aircraft conflict resolution problem.

New mathematical optimization formulations for the deterministic aircraft

conflict resolution problem are analyzed and exact methods are developed.

Building on this framework, richer formulations capable of accounting

for aircraft trajectory prediction uncertainty and trajectory recovery are

proposed.

Results suggest that the formulations presented in thesis are efficient and

competitive enough with the state-of-art models and they can provide

an alternative solution to possibly fill some of the gaps currently present

in the literature. Furthermore, the results obtained demonstrates the



impact of these models in solving very denser air space scenarios and its

competitive with state-of-the-art formulations without regarding variable

discretization or non-linear components.
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Abstrato

O controle de tráfego aéreo é um ambiente muito dinâmico e fortemente restrito,

onde muitas decisões precisam ser tomadas em curtos peŕıodos de tempo e no contexto

de incerteza. A adoção da automação nessas circunstâncias pode ser uma iniciativa

crucial para reduzir a carga de trabalho do controlador e melhorar o uso e a capacidade

do espaço aéreo. Os métodos tradicionais de controle de tráfego aéreo têm sido

exaustivamente utilizados nas últimas décadas e estão atingindo seus limites, por isso

as abordagens automatizadas vêm recebendo uma atenção significativa e crescente.

Nesta tese, o foco é obter trajetórias de aeronaves ideais para garantir a segurança

de vôo no curto prazo, resolvendo problemas de otimização.

Durante a fase de cruzeiro, as condições de separação exigem um mı́nimo de 5

milhas náuticas (NM) horizontalmente ou 1000 pés (ft) verticalmente entre qualquer

par de aeronaves. Um conflito entre duas ou mais aeronaves é uma perda de sep-

aração entre essas aeronaves. As redes de tráfego aéreo são organizadas em ńıveis de

voo separados por pelo menos 1000 pés, portanto, durante o estágio de cruzeiro, a

maioria dos conflitos ocorre entre aeronaves voando no mesmo ńıvel de voo. Esta tese

apresenta diversas formulações matemáticas para abordar o problema de resolução

de conflitos de aeronaves e suas variantes.

A principal contribuição desta pesquisa é o desenvolvimento de novos modelos

de programação inteira mista para o problema de resolução de conflitos de aeron-

aves. Novas formulações de otimização matemática para o problema de resolução

determińıstica de conflitos de aeronaves são analisadas e métodos exatos são desen-

volvidos. Com base nesta estrutura, são propostas formulações mais ricas capazes

de contabilizar a incerteza de previsão da trajetória da aeronave e a recuperação da

trajetória.

Os resultados sugerem que as formulações apresentadas na tese são eficientes e

competitivas o suficiente com os modelos do estado da arte e podem fornecer uma

solução alternativa para possivelmente preencher algumas das lacunas atualmente

presentes na literatura. Além disso, os resultados obtidos demonstram o impacto

desses modelos na resolução de cenários de espaço aéreo muito mais denso e sua

competitividade com formulações de última geração, sem considerar discretização

variável ou componentes não lineares.
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Chapter 1

Introduction

In this chapter, the main definitions and concepts that are necessary and used through-

out the thesis are introduced. It starts with a brief history of aviation and air traffic

control in Section 1.1 followed by the structure and the organisation of airspace in

Section 1.2. The components of air traffic management are discussed in Section 1.3

while the details related to air traffic control are reviewed in Section 1.4. In Section

1.5, the role of aircraft conflict resolution is addressed in details. Finally, the air

traffic control applications created via mathematical programming are highlighted in

Section 1.6.

1.1 History of Aviation and Air Traffic Control

Since the creation of the first aircraft by Santos Dumont in 1908 (Mattos, 2004), the

usage of aircraft as a way of transport increased rapidly. With the popularisation

of air travel after World War I, the necessity of air traffic control becomes inherent.

The first airport to hire air traffic controllers was the St. Louis Airport in Missouri

in 1929 (Erotokritou, 2012). Modern systems of communication for air traffic control

were first spotted at the Cleveland Airport where a control tower was placed on top

of an old hangar. This facility was equipped with radio transmitting and receiving

simple and rudimentary instruments were used. With those tools in their availability,

air traffic controllers could communicate directly with the pilots of properly equipped

aircraft. Four airliners were encouraged to start using the newly implemented systems

in the USA.

The first setback in the structure of air traffic control started with World War

II (Harrison, 1998). The impact was visible in the structure of airspace control and

the aviation industry as a whole. Because of the overwhelming usage in the war to

support and military advances, by 1943, the aviation industry becomes the largest
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in the world and its importance could not be overstated. All resources and effort of

the industry were put solely in the custody of the military reaching staggering 85%

of the total budget. Most Air Traffic Control (ATC) technology dates back to WWII

technology such as radar localisation, two-way radio communication and in specific

regions, paper flight progress strips are still in use.

A series of unfortunate and tragic accidents in the airspace, including the Grand

Canyon that killed 128 people, mid-air collision (Conway, 2004) prompted the fund-

ing and subsidy of air traffic control. The collision showed that many uncontrolled

airspace areas represent a danger to the air service system and more effective surveil-

lance should be implemented (Machol, 1995). After the multiple unfortunate mid-air

collision, the responsibility for the American airspace was commissioned to a specific

organisation, the Federal Aviation Administration (FAA) (Preston, 2005). Follow-

ing that, some countries in Western Europe created the Eurocontrol organisation,

merging the airspace in those regions hoping to increase its efficiency in the next

decades.

The ATC system and aviation industry began to show the first glimpses of the

issues related to overload in the early 1990s and then a series of unfortunate events

brought a massive reduction and put the whole system in check. The 9/11 terrorist

attack in the USA in 2001 (Lee, 2006) caused major concerns related to security

and safety. Another event at the end of the second decade of the 21st century,

the COVID-19 pandemic (Abu-Rayash and Dincer, 2020), reshaped the industry in

terms of globalisation and how to improve safety for passengers in order to avoid

contamination and spread over air travel. Figures 1.1 and 1.2 reveal how much the

aviation industry was affected by the ongoing pandemic and how this compared to

other life-changing events in history in Figure 1.3. Figure 1.2 shows that in all six

regions highlighted there were setbacks caused by the pandemic. In North America,

where the damage was the most drastic, there was a reduction of 41% of flights, 523

fewer passengers and revenue lost over 61 billion dollars. In the other regions, these

proportions repeat, especially in Asia and the Pacific, where a major loss of revenue

(over 39 billion dollars) and reduction of 35% of flights. International flights were

more severed by the pandemic, given that many countries or regions have chosen to

close their borders in order to protect their own citizens. In this scenario, Europe

had a major setback with 65% fewer flights and a loss of 92 billion in revenue and 663

million fewer passengers. North America and Asia/Pacific also reported a major loss

in revenue (89 and 32 billions, respectively). Asia and Pacific had the largest loss in

flights: 74%. All those losses are summarised in Figure 1.3 where the steady growth
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of the airspace industry had a drastic drop that has never been witnessed before

surpassing major crisis such as the oil crisis, Iran-Iraq war and the SARS pandemic.

Figure 1.1: Impact of Covid-19 in international flights. In this picture, the ”aircraft”
symbol represents total number of trips, the ”individual” symbol represents traveller
and the dollar sign represents revenue. All three metrics are calculated over an year
estimate. The upside triangle in red and orange represent decline of those metrics.
All data presented in this chart is from domestic flights. (Bureau, 2020)

The structure of the airspace has changed over the years to accommodate the

growing demand and capacity. In the next section, the details and components of the

airspace structure are described.

1.2 Airspace Structure

Airspace is the part of the atmosphere under the control of a country or region

that is directly above its territory, including maritime and inland. It differs from

aerospace because the latter corresponds to the general term for Earth’s atmosphere

and outer space proximity. It is composed of two main parts: controlled airspace

and uncontrolled airspace. The first corresponds to areas that are necessary for

transportation, air traffic control and other air traffic services while it also has control

over all aircraft decision involving their usage of air space. The second corresponds

to an area out of the scope of air traffic controller, and aircraft flying in those regions

rely on Visual Flight Rules (VFR) to guarantee flight safety.

By international laws, a country, state or region has complete and exclusive

sovereignty over the airspace above its territory. This territory, for this matter, in-
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Figure 1.2: Impact of Covid-19 in domestic flights. In this picture, the ”aircraft”
symbol represents total number of trips, the ”individual” symbol represents traveller
and the dollar sign represents revenue. All three metrics are calculated over an year
estimate. The upside triangle in red and orange represent decline of those metrics.
All data presented in this chart is from domestic flights. (Bureau, 2020)

cludes the territorial waters surrounding it, which is around 12 nautical miles out of

its cost area. Similar to the definition of ”high sea”, where the oceanic area outside

the control of some countries is called ”international water”, the airspace that is not

related to a country or region is called international airspace. This can be, however,

disputed. By international agreement, a section of the international airspace can be

claimed and controlled by specific countries and region. This is the case with most

oceans. In those circumstances, regions such that are called flight information region.

For example, the United States provides air traffic control over most of the Pacific

Ocean, even though the airspace is international. In terms of vertical boundaries,

there is not clear con-sense about the vertical limit of the airspace. The International

Federation of Aeronautics created the Karman Line McDowell (2018) which defines

that any airspace above 100 km is considered outer spaced. However, such a defini-

tion is disputable. For example, in the USA, any flight above 80 km is considered

airspace.

The controlled airspace is any region of airspace where ATC service is provided.

The airspace are separated into different levels of control which also define the classes

of airspace. The main reasons behind this stratification of airspace are the higher traf-

fic volume such as around airports, for instances, security and Instrumental Flight

Rules (IFR). The ICAO divides the airspace into seven different classes where dif-
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Figure 1.3: Evolution of airspace demand throughout the decades

ferent levels of control are established. The first six classes (A, B, C, D and E)

are organised in decreasing the level of ATC regulation of flights. In those different

classes, VFR and IFR are allowed to be used except for VFR in class A.

Class A is generally between 18,000 to 60,000 feet tall. It covers all areas overlying

land and 12 nautical miles away from shorelines. It corresponds to less specific areas

worldwide. Unless, given special authorisation, all operations in this class need to be

processed under IFR. In Class B, it surrounds areas with busier airports. Each region

re-organises and tailors according to its particular necessity. Once an aircraft enters

the airspace, all published instrument procedures should be followed and respected.

For Class C, the airspace is composed by the space above the airport elevation and

surrounding areas such as operational control tower, radar approach control and a

certain number of IFR operations. The space can also be individually tailored, the

airspace consists of a surface that is usually 5 Nautical Miles (NM) radius and at most

10,000 feet above the airport. Upon entering this airspace, aircraft are required to

establish two-way communication with ATC facilities and to maintain it throughout.

In Class D, the proprieties of such airspace are similar to class D, with the sole

difference regarding the arrival extensions for instrument approach procedures. For

Class E, the remaining controlled airspace that does not belong to previous sectors

is gathered into this Class. In these categories, if VFR aircraft are present, they are

not required to establish continuous contact with ATC units. Class F does not exist

in this context and the uncontrolled airspace is called Class G. Even though this is

considered an uncontrolled region, it is expected that pilots operate under the same

VFR conditions. Special use airspace of a special area of operation is used to name a
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particular region of airspace that is used for special activities and therefore needs to

be confined or limited from other activities. The most common cases are related to

military and training purposes. The communication between aircraft, control towers

and ground-based infrastructure are be summarised in Figure 1.4.

Figure 1.4: Communication between different units of airspace

One more aspect that also needs to be taken into account in air conflict resolution

is how the aviation sector is impacting the environment and the weather. Aircraft

has an emission range of greenhouse gases throughout the different stages of flight

and most of those emissions are directly into the higher levels of the atmosphere.

Such gases can have different effects (Schäfer et al., 2003), especially at this altitude

when compared to the effect when emitted from ground level. At the same time,

the noise pollution affects residents that are located in areas around the airport and

surrounding areas, where the level of such noise has been considered to cause com-

munity annoyance. Furthermore, such noises can harm wildlife and biodiversity in

areas surrounding airports.

Besides the structure of airspace, the management component has been through

massive changes throughout the decades. In most cases, it is related to the imposition

of regulations and rules to guarantee that all components are safe and protected. In

the next section, details related to air traffic management are neglected.
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1.3 Air Traffic Management

Air traffic management is the integrated management of air traffic and airspace

through services in collaboration with all stakeholders involved and it compasses

airborne and ground-based capacities. The combination of air traffic services and

ground-based components are very complex. Their safety and efficiency throughout

the whole operation and stages of aircraft flight can also be challenging. Air Traf-

fic Management (ATM) encompasses all systems that assist aircraft to depart from

an aerodrome, transit airspace, and land at a destination aerodrome, including ATC,

Air Traffic System (ATS), Available Seat Miles (ASM), and Air Traffic Flow Manage-

ment (ATFM). Figure 1.5 provides an overview of an aircraft move between different

layers.

Figure 1.5: Different stages in ATC

ATS has the purpose of overseeing the safety in traffic flow (facilitated by the

ATC). It also provides the information required for pilots and crew (via Flight In-

formation Service (FIS)). In the case of emergencies, alerting service (such as Search

And Rescue (SAR) can also be provided. Activities in ATC are mostly performed

by air traffic controllers and their function is to prevent loss of separation between

aircraft and prevent eventual mid-air collisions. This is achieved by applying the

appropriate separation standards and issuing clearances and instructions to supervise

the traffic flow. ATS is based on tactical interventions by the controllers and direct

communication with the flight crews throughout the flights.

ATFM has as its primary objective to regulate the flow of aircraft as efficiently

as possible, by avoiding congestion in most controlled sectors. Moreover, it needs to

guarantee smooth functioning of ATS. One of the alternative approaches to this is by

controlling the demand and planning the control capacities to be applied correctly to
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Figure 1.6: ATM Structure and its subdivisions

meet such demand. As a vital component in the flight plan management, ATFM be-

haves as a pre-tactical strategy. Even though it does not affect the current situation,

by setting up the path for aircraft, its operation can influence future airspace config-

urations. ASM is in charge to manage the airspace itself as efficiently as possible to

satisfy all the stakeholders, both civil and military. This service concerns both the

way airspace is allocated and how it is organised to provide and guarantee continuity

of air traffic services. The diagram (see Figure 1.6) shows the structure of ATM and

explains the relations between ATM, ATS and ATC.

The increasing emphasis of modern ATM is on assistance and supporting sys-

tems that allow an aircraft to operate without interference by air traffic controller

or without any impact in the trajectory of neighbouring aircraft. ATC systems have

traditionally been developed by individual groups that concentrated on their require-

ments, creating different levels of service and capability around the world and limiting

a unified service. Most Air Navigation Service Provider System (ANSP) do not pro-

vide a ATC service that matches the capabilities of modern aircraft, therefore ICAO

has unified them and developed the Aviation System Block Upgrades (ASBU), for

example, in the Pacific region, the ICAO Regional Office in Bangkok, Thailand is re-

sponsible to provide this type of service for all countries in the region. It is developing

a Seamless ATM Plan by 2020, which is intended to change the paradigm for ATM

upgrades in the world’s busiest aviation region by incorporating revenue passenger

Kilometres as a new metric of performance.

Among the main challenges ATM faces in day-to-day operations, the most com-

mon is traffic and congestion. The volume of air traffic demand placed on the airspace

system can change very drastically based on several factors such as weather condi-
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tions. For instance, each aircraft must touch down safely, exit the runway so that

another aircraft can use it safely. This whole process can last up to four minutes. In

this scenario, each runway can take up to 30 arrivals per hours in good weather. How-

ever, a significant problem starts when airlines schedule more flights surpassing the

airport capacity. When this happens, aircraft must be delayed in the air until clear-

ance to the runway is given. Despite environmental concerns and cost implications,

aircraft waiting for landing would circumnavigate around the airport as common ma-

noeuvres. However, like aviation and air traffic control progress over the years, such

circumstances can be carefully predicted and countermeasure can be applied in or-

der to avoid these problems. In some circumstances, planes can be delayed before

they even take off or reduced their speed mid-flight to reduce the number of holding

aircraft drastically. All those phenomena are related to congestion and hence, flight

cancellation and delays. With growing traffic, delays increased by 70% between 2012

and 2017 in the USA only. In China, the average delays in domestic flight saw a

significant increase of more than half of its usual amount in 2017 and most delays

are around 15 minutes per flight. Finally, Eurocontrol reported an increase of 17.6

billion euros due to delays applied to flights in cruise stage and most of those cases

were related to breaches of capacity in many airports.

ATC is a major part of air traffic management and it comprehends all the effort in

order to avoid loss of separation and eventual collisions. In the next section, details

related to this field are discussed in depth.

1.4 Air Traffic Control

The primary technique to control an airport and its surrounding is via visual obser-

vation from airport towers. From those posts, air traffic controllers are responsible

to provide efficient instructions for aircraft on the taxiways and runways or airborne

within 5 to 10 nautical miles depending on its specificity. The responsibilities of con-

trol towers are subdivided into three categories: air control, ground control and flight

data. Most major complex airports have all different targets delegated within the

tower environment, while smaller airport might have only one or two of those goals

addressed locally. In this case, Remote Virtual Tower (RVT) is used instead.

Ground control is responsible for taxiways, runways, holding areas and some tran-

sitional intersections where aircraft arrives, vacate a runway or departure gate. Tower

control (or air control) is in charge of occupied and active runways, by providing clear-

ance for runways for take-off and landing. Besides ground and tower control, clearance
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is also an important step in air traffic control. Clearance data are typically contain

details relating to route clearance, therefore aircraft can start taxiing. The primary

responsibility is to ensure that the aircraft has information related to weather con-

ditions, airport conditions, route conditions after departure and time restriction for

the flight.

En-route control is the control performed when aircraft are on the cruise or en-

route stage (between the areas of jurisdiction of two or more airports). En-route air

traffic controllers are responsible to provide clearances and instructions for airborne

and ultimately transfer the control to another sector. According to the ICAO, they

are also a set of separation standards to define the minimum distance between aircraft.

Each ANSP is responsible for thousands of square miles of airspace and the airports

within such region. Between these activities, they assign all manoeuvres necessary

while guaranteeing that minimum separation is always ensured. At the same time,

they are in charge to fully maximise the usage of the air routes. However, this task

can be quite challenging under higher demand, such as crossing traffic, severe weather,

special missions that might utilise airspace allocation of significant large areas and

dense traffic. Upon arrival at its destination, the pilot and crew are informed regarding

altitude requirements and instructions regarding their landing. At the same time,

when an aircraft is reaching the ”boundaries” of a centre’s control area, the process

of ”handing over” involves the transfer of identification and details between them,

which can be seamless as ”silent handovers” or in a more dynamic approach involving

direct communication between controllers and crew.

In ATC, radar coverage is a vital part of the system. Considering that centres

control large areas at the time, radars provide the ability to identify any aircraft

around 200 nautical miles around the radar antenna. Besides that, Terminal Radar

Approach CONtrol (TRACON) can also be used to obtain a better profile of traffic

and even fill the gap in areas that are not fully covered by conventional radars. In

the USA, for instance, most aircraft are covered by radar at higher altitudes (even

multiple radar systems). However, at a lower altitude, coverage is not always imposed

or present, especially in unpressurised aircraft. An air traffic controller has access to

data from different radar systems and many reports coming from direct aircraft. This

leads to an excessive amount of data, that being fully processed, requires assistance

from automated systems that polish and filter the data received and displays it in an

effective and simple format. Because of the lack of radar systems for oceanic areas,

most of the control is done by procedural control. In these cases, aircraft position,

time, altitude, distance and speed are reported to ensure separation. This process
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ends up in a larger separation distance between aircraft over oceanic routes which

consequently reduces the overall capacity potential. Some nations have developed

automatic dependent surveillance that works in the opposite way of radar. Aircraft

with those systems sends their position as reports to air traffic controllers. The

frequency of such reports can be requested to be changed by air traffic controllers,

even though it is not a standard operation, unless in emergencies. This system is quite

efficient because it hinders the necessity of radar systems around it. This technology

is already in use in the portion of North Atlantic and the Pacific Ocean by many

countries sharing the responsibility for that area. A special type of radar system is

the Precision Approach Radar (PAR) that military controllers used to assist pilot

before landing instead of relying on airborne equipment that might not be available

because of visibility conditions. In case of search and rescue, the radar archive system

Radar Advisory Service (RAS) can be used to record all information exchanged over

communication, that can also be recorded and saved in case of accidents and crash

as well as radar maintenance.

The future of ATM is filled with promises with more assistance and privatisa-

tion of the sectors. In the United States, the Next Generation Air Transportation

System (NextGen) is expected to assume overhaul in the national airspace system

and the free flight is a trend that has more and more acceptance in many industry

sectors, hence, more sectors are inclined to a slow transition to such forms of air traf-

fic control. In Europe, a similar approach is also expected via the Single European

Sky ATM Research (SESAR) which is expected to develop technologies, methods and

procedures to improve overall control of the airspace and reduce congestion over such

a dynamic and dense region. A similar project is the ONESky (ONESky) which is an

attempt at a unified air traffic control system covering the whole continent of Aus-

tralia, a vast part of the western Indian Ocean and New Zealand. It is a partnership

between Airservices Australia and the Department of Defence, replacing existing air

traffic management systems with an advanced integrated system known as the Civil-

Military ATM System, Australia (CMATS). It is expected to deliver more efficient

air services, support future air traffic growth and enhance national security. The

program is expected to deliver more than AUD 1.2 billion of economic benefits to

Australian airspace users over 20 years.

All those previous improvements might require the participation of private sec-

tors to partially support them financially. In the USA, for instance, ATC is already

partially funded by private companies. However, there is a risk with the inconsis-

tency which can demise the implementation of new developments. In those cases, the
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government corporation is a viable solution. In Germany, for example, this model

has been implemented and funding is guaranteed via public fundings. In the United

Kingdom, another system is applied, based on a for-profit corporation, but many

issues have caused the system to have a major failure in 2014 (Adler et al., 2014). In

Canada, most of the system is already controlled by a private organisation, with the

creation of Nav Canada. This organisation is a private, non-profit organisation that

has reduced costs and implemented new technologies by simplifying the bureaucratic

process inside ATC.

A major part of the job of an air traffic controller is to solve any given conflict. This

makes their jobs highly intense and stressful. Following up, the different components

of air traffic control are addressed and discussed thoroughly.

1.5 Aircraft Conflict Resolution

ATC is an extremely dynamic and constrained environment where many decisions

need to be taken in a short amount of time. Adopting automation within such an

environment can be vital to reduce controller workload and improve airspace capacity

(Durand et al., 1997; Barnier and Allignol, 2009; Rey et al., 2016). With the expansion

of air travel, it is expected that higher demand will lead to more crowded airspace.

This is expected to a higher workload for air traffic controllers. With a higher level

of automation, it is expected that this workload is diminished. Automated systems

are designed to provide aid and support in difficult configurations. In order to have

such systems operating in perfect conditions, it is necessary to infuse these systems

with optimisation. Therefore, it can be guaranteed that the solutions provided will

be free-of-errors and precise.

Traditional methods for air traffic control have been exhaustively used and are

reaching their limits, hence automated approaches are receiving significant and grow-

ing attention in the field (Vela et al., 2009b). The International Civil Aviation Or-

ganisation (ICAO) determines all regulations related to civil aviation (ICAO, 2010).

One of its main roles is to set separation standards for commercial aviation. We

focus on aircraft separation for en-route traffic. During the cruise stage, separation

conditions require a minimum of 5 Nautical Miles (NM) horizontally or 1000 feet (ft.)

vertically between any pair of aircraft. A conflict between two or more aircraft is

a loss of separation between these aircraft (see Figure 1.7). Air traffic networks are

organised in flights levels, which are separated by at least 1000 ft. (see Figure 1.8),
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hence during the cruise stage, most conflicts occur among aircraft flying at the same

flight level.

Congested air traffic networks can lead to the loss of separation between aircraft

which impairs flight safety and may result in collisions. The Aircraft Conflict Res-

olution Problem (ACRP) can be formulated as an optimisation problem in which

the objective is to find least-deviating conflict-free trajectories for a set of aircraft.

Different strategies have been used to address this problem based on the type of

deconfliction manoeuvres available, namely: speed control (acceleration or decelera-

tion), heading control, vertical control (flight level reassignment) or a combination of

these manoeuvres.

Figure 1.7: Aircraft separation standards. The aircraft is represented by the red dot.
By ICAO standards, the horizontal separation required is at least 5 NM of horizontal
separation and 1000 ft. of vertical separation.

One more aspect that also needs to be taken into account in air conflict resolution

is how the aviation sector is impacting the environment, and the weather. Aircraft

has an emission range of greenhouse gases throughout the different stages of flight

and most of those emissions are directly into the higher levels of the atmosphere.

Such gases can have different effects (Schäfer et al., 2003), especially at this altitude

when compared to the effect when emitted from ground level. At the same time,

the noise pollution affects residents that are located in areas around the airport and

surrounding areas, where the noise level has been considered to cause community

annoyance. Furthermore, such noises can harm wildlife and biodiversity in areas

surrounding airports.
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Figure 1.8: Airspace Structure. The airspace is structured in layers that are multiple
of 1000 ft. In each layer, there are referential points used to assist in navigation,
referred as waypoints.

1.6 Mathematical Programming Methods for Air-

craft Conflict Resolution

There are many different approaches to solve the aircraft conflict resolution problem.

In the literature, examples are using diverse types of heuristics, meta-heuristics, ge-

netic algorithms, graph theory, etc.. The main challenge is to obtain a method that

supports all the components and at the same time is capable of providing feasible

solutions in a matter of seconds. The ACRP is typically formulated as a non-convex,

non-linear optimisation problem which is challenging to solve for instances with a

large number of aircraft (which is common in denser areas). Most of the mathe-

matical programming approaches for the ACRP require some form of linearisation,

variable or space discretisation. Although they can provide high-quality solutions,

they might not represent a complete representation of what is indeed necessary to

solve such instances. In this thesis, mathematical programming methods for the

ACRP are explored and it is applied throughout all the formulations created.

For that, many of the intrinsic characteristics of the problem will be maintained

and novel reformulations that avoid trigonometric components and that provide more

compact formulations for separation constraints are explored. Based on that, the
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aircraft trajectory will be studied and discussed as extensions such as trajectory

recovery and trajectory prediction under uncertainty.

Even though this is a simplistic approach and it differs from the continuous smooth

trajectories used in different techniques, the goal in this thesis is global optimisation

without any major simplifications and focusing on mathematical approaches. There-

fore, the avoidance corresponds to the set of manoeuvres necessary to be taken in

order for avoiding loss of separation conditions. This means, speed changes, heading

angle and altitude (which are the set of manoeuvres available) to guarantee that the

safety and security of all aircraft are ensured. The trajectory recovery requires a set

of manoeuvres that restore the initial conditions of the aircraft to guarantee that the

nominal trajectory is maintained. It is important to highlight that such division is

common in mathematical programming approaches, but they are not the only alter-

native to model aircraft trajectory. In addition, stochastic elements have to be taken

into account. Most formulations consider all variable as deterministic as there is no

source of uncertainty. Given the impact of the weather on airspace activities and the

inevitable existence of measurement errors, such issues can cause a disturbance in the

aircraft trajectory and it requires to be handled properly.

This thesis has four main aims: i) scalable global optimisation methods based on

mathematical programming; ii) formal analysis of the aircraft separation conditions

and conflict-free trajectories characterisations for the deterministic version of the

ACRP, iii) incorporating uncertainty on trajectory prediction within mathematical

programming based approaches for the ACRP and iv) identifying to what extent

richer mathematical programming formulations can be developed to accommodate

realist ATC operations.

In order to achieve those aims, in this thesis, a series of novel models are proposed

to help bridge some of the gaps presented in the literature. First, an extensive liter-

ature review of major contributions in air traffic management and air traffic control

is presented in Chapter 2. Following that, the classical state-of-art formulations for

ACRP using mathematical programming are presented in Chapter 3 where numerical

results highlight their advantages and limitations. Then, an exact constraint gen-

eration algorithm is presented to solve the deterministic ACRP using the complex

number formulation in Chapter 4. An analytical solution for the special two aircraft

conflict is also provided. In Chapter 5, randomness is incorporate into ACRP using

different levels of robustness and a different size of uncertainty sets. The performances

of the proposed model are explored as well as the analysis of the feasibility of the in-

stances based on a different level of robustness and dimension of uncertainty sets. In
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Chapter 6, two different alternatives to address trajectory recovery are featured. The

first is composed of a two-stage algorithm with continuous speed and discretised angle

adapted and the recovery stage where time is discretised. It is also shown how this

can be improved by incorporating continuous heading angle and manoeuver variable

into the avoidance stage and incorporate into an iterative model revealing a trade-off

between deviation in the avoidance stage and recovery time in the recovery stage.

The thesis is concluded by summarising the main contributions, the main results and

the prospective research targets in Chapter 7.
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Chapter 2

Literature Review

In this chapter, optimisations methods for conflict resolution are reviewed. It starts off

with research dedicated to air traffic management, followed by its direct application

and impact on optimisation in air traffic control. In this case, the focus is on conflict

resolution and earlier research that solidified and paved the way for recent trends

in the field is emphasized. Finally, specific sub-fields as explored such as trajectory

recovery and conflict resolution under uncertainty. The main objective is to highlight

the state-of-the-art research currently present in the literature and outline research

gaps, which will be the focus of this thesis.

2.1 Introduction

As many factors contributed to its increase in popularity and accessibility, higher

demand in air transport ultimately results in higher demands in aerospace systems.

Except for situations like the recent COVID-19 pandemic or terrorism attacks as

September 11th in New York City, USA, the demand for air travel has been steadily

increasing. With those components, airport operation and air traffic management

became a vital point to guarantee high levels of safety and efficiency for millions of

passengers worldwide. Among factors that impact passengers, delays are the most

common consequence of overload in such systems and as reported by the Association

of European Airlines (AEA) more than 45% of those delays are caused by airport

operations and ATC (Wu and Caves, 2002). European company Lufthansa reported

that the amount of fuel consumed by airborne holding surpassed 26 thousand tons

and United Airlines claimed that 20 million dollars were consumed by inefficient air

traffic services.

These numbers highlight that ATM and ATC services are intrinsic for the optimal

operation of the airspace system and therefore vital for the financial success of this
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industry. A report from EuroControl reveals that around 80% of the delays are caused

by insufficient operational capabilities in ATC and statistical studies showed that an

accumulated total of 7.5 million flights per year were delayed by more than 15 minutes.

It is clear that the operation and efficiency of ATS are a direct consequence of how

the utilisation of those system resources are applied. In order to improve capacity,

those systems need to be upgraded and this process requires massive investments in

research. Earlier results have already shown positive outcomes. A summary of how

the literature review in airspace is defined can be seen in Figure 2.1.

Figure 2.1: Airspace and Air Traffic Research Hierarchy

The structure of air transport can be synthesised in Figure 2.2. It is composed of

airspace, which is systematically layered and separated, airports and aircraft operat-

ing between airports. While airport management handles the airport section, ATFM

handle the airspace and all aircraft in movement and their manoeuvres as they are ef-

fectively controlled by the ATC. The jurisdiction of ATC is divided into section such

as inert stage, which handles operations in the airspace and aircraft movements and

terminal which control the area of roughly 50 miles around airports (Horonjeff et al.,
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2010). In the former, there are four sub-areas such as airspace capacity, conflict, free

flight and airport network flow. In this thesis, the focus is mostly on the efforts on

ATC aspects of ATM.

Figure 2.2: Airport System Hierarchy

This chapter is organised as follows: in Section 2.2, the air traffic management is

discussed; further investigation in air traffic control by reviewing the state-of-the-art

literature is presented in Section 2.3. Further, the focus is on conflict resolution in

Section 2.4. At last, in Subsection 2.4.1, early studies on conflict detection are re-

viewed from traditional research approaches where heuristics were initially proposed

to handle such problem followed by recent trends using mathematical programming.

Specific topics such as models based on mathematical programming for determinis-

tic optimisation are addressed in Subsection 2.4.2 and advanced formulations such

as stochastic and robust optimisation applied to ACRP and trajectory recovery in

Subsection 2.4.3.

2.2 Air Traffic Management

In this section, the definitions and concepts utilised in air traffic management are

described and contextualised to how this is relevant to the research of this thesis.

Air traffic management ATM, which is the sub-field in aviation, encompasses

all the systems that are used in assistance for aircraft operation. They range from

depart from aerodrome (such as runways or heliports) to transit and to land at a
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destination. It is composed of a series of different elements such as air traffic services,

air traffic control, airspace management, etc. This thesis focuses exclusively on air

traffic control performance during the cruise stage. For that reason, two subsystems

deserve some emphasises: ATFM and ATC. Therefore, all components related to

take-off, ascending, descending, and landing will not be mentioned unless they are

relevant to cruise stage. ATFM is the focus of this section while ATC will be discussed

next.

The ATFM is defined as the sector of air system responsible to control the traffic

that is established between aircraft. This is directly influenced by the airports and the

airspace capacity. Considering the operation of airports, their performance is heavily

influenced by operations in other airports in its vicinity and through the circulation

of people and goods. This leads to a continuous flux of aircraft between airports

in a certain amount of time and this is influenced by weather conditions and other

causes, and it might result in delays and flight cancellations. The airspace capacity

is controlled by the ATFM itself. Its purpose is to allocate airspace capacity to all

users to guarantee that any negative impact related to delay and airport capacity is

mitigated.

ATFM problems have been studied using different models in the literature and

they were initially proposed as deterministic models. In models such as proposed by

Andreatta and Romanin-Jacur (1987), Richetta and Odoni (1993), Bianco and Bielli

(1992) and Terrab and Odoni (1993), the authors proposed a series of model where the

decision was defined by deterministic events only. The results obtained revealed that

even though significant and applicable, such methodologies could not encapsulate the

core parts of the problem and such solutions were not fully capable of replicating the

real situation. As stated by Odoni (1987), ATFM should take into account stochas-

tic and deterministic features and strategies by means of simulations as a way to

incorporate unexpected and random behaviour. Later, dynamic ground-holding as-

signment and stochastic models were proposed by Terrab and Odoni (1993), Richetta

(1995), Richetta and Odoni (1993), Vranas et al. (1994b), Vranas et al. (1994a), Tosic

and Babic (1995) and Richetta and Odoni (1994). In Terrab and Odoni (1993), the

authors addressed the case where a single airport is responsible to schedule aircraft

arriving from different sources by comparison of deterministic and stochastic version.

In the former, a minimum cost flow algorithm was used while the stochastic version

was reduced to heuristics. Richetta (1995) proposed heuristics by stochastic linear

programming by using the probabilistic forecast of the airport landing. Richetta
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and Odoni (1993) and Richetta and Odoni (1994) proposed a stochastic model us-

ing a single airport initially using heuristics to handle larger instances and providing

near-optimal solutions. Further, it improved the formulation by incorporating the

ground-control and by handling the aircraft into two groups instead of single flights.

In papers by Vranas et al. (1994a) and Vranas et al. (1994b), generic integer pro-

gramming models were proposed by addressing a static version of this problem, but

subject dynamic behaviour in time horizon aspect such as by changing weather and

modifying the runway use. Lastly, in Tosic and Babic (1995), many other efforts and

projects to solve such problems were revised and summarised. The common trend

of those papers is a single airport usage, where multiple sources would send many

aircraft towards a unique target. The main challenge was the management required

to supervise the waiting time and runway usage of such airspace around that specific

airport. Therefore, the solutions were decentralised for each aircraft. More recently,

the effort has shifted towards optimisation of air traffic control using a network of

airports inside a planning framework horizon. In Teodorović and Babić (1993), the

authors applied a fuzzy interference technique to consider landing operations over a

time period framework in a model, where the delay costs were minimised. Navazio

and Romanin-Jacur (1998) proposed an integer linear programming model to handle

this problem and incorporating preceding flights and multiple connections. Overall,

this study has observed that a crucial point in the efficiency of ATFM is to acknowl-

edge the short-term airport capacity referred to as Airport Acceptance Rate (AAR).

However, this has been a hurdle and in order to predict and correct address it in

flow management problems, deterministic approaches such as Vranas et al. (1994a)

and Andreatta and Romanin-Jacur (1987) have been attempted. As discussed by

Vranas et al. (1994b), the flow management problem is similar to any general flow

problem, with the extra component that the capacity of the destination is fundamen-

tal to obtain a feasible solution. Therefore, the correct simulation of AAR is vital

to its efficiency. More importantly, according to Vranas et al. (1994b), such simu-

lation is extremely imperative to ATFM, especially how precise it can forecast such

conditions. There are many factors that will corroborate to reliable simulations, i.e.

measurements and weather conditions, which leads to stochastic models that are more

effective in encapsulating those particularities as expressed by Peterson et al. (1995).

In Shumsky (1998), however, the time of those AAR estimates is also very important.

Because it is a forecast, imprecision increases as time passes by and therefore it can

cause an increase in delay costs. Therefore, the authors proposed that AAR could be

21



provided at optimised time intervals to account for future events. Nevertheless, this

problem still needs extra investigation and future research.

Another relevant discussion in ATFM strategies are the equity across users. For

each aircraft, the delays are calculated by unit delay costs, delays probabilities and

flight priorities, and all those factors can vary simultaneously and independently. In

the literature, a common process to prioritise airport usages is via a first-in-first-

out rule, which is not optimal but a fair choice. Similarly, methods to control en-

route flight time can be used to improve ATFM performance, given that prior to

that, as explained by Vranas et al. (1994b), Zenios (1991) and Janić (1997), simple

assumptions were adopted such as constant en-route flight time approaches. Models

involving airspace and air traffic control can be used as a tool to calculate an estimate

of free flight. Nevertheless, those models, especially ATC can compensate or hinder

even further possible delays caused by ground controls, which make those options less

reliable as tools to balance the delay costs for all users and further research is still

necessary.

While the effort into ATFM involving airport connection has been extensive, re-

search into the increasing airspace capacity is still a growing sector that has received

more attention in recent years. In a report by EuroControl, it is suggested that safety,

capacity and assisting technologies are necessary. Some examples can be seen in the

EC plan for the twenty-first century, such as dynamic sectoring of airspace in Europe

and air traffic service route network to improve airspace capacity. In Zenios (1991),

an airport network was proposed to monitor airspace congestion and optimise air

traffic flow. Despite the inherent complexity, his model was a prototype to simulate

route assignment in congested airspace. In the late 90s, EuroControl developed a pro-

gram aiming to model the structure and air traffic flow in the region called European

Air Traffic Control Harmonization and Integration Programme (EATCHIP). An-

other system is the System for Traffic Assignment and Analysis at a Macroscopic

Level (SAAM) provided an integrated visual for macroscopic design, evaluation and

presentation in airspace and airport level.

The general objective in airspace network modelling is minimisation of congestion

costs. Due to its random nature, a stochastic and dynamic behaviour is observed, such

as in costs, that are highly unstable and therefore, this condition makes it a hurdle

to quantify such differences. Alternative formats of cost minimisation can be seen

as fuel consumption such as in the model proposed by Janic (1994), whose approach

served as a base to airspace congestion model from an econometric perspective. In

Janić and Tošić (1991), the author proposed a model for airspace capacity based on
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mathematical programming while Tofukuji (1996) and Tofukuji (1997) proposed a

similar model, but using human factors, such as air traffic controller efficiency and

workload, as components. Those efforts highlighted how airspace capacity is crucial

to optimise the efficiency of ATFM and ATC.

In a scenario where air travel increases drastically, the airspace capacity will reach

a point where the current measure will ultimately become obsolete and new tech-

niques like the concept of free flight might emerge. The objective for this is to make

the most of airspace capacity in order to improve overall efficiency by removing the

necessity of a centralised control system that can eventually hinder its successful op-

eration. In this system, flight operators and pilots are given more independence to

choose optimal manoeuvres based on the set of aircraft that is surrounded by, instead

of a global solution involving the whole airspace. Therefore, the solution is more

localised and improvements can be achieved easier. The success of free flight relies

heavily on the performance of many advisory systems such as trajectory and con-

flict resolution. Currently, some systems (EATCHIP by EuroControl, for instance)

have shown promising attempts of usage of those systems and with the perspective

of advance in avionics and communications systems, air traffic control and air traffic

management can change quite drastically.

Assisted systems as guidance for aircraft have been researched by Niedringhaus

(1995), whose model is an advisory system that established the foundation for man-

agement and control for an aircraft. An alternative approach by Ratcliffe (1995)

was proposed by accounting clearance in aircraft routes by also considering conflict

probabilities and resolutions, and even further, with the advance of avionics those

technologies can become even safer.

2.3 Air Traffic Control

ATC is the part of the air service system that is operated by a ground-based operator

called air traffic controllers. Their main function is to provide a set of manoeuvres

and information to aircraft on the ground and in controlled areas. The main goal is

to prevent collisions, therefore, increase the safety and security in air traffic (Nolan,

2010), especially in civil aviation. The ICAO provides a set of rules and metrics that

should be followed worldwide while each country or region decides on how to impose

them.

Air traffic controllers observe the location and position of each aircraft in their

specific airspace region via radar measurements and communication with the crew.
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Based on these data, they enforce a set of rules to guarantee enough separation

between aircraft at all times. Most countries provide air traffic control services to

private, military and commercial aircraft within their airspace. Although they have a

great authority to suggest manoeuvres and changes in each aircraft’s path, pilots have

the final decision and in an emergency can override the ATC instructions to maintain

the safe operation of their respective aircraft. Therefore, air traffic controllers have

an immensely important job, but mainly as an consulting role. In this thesis, the

focus is exclusively on civil aviation.

Air traffic control was introduced in the earlier 1920s at the Croydon Airport in

London operating in rudimentary conditions and providing only simple information

to aircraft in its vicinity. A few years later, in the USA, airmail radio stations were

established after WWI as a tool to direct and track the position of the aircraft and it

was later incorporated into flight service stations. This was used as the base configu-

ration for airport control towers, controlling arrivals and departures at Cleveland in

1930, the first of its kind. With the advance of radar to monitor and control denser

regions, airport tower becomes a popular presence in airports, especially in North

America. In 1935, the first route completely assisted by the air traffic control centre

was inaugurated in Newark, New Jersey, followed by Cleveland and Chicago in 1936

(Preston, 2005).

In the earlier stages, most of the air traffic control was established by basic visual

rules and done only during daytime using clear flight conditions. A common practice

was ”see and be seen” and it was used as the main method of imposing separation.

According to this method, pilots were required to fly only under conditions such

as clear of any clouds and only in areas where the visibility was at least 3 miles.

Nowadays there are two forms of control available as described by Gaertner and Lutz

(2016): IFR, as the rules under conditions in which flight by outside visual are not

considered feasible or safe; and VFR which encompasses regulations based on the

capacity of pilots and crew to direct visualise outside the aircraft and use such input

as the main source of their decisions. VFR was based on those initial conditions and

it is still in use favourably over IFR. Since the aircraft used by the airlines at the early

stages were relatively slow and VFR was enough, the establishment of an organised

air traffic control system was not necessary. Therefore, it did not exist until late 1930,

where the capability of aircraft to fly at night and in marginal weather conditions had

improved tremendously. Hence, overall organisation and systematisation were deemed

important. Instrumentation that would permit pilots to control the aircraft without

visual reference (early stages of IFR) were developed and in addition, a system of
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ground-based radio navigation was being constructed to permit pilots to navigate

without ground reference.

Future prospective in air traffic control is to develop and merge into the NextGen

NextGen (Darr et al., 2008). It has been developed by the FAA in the USA as a

strategy to overhaul the national airspace system. In its full operation, it will have

the capability to integrate satellite-based navigation and communication technologies.

It is an attempt to improve capacity and transform it into a satellite-based system.

The idea is to convert such system into a fully automated and assistance-oriented

system to work with air traffic controllers in order to reduce their workload.

2.4 Aircraft Conflict Resolution

In airspace where the amount of aircraft is considerably large and congestion is ob-

served, loss of separation between aircraft becomes a dangerous problem, impairing

flights’ safety. In order to ensure separation, ATC performs its major task known

as conflict detection and resolution, Conflict Avoidance and Recovery (CDR) or air-

craft deconfliction. This is divided into three main stages: strategic deconfliction,

which occurs prior to flight departure and it is based on beforehand manoeuvres

based only on priory information and that can be subject to changes throughout long

distance flights; tactical deconfliction, which happens during the flight, at least 5

minutes ahead of the actual conflict; and finally the collision avoidance systems such

as Traffic Collision Avoidance System (TCAS), which is the final avoidance to avoid

mid-air collisions.

Methods based on separation conditions are the the foundation of air routes and

they have evolved over the years. Humans are vital components in conflict resolution

due to their abilities to analyse different sources of information and being capable of

making judgements calls on them. However, they are still prone to make mistakes.

Because of eventual failures and operational errors, assisting systems have started to

be available in the cockpit and on the ground control to provide support and serve as

alerting systems. Such technology is composed of sensors to predict eventual conflict

and suggest a set of manoeuvres to solve it. Simpler cases can already be solved by

existing systems such as TCAS (implemented since the 1990s) (Kuchar and Yang,

2000).

CDR has been most commonly addressed as an optimisation problem. The basis

of these systems is to identify manoeuvres to ensure that minimum separation is

maintained throughout the whole flight, especially in the en-route stage. Due to
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the nature of such problems, which involves quadratic equations involving Euclidean

distance and trigonometric functions, those problems are non-convex. Solutions are

required to be obtained free of errors and to be precise and quick. Under those

circumstances, the first initial attempt to solve this problem is a series of specific

formulations based on heuristic and meta-heuristics as reviewed by Kuchar and Yang

(2000). With the advances in computational power in the late 1990s and at the

beginning of the 21st century, the ground layers to attempt exact solutions were

established and therefore, many exact solutions were proposed utilising mathematical

programming as reviewed by Pelegŕın and d’Ambrosio (2020).

Nevertheless, given that this particular problem continues to evolve and to in-

corporate new elements such as the probability of conflict and trajectory prediction,

new heuristics have been proposed. In this section, the state-of-the-art research is

reviewed. First, the earlier research studies on conflict detection and resolution,

followed by mathematical programming approaches for conflicting resolution and fin-

ishing with advanced formulations for aircraft conflict resolution problem.

2.4.1 Early Studies on Conflict Detection and Resolution

As described in Kuchar and Yang (2000), initial efforts to solve CDR problems can

be classified into three main categories based on their state propagation, which is the

ability they have to predict the future. Those three categories are: the first is the

nominal approach, in which trajectories are projected in a single profile, without any

regards towards uncertainties or inconsistency in the data that might culminate in

a prediction error (for example, assuming that the position of the aircraft are solely

predictable via its current velocity vector). The second case is based on worst-case

projection, where there is a range of manoeuvres that each aircraft can perform and

if any circumstances result in a conflict, it will be predicted. It is a more conservative

approach and it is limited by the length and dimension of the range of manoeuvres

available. Finally, the third approach is the probabilistic method, which is attempting

to model the uncertainties via variables into the model. Uncertainties are modelled

as potential variations in trajectories via a position error, from which conflict proba-

bilities can be calculated and it provides a balance and compromise between the two

previous methods.

In terms of models exploring the nominal trajectory, there has been a great effort

into this area. Andrews (1977) proposed a model based on relative motion to detect

horizontal collisions in which the author projects the positions in which each aircraft

will be and it is based on the time horizon. Chakravarthy and Ghose (1998), proposed
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a similar formulation using a collision cone as an alternative route projector, but

instead of only aircraft, it also incorporates airborne obstacles as part of the pathway.

In earlier works, Frazzoli et al. (2001) proposed a model based on convex programming

and randomised search that recasts the formulation into a quadratically constrained

quadratic program using speed and heading control as the only available manoeuvres.

In Zeghal (1998), the author proposed a model called the symmetrical force field which

is a fully distributed and reactive coordination algorithm which relies on each aircraft

taking action independently. Another autonomous approach was defined by Duong

and Hoffman (1997), where the authors worked in an initiative called Free-Route

Experimental Encounter Resolution (FREER) introduced by EuroControl and it was

initially tested in low-density airspace.

Tomlin et al. (1998) address the possibilities for free flight and calculates the

maximal set of safe initial conditions for each aircraft so that separation is assured in

the presence of uncertainties in the actions of the other aircraft. Kelly (1999), a model

based on instantaneous state vectors is proposed and in Irvine (1998), this approach

is expanded by incorporating different type of airborne objects and using different

models inside of a manoeuvre generator. Another model that generates the possible

manoeuvres was presented by Ota et al. (1998) where the authors create a set of

geometric solutions called ”threat map” to identify possible conflicts and determine

a series of horizontal and vertical manoeuvres. Durand et al. (1997) proposes an

automatic conflict solver which was validated using the flight data over France in a

similar manner. Krozel and Peters (1997) utilise the free-flight control framework to

create an optimisation model to minimise costs via a cost-benefit analysis, explore

how it impacts on different levels of separation (from 5NM to 1NM in free flight

conditions). Another system based on free flight is the Manoeuvres Option Manager

(MOM) which decompose complex air traffic control situations, where manoeuvres

are tested for different time instants and decided which one is the optimal as stated

at Niedringhaus (1992).

Human factors in free-flight have also being incorporated. Hoekstra et al. (1998)

treated as a non-linear problem with rules design based on cockpit displays, system

description and operation implications. Zhao et al. (1997) and Menon et al. (1999)

proposed a point-mass level flight aircraft model (which is heavily based on simulation

of particles physics) formulated as a non-linear problem, using terminal constraints

to force to recover initial trajectories. Instead of individual elements, Burdun and

Parfentyev (1999) observed collective behaviour in nature, such as bird flocking, fish

schooling and insect swarming were extensively used in their analysis. In an upgraded

27



system, Harper et al. (1999) simulated the ATC and pilot behaviour, divided into

three models containing a simple representation of information processing, situation

assessment and collaborative decision-making via inter-agent negotiation. Another

upgraded model is the Stream Option Manager described by Niedringhaus (1995),

especially in a stream based on linear programming techniques.

Self-organising strategies in free-flight scenarios were also proposed by Eby and

Kelly (1999) and Eby (1994) based on potential fields and show that such algorithms

are extremely robust in solving CDR without a centralised authority. The greatest

challenge in ATM is the computational resource and load necessary to handle scenarios

with higher density. Occasionally, some simplifications are necessary. As presented

by Sridhar and Chatterji (1997), some simplifications can be done via spatial and

temporal discretisation, which can also be applied individually or in combination.

The ground system can also be of assistance in conflict resolution as explored by

Havel and Husarč́ık (1989), where the authors can detect conflicts in a given time

interval frequency. GPS systems can also be used as a source for aircraft position

and speed as described by Gazit (1997). For details relating the papers reviewed in

this section and more intensive literature, Kosecka et al. (1997) and Bilimoria et al.

(2000) provide a complete review. Some systems used in ATC are also explained in

details in Burgess et al. (1994), Ford (1987), Williamson and Spencer (1989),LOVE

(1988) and Zeghal (1998).

For the worst-case projection, some models have been released over the years.

Starting with the proposal by Lachner (1997), where an approach initially designed

for an autonomous and semi-autonomous car based on pursuit-evasion differential

games. In that case, the representation of an optimal collision avoidance strategy

was created using Taylor series expansions of the value function’s gradient. Simi-

larly, a new threat detection criterion in order to reduce miscalling and undesirable

alerts was proposed by Ford and Powell (1990). In Shepard et al. (1991), a predic-

tion algorithm using intent information was designed based on worst-case scenario

analysis. Under free-flight, the worst-case scenario presents greater flexibility. Using

linear matrix inequalities and positive semi-definitive programming, the separation in

complex examples can be investigated using polynomial-time algorithm as described

by Shewchun et al. (1997). One of the sources used for the worst-case scenario is

weather conditions, and in the NASA report by Waller and Scanlon (1996) where

flight conditions in instrument meteorological conditions were used. Another model

was proposed by Vink et al. (1997) created by the EuroControl called European ATC

28



Harmonisation and Integration Program, which establishes separation under uncer-

tainty conditions.

The probabilistic models have been addressed in the literature in the past decades.

In the works of Paielli and Erzberger (1997) and Prandini et al. (1999), the authors

address the probability of conflict in free-flight circumstances and Taylor (1990) used a

similar approach by using probability theory, that is fitted into the trajectory course

by a fitness model. As in Bakker and Blom (1993), the risk of collision was also

calculated using similar formulation and the Reich model and Markov process. In

Wangermann and Stengel (1998) and Wangermann and Stengel (1999), Intelligent

Aircraft/Airspace System (IAAS) is described as a rule-based expert system agents

and principled negotiation, allowing distributed optimisation. This allows the agents

to search for solutions that would not be available otherwise, while the principled

negotiation moderate consensus between those elements. In Rome and Kalafus (1988),

the authors describe systems that track intersection capacities based on geometry, flow

rates and distribution of the errors and measures the effectiveness and error in the

performance of collision risk.

Warren (1997) focuses on a conflict probe system based on free-routing and by

applying Monte-Carlo and co-variance analysis to explore different behaviour in terms

of path prediction uncertainty. Another metric described by the author uses statics

decision theory to control aircraft under uncertainty region in Williams (1992). By

calculating position and velocity confidence ellipsoid associated with aircraft radar

track, that allows for the definition of the optimal collision avoidance decision rule

and this model is solely based on statistical properties. Another probabilistic model

was suggested by Carpenter et al. (1997) where it determines the collision probabilities

based on hazard levels corresponding to the current precision runway monitor system

of one accident in every thousand cases and probability contour were designed using

Monte Carlo simulations.

Optimal stopping policy as variational inequality was also used to compute worst-

case scenario solutions used in low-density ATC scenarios by Heuvelink and Blom

(1988). In a model to encapsulate all sorts of hazards into a single system, von

Viebahn and Schiefele (1997) divide the airspace into discrete volume elements. Then,

it calculates the threat levels associated with each one individually based on sensor

output, databases or information provided via data link. Centre/TRACON Automa-

tion System (CTAS) has also been tested in conflict prediction and trial planning

capability by McNally et al. (1998) and Isaacson and Erzberger (1997). In those,

operational conditions in the Denver Air Route Traffic Control Centre in September
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1997 were used as test subjects. It showed that the direct route resolved a conflict in

the tactical stage as shortcuts.

Another system that was attempted and tested is the Advanced En Route ATC

by Brudnicki et al. (1997) and Brudnicki and McFarland (1997), which is composed of

a continuous conflict probe checkout. It also encapsulates an evaluation mechanism

to address possible alternative before clearances are given. Using data link between

the aircraft and conflict solved initially at the flight deck, the prototype developed

by YangL (1997) and Yang and Kuchar (1998) creates a series of alerting signals

depending on the likelihood and gravity of future conflicts. Those probabilities are

determined via Monte Carlo simulation and tested in different configurations.

2.4.2 Mathematical programming approaches for the deter-
ministic aircraft conflict resolution problem

The first exact global optimisation approach to conflict resolution problems was pro-

posed by Pallottino et al. (2002) which introduced two MIP formulations: a first

model was based on speed control only, and a second model was based on heading

control only and assumed that all aircraft fly at the same speed. In the proposed

MIP formulation for conflict resolution with speed control, the authors derived linear

pairwise aircraft separation constraints based on the geometric construction intro-

duced by Bilimoria (2000). These separation conditions are obtained by projecting

the shadow of an intruder aircraft onto the trajectory of a reference aircraft. Frazzoli

et al. (2001) was the first to observe that this geometric construction provided a basis

to characterise the set of aircraft pairwise conflict-free trajectories via linear half-

planes in the relative velocity (speed and heading) plane. The authors introduced a

non-convex formulation for the conflict resolution problem with speed and heading

control, and proposed a convex relaxation based on semi-definite programming as well

as a heuristic algorithm to find feasible solutions on problems with up to 10 aircraft.

The shadow separation conditions were subsequently used in several formulations.

Alonso-Ayuso et al. (2011) proposed a mixed-integer linear programming (MILP)

formulation for conflict resolution by speed and altitude control and reported solv-

ing instances with up to 50 aircraft in competitive time. Alonso-Ayuso et al. (2014)

proposed a two-step formulation in which only heading control is available for decon-

fliction and the available angle changes are discretised. The same group of authors

also proposed a non-convex formulation involving trigonometric functions based on

the shadow separation conditions that enable speed, heading and altitude control
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(Alonso-Ayuso et al., 2016). The authors used mixed-integer non-linear program-

ming (MINLP) solver to solve the resulting non-convex formulations and reported

results for the 2D ACRP with up to 7 aircraft on structured instances and up to

20 aircraft on un-structured instances. An alternative representation of pairwise air-

craft separation based on conflict points has been proposed by several authors. In

Vela et al. (2009c,b,a), the authors proposed several MILP formulations which aim to

minimise fuel consumption, incorporate air traffic controller workload in the objective

function, and account the impact of uncertainty in trajectory prediction due to wind

effects. Omer (2015) proposed a space-discretised MILP formulation involving a fi-

nite set of turning angles. In contrast to most other approaches, the heading control

manoeuvres consist of two actions: a first heading change for collision avoidance and

a subsequent turn to recover the initial heading. Rey et al. (2012, 2016) proposed

linear upper bounds for the ACRP with speed control only and the resulting MILP

formulations are able to solve realistic large-scale instances to optimality within a few

seconds.

More recently, non-linear global optimisation approaches received increasing at-

tention in the literature. Omer and Farges (2013) proposed a hybrid algorithm which

uses the optimal solution of a MILP as the starting point for solving a non-linear for-

mulation of the same problem. Cafieri and Rey (2017) proposed an MINLP approach

for conflict resolution with speed control only which highlights that subliminal speed

control alone may not be sufficient to resolve all conflicts in dense traffic scenarios.

Using a similar framework, Cafieri and Omheni (2017) presented a two-step approach

where a maximum number of conflicts are first solved using speed control only and

outstanding conflicts are solved by heading control. Cerulli et al. (2020) proposed

a formulation based on bi-level optimisation with multiple follower problems, each

of which representing a two-aircraft separation problem. The authors presented two

formulations, one using speed control only and another using heading control only. A

cut generation algorithm is proposed to solve the corresponding bi-level optimisation

problems. Recently, Pelegŕın and d’Ambrosio (2020) conducted a review of the lit-

erature on exact conflict resolution approaches, and have shown that the disjunctive

linear separation conditions introduced by Rey and Hijazi (2017) and the shadow

separation conditions are equivalent.

Several rich heuristic approaches for conflict resolution have also been proposed in

an attempt to model conflict-free trajectories for aircraft more completely and accu-

rately. In particular, meta-heuristics such as genetic algorithms (Durand et al., 1997)
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and ant colony algorithms (Durand and Alliot, 2009) have proposed to find conflict-

free solutions that ensure aircraft to safely recover their initial trajectories. Other

approaches proposed light propagation algorithms (Dougui et al., 2013, 2011), which

use the light refraction index to determine conflict-free trajectories; and B-splines

(Peyronne et al., 2015) to design smooth navigable paths for aircraft. In Lehouillier

et al. (2017), the authors propose a graph formulation for conflict resolution wherein

each node of the graph represents a possible manoeuvre. This manoeuvre-discretised

model is able to scale well, but its solutions may be characterised as suboptimal if

compared to a non-discretised formulation.

2.4.3 Advanced formulations for aircraft conflict resolution
problems

In mathematical programming approaches, the trajectory of aircraft is usually di-

vided into stages. These stages are traditionally called avoidance (or action) which

encapsulates the manoeuvres necessary to avoid any conflict while the trajectory re-

covery corresponds to the manoeuvres necessary to restore the aircraft to its original

trajectory. Different approaches (such as genetic programming and heuristics) might

consider trajectory recovery as part of the conflict resolution, but in mathematical

programming, this is normally separated due to its non-trivial aspects, which brings

many non-convexity and non-linearity to their formulations.

Despite their potential effectiveness, most efforts in conflict resolution have fo-

cused on ensuring collision avoidance, but have overlooked the costs and mechanisms

for modelling aircraft’s recovery to their original trajectory. This may be critical

when conflict resolution is performed using heading control which may significantly

cause deviation in the aircraft from their initial trajectory, thus possibly increasing

flight operating costs. Trajectory recovery has received very little attention in the lit-

erature due to the challenging nature of the problem. Meta-heuristics such as genetic

algorithms (Durand et al., 1997) and ant colony algorithms (Durand and Alliot, 2009)

have been proposed to find conflict-free solutions that ensure aircraft to avoidance

and recovery safely. (Dougui et al., 2013) proposed a model which uses an analogy

with light propagation theory to create conflict-free aircraft trajectories with recov-

ery. (Peyronne et al., 2015) proposed a B-splines model which uses way-points of a

given trajectory to design conflict-free trajectories with recovery. In Omer (2015), the

authors proposed a formulation providing parallel trajectory recovery while minimis-

ing fuel consumption and delays. In this model, aircraft are assumed to perform a
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preventive manoeuvre before the intersection and the formulation is focused on sep-

arating aircraft on their parallel trajectories. Heading angles are discretised and the

optimisation controls both aircraft heading and recovery time. Recently, (Lehouil-

lier et al., 2017) proposed a manoeuvre-discretised model in which pre-defined sets

of manoeuvres are available for aircraft and a clique-based formulation is proposed

to find the optimal combination of conflict-free manoeuvres. This review of the lit-

erature highlights that despite recent improvements in computational optimisation,

there remain significant open challenges in the design of scalable and exact global

optimisation approaches for conflict resolution in air traffic control, especially on how

to incorporate recovery in a scalable and effective way.

The aircraft conflict avoidance and resolution problem can be expressed in the

form of an optimisation problem, which has the objective to find conflict-free tra-

jectories for all aircraft in delimited airspace. Many strategies have been proposed

to address this problem based on the type of manoeuvres (applied separately or in

combination) that can be issued to aircraft: speed, heading and/or altitude control.

Recently, conflict resolution using global optimisation has received growing attention

due to its ability to provide optimal solutions that take into account all traffic within

an airspace region and are able to consider the overall state. One of the first global

optimisation approaches for air conflict resolution was introduced by Pallottino et al.

(2002) which proposed two formulations: one focusing on speed control and another

focusing on heading control and both minimise the overall flight time. Subsequent

approaches proposed speed control and altitude level-assignment to minimise fuel

consumption by metering aircraft at conflict points (Vela et al., 2010). In Vela et al.

(2009b), the authors proposed a two-stage stochastic optimisation model accounting

for wind uncertainty and using speed control. Multi-objective optimisation formu-

lations attempting to balance flight deviation with the total number of manoeuvres

(velocity, heading and/or altitude change), building on the work of Pallottino et al.

(2002) were proposed by (Alonso-Ayuso et al., 2011, 2014). Subliminal speed control

methods, which focus on speed control only for conflict resolution, have also proven

to be a powerful tool. Although it may fail to resolve all conflicts (Rey et al., 2016;

Cafieri and Rey, 2017), it has a low impact in terms of deviation and fuel consump-

tion. More recently, Rey and Hijazi (2017) proposed a complex number formulation

for speed and heading control without any form of discretisation.

As highlighted in this review of the literature, most efforts are either focused on

probabilistic models to calculate conflict rates and to improve the accuracy of decision-

support systems for ATC by providing a more comprehensive model of reality; or on
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(meta-)heuristic approaches that aim to solve the ACRP under uncertainty. To the

best of our knowledge, no attempts have been made to solve the ACRP to optimal-

ity without any form of discretisation while accounting for uncertainty in a robust

optimisation framework. To this end, Irvine (2002), Regnier (2008) and Jacquemart

and Morio (2016) used information and data observed from weather forecast or ob-

served weather data collected over the years to estimate the probability of a loss

of separation between aircraft under uncertainty. Different approaches to solve the

ACRP under uncertainty have not been widely attempted throughout literature and

the most widely used approach consists of calculating probabilistic distributions of

possible conflict and delays. At the same time, some studies such as Morgan et al.

(1990) and Murça (2017) also incorporate the random effects that can happen from

measurements in faulty sensors or loss of data throughout communications. In those

cases, their models are related to system reliability and performance.

To guarantee and improve safety, ACRP plays a critical role. Based on the cur-

rent situation of the many systems in operation, this challenge is divided into two

different stages: detection and resolution. The state-of-the-art methods to address

the resolution part are mainly based on the prediction of the aircraft velocity and

position. This alternative cannot be always applied given that, in ATC, many vari-

ables cannot be previously assessed and their distributions are not known beforehand.

Even though data collected about weather conditions can be used as source material,

they are suitable for real-time solutions with random variables. Therefore, the ro-

bust formulation is crucial when it is difficult to assess how uncertainty elements will

cause trajectory prediction instability and imprecision. Among the different sources

of random effects, weather uncertainty is one the most predominant (Morgan et al.,

1990) and can be induced by limited knowledge about present conditions and, espe-

cially, future meteorological conditions, such as wind speed and direction, snowfall,

fog and storms. All those circumstances may cause many negative effects in the ATM

performance, such as delays and flight cancellation, which translate into extra costs

for all parts involved.

In Atamtürk and Zhang (2007), the authors proposed a network design prob-

lem where the uncertainty sets are used to define the demand. Similarly, Lee et al.

(2013) used Benders decomposition in robust network design with flow bifurcations

and demand under uncertainty and Chiou (2016) used uncertain travel demands for

signal-controlled robust stochastic design. In another network flow problem, Ordóñez

and Zhao (2007) proposed a robust model by expanding the arc capacity using uncer-

tainty sets. Other problems in the transport field were addressed using this formula-

34



tion such as facility location problem and Snyder (2006) presents a review of different

studies under uncertainty and different techniques to approach randomness. Another

review work was addressed by Verderame et al. (2010) for planning and scheduling

using multiple factors as sources of uncertainty and how all of them can be handled

using the same technique. In power flow, Bienstock et al. (2014) proposed a chance-

constrained problem and used uncertainties to account to risk-awareness; Ding et al.

(2016) analysed the consequences of adjustable robust power flow in large-scale sys-

tems and how the price of robustness can provide the trade-off between deterministic

and robust models and inBienstock et al. (2013), the authors model uncertainty in

smart grids due to data ambiguity.

Most of the effort for trajectory prediction under uncertainty assumes that weather

is the primary source of randomness, considering that wind, rain and fog may affect

the aircraft trajectory prediction. More generally, adverse weather conditions can

cause delays due to low visibility, loss of friction in take-off and arrivals, etc., and has

been the focus of several works in ATM. In Nilim et al. (2001), a dynamic routing

mechanism was proposed to account for expected delays if the nominal trajectory is

inaccessible due to weather conditions. By modelling the uncertainty using a sta-

tistical analysis of forecast data, Hentzen et al. (2018) calculated the probability of

an aircraft reaching its destination given that some action is taken to avoid the area

affected by adverse weather. Similarly, Clarke et al. (2009) used available stochastic

weather information into a dynamic model to determine the route capacity for each

aircraft. Pepper et al. (2003) presented a Bayesian model to incorporate uncertainty

from weather into air traffic flow to understand capacity behaviour under weather con-

ditions. A sequential optimisation approach was developed by Grabbe et al. (2009)

to adapt route capacity to account for varying weather conditions. Zheng and Zhao

(2011) developed a statistical model of wind uncertainty and trajectory prediction

using constant speed. The authors used curated data from previous years, to esti-

mate and calibrate the parameters in their statistical model and used that knowledge

to determine optimal manoeuvres. In a more generic uncertainty context, Murça

(2017) presented a robust approach for optimising runway usage and taxi-out time,

and Radmanesh et al. (2018) solved the problem of path planning for unmanned air

vehicles under random circumstances. Different sources of uncertainty were explored

by Kim et al. (2009) who discretised flight speed, and model uncertainty using a white

Gaussian function and removing the crosswind effect to assess the efficiency of traffic

flow. González Arribas et al. (2016) analysed flight paths determined via pseudo-

spectral methods of assessing wind-optimal trajectories. In Franco et al. (2017), the
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authors created a structured space and applied the Dijkstra algorithm to obtain op-

timal paths. Rivas et al. (2017) and Valenzuela et al. (2017) analysed the effects of

wind uncertainty in fuel consumption and demand.
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Chapter 3

Formulations for the Aircraft
Conflict Resolution Problem

In this section, mixed-integer formulations for aircraft conflict resolution are pre-

sented. The focus is on the 2D problem under velocity, i.e. speed and heading, control

which aims to represent a single flight level during cruise stage air traffic conditions.

Then, it is presented the characterisation of three different classic formulations for 2D

separation conditions for a pair of aircraft that are state-of-the-art in the literature.

First, the characterisation of 2D separation conditions is presented in Section 3.1

followed by the non-convex quadratic formulation proposed by Cafieri and Omheni

(2017), then non-convex non-linear formulation using the disjunctive formulation by

Rey and Hijazi (2017) in Section 3.2 and last the non-convex shadow formulation,

initially proposed by Bilimoria et al. (2000) and expanded by Pallottino et al. (2002)

and Alonso-Ayuso et al. (2014). The proof presented by Pelegŕın and d’Ambrosio

(2020) which shows that the formulation by Frazzoli et al. (2001) and Rey and Hijazi

(2017) are equivalent is also replicated. Finally, some numerical experiments and the

limitations of each formulation are presented in Section 3.7.

3.1 Characterisation of 2D Separation Conditions

In this section, the separation conditions for a pair of aircraft are derived and then

a compact characterisation of the conflict-free region based on aircraft available de-

confliction resources is presented. The goal is to find least-deviating conflict-free

trajectories for a set of aircraft in cruise stage, i.e. flying at a fixed altitude and at a

constant speed. Let t = 0 be the time instant representing aircraft current positions

at the time of decision, also referred to as aircraft initial positions. It is also assumed
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that all aircraft are separated at t = 0 and seek to derive separation conditions to

ensure that aircraft trajectories are separated for any time t ≥ 0.

Let A be the set of aircraft. For each i ∈ A, [x̂i, ŷi] is the aircraft initial position in

the 2D plane, v̂i is its nominal speed (in NM/h) and θ̂i is its heading angle. Assuming

uniform motion laws, aircraft motion can be described as: pi(t) = [xi(t), yi(t)]
>,

where xi(t) = x̂i + qiv̂i cos
(
θ̂i + θi

)
t and yi(t) = ŷi + qiv̂i sin

(
θ̂i + θi

)
t. In this model,

the decision variables are qi, which is the speed control variable that determines the

acceleration or deceleration with regards to the nominal speed v̂i (qi equals to 1 means

no speed variation) and θi, which is the heading control variable that determines the

deviation with regards to the nominal trajectory (θi equal to 0 means no deviation in

heading angle).

Let P = {i, j ∈ A : i < j} be the set of aircraft pairs, the relative motion of

(i, j) ∈ P is denoted pij(t) = pi(t)− pj(t). Let d be the minimum separation distance

(e.g. 5 NM). Next, the motion of 2D separation for a pair of aircraft is defined.

Definition 1 (2D separated trajectories). The trajectories of a pair of aircraft (i, j) ∈
P is said to be 2D separated, i.e. conflict-free, if and only if:

||pij(t)|| ≥ d, ∀t ≥ 0. (3.1)

Let vij = vi − vj be the 2D relative velocity vector of (i, j) ∈ P , i.e. vij =

[vij,x, vij,y]
> with:

vij,x = qiv̂i cos
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
, (3.2a)

vij,y = qiv̂i sin
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
. (3.2b)

Aircraft relative velocity equations are linear with regards to speed control vari-

ables qi and qj, but non-linear with regards to heading control variables θi and θj.

Expanding the expression in Eq. (3.1) (as suggested by Cafieri and Durand (2014))

and denoting p̂ij the relative initial position of aircraft pair (i, j) ∈ P , a second-order

polynomial function is obtained:

fij(t) ≡ ||vij||2t2 + 2p̂ij · vijt+ ||p̂ij||2 − d2 ≥ 0. (3.3)

Since the coefficient of the second-order term is positive, fij(t) admits a minimum

which corresponds to the time instant of minimum separation between aircraft i and

j. Let tmin
ij (vij) be the function corresponding to this time instant parameterised by

aircraft relative velocity vector, then:

tmin
ij (vij) =

−p̂ij · vij
||vij||2

. (3.4)
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Evaluating Eq. (3.3) at tmin
ij (vij) yields a time-independent separation condition

(Rey and Hijazi, 2017; Cafieri and Rey, 2017; Cafieri and Omheni, 2017):

fij(t
min
ij (vij)) =

−(p̂ij · vij)2

||vij||2
+ ||p̂ij||2 − d2 ≥ 0. (3.5)

Let gij(vij) ≡ ||vij||2fij(tmin
ij (vij)). By abusing the notation, gij(·) and tmin

ij (·)
can be rewritten as functions of aircraft velocity components vij,x and vij,y. After

expanding and factorising, the following expression is obtained:

gij(vij,x, vij,y) = v2
ij,x(ŷ

2
ij − d2) + v2

ij,y(x̂
2
ij − d2)− vij,xvij,y(2x̂ij ŷij) ≥ 0. (3.6)

Assuming aircraft are initially separated, if tmin
ij (vij,x, vij,y) ≤ 0, then they are

diverging and do not incur any risk of future conflict. If tmin
ij (vij,x, vij,y) ≥ 0 and

gij(vij,x, vij,y) ≥ 0, aircraft are converging but separation is ensured. Otherwise, if

tmin
ij (vij,x, vij,y) ≥ 0 and gij(vij,x, vij,y) ≤ 0, there is a loss of separation and aircraft

trajectories should be adjusted to avoid it. Hence, pairwise aircraft separation con-

ditions for (i, j) ∈ P can be written as:

gij(vij,x, vij,y) ≥ 0 ∨ tmin
ij (vij,x, vij,y) ≤ 0. (3.7)

To characterise the set of 2D conflict-free trajectories, it is necessary to examine

the relative velocity vector vij as a function of trajectory control bounds. For each

aircraft i ∈ A, it is assumed that the speed rate variable is lower bounded by q
i

and

upper bounded by qi, i.e.:

q
i
≤ qi ≤ qi, ∀i ∈ A. (3.8)

Assuming that the heading deviation is lower bounded by θi and upper bounded

by θi, the heading deviation bounds can be expressed as:

θi ≤ θi ≤ θi, ∀i ∈ A. (3.9)

To derive lower and upper bounds on relative velocity components vij,x and vij,y,

the Eq. (3.2) can be rearranged as trigonometric identities:

vij,x =qiv̂i cos
(
θ̂i

)
cos(θi)− qiv̂i sin

(
θ̂i

)
sin(θi)−

qj v̂j cos
(
θ̂j

)
cos(θj) + qj v̂j sin

(
θ̂j

)
sin(θj), (3.10a)

vij,y =qiv̂i sin
(
θ̂i

)
cos(θi) + qiv̂i cos

(
θ̂i

)
sin(θi)−

qj v̂j sin
(
θ̂j

)
cos(θj)− qj v̂j cos

(
θ̂j

)
sin(θj). (3.10b)
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Let vij,x, vij,x and vij,y, vij,y be the lower and upper bounds for vij,x and vij,y,

respectively. These bounds can be determined using Eq. (3.10) and the bounds on

speed and heading control provided in Ineqs. (3.8) and (3.9). The derived bounds on

the relative velocity components can be used to define a box in the plane {(vij,x, vij,y) ∈
R2}.

Definition 2 (Relative velocity box). Consider a pair of aircraft (i, j) ∈ P. Let Bij
be the subset of R2 defined as

Bij =
{

(vij,x, vij,y) ∈ R2 : vij,x ≤ vij,x ≤ vij,x, vij,y ≤ vij,y ≤ vij,y
}
. (3.11)

Bij is the relative velocity box of (i, j) ∈ P.

The relative velocity box Bij characterises all possible trajectories for the pair

(i, j) ∈ P based on the available 2D deconfliction resources, i.e. speed and heading

controls. To characterise the set of conflict-free trajectories of a pair of aircraft (i, j) ∈
P , it is required to compare the relative position of the relative velocity box Bij with

the conflict region of this pair of aircraft. Observe that the conflict region is convex

and can be defined based on reversing the inequalities (3.6).

Definition 3 (Conflict region). Consider a pair of aircraft (i, j) ∈ P. Let Cij be the

subset of R2 defined as

Cij =
{

(vij,x, vij,y) ∈ R2 : vij,xγ
l
ij − vij,yφlij ≥ 0 ∧ vij,xγuij − vij,yφuij ≤ 0

}
. (3.12)

Cij is the conflict region of (i, j) ∈ P.
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(a) Conflict-free aircraft pair, i.e. Bij ∩ Cij =

∅. Nominal headings are θ̂i = 2.01 and θ̂j =
1.30.

(b) Separable aircraft pair, i.e. Bij ∩ Cij 6= ∅
and Bij 6⊂ Cij . Nominal headings are θ̂i =

1.25 and θ̂j = 1.88.

(c) Non-separable aircraft pair, i.e. Bij ⊂ Cij .
Nominal headings are θ̂i = 1.04 and θ̂j = 2.09.

Figure 3.1: Three aircraft configurations illustrating conflict-free (3.1a), separable (3.1b) and non-separable (3.1c) pairs. Aircraft
initial positions and trajectories are depicted at the bottom part of each sub-figure, where black dots correspond to initial
positions and red lines represent initial trajectories. The top part of each sub-figure shows a graph of the relative velocity box
Bij represented by a black rectangle, and the conflict region Cij represented by a red hashed area. Dashed blue lines represent
the solutions of gij(vij,x, vij,y) = 0 (R1 and R2). In all cases, aircraft i and j have nominal speeds v̂i = v̂j = 500 NM/h and are
initially separated by 30 NM in the x-axis direction.
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To design the objective function, a preference weight w ∈ ]0, 1[ to balance the

trade-offs among velocity controls, i.e. speed and heading is introduced. This is a

standard objective function used by researchers and it represents the minimisation of

combined deviation in all aircraft.

minimise
∑
i∈A

wθ2
i + (1− w)(1− qi)2. (3.13)

Next, it is shown that the objective function (3.13) attains its minimum value

when aircraft have deviation-free trajectories, i.e. qi = 1 and θi = 0 for all i ∈ A and

it is a convex.

Proposition 1. The 2D objective function (3.13) is convex with regards to decision

variables θi and qi for any value w ∈ ]0, 1[, and is minimal for qi = 1 and θi = 0 for

all aircraft i ∈ A.

Proof. Let ci(qi, θi) = wθ2
i + (1 − w)(1 − qi)2 be the cost function of aircraft i ∈ A.

The first-order optimality conditions of ci(θi, qi) are:

∂ci(θi, qi)

∂qi
= (2qi − 2)(1− w) = 0

∂ci(θi, qi)

∂θi
= 2wθi = 0

Recall that w ∈ ]0, 1[, hence the first-order optimality conditions of this objective

function yield qi = 1 and θi = 0 for all aircraft i ∈ A.

Computing the Hessian matrix H of ci(qi, θi) yields:

H =

[
2(1− w) 0

0 2w

]
. (3.14)

Observe that H is symmetric. Let c ∈ R2 be a vector with entries c1 and c2.

c>Hc = 2(1− w)c2
1 + 2wc2

2 ≥ 0. (3.15)

Thus, H is positive semi-definite and the 2D objective function (3.13) is convex.
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3.2 Non-convex Quadratic Formulation

Based on the constraint 3.7, the model established by Cafieri and Rey (2017) can be

replicated and it requires a single binary variable to define the disjunction presented

in constraint 3.7. This can be defined as:

(v2
ij,x(ŷ

2
ij − d2) + v2

ij,y(x̂
2
ij − d2)− 2vij,xvij,yx̂ij ŷij)(sij) ≥ 0, ∀(i, j) ∈ P , (3.16a)

−(vij,xx̂ij + vij,yŷij)(2sij − 1) ≥ 0, ∀(i, j) ∈ P . (3.16b)

This model can be characterised by its simplicity and is easily understood. Due

to non-linear constraints and the presence of trigonometric functions in the equation

of motion, this model cannot be solved by commercial linear solvers and it cannot be

used to solve larger instances in a reasonable amount of time. This formulation can

be summarised as:

Model 1. Non-convex 2D Formulation using Non-Linear Separation Conditions

Minimise
∑
i∈A

wθ2
i + (1− w)(1− qi)2,

Subject to:

vij,x = qiv̂i cos
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
, ∀(i, j) ∈ P ,

vij,y = qiv̂i sin
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
, ∀(i, j) ∈ P ,

(v2
ij,x(ŷ

2
ij − d2) + v2

ij,y(x̂
2
ij − d2)− 2vij,xvij,yx̂ij ŷij)(sij) ≥ 0, ∀(i, j) ∈ P ,

− (vij,xx̂ij + vij,yŷij)(2sij − 1) ≥ 0, ∀(i, j) ∈ P ,

q
i
≤ qi ≤ qi, ∀i ∈ A,

θi ≤ θi ≤ θi, ∀i ∈ A,

vij,x, vij,y ∈ Bij, ∀(i, j) ∈ P ,

sij ∈ {0, 1}, ∀(i, j) ∈ P .

3.3 Non-convex Disjunctive Formulation

To linearise the separation condition (3.6) with regards to variables vij,x and vij,y,

the same approach proposed by Rey and Hijazi (2017) is applied and the main steps

are recalled hereafter. Observe that the solutions of the equation gij(vij,x, vij,y) = 0

can be identified by alternatively fixing variable vij,x and vij,y, and calculating the
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roots of the resulting single-variable quadratic equations. Isolating each variable, the

discriminants can be obtained and expressed as:{
∆vij,x = 4d2v2

ij,y(x̂
2
ij + ŷ2

ij − d2),

∆vij,y = 4d2v2
ij,x(x̂

2
ij + ŷ2

ij − d2).
(3.18)

Assuming aircraft are initially separated, then x̂2
ij + ŷ2

ij − d2 ≥ 0 holds and thus

the discriminants are positive and the roots of equation gij(vij,x, vij,y) = 0 are the

lines defined by the system of equations:

(ŷ2
ij − d2)vij,x − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)vij,y = 0, (3.19a)

(ŷ2
ij − d2)vij,x − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)vij,y = 0, (3.19b)

(x̂2
ij − d2)vij,y − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)vij,x = 0, (3.19c)

(x̂2
ij − d2)vij,y − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)vij,x = 0. (3.19d)

Let us emphasise that if all coefficients in (3.19a)-(3.19d) are non-zero, then (3.19a)

is identical to (3.19c) and (3.19b) is identical to (3.19d). In addition, note that::

x̂ij ŷij ± d
√
x̂2
ij + ŷ2

ij − d2 = 0,

⇒ d2(x̂2
ij + ŷ2

ij − d2) = x̂2
ij ŷ

2
ij,

⇔ x̂2
ij ŷ

2
ij − d2(x̂2

ij + ŷ2
ij − d2) = 0,

⇔ (x̂2
ij − d2)(ŷ2

ij − d2) = 0.

Hence, Eqs. (3.19a), (3.19b), (3.19c) and (3.19d) define two lines, denoted R1 and

R2, in the plane {(vij,x, vij,y) ∈ R2} and the sign of gij(vij,x, vij,y) can be characterised

based on the position of (vij,x, vij,y) relative to these lines. Recall that according to Eq.

(3.4), the sign of the dot product p̂ij · vij indicates aircraft convergence or divergence.

Let (P ) be the equation of the line corresponding to the dot product p̂ij · vij.

vij,xx̂ij + vij,yŷij = 0. (P )

The line defined by (P ) splits the plane {(vij,x, vij,y) ∈ R2} in two half-planes, each

of which representing converging and diverging trajectories, respectively. This is il-

lustrated in Figure 3.2 which depicts a two-aircraft conflict in the plane {(vij,x, vij,y) ∈
R2}. The sign of gij(vij,x, vij,y) is shown by the + and - green symbols and the hashed

pink region corresponds to gij(vij,x, vij,y) ≥ 0. The hashed green half-plane delimited

by (P ) represents diverging trajectories, i.e. tmin
ij (vij,x, vij,y) ≤ 0.
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Figure 3.2: Illustration of a two-aircraft conflict in the plane {(vij,x, vij,y) ∈ R2}.
The sign of gij(vij,x, vij,y) is shown by the + and - green symbols and the hashed pink
region represents gij(vij,x, vij,y) ≥ 0. The hashed green half-plane represents diverging
trajectories, i.e. tmin

ij (vij,x, vij,y) ≤ 0. The dashed blue lines R1 and R2 correspond to
the linear equations that are the roots of gij(vij,x, vij,y) = 0.

Consider the line normal to (P ), denoted (N):

vij,yx̂ij − vij,xŷij = 0. (N)

Recall that any point (vij,x, vij,y) such that tmin
ij ≤ 0 or gij(vij,x, vij,y) ≥ 0 corre-

sponds to a pair of conflict-free trajectories. Hence, the conflict-free region is non-

convex and is represented by the union of the green and pink hashed regions in

Figure 3.2. Reciprocally, the conflict region, corresponding to conflicting trajectories

is convex and represented by the non-hashed region in Figure 3.2. An equivalent

expression of Eq. (3.19) was proposed by Frazzoli et al. (2001) which observed that

the set of conflict-free trajectories could be characterised by the union of two half-

planes. However, the authors did not expand the formulation leading to the linear

separation constraints (3.20) and (3.21) which require only a single binary variable

for each disjunction.

Through Lemmas 1 and 2, it is shown that (N) is a bisector of the angle formed by

lines R1 and R2 in the conflict zone (gij(vij,x, vij,y) ≤ 0) and can be used to generate
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Figure 3.3: Illustration of a two-aircraft conflict in the plane {(vij,x, vij,y) ∈ R2}
highlighting the disjunctive convex regions: zij = 1 correspond to the region hashed
in yellow and zij = 0 corresponds to the region hashed in blue. The dashed blue lines
corresponds to the linear equations R1 and R2 that are the roots of gij(vij,x, vij,y) = 0.

two disjunctive but convex conflict-free regions.

Lemma 1. The lines (P ) and (N) are bisectors of the angles formed by the two lines

R1 and R2 representing the solutions of gij(vij,x, vij,y) = 0.

Proof. First, it is showed that (N) is the bisector of one of the two angles formed

between R1 and R2 (see Figure 3.3). Note that the slope of the plane defined by (N)

is
ŷij
x̂ij

. Without any loss of generality, assume that |x̂ij| > d (the case |x̂ij| ≤ d can be

treated similarly).

Let r1 =
x̂ij ŷij+d

√
x̂2ij+ŷ2ij−d2

x̂2ij−d2
and r2 =

x̂ij ŷij−d
√
x̂2ij+ŷ2ij−d2

x̂2ij−d2
be the slopes of the

lines defined by (3.19c) and (3.19d). The angle of the bisector of these lines is

µ = 1
2
(arctan r1 + arctan r2) and its slope is:

tan(µ) = tan

(
1

2
(arctan(r1) + arctan(r2))

)
= tan

(
1

2

(
arctan

(
r1 + r2

1− r1r2

)))
.

46



If r1r2 = 1, recall that limX→±∞ arctan(X) = ±π/2, thus tan(µ) = tan
(

1
2
±π
2

)
=

tan(±π/4) = ±1. In addition, r1r2 =
ŷ2ij−d2

x̂2ij−d2
, hence r1r2 = 1 ⇔ ŷ2

ij = x̂2
ij and the

slope of the plane defined by (N) is ±1.

Assume now r1r2 6= 1, using the half-angle formula, tan(µ) can be written as:

tan(µ) =

√
1 +

(
r1+r2
1−r1r2

)2

− 1(
r1+r2
1−r1r2

) .

Since r1+r2
1−r1r2 =

2x̂ij ŷij
x̂2ij−ŷ2ij

, this gives:

tan(µ) =

√
(x̂2

ij − ŷ2
ij)

2 + 4x̂ij ŷij − (x̂2
ij − ŷ2

ij)

2x̂ij ŷij
=
ŷij
x̂ij
.

Since (P ) is orthogonal to (N), the line (P ) is the bisector of the other angle between

the two linear equations represented by R1 and R2.

Lemma 2. gij(vij,x, vij,y) ≤ 0 for all points (vij,x, vij,y) of the normal line (N).

Proof. Any point (vij,x, vij,y) of (N) verifies vij,y =
ŷij
x̂ij
vij,x. Replacing vij,y in (3.6)

yields:

gij

(
vij,x,

ŷij
x̂ij
vij,x

)
= v2

ij,x(ŷ
2
ij − d2) +

( ŷij
x̂ij
vij,x

)2

(x̂2
ij − d2)

− vij,x
ŷij
x̂ij
vij,x(2x̂ij ŷij).

Simplifying the previous expression yields:

gij

(
vij,x,

ŷij
x̂ij
vij,x

)
= −d2v2

ij,x

(
1 +

( ŷij
x̂ij

)2)
≤ 0.

Lemmas 1 and 2 assert that (N) can be used to split the conflict-free region into

two convex but disjunctive regions. To model this disjunction, the variable zij ∈ {0, 1}
is defined as:

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ P , (3.20a)

vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ P . (3.20b)

In each convex sub-region, the lines defined by (3.19a)-(3.19d) delineate the conflict-

free region. The expressions of these lines depends on aircraft initial positions, i.e. x̂ij,
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ŷij. Recall that R1 and R2 are denoted as the equation of these lines. Integer-linear

separation conditions with regards to aircraft velocity components can be derived as

follows:

vij,yγ
l
ij − vij,xφlij ≤ 0, if zij = 1, ∀(i, j) ∈ P , (3.21a)

vij,yγ
u
ij − vij,xφuij ≥ 0, if zij = 0, ∀(i, j) ∈ P , (3.21b)

where γlij, φ
l
ij and γuij, φ

u
ij are coefficients of the lines (3.19a)-(3.19d) corresponding to

the roots of gij(vij,x, vij,y) = 0. The proposed linear disjunction is illustrated in Figure

3.3 which depicts the resulting convex sub-regions corresponding the disjunction zij ∈
{0, 1} for a two-aircraft conflict. This leads to the following result.

Theorem 1. The disjunctive linear separation conditions (3.20)-(3.21) fully charac-

terise the set of aircraft pairwise conflict-free trajectories as given by Eq. (3.1)

Proof. This statement is proved by showing that the conditions (3.20)-(3.21) are

equivalent to the non-linear conditions (3.7) which are well-known to be equivalent

to Eq. (3.1). As shown by Lemmas 1 and 2, the line (N) splits the (vij,x, vij,y)-plane

into two disjunctive regions and the region in which lies the normal line (N) consists

of conflicting trajectories. Thus, both half-planes induced by the normal plane (N)

contain sub-regions corresponding to conflict-free and conflicting trajectories, and

Eq. (3.20) defines variables zij accordingly. Consider the half-plane corresponding to

zij = 1 (see Figure 3.3). This half-plane can be further split into two convex sub-

regions and inequality (3.21a) characterises convex conflict-free region in which all

pairs of aircraft trajectories verify gij(vij,x, vij,y) ≥ 0 or tmin
ij ≤ 0. The same reasoning

applies to the half-plane corresponding to zij = 0 if substituting (3.21a) by (3.21b).

Hence, all pairs of future conflict-free trajectories for aircraft i and j are characterised

by the separation conditions (3.20)-(3.21).

Theorem 1 asserts that the disjunctive separation conditions (3.20)-(3.21) is equiv-

alent to the definition of the non-linear separation conditions. Further, these disjunc-

tive separation conditions are linear with regards to aircraft velocity variables vij,x

and vij,y and require a single binary variable per pair of aircraft. This is expected

to improve on the so-called shadow separation conditions which are also linear with

regards to aircraft velocity variables, but require four binary variables per pair of

aircraft (Pallottino et al., 2002; Alonso-Ayuso et al., 2011, 2016). The remaining of

this section discusses the aircraft trajectory control model and the objective functions
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of the proposed formulations.

Model 2. Non-convex 2D Formulation using Disjunctive Separation Conditions

Minimise
∑
i∈A

wθ2
i + (1− w)(1− qi)2,

Subject to:

vij,x = qiv̂i cos
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
, ∀(i, j) ∈ P ,

vij,y = qiv̂i sin
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
, ∀(i, j) ∈ P ,

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ P ,

vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ P ,

vij,yγ
l
ij − vij,xφlij ≤ 0, if zij = 1, ∀(i, j) ∈ P ,

vij,yγ
u
ij − vij,xφuij ≥ 0, if zij = 0, ∀(i, j) ∈ P ,

q
i
≤ qi ≤ qi, ∀i ∈ A,

θi ≤ θi ≤ θi, ∀i ∈ A,

vij,x, vij,y ∈ Bij, ∀(i, j) ∈ P ,

zij ∈ {0, 1}, ∀(i, j) ∈ P .

3.4 Non-convex Shadow Formulation

Another state-of-the-art formulation was initially proposed by Bilimoria (2000) and

further discussed by Pallottino et al. (2002) where the authors created a model based

on trigonometric projections of the conflict circle of two aircraft. The formulation is

based on the projection of the circumference corresponding to one aircraft into the

trajectory of the other, called shadow. In this formulation, a conflict occurs if two

or more aircraft have an intersection between their respective shadows. One way to

calculate those shadows segments is via the angle formed by each pair of aircraft given

certain manoeuvres which are defined as lij and rij for (i, j) ∈ P and can be visualised

in Figure 3.4. But first, it is required to define the angles wij and αij. In the figure,

the segment p̂i and p̂j represent the initial trajectory vector. The resulting segment

obtained by joining those vector has a slope equal to wij. In this same picture, the

segment formed by the relative distance between p̂i and p̂j and the safety distance d

can be used to calculate αij. Hence,
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Figure 3.4: Geometrical analysis of conflict between two aircraft based on relative
velocity

tan(wij) =
ŷij
x̂ij

(3.23a)

tan(αij) =
d√

x̂2
ij + ŷ2

ij − d2
(3.24a)

where d is the minimal separation between pairs of aircraft and dij is the initial

distance between a pair of aircraft. Based on those definitions, the angle lij and rij

can be calculated as:

lij = wij + αij, (3.25a)

rij = wij − αij. (3.25b)

Finally, no conflicts occur if:
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vij,y
vij,x

≥ tan(lij) ∀(i, j) ∈ P , (3.26a)

or
vij,y
vij,x

≤ tan(rij) ∀(i, j) ∈ P . (3.26b)

Given that the sign of vij,x changes the value of the tan function, this results

in four cases and to check the existence of conflicts those four conditions need to

be verified. Let σ1
ij, σ

2
ij, σ

3
ij, σ

4
ij ∈ {0, 1} be binary decision variables for all aircraft

pair (i, j) ∈ P . The separation constraints for this so-called shadow formulation are

defined as:

− vij,x ≤M s
ij(1− σ1

ij), ∀(i, j) ∈ P , (3.27a)

vij,x tan(lij)− vij,y ≤ (1− σ1
ij)M

tanl
ij , ∀(i, j) ∈ P , (3.27b)

− vij,x ≤M s
ij(1− σ2

ij), ∀(i, j) ∈ P , (3.27c)

− vij,x tan(rij) + vij,y ≤ (1− σ2
ij)M

tanr
ij , ∀(i, j) ∈ P , (3.27d)

vij,x ≤M s
ij(1− σ3

ij), ∀(i, j) ∈ P , (3.27e)

− vij,x tan(lij) + vij,y ≤ (1− σ3
ij)M

tanl
ij , ∀(i, j) ∈ P , (3.27f)

vij,x ≤M s
ij(1− σ4

ij), ∀(i, j) ∈ P , (3.27g)

vij,x tan(rij)− vij,y ≤ (1− σ4
ij)M

tanr
ij , ∀(i, j) ∈ P , (3.27h)

σ1
ij + σ2

ij + σ3
ij + σ4

ij ≥ 1, ∀(i, j) ∈ P , (3.27i)

where M tanr
ij and M tanl

ij are big-M constants. This formulation was further imple-

mented and expanded for speed and altitude control by Alonso-Ayuso et al. (2011)

and to incorporate heading control in Alonso-Ayuso et al. (2016). The main con-

tribution of this model is the way the author defined their separation condition as

described in details in Pallottino et al. (2002).

The non-convex formulation for the 2D ACRP based on the shadow separation

conditions can be summarised as follows:

Model 3. Non-convex 2D Formulation using Shadow Separation Conditions

Minimise
∑
i∈A

wθ2
i + (1− w)(1− qi)2,

Subject to:
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vij,x = qiv̂i cos
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
, ∀(i, j) ∈ P ,

vij,y = qiv̂i sin
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
, ∀(i, j) ∈ P ,

− vij,x ≤M s
ij(1− σ1

ij), ∀(i, j) ∈ PS,

vij,x tan(lij)− vij,y ≤ (1− σ1
ij)M

tanl
ij , ∀(i, j) ∈ P ,

− vij,x ≤M s
ij(1− σ2

ij), ∀(i, j) ∈ P ,

− vij,x tan(rij) + vij,y ≤ (1− σ2
ij)M

tanr
ij , ∀(i, j) ∈ P ,

vij,x ≤M s
ij(1− σ3

ij), ∀(i, j) ∈ P ,

− vij,x tan(lij) + vij,y ≤ (1− σ3
ij)M

tanl
ij , ∀(i, j) ∈ P ,

vij,x ≤M s
ij(1− σ4

ij), ∀(i, j) ∈ P ,

vij,x tan(rij)− vij,y ≤ (1− σ4
ij)M

tanr
ij , ∀(i, j) ∈ P ,

σ1
ij + σ2

ij + σ3
ij + σ4

ij ≥ 1, ∀(i, j) ∈ P ,

q
i
≤ qi ≤ qi, ∀i ∈ A,

θi ≤ θi ≤ θi, ∀i ∈ A,

vij,x, vij,y ∈ Bij, ∀(i, j) ∈ P ,

σ1
ij, σ

2
ij, σ

3
ij, σ

4
ij ∈ {0, 1}, ∀(i, j) ∈ P .

3.5 Equivalence Between Formulations

Models 1 and 2 have the same derivation, whereas the second corresponds to the lin-

earisation of the non-linear separation conditions presented in the first model. There-

fore, the equivalence between those two models is easily explained.

However, although Models 2 and 3 are initially different, because their basic

premises and constraint format, as proved by Pelegŕın and d’Ambrosio (2020), both

present the same constraints that are only represented differently.

Recalling that the angles lij and rij are used to verify conflicts in Model 3. Those

angles are based, among other parameters, on the value of αij and βij. In addition,

recalling the equation in 3.26, the tangents of such angles are used in the separation

conditions. Calculating those values:
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tan(wij + αij) =
tan(wij) + tan(αij)

1− tan(wij) tan(αij)
=
ŷij
√
x̂2
ij + ŷ2

ij − d2 + dx̂ij

x̂ij
√
x̂2
ij + ŷ2

ij − d2 − dŷij
(3.29a)

tan(wij − αij) =
tan(wij)− tan(αij)

1− tan(wij) tan(αij)
=
ŷij
√
x̂2
ij + ŷ2

ij − d2 − dx̂ij

x̂ij
√
x̂2
ij + ŷ2

ij − d2 + dŷij
(3.29b)

Those expressions can be further simplified by multiplying both numerator and

denominator by the ”conjugate” of their respective denominator. The following ex-

pression is obtained:

tan(wij + αij) =
x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2

x̂2
ij − d2

(3.29ca)

tan(wij − αij) =
x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2

x̂2
ij − d2

(3.29cb)

Now replacing this equation in (3.26):

vij,y
vij,x

≥
x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2

x̂2
ij − d2

→ (x̂2
ij − d2)vij,y − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)vij,x ≥ 0,

(3.29da)

vij,y
vij,x

≥
x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2

x̂2
ij − d2

→ (x̂2
ij − d2)vij,y − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)vij,x ≥ 0,

(3.29db)

where those constraints are exactly the same as 3.19c and 3.19d presented in Section

3.3. The remaining constraint 3.19a and 3.19b can be obtained via the same process

with the difference that 3.29 should be multiplied by the ”conjugate” of the numerator

instead.

This comes to show that the combinatorial nature of this problem, the different

formulation can look completely apart from a first glance but represent the same ap-

proach in close analysis. However, it is important to emphasise that the disjunctive

formulation requires a single binary variable as a single representation of the disjunc-

tion in its feasible region while the shadow formulation requires four different binary

variables to represent all four possibilities.
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3.6 Data For Numerical Experiments

The performance of the proposed mixed-integer formulations and algorithms is tested

using four benchmark problems from the literature: the Circle Problem (CP), the

Flow Problem (FP), the Grid Problem (GP) and the Random Circle Problem (RCP).

The four types of benchmarking instances are illustrated in Figure 3.5. For all in-

stances, it is assumed that the aircraft obey uniform motion laws and there is no

randomness effect. Their trajectory is traceable throughout the whole process. In

addition, they represent enclose air space, which means that there are not additional

aircraft leaving or entering that region.

The CP consists of a set of aircraft uniformly positioned on the circle, heading

towards its centre. Aircraft speeds are assumed to be identical, hence the problem

is highly symmetric (see Fig. 3.5a). The CP is notoriously difficult due to the

geometry of aircraft initial configuration and it has been widely used for benchmarking

CD&R algorithms in the literature (Durand and Alliot, 2009; Rey et al., 2015; Cafieri

and Omheni, 2017; Cafieri and Rey, 2017; Rey and Hijazi, 2017). Those instances

represent a more ideal scenario where all the aircraft are believed to move at the same

initial speed, therefore leading to conflicts in the centre of the circle. In those cases,

the number of conflicts can be easily pre-calculated based on the number of aircraft

in the instances. The main benefit of this instance is that they provide a significant

number of conflicts in each instance, which is ideal to test whether the models are

robust and scalable enough. However, the main drawback is their symmetry which

does not represent real air traffic scenarios.

To break the symmetry of CP benchmarking instances, Vanaret et al. (2012)

introduced the RCP which builds on the same framework, but aircraft initial speeds

and headings are randomly deviated within specified ranges to create randomised

instances with less structure (see Figure 3.5b). CP and RCP instances are named

CP-N and RCP-N, respectively, where N is the total number of aircraft. Different

from the CP instances, RCP instances provide a more realistic scenario where aircraft

have more autonomy in which direction that will take. Even though those instances

have more aircraft, the number of conflicts is not fixed and is normally small compared

to their density, which reflects the real scenarios. Because of their random aspects,

100 unique copies of each of those instances are tested.

Both CP and RCP instances do not account for the sequences of aircraft which is a

very common phenomenon due to the way airways are organised and the consequently
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queuing of aircraft. Lehouillier et al. (2017) formally introduced two additional struc-

tured problems which aim to represent more realistic air traffic configurations: the

FP and the GP. The FP consists of two streams of aircraft separated by an angle

α and anchored on the circumference of a circle. In each stream, aircraft are sepa-

rated by at least 5 NM (15 NM is used in these experiments) from each other (see

Figure 3.5c). The GP consists of two FP instances separated by 15 NM diagonally

(see Figure 3.5d). FP and GP instances are named FP-N and GP-N, respectively,

where N denotes the number of aircraft per stream. In these instances, the initial

distance between aircraft (or frequency) can be manipulated and therefore used to

reproduce any type of scenario and therefore cover the most common occurrences in

real airspace applications.

In all experiments, a circle of radius 200NM is used. For CP, FP and GP instances,

all aircraft have an initial speed of 500 NM/h. For RCP instances, aircraft initial

speeds are randomly chosen in the range 486-594 NM/h and their initial headings are

deviated from a radial trajectory (i.e. towards the centre of the circle) by adding a

randomly chosen angle between −π
6

and +π
6
. For FP and GP instances, the values for

α are α = π
6

and α = π
2
, respectively, as proposed by Lehouillier et al. (2017). Those

four sets of instances represent collectively the most used instances to test ATC

models. They represent a viable replacement of real data, due to the difficulty in

acquiring real information, which is mostly classified or limited to specific geographic

regions. Nevertheless, the main objective is to extensively study and analyse the

behaviour of the models in extreme circumstances.

3.7 Numerical Results

In this section, the three classical formulations are compared using the instances

presented in the previous section. Report of numerical results for problems with a

subliminal speed control range of [−6%,+3%] (Bonini et al., 2009) and the heading

angle range of [−π
6
, π

6
] as commonly used in the literature (Cafieri and Omheni, 2017;

Rey and Hijazi, 2017) are presented. As setting conditions, it is assumed that there

is only one flight level available and all aircraft is at that level. For the parameter w,

it is used w = 0.5 to guarantee balance both types of manoeuvres.

For this testing, the same formulation is used for all models with the difference of

the separation conditions that is specific for each model. All models are implemented

using Python on a personal computer with 16 GB of RAM and an Intel i7 processor

at 2.9GHz. The MIQPs and MIQCPs are solved with AMPL (Fourer et al. (1987))
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(a) CP-7: circle problem with 7 aircraft
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(b) RCP-10: random circle problem with 10
aircraft

(c) FP-5: flow problem with 10 aircraft and
α = π

6

(d) GP-8: grid problem with 32 aircraft and
α = π

2

Figure 3.5: Example of 2D benchmarking instances for the Circle Problem (CP),
Random Circle Problem (RCP), Flow Problem (FP) and Grid Problem (GP).

using default options. For reproducibility purposes, all formulations and instances

used are available at https://github.com/acrp-lib/acrp-lib.

To report the performances of the proposed formulations on 2D ACRPs, four

groups of numerical experiments are used, one per instance type. The results for 5

CP instances ranging from 4 to 8 aircraft are presented in Table 3.1. Results for FP

and GP instances are reported in Tables 3.2-3.3, respectively, for 5 instances with 6

to 14 aircraft per stream and 3 instances with 12 to 28 aircraft. Results for RCP

instances are reported in Tables 3.4 and 3.5 for five instance sizes with 10 and 20 and
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the average performance along with the standard deviation in parenthesis are also

reported. A time limit of 10 minutes was set for all instances.

Each row in the results tables represents an instance. The header of the results

tables is presented from left to right. The left-most column, Instance, identifies the

instance; |A| is the number of aircraft and nc is the number of the conflicts. The

next three sections correspond to the performance of three classical formulations: the

first one corresponds to Model 1 using the non-linear formulation for the separation

conditions and the header are: LB and UB are the lower and upper bound; Gap is

the optimality gap in percent calculated using LB and UB; Time is the total runtime

in seconds and nt represents whether the instance could not be solved within the

time limit (10 minutes), i.e. reports instances that time-out. The second section

corresponds to the same value but for the Model 2 using the disjunctive formulation.

The third section is the results from the Model 3 using the shadow formulation.

Non-convex Quadratic Non-convex Disjunctive Non-convex Shadow

Instance |A| nc UB Time nt UB Time nt UB Time nt

CP-4 4 6 6.25e-4 9.59 no 6.25e-4 1.21 no 6.24e-4 2.27 no
CP-5 5 10 1.13e-3 600 yes 1.13e-3 5.27 no 1.13e-3 10.7 no
CP-6 6 15 1.91e-3 600 yes 1.81e-3 15.7 no 1.80e-3 16.1 no
CP-7 7 21 5.12e-3 600 yes 2.37e-3 42.5 no 2.37e-3 76.1 no
CP-8 8 28 4.16e-3 600 yes 3.46e-3 293 no 3.46e-3 600 yes

Table 3.1: Summary of Results for 2D CP instances with a speed control range of
[−6%,+3%] and a heading control range of [−30◦,+30◦]. All runtimes (Time) are
reported in seconds. The optimality gaps (Gap) are the proportion of time-outs (nt)
are reported in percentage.

The experiments on the CP instances (Table 3.1 show that the upper bound

increases with the number of aircraft. Using both disjunctive and shadow formulation,

instances up to 7 aircraft were solved within the available time limit. For the non-

linear formulation, it is observed that instances with more than 5 aircraft could not

be solved. For all three formulations, the runtime increases exponentially with the

number of aircraft and as the number of conflict increases. For the non-linear model,

the only instances that can be solved are CP-5 in less than 10s. For disjunctive,

all instances can be solved up to roughly 300s. For the shadow formulation, all

instances except CP-8 (out of the five tested) could be solved within the time limit

and the runtime is up to 76s. However, for all instances that could be solved by

both disjunctive and shadow, the former outperforms the latter in all instances by an

average of 62.6%.
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Non-convex Quadratic Non-convex Disjunctive Non-convex Shadow

Instance |A| nc UB Time nt UB Time nt UB Time nt

FP-3 6 3 3.90e-4 600 yes 3.42e-4 2.41 no 3.39e-4 7.03 no
FP-4 8 4 8.62e-4 600 yes 8.15e-4 122 no 8.14e-4 600 yes
FP-5 10 5 1.44e-3 600 yes 1.13e-3 600 yes 1.13e-3 600 yes
FP-6 12 6 3.70e-1 600 yes 1.53e-3 600 yes 3.40e-2 600 yes
FP-7 14 7 4.79e-1 600 yes 2.05e-3 600 yes 3.85e-1 600 yes

Table 3.2: Summary of Results for 2D FP instances with a speed control range of
[−6%,+3%] and a heading control range of [−30◦,+30◦]. All runtimes (Time) are
reported in seconds. The optimality gaps (Gap) are the proportion of time-outs (nt)
are reported in percentage.

In Table 3.2, the results from FP instances are presented. In a similar manner as

in the CP results, the upper bound increases with the number of the aircraft as the

runtime. However, given the difficulty and density of those instances, the results show

that those formulations cannot solve the majority of the instances tested. For the non-

linear formulation, all the instances could not be solved within 10 minutes of the time

limit. However, by comparison with the remaining formulations, the optimality gap

is relatively small. The disjunctive formulation performs the best between the three

tested and it can solve 2 out of the 5 tested instances within 2 minutes. Lastly, the

shadow formulation can solve only 1 instance (FP-3) within the time limit imposed.

Non-convex Quadratic Non-convex Disjunctive Non-convex Shadow

Instance |A| nc UB Time nt UB Time nt UB Time nt

GP-3 12 8 8.49e-4 600 yes 8.25e-4 600 yes 8.34e-4 600 yes
GP-4 16 16 3.18e-2 600 yes 9.17e-4 600 yes 9.17e-4 600 yes
GP-5 20 20 2.82e-2 600 yes 1.29e-3 600 yes 1.29e-3 600 yes
GP-6 24 24 1.20e+1 600 yes 1.20e+1 600 yes 1.20e+1 600 yes
GP-7 28 28 1.40e+1 600 yes 1.40e+1 600 yes 1.40e+1 600 yes

Table 3.3: Summary of Results for 2D GP instances with a speed control range of
[−6%,+3%] and a heading control range of [−30◦,+30◦]. All runtimes (Time) are
reported in seconds. The optimality gaps (Gap) are the proportion of time-outs (nt)
are reported in percentage.

For GP instances, the results in Table 3.3 show that all three formulations cannot

solve any of the five instances tested. Similarly as expressed in the CP instances, there

is no correlation between the number of aircraft and number of conflict and the former

is calculated in pre-processing. As in previous results, the upper bound increases

proportionally to the number of aircraft and the number of conflict per instance. For
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smaller instances, the best possible upper bound found within the time limit is the

same for disjunctive and shadow formulation. However, it is slightly larger for the

non-linear formulation, especially for GP-4. However, for larger instances (GP-5 and

above) all the formulation found the same upper bound after 10 minutes of runtime.

Non-convex Quadratic Non-convex Disjunctive Non-convex Shadow

Instance |A| nc UB Time nt UB Time nt UB Time nt

RCP-10-1 10 6 2.78e-4 600 yes 2.13e-4 15.9 no 2.12e-4 39.7 no
RCP-10-2 10 10 3.28e-5 600 yes 3.45e-5 13.6 no 3.22e-5 37.6 no
RCP-10-3 10 15 1.54e-4 600 yes 1.54e-4 14.5 no 1.54e-4 33.2 no
RCP-10-4 10 21 7.53e-6 101 no 5.53e-6 14.1 no 7.23e-6 23.1 no
RCP-10-5 10 28 1.43e-4 600 yes 6.31e-5 17.4 no 5.73e-5 38.0 no

Table 3.4: Summary of Results for 2D RCP-10 instances with a speed control range
of [−6%,+3%] and a heading control range of [−30◦,+30◦]. All runtimes (Time) are
reported in seconds. The optimality gaps (Gap) are the proportion of time-outs (nt)
are reported in percentage.

In RCP-10, the result for different versions of the same instance generated by its

randomness nature is reported. In these results, it is observed that the number of

conflicts is not proportional to number to aircraft (differently from CP instances) and

it is calculated separately. In average, it is no more than 4 conflicts per instances.

The runtime is roughly similar for all instances as the value for the upper bound.

The results also reveal that only one instance (RCP-10-4) could be solved by the

non-linear formulation and it took less than 2 minutes. Using the disjunctive formu-

lation, all instances were solved in less than 20s while the shadow formulation took

approximately the double of this amount on average. For disjunctive formulation,

the runtime is on average around 15s seconds with RCP-10-2 taking only 13.6s while

RCP-10-5 taking up to 17.4s. For the shadow formulation, the average is 35s (133%

higher than disjunctive), with RCP-10-4 as the quickest instances to be solved in only

23s while RCP-10-1 took almost 40s.

Table 3.5 reveals the results for RCP instances with 20 aircraft. In this table,

the results for different versions of the same instance generated by its randomness

nature are reported and in this case, it is with 20 aircraft per instances. In these

results, it is observed that the number of conflicts is not proportional to number to

aircraft (similarly as in RCP-10 instances) and it is calculated separately. In average,

it is no more than 8 conflicts per instances. In addition, it can be noticed that for

all instance, all three models could not find a solution within the time limit. For
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Non-convex Quadratic Non-convex Disjunctive Non-convex Shadow

Instance |A| nc UB Time nt UB Time nt UB Time nt

RCP-20-1 4 6 2.04e-2 600 yes 2.04e-2 600 yes 2.04e-2 600 yes
RCP-20-2 5 10 - 600 - - 600 - - 600 -
RCP-20-3 6 15 - 600 - - 600 - - 600 -
RCP-20-4 7 21 - 600 - - 600 - - 600 -
RCP-20-5 8 28 - 600 - - 600 - - 600 -

Table 3.5: Summary of Results for 2D RCP-20 instances with a speed control range
of [−6%,+3%] and a heading control range of [−30◦,+30◦]. All runtimes (Time) are
reported in seconds. The optimality gaps (Gap) are the proportion of time-outs (nt)
are reported in percentage.

RCP-20-1, all model found the same upper bound, but the time limit was reached.

For the four remaining instances, an upper bound could not be found.

3.8 Summary of Findings

In this chapter, the three classic formulations to solve the aircraft conflict resolution

problem were presented and reviewed. It started by defining the equation of motions

that are necessary to establish such models. Considering the two-dimensional prob-

lem with continuous speed and heading control, the three formulations are formally

revised. It is also showed how the non-linear formulation can be linearised and that

is the premise to obtain the disjunctive separation constraints. Further, the shadow

separation constraint is revised and reproducing the proof shown by Pelegŕın and

d’Ambrosio (2020), it is showed that the disjunctive and the shadow formulation are

equivalent. This solidifies the fact that all formulations are, at their core, equivalent.

The difference relies upon the non-linearity with respect to the number of binaries

variables required to implement and the non-linear components in the separation

constraints.

The data necessary to test those three classical formulations were also introduced

and it is composed of four different sets of instances: Circle Problem (CP), Flow

Problem (FP), Grid Problem (GP) and Random Circle Problem (RCP). As an illus-

tration, a smaller subset of those instances was used as a test. The performance of

those models highlights the scalability issues that exist in those formulations given

the trigonometric and quadratic constraints present in those models. In addition, the

results in Section 3.7 show that the CP instances are the easiest to solve using dis-

junctive and shadow. However, due to the number of conflicts, the runtime increases
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exponentially, which will ultimately hinder their performance. For FP instances, only

disjunctive can solve more than one instance while GP instances cannot be solved by

any of those formulations. These results highlight the difficulty of such format of in-

stances (aircraft lineup in a stream), especially when comparing the disjunctive and

shadow formulations. Finally, for RCP instances with 10 aircraft, the non-linear for-

mulation cannot handle instance with such number of aircraft while the disjunctive

and shadow formulation shows competitive results, with the former outperforming

the latter where the runtime is reduced by half.

This could be easily justified by the number of binary variables used in each

formulation. Nevertheless, due to the amount of aircraft per instances and the actual

number of conflicts, the runtime for those instances is quite larger and it is expected

that increasing the number of aircraft can cause violation of runtime limit. This is

further evidenced in the results for RCP instances with 20 aircraft, that, even though

many instances have a relatively small number of conflicts (in comparison to CP-

7), a feasible solution cannot be found within 10 limits due to the dimension and

difficulty of such instances. This highlights the fact that such formulations, although

competitive and useful, can be improved. Nevertheless, earlier results show that the

disjunctive model slightly outperforms the remaining formulations.

In the numerical experiments, it is showed the performance of the proposed models

with different separation conditions by testing 5 CP instances, 5 FP instances, 5

GP instances and 5 RCP-10 and RCP-20 instances. The results reveal that the

disjunctive formulation is able to solve 48% of the benchmarking instances compared

to 40% using the shadow formulation and 4% using the non-linear formulation. Upon

examining all instances that were solved by the disjunctive formulation and by the

shadow formulation, it is observed that the former is systematically faster in all

instances as well as than the non-linear formulation. For reproducibility purposes,

all formulations and instances are made available at the public repository https:

//github.com/acrp-lib/acrp-lib.

3.9 Conclusion

As presented in this chapter, the basis of aircraft conflict resolution can be sum-

marised in finding optimal routes based on the available manoeuvres regarding a set

of aircraft in a limited airspace. The three state-of-the-art formulations established

in the literature are presented and reported numerical results to illustrate their be-

haviour. The results showed that those formulations cannot be easily implemented.
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Although they serve as a solid standpoint, they have many issues that limit their

usage in terms of scalability and complexity. Between those issues, three main can

be highlighted: 1) non-linearity. Because of the quadratic terms (present in Model

1) and trigonometric terms (in Model 2 and 3, the formulation is non-linear and

non-convex which makes them very difficult to solve on large scale instances. Even

for smaller or medium instances, those models cannot solve many instances, showing

that cases hinder the potential of those formulations. In addition, to solve them,

commercial solver such as Cplex and Gurobi cannot be used. 2) weather events

and measurements errors. In the vast literature review, it is noticeable the lack of

models accounting for randomness. In these formulations and their performance, it is

evident that they are challenging to solve. Therefore, it is expected that incorporat-

ing stochastic creates even more difficult cases to solve. Although there has been an

effective effort into calculating conflict probabilities and how impactful such events

can be in an already packed airspace, there are very fewer models where a solution

algorithm is proposed to ACRP under uncertainty. 3) trajectory recovery. Avoid-

ance is considered as the stage where manoeuvres are performed to avoid potential

conflict. Those manoeuvres will eventually change the aircraft speed, heading and/or

altitude. Although the latter does not interfere with the aircraft destination, speed

and heading angle can cause the final trajectory to be very deviated from its nom-

inal trajectory, which does not solve the original problem. For speed recovery, this

task is slightly simpler, but heading changes represents a significant challenge. This

is an area that has not been extensively covered and integrating trajectory recovery

in mathematical programming approaches is a very challenging task that makes the

problem even harder. Many attempts have been done in these are but there still an

open question to provide a complete solution for such problem.
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Chapter 4

Exact Solution Methods for the
Deterministic Aircraft Conflict
Resolution Problem

As explored in the literature review, automation is key component to perform and as-

sist air traffic control. Higher and more reliable levels of automation can be achieved

by the presence of efficient methods capable of detecting and proposing solutions for

conflicts. Those solutions are required to be quick, free of error and precise. Between

the myriad of solutions available, deterministic methods are a vital solution. In this

chapter, the focus is on the deterministic ACRP approach, which is the version of

the aircraft conflict resolution problem which does not allow any randomness and

all variables are considered deterministic. This novel method is a constraint genera-

tion algorithm for the aircraft conflict resolution problem using the complex number

formulation. It starts by presenting a linear programming to pre-process the set of

aircraft based on the existence of potential conflicts in Section 4.1, followed by review

of the complex number formulation introduced by Rey and Hijazi (2017) in Section

4.2. This formulation is extended to incorporate altitude changes in Section 4.3. Fur-

ther quadratic relaxations are presented in Section 4.4 and the constraint generation

is finally in Section 4.5. A decomposition algorithm comprehending all the steps

above is described in Section 4.6, numerical results are described in Section 4.7 and

the proposed formulation is tested against the convex and linearised version of the

complex number formulation and the shadow formulation. An analytical solution of

the two-aircraft conflict resolution problem is proposed in Section 4.8. In the conclu-

sion, the summary of findings is presented in Section 4.9.1. This chapter is based on

a paper accepted for publication in the European Journal of Operational Research

(Dias et al., 2021).
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Based on the definition of the aircraft conflict resolution problem established in

Chapter 3, it is noticed that those formulations are non-linear and non-convex. In

order to guarantee that feasible solutions are precise, quick and always possible to be

achieved, some adjustments are necessary and more than often those adjustments end

up hindering the quality of such methods. In this chapter addresses the determin-

istic ACRP, which presents a novel solution for the ACRP problem that guarantee

optimality under deterministic conditions. In this, for the two-dimensional (2D) for-

mulation, only speed and heading control are the manoeuvres available, while, For the

2D+FL formulation, it incorporate flight levels (FL) control to manage the altitude

changes.

4.1 Pre-processing

Considering the conflict region of pair of aircraft represents the set of relative velocity

vectors which correspond to a conflict. The relative positions of the relative velocity

box Bij and the conflict region Cij can be examined to determine the existence or not

of a potential conflict. For any pair (i, j) ∈ P , if Bij ∩ Cij = ∅, then aircraft i and

j are separated for any combination of controls; conversely if Bij ⊂ Cij then i and j

cannot be separated via speed or heading control within the assumed control bounds;

otherwise, Bij and Cij intersect but do not completely overlap. This is illustrated

in Figure 3.1 which illustrates the three possible cases. Figure 3.1a illustrates the

case where aircraft i and j are separated for any combination of speed and heading

control— which means that such pairs are conflict-free. Figure 3.1b depicts the

case where Bij and Cij only partially intersect— which means that such pairs are

separable. Last, Figure 3.1c illustrates the case where Bij ⊂ Cij— which means

that such pairs are non-separable. The following propositions provide methods to

efficiently determine if, given controls bounds on speed and heading, a pair of aircraft

is either conflict-free or non-separable.

Proposition 2 (Conflict-free aircraft pair). Consider a pair of aircraft (i, j) ∈ P,

and let LP (i, j) be the feasibility problem defined as:

LP (i, j) :


vij,yγ

l
ij − vij,xφlij ≥ 0,

vij,yγ
u
ij − vij,xφuij ≤ 0,

(vij,x, vij,y) ∈ Bij.
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The pair of aircraft (i, j) is conflict-free for any 2D control if and only if the

feasibility problem LP (i, j) is infeasible.

Proof. For any pair (i, j) ∈ P , the relative velocity box Bij and the conflict region Cij
are both convex sets, and Bij ∩ Cij can be fully characterised by linear inequalities.

The feasible region of the proposed feasibility linear program LP (i, j) represents the

set {(vij,x, vij,y) ∈ Bij ∩ Cij}. If this set is empty, then there exists no pair of feasible

trajectories for aircraft i and j which correspond to a conflict, hence the pair of

aircraft (i, j) ∈ P is conflict-free.

Proposition 3 (Non-separable aircraft pair). Consider a pair of aircraft (i, j) ∈ P.

The pair of aircraft (i, j) is non-separable if and only if each of the four extreme points

of Bij corresponds to a conflict.

Proof. Since the conflict region Cij is the convex, if all four extreme points of Bij
are inside Cij, i.e. each extreme points of E(Bij) corresponds to a conflict, then the

aircraft pair (i, j) ∈ P is non-separable for any controls.

Using Propositions 2 and 3, an efficient pre-processing algorithm to partition can

be designed the set of aircraft pairs P of a 2D ACRP instance into three categories:

conflict-free pairs denoted PF, separable pairs denoted PS and non-separable pairs

PI. To identify conflict-free pairs, LP (i, j) is solved and a pair of aircraft is conflict-

free if and only if the LP is infeasible. Observe that the feasibility linear program

LP (i, j) can be solved by enumerating all extreme points of its feasible region and

tests if this corresponds to a conflict or not. Since the LP (i, j) consists of four

bound constraints and two shared constraints, there is a total of 13 extreme points

to test (the combinations of the bound constraints of a variable can be excluded).

To identify non-separable pairs, let denote E(Bij) the set of extreme points of the

relative velocity box Bij for any pair (i, j) ∈ P and use the separation condition (3.3)

to determine if all extreme points are conflicts or not. This procedure is summarised

in Algorithm 1 (boldface is used to denote vectors). Observe that pairwise variables

and constraints need only to be indexed by the set of separable pairs PS since pairs

in PF are always conflict-free. Further, any 2D conflict resolution problem such that

|PI| > 0 is infeasible.
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Algorithm 1 Pre-processing of aircraft pairs

Input: A, θ̂, v̂, q, q, θ, θ
Output: P , PF, PS, PI

P ← {i, j ∈ A : i < j}
PF,PS,PI ← ∅
for (i, j) ∈ P do

Solve LP (i, j)
if LP (i, j) is infeasible then
PF ← PF ∪ {(i, j)}

else
k ← 0
for (vij,x, vij,y) ∈ E(Bij) do

if gij(vij,x, vij,y) < 0 ∧ tmin
ij (vij,x, vij,y) > 0 then

k ← k + 1

if k = 4 then
PI ← PI ∪ {(i, j)}

else
PS ← PS ∪ {(i, j)}

4.2 Complex Number Formulation for the 2D Air-

craft Conflict Resolution Problem

An alternative way to represent aircraft motion equation is via the complex number

formulation introduced by Rey and Hijazi (2017). Let Vi be the complex number

defined as:

Vi = qi(cos(θi) + i sin(θi)), ∀i ∈ A. (4.1)

Representing Vi in its polar form with δi,x = qi cos(θi) and δi,y = qi sin(θi), yield:

Vi = δi,x + iδi,y, ∀i ∈ A. (4.2)

The magnitude of Vi is |Vi| =
√
δ2
i,x + δ2

i,y = qi and its argument is arg(Vi) =

arctan
δi,x
δi,y

= θi. This approach is inspired by complex number formulation for the

optimal power flow problem in power systems, such as in Hijazi et al. (2017) and

Coffrin et al. (2015). Accordingly, the relative motion equations of a pair of aircraft
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can be rewritten as:

vij,x = δi,xv̂i cos
(
θ̂i

)
− δi,yv̂i sin

(
θ̂i

)
− δj,xv̂j cos

(
θ̂i

)
+ δj,yv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ PS,

(4.3a)

vij,y = δi,yv̂i cos
(
θ̂i

)
− δi,xv̂i sin

(
θ̂i

)
− δj,yv̂j cos

(
θ̂i

)
+ δj,xv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ PS.

(4.3b)

The variables δi,x and δi,y are used as the main control variables in this formulation

and their bounds are derived from the bounds of the original control variables qi and

θi:

q
i
cos
(
max{|θi|, |θi|}

)
≤ δi,x ≤ qi, ∀i ∈ A, (4.4a)

qi sin
(
θi
)
≤ δi,y ≤ qi sin

(
θi
)
, ∀i ∈ A. (4.4b)

The speed control constraint (3.8) can be reformulated in quadratic form as:

q2

i
≤ δ2

i,x + δ2
i,y, ∀i ∈ A, (4.5a)

q2
i ≥ δ2

i,x + δ2
i,y, ∀i ∈ A. (4.5b)

The heading control constraint (3.9) can be reformulated in linear form as:

δi,y ≥ δi,x tan
(
θi
)
, ∀i ∈ A, (4.6a)

δi,y ≤ δi,x tan
(
θi
)
, ∀i ∈ A. (4.6b)

To design the objective function, let introduce a preference weight w ∈ ]0, 1[ to

balance the trade-offs among velocity controls, i.e. speed and heading. The objective

function proposed by Rey and Hijazi (2017) can be extended as follows:

minimise
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2. (4.7)

Next, is showed that the objective function (4.7) attains its minimum value when

aircraft have deviation-free trajectories, i.e. qi = 1 and θi = 0 for all i ∈ A.

Proposition 4. The 2D objective function (4.7) is convex with regards to decision

variables δi,x and δi,y for any value w ∈ ]0, 1[, and is minimal for qi = 1 and θi = 0

for all aircraft i ∈ A.
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Proof. Let ci(δi,x, δi,y) = wδ2
i,y + (1 − w)(1 − δi,x)

2 be the cost function of aircraft

i ∈ A. The first-order optimality conditions of ci(δi,x, δi,y) are:

∂ci(δi,x, δi,y)

∂δi,x
= (2δi,x − 2)(1− w) = 0

∂ci(δi,x, δi,y)

∂δi,y
= 2wδi,y = 0

Recall that w ∈ ]0, 1[, hence the first-order optimality conditions of this objective

function yield δi,x = 1 and δi,y = 0 for all aircraft i ∈ A. Since δi,y = qi sin(θi), and

qi > 0, this implies δi,y = 0 which is equivalent to θi = 0 if θi ∈ ] − π, π[. Further,

since δi,x = qi cos(θi) and θi = 0, δi,x = 1 implies qi = 1. It is trivial to show that

ci(δi,x, δi,y) is convex, thus the 2D objective function (4.7) is also convex.

Computing the Hessian matrix H of ci(δi,x, δi,y) yields:

H =

[
2(1− w) 0

0 2w

]
. (4.8)

Observe that H is symmetric. Let c ∈ R2 be a vector with entries c1 and c2.

c>Hc = 2(1− w)c2
1 + 2wc2

2 ≥ 0. (4.9)

Thus, H is positive semi-definite and the 2D objective function (4.7) is convex.

Proposition 4 shows that the proposed 2D objective function achieves an optimal

value for deviation-free aircraft trajectories for any preference weight w ∈ ]0, 1[. In

Section 4.7.2, it is showed that the preference weight w can be used to prioritise speed

deviation manoeuvres over heading deviation manoeuvres or vice-versa. Specifically,

increasing w increases the penalisation of heading deviations whereas decreasing w

increases the penalisation of speed deviations. Note that Pallottino et al. (2002)

proposed MILP formulations for two conflict resolution problems which can be viewed

as extreme case of the proposed 2D ACRP. Specifically, the authors introduced MILP

constraints for the cases of speed-only control or heading-only control. Instead, let

focus on the case of velocity control, i.e. simultaneous optimisation of aircraft speed

and heading, thus justifying the range of the preference weight w ∈ ]0, 1[.

The resulting formulation is summarised in Model 4. Model 4 provides a compact

formulation for the 2D ACRP with speed and heading control which requires a single

binary variable per pair of aircraft. This formulation is non-convex due to the speed

lower bound constraint (4.5a) which is non-convex quadratic. Note that, the convex

hull reformulation of the linear On/Off constraints (3.20) and (3.21) as derived in
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Hijazi et al. (2014) is used. This reformulation does not require the introduction of

auxiliary variables and is proved to provide the tightest continuous relaxation for each

On/Off constraint. Note that coefficients γlij, φ
l
ij and γuij, φ

u
ij (present in (3.20) and

(3.21)) can be pre-processed based on the sign of x̂ij and ŷij. For implementation

details, a fully reproducible formulation can be found at: https://github.com/

acrp-lib/acrp-lib.

Model 4. Non-convex Complex Number Formulation

Minimise
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2,

Subject to:

vij,x = δi,xv̂i cos
(
θ̂i

)
− δi,yv̂i sin

(
θ̂i

)
− δj,xv̂j cos

(
θ̂i

)
+ δj,yv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ PS,

vij,y = dyv̂i cos
(
θ̂i

)
− δi,xv̂i sin

(
θ̂i

)
− δj,yv̂j cos

(
θ̂i

)
+ δj,xv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ PS,

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ PS,

vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ PS,

vij,yγ
l
ij − vij,xφlij ≤ 0, if zij = 1, ∀(i, j) ∈ PS,

vij,yγ
u
ij − vij,xφuij ≥ 0, if zij = 0, ∀(i, j) ∈ PS,

q2

i
≤ δ2

i,x + δ2
i,y ≤ q2

i , ∀i ∈ A,

δi,x tan(θi) ≤ δi,y ≤ δi,x tan
(
θi
)
, ∀i ∈ A,

q
i
cos
(
max{|θi|, |θi|}

)
≤ δi,x ≤ qi, ∀i ∈ A,

qi sin(θi) ≤ δi,y ≤ qi sin
(
θi
)
, ∀i ∈ A,

vij,x ≤ vij,x ≤ vij,x, ∀(i, j) ∈ PS,

vij,y ≤ vij,y ≤ vij,y, ∀(i, j) ∈ PS,

zij ∈ {0, 1}, ∀(i, j) ∈ PS,

δi,x, δi,y ∈ R, ∀i ∈ A.

4.3 Complex Number Formulation for the 2D+FL

Aircraft Conflict Resolution Problem

To model flight level changes, it is assumed that each aircraft i ∈ A is initially assigned

to a base FL denoted ρ̂i. In addition, it is assumed that adjacent FLs are vertically

separated (e.g. by 1000 ft.). Thus, the only needs to impose separation constraints

on pairs of aircraft are on those which share the same FL.
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Let Zi denote the set of available FLs for each aircraft i ∈ A, and consider the

binary variable ρik defined as:

ρik =

{
1 if aircraft i ∈ A is on FL k ∈ Zi,
0 otherwise.

(4.11)

By design, ρ̂i ∈ Zi and it is required that each aircraft i ∈ A to be assigned to

exactly one FL in its reachable set Zi via constraint (4.12):∑
k∈Zi

ρik = 1, ∀i ∈ A. (4.12)

For each pair of aircraft, it is necessary to identify if they share or may be sharing

the same FL. Let P3
S be the set of such aircraft pairs which are not conflict-free, i.e.

P3
S = {(i, j) ∈ PS ∪ PI : Zi ∩ Zj 6= ∅}. Let ϕij be the binary variable defined as:

ϕij =

{
1 if aircraft i and j are assigned to the same FL,

0 otherwise.
(4.13)

Variable ϕij can be linked to binary variables ρik and ρjk via the constraint:

ρik + ρjk ≤ ϕij + 1, ∀(i, j) ∈ P3
S ,∀k ∈ Zi ∩ Zj. (4.14)

The separation conditions determined by (3.20)-(3.21) can be rewritten to account

for altitude separation as follows:

vij,xx̂ij − vij,yŷij ≤ 0, if zij = 1 and ϕij = 1, ∀(i, j) ∈ P3
S , (4.15a)

vij,xx̂ij − vij,yŷij ≥ 0, if zij = 0 and ϕij = 1, ∀(i, j) ∈ P3
S , (4.15b)

vij,xγ
l
ij − vij,yφlij ≤ 0, if zij = 1 and ϕij = 1, ∀(i, j) ∈ P3

S , (4.15c)

vij,xγ
u
ij − vij,yφuij ≥ 0, if zij = 0 and ϕij = 1, ∀(i, j) ∈ P3

S . (4.15d)

FL changes are typically less desirable compared to other deconfliction manoeuvres

such as speed or heading control (Bilimoria et al., 1996; Hu et al., 2002; Alonso-Ayuso

et al., 2011). This is due to a number of practical considerations including an increase

in fuel consumption, passenger discomfort due to climbing or descending and the need

for extended monitoring (Wiener, 1989).

Under these considerations, a lexicographic optimisation approach for the 2D+FL

ACRP is proposed. The number of FL changes is first minimised; before the total

2D deviation of flights is minimised. The proposed objective function for minimising

the number of FL changes is:

minimise
∑
i∈A

∣∣∣∣∣∑
k∈Zi

kρik − ρ̂i

∣∣∣∣∣ . (4.16)
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The resulting model is summarised in Model 5 and hereby referred to as the non-

convex lexicographic 2D+FL formulation.

Model 5. Non-convex Lexicographic 2D+FL Complex Number Formulation

1. Minimise
∑
i∈A

∣∣∣∣∣∑
k∈Zi

kρik − ρ̂i

∣∣∣∣∣ ,
2. Minimise

∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2,

Subject to:

vij,x = δi,xv̂i cos
(
θ̂i

)
− δi,yv̂i sin

(
θ̂i

)
− δj,xv̂j cos

(
θ̂i

)
+ δj,yv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ P3

S,

vij,y = δi,yv̂i cos
(
θ̂i

)
− δi,xv̂i sin

(
θ̂i

)
− δj,yv̂j cos

(
θ̂i

)
+ δj,xv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ P3

S,

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1 and ϕij = 1, ∀(i, j) ∈ P3
S,

vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0 and ϕij = 1, ∀(i, j) ∈ P3
S,

vij,yγ
l
ij − vij,xφlij ≤ 0, if zij = 1 and ϕij = 1, ∀(i, j) ∈ P3

S,

vij,yγ
u
ij − vij,xφuij ≥ 0, if zij = 0 and ϕij = 1, ∀(i, j) ∈ P3

S,

q2

i
≤ δ2

i,x + δ2
i,y ≤ q2

i , ∀i ∈ A,

δi,x tan(θi) ≤ δi,y ≤ δi,x tan
(
θi
)
, ∀i ∈ A,

q
i
cos
(
max{|θi|, |θi|}

)
≤ δi,x ≤ qi, ∀i ∈ A,

qi sin(θi) ≤ δi,y ≤ qi sin
(
θi
)
, ∀i ∈ A,∑

k∈Zi

ρik = 1, ∀i ∈ A,

ρik + ρjk ≤ ϕij + 1, ∀(i, j) ∈ P3
S, k ∈ Zi ∩ Zj

vij,x ≤ vij,x ≤ vij,x, ∀(i, j) ∈ P3
S,

vij,y ≤ vij,y ≤ vij,y, ∀(i, j) ∈ P3
S,

zij ∈ {0, 1}, ∀(i, j) ∈ P3
S,

δi,x, δi,y ∈ R, ∀i ∈ A,

ρik ∈ {0, 1}, ∀i ∈ A, k ∈ Zi.

Compared to Model 4, Model 5 requires additional binary decision variables ρik

and ϕij. The former are used to assign aircraft to separated flight levels and the latter

ensures that aircraft sharing the same flight level are separated via the 2D separation

conditions. Next, the exact solution methods for these 2D and 2D+FL non-convex

aircraft conflict formulations are proposed.
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The exact solution methods for the 2D and the 2D+FL ACRPs are built on and

extended from the convex relaxations presented by Rey and Hijazi (2017). First, a

convex relaxation of the 2D ACRP that fully relaxes the speed control constraint

in the complex number formulation is presented in Section 4.4. This relaxation

yields a Mixed-Integer Quadratic Program (MIQP) which solution may violate the

speed control bounds of the problem. To eliminate these potential violations, convex

quadratic constraints and piecewise linear outer approximations are introduced in a

Mixed-Integer Quadratically Constrained Program (MIQCP). This culminates in the

proposed constraint generation algorithm to iteratively refine the piece-wise linear

approximation and show that this approach converges to optimal solutions of the 2D

ACRP (Section 4.5).

To solve the lexicographic optimisation formulation for the 2D+FL ACRP, a two-

step decomposition approach is proposed. At first, it solves a restricted flight as-

signment problem that only implicitly accounts for aircraft trajectories and yields

an optimal solution with regards to the first objective function (total FL deviation).

Then ,it uses the optimal solution of the flight assignment formulation to assign air-

craft to FLs and solve a series of 2D problems (one per FL) to construct an optimal

solution with regards to the second objective function (total 2D deviation). Both

steps are iterated until a global solution is found (Section 4.6). The proposed exact

solution methods are presented in detail the next sections.

4.4 Mixed-Integer Quadratic Relaxation for the

2D Aircraft Conflict Resolution Problem

An initial convex relaxation of Model 4 was proposed by Rey and Hijazi (2017) by

relaxing the speed control constraint (4.5). The resulting formulation is a MIQP

summarised in Model 6.

Model 6. MIQP 2D Formulation

Minimise
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2,

Subject to:

vij,x = δi,xv̂i cos
(
θ̂i

)
− δi,yv̂i sin

(
θ̂i

)
− δj,xv̂j cos

(
θ̂i

)
+ δj,yv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ PS,

vij,y = δi,yv̂i cos
(
θ̂i

)
− δi,xv̂i sin

(
θ̂i

)
− δj,yv̂j cos

(
θ̂i

)
+ δj,xv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ PS,

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ PS,
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vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ PS,

vij,yγ
l
ij − vij,xφlij ≤ 0, if zij = 1, ∀(i, j) ∈ PS,

vij,yγ
u
ij − vij,xφuij ≥ 0, if zij = 0, ∀(i, j) ∈ PS,

δi,x tan(θi) ≤ δi,y ≤ δi,x tan
(
θi
)
, ∀i ∈ A,

q
i
cos
(
max{|θi|, |θi|}

)
≤ δi,x ≤ qi, ∀i ∈ A,

qi sin(θi) ≤ δi,y ≤ qi sin
(
θi
)
, ∀i ∈ A,

vij,x ≤ vij,x ≤ vij,x, ∀(i, j) ∈ PS,

vij,y ≤ vij,y ≤ vij,y, ∀(i, j) ∈ PS,

zij ∈ {0, 1}, ∀(i, j) ∈ PS,

δi,x, δi,y ∈ R, ∀i ∈ A.

Model 6 yields a lower bound on the optimal objective value of Model 4 and a

solution which is a global optimum if the relaxed constraint (4.5) is not violated. Since

speed deviations are penalised in the objective function, the empirical performance

of Model 6 is competitive for low to medium density (in terms of number of aircraft

and conflicts) 2D problems with several such instances solved to global optimality via

this relaxation (see Section 4.7.3).

4.5 Mixed-Integer Quadratically Constrained Re-

laxation and Constraint Generation Algorithm

To tighten the MIQP relaxation given in Section 4.4, the MIQCP relaxation proposed

by Rey and Hijazi (2017) is built on and extended by incorporating the speed control

constraint (4.5) using convex quadratic and piecewise linear constraints.

Observe that the speed upper bound constraint (4.5b) is convex quadratic, hence

it can be incorporated directly in the MIQCP formulation. To incorporate the speed

lower bound constraint (4.5a), auxiliary real variables δ̃i,x and δ̃i,y defined as δ̃i,x ≡
δ2
i,x and δ̃i,y ≡ δ2

i,y for each aircraft i ∈ A are introduced. These variables can be

incorporated in relaxed form via convex quadratic constraints:

δ̃i,x ≥ δ2
i,x, ∀i ∈ A, (4.19a)

δ̃i,y ≥ δ2
i,y, ∀i ∈ A. (4.19b)

Accordingly, it is required that:

q2

i
≤ δ̃i,x + δ̃i,y, ∀i ∈ A. (4.20)
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(a) Graph of δ2i,x (in red) over the
domain given by Eq. (4.4a). The
mixed-integer cuts (4.22a) are illus-
trated for a partition of |Γi,x| = 2
segments.

(b) Graph of δ2i,y (in red) over the domain given
by Eq. (4.4b). The mixed-integer cuts (4.22b) are
illustrated for a partition of |Γi,y| = 4 segments.

Figure 4.1: Piece-wise linear approximation of δ2
i,x and δ2

i,y (in red). The green lines
represent the initial McCormick relaxation given by (4.21). The purple shaded regions
represent the refined feasible region of δ̃i,x and δ̃i,y after imposing the mixed-integer
cuts (4.22). The speed control bounds are q

i
= 0.94, qi = 1.03 and the heading

control bounds are θi = −π
6

and θi = +π
6
.

To impose upper bounds on δ̃i,x and δ̃i,y, their McCormick envelopes (McCormick,

1976) are introduced as:

δ̃i,x ≤ (qi + q
i
cos
(
max{|θi|, |θi|}

)
)δi,x − qiqi cos

(
max{|θi|, |θi|}

)
, ∀i ∈ A, (4.21a)

δ̃i,y ≤ qi(sin
(
θi
)

+ sin
(
θi
)
)δi,y − q2

i sin
(
θi
)

sin
(
θi
)
, ∀i ∈ A. (4.21b)

Constraints (4.19)-(4.21) restrict variables δ̃i,x and δ̃i,y to convex regions thus

providing an initial relaxation of the speed lower bound constraint (4.5a). This initial

relaxation is illustrated in Figure 4.1 which depicts the variation of δ2
i,x and δ2

i,y (in red)

over the domain of δi,x and δi,y for realistic speed and heading control bounds. The

green lines in Figures 4.1a and 4.1b represent the initial McCormick envelopes. This

relaxation may still yield infeasible aircraft speeds. To refine this convex relaxation,

mixed-integer cuts are introduced and they are generated on-the-fly in a constraint

generation algorithm.

The general structure of the proposed mixed-integer cuts is presented next before

discussing how these cuts are generated iteratively. Let Γi,x and Γi,y be partitions of

the domain of variables δi,x and δi,y, respectively. Since δ2
i,x and δ2

i,y are convex, any

line joining two extremities of a segment in Γi,x and Γi,y refines the initial McCormick

upper envelopes. Let αki,x (resp. αki,y) and βki,x (resp. βki,y) be the slope and the

intercept corresponding to segment k ∈ Γi,x (resp. k ∈ Γi,y). Further, let ski,x (resp.
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ski,y) be a binary variable taking value 1 if δi,x (resp. δi,y) belongs to segment k of

partition Γi,x (resp. Γi,y). The proposed mixed-integer cuts take the form of:

δ̃i,x ≤ αki,xδi,x + βki,x, if ski,x = 1, ∀i ∈ A, k ∈ Γi,x, (4.22a)

δ̃i,y ≤ αki,yδi,y + βki,y, if ski,y = 1, ∀i ∈ A, k ∈ Γi,y. (4.22b)

Let δki,x and δ
k

i,x (resp. δki,y and δ
k

i,y) be the extremities of segment k ∈ Γi,x (resp.

k ∈ Γi,y). Binary variables ski,x and ski,y are defined as:

ski,x =

{
1 if δi,x ∈ [δki,x, δ

k

i,x[,

0 otherwise,
∀i ∈ A, k ∈ Γi,x, (4.23a)

ski,y =

{
1 if δi,y ∈ [δki,y, δ

k

i,y[,

0 otherwise.
∀i ∈ A, k ∈ Γi,y. (4.23b)

The following cut selection constraints are also required:∑
k∈Γi,x

ski,x = 1 ∀i ∈ A, (4.24a)

∑
k∈Γi,y

ski,y = 1 ∀i ∈ A. (4.24b)

The proposed mixed-integer cuts are illustrated in Figures 4.1a and 4.1b for the

case of |Γi,x| = 2 and |Γi,y| = 4 segments, respectively. The shaded purple region

represents the feasible region of δ̃i,x and δ̃i,y after imposing the mixed-integer cuts.

The resulting formulation is an MIQCP with mixed-integer cuts summarised in

Model 7. This formulation can be solved by off-the-shelf commercial optimisation soft-

ware and provides a relaxation of the Model 4 which can be tightened as desired by

refining the partitions Γi,x and Γi,y of the domain of variables δi,x and δi,y, respectively.

Model 7. MIQCP 2D Formulation

Minimise
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2,

Subject to:

vij,x = δi,xv̂i cos
(
θ̂i

)
− δi,yv̂i sin

(
θ̂i

)
− δj,xv̂j cos

(
θ̂i

)
+ δj,yv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ PS,

vij,y = δi,yv̂i cos
(
θ̂i

)
− δi,xv̂i sin

(
θ̂i

)
− δj,yv̂j cos

(
θ̂i

)
+ δj,xv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ PS,
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vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ PS,

vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ PS,

vij,yγ
l
ij − vij,xφlij ≤ 0, if zij = 1, ∀(i, j) ∈ PS,

vij,yγ
u
ij − vij,xφuij ≥ 0, if zij = 0, ∀(i, j) ∈ PS,

δi,x tan(θi) ≤ δi,y ≤ δi,x tan
(
θi
)
, ∀i ∈ A,

δ̃i,x ≥ δ2
i,x, ∀i ∈ A,

δ̃i,y ≥ δ2
i,y, ∀i ∈ A,

q2

i
≤ δ̃i,x + δ̃i,y, ∀i ∈ A,

δ̃i,x ≤ (qi + q
i
cos
(
max{|θi|, |θi|}

)
)δi,x − qiqi cos

(
max{|θi|, |θi|}

)
, ∀i ∈ A,

δ̃i,y ≤ qi(sin(θi) + sin
(
θi
)
)δi,y − q2

i sin
(
θi
)

sin(θi), ∀i ∈ A,

δ̃i,x ≤ αki,xδi,x + βki,x, if ski,x = 1, ∀i ∈ A, k ∈ Γi,x,

δ̃i,y ≤ αki,yδi,y + βki,y, if ski,y = 1, ∀i ∈ A, k ∈ Γi,y,

ski,x = 1 if δi,x ∈ [δki,x, δ
k

i,x[, ∀i ∈ A, k ∈ Γi,x,

ski,y = 1 if δi,y ∈ [δki,y, δ
k

i,y[, ∀i ∈ A, k ∈ Γi,y,∑
k∈Γi,x

ski,x = 1 ∀i ∈ A,

∑
k∈Γi,y

ski,y = 1 ∀i ∈ A,

q2

i
≤ δ2

i,x + δ2
i,y, ∀i ∈ A,

q
i
cos
(
max{|θi|, |θi|}

)
≤ δi,x ≤ qi, ∀i ∈ A,

qi sin(θi) ≤ δi,y ≤ qi sin
(
θi
)
, ∀i ∈ A,

vij,x ≤ vij,x ≤ vij,x, ∀(i, j) ∈ PS,

vij,y ≤ vij,y ≤ vij,y, ∀(i, j) ∈ PS,

zij ∈ {0, 1}, ∀(i, j) ∈ PS,

δi,x, δi,y ∈ R, ∀i ∈ A,

δ̃i,x, δ̃i,y ∈ R, ∀i ∈ A,

ski,x ∈ {0, 1}, ∀i ∈ A, k ∈ Γi,x,

ski,y ∈ {0, 1}, ∀i ∈ A, k ∈ Γi,y.

A constraint generation algorithm is proposed and it starts from a relaxed formu-

lation and iteratively refines the piecewise linear outer approximation of the quadratic

terms δ2
i,x and δ2

i,y via mixed-integer cuts (4.22). At each iteration, the proposed con-

straint generation algorithm examines the solution (δi,x, δi,y) of each aircraft i ∈ A
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for speed lower bound violations. If δ2
i,x + δ2

i,y < q2
i
, then at least one of the relaxed

auxiliary variables δ̃i,x or δ̃i,y must be such that δ̃i,x > δ2
i,x or δ̃i,y > δ2

i,y. To eliminate

the current infeasible solution, the partition(s) Γi,x or Γi,y of the violating variable(s)

is augmented by dividing the segment(s) corresponding to δi,x or δi,y into two seg-

ments which meet at δi,x or δi,y and corresponding binary variable(s) ski,x or ski,y are

added to the formulation. The process is repeated until all aircraft have feasible speed

profiles which correspond to a global optimum of Model 4. To further improve the

convergence of the solution algorithm, the heuristic procedure outlined by Rey and

Hijazi (2017) is used to attempt to find improving upper bounds. After each solve of

the relaxed formulation 7, Model 4 is solved as a non-linear program (NLP) by fixing

variable zij. The pseudo-code of the resulting algorithm is summarised in Algorithm

2.

4.6 Decomposition Algorithm for the 2D+FL Air-

craft Conflict Resolution Problem

Next, a two-step decomposition approach for the non-convex lexicographic 2D+FL

conflict resolution problem represented by Model 5 is introduced. The first objective

function (4.16) focuses on minimising the number of FL changes. Observe that this

objective function is null and minimal if all aircraft i ∈ A can remain at their initial

FL ρ̂i. Since minimising aircraft FL re-assignment is the highest priority objective

function, it is only necessary to identify combinations of aircraft which are non-

separable in 2D and ensure that such combinations are not assigned to the same

FL.

To address this first step, a compact aircraft FL assignment model is introduced

and it implicitly accounts for 2D non-separable aircraft combinations. Let ΩI ⊆ 2A

be the set of aircraft combinations which are 2D non-separable, i.e. for any ω ∈ ΩI,

the subset of aircraft ω cannot be separated in 2D. To ensure that all aircraft are

assigned to 2D separable FLs, it is required:∑
i∈ω

ρik ≤ |ω| − 1, ∀ω ∈ ΩI,∀k ∈
⋂
i∈ω

Zi. (4.26)

Although the number of constraints (4.26) is exponential in the number of air-

craft, the numerical experiments show that dense traffic scenarios can be solved to

optimality by restricting ΩI to aircraft pairs (see Section 4.7.4), thus motivating a

relaxation and constraint generation approach.
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Algorithm 2 Solution algorithm for the 2D ACRP

Input: A, θ̂, v̂, q, q, θ, θ, ε
Output: q?, θ?, LB, UB
P ,PI,PF,PS ← Algorithm 1
LB ← 0
UB ← +∞
q,θ, δx, δy, z, LB ← Solve MIQP 6 and calculate q and θ from δx and δy
if MIQP 6 is infeasible then

Return infeasible
if q is feasible (no speed violation) then

UB ← LB
q? ← q
θ? ← θ

else
converged ← False

while converged = False do
q′,θ′, UB-NLP ← Solve Model 4 as NLP with fixed z
if UB-NLP < UB then

UB ← UB-NLP
q? ← q′

θ? ← θ′

for i ∈ A do
if δ2

i,x + δ2
i,y > q2

i then
Add constraint (4.5b)

else if δ2
i,x + δ2

i,y < q2
i

then

if δ̃i,x > δ2
i,x then

Add segment to Γi,x at δi,x, variable ski,x, constraints (4.22a), (4.23a),
and update (4.24a)

if δ̃i,y > δ2
i,y then

Add segment to Γi,y at δi,y, variable ski,y, constraints (4.22b), (4.23b),
and update (4.24b)

q,θ, δx, δy, δ̃x, δ̃y, z, LB← Solve MIQCP 7 and calculate q and θ from δx and
δy
if MIQCP 7 is infeasible then

Return infeasible
if q is feasible (no speed violation) then

UB ← LB
q? ← q
θ? ← θ
converged ← True

if (UB-LB)/UB ≤ ε then
converged ← True
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Let ∆ρi ≥ 0 be a variable representing the absolute flight level deviation for

aircraft i ∈ A. Objective function (4.16) can be linearised as:

minimise
∑
i∈A

∆ρi, (4.27)

subject to the constraints:

∆ρi ≥
∑
k∈Zi

kρik − ρ̂i, ∀i ∈ A, (4.28a)

∆ρi ≥ ρ̂i −
∑
k∈Zi

kρik, ∀i ∈ A. (4.28b)

Combining the FL separation constraint (4.26) and the above linearised objective

function, yields a compact FL assignment formulation summarised in Model 8 which

is a MILP with an exponential number of constraints.

Model 8. FL Assignment Formulation

Minimise
∑
i∈A

∆ρi

Subject to:∑
k∈Zi

ρik = 1, ∀i ∈ A,∑
i∈ω

ρik ≤ |ω| − 1, ∀ω ∈ ΩI,∀k ∈
⋂
i∈ω

Zi,

∆ρi ≥
∑
k∈Zi

kρik − ρ̂i, ∀i ∈ A,

∆ρi ≥ ρ̂i −
∑
k∈Zi

kρik, ∀i ∈ A,

ρik ∈ {0, 1}, ∀i ∈ A, k ∈ Zi,

∆ρi ≥ 0, ∀i ∈ A.

Initially, to solve Model 8, it is done by first restricting Constraint (4.26) to

subsets of size two, i.e. 2D non-separable aircraft pairs, which can be efficiently

identified using Algorithm 1 as a pre-processing step. Then, the 2D+FL problem is

decomposed into a series of 2D conflict resolution problems, one per FL, based on

the optimal solution ρ? of the relaxed Model 8. For each FL, the corresponding 2D

problem is solved using the exact constraint generation approach of Algorithm 2 with

the aircraft set Ak = {i ∈ A : ρ?ik = 1}. If Algorithm 2 returns infeasible for FL k,

then the corresponding FL separation constraint (4.26) with ω = Ak is generated and
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Model 8 is re-solved with the additional constraint(s). The process is repeated until

all 2D problems are feasible. Let Z be the set of all FLs, i.e. Z = ∪k∈Zi:i∈AZi, qk and

θk can be denoted as the vectors of speed and heading controls for aircraft assigned

to FL k ∈ Z, respectively. The proposed exact solution method for the lexicographic

2D+FL conflict resolution problem is summarised in Algorithm 3. Note that this

decomposition approach provides an opportunity to solve all 2D problems in parallel,

i.e. by parallelising the for loop at Line 8.

Algorithm 3 Solution algorithm for the lexicographic 2D+FL conflict resolution
problem

Input: A, [Zi]i∈A, θ̂, v̂, ρ̂, q, q, θ, θ
Output: q?, θ?, ρ?

P ,PF,PS,PI ← Algorithm 1
ΩI ← {(i, j) ∈ PI : Zi ∩ Zj 6= ∅}
Z ← ∪k∈Zi:i∈AZi
converged ← False

while converged = False do
ρ? ← Solve MILP 8
converged ← True

for k ∈ Z do
Ak ← {i ∈ A : ρ?ik = 1}
q?k,θ

?
k ← Algorithm 2 with A = Ak

if Algorithm 2 returns infeasible then
ΩI ← ΩI ∪ Ak
converged ← False

q?,θ? ← [q?k]k∈Z , [θ
?
k]k∈Z

4.7 Numerical Results

First, the experimental framework that is used to test the proposed mixed-integer

formulations and algorithms are introduced in Section 4.7.1. Then, the behaviour of

the proposed 2D objective function is explored in Section 4.7.2. Numerical results for

the 2D ACRP are presented in Section 4.7.3, and results for the 2D+FL problem are

presented in Section 4.7.4.
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4.7.1 Experiments Design

The performance of the proposed mixed-integer formulations and algorithms is tested

using four benchmarking problems from the literature: the Circle Problem (CP), the

Flow Problem (FP), the Grid Problem (GP) and the Random Circle Problem (RCP).

Numerical results for problems with a subliminal speed control range of. [−6%,+3%]

(Bonini et al., 2009) are reported. Two heading control ranges are considered, first

assuming that aircraft can modify their heading within the range [−30◦,+30◦] as

commonly used in the literature (Cafieri and Omheni, 2017; Rey and Hijazi, 2017),

and considering a reduced heading control range of [−15◦,+15◦]. For conflict reso-

lution problems with altitude control, each aircraft i ∈ A is randomly assigned to a

FL ρ̂i ∈ Z, and it is assumed that only adjacent FLs are available for aircraft, i.e.

Zi = {ρ̂i − 1, ρ̂i, ρ̂i + 1}.
The proposed approach is referred to as Disjunctive and is compared to two bench-

marks from the literature: the method proposed by Rey and Hijazi (2017) named

Disjunctive-2017 and an implementation based on the so-called shadow separation

constraints named Shadow. The method Disjunctive corresponds to Algorithm 2 for

2D ACRP instances and to Algorithm 3 for 2D+FL ACRP instances. The method

Disjunctive-2017 is based on the same disjunctive linear separation conditions as

Disjunctive but uses the algorithm proposed by Rey and Hijazi (2017). This algo-

rithm has 3 steps: i) solve the MIQP relaxation (Model 6), ii) solve the MIQCP

relaxation (Model 7) without any mixed-integer cuts (4.22), and, if a feasible solu-

tion has not been obtained, iii) solve Model 4 as NLP for fixed z. Compared to

Disjunctive, the method Disjunctive-2017 is identical in the first step only. In step ii)

of Disjunctive-2017, the MIQCP relaxation is solved without any constraint genera-

tion, thus all convex quadratic cuts (4.19) are added for all aircraft simultaneously

and no mixed-integer cuts are generated. In addition, if the NLP fails to find a fea-

sible solution in step iii), then the method fails to yield a feasible solution whereas

the method Disjunctive is guaranteed to converge to a global optimal solution if it

exists. In the implementation of the method Shadow, the control variables and the

algorithm are identical to that of the method Disjunctive, and the only difference be-

tween both methods is the set of separation constraints used, i.e. Constraints (3.20)

and (3.21) are replaced with the shadow separation conditions and the number of

binary variables required to express these On/Off constraints. Specifically, for the

2D ACRP, Disjunctive only requires a single binary variable per aircraft pair (zij)

whereas Shadow requires four binary variables per aircraft pair (Pallottino et al.,

2002; Alonso-Ayuso et al., 2011, 2016). Details of the implementation of Shadow are
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provided in the supplementary material. All three methods are implemented using

the same pre-processing procedure (Algorithm 1) to eliminate conflict-free aircraft

pairs.

All 2D ACRPs are solved by implementing Algorithm 2 with an optimality gap

ε = 0.01 and a time limit of 10 minutes. All 2D+FL problems are solved by imple-

menting Algorithm 3 which calls Algorithm 2 using the same optimality gap as for

the 2D problems, and a time limit of 10 minutes per FL is allocated. All models are

implemented using Python on a personal computer with 16 GB of RAM and an In-

tel i7 processor at 2.9GHz. The MIQPs and MIQCPs are solved with Cplex v12.10

(Cplex, 2009) API for Python using default options. Next, a sensitivity analysis

on the preference weight w is conducted in the 2D objective function to explore its

impact on aircraft trajectories in Section 4.7.2. Results on 2D problems are presented

in Section 4.7.3 and results on 2D+FL problems in Section 4.7.4.

4.7.2 Sensitivity Analysis on the Preference Weight w

To quantify the impact of the preference weight w in the proposed 2D objective

function (4.7), numerical experiments are conducted on one instance of each of the

four types of benchmarking instances for varying values of w. For this experiment, the

focus is on the typical heading control range [−30◦,+30◦]. The total speed deviation

Σq =
∑

i∈A(1 − qi)
2, and the total heading deviation Σθ =

∑
i∈A θ

2
i are reported.

The goal is to show that by varying the preference weight w ∈ ]0, 1[, the decision-

maker can control the desired level of trade-off between total speed deviation and

total heading deviation. Recall that in objective function (4.7), w is the coefficient

of δ2
i,y = (qi sin(θi))

2 which is minimal for θi = 0; while (1 − w) is the coefficient of

(1 − δi,x)
2 = (1 − qi cos(θi))

2 which is minimal for qi = 1 and θi = 0. Hence, one

can expect that increasing (resp. decreasing) w will tend to penalise heading (resp.

speed) deviations more than speed (resp. heading) deviations.

This behaviour is confirmed in the numerical experiments. Specifically, when

observing the solution for the 2D instances CP-8, FP-10, GP-10 and one RCP-30

instance for w = 0.1, . . . , 0.9 in steps of size 0.1, i.e. for a total of 9 values of

w per instance. All instances are solved to optimality using Algorithm 2 with no

MIQCP iterations, i.e. the MIQP returned a global optimal solution for all tests.

The change in the total speed deviation Σq and in the total heading deviation Σθ are

reported in Figure 4.2. For all four instances tested, it is observed that increasing w

monotonically decreases the total heading deviation and monotonically increases the

82



(a) CP-8 (b) FP-10

(c) GP-10 (d) RCP-30

Figure 4.2: Sensitivity analysis on the preference weight w of the 2D objective function
(4.7). For all figures, Σq represents the total speed deviation defined as

∑
i∈A(1− qi)2

(in red) and Σθ represents the total heading deviation defined as
∑

i∈A θ
2
i (in blue).

total speed deviation. Further, it is noticed that in all cases both the total speed and

heading deviations are of similar order of magnitudes.

This sensitivity analysis shows that using the proposed 2D objective function, the

decision-maker can control which manoeuvre is prioritised by scaling up or down the

preference weight w accordingly. Higher values of w will minimise the total heading

deviation while lower values of w will minimise the total speed deviation. Based on

these results, w = 0.5 is used in the numerical experiments presented in the remaining

of the paper.

4.7.3 Results on 2D instances

To report the performances of the proposed formulations on 2D ACRPs, four groups

of numerical experiments are used, one per instance type. The results for 12 CP

instances are presented ranging from 4 to 15 aircraft in Tables 4.1 and 4.2. Results
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for FP and GP instances are reported in Tables 4.3-4.6, respectively, for 12 instances

each with 4 to 15 aircraft per stream. Results for RCP instances are reported in Tables

4.7 and 4.8 for four instance sizes with 10, 20, 30 and 40 aircraft per group. For each

instance size, 100 RCP instances are randomly generated and it is reported the average

performance along with the standard deviation in parenthesis. The performances of

the proposed formulations are compared for both the standard and reduced heading

control ranges.

Each row in the results tables represents an instance (CP, FP and GP) or a

group of instances (RCP). The header of the results tables is presented from left to

right. The left-most column, Instance, identifies the instance; |A| is the number of

aircraft and nc is the number of the conflicts. The next three columns summarise the

performance of the pre-processing algorithm: |PF|/|P| is the proportion of conflict-

free aircraft pairs; |PI|/|P| is the proportion of non-separable aircraft pairs; and

Time is the runtime of Algorithm 1 in seconds. The next six columns summarise the

performance of Disjunctive: LB and UB are the lower and upper bound; Gap is the

optimality gap in percent calculated using LB and UB; Time is the total runtime

in seconds; ni is the number of iterations of the while loop in Algorithm 2, and nt

represents the proportion of instances that could not be solved within the time limit

(10 minutes), i.e. the number of time-outs. The next five columns summarise the

performance of Disjunctive-2017: ∆UB is the upper bound of Disjunctive-2017 minus

that of Disjunctive; Gap is the optimality gap, Time is the total runtime, nt is the

proportion of time-outs, and Gain is the performance gain in runtime for instances

solved within the time limit calculated as the runtime of Disjunctive-2017 minus that

of Disjunctive in percentage: a positive value indicates that Disjunctive is faster. The

right-most five columns summarise the performance of Shadow relative to Disjunctive,

similarly to the five previous columns. For RCP instances, it is also reported the

number of times each method failed to find a feasible solution in columns named nf .

This value is always zero for CP, FP and GP instances hence this is not reported in

their corresponding results tables.

The implementation of the pre-processing procedure (Algorithm 1) across CP, FP

and GP instances with both the standard heading control range of [−30◦,+30◦] and

the reduced range of [−15◦,+15◦] reveal that no aircraft pair can be eliminated (i.e. is

conflict-free) or is non-separable. It is also noted that the runtime of Algorithm 1 on

all these instances grows quadratically with the number of aircraft and evolve under

from 0.01 s to 1.23 s. The experiments on the CP instances (Tables 4.1 and 4.2) show

that, as expected, the upper bound (UB) and the lower bound (LB) increase with
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the number of aircraft. Using a heading control range of [−30◦,+30◦] (Table 4.1), all

three methods are able to solve CP instances with 4 to 10 aircraft within the available

time limit. In both cases, runtime increases exponentially with the number of aircraft.

For CP instances with 11 to 15 aircraft, the MIQP iteration of Algorithm 2 is unable

to converge. Since no MIQCP iterations are performed (ni = 0), the results obtained

using Disjunctive-2017 are identical to those obtained using Disjunctive. Disjunctive

outperforms Shadow for instances solved but both formulations return comparable

optimality gaps for instances that timed-out. Notably, the optimality gap of CP-15

is 73.5% and 74.1% using Disjunctive and Shadow, respectively, which highlights the

difficulty of CP instances. Using a reduced heading control range of [−15◦,+15◦]

(Table 4.2), yields a comparable performance, although the proposed formulations

are able to achieve slightly better UB values for CP-11 and CP-15, suggesting that

the reduction of the solution space may help performance.

The numerical results obtained for FP instances (Tables 4.3 and 4.4) for both

heading control ranges reveal that all corresponding 24 ACRPs can be solved to

optimality within the available time limit by Disjunctive and Disjunctive-2017. In

turn, Shadow fails to solve FP-15 with a reduced heading control range (Table 4.4).

All three methods find the same optimal objective value, i.e. ∆UB = 0 for all FP

instances tested. Disjunctive and Disjunctive-2017 are able to solve all FP instances in

less than a minute, which contrasts with the performance of Shadow which requires

significantly more time to solve FP instances with 9 or more aircraft per stream. This

corresponds to an average performance gain of 90.9% across all FP instances solved

to optimality by both methods. The outcome of the numerical experiments for GP

instances (Tables 4.5 and 4.6) reveal a similar trend. Disjunctive and Disjunctive-2017

can solve all GP instances with average runtimes of 125 s and 132 s for GP-15, which

corresponds to a total of 60 aircraft, with a standard and a reduced heading control

range, respectively. Shadow is able to solve all but three GP instances across all 24

GPs tested. The average performance gain for GP instances solved to optimality

by all three formulations is 68.0%. It is also observed that reducing the heading

control range does not affect the optimal solution of these problems and Shadow is

consistently able to find the same best UB as Disjunctive.

The experiments performed on RCP instances reveal that the pre-processing pro-

cedure (Algorithm 1) can eliminate approximately 8% of aircraft pairs when using a

reduced heading control range (Table 4.8), whereas no aircraft pairs are conflict-free

using a standard heading control range (Table 4.7). The implementation of Disjunctive

on RCP instances (Tables 4.7 and 4.8) reveals that while all 10- and 20-aircraft RCP
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instances can be solved via the MIQP iteration, 30- and 40-aircraft RCP instances

may require additional MIQCP iterations. Since no MIQCP iterations are performed

(ni = 0) for RCP-10 and RCP-20, the results obtained using Disjunctive-2017 are

identical to those obtained using Disjunctive. Using the standard heading control

range (Table 4.7), on average, RCP-10 instances can be solved in 0.05 s and 0.14 s

using Disjunctive and Shadow, respectively. RCP-20 instances require 0.26 s and 2.52

s, on average, using Disjunctive and Shadow, respectively, under the standard heading

control range. The performance of the proposed formulations on RCP-10 and RCP-20

using a reduced heading control range (Table 4.8) is of similar order of magnitude

due to the relatively low average number of conflicts per instance, i.e. 3.1 and 13.1,

respectively. Those values lead to a performance gain of Disjunctive over Shadow of

71.8% and 62.6% for standard and reduced ranges, respectively, for RCP-10 instances;

and of 89.6% and 81.3% for RCP-20 instances.

RCP-30 and RCP-40 instances have on average 32.9 and 59.3 conflicts, respec-

tively, and present considerable computing challenges, notably the latter. Overall, it

is noted that reducing the heading control range tends to improve the performance

while retaining comparable optimal solutions, as indicated by the similar UB val-

ues obtained. Disjunctive requires an average of 0.4 MIQCP iterations for RCP-30

instances using a standard heading control range (Table 4.7) compared to 1.4 when

using a reduced heading control range(Table 4.8). These figures increase to 0.8 and 1.6

in RCP-40 instances. For RCP-30 instances, the average optimality gaps are 0.17%,

4.60% and 2.36% using Disjunctive, Disjunctive-2017 and Shadow, respectively using

the standard heading control range (Table 4.7). These figures are reduced to 0.01%,

3.13% and 0.89% using the reduced heading control range (Table 4.8). For RCP-40

instances, the average optimality gaps values are significantly greater: 15%, 51.2%

and 29.8% for a standard heading control (Table 4.7); and 13.1%, 52.0% and 25.8% for

a reduced heading control range (Table 4.8). This shows that Shadow tends to double

the optimality gap compared to Disjunctive, while Disjunctive-2017 tends to triple this

figure compared to Disjunctive. Using a standard heading control range (Table 4.7),

Disjunctive is able to solve all but 3% of the RCP-30 instances whereas Disjunctive-

2017 and Shadow time out on 26% and 20% of these instances, respectively. The

performance gain of Disjunctive compared to Disjunctive-2017 and Shadow in terms

of runtime are 21.0% and 41.7%, respectively. For RCP-40 instances, Disjunctive can

solve 28% of the problems (72% of time-outs), while Disjunctive-2017 and Shadow

time out on 73% and 100% of the instances, respectively. It is also observed that

Disjunctive-2017 and Shadow may occasionally fail to find a UB as competitive as
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that found by the Disjunctive on RCP-40 instances. The runtime performance gains

of Disjunctive on RCP-30 instances are 21.0% and 41.7% compared to Disjunctive-

2017 and Shadow, respectively, using standard heading control range; and increase to

57.2% and 60.5% using the reduced heading control range. For RCP-40 instances, the

gains of Disjunctive compared to Disjunctive-2017 are 3.73% and 24.6% for standard

and reduced heading control ranges, respectively; while Shadow is unable to solve any

RCP-40 instances to optimality (100% of time-outs). The method Disjunctive-2017

fails to find a feasible solution for 19% and 48% of the RCP-40 instances using the

standard and reduced heading control ranges, respectively.
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Table 4.1: Results for 2D CP instances with a speed control range of [−6%,+3%] and a heading control range of [−30◦,+30◦].

Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs, optimality gaps

(Gap), proportions of time-outs (nt) and the performance gain (Gain) are reported in %.

Pre-processing Disjunctive Disjunctive-2017 Shadow

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt ∆UB Gap Time nt Gain ∆UB Gap Time nt Gain

CP-4 4 6 0 0 0.01 6.2E-4 6.2E-4 0.00 0.20 0 0 0.00 0.00 0.20 0 0.00 0.00 0.00 1.31 0 84.5
CP-5 5 10 0 0 0.03 1.1E-3 1.1E-3 0.00 0.40 0 0 0.00 0.00 0.40 0 0.00 0.00 0.00 1.02 0 60.1
CP-6 6 15 0 0 0.07 1.8E-3 1.8E-3 0.00 0.64 0 0 0.00 0.00 0.64 0 0.00 0.00 0.00 1.17 0 45.3
CP-7 7 21 0 0 0.12 2.4E-3 2.4E-3 0.00 0.39 0 0 0.00 0.00 0.39 0 0.00 0.00 0.00 1.28 0 69.5
CP-8 8 28 0 0 0.18 3.5E-3 3.5E-3 0.02 3.04 0 0 0.00 0.02 3.04 0 0.00 0.00 0.02 4.23 0 28.0
CP-9 9 36 0 0 0.24 4.3E-3 4.3E-3 0.02 7.97 0 0 0.00 0.02 7.97 0 0.00 0.00 0.02 11.2 0 29.3
CP-10 10 45 0 0 0.31 5.6E-3 5.6E-3 0.02 72.3 0 0 0.00 0.02 72.3 0 0.00 0.00 0.02 73.1 0 1.10
CP-11 11 55 0 0 0.37 6.8E-3 6.9E-3 1.99 600 0 100 0.00 1.99 600 100 - 0.00 15.6 600 100 -
CP-12 12 66 0 0 0.48 5.0E-3 8.4E-3 40.2 600 0 100 0.00 40.2 600 100 - 0.00 37.6 600 100 -
CP-13 13 78 0 0 0.63 4.4E-3 9.9E-3 55.2 600 0 100 0.00 55.2 600 100 - 0.00 53.1 600 100 -
CP-14 14 91 0 0 0.72 3.8E-3 1.1E-2 66.8 600 0 100 0.00 66.8 600 100 - 0.00 63.0 600 100 -
CP-15 15 105 0 0 0.89 3.6E-3 1.5E-2 73.5 600 0 100 0.00 73.5 600 100 - 0.00 74.1 600 100 -
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Table 4.2: Results for 2D CP instances with a speed control range of [−6%,+3%] and a heading control range of [−15◦,+15◦].

Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs, optimality gaps

(Gap), proportions of time-outs (nt) and the performance gain (Gain) are reported in %.

Pre-processing Disjunctive Disjunctive-2017 Shadow

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt ∆UB Gap Time nt Gain ∆UB Gap Time nt Gain

CP-4 4 6 0 0 0.01 6.2E-4 6.2E-4 0.00 0.25 0 0 0.00 0.01 0.25 0 0.00 0.00 0.00 1.27 0 80.2
CP-5 5 10 0 0 0.03 1.1E-3 1.1E-3 0.00 0.03 0 0 0.00 0.03 0.03 0 0.00 0.00 0.00 1.16 0 97.3
CP-6 6 15 0 0 0.11 1.8E-3 1.8E-3 0.00 0.23 0 0 0.00 0.11 0.23 0 0.00 0.00 0.00 1.24 0 81.4
CP-7 7 21 0 0 0.18 2.4E-3 2.4E-3 0.00 0.19 0 0 0.00 0.18 0.19 0 0.00 0.00 0.01 1.20 0 84.4
CP-8 8 28 0 0 0.25 3.5E-3 3.5E-3 0.02 3.17 0 0 0.00 0.25 3.17 0 0.00 0.00 0.00 3.72 0 14.7
CP-9 9 36 0 0 0.31 4.3E-3 4.3E-3 0.02 8.11 0 0 0.00 0.31 8.11 0 0.00 0.00 0.02 8.80 0 7.80
CP-10 10 45 0 0 0.42 5.6E-3 5.6E-3 0.02 75.1 0 0 0.00 0.42 75.1 0 0.00 0.00 0.02 85.1 0 11.7
CP-11 11 55 0 0 0.52 6.6E-3 6.8E-3 5.25 600 0 100 0.00 0.52 600 100 - 0.00 10.2 600 100 -
CP-12 12 66 0 0 0.62 4.9E-3 8.4E-3 40.7 600 0 100 0.00 0.62 600 100 - 0.00 39.9 600 100 -
CP-13 13 78 0 0 0.72 4.4E-3 9.9E-3 55.5 600 0 100 0.00 0.72 600 100 - 0.00 50.1 600 100 -
CP-14 14 91 0 0 0.80 3.8E-3 1.1E-2 66.5 600 0 100 0.00 0.80 600 100 - 0.00 65.7 600 100 -
CP-15 15 105 0 0 0.88 3.7E-3 1.4E-2 72.9 600 0 100 0.00 0.88 600 100 - 0.00 70.6 600 100 -
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Table 4.3: Results for 2D FP instances with a speed control range of [−6%,+3%] and a heading control range of [−30◦,+30◦].

Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs, optimality gaps

(Gap), proportions of time-outs (nt) and the performance gain (Gain) are reported in %.

Pre-processing Disjunctive Disjunctive-2017 Shadow

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt ∆UB Gap Time nt Gain ∆UB Gap Time nt Gain

FP-4 8 4 0 0 0.17 8.1E-4 8.2E-4 0.10 0.05 0 0 0.00 0.10 0.05 0 0.00 0.00 0.10 0.26 0 80.7
FP-5 10 5 0 0 0.28 1.1E-3 1.1E-3 0.03 0.05 0 0 0.00 0.03 0.05 0 0.00 0.00 0.08 4.17 0 98.8
FP-6 12 6 0 0 0.36 1.5E-3 1.5E-3 0.05 0.16 0 0 0.00 0.05 0.16 0 0.00 0.00 0.72 6.00 0 97.3
FP-7 14 7 0 0 0.40 2.1E-3 2.1E-3 0.05 0.44 0 0 0.00 0.05 0.44 0 0.00 0.00 0.32 6.80 0 93.5
FP-8 16 8 0 0 0.45 2.8E-3 2.7E-3 0.04 2.31 0 0 0.00 0.04 2.31 0 0.00 0.00 0.04 7.66 0 69.8
FP-9 18 9 0 0 0.52 3.7E-3 3.7E-3 0.03 2.28 0 0 0.00 0.03 2.28 0 0.00 0.00 0.15 126 0 98.1
FP-10 20 10 0 0 0.61 5.2E-3 5.2E-3 0.02 8.41 0 0 0.00 0.02 8.41 0 0.00 0.00 0.23 138 0 93.9
FP-11 22 12 0 0 0.71 5.8E-3 5.8E-3 0.14 12.3 0 0 0.00 0.14 12.3 0 0.00 0.00 0.05 126 0 90.2
FP-12 24 14 0 0 0.82 6.6E-3 6.6E-3 0.03 16.2 0 0 0.00 0.03 16.2 0 0.00 0.00 0.25 261 0 93.7
FP-13 26 16 0 0 0.94 7.4E-3 4.5E-3 0.12 21.4 0 0 0.00 0.12 21.4 0 0.00 0.00 0.12 342 0 93.7
FP-14 25 18 0 0 1.05 2.7E-2 2.7E-2 0.14 25.3 0 0 0.00 0.14 25.3 0 0.00 0.00 0.16 465 0 94.5
FP-15 30 22 0 0 1.15 3.5E-2 3.5E-2 0.13 42.2 0 0 0.00 0.13 42.2 0 0.00 0.00 0.24 576 0 92.6

90



Table 4.4: Results for 2D FP instances with a speed control range of [−6%,+3%] and a heading control range of [−15◦,+15◦].

Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs, optimality gaps

(Gap), proportions of time-outs (nt) and the performance gain (Gain) are reported in %.

Pre-processing Disjunctive Disjunctive-2017 Shadow

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt ∆UB Gap Time nt Gain ∆UB Gap Time nt Gain

FP-4 8 4 0 0 0.09 8.1E-4 8.2E-4 0.11 0.06 0 0 0.00 0.11 0.06 0 0.00 0.00 0.09 0.20 0 70.0
FP-5 10 5 0 0 0.22 1.1E-3 1.1E-3 0.03 0.07 0 0 0.00 0.03 0.07 0 0.00 0.00 0.10 4.57 0 98.4
FP-6 12 6 0 0 0.29 1.5E-3 1.5E-3 0.03 0.21 0 0 0.00 0.03 0.21 0 0.00 0.00 0.67 6.23 0 96.6
FP-7 14 7 0 0 0.41 2.1E-3 2.1E-3 0.06 0.47 0 0 0.00 0.06 0.47 0 0.00 0.00 0.30 6.81 0 93.1
FP-8 16 8 0 0 0.45 2.8E-3 2.7E-3 0.04 2.56 0 0 0.00 0.04 2.56 0 0.00 0.00 0.41 7.66 0 66.5
FP-9 18 9 0 0 0.62 3.7E-3 3.7E-3 0.03 2.76 0 0 0.00 0.03 2.76 0 0.00 0.00 0.15 156 0 98.2
FP-10 20 10 0 0 0.72 5.2E-3 5.2E-3 0.02 9.52 0 0 0.00 0.02 9.52 0 0.00 0.00 0.24 143 0 93.3
FP-11 22 12 0 0 0.85 5.8E-3 5.8E-3 0.04 10.3 0 0 0.00 0.04 10.3 0 0.00 0.00 0.04 176 0 94.4
FP-12 24 14 0 0 0.92 6.6E-3 6.6E-3 0.13 12.2 0 0 0.00 0.13 12.2 0 0.00 0.00 0.14 226 0 94.6
FP-13 26 16 0 0 0.99 7.4E-3 4.5E-3 0.12 18.4 0 0 0.00 0.12 18.4 0 0.00 0.00 0.01 338 0 94.5
FP-14 25 18 0 0 1.02 2.7E-2 2.7E-2 0.04 22.3 0 0 0.00 0.04 22.3 0 0.00 0.00 0.04 476 0 95.3
FP-15 30 22 0 0 1.23 3.5E-2 3.5E-2 0.23 32.2 0 0 0.00 0.23 32.2 0 0.00 0.00 0.14 600 100 -
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Table 4.5: Results for 2D GP instances with a speed control range of [−6%,+3%] and a heading control range of [−30◦,+30◦].

Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs, optimality gaps

(Gap), proportions of time-outs (nt) and the performance gain (Gain) are reported in %.

Pre-processing Disjunctive Disjunctive-2017 Shadow

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt ∆UB Gap Time nt Gain ∆UB Gap Time nt Gain

GP-4 16 12 0 0 0.03 9.2E-4 9.2E-4 0.01 0.16 0 0 0.00 0.01 0.16 0 0.00 0.00 0.11 1.22 0 86.8
GP-5 20 16 0 0 0.10 1.3E-3 1.3E-3 0.02 0.98 0 0 0.00 0.02 0.98 0 0.00 0.00 0.25 2.34 0 58.1
GP-6 24 20 0 0 0.21 1.8E-3 1.8E-3 0.04 2.85 0 0 0.00 0.04 2.85 0 0.00 0.00 0.26 12.1 0 76.4
GP-7 28 24 0 0 0.32 2.4E-3 2.4E-3 0.03 11.3 0 0 0.00 0.03 11.3 0 0.00 0.00 0.33 14.4 0 21.5
GP-8 32 28 0 0 0.44 3.2E-3 3.2E-3 0.02 20.7 0 0 0.00 0.02 20.7 0 0.00 0.00 0.12 59.5 0 65.2
GP-9 36 32 0 0 0.58 4.3E-3 4.3E-3 0.04 46.2 0 0 0.00 0.04 46.2 0 0.00 0.00 0.24 165 0 72.0
GP-10 40 36 0 0 0.69 6.1E-3 6.1E-3 0.02 47.5 0 0 0.00 0.02 47.5 0 0.00 0.00 0.82 194 0 75.5
GP-11 44 40 0 0 0.72 7.9E-3 7.9E-3 0.24 52.3 0 0 0.00 0.24 52.3 0 0.00 0.00 0.12 225 0 77.6
GP-12 48 44 0 0 0.89 8.3E-3 8.3E-3 0.31 61.2 0 0 0.00 0.31 61.2 0 0.00 0.00 0.13 383 0 83.7
GP-13 52 48 0 0 0.98 9.5E-3 9.5E-3 0.12 75.3 0 0 0.00 0.12 75.3 0 0.00 0.00 0.21 476 0 83.5
GP-14 56 52 0 0 1.09 3.4E-2 3.4E-2 0.56 92.8 0 0 0.00 0.56 92.8 0 0.00 0.00 0.24 600 100 -
GP-15 60 54 0 0 1.24 3.8E-2 3.8E-2 0.45 125 0 0 0.00 0.45 125 0 0.00 0.00 0.25 600 100 -
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Table 4.6: Results for 2D GP instances with a speed control range of [−6%,+3%] and a heading control range of [−15◦,+15◦].

Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs, optimality gaps

(Gap), proportions of time-outs (nt) and the performance gain (Gain) are reported in %.

Pre-processing Disjunctive Disjunctive-2017 Shadow

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt ∆UB Gap Time nt Gain ∆UB Gap Time nt Gain

GP-4 16 12 0 0 0.05 9.2E-4 9.2E-4 0.03 0.24 0 0 0.00 0.03 0.24 0 0.00 0.00 0.18 1.58 0 84.6
GP-5 20 16 0 0 0.05 1.3E-3 1.3E-3 0.02 1.81 0 0 0.00 0.02 1.81 0 0.00 0.00 0.21 2.16 0 16.2
GP-6 24 20 0 0 0.15 1.8E-3 1.8E-3 0.05 3.91 0 0 0.00 0.05 3.91 0 0.00 0.00 0.24 11.3 0 65.3
GP-7 28 24 0 0 0.24 2.4E-3 2.4E-3 0.03 11.2 0 0 0.00 0.03 11.2 0 0.00 0.00 0.65 18.6 0 39.7
GP-8 32 28 0 0 0.34 3.2E-3 3.2E-3 0.02 21.5 0 0 0.00 0.02 21.5 0 0.00 0.00 0.12 59.5 0 63.8
GP-9 36 32 0 0 0.48 4.3E-3 4.3E-3 0.05 46.5 0 0 0.00 0.05 46.5 0 0.00 0.00 0.24 136 0 65.8
GP-10 40 36 0 0 0.56 6.1E-3 6.1E-3 0.04 49.2 0 0 0.00 0.04 49.2 0 0.00 0.00 0.89 188 0 73.8
GP-11 44 40 0 0 0.67 7.9E-3 7.9E-3 0.14 50.3 0 0 0.00 0.14 50.3 0 0.00 0.00 0.32 205 0 75.4
GP-12 48 44 0 0 0.78 8.3E-3 8.3E-3 0.23 62.2 0 0 0.00 0.23 62.2 0 0.00 0.00 0.43 352 0 82.2
GP-13 52 48 0 0 0.81 9.5E-3 9.5E-3 0.22 78.3 0 0 0.00 0.22 78.3 0 0.00 0.00 0.31 421 0 81.4
GP-14 56 52 0 0 0.95 3.4E-2 3.4E-2 0.24 102 0 0 0.00 0.24 102 0 0.00 0.00 0.42 525 0 80.5
GP-15 60 54 0 0 1.03 3.8E-2 3.8E-2 0.33 132 0 0 0.00 0.33 132 0 0.00 0.00 0.51 600 100 -
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Table 4.7: Results for 2D RCP instances with a speed control range of [−6%,+3%] and a heading control range of [−30◦,+30◦].

Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs, optimality gaps

(Gap), time-outs (nt), infeasible solutions (nf ) and the performance gain (Gain) are reported in %.

Pre-processing Disjunctive

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt nf

RCP-10 10 3.10 (1.6) 0 0 0.12 2.2E-4 (2E-4) 2.2E-4 (2E-4) 0.00 (0.0) 0.05 (0.01) 0.0 (0.0) 0 0
RCP-20 20 13.1 (3.5) 0 0 0.23 1.7E-3 (9E-4) 1.7E-3 (9E-4) 0.00 (0.0) 0.26 (0.10) 0.0 (0.0) 0 0
RCP-30 30 32.9 (5.6) 0 0 0.45 7.1E-3 (2E-3) 7.1E-3 (2E-3) 0.17 (0.7) 135 (239) 0.4 (0.6) 3 0
RCP-40 40 59.3 (7.1) 0 0 0.60 1.8E-2 (5E-3) 2.4E-2 (1E-2) 15.0 (25) 516 (194) 0.8 (0.5) 72 0

Disjunctive-2017 Shadow

Instance ∆UB Gap Time nt nf Gain ∆UB Gap Time nt nf Gain

RCP-10 0.00 (0.0) 0.00 (0.0) 0.05 (0.01) 0 0 0.00 0.00 (0.0) 0.02 (0.1) 0.14 (0.10) 0 0 71.8
RCP-20 0.00 (0.0) 0.00 (0.0) 0.26 (0.10) 0 0 0.00 0.00 (0.0) 0.01 (0.0) 2.52 (0.60) 0 0 89.6
RCP-30 0.00 (0.0) 4.60 (11) 171 (266) 26 0 21.0 0.00 (0.0) 2.36 (4.9) 231 (218) 20 0 41.7
RCP-40 0.01 (0.1) 51.2 (12) 536 (200) 77 19 3.73 0.02 (0.1) 29.8 (25) 600 (0.0) 100 0 -
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Table 4.8: Results for 2D RCP instances with a speed control range of [−6%,+3%] and a heading control range of [−15◦,+15◦].

Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs, optimality gaps

(Gap), time-outs (nt), infeasible solutions (nf ) and the performance gain (Gain) are reported in %.

Pre-processing Disjunctive

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt nf

RCP-10 10 3.10 (1.6) 8.2 0 0.33 2.2E-4 (2E-4) 2.2E-4 (2E-4) 0.03 (0.2) 0.04 (0.0) 0.0 (0.0) 0 0
RCP-20 20 13.1 (3.5) 7.7 0 0.51 1.7E-3 (9E-4) 1.7E-3 (9E-4) 0.01 (0.0) 0.24 (0.1) 0.0 (0.0) 0 0
RCP-30 30 32.9 (5.6) 7.7 0 0.62 7.2E-3 (2E-3) 7.2E-3 (2E-3) 0.01 (0.1) 66.3 (135) 1.4 (0.8) 3 0
RCP-40 40 59.3 (7.1) 7.9 0 0.75 1.8E-2 (5E-3) 2.2E-2 (1E-2) 13.1 (20.7) 389 (261) 1.6 (0.5) 59 0

Disjunctive-2017 Shadow

Instance ∆UB Gap Time nt nf Gain ∆UB Gap Time nt nf Gain

RCP-10 0.00 (0.0) 0.03 (0.2) 0.04 (0.0) 0 0 0.00 0.00 (0.0) 0.03 (0.1) 0.11 (0.1) 0 0 62.6
RCP-20 0.00 (0.0) 0.01 (0.0) 0.24 (0.1) 0 0 0.00 0.00 (0.0) 0.01 (0.0) 1.39 (1.1) 0 0 81.3
RCP-30 0.00 (0.0) 3.13 (8.8) 155 (256) 22 0 57.2 0.00 (0.0) 0.89 (2.9) 167 (181) 10 0 60.5
RCP-40 0.01 (0.1) 52.0 (41) 516 (200) 78 48 24.6 0.02 (0.1) 25.8 (24) 600 (0.0) 100 0 -
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4.7.4 Results on 2D+FL instances

Results on 2D+FL instances are reported using similar tables as in Section 4.7.3.

Instead of reporting the number of aircraft and the number of conflicts, the aver-

age number of aircraft and conflicts per FL is reported, i.e. |A||Z| ,
nc

|Z| respectively. In

addition, there is the inclusion of a section corresponding to the FL assignment for-

mulation. In all the numerical experiments on 2D+FL instances, only a single pass

through the while loop of Algorithm 3 is required. Hence, it is only reported the Obj

which is the objective function value of MILP 8; and Time which is the corresponding

computing runtime in seconds. For the numerical experiment on 2D+FL problems,

the focus is on RCP instances named RCP-N-Z where N is the number of aircraft

and Z is the number of FLs. Three numbers of aircraft are considered: 50, 100 and

150; and two numbers of FLs: 3 and 5. In terms of conflict density, for the same

number of aircraft, instances with 3 FLs have a greater number of conflicts compared

to instances with 5 FLs and are more computationally challenging. The results are

reported in Table 4.9 for the standard heading control range, and in Table 4.10 for

the reduced heading control range.

Using the standard heading control range ([−30◦,+30◦], see Table 4.9), the nu-

merical experiments reveal that among all six groups of 2D+FL instances, only some

RCP-150-3 and RCP-150-5 instances may require aircraft to change FLs. That is,

for all other 2D+FL instances, all conflicts can be resolved using 2D trajectory con-

trol only and thus aircraft do not require performing any FL change. This can be

explained by observing that for instances RCP-150-3, the average number of aircraft

per FL is 50 which corresponds to a denser aircraft configuration compared to the

2D RCP-40 instances, which all admit feasible solutions. In comparison, only a sin-

gle RCP-150-5 instance required a FL change for a single aircraft. For RCP-150-5,

even though the average density per FL is 30, some instances may have denser FL

requiring FL separation. Among all 100 RCP-150-3 instances, 35% of the instances

requires a FL change. The maximum number of non-separable pairs (|PI|) is 2 and

the maximum objective value of Model 8 is 1, indicating that only a single aircraft

deviated from its initial FL.

Comparing the methods, it is observed that Disjunctive slightly outperforms the

two benchmarks in terms of solution quality by occasionally finding better UBs than

Disjunctive-2017 or Shadow. For instances with 3 FLs, the optimality gaps are rela-

tively small, i.e. less than 1.0% for RCP-50-3 and RCP-100-3 using Disjunctive (with

a standard deviation below 0.5%) and around 10% for RCP-150-3 (with a standard

deviation around 23%). However, using Disjunctive-2017 and Shadow, the optimality
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gaps are considerably larger. Especially in the former where the average gap (stan-

dard deviation in parenthesis) is 15.7% (18.6%) for RCP-50-3 and with RCP-100-3

and RCP-150-3, this difference is even larger, i.e. 42.0% (60.8%) and 61.6% (21.3%)

of gap, respectively. For Shadow, those values are less than 1.0% (0.1% of standard

deviation) for RCP-50-3, 53.2% (0.7%) for RCP-100-3 and 56.6% (24%) for RCP-150-

3. From a computational standpoint, the average runtime of Model 8 on RCP-150-3

instances is 4.56 s. For RCP-50-3, Disjunctive, Disjunctive-2017 and Shadow can solve

all instances in an average time of 0.88 s, 2.81 s and 10.2 s, respectively. For RCP-100-

3, which corresponds to an average number of 33.3 aircraft per FL, Disjunctive solves

all instances in an average time of 3.3 minutes, whereas using Disjunctive-2017 there

is a total of 64 % instances that time out and for the remaining instances that can be

solved, the runtime is 411 s. Shadow times out on 46% of the instances and requires

an average runtime of 9.5 minutes for the instances solved. The denser RCP-150-3

instances, with an average of 50 aircraft per FL, present substantial computational

challenges. Disjunctive is able to solve only 40% of these instances (60% of time-outs)

and an average of 2.8 MIQCP iterations are required with a standard deviation of

1.5. In comparison, Disjunctive-2017 is unable to solve most of these instances (95%

of time-outs) and fails to find a feasible solution for 5% of them. The method Shadow

is unable to solve any of these instances within the available time limit. The perfor-

mance gain using 3 FLs shows that a gain of 87.8% and 51.8% can be obtained using

Disjunctive over Disjunctive-2017 and 91.3% and 61.9% using Disjunctive over Shadow

for RCP-50-3 and RCP-100-3, respectively.

Increasing the number of FLs from 3 to 5 reduces the density of aircraft per FL

which translates into better computational performance for all three methods. The

UB value obtained by those instances using Disjunctive-2017 is relatively close to the

UB obtained with Disjunctive yielding deviations of 0.08, 0.09 and 0.10 in RCP-50-5,

RCP-100-5 and RCP-150-5, respectively (see Table 4.9). Shadow only deviates from

the UB found by Disjunctive by 0.08 for RCP-150-5 instances. All RCP-50-5 and

RCP-100-5 instances are solved to optimality within the time limit using all three

methods. The optimality gap is relatively small for Disjunctive and Shadow, and does

not exceed 0.2% in those instances. Using Disjunctive-2017, it reaches 13.4% for RCP-

50-5 and 45.5% for RCP-100-5. For RCP-150-5, using Disjunctive solves all instances

with optimality gap of 0.05%. However, Disjunctive-2017 fails to solve all RCP-150-5

instances and yields an average optimality gap of 45.1%. The method Shadow also

fails to solve all RCP-150-5 instances and yields an average optimality gap of 1.56%.

In terms of runtime, it is noticed that Disjunctive solves all instances with 5 FLs in less
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than 142 s (see Table 4.9). The performance of the methods on 2D+FL instances with

5 FLs reveal that gains of 75.6% and 42.7% can be obtained using Disjunctive over

Disjunctive-2017, and 81.8% and 98.8% using Disjunctive over Shadow for RCP-50-5

and RCP-100-5, respectively.

Reducing the heading control range (see Table 4.10), yields an overall similar

performance. The main differences relative to the results obtained using the standard

heading control range are observed in the pre-processing procedure which, as in the

2D RCP instances, eliminates on average 8% of the aircraft pairs. It is also observed

that reducing the heading control range increases the number of non-separable pairs to

1.45% for RCP-150-3 instances and to 0.03% for RCP-150-5 instances. This increase

in the proportion of non-separable aircraft pairs is reflected in the solution of the

flight assignment formulation (MILP 8) which has an average value of 1.62 on RCP-

150-3 instances and 0.02 on RCP-150-5 instances, respectively. For RCP-150-3, 67%

of the instances required a FL change, the maximum number of non-separable pairs

(|PI|) is 6 and the maximum objective value of Model 8 is 3, indicating that three

aircraft deviated from their initial FL. Same UB for and RCP-50-5 and RCP-100-5,

whereas for RCP-150-5 instances it is observed an average deviation of 0.05 using

Disjunctive-2017 and 0.02 using Shadow. The optimality gap is below 1% for all

instances using Disjunctive, while it ranges from 13.3% in RCP-50-3 to 40.1% in

RCP-150-3 using Disjunctive-2017, and from 0.01% to 42.1% using Shadow. In terms

of runtime, all three methods are able to solve all RCP-50-3 instances in on average

0.88 s, 2.37 s and 11.3 s using Disjunctive, Disjunctive-2017 and Shadow, respectively.

For RCP-100-3, it is noted that all instances are solved by Disjunctive in 168 s, while

26% and 39% of them time out using Disjunctive-2017 and Shadow, respectively. In

addition, Disjunctive-2017 fails to find a feasible solution in 10% of the instances.

For those instances that can be solved, the average runtime is 474 s for Disjunctive-

2017 and 453 s for Shadow. For RCP-150-3 instances, Disjunctive, Disjunctive-2017

and Shadow time out on 46%, 74% and 100% of the instances, respectively; and

Disjunctive-2017 fails to find a feasible solution in 14% of the instances. For the

remaining instances, the runtime is around 420 for Disjunctive and 587 s for Disjunctive-

2017. The performance gains of Disjunctive compared to both benchmarks are above

62% for RCP-50-3 and RCP-100-3 instances, and near 40% compared to Disjunctive-

2017 for RCP-150-3 instances. All RCP-50-5 and RCP-100-5 instances are solved to

optimality by all methods. The runtime for those instances is less than 1 s for RCP-

50-5 and 35.1 for RCP-100-5 for RCP-100-5 using Disjunctive, while Disjunctive-2017

and Shadow yield larger runtimes but of the same order of magnitude. These figures
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do not carry over to RCP-150-5 instances. Using Disjunctive, all RCP-150-5 instances

can be solved with an average runtime of 152 s. However, using Disjunctive-2017 all

instances time out and this fails to find a feasible solution in 15% of the cases. Further,

the average UB deviation is 0.12 using Disjunctive-2017 and the average optimality

gap 42.3%. Using Shadow, all RCP-150-5 instances also time out, the average UB

deviation is 0.09 and the average optimality gap is 12.3%.
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Table 4.9: Results for 2D+FL RCP instances with a speed control range of [−6%,+3%] and a heading control range of

[−30◦,+30◦]. Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs,

optimality gaps (Gap), time-outs (nt), infeasible solutions (nf ) and the performance gain (Gain) are reported in %.

Pre-processing FL assignment Disjunctive

Instance |A|
|Z|

nc

|Z|
|PF|
|P|

|PI|
|P| Time Obj. Time LB UB Gap Time ni nt nf

RCP-50-3 15 3.15 (1.50) 0 0.00 0.42 0.00 (0.0) 0.00 (0.0) 1.2E-2 (6E-3) 1.3E-2 (6E-3) 0.02 (0.0) 0.88 (0.2) 0.0 (0.0) 0 0
RCP-100-3 33 35.6 (1.12) 0 0.00 0.86 0.00 (0.0) 0.00 (0.0) 1.4E-1 (3E-2) 1.4E-1 (3E-2) 0.12 (0.3) 198 (123) 1.2 (2.0) 0 0
RCP-150-3 50 64.1 (5.26) 0 0.55 1.02 0.62 (0.08) 4.56 (0.8) 4.5E-2 (5E-3) 5.2E-2 (1E-2) 10.2 (23) 520 (136) 2.8 (1.5) 60 0

RCP-50-5 10 3.11 (1.52) 0 0.00 0.62 0.00 (0.0) 0.00 (0.0) 9.4E-3 (5E-3) 9.4E-3 (5E-3) 0.00 (0.0) 0.26 (0.1) 0.0 (0.0) 0 0
RCP-100-5 20 14.1 (3.52) 0 0.00 1.25 0.00 (0.0) 0.00 (0.0) 8.3E-3 (3E-2) 8.3E-2 (3E-2) 0.00 (0.0) 2.51 (2.4) 0.0 (0.0) 0 0
RCP-150-5 30 34.2 (2.56) 0 0.01 1.92 0.01 (0.1) 0.11 (1.1) 3.3E-1 (8E-2) 3.3E-1 (8E-2) 0.05 (0.2) 142 (185) 2.3 (0.6) 0 0

Disjunctive-2017 Shadow

Instance ∆UB Gap Time nt nf Gain ∆UB Gap Time nt nf Gain

RCP-50-3 0.02 (0.0) 15.7 (18.6) 2.81(2.52) 0 0 87.8 0.00 (0.0) 0.01 (0.0) 10.2 (14.8) 0 0 91.3
RCP-100-3 0.02 (0.1) 42.0 (60.8) 411 (136) 64 0 51.8 0.05 (0.1) 53.2 (0.7) 572 (17.5) 46 0 61.9
RCP-150-3 0.10 (0.0) 61.6 (21.3) 600 (0.0) 95 5 - 0.03 (0.0) 56.6 (24) 600 (0.0) 100 0 -

RCP-50-5 0.08 (0.0) 13.4 (16.6) 2.17 (1.98) 0 0 75.6 0.00 (0.0) 0.00 (0.0) 1.43 (1.0) 0 0 81.8
RCP-100-5 0.09 (0.0) 45.5 (12.6) 67.2 (70.5) 0 0 42.7 0.00 (0.0) 0.13 (0.1) 126 (163) 0 0 98.0
RCP-150-5 0.10 (0.0) 45.1 (10.3) 600 (0.0) 100 0 - 0.08 (0.0) 1.56 (0.6) 600 (0.0) 100 0 -

100



Table 4.10: Results for 2D+FL RCP instances with a speed control range of [−6%,+3%] and a heading control range of

[−15◦,+15◦]. Times (Time) are reported in seconds. The proportions of conflict-free ( |PF|
|P| ) and non-separable ( |PI|

|P| ) pairs,

optimality gaps (Gap), time-outs (nt), infeasible solutions (nf ) and the performance gain (Gain) are reported in %.

Pre-processing FL assignment Disjunctive

Instance |A|
|Z|

nc

|Z|
|PF|
|P|

|PI|
|P| Time Obj. Time LB UB Gap Time ni nt nf

RCP-50-3 15 3.15 (1.5) 7.0 0.00 0.52 0.00 (0.0) 0.00 (0.0) 1.2E-2 (6E-3) 1.2E-2 (6E-3) 0.02 (0.0) 0.88 (0.2) 0.0 (0.0) 0 0
RCP-100-3 33 35.6 (1.12) 7.2 0.00 0.62 0.00 (0.0) 0.00 (0.0) 1.4E-1 (3E-2) 1.4E-1 (3E-2) 0.15 (0.3) 168 (103) 2.2 (2.0) 0 0
RCP-150-3 50 64.1 (5.26) 8.1 1.45 1.22 1.62 (0.1) 5.62 (0.8) 4.5E-2 (5E-3) 5.2E-2 (1E-2) 8.60 (12) 420 (102) 4.8 (1.5) 46 0

RCP-50-5 10 3.11 (1.52) 8.6 0.00 0.52 0.00 (0.0) 0.00 (0.0) 9.4E-3 (5E-3) 9.4E-3 (5E-3) 0.00 (0.0) 0.26 (0.1) 0.0 (0.0) 0 0
RCP-100-5 20 14.1 (3.52) 7.8 0.00 1.22 0.00 (0.0) 0.00 (0.0) 8.3E-3 (3E-2) 8.3E-2 (3E-2) 0.00 (0.0) 35.1 (2.4) 0.0 (0.0) 0 0
RCP-150-5 30 34.2 (2.56) 8.0 0.03 1.86 0.02 (0.2) 0.21 (1.1) 3.3E-1 (8E-2) 3.3E-1 (8E-2) 0.51 (0.3) 152 (78.2) 4.3 (1.0) 0 0

Disjunctive-2017 Shadow

Instance ∆UB Gap Time nt nf Gain ∆UB Gap Time nt nf Gain

RCP-50-3 0.00 (0.0) 13.3 (15.3) 2.37 (1.79) 0 0 62.9 0.00 (0.0) 0.01 (0.0) 11.3 (15) 0 0 91.3
RCP-100-3 0.00 (0.1) 37.4 (51.7) 474 (118) 26 10 64.6 0.08 (0.1) 43.5 (0.7) 453 (125) 39 0 62.4
RCP-150-3 0.05 (0.1) 40.1 (13.6) 587 (14.2) 74 14 39.7 0.02 (0.0) 42.1 (20) 600 (0.0) 100 0 -

RCP-50-5 0.00 (0.0) 11.6 (14.3) 1.22 (1.11) 0 0 78.6 0.00 (0.0) 0.00 (0.0) 1.43 (1.0) 0 0 81.8
RCP-100-5 0.00 (0.0) 36.3 (3.68) 54.1 (61.5) 0 0 35.1 0.00 (0.0) 0.13 (0.1) 186 (163) 0 0 81.2
RCP-150-5 0.12 (0.0) 42.3 (45.4) 600 (0.0) 100 15 - 0.09 (0.0) 12.3 (1.6) 600 (0.0) 100 0 -
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4.8 Analytical Solution for the Two-Aircraft Con-

flict Resolution Problem

Based on the results presented in Section 4.7, it is observed that dense instances are

feasible even with reduced heading control and speed violations were observed only on

RCP instances with 30 or more aircraft. Therefore, it is a reasonable assumption that

instances with lower conflict density can be solved without bounds on heading and

speed deviation. Considering a two-aircraft conflict configuration, the optimisation

problem can be simplified and therefore solved analytically. In this section, an ana-

lytical solution for two-aircraft instances is proposed based on the decomposition of

the non-convex two-aircraft conflict resolution problem into two convex sub-problems

using the first order optimality conditions.

4.8.1 Analytical Problem Definition

Recalling the complex number formulation presented in Section 4.2, the relative mo-

tion equations of a pair of aircraft can be rewritten as:

vij,x = δi,xv̂i,x − δi,yv̂i,y − δj,xv̂j,x + δj,yv̂j,y, (4.30a)

vij,y = δi,yv̂i,x + δi,xv̂i,y − δj,yv̂j,x − δj,xv̂j,y, (4.30b)

where vi,x, vi,x, vj,x, vj,y are defined as:

v̂i,x = v̂i cos
(
θ̂i

)
, (4.31a)

v̂i,y = v̂i sin
(
θ̂i

)
, (4.31b)

v̂j,x = v̂j cos
(
θ̂i

)
, (4.31c)

v̂j,y = v̂j sin
(
θ̂j

)
. (4.31d)

The objective function for a two-aircraft problem as described in 4.7 can be rewrit-

ten as:

min f(δ) = (1− w)(1− δi,x)2 + wδ2
i,y + (1− w)(1− δj,x)2 + wδ2

j,y, (4.32)

where δ = [δi,x, δi,y, δj,x, δj,y]
> represents the solution vector containing all decision

variables for the two-aircraft problem. As it was discussed in Section 4.7.2, the value

adopted for w is 0.5 which assumes equal importance for both speed and heading angle
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control. Without loss of generality and to simplify the exposition, this parameter is

omitted in this section.

The separation constrains can be rewritten using the vector δ. This can be

achieved by replacing Eq. (4.31) into the separation conditions in (3.20)-eq3.21.

This results in:

h1(δ) = a1
i,xδi,x + a1

i,yδi,y + a1
j,xδj,x + a1

j,yδj,y ≤ 0, if zij = 1, (4.33a)

h2(δ) = a2
i,xδi,x + a2

i,yδi,y + a2
j,xδj,x + a2

j,yδj,y ≥ 0, if zij = 0, (4.33b)

h3(δ) = a3
i,xδi,x + a3

i,yδi,y + a3
j,xδj,x + a3

j,yδj,y ≤ 0, if zij = 1, (4.33c)

h4(δ) = a4
i,xδi,x + a4

i,yδi,y + a4
j,xδj,x + a4

j,yδj,y ≥ 0, if zij = 0, (4.33d)

where a1
i,x, a

1
i,y, a

1
j,x, a

1
j,y, a

2
i,x, a

2
i,y, a

2
j,x, a

2
j,y, a

3
i,x, a

3
i,y, a

3
j,x, a

3
j,y, a

4
i,x, a

4
i,y, a

4
i,x, a

4
j,x are con-

stants based on the initial configuration of the two-aircraft problem. Considering that

the disjunction represented by variable z divides the non-convex feasible region into

two convex feasible regions, the problem can be decomposed into two sub-problems

named SP0 and SP1:

SP0 :



Minimise f(δ),

Subject to:

h1(δ) ≥ 0,

h3(δ) ≥ 0,

δ ∈ R4.

SP1 :



Minimise f(δ),

Subject to:

h2(δ) ≤ 0,

h4(δ) ≤ 0,

δ ∈ R4.

where SP0 correspond to the sub-problem created for zij = 0 and SP1 for zij = 1.

Let R0 and R1 be denoted as the feasible regions of the sub-problems SP0 and SP1,

respectively, such as that:

R0 :


h1(δ) ≥ 0,

h3(δ) ≥ 0,

δ ∈ R4.

R1 :


h2(δ) ≤ 0,

h4(δ) ≤ 0,

δ ∈ R4.

4.8.2 Solution of Sub-Problems SP0 and SP1

Each sub-problem SP0 and SP1 can be solved individually by observing that the

sub-problem is convex and deriving its first-order (KKT) optimality conditions. For

the reminder of this section, only sub-problem SP1 is addressed. Let L(δ) be the

Lagrangian of SP1:

L(δ) = f(δ) + µ1h1(δ) + µ3h3(δ), (4.34)
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where µ1 ≥ 0 and µ3 ≥ 0 are the dual variables related to constraint (4.33a) and

(4.33b) of the primal problem SP1. Considering the function in Eq. (4.34), the

Karush-Kuhn-Tucker (KKT) conditions can be applied. The gradient of the La-

grangian of SP1:

∂L(δ)

∂δi,x
= −2(1− δi,x) + µ1

∂h1(δ)

∂δi,x
+ µ3

∂h3(δ)

∂δi,x
= 0, (4.35a)

∂L(δ)

∂δi,y
= 2δi,y + µ1

∂h1(δ)

∂δi,y
+ µ3

∂h3(δ)

∂δi,y
= 0, (4.35b)

∂L(δ)

∂δj,x
= −2(1− δj,x) + µ1

∂h1(δ)

∂δj,x
+ µ3

∂h3(δ)

∂δj,x
= 0, (4.35c)

∂L(δ)

∂δj,y
= 2δj,y + µ1

∂h1(δ)

∂δj,y
+ µ3

∂h3(δ)

∂δj,y
= 0, (4.35d)

where:

∂h1(δ)

∂δi,x
= a1

i,x,
∂h1(δ)

∂δi,y
= a1

i,y,

∂h1(δ)

∂δj,x
= a1

j,x,
∂h1(δ)

∂δj,y
= a1

j,y,

∂h3(δ)

∂δi,x
= a3

i,x,
∂h3(δ)

∂δi,y
= a3

i,y,

∂h3(δ)

∂δj,x
= a3

j,x,
∂h3(δ)

∂δj,y
= a3

j,y.

In addition the primal feasibility constrains are carried over and complementary

slackness conditions are required, such as that:

µ1h1(δ) = 0, (4.37a)

µ3h3(δ) = 0. (4.37b)

The conditions in Eq. (4.37) allows four different cases. Let δ?k be the optimal

solution for case k.

• Case I: If h1(δ) > 0 and h3(δ) > 0, then µ1 = µ3 = 0, which gives:

δ1
1 = [1, 0, 1, 0] (4.38)
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• Case II: If h1(δ) > 0 and µ3 > 0, then µ1 = 0 and h3(δ) = 0. This results in:

∂L(δ)

∂δi,x
= −2(1− δi,x) + µ3a

3
i,x = 0, (4.39a)

∂L(δ)

∂δi,y
= 2δi,y + µ3a

3
i,y = 0, (4.39b)

∂L(δ)

∂δj,x
= −2(1− δj,x) + µ3a

3
i,y = 0, (4.39c)

∂L(δ)

∂δj,y
= 2δj,y + µ3a

3
j,y = 0, (4.39d)

this allows to express all the primal variables in terms of the dual variables:

δ1
2 = [1− µ3

2
a3
i,x,−

µ3

2
a3
i,y, 1−

µ3

2
a3
j,x,−

µ3

2
a3
j,y] (4.40)

Replacing those values into h3(δ) = 0 results in a linear equation in function of

µ3, that can be solved as:

µ3 =
2(a3

i,x + a3
j,x)

(a3
i,x)

2 + (a3
i,y)

2 + (a3
i,x)

2 + (a3
j,x)

2
, (4.41)

which is a constant based on the initial configuration of the pair of aircraft.

Replacing such terms into Eq. (4.40), the second set of possible solutions is

obtained.

• Case III: If h3(δ) > 0 and µ1 > 0, then µ3 = 0 and h1(δ) = 0. This results in:

∂L(δ)

∂δi,x
= −2(1− δi,x) + µ1a

1
i,x = 0, (4.42a)

∂L(δ)

∂δi,y
= 2δi,y + µ1a

1
i,y = 0, (4.42b)

∂L(δ)

∂δj,x
= −2(1− δj,x) + µ1a

1
i,y = 0, (4.42c)

∂L(δ)

∂δj,y
= 2δj,y + µ1a

1
j,y = 0, (4.42d)

this allows to express all the primal variables in terms of the dual variables:

δ1
3 = [1− µ1

2
a1
i,x,−

µ1

2
a1
i,y, 1−

µ1

2
a1
j,x,−

µ1

2
a1
j,y] (4.43)
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Replacing those values into h1(δ) = 0 results in a linear equation in function of

µ1, that can be solved as:

µ1 =
2(a1

i,x + a1
j,x)

(a1
i,x)

2 + (a1
i,y)

2 + (a1
i,x)

2 + (a1
j,x)

2
, (4.44)

which is a constant based on the initial configuration of the pair of aircraft.

Replacing such terms into Eq. (4.43), the third set of possible solutions is

obtained.

• Case IV: If µ3 > 0 and µ3 > 0, then h3(δ) = 0 and h3(δ) = 0. This results

in the same equations as in 4.35 which allows all the primal variables to be

expressed in terms of both dual variables:

δ1
4 = [1− µ1

2
a1
i,x−

µ3

2
a3
i,x,−

µ1

2
a1
i,y−

µ3

2
a3
i,y, 1−

µ1

2
a1
j,x−

µ3

2
a3
j,x,−

µ1

2
a1
j,y−

µ3

2
a3
j,y]

(4.45)

Replacing those expressions into the equations h1(δ) = 0 and h2(δ) = 0:

h1(δ) = a1
i,x(1−

µ1

2
a1
i,x −

µ3

2
a3
i,x) + a1

i,y(−
µ1

2
a1
i,y −

µ3

2
a3
i,y)+

a1
j,x(1−

µ1

2
a3
j,x −

µ3

2
a3
j,x) + a1

j,y(−
µ1

2
a3
j,y −

µ2

2
a3
j,y) = 0,

(4.46)

h3(δ) = a3
i,x(1−

µ1

2
a1
i,x −

µ3

2
a3
i,x + a3

i,y(−
µ1

2
a1
i,y −

µ3

2
a3
i,y)+

a3
j,x(1−

µ1

2
a3
j,x −

µ3

2
a3
j,x + a3

j,y(−
µ1

2
a3
j,y −

µ2

2
a3
j,y = 0.

(4.47)

By solving Eq. (4.46) and (4.47) and replacing in Eq. (4.45), analytical expres-

sions for µ1 and µ3 can be obtained.

With all those four set of solutions, an analytical solution for SP1 can be obtained.

Let Σ0 and Σ1 be the set of of first-order optimality solutions associated with SP0

and SP1, respectively:

Σ0 = {δ0
1, δ

0
2, δ

0
3, δ

0
4},

Σ1 = {δ1
1, δ

1
2, δ

1
3, δ

1
4},
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hence, the solution of the two-aircraft conflict resolution problem is:

δ? ∈ argmin{f(δ) : δ ∈ {Σ0 ∩R0} ∪ {Σ1 ∩R1}} (4.49)

The set of four solutions can be visualized in the (vij,x, vij,y)-plane as a set of four

points as highlighted in Figure 4.3. The point in orange corresponds to Case I and

this solution corresponds to a no-deviation solution. Therefore, it can be concluded

that for any two-aircraft conflict that can be solved with that Case I, it corresponds

to a pair of aircraft in the set PF as described in Figure 3.1a. The points in green and

in blue correspond to Case II and Case III, respectively. For Case III, it corresponds

to the activation of h1(δ) while h3(δ) = 0. Recalling that h3(δ) corresponds to line R2

as described in Section 3.3 and Figure 3.2, the point in red will always be in R2. Using

the same reasoning, the point in blue will always be in Eq. N . The point coloured

in black corresponds to Case IV, where both h1(δ) and h3(δ) = 0. Therefore the

intersection of Eq. N with R2. For Case II, III and IV, there is not correspondence

of which each set (PF , PI and PS) that they can be without considering speed and

heading angle bounds.

Figure 4.3: Four candidate solution obtained via the analytical solutions. The point
in orange represents Case I, in blue Case II, in green Case III and in black Case IV.
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4.8.3 Discussion

In order to test the validity of such approach, a set of 8 different configurations of

two-aircraft conflict (see Figure 4.4) were solved using the approach described here

and benchmarked against the Non-Convex Model present in Chapter 3.

(a) CP-2-15 (b) CP-2-30 (c) CP-2-45 (d) CP-2-60

(e) CP-2-90 (f) CP-2-120 (g) CP-2-150 (h) CP-2-180

Figure 4.4: Extra instances representing different configuration of two-aircraft conflict

Those instances were used to benchmark the analytical formulation. The results

reveal that both methods provide the same solution for all cases tested. This solidifies

the efficiency of these analytical expressions and shows that those conflicts can be

automatically solved without the assistance of any optimisation. At the same time,

it shows that for some instances while it might takes a few seconds (even though

very quick), those conflicts do not required any sophisticated software to solve it,

because efficient solutions can be achieved only by analysing the initial configuration

of the aircraft involved. Lastly, it shows that there is some potential in applying those

analytical expressions to larger sets of aircraft.

The lack of control over the bounds of the decision variables is a considerable issue

which hinder the utilisation of such expressions for denser instances with multiple air-

craft. However, each pair of aircraft cannot be classified as ”conflict-free”, ”infeasible”

or ”separable” without the bounds. In order to do that, the conflict region defined

by Bij could be added to Model 4.49 to impose the speed bounds. Unfortunately, the

region defined by Bij is based on the vij,x, vij,y and do not prevent speed violations.

However, the speed bound constraints in the disjunctive formulation are non-convex
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quadratic terms and by utilising such terms, first-order optimality conditions are not

sufficient anymore.

Even though the process of obtaining this expressions can be arduous, it is simply

composed by operations using the initial conditions of the pair of aircraft observed.

At the same time, this provides a closed-form solution of a two-aircraft conflict. It

is important to notice that for such small conflicts, it is highly unlikely that the

optimal solution violates bound constraints on speed or heading deviations. That

is the reason why constraints related to such aspects can be removed without larger

consequences. However, conflicts involving more conflicts might be initially solved via

solutions which would require violations in speed and heading angle conditions. In

addition, this expression represents a novel attempt in solving the two-aircraft conflict

resolution problem without any form of optimisation, requiring simply pre-processing

calculations. This can be a cornerstone into developing a formulation for the ACRP

that does not require non-convex or non-linear constraints and intense optimisation.

4.9 Conclusion

The findings are summarised in Section 4.9.1 and discuss future research directions

in Section 4.9.2.

4.9.1 Summary of Findings

A new mixed-integer formulations and exact solution methods for aircraft conflict

resolution problems (ACRP) are proposed. First, it is considered the 2D ACRP with

continuous speed and heading control manoeuvres and proposed compact disjunctive

separation conditions. The proposed disjunctive separation conditions are linear with

regards to aircraft relative velocity variables and only require a single binary variable

per pair of aircraft. It has been formally shown that the proposed disjunctive linear

separation conditions fully characterise the set of conflict-free aircraft trajectories.

A simple pre-processing algorithm is introduced to identify aircraft pairs which are

conflict-free or non-separable for any combination of controls, which may help in

reducing the size of ACRPs by omitting conflict-free pairs. It is built on and extended

the complex number formulation for the ACRP introduced by Rey and Hijazi (2017)

by augmenting its objective function with a preference weight to balance the trade-

off between speed and heading deviations. The resulting formulation is a non-convex

mixed-integer program. This 2D formulation is extended to the context of altitude

control by flight level (FL) change and a lexicographic optimisation is proposed to
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solve the 2D+FL ACRP which aims to minimise the number of FL changes in priority

and resolve outstanding conflicts by 2D trajectory control.

A novel exact solution algorithm is proposed to solve the non-convex 2D and

2D+FL ACRPs. The proposed algorithms refine the convex relaxations introduced

by Rey and Hijazi (2017). For the 2D problem, the non-convex formulations are first

relaxed to mixed-integer quadratic programs (MIQP) which solution may violate the

speed control constraint. If such violations occur, convex quadratic constraints are

added together with a constraint generation algorithm that iteratively refines an outer

piecewise linear approximation of the speed control constraint by solving a sequence

of mixed-integer quadratically constrained programs (MIQCP). The 2D+FL lexico-

graphic optimisation problem is solved by decomposing the non-convex problem into

a flight assignment problem and a series of FL-based 2D problems. The proposed

flight assignment formulation is based on a reformulation of the FL separation con-

straint which requires an exponential number of constraints and is embedded into an

iterative approach to generate altitude separation constraints as needed.

The performance of the proposed mixed-integer formulations and algorithms was

tested on a total of 2072 benchmarking instances. These instances include four types

of ACRPs with up to 60 aircraft per instance for 2D problems and 150 aircraft per

instance for 2D+FL problems. The performance of the proposed solution algorithms

highlights the scalability of the approach compared to existing methods in the liter-

ature. Further, it is concluded that the combination of the pre-processing algorithm

with the MIQP convex relaxation is sufficient to solve FP and GP instances with

up to 60 aircraft, and most RCP instances with up to 30 aircraft. It is also stated

that the number of MIQCP iterations remains low on average when solving larger

problems. For 2D+FL lexicographic optimisation problems, it is perceived that the

pre-processing procedure generates enough altitude separation constraints to solve

dense instances with an average of 50 aircraft per FL.

In the numerical experiments, the performance of the proposed method is also

compared with two benchmarks based on state-of-the-art approaches for the ACRP.

The proposed method is compared with the method proposed by Rey and Hijazi

(2017) which is based on the same disjunctive linear separation conditions but dif-

fer in the solution algorithm (Disjunctive-2017). In addition, the proposed method

is compared with an approach using the same algorithm but based the classical

shadow separation conditions (Shadow). Our results reveal that the proposed method

(Disjunctive) is able to solve 87.8% of the benchmarking instances compared to 70.4%

using Disjunctive-2017 and to 69.7% using Shadow. Upon examining all instances
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that were solved by all three methods, it is observed that Disjunctive is systematically

faster than Disjunctive-2017 and Shadow, and an decreasing average in computing

time of 81.5% is reported in comparison to Disjunctive-2017 and 86.6% in comparison

to Shadow.

4.9.2 Future Research and Perspectives

The proposed approaches for ACRPs rely on several assumptions which may be lim-

iting in practice. One of the modelling assumptions at the core of the proposed

mixed-integer formulations is the assumption of uniform motion laws, which trans-

lates into infinite acceleration and deceleration rates. While such an assumption may

be plausible for constrained aircraft speed control, further research is needed to as-

sess the practicality of this assumption when considering varying types of aircraft or

different airspace environments, e.g. urban air mobility.

The usage of heading deviations for conflict resolution also raises concerns regard-

ing aircraft trajectory recovery. It is well-acknowledged that resolving conflicts does

not guarantee conflict-free recovery trajectories. Alonso-Ayuso et al. (2014) have

proposed an efficient method to calculate the earliest time of recovery for aircraft

but this approach does not ensure the existence of conflict-free recovery trajectories.

Dias et al. (2020) presented a two-step algorithm for the aircraft conflict resolution

with trajectory recovery which decomposes the collision avoidance procedure from

the trajectory recovery component but the approach remains sub-optimal, and fur-

ther research is needed to find global optimal solutions.

Future research may also explore asynchronous conflict resolution problems where

aircraft do not require to be coordinated. Further, more efforts to incorporate tra-

jectory prediction uncertainty in ACRPs, which may be caused by adverse weather

or disrupted navigation systems, is needed to develop more robust conflict resolution

formulations.

The coordination of aircraft conflict resolution manoeuvres also presents consider-

able operational challenges. As in the vast majority of exact methods for the ACRP,

the proposed approach assumes that all manoeuvres start at the same time, which

may not be always feasible in practice. Hence, there is a need to develop exact meth-

ods that are able to account for asynchronous conflict resolution manoeuvres. Future

research is also needed to incorporate trajectory prediction uncertainty, which may

be caused by adverse weather or disruption of navigation systems, within the pro-

posed mixed-integer formulations in the aim to develop more robust conflict resolution

formulations.
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Chapter 5

Robust aircraft conflict resolution
under trajectory prediction
uncertainty

In this chapter, a robust optimisation approach is presented to solve the aircraft con-

flict resolution under uncertainty. Considering the weather and measurements errors

as source of the randomness, the velocity component of each aircraft is adapted to in-

corporate the random effect caused by uncertainty. Starting off in Section 5.1, where

the robust problem and the uncertainty model used are introduced, followed the ro-

bust counterpart formulation and the solution method. In Section 5.2, the experiment

design used to test such algorithm and to benchmark against the deterministic coun-

terpart is discussed and further, the analysis based on different size of uncertainty sets

and different level of robustness is presented. At last, the findings are summarised in

Section 5.3. This formulation presented in this chapter was submitted to the journal

Computer & Operations Research (Dias and Rey, 2020).

5.1 Robust Aircraft Conflict Resolution Problem

Based on the formulation of the ACRP formulation presented in chapter 3, it is clear

that those formulations do not account for interference caused by random compo-

nents. Those elements are very relevant to ATC given that weather events as such

as fog and rain as well as measurements can caused major alterations on flight pat-

terns, delays and impairment to flight’s safety. Therefore, it is imperative that such

circumstances are handled carefully and taking into account in current formulations.

To incorporate and properly solve the ACRP taking into account those problems,

stochastic and robust optimisation are viable alternative. The first requires prior
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knowledge of how those random events will impact the model and they are modelled

as discrete probabilistic scenarios while for the latter, the range of unknown scenarios

is model as a continuous set where little to nothing is known about the impact.

In this section, formulations for the robust aircraft conflict resolution problem are

introduced. At first, the definition of the uncertainty model is presented followed by

how it can be incorporated within the ACRP. Then, a tractable robust counterpart

formulation for the robust ACRP is proposed.

5.1.1 Uncertainty Model

Assuming that each aircraft has a source of randomness and this affects its current

velocity and position. Let εi = [εi,x, εi,y]
> be a vector of random variables representing

the uncertainty on the velocity components of aircraft i ∈ A. Using this vector of

random variables, aircraft-based uncertainty sets can be defined as:

Definition 4 (Uncertainty Set of Aircraft i ∈ A). The uncertainty set of aircraft

i ∈ A, is defined as:

Ui ≡ {εi ∈ R2 | − εi,x ≤ εi,x ≤ εi,x,−εi,y ≤ εi,y ≤ εi,y}, (5.1)

where εi,x ≥ 0 and εi,y ≥ 0 represent the maximum perturbation on the velocity

components vi,x and vi,y, respectively, of aircraft i.

Denoting [ṽi,x, ṽi,y]
> as the vector of random aircraft velocity components where

the random variables ṽi,x and ṽi,y take values in ṽi,x ∈ [−vi,x(1+εi,x), vi,x(1+εi,x)] and

ṽi,y ∈ [−vi,y(1 + εi,y), vi,y(1 + εi,y)], respectively. Accordingly, for each pair of aircraft

(i, j) ∈ P , the random relative velocity components ṽij,x and ṽij,y are:

ṽij,x = vi,x(1 + εi,x)− vj,x(1 + εj,x) = vij,x + vi,xεi,x − vj,xεj,x, (5.2a)

ṽij,y = vi,y(1 + εi,y)− vj,y(1 + εj,y) = vij,y + vi,yεi,y − vj,yεi,y. (5.2b)

Let ṽij,x, ṽij,x and ṽij,y, ṽij,y be the lower and upper bounds for ṽij,x and ṽij,y,

respectively. These bounds can be determined using Eq. (5.2) and the bounds on

speed and heading control provided in Eqs. (3.8) and (3.9). The derived bounds on

the random relative velocity components can be used to define the random relative

velocity box which characterises all possible trajectories for the pair (i, j) ∈ P under

uncertainty.
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Definition 5 (Random relative velocity box). Consider a pair of aircraft (i, j) ∈ P.

Let Ui and Uj be the uncertainty sets of aircraft i and j, respectively. Let B̃ij(Ui,Uj)
be the parametric subset of R2 defined as

B̃ij(Ui,Uj) ≡
{

(ṽij,x, ṽij,y) ∈ R2 : ṽij,x ≤ ṽij,x ≤ ṽij,x, ṽij,y ≤ ṽij,y ≤ ṽij,y
}
. (5.3)

B̃ij(Ui,Uj) is the random relative velocity box of (i, j) ∈ P under the uncertainty sets

Ui and Uj.

Figure 5.1: Illustration of a two-aircraft conflict in the plane {(vij,x, vij,y) ∈ R2}. The
inner box with black lines corresponds to the velocity bounds Bij in the deterministic
scenario while the box with purple dots B̃ij(Ui,Uj) is the random relative velocity box.
The region is hashed in red corresponds to the conflict region Cij. If the uncertainty
sets Ui and Uj of aircraft i and j are empty, i.e. aircraft trajectories are deterministic,
then aircraft i and j are conflict-free. In turn, if the uncertainty sets Ui and Uj are
such that the random relative velocity B̃ij intersects with the conflict region Cij, then
there exists a risk of conflict.

The random relative velocity box is illustrated in Figure 5.1 for a two-aircraft

conflict. To ensure that a pair of aircraft (i, j) ∈ P is separated for any realisation

of the random variables εi ∈ Ui and εj ∈ Uj, (3.20) and (3.21) can be redefined using

the random velocity variables ṽij,x and ṽij,y:

ṽij,yx̂ij − ṽij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ P , (N1)

ṽij,yx̂ij − ṽij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ P , (N0)

ṽij,yγ
l
ij − ṽij,xφlij ≤ 0, if zij = 1, ∀(i, j) ∈ P , (S1)

ṽij,yγ
u
ij − ṽij,xφuij ≥ 0, if zij = 0, ∀(i, j) ∈ P . (S0)
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To find robust aircraft trajectories under uncertainty sets Ui and Uj, it is required

that the pairwise separation constraints N1, N0, S1 and S0 hold for any (ṽij,x, ṽij,y) ∈
B̃ij(Ui,Uj). Next, using state-of-the-art approaches in robust optimisation are used

to integrate these constraints into a robust counterpart formulation.

5.1.2 Robust Counterpart Formulation

The state-of-art approaches to handle models with uncertainty sets and robustness are

highlighted by Gorissen et al. (2015) where the authors describe different uncertainty

sets and how to apply them directly into this formulation. This strategy provides a

general framework based on the definition of the dual problem and the consequent

equivalence between dual and primal. On the other hand, Bertsimas and Sim (2004),

which is also based on primal-dual equivalence, proposed an alternative approach that

allows controlling the robustness level via a single parameter.

The constraints N1, N0, S1 and S0 are function of the random variables ṽij,x and

ṽij,y. Using the approach of Bertsimas and Sim (2004) these robust separation con-

straints can be reformulated as integer-linear constraints with regards to deterministic

relative velocity variables vij,x and vij,y. The constraints N1, N0, S1 and S0 are of the

form aṽij,x+bṽij,y ≤ 0 (omitting the disjunction), and can be rearranged by separating

deterministic and random elements as follows:

a(vi,x − vj,x)− b(vi,y − vj,y) + avi,xεi,x − avj,xεj,x − bvi,yεi,y + bvj,yεj,y ≤ 0. (5.5)

Introducing νi,x ≥ 0 and νi,y ≥ 0 as new variables for each i ∈ A through con-

straints (5.6), artificial bounds on aircraft velocity components vi,x and vi,y can be

imposed as:

−νi,x ≤ vi,x ≤ νi,x, ∀i ∈ A, (5.6a)

−νi,y ≤ vi,y ≤ νi,y, ∀i ∈ A. (5.6b)

Let RS ≡ {N1, N0, S1, S0} be the set of robust separation constraints. Further,

let αk = 1 for if k = N1 or k = S1, and let αk = 0 for if k = N0 or k = S0. Let Γ be

a real parameter that takes values in the range [0,4], where the upper bound is given

by the number of decision variables in constraint (5.5). The parameter Γ determines

the level of robustness for each robust separation constraint. To link the level of

robustness Γ with each robust separation constraint k ∈ RS and each aircraft pair

(i, j) ∈ P , real decision variables ψkij ≥ 0 are introduced. Further, each constraint
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of the form (5.5) involves four decision variables, hence for each constraint k ∈ RS
and (i, j) ∈ P , associated variables ρl,kij,x ≥ 0 and ρl,kij,y ≥ 0 for l ∈ {i, j} are also

introduced. These artificial variables reflect how the level of robustness affects each

velocity variable in 5.5 individually. The following constraints link variables ψkij ρ
l,k
ij,x

and ρl,kij,x with νxi and νxj :

ψkij + ρl,kij,x ≥ νi,xεi,x, if zij = αk, ∀(i, j) ∈ P , ∀l ∈ {i, j},∀k ∈ RS, (5.7a)

ψkij + ρl,kij,y ≥ νi,yεi,y, if zij = αk, ∀(i, j) ∈ P , ∀l ∈ {i, j},∀k ∈ RS. (5.7b)

Constraints of the form (5.5) can then be rewritten as:

a(vi,x−vj,x)−b(vi,y−vj,y)+ψkijΓ+
∑
l∈{i,j}

(ρl,kij,x+ρ
l,k
ij,y) ≤ 0, if zij = αk,∀(i, j) ∈ P ,∀k ∈ RS.

(5.8)

Combining the above constraints and artificial variables, the following integer-

linear robust counterpart formulation is obtained.

Proposition 5. The set of robust separation constraints RS = {N1, N0, S1, S0} can

be represented by the following set of integer-linear constraints and real variables:

a(vi,x − vj,x)− b(vi,y − vj,y)

+ ψkijΓ +
∑
l∈{i,j}

(ρl,kij,x + ρl,kij,y) ≤ 0, if zij = αk, ∀(i, j) ∈ P ,∀k ∈ RS,

ψkij + ρl,kij,x ≥ νi,xεi,x, if zij = αk, ∀(i, j) ∈ P ,∀l ∈ {i, j}, ∀k ∈ RS,

ψkij + ρl,kij,y ≥ νi,yεi,y, if zij = αk, ∀(i, j) ∈ P ,∀l ∈ {i, j}, ∀k ∈ RS,

ρl,kij,x, ρ
l,k
ij,x ≥ 0, if zij = αk, ∀(i, j) ∈ P ,∀l ∈ {i, j},∀k ∈ RS,

ψkij ≥ 0, if zij = αk, ∀(i, j) ∈ P ,∀k ∈ RS,

− νi,x ≤ vi,x ≤ νi,x, ∀i ∈ A,

− νi,y ≤ vi,y ≤ νi,y, ∀i ∈ A,

νi,x, νi,y ≥ 0, ∀i ∈ A.

The proof of Proposition 5 follows from Theorem 1 of Bertsimas and Sim (2004).

The robust counterpart formulation of the ACRP is summarised below.

Model 9. Robust Counterpart Formulation of the ACRP

Minimise
∑
i∈A

(1− w)(1− qi)2 + wθ2
i ,

Subject to:
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vij,x = qiv̂i cos
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
∀(i, j) ∈ P ,

vij,y = qiv̂i sin
(
θ̂i + θi

)
− qj v̂j cos

(
θ̂j + θj

)
∀(i, j) ∈ P ,

a(vi,x − vj,x)− b(vi,y − vj,y)

+ ψkijΓ +
∑
l∈{i,j}

(ρl,kij,x + ρl,kij,y) ≤ 0, if zij = αk, ∀(i, j) ∈ P ,∀k ∈ RS,

ψkij + ρl,kij,x ≥ νi,xεi,x, if zij = αk, ∀(i, j) ∈ P ,∀l ∈ {i, j},∀k ∈ RS,

ψkij + ρl,kij,y ≥ νi,yεi,y, if zij = αk, ∀(i, j) ∈ P ,∀l ∈ {i, j},∀k ∈ RS,

ρl,kij,x, ρ
l,k
ij,x ≥ 0, if zij = αk, ∀(i, j) ∈ P ,∀l ∈ {i, j},∀k ∈ RS,

ψkij ≥ 0, if zij = αk, ∀(i, j) ∈ P ,∀k ∈ RS,

− νi,x ≤ vi,x ≤ νi,x, ∀i ∈ A,

− νi,y ≤ vi,y ≤ νi,y, ∀i ∈ A,

νi,x, νi,y ≥ 0, ∀i ∈ A,

q
i
≤ qi ≤ qi, ∀i ∈ A,

θi ≤ θi ≤ θi, ∀i ∈ A,

vij,x, vij,y ∈ Bij, ∀(i, j) ∈ P ,

zij ∈ {0, 1}, ∀(i, j) ∈ P ,

q
i
≤ qi ≤ qi, ∀i ∈ A,

θi ≤ θi ≤ θi, ∀i ∈ A.

5.1.3 Solution Method for the Robust ACRP

The formulation presented in Model 9 is non-convex due to trigonometric functions

and non-linear components. To solve the robust optimisation problem represented by

Model 9, the approach proposed by Dias et al. (2021) can be adopted. This approach

solves the deterministic ACRP by using the so-called complex number formulation of

the ACRP (Rey and Hijazi, 2017) and embedding it within a cut generation algorithm.

Recalling the main elements of the complex number formulation for the ACRP, it is

outlined how this formulation is adapted for the robust ACRP.

The complex number reformulation of the robust is then constructed by substi-

tuting the original motion equations (3.2) with the reformulated aircraft velocities

constraints to incorporate uncertainty; replacing the speed and heading control con-

straints and variables bounds with (3.8), (3.9) and (4.4), respectively; and substituting

the original objective function (3.13) with (4.7). Observe that the robust separation
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constraints (5.9) remain unchanged since aircraft velocity variables vi,x and vi,y are

linked to variables δi,x and δi,y via constraints (4.3). The resulting formulation is re-

ferred as the robust complex number formulation and use Algorithm 2 from Dias et al.

(2021) to solve this problem. This solution method initially relaxes the non-convex

quadratic constraint in (4.5) and uses a cut generation procedure to iteratively solve

the relaxed problems until global optimality is reached.

5.2 Numerical Experiments

The experimental framework used to test the proposed mixed-integer formulation for

the robust problem is introduced in Section 5.2.2. Then a detailed analysis of four

instances of the ACRP is presented in Section 5.2.1. The computational performance

of the proposed approach and conduct sensitivity analyses on the level of robustness

and the size of aircraft uncertainty sets is thoroughly explored in Section 5.2.3 and

Section 5.2.4, respectively. The behaviour of the robust ACRP is further analysed by

examining specific sets of instances in Section 5.2.5.

5.2.1 Experiments Design

The performance of the proposed approach is tested using two benchmarking problems

from the literature: the Circle Problem (CP) and the Random Circle Problem (RCP).

Numerical results for problems with a subliminal speed control range of [−6%,+3%]

(Bonini et al., 2009). As commonly used in the literature (Cafieri and Omheni, 2017;

Rey and Hijazi, 2017),a heading control range of [−30◦,+30◦] is used . In addition, it

is assumed that the maximum uncertainty on aircraft velocity components is uniform

across directions and aircraft, and define ε̄ = ε̄xi = ε̄yi for all aircraft i ∈ A. In

those experiments, it is also considered the following maximum levels of uncertainty:

ε̄ = 2.5%, 5%, 7.5% and 10%, and varying levels of robustness Γ = 0, 1, 2, 3 and 4.

The proposed robust formulations are compared against its deterministic counterpart,

which corresponds to Γ = 0 and/or ε̄ = 0.

All problems are solved with a relative optimality gap of 1% and a time limit of 10

minutes. All models are implemented using Python on a personal computer with 16

GB of RAM and an Intel i7 processor at 2.9GHz, solved with Cplex v12.10 (Cplex,

2009) API for Python using default options.
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5.2.2 Analysis of the robust ACRP

To analyse and illustrate the behaviour of the proposed formulation for the robust

ACRP, the focus is on four instances: CP-1, RCP-10-1, RCP-20-1 and RCP-30-

1. The maximum uncertainty is set to ε̄ = 5% and in Figure 5.2,there are plots

of the optimal solutions obtained using the robust complex number formulation as

described in Section 5.1.3: black lines represent aircraft nominal trajectories, blue

lines represent aircraft optimal trajectories using Γ = 0 (which corresponds to the

deterministic case), and green lines represent optimal trajectories using Γ = 4 (which

corresponds to the maximum level of robustness).

Figure 5.2 shows that there are significant differences between deterministic and

robust aircraft trajectories, especially for instances with a high number of conflicts,

such as CP-10 (Figure 5.2a) and RCP-30-1 (Figure 5.2d). For RCP instances, this

difference increases with the number of aircraft. To further analyse the behaviour of

the robust ACRP, the distribution of post-optimisation aircraft minimal separation

distances, which is the distance dij(t
min
ij ) between each pair of aircraft (i, j) ∈ P

after optimisation, is examined against the level of robustness (Γ) and size of the

uncertainty set (ε̄), in Figures 5.3 and 5.4, respectively. For CP-10 (see Figure 5.3a),

it is noted that the average post-optimisation minimal separation distance increases

with Γ. Because this instance is symmetrical and all pairs are in conflict, the minimal

separation to avoid conflict tends to grow rapidly with Γ. For RCP-10-1, RCP-20-1

and RCP-30-1 (see Figures 5.3b, 5.3c, 5.3d, which have a higher density of pairs of

aircraft and less conflicts, it is observed that increasing the level of robustness does not

significantly affect the distribution of aircraft minimal separation which remains near

the minimal 5 NM mark. However, RCP-30-1 is found to be infeasible for Γ = 3 and

Γ = 4, which suggests that even though trajectories may not substantially affected

overall, such highly robust configurations fail to admit feasible solutions. Examining

the same instances for a varying maximum uncertainty reveals an overall similar

pattern although with more significant changes. Figure 5.4 shows that the average

minimum separation distance increases in all instances, particularly for CP-10. This

puts in evidence that increasing the value of ε̄ has a higher impact on the behaviour of

the solution obtained. For RCP-10-1, RCP-20-1 and RCP-30-1 (see Figures 5.4b, 5.4c

and 5.4d), it is noticed that the distribution of aircraft pairwise minimal distances

tends to increase for ε̄ ≥ 5%. Further, it is observed that RCP-30-1 is infeasible for

ε̄ = 7.5% and 10%.
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Figure 5.2: Illustration of aircraft optimal trajectories using the robust complex num-
ber formulation with a maximum uncertainty of ε̄ = 5%. Black lines represent aircraft
initial trajectories. Blue lines represent optimal trajectories obtained using Γ = 0.
Red lines represent avoidance trajectories obtained using Γ = 4.
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(a) CP-10 (b) RCP-10-1

(c) RCP-20-1 (d) RCP-30-1

Figure 5.3: Distribution of aircraft pairwise minimal separation distances after op-
timisation for varying level of robustness Γ. The maximum uncertainty is set to
ε̄ = 5%. The red dots correspond to individual values for each pair (i, j) ∈ P . The
black dashed line correspond to the minimal separation requirement of 5 NM.
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(a) CP-10 (b) RCP-10-1

(c) RCP-20-1 (d) RCP-30-1

Figure 5.4: Distribution of aircraft pairwise minimal separation distances after opti-
misation for varying maximum uncertainty ε̄. The level of robustness is set to Γ = 4.
The red dots correspond to individual values for each pair (i, j) ∈ P . The black
dashed line correspond to the minimal separation requirement of 5 NM.

For RCP instances, further examination of the minimum separation distance be-

tween aircraft before optimisation is available in Figure 5.5. Figures 5.5a, 5.5b and

5.5c correspond to instances RCP-10-1, RCP-20-1 and RCP-30-1, respectively. To be

more specific, around 55%, 50% and 45% of the pair of aircraft are less than 5 NM of

minimum separation (represented by the red dashed line on the plots) for RCP-10,

RCP-20 and RCP-30, respectively. Most of the remaining pairs are within close dis-

tance to the minimum separation distance. This suggests that introducing robustness

can make such instances harder to solved. For RCP-10-1, RCP-20-1 and RCP-30-1,

it can be extrapolated that the distribution of aircraft initial minimal separation dis-

tance follows a chi-square distribution with small mean value. This confirms that in

most instances, the mean value is close to 5 NM and a substantial number of aircraft

pairs are in conflict or are only separated by a marginal amount in addition to the

minimum separation distance.
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(a) RCP-10-1 (b) RCP-20-1 (c) RCP-30-1

Figure 5.5: Histogram and density plot for instances RCP-10-1, RCP-20-1 and RCP-
30-1. The red dashed line represents the minimum separation distance of 5 NM.

Next, a comprehensive computational benchmarking of the proposed solution

method for the robust ACRP is conducted.

5.2.3 Sensitivity analysis on the level of robustness

In this section, the performance of the robust complex number formulation is analysed

for a varying level of robustness (Γ) for a fixed maximum uncertainty of ε̄ = 5%. The

results for 7 CP instances ranging from 4 to 10 aircraft are presented in Table 5.1.

Results for RCP instances are reported in Table 5.2 for 3 instance sizes with 10, 20

and 30 aircraft per group. For each instance group, 100 RCP instances are randomly

generated and the average performance reported along with the standard deviation

in parenthesis. For all instances, the performance of the proposed formulations is

compared for varying level of robustness where Γ = 0 corresponds to the deterministic

case and Γ = 4 corresponds to the most robust configuration.

Each row in the results tables represents an instance (CP) or a group of instances

(RCP). The header of the results tables is presented from left to right: Γ is the

level of robustness; UB is the objective function value; Gap is the optimality gap in

percent; Time is the total runtime in seconds, ni is the number of MIQCP iterations

where ni = 0 means that an optimal solution was found or the time limit was reached

during the initial MIQP solve, nt represents the proportion of instances that could

not be solved within the time limit (10 minutes), i.e. the number of time-outs and n∅

indicates the number/proportion of infeasible instances.
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Table 5.1: Summary of results for CP instances with a speed control range of
[−6%,+3%] and a heading control range of [−30◦,+30◦] using a maximal uncertainty
of ε̄ = 5%.

Γ Instance UB Gap (%) Time (s) ni nt n∅

0

CP-4 6.25e−4 0.00 0.02 0 0 0
CP-5 1.14e−3 0.00 0.05 0 0 0
CP-6 1.81e−3 0.00 0.05 0 0 0
CP-7 2.37e−3 0.04 0.17 0 0 0
CP-8 3.46e−3 0.03 1.05 0 0 0
CP-9 4.31e−3 0.02 32.1 0 0 0
CP-10 5.55e−3 0.02 354 0 0 0

1

CP-4 1.07e−3 0.03 0.16 0 0 0
CP-5 1.33e−3 0.00 0.05 0 0 0
CP-6 2.63e−3 0.00 0.13 0 0 0
CP-7 3.37e−3 0.00 0.45 0 0 0
CP-8 5.44e−3 0.01 3.73 1 0 0
CP-9 6.93e−3 0.01 68.9 4 0 0
CP-10 8.81e−3 0.01 51.9 1 0 0

2

CP-4 1.21e−3 0.00 0.03 0 0 0
CP-5 1.49e−3 0.00 0.14 0 0 0
CP-6 3.13e−3 0.01 0.75 2 0 0
CP-7 4.18e−3 0.00 0.38 1 0 0
CP-8 6.93e−3 0.01 7.72 4 0 0
CP-9 8.92e−3 0.00 54.6 6 0 0
CP-10 1.39e−2 0.03 103 6 0 0

3

CP-4 1.22e−3 0.00 0.02 0 0 0
CP-5 1.59e−3 0.00 0.05 0 0 0
CP-6 3.38e−3 0.07 0.92 2 0 0
CP-7 4.64e−3 0.01 0.67 1 0 0
CP-8 8.98e−3 0.03 32.2 10 0 0
CP-9 1.09e−2 0.01 54.1 6 0 0
CP-10 2.08e−2 0.00 174 8 0 0

4

CP-4 1.22e−3 0.00 0.03 0 0 0
CP-5 1.63e−3 0.00 0.05 0 0 0
CP-6 3.49e−3 0.04 0.80 0 0 0
CP-7 4.77e−3 0.01 3.87 3 0 0
CP-8 9.20e−3 0.00 26.7 9 0 0
CP-9 1.24e−2 0.00 142 10 0 0
CP-10 2.38e−2 0.02 215 9 0 0

The experiments on the CP instances (Table 5.1) show that, as expected, the

upper bound (UB) increases with the number of aircraft. Further, it is observed that

UB increases with the level of robustness. It increases over 90% for CP-4 instances

from Γ = 0 to Γ = 4 and over 300% for CP-10 in the same scenario. In average, it is
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a growth of 143.62% which can be easily justified by the higher level of robustness.

While the runtime increases exponentially with the number of aircraft, increasing Γ

does not significantly impact runtime, even when compared to the deterministic case

of Γ = 0. It is observed that increasing Γ tends to increase the number of iterations

of the solution algorithm, which suggests that the higher levels of robustness require

more deconfliction resources, i.e. speed or heading change.

The implementation of the proposed approach on CP instances reveals that while

all instances up to CP-8 can be solved via the MIQP iteration when the value for

Γ = 0 or Γ = 1, for any higher values may require additional MIQCP iterations. It is

observed that for increasing Γ, the time limit is enough to solve all instances, but with

a higher level of randomness, more speed deviation is observed and therefore, more

MIQCP iterations are necessary to obtain a conflict-free and violation-free optimal

solution. This shows an expected behaviour such as that with higher randomness

effect granted by increasing Γ leads to a more complex problem and therefore a more

difficult to solve. In addition to this, with a higher value of Γ which represents a higher

level of robustness, it is expected that it would cause more violations in speed to

compensate for a wider range of speed and angle manoeuvres. With more violations,

the solution will consequently require more iteration to be solved to optimality. By

the time limit imposed, some instances could not be solved for a higher Γ. However,

as observed, the gamma formulation is enough to provide robust solutions given more

runtime.
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Γ Instance UB Gap Time ni nt n∅

0
RCP-10 2.2e−4 (2e−4) 0.00 (0.0) 0.05 (0.01) 0.0 (0.0) 0 0
RCP-20 1.7e−3 (9e−4) 0.00 (0.0) 0.26 (0.10) 0.0 (0.0) 0 0
RCP-30 7.1e−3 (2e−3) 0.17 (0.7) 135 (239) 0.4 (0.6) 3 0

1
RCP-10 1.0e−2 (7e−6) 0.00 (0.0) 0.24 (0.06) 0.0 (0.0) 0 0
RCP-20 9.8e−2 (4e−2) 0.00 (0.0) 10.2 (4.84) 0.0 (0.0) 0 0
RCP-30 7.5e−1 (2e−1) 0.17 (0.7) 287 (116) 0.4 (0.0) 10 60

2
RCP-10 2.7e−2 (2e−2) 0.00 (0.0) 0.34 (0.13) 0.0 (0.0) 0 0
RCP-20 2.8e−2 (9e−3) 0.00 (0.0) 25.1 (16.8) 0.0 (0.0) 8 34
RCP-30 - - - - - 100

3
RCP-10 4.2e−2 (2e−2) 0.00 (0.0) 0.54 (0.18) 0.0 (0.0) 0 0
RCP-20 7.4e−1 (2e−1) 0.00 (0.0) 134 (55.6) 0.0 (0.0) 10 46
RCP-30 - - - - - 100

4
RCP-10 5.3e−2 (3e−2) 0.00 (0.0) 0.59 (0.19) 0.0 (0.0) 0 0
RCP-20 8.8e−1 (2e−1) 0.00 (0.0) 201 (144) 0.0 (0.0) 15 67
RCP-30 - - - - - 100

Table 5.2: Summary of results for RCP instances with a speed control range of
[−6%,+3%] and a heading control range of [−30◦,+30◦] using a maximal uncertainty
of ε̄ = 5%.

The results of the experiments on RCP instances are summarised in Table 5.2.

Increasing the level of robustness in RCP instances also tends to increase the objective

value (UB), and the effect is on average magnified on instances with larger number

of aircraft. In percentage, the growth of the objective function is even larger when

compared to previous results for CP instances, where it is up to 2000% for RCP-10

and 5000% for RCP-20. Those extremely larger values is due to the random nature of

such instances and the substantial increase of deviation required to guarantee conflict

free trajectories under higher level of robustness. it is noticed that RCP-10 instances

can be solved within less than a second using for any level of robustness. RCP-20

instances require less than a minute for Γ ≤ 2, on average, but using Γ equal to

3 and to 4, requires around 2 and 3 minutes, respectively. It also noted that 34%,

46% and 67% of RCP-20 instances cannot be solved when Γ is equal to 2, 3 and 4,

respectively. The results for RCP-30 instances reveal that all problems with Γ ≥ 2

are infeasible, while only 40% of these instances can be solved with Γ = 1 and all 100

RCP-30 instances are feasible in the deterministic case.

Overall, it is observed that reducing the robustness level tends to improve the

performance of the proposed formulations while retaining comparable optimal solu-

tions to its deterministic counterpart, as indicated by the similar UB values obtained.

In term of total deviation, it is noticed that an increase of 500%, 239% and 3% in
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objective function value when using Γ = 4 for CP-10 and RCP-10 and 20, respec-

tively. The formulation is able to solve all instances with Γ = 1 whereas the results

for higher values can result in timeouts or infeasibility for many instances, especially

when Γ reaches its maximum value.

For example, for RCP-10 instances, all instances can be solved for any Γ value

and no timeout case. For RCP-20, all instance can be solved to optimality using

Γ ≤ 1. With Γ = 2, there are 8 timeout instances and 34% as report beforehand.

This percentage grows reaching 100% of infeasible solutions for Γ = 4. This trend is

even stronger for RCP-30 where it can only be solved when Γ ≤ 1, but with timeouts

in 3% and 20% of the instances for Γ = 0 and Γ = 1, respectively.

Those outcomes show that the robust complex number formulation is capable of

solving dense and complex scenarios, but with increasing randomness aspects, it can

be observed that those scenarios are not solvable. As expected, in order to accommo-

date more error due to a larger level of robustness allowed, the model cannot solve

instances where the density of pairs of aircraft is high. This summarises a valuable

trade-off when approaching robustness in air traffic control: higher robustness level

results in lower air capacity.

5.2.4 Sensitivity analysis on the size of the uncertainty set

For this experiment, the performance of the proposed formulation is compared for a

maximum level of robustness, i.e. Γ = 4 under varying maximum uncertainty ε̄: 0%

(for the deterministic counterpart), 2.5%, 5%, 7.5% and 10%. The performance is

reported similarly as in the previous section. The results for 7 CP instances ranging

from 4 to 10 aircraft are presented in Table 5.3 and results for RCP instances are

reported in Table 5.4.

The experiments on the CP instances (Table 5.3) show that, as expected, UB

increases with the maximum uncertainty. In this case, it is observed that for CP-4, a

growth in 1000% while for CP-10, 7000% in the objective function value comparing

ε̄ to 0% to 10%. This is considerably higher than the results found with different

level of robustness, but this emphasises that changing the size of the uncertainty

sets causes bigger impact in the model behaviour. It is observed that CP instances

with up to 9 aircraft can be solved with up ε̄ = 10%, however CP-10 is infeasible for

ε̄ = 7.5% and ε̄ = 10%. All deterministic CP problems can be solved without any

iteration (ni = 0) of the algorithm. In turn, introducing uncertainty in the robust

ACRP triggers several iterations of the solution algorithm which suggests that the

relaxed mixed-integer convex programs are generating more violations due to the
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ε̄ (%) Instance UB Gap (%) Time (s) ni nt n∅

0.0

CP-4 6.25e−4 0.00 0.20 0 0 0
CP-5 1.14e−3 0.00 0.40 0 0 0
CP-6 1.81e−3 0.00 0.64 0 0 0
CP-7 2.37e−3 0.00 0.39 0 0 0
CP-8 3.46e−3 0.02 3.04 0 0 0
CP-9 4.31e−3 0.02 7.97 0 0 0
CP-10 5.55e−3 0.02 72.3 0 0 0

2.5

CP-4 1.22e−3 0.00 0.03 0 0 0
CP-5 1.63e−3 0.00 0.05 0 0 0
CP-6 3.49e−3 0.04 0.80 2 0 0
CP-7 4.77e−3 0.01 3.87 4 0 0
CP-8 9.20e−3 0.00 26.7 9 0 0
CP-9 1.24e−2 0.00 142 10 0 0
CP-10 2.38e−2 0.02 215 8 0 0

5.0

CP-4 1.70e−3 0.00 0.03 0 0 0
CP-5 3.94e−3 0.02 0.65 2 0 0
CP-6 1.00e−2 0.00 4.12 6 0 0
CP-7 2.12e−2 0.00 16.2 9 0 0
CP-8 4.01e−2 0.53 12.9 5 0 0
CP-9 6.35e−2 2.13 31.9 5 0 0
CP-10 8.45e−2 3.23 20.4 2 0 0

7.5

CP-4 3.80e−3 0.00 1.28 4 0 0
CP-5 1.14e−2 0.00 4.56 11 0 0
CP-6 3.02e−2 0.00 3.14 5 0 0
CP-7 6.12e−2 0.46 9.44 8 0 0
CP-8 9.53e−2 7.55 5.88 3 0 0
CP-9 1.52e−1 1.99 9.36 3 0 0
CP-10 - - - - - 100

10.0

CP-4 7.45e−3 0.00 4.15 12 0 0
CP-5 2.14e−2 0.00 2.81 8 0 0
CP-6 6.24e−2 0.00 3.92 6 0 0
CP-7 1.09e−1 0.25 4.68 5 0 0
CP-8 1.98e−1 3.52 4.14 3 0 0
CP-9 3.48e−1 18.8 5.57 3 0 0
CP-10 - - - - - 100

Table 5.3: Summary of results for CP instances with a speed control range of
[−6%,+3%] and a heading control range of [−30◦,+30◦] using a level of robustness
of Γ = 4.
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ε̄ (%) Instance UB Gap (%) Time (s) ni nt n∅

0.0
RCP-10 2.2e−4 (2e−4) 0.00 (0.0) 0.05 (0.01) 0.0 (0.0) 0 0
RCP-20 1.7e−3 (9e−4) 0.01 (0.0) 0.24 (0.1) 0.0 (0.0) 0 0
RCP-30 7.2e−3 (2e−3) 0.01 (0.1) 66.3 (135) 1.4 (0.8) 3 0

2.5
RCP-10 1.6e−2 (1e−2) 0.00 (0.0) 0.47 (0.15) 0.0 (0.0) 0 1
RCP-20 8.9e−1 (2e−1) 0.00 (0.0) 193 (138) 0.0 (0.0) 12 4
RCP-30 - - - - - 100

5.0
RCP-10 5.3e−2 (3e−2) 0.00 (0.0) 0.60 (0.18) 0.0 (0.0) 0 1
RCP-20 8.8e−1 (2e−1) 0.00 (0.0) 200 (144) 0.0 (0.0) 2 93
RCP-30 - - - - - 100

7.5
RCP-10 1.3e−1 (6e−2) 0.00 (0.0) 0.76 (0.24) 0.0 (0.0) 0 9
RCP-20 - - - - - 100
RCP-30 - - - - - 100

10.0
RCP-10 3.0e−1 (1e−1) 0.00 (0.0) 0.89 (0.20) 0.0 (0.0) 0 26
RCP-20 - - - - - 100
RCP-30 - - - - - 100

Table 5.4: Summary of results for RCP instances with a speed control range of
[−6%,+3%] and a heading control range of [−30◦,+30◦] using a level of robustness
of Γ = 4.

required robustness. Using ε̄ = 2.5%, the instances can be solved within 0.03 s for

CP-4 and up to 215 seconds for CP-10. Increasing ε̄ results in a reduced runtime for

all instances compared to the deterministic case.

The results obtained using RCP instances (Table 5.4) reveal that while all prob-

lems are feasible under deterministic conditions, the proportion of infeasible problems

increase with the maximum uncertainty and the number of aircraft. Notably, all RCP-

30-1 instances are found to be infeasible for ε̄ ≥ 2.5% (recall that a maximal level of

robustness is used). Comparing the objective value, it is stated that over 100000% and

this exorbitant value is due to the larger uncertainty set and the fact those the devia-

tion required to guarantee separation in such cases are quite massive when compared

to the deterministic case. At the same time, such results highlight that increasing

the dimension of uncertainty sets is the major bottleneck in the performance of this

algorithm. In terms of runtime, RCP-10 instances, are solved within 1 s using any

value of ε̄. RCP-20 instances, require on average 0.24 s in the deterministic case.

Using ε̄ = 5%, 93 instances are infeasible, 2 timed-out and among the remaining 5

instances solved to optimality the average runtime is 200 s.

It is revealed that while all 10, 20 and 30 aircraft RCP instances can be solved

via the MIQP iteration for lower and medium values of ε̄ (0% and 2.5%) but as
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soon the values are closer to its upper capacity, it is required additional MIQCP

iterations. For RCP-10 instances, it can be solved within 1s using any value of ε̄.

For RCP-20 instances, it is required 0.24 s to 200 s, on average, using the values

up to ε̄ = 5.0%, but, for ε̄ = 2.5%, there was 12% of timeout instances and 4% of

infeasible instances and orε̄ = 5.0%, it is also observed that 93% of the instances

where infeasible. When solving RCP-30 even for relatively small values of ε̄ such

as 2.5%, it is noticed infeasibility or solutions that could not be solved within the

time limit are more common. For ε̄ ≥ 2.5%, 100% of the instances are infeasible.

The density of these instances plus the limited space to contain a larger deviation in

speed can make such scenarios to be impossible to be solved.

Overall, it is observed that reducing the uncertainty sets to a more realistic range

tends to improve the performance of the proposed formulations while it keeps in a

comparable range from its deterministic counterpart, as indicated by the similar UB

values obtained. In term of total deviation, it is noticed that an increase of 500%,

239% and 14% in objective function value when using ε̄ = 5.0% for CP-10 and RCP-10

and 20, respectively. The formulation can solve all instances with ε̄ = 2.5% whereas

the results for higher values can result in timeout or infeasibility for many instances,

especially when its values are closer to its maximum capacity.

The results of the sensitivity analyses conducted highlight that while the robust

ACRP can be solved without significantly increasing the level of computational re-

sources required, the impact of on system costs (total deviation) increase rapidly with

the level of robustness and/or uncertainty, and the number of aircraft. Further, these

analyses revealed that the likelihood of infeasibility increased rapidly along the same

directions. In the next section, this behaviour of the robust ACRP is explained in

details.

5.2.5 Feasibility analysis

In this section, the correlation between instance feasibility and infeasibility and the

characteristics of the instance are tested and explored. The goal is to identify which

features of conflict resolution instances can explain the existence of feasible solutions

to the robust ACRP. Since CP instances are fully symmetric these instances are not

examined. Further, since most RCP-30 instances are infeasible, the focus is on the

analysis to RCP-10 and RCP-20 instances. For each group of 100 instances, two-

dimensional scatter plots are generated where the x-axis dimension represents the

number of conflicts (nc) of this instance and the y-axis represents the total minimal

pairwise distance Dmin =
∑

(i,j)∈P dij(t
min
ij ) (in NM) of this instance. Each dot in
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the plots represents in of the 100 instances of the corresponding group (RCP-10 or

RCP-20) and the colour of the dot indicates whether this instance is feasible (blue) or

infeasible (red). This is done to verify whether that instances with a low total minimal

pairwise distance and a high number of conflicts are more likely to be infeasible when

increasing the level of robustness or the maximum uncertainty in the system. The

results of this experiment are reported in Figures 5.6, 5.7, 5.8 and 5.9: Figures 5.6

and 5.7 illustrate the outcome for varying level of robustness for RCP-10 and RCP-20

respectively; while Figures 5.8 and 5.9 illustrate the outcome for varying maximum

uncertainty for RCP-10 and RCP-20, respectively.

As expected, for instances where the initial minimal separation per pair of aircraft

is more than 5 NM, there is no expected initial conflict. On the other hand, if the

pairwise distance is small or less than 5 NM as the minimal criteria, conflicts are

expected. Based on the configuration of the instances used for testing, when the total

minimal distance is small, meaning that all aircraft are close to each other and the

density of conflict is higher, it is more likely that such instances cannot be solved for

all level of robustness. In Figure 5.6 and 5.7, such behaviour is confirmed.

In Figure 5.6, it is observed that for all values of Γ, all RCP-10 instances but one

(out of 100) with nc = 3 conflicts and Dmin ≈ . 10 NM can be solved. Figure 5.7

reveals that for RCP-20 instances and Γ = 1 only 3 infeasible instances. Increasing

Γ, it is observed that the proportion of infeasible instances increase more rapidly

the bottom-right quadrant of the plot, suggesting that on average instances with a

high number of conflict and low total minimal pairwise distance are more likely to be

infeasible.

Examining RCP-10 instances in Figure 5.8, it is observed that only a single in-

stance is infeasible for ε̄ = 2.5% and ε̄ = 5.0%. Increasing the maximum uncertainty

to ε̄ = 7.5% and 10%, more instances are infeasible and those instances exhibit a

smaller total pairwise minimal distance and a higher number of conflicts. As shown

in Figure 5.9, the proportion of infeasible RCP-20 instances increases rapidly with the

maximum uncertainty. Using ε̄ = 2.5%, only 5 instances (out of 100) are infeasible

and they mostly represent cases where the total minimal distance is smaller and the

number of conflicts is above 15 which is relatively high. Using ε̄ = 5.0% value, 94% of

instances are infeasible and the feasible instances tend to have a large total minimal

pairwise distance (above 70 NM) which suggests that aircraft have enough “room”

to accommodate robust conflict-free trajectories. It is revealed that for ε̄ ≥ 7.5% all

RCP-20 instances are infeasible.
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(a) Γ = 1 (b) Γ = 2

(c) Γ = 3 (d) Γ = 4

Figure 5.6: Feasibility of 100 RCP-10 instances based on the number of conflict nc and the total pairwise minimal distance
between all pairs of aircraft Dmin using ε̄ = 5%.
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(a) Γ = 1 (b) Γ = 2

(c) Γ = 3 (d) Γ = 4

Figure 5.7: Feasibility of 100 RCP-20 instances based on the number of conflict nc and the total pairwise minimal distance
between all pairs of aircraft Dmin using ε̄ = 5%.
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(a) ε̄ = 2.5% (b) ε̄ = 5.0%

(c) ε̄ = 7.5% (d) ε̄ = 10%

Figure 5.8: Feasibility of 100 RCP-10 instances based on the number of conflict nc and the total pairwise minimal distance
between all pairs of aircraft Dmin using Γ = 4.
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(a) ε̄ = 2.5% (b) ε̄ = 5.0%

(c) ε̄ = 7.5% (d) ε̄ = 10%

Figure 5.9: Feasibility of 100 RCP-20 instances based on the number of conflict nc and the total pairwise minimal distance
between all pairs of aircraft Dmin using Γ = 4.
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5.3 Conclusion

5.3.1 Summary of Findings

In this study, a new formulation for the robust ACRP under trajectory prediction

uncertainty is proposed. An aircraft trajectory prediction uncertainty model based

on aircraft velocity components is introduced and showed that this approach can

be incorporated into a robust optimisation formulation for the ACRP. In this, the

ACRP with continuous speed and heading control manoeuvres is used and it showed

that robust separation constraints can be reformulated as tractable integer-linear

constraints using state-of-the-art approaches in robust optimisation. The complex

number formulation for the ACRP is adapted and an exact algorithm is developed to

solve the resulting robust complex number formulation model to optimality. A series

of numerical experiments on benchmarking instances of the literature was conducted

to explore the behaviour of the robust ACRP and test the computational performance

of the proposed approach. The performance of the proposed approach was tested on

a total of 1535 benchmarking instances. These instances include two types of ACRPs

with up to 30 aircraft per instance for different levels of randomness reflected by

the level of robustness and the size of the uncertainty set. The performance of the

proposed solution algorithms highlights the scalability of the approach compared to

existing deterministic methods in the literature. It is observed that the increasing

the level of robustness and/or the maximum uncertainty in the model may lead to

infeasible instances, when the number of aircraft and conflicts is significant. Further,

pre- and post-optimisation analyses reveal that the number of conflicts and the total

pairwise minimal distance between aircraft can explain the behaviour of the proposed

robust ACRP in terms of instance feasibility. To the best of our knowledge, this is

the first exact robust optimisation formulation for the ACRP.

In the numerical experiments, the proposed formulation is compared with the de-

terministic case (Γ = 0). The results reveal that by increasing Γ and the uncertainty

set, the resulting model is still very competitive and it is observed that the runtime

of the robust formulation does not increase significantly compared to the determin-

istic counterpart. Even though the gamma formulation requires more variables and

constraints, it can solve most of the cases for lower values of Γ and uncertainty sets.

However, using higher values for those parameters, it becomes more challenging to

get feasible solutions within 10 minutes as the time limit and changes in Γ are more

likely to be solved instead of changes in ε̄ as shown in previous section, which means
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that controlling the level of robustness is easier than altering the dimension of such

robustness.
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Chapter 6

Aircraft Conflict Resolution
Problem with Trajectory Recovery

In CDR problems, one of the biggest challenges is to find conflict-free aircraft trajec-

tories that minimize the deviation to the original flight plan. This includes aircraft

recovering their initial speed and/or heading after performing a conflict resolution

manoeuvre. In mathematical programming approaches for CDR, this issue becomes

even more difficult due to non-linearity and non-convexity components within aircraft

velocity models. Therefore, it is a common strategy to divide the trajectory into two

separated stages: avoidance and recovery. So far in this thesis, the avoidance stage

has been addressed extensively through Chapters 3, 4 and 5. In those chapters, the

output of those models are trajectories that are least-deviating and by definition,

they may deviate the aircraft from their initial flight plan. Implicitly, it is expected

that additional manoeuvres are required for aircraft to recover their initial trajectory.

In this chapter, two-stage trajectory recovery algorithms are proposed to address the

deterministic ACRP with trajectory recovery. For the avoidance stage, two different

models are presented: a discretised heading control model and a continuous model

using the same algorithm as presented in Chapter 4. For the trajectory recovery, a

novel algorithm is proposed, where the recovery manoeuvres and the recovery time

are calculated.

A first approach is presented in Section 6.1 where heading angles are discretised

in the collision avoidance stage to simplify the formulation. The numerical results

using this approach are presented in Section 6.2. This simplification is then relaxed

in a second approach that builds on the first one and extends to continuous heading

angles and attempts to further improve the quality of the trajectories constructed in

Section 6.3. The numerical results emphasises the difference of both formulation even
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further in Section 6.4. In the conclusion in Section 6.5, the summary of findings and

future research are presented.

6.1 Conflict Resolution with Trajectory Recovery

with Discretised Heading Change Angles

In this section, a two-stage approach for conflict resolution with trajectory recovery

is presented, assuming that aircraft current and target positions are known and are

conflict-free. This sets the context of the optimisation problem of interest: given a set

of aircraft with known current and target positions, find least-deviating conflict-free

trajectories for all aircraft, such that aircraft may safely reach their target destina-

tion. To address this problem, it is proposed to decompose the trajectory optimisation

problem in two stages: 1) collision avoidance and 2) trajectory recovery. The first

stage focuses on controlling aircraft heading and speed to avoid all conflicts while the

second stage focuses on calculating the optimal time for aircraft to start safely recov-

ering towards their target position. For brevity, the focus is on the two-dimensional

conflict resolution problem and only considering horizontal aircraft manoeuvres. The

extension to the vertical case can be addressed by incorporating flight level change

manoeuvres in the collision avoidance stage (Dias et al., 2021) and ensuring safe

recovery to aircraft target flight level and position. In the following sections, the

continuous heading change angle case is addressed.

6.1.1 Collision Avoidance

In this first stage, the goal is to find conflict-free, least-deviating heading angles and

speed changes.

6.1.1.1 Separation Conditions

Consider a set of aircraft A sharing the same flight level. For each aircraft i ∈ A, as-

suming uniform motion laws, its position is: pi(t) = [xi(t) = x̂i+qivi cos
(
θ̂i + θi

)
t, yi(t) =

ŷi + qivi sin
(
θ̂i + θi

)
t]> in which vi is the speed, x̂i and ŷi are the initial coordinates

of i at the beginning of its trajectory, θ̂i is its initial heading angle, θi is its deviation

angle and qi is the speed deviation.

To avoid trigonometric functions, the set of heading change manoeuvres is discre-

tised. Let Hi be the set of deviation angles for each aircraft i ∈ A, and let δik be a
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binary variable which is 1 if aircraft i selects deviation angle θk ∈ Hi. The relative

velocity vector of i and j, denoted vij, can be expressed as vij = [vij,x, vij,y]
> where:

vij,x =
(
vi cos

(
θ̂i

) ∑
k∈Hi

φik cos
(
θ̂k

)
− vi sin

(
θ̂i

) ∑
k∈Hi

φik sin
(
θ̂k

))
−(

vj cos
(
θ̂j

) ∑
k∈Hj

φjk cos
(
θ̂k

)
− vj sin

(
θ̂j

) ∑
k∈Hj

φjk sin
(
θ̂k

))
, (6.1a)

vij,y =
(
vi sin

(
θ̂i

) ∑
k∈Hi

φik cos
(
θ̂k

)
+ vi cos

(
θ̂i

) ∑
k∈Hi

φik sin
(
θ̂k

))
−

vj sin
(
θ̂j

) ∑
k∈Hj

φjk cos
(
θ̂k

)
+ vj cos

(
θ̂j

) ∑
k∈Hj

φjk sin
(
θ̂k

)
,

(6.1b)

where the auxiliary variable φik is used to linearise the bilinear terms of the form

qiδik, via the following constraints:

q
i
δik ≤ φik, ∀i ∈ A, k ∈ Hi, (6.2a)

φik ≤ δikqi, ∀i ∈ A, k ∈ Hi, (6.2b)

qi − (1− δik)qi ≤ φik, ∀i ∈ A, k ∈ Hi, (6.2c)

φik ≤ qi − (1− δik)qi, ∀i ∈ A, k ∈ Hi. (6.2d)

The relative position of aircraft i and j at time t can be represented as pij(t) =

pi(t)− pj(t). Let d = 5NM be the horizontal separation norm, two aircraft i, j ∈ A
are horizontally separated if and only if: ||pij(t)|| ≥ d, ∀t ≥ 0.

6.1.1.2 Speed Control, Heading Changes and Objective Function

For each aircraft i ∈ A, it is assumed that the speed rate variable is lower bounded

by q
i

and upper bounded by qi, thus the speed control constraint is:

q
i
≤ qi ≤ qi, ∀i ∈ A. (6.3)

To model heading angle changes, it is taking into account that each aircraft i ∈ A
has access to a set of options for heading angles changes k ∈ Hi. The selection is

given by the binary variable δik which is equal to 1 if aircraft i selects and angle θk.

Heading angle selection is ensured via the constraint:∑
k∈Hi

δik = 1, ∀i ∈ A. (6.4)
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For the objective function, a quadratic penalty on speed and heading deviations is

used and the parameter w ≥ 0 is used to compromise between speed and angle change:

minimise
∑
i∈A

w(1− qi)2 + (1− w)

(∑
k∈Hi

δikθk

)2
 (6.5)

6.1.1.3 Disjunctive formulation

The proposed approach for conflict resolution via speed and discrete heading control

is summarised in Model 10.

Model 10. Heading-Discretised Disjunctive Formulation

minimise
∑
i∈A

w(1− qi)2 + (1− w)

(∑
k∈Hi

δikθk

)2
 ,

subject to

vij,x =
(
vi cos

(
θ̂i

) ∑
k∈Hi

φik cos
(
θ̂k

)
− vi sin

(
θ̂i

) ∑
k∈Hi

φik sin
(
θ̂k

))
−(

vj cos
(
θ̂j

) ∑
k∈Hj

φjk cos
(
θ̂k

)
− vj sin

(
θ̂j

) ∑
k∈Hj

φjk sin
(
θ̂k

))
, ∀(i, j) ∈ P ,

vij,y =
(
vi sin

(
θ̂i

) ∑
k∈Hi

φik cos
(
θ̂k

)
+ vi cos

(
θ̂i

) ∑
k∈Hi

φik sin
(
θ̂k

))
−

vj sin
(
θ̂j

) ∑
k∈Hj

φjk cos
(
θ̂k

)
+ vj cos

(
θ̂j

) ∑
k∈Hj

φjk sin
(
θ̂k

)
, ∀(i, j) ∈ P ,

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ P ,

vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ P ,

vij,yγ
l
ij − vij,xφlij ≤ 0, if zij = 1, ∀(i, j) ∈ P ,

vij,yγ
u
ij − vij,xφuij ≥ 0, if zij = 0, ∀(i, j) ∈ P ,

q
i
δik ≤ φik, ∀i ∈ A, k ∈ Hi,

φik ≤ δikqi, ∀i ∈ A, k ∈ Hi,

qi − (1− δik)qi ≤ φik, ∀i ∈ A, k ∈ Hi,

φik ≤ qi − (1− δik)qi, ∀i ∈ A, k ∈ Hi,∑
k∈Hi

δik = 1, ∀i ∈ A,

q
i
≤ qi ≤ qi, ∀i ∈ A,

vij,x, vij,y ∈ R, ∀(i, j) ∈ P ,

zij ∈ {0, 1}, ∀(i, j) ∈ P ,
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δik ∈ {0, 1}, ∀i ∈ A, k ∈ Hi,

φik ∈ R, ∀i ∈ A, k ∈ Hi.

This formulation is a mixed-integer quadratic program (MIQP) and it hasO(|A|2+

|A||H|) constraints and O(|A|2 + |A||H|) binary variables. The model is built with

indicator constraints which can be handled by commercial optimisation software.

The outputs of Model 10 are vectors of heading angle speed deviation, δ? and q?.

Let θ?i be the optimal heading change for aircraft i, therefore: θ?i =
∑
k∈Hi

δ?ikθk. The

resulting conflict-free trajectories of Model 10 is used as an input for the recovery

stage of the proposed conflict resolution algorithm.

6.1.2 Trajectory Recovery

The second stage aims to identify the optimal time for aircraft to recover towards its

target position. To account for the cost of trajectory deviations at the first stage, a?i

for i ∈ A represents the deviation corresponding to the optimal solution of Model 10:

a?i = (1− w)(1− q?i )2 + w(θ?i )
2 (6.7)

Let ti be the recovery time of aircraft i ∈ A and let x̌i, y̌i be the coordinates of the

target position of i. For trajectory recovery, each aircraft need to perform opposing

manoeuvres to cancel the deviation applied during avoidance. Similar to the avoid-

ance model, the goal is to guarantee that all pair of aircraft are separated throughout

the recovery stage. Since the separation condition Eq. (3.7) is based on linear motion,

it is necessary to distinguish the trajectory stage of each aircraft i ∈ A, i.e. before and

Figure 6.1: Illustration of fij(t) for a configuration with gij < 0 and tmin
ij > 0. τij

represents the start time of the conflict.
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after its recovery time ti. Let Ai be the avoidance trajectory of aircraft i and Ri its re-

covery trajectory. Given a pair (i, j) of aircraft, it is necessary to ensure that aircraft

are separated during all pairwise trajectory stages, denoted AiAj, AiRj, RiAj and

RiRj. Observe that separation for the stage AiAj is already ensured by the solution

of Model 10. If aircraft i and j were to recover at the same time period, then aircraft

will transition from AiAj to RiRj directly. Otherwise, if i (resp. j) recovers before j

(resp. i), then AiAj will transition to RiAj (resp. AiRj) before transitioning to RiRj.

The distance flown during the collision avoidance stage is:

dAi
(ti) =

√
(x̂i − x(ti))2 + (ŷi − y(ti))2, ∀i ∈ A, (6.8)

similarly, the distance flown during the trajectory recovery stage is:

dRi
(ti) =

√
(x(ti)− x̌i)2 + (y(ti)− y̌i)2, ∀i ∈ A. (6.9)

If aircraft i has changed its speed only, then at ti aircraft should recover its initial

speed without any heading change. Otherwise, if i has made a turning movement,

then aircraft should turn in the opposite direction at time ti with the angle:

θRi
(ti) = arcsin

(dAi
(ti) sin(θAi

)

dRi
(ti)

)
, (6.10)

To avoid trigonometric functions and obtain a tractable formulation, the time

component is discretised, i.e. ti ∈ {0, 1ε, 2ε, . . . , |T |ε} where T is the set of time

periods available for recovery and ε is the length of time periods. Abusing notation,

the separation condition is redesigned and expressed in Eq. (3.7) as: gij(m,n) ≥ 0

and tmin
ij (m,n) ≤ 0, where the pair (m,n) indicates the time period indices of recovery

times ti and tj, respectively.

Let ΩXiXj
be the set of conflict-free pairs of recovery times for aircraft i, j ∈ A,

where Xi represents the state of the trajectory of aircraft i, i.e. Ai or Ri; and Xj

represents the state of the trajectory of aircraft j, i.e. Aj or Rj. This set can be

specified into three different sets corresponding to the three different states during

the recovery stage. The set ΩRiRj
is defined as:

ΩRiRj
= {(m,n) ∈ T 2 : gRiRj

(mn) ≥ 0 ∨ tRiRj
(m,n) ≤ 0} (6.11)

For the states AiRj and RiAj an extra condition is required. Consider the state

AiRj: if the lines of motion corresponding to trajectories Ai and Rj are in conflict

but aircraft i turns into recovery prior to the start of this conflict, then no conflict
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will occur. This illustrated in Figure 6.1 where gAiRj
< 0 and tAiRj

> 0. Let τAiRj
(tj)

be the smallest root of gAiRj
= 0 if j recovers at time tj. If aircraft i recovers prior

to τAiRj
(tj), i.e. ti ≤ τAiRj

(tj), then the conflict will be avoided. Accordingly, those

sets are defined as:

ΩAiRj
= {(m,n) ∈ T 2 : gAiRj

(n) ≥ 0

∨ tAiRj
(n) ≤ 0 ∨ m ≤ τAiRj

(n)}, (6.12a)

ΩRiAj
= {(m,n) ∈ T 2 : gRiAj

(m) ≥ 0

∨ tRiAj
(m) ≤ 0 ∨ n ≤ τRiAj

(m)}. (6.12b)

In the next section, an exact and a heuristic approach to optimise aircraft recovery

times are proposed.

6.1.2.1 Exact-Recovery

Let ρim be a binary variable equal to 1 if aircraft i ∈ A recovers at time period

m ∈ T and 0 otherwise. The goal is to minimise the total weighted recovery time, i.e.∑
i∈A
∑

m∈T a
?
i ρimt

2
m. To track the states of aircraft pair (i, j) which are activated,

two binary variables αij and βij are introduced. Those variables are used to identify

whether ti < tj (αij = 1) which activates state RiAj, or if ti > tj (βij = 1) which

activates state AiRj. Variables αij and βij are defined via the constraints:

αij ≥
1

|T |

(∑
m∈T

mρim −
∑
n∈T

nρjn

)
∀(i, j) ∈ P (6.13a)

βij ≥
1

|T |

(∑
n∈T

nρjn −
∑
m∈T

mρim

)
∀(i, j) ∈ P (6.13b)

αij + βij ≤ 1 ∀(i, j) ∈ P (6.13c)

The following constraints is used to exclude conflicting trajectories from the solu-

tion. Observe that states AiRj and RiAj are conditional on the recovery times of ti

and tj and thus the corresponding constraints are only active if i and j do not recover

at the time period.

ρim + ρjn ≤ 2− βij, ∀(i, j) ∈ P , (m,n) ∈ ΩAiRj
, (6.14a)

ρim + ρjn ≤ 2− αij, ∀(i, j) ∈ P , (m,n) ∈ ΩRiAj
, (6.14b)

ρim + ρjn ≤ 1, ∀(i, j) ∈ P , (m,n) ∈ ΩRiRj
. (6.14c)
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Aircraft are assigned a recovery time via the constraint:∑
m∈T

ρim = 1, ∀i ∈ A. (6.15)

The exact trajectory recovery formulation is summarised in Model 11 which is a

MILP and it has O(|A|2 + |T |2) constraints and O(|A||T |+ |A|2) binary variables.

Model 11. Exact-Recovery

minimise
∑
i∈A

∑
m∈T

a?i ρimt
2
m

subject to

αij ≥
1

|T |

(∑
m∈T

mρim −
∑
n∈T

nρjn

)
, ∀(i, j) ∈ P ,

βij ≥
1

|T |

(∑
n∈T

nρjn −
∑
m∈T

mρim

)
, ∀(i, j) ∈ P ,

αij + βij ≤ 1, ∀(i, j) ∈ P ,

ρim + ρjn ≤ 2− βij, ∀(i, j) ∈ P , (m,n) ∈ ΩAiRj
,

ρim + ρjn ≤ 2− αij, ∀(i, j) ∈ P , (m,n) ∈ ΩRiAj
,

ρim + ρjn ≤ 1, ∀(i, j) ∈ P , (m,n) ∈ ΩRiRj
,∑

m∈T

ρim = 1, ∀i ∈ A,

ρim ∈ {0, 1}, ∀i ∈ A,m ∈ T ,

αij, βij ∈ {0, 1}, ∀(i, j) ∈ P .

6.1.2.2 Greedy-Recovery

This heuristic iterates over all time steps and uses a priority list to decide which

aircraft can be recovered at each time step. The priority list used is based on a?i

values (6.7). The algorithm first sorts aircraft accordingly and iterates over time

periods. At each time period the algorithm iterates over the sorted list of aircraft and

check if each aircraft can be recovered at the current time. The process is repeated

until no aircraft can recover at the current time. The proposed algorithm has a

worst-case time complexity of O(|T ||A|3). The pseudo-code of the proposed greedy

algorithm for aircraft trajectory recovery is summarised in 4.

Now the proposed the two-stage algorithm is formally introduced: stage 1 solves

initial conflicts using Model 10 by adjusting aircraft headings and speeds. The optimal
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Algorithm 4 Greedy-Recovery Algorithm
Input: A, a?

Output: t
R ← {i ∈ A : ai = 0}
D ← R−A
D ← Sort based on decreasing ai values
for t ∈ T do

update← true

while update = true do
update← false

for i ∈ D do
sep← 0
for j ∈ A do

if i < j then
if j ∈ R then

if (t, tj) ∈ ΩRiRj
then

sep← sep+ 1

else
if (t, tj) ∈ ΩRiAj

then
sep← sep+ 1

if i > j then
if j ∈ R then

if (tj, t) ∈ ΩRjRi
then

sep← sep+ 1

else
if (tj, t) ∈ ΩAjRi

then
sep← sep+ 1

if sep = |A| − 1 then
ti ← t
R ← R∪ {i}
D ← R \ {i}
update← true

solution of stage 1 is used as input for stage 2 which finds optimal aircraft recovery

times. Stage 2 is solved either exactly via Model 11 or using the heuristic algorithm

4. In the next section, the numerical results for those methods are proposed.
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6.2 Numerical Experiments

The experimental framework used to test the proposed mixed-integer formulation for

the trajectory recovery is introduced in Section 6.2.1. Then a detailed analysis of four

group of instances is presented in Section 6.2.2. The computational performance of

the proposed approaches are thoroughly explored in Section 5.2.3 and Section 6.2.3,

respectively.

6.2.1 Experimental Framework

For all tests, a speed regulation range of ±10% is used and it allows heading changes

in the range ±π
6

in steps of 10◦, hence a total of 7 headings are available per aircraft

(including the initial trajectory heading). For the preference weight, it is used as

w = 0.2 in the objective of Model 10. This value was selected such that both heading

and speed control terms were of comparable order of magnitude with an emphasis on

penalising heading control. For stage 2, a total of |T | = 15 time periods are used,

with a step of ε = 2 minutes. Models 10 and 11 are solved with CPLEX’s Python

API and a time limit of 5 minutes.

6.2.2 Illustration

To illustrate the proposed two-stage algorithm, the optimal solution obtained using

Model 10 and Model 11 (ER) are plotted for CP instances with 5, 10 and 15 aircraft

(CP-5, CP-10 and CP-15). For RCP instances, three instances of each instance size

tested are shown, i.e. with 10, 20 and 30 aircraft. In the figures, dashed grey lines

represent aircraft initial trajectories, red lines represent the avoidance trajectory of

stage 1, and blue lines represent recovery trajectories of stage 2. For CP-5, all conflicts

are solved using speed control only. Instead, for CP-10 and CP-15, some aircraft make

a turn before recovering to their destination. The solutions of RCP instances highlight

that increasing the number of aircraft tends to increase the duration of the collision

avoidance trajectory (red line).
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Figure 6.2: Illustration of the two-stage algorithm with Exact-Recovery. Dashed grey
lines represent aircraft initial trajectories. Red lines represent aircraft collision avoid-
ance trajectories obtained via Model 10. Blue lines represent recovery trajectories
obtained via Model 11.
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6.2.3 Performance of the Two-stage Algorithm

The performance of the two variants of the two-stage algorithm are examined, one

where the trajectory recovery stage is solved using Model 11 (Exact Recovery – ER),

and the other using Algorithm 4 (Greedy Recovery – GR). Table 6.1 summarises the

results for CP instances. In the header |A| is the number of aircraft, nc as the number

of conflicts, Obj. is the objective function and Time(s) is the runtime in seconds. It

is also reported the minimum recovery time among all aircraft min
i∈A

ti, the average

recovery time 1
|A|
∑
i∈A

ti, and the maximum recovery time max
i∈A

ti. Gap% is the relative

gap difference between the objective values of ER and GR.

In terms of performance, it is observed that the runtime of Models 10 and 11

increase exponentially with the number of aircraft, highlighted the challenging nature

of the problems. Comparing trajectory recovery approaches, GR scales very efficiently

in terms of runtime compared to ER is able to find some optimal solutions. Overall

the average recovery time of GR is comparable to that of ER. In some cases, ER is

able to override the decision at the first stage by recovering aircraft initially deviated

at t = 0, which means that such aircraft do not need to perform any avoidance

manoeuvre.
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Avoidance Exact-Recovery Greedy-Recovery

|A| nc Obj. Time (s) Obj. Time (s) min
i∈A

ti
1
|A|
∑
i∈A

ti max
i∈A

ti Obj. Time (s) min
i∈A

ti
1
|A|
∑
i∈A

ti max
i∈A

ti Gap(%)

4 6 4.89E-02 0.02 3.25E-03 0.24 0.00 1.25 2.00 3.25E-03 0.06 0.00 1.00 2.00 0.06
5 10 3.08E-03 0.03 9.76E-05 0.35 0.00 2.00 4.00 3.19E-04 0.08 0.00 2.40 5.00 69.41
6 15 7.34E-02 0.06 4.89E-03 0.47 0.00 2.17 4.00 8.14E-03 0.10 0.00 2.17 5.00 39.9
7 21 2.86E-02 0.52 2.01E-03 0.87 0.00 2.71 7.00 3.84E-03 0.12 1.00 3.86 7.00 47.5
8 28 9.82E-02 0.11 8.23E-03 0.97 2.00 3.50 6.00 8.23E-03 0.14 0.00 2.38 5.00 0.02
9 36 7.72E-02 26.9 7.81E-03 1.52 1.00 3.33 6.00 7.81E-03 0.22 0.00 1.78 5.00 0.04
10 45 1.23E-01 5.48 1.32E-02 2.03 0.00 3.50 7.00 1.88E-02 0.25 0.00 3.30 10 29.8
11 55 1.05E-01 50.4 1.44E-02 17.1 2.00 4.73 8.00 2.17E-02 0.29 0.00 5.00 11.0 33.2
12 66 1.49E-01 39.6 1.91E-02 9.74 0.00 4.25 9.00 2.62E-02 0.26 0.00 3.67 10.0 27.0
13 78 1.52E-01 6.93 2.53E-02 301 0.00 4.62 8.00 3.43E-02 0.38 0.00 5.31 9.00 26.2
14 91 1.74E-01 130 2.57E-02 40.0 0.00 4.36 8.00 2.56E-02 0.36 0.00 3.21 8.00 0.01
15 105 1.98E-01 200 2.81E-02 225 0.00 4.07 8.00 3.70E-02 0.49 0.00 4.27 7.00 23.8

Table 6.1: Results on the Circle Problem with 4 to 15 aircraft.
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It is also observed the performance of the two-stage algorithms for RCP instances

in Figures 6.3-6.6. For stage 1, it is revealed that the objective function and its

variance increase super-linearly with the number of aircraft (see Figure 6.3). All

first stage problems are solved within less than 3 minutes, with 10- and 20-aircraft

instances requiring less than 10 seconds (see Figure 6.4).

For stage 2, the performance of ER and GR on RCP instances is found to be com-

parable in terms of objective function values (see Figure 6.5). For 10- and 20-aircraft

problems, GR is marginally sub-optimal. For 30-aircraft problems, it is observed that

when using a time limit of 5 minutes for ER most instances time out (see Figure

6.6), and the feasible solution returned by ER is often less competitive than the one

provided by GR. This highlights the potential of the proposed greedy heuristic for

real-time decision support.
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Figure 6.3: Stage 1: collision avoidance. Distribution of objective function values for
Model 10. Each boxplot represent 100 instances of each instance size (10, 20 and 30
aircraft).
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Figure 6.4: Stage 1: Collision avoidance. Distribution of runtimes for Model 10. Each
boxplot represent 100 instances of each instance size (10, 20 and 30 aircraft).
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Figure 6.5: Stage 2: Trajectory recovery. Distribution of objective function values
for ER (Model 11) and GR (Algorithm 4). Each boxplot represent 100 instances of
each instance size (10, 20 and 30 aircraft).
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Figure 6.6: Stage 2: Trajectory recovery. Distribution of runtimes for ER (Model 11)
and GR (Algorithm 4). Each boxplot represent 100 instances of each instance size
(10, 20 and 30 aircraft).
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6.3 Conflict Resolution with Trajectory Recovery

with Continuous Heading Change Angle

One of the main drawbacks of using discretising angles in the avoidance stage is the

limitations in terms of available manoeuvres. Although such formulation simplifies

the avoidance problem, it lacks applicability and versatility. The quality and perfor-

mance of such models are very much linked to how the heading angle discretisation

is performed. More values guarantee more precision and diversity in the solutions,

but at the same time requires higher computational power and longer runtime. An-

other drawback of the previous formulations is the lack of guarantee that any solution

obtained is global. The previous method is composed of a two-stage sequential algo-

rithm that only solves each stage only once. Because the avoidance and recovery are

resolved separately, the solution for the entire problem is heavily dependent on the

avoidance stage and therefore cannot be taken as a global solution. This section intro-

duces a two-stage iterative algorithm to solve the aircraft conflict resolution problem

with trajectory recovery under continuous heading angle control. In this attempt,

it is expected that via multiple iterations, a trade-off between deviation and recov-

ery time can be obtained to guarantee that the solution obtained is a well-balanced

compromise between avoidance and trajectory recovery.

6.3.1 Collision Avoidance

For the collision avoidance stage, the Disjunctive method is used. As stated in Chapter

4, for conflict avoidance, the model used is based on the complex number formulation

and the constraint-generation algorithm. In addition, there are infinity possibilities

for the heading angle solution given that this variable is treated as continuous in

such formulation. However, as it was observed in the discretised version, applying

a two-stage approach, leads to smaller deviations on aircraft and at the same time,

more aircraft altered. Deviations in speed are easy to be recovered, while deviation in

heading angles is a larger inconvenience. Nevertheless, both types of manoeuvres alter

aircraft nominal trajectory and require recovery. By imposing an iterative algorithm,

it is expected that the cost to recover multiple aircraft with small deviations can

exceed the cost of deviating less aircraft with larger deviations. Therefore, it is

necessary to impose that fewer aircraft are affected in the avoidance stage but they

are required to be affected, this has to be at least costly enough to be justified.

By examining the solution from the conflict avoidance stage, it is clear that most

aircraft have deviated from nominal configurations. However, such deviations are
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very small. As observed in the discretised model, even small deviations result in

costly recovery manoeuvres. In order to generate trajectories where fewer aircraft are

controlled and those that are controlled have a reduced total cost, an additional binary

variable is introduced. This variable determines whether the aircraft is controlled or

not. In this formulation, the avoidance stage has the objective of minimising the

impact of the initial condition of the set of aircraft. Therefore, to guarantee such

conditions, the combined deviation cost needs to be kept as minimal as possible. To

achieve that, a new binary variable is introduced. Let fi ∈ {0, 1} for i ∈ A represent

the control variable, where a “controlled” aircraft, assuming fi = 1 if an aircraft has

its speed or heading modified and fi = 0, otherwise.

The initial usage of this binary variable is to guarantee that if a pair of aircraft

is initially in conflict, at least one has to alter its original flight plan. By using the

initial conditions, this can be pre-processed and those aircraft can be set up into a

set. Let P0 be set the aircraft such as that P0 ⊂ P and that is initially in conflict.

Recall that a pair (i, j) of aircraft is initially in conflict if and only if condition 3.7 is

not satisfied. Therefore, for all pair of aircraft that are initially in the conflict in P0,

the following cuts are valid inequalities:

fi + fj ≥ 1, ∀(i, j) ∈ P0. (6.16)

These cuts are added to strengthen the conflict resolution formulations by observ-

ing that for any pair of aircraft initially in conflict at least one of them must perform

an avoidance manoeuvre.

Based on the binary variable fi, if aircraft i is not controlled, its speed and heading

control should remain unchanged. This can be expressed as:

q
i
fi + (1− fi) ≤ qi ≤ qifi + (1− fi), ∀i ∈ A, (6.17a)

θifi ≤ θi ≤ θifi, ∀i ∈ A, (6.17b)

this is translated into the decision variables of the complex number formulation as:

q
i
cos
(
max{|θi|, |θi|}

)
fi + (1− fi) ≤ δi,x ≤ qifi + (1− fi), ∀i ∈ A, (6.18a)

qi sin
(
θi
)
fi ≤ δi,y ≤ qi sin

(
θi
)
fi, ∀i ∈ A, (6.18b)

Therefore, for each aircraft, if they are not performing any manoeuvres, the value

for its heading angle deviation should be equal to 0 and for speed change should be

equal to 1.
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The avoidance stage can be formulated exactly as presented in the Chapter 3 incor-

porating the manoeuvre control variable fi as described in Eq. (6.18) and constraint

(6.16).

Model 12. MIQP 2D Formulation using Manoeuvre Control Variable

Minimise
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2 + λffi,

Subject to:

vij,x = δi,xv̂i cos
(
θ̂i

)
− δi,yv̂i sin

(
θ̂i

)
− δj,xv̂j cos

(
θ̂i

)
+ δj,yv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ P ,

vij,y = δi,yv̂i cos
(
θ̂i

)
− δi,xv̂i sin

(
θ̂i

)
− δj,yv̂j cos

(
θ̂i

)
+ δj,xv̂j sin

(
θ̂j

)
, ∀(i, j) ∈ P ,

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ P ,

vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ P ,

vij,yγ
l
ij − vij,xφlij ≤ 0, if zij = 1, ∀(i, j) ∈ P ,

vij,yγ
u
ij − vij,xφuij ≥ 0, if zij = 0, ∀(i, j) ∈ P ,

fi + fj ≥ 1, ∀(i, j) ∈ P0,

q
i
cos
(
max{|θi|, |θi|}

)
fi + (1− fi) ≤ δi,x ≤ qifi + (1− fi), ∀i ∈ A,

qi sin
(
θi
)
fi ≤ δi,y ≤ qi sin

(
θi
)
fi, ∀i ∈ A,

vij,x, vij,y ∈ Bij, ∀(i, j) ∈ P ,

fi ∈ {0, 1}, ∀i ∈ A,

zij ∈ {0, 1}, ∀(i, j) ∈ P .

6.3.2 Trajectory Recovery

The second stage aims to identify the optimal time for aircraft to recover towards its

target position as it was done for the discretised model. As used in Section 6.1.2, the

avoidance cost function of aircraft i can be extended to incorporate the binary fi.

Let āi be defined as:

āi = (1− w)(1− δi,x)2 + wδ2
i,y + λffi, ∀i ∈ A, (6.20)

λf is the coefficient determining the importance of manoeuvre control. This cost

function should be minimised in the avoidance stage. Considering that fi � (1 −
δi,x)

2 + δ2
i,y, it imposes that modifying the status of an aircraft is notoriously more

costly and therefore it should be avoided. This can be justified by the fact that for
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each aircraft, the cost of changing its trajectory is unitary while the deviation in angle

and speed are very small in an optimized solution.

The cost function now needs to account for manoeuvres applied in the avoid-

ance stage as well as the recovery time. Therefore, the recovery cost function ā?i

is calculated based on avoidance cost function evaluated at the optimal solution of

the avoidance stage such as that its value are based on δ?i,x and δ?i,y. The objective

function is then rewritten to:

min
∑
i∈A

ā?i t
2
i (6.21)

where ti is the recovery time of aircraft i ∈ A. This expression comes from the

approximated area created by the deviation during the avoidance stage and it is

quadratic in ti. This value is obtained in the same process described in Section 6.1.2:

each aircraft need to perform its manoeuvres based on their deviation and at the

same time, it is necessary to guarantee that all aircraft are separated throughout this

stage too. Depending on the recovery time of each aircraft, three different pairwise

trajectory stages can be created (AiAj, AiRj, RiAj and RiRj). Because those stages

depend on the initial conditions and the optimal deviation obtained after avoidance,

all those possible stages can be calculated during pre-processing. Given that the

heading angle is a continuous variable in this formulation, the alternative trajectory

recovery is only known after the avoidance stage is optimised. The remaining details

of this model are equivalent to the Exact Recovery Model described in Section 6.1.2.1.

6.3.2.1 Two-Stage Iterative Algorithm

The main idea behind the algorithm is to capture the cost of the recovery in the cost

of the avoidance stage. Therefore, its goal is to influence the behaviour of the avoid-

ance stage to anticipate the cost of trajectory recovery and attempt to construct an

efficient trajectory across both stages. This can be achieved by altering the objective

function in the avoidance stage to account for the recovery cost calculated in 6.21.

The algorithm controls the variation between the overall costs of the solution in sub-

sequent iterations. Let TCi the total cost per aircraft defined as an approximation

of the combined cost of avoidance (in Eq. (6.20)) and recovery cost (in the objective

function stated in (6.21)).

TCi = (1− w)(1− qi)2 + wθ2
i + λff

2
i + λtt

2
i , ∀i ∈ A, (6.22)

157



where TCi is the overall cost of the trajectory, considering all the components in

the avoidance stage and the recovery time and w is the preference weight over the

two-dimensional and λt is the weight for the recovery time component. Let TCn
i , the

total cost for aircraft i at iteration n, therefore the cost variation ∆TCi is defined as:

∆TCi =
∑
i∈A

TCn
i − TCn−1

i . (6.23)

If this variation is less a predefined threshold, the algorithm converges. The

objective function in the avoidance stage is modified to account for the anticipated

cost of trajectory recovery by adding the expression in Eq. (6.21) evaluated at the

optimal solution obtained in the recovery stage. Hence, the avoidance stage objective

function can be re-written as:

min
∑
i∈A

ā?i (wδ
2
i,y + (1− w)(1− δi,x)2 + fiλf ) (6.24)

At the first iteration, there is no value for ā?i , therefore it is initialized as uniform

across for all aircraft i ∈ A.

6.4 Numerical Results

The experimental framework used to test the proposed mixed-integer formulation

for the trajectory recovery using continuous heading is introduced in Section 6.4.1.

Then a detailed analysis of four groups of instances is presented in Section 6.4.2.

The computational performance of the proposed approaches is thoroughly explored

in Section 6.4.3, respectively.

6.4.1 Experimental Framework

For all tests, a speed regulation range based on the subliminal speed control [−6%,+3%]

is used and it allows heading changes in the range ±π
6
. For the preference weight, it is

used as w = 0.5 in the objective of Eq. (6.20). This value was selected such that both

heading and speed control terms were of a comparable order of magnitude with an

emphasis on penalising heading control. For stage 2, a total of |T | = 15 time periods

are used, with a step of ε = 2 minutes. To solve avoidance, Disjunctive was used and

for recovery stage 11 and both are solved with Cplex Python API and a time limit

of 5 minutes per solving and 15 minutes per instances. For the first iteration, ρ?i is

assumed as 1 at the initial iteration and calculated after the recovery in the following
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Algorithm 5 Solution algorithm for the 2D ACRP with Trajectory Recovery

Input: A, θ̂, v̂, q, q, θ, θ, ε
Output: q?, θ?,t?i ,f

?
i , LB, UB

P ,PI,PF,PS ← Algorithm 1
LB ← 0
UB ← +∞
gap ← 0
ā?i ← 1for alli ∈ A
q,θ, δx, δy, z,f , LB ← Solve Stage 1 - Avoidance using Algorithm 2
if Infeasible then

Return Infeasible
else

converged ← False

while converged = False do
q,θ, δx, δy, z,f , LB ← Solve Stage 1 - Avoidance using Algorithm 2
for (i, j) ∈ P do

Calculate sets ΩAiRj
,ΩAjRi

and ΩRiRj
according to Eqs. (6.14)

Calculate set P0

Add cuts 6.16

t ← Solve Stage 2 - Recovery using Model 11
if Infeasible then

Return infeasible
else
t? ← t
q? ← q
θ? ← θ
t? ← t
Update TCi
Update āi

if ∆TCi ≤ ε then
converged ← True
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iterations. The preference weight w is considered as w = 0.5 as in Chapter 4 and λ

is kept as 1.

The performance of the two-stage iterative algorithm is examined. The following

tables represent the results for CP and RCP instances. In the header, there are four

sections, the first is based on the instances containing |A| is the number of aircraft

and nc as the number of conflicts. The second group is based on the avoidance stage

using the manoeuvre control variable: Obj. is the objective function, ∆TCi is the

optimality gap, Time(s) is the runtime in seconds, followed by total deviation in terms

of |1 − qi|, |θi| and fi, respectively. The third group contains the results from the

recovery stage using Model 11. It is reported the average recovery time 1
|A|
∑
i∈A

ti, the

maximum recovery time max
i∈A

ti and the minimum recovery time among all aircraft

min
i∈A

ti. The fourth group is the overall performance of the algorithm corresponding

to Iter. with the number of iterations and overall runtime in seconds Time(s). The

gap tolerance was 5%. Table 6.2 summarises the results for CP instances and Table

6.3 for the RCP instances with 10,20 and 30 aircraft.

6.4.2 Illustration

To illustrate the proposed two-stage iterative algorithm, the optimal solution ob-

tained is plotted for CP instances with 5 aircraft and RCP instances with 10, 20 and

30 aircraft, comparing these results with the results obtained using discrete angle for-

mulation. In the Figure 6.4.2, dashed grey lines represent aircraft initial trajectories,

red lines represent the avoidance trajectory of stage 1, and blue lines represent recov-

ery trajectories of stage 2 using Model 11 while green lines represent the avoidance

trajectory of stage 1 and the orange line represents the trajectory of stage 2 using

Algorithm 5.

Those results are very similar for the discretised and continuous angle models,

but there are key differentiating factors. Starting with CP-5, it is clear that with a

discrete angle (see Figure 6.7a), some aircraft have a small deviation in speed and in

heading angle using Model 11. With Algorithm 5, the overall deviations are larger

and the recovery time is later. This shows that in the continuous formulation (see

Figure 6.7b), the algorithm tends to explore larger deviations in the avoidance stage,

that would cause larger recovery time, but with an overall cost that justified such

initial decision.

This behaviour is even more accentuated in RCP-10, RCP2-20 and RCP-30. In

the first, using continuous angle, it is shown that only 3 aircraft are necessary to be
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altered with relatively small deviations and that would be sufficient for guaranteeing

separation conditions instead of deviating 9 out of 10 aircraft. The solutions obtained

via the continuous angle causes the smallest disturbance in the network, which is a

favourable trade for those formulations. For RCP-20 and RCP-30, the continuous

angles (Figures 6.7f and 6.7h) cause more aircraft to be altered, but overall, they show

the same behaviour: more aircraft with larger avoidance cost and reduced recovery

costs but overall cost improved.

6.4.3 Performance of the Two-Stage Iterative Algorithm

The performance of Algorithm 5 is reported in Table 6.2 for CP instances with 4

to 15 aircraft. In the results, it is observed that the number of conflicts increases

with the number of aircraft as expected from those instances where all the aircraft

are moving towards to centre. In terms of the objective function value, because of

the minimisation of the number of aircraft altered in speed and heading control, the

objective function is largely composed of
∑
i∈A

fi. For those instances, it is consistently

observed that in each instance one aircraft can remain in its initial condition. This

differs considerably from the results in Chapter 4 where the global solution would

imply that all aircraft needs to perform some manoeuvres. For aircraft that changed

speed, it is observed that in most instances, the aircraft does not change from its

nominal configuration. In instances with 10 or more aircraft, there are only light

deviations. Similarly, the variation in the heading angle is considered negligible for

smaller instances. However, it does not increase proportionally with the number of

conflicts, revealing that this manoeuvre is used sporadically. Compared with results

in Chapter 4, the results obtained using the current model show that fewer aircraft

are controlled, but the total deviation is larger. In terms of runtime, all instances with

up to 12 aircraft can be solved within the time limit while the remaining instances

time out. In the recovery stage, the average recovery time does not increase with

the number of aircraft (around 0.32 hours on average), with the minimum recovery

time around 5 minutes while the maximum peaks at almost 1 hour. However, all the

values of instances with 12 aircraft or more results in time out solutions. For recovery

time, most instances can be solved within the time limit, but for the larger instances,

the solution obtained in the avoidance stage time-out, as well as the solution in the

recovery stage. In terms of iterations, the algorithm only requires up to 3 iterations

to obtain a solution within the convergence criterion used.
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In Table 6.3, the results for RCP instances are presented. For the avoidance

stage, the objective function reflects the amount of aircraft that are required to be

separated as indicated by fi, 2.16 for RCP-10, 6.66 for RCP-20 and 12.6 for RCP-30

which reflect the value obtained by
∑
i∈A

fi. Comparing the two values, it is noticeable

that a large component of the objective function is solely based on that variable. In

terms of speed, most aircraft do not perform any relatively large deviation, the values

are close to the nominal value, with only 0.02 for RCP-10, 0.10 for RCP-20 and 0.39

for RCP-30. For heading changes, the values are small which reflect the fact that

most aircraft do not perform any deviation in heading either: 0.02 for RCP-10, 0.12

for RCP-20 and 0.40 for RCP-30. However, when compared to the heading deviation

obtained in Chapter 4, it is clear that heading deviation obtained by Algorithm 2

are considerably smaller and that most of the total deviation is caused by speed

changes. The opposite behaviour is observed here. The runtime for those instances

is reasonably short and instances with up to 30 aircraft can be solved in less than

10 s. In comparison with the results in Chapter 4, the Disjunctive presented gives

solutions are balanced with equal contribution from speed and heading control. In

these current results, it is stated that speed and heading control are kept to their

minimum while most of the control is set around whether certain aircraft need to be

altered. Finally, the optimality gap is negligible in all instances. In the Recovery

stage, the runtime increases considerably with the number of aircraft given that the

number of alternative routes to solve increases drastically: up to 2.14 s for RCP-10,

259 s for RCP-20 and time out for 100% of the instances under 5 minutes of the time

limit. In terms of iteration, RCP-10 instances and RCP-20 instances require up to

4 iterations to achieve convergence while solving RCP-30 instances, only up to two

iterations are executed due to the time limit.
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Figure 6.7: Comparison in the profile of solutions using discrete angle (first column)
and using continuous angle (second column). In the first row, the avoidance stage is
in red while the recovery stage is in blue. In the second row, the avoidance stage is
in green while the recovery stage is in green.
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Avoidance Recovery Algorithm 5

|A| |nc| Obj. Gap (%) Time (s)
∑
i∈A
|1− qi|

∑
i∈A
|θi|

∑
i∈A

fi Obj. Time (s) 1
|A|
∑
i∈A

ti max
i∈A

ti min
i∈A

ti TC0
i TCn

i Iter. Time (s)

4 6 3.00 1.79E-05 0.02 0.001 7.00E-02 3 3.39E-04 0.23 0.36 0.43 0.30 4.72 4.01 2 0.25
5 10 4.00 9.93E-05 0.02 0.001 1.10E-01 4 1.19E-04 0.30 0.11 0.23 0.03 5.15 4.38 2 0.31
6 15 5.00 9.94E-05 0.03 0.002 8.00E-02 5 6.37E-04 0.66 0.35 0.63 0.03 8.78 7.46 3 0.69
7 21 6.00 9.88E-05 0.11 0.001 1.20E-01 6 3.45E-04 3.85 0.26 0.97 0.07 12.7 10.8 3 3.96
8 28 7.00 9.94E-05 0.23 0.009 1.60E-01 7 9.71E-04 1.86 0.32 0.57 0.07 11.5 9.83 3 2.09
9 36 8.00 1.00E-04 2.89 0.000 2.20E-01 8 6.38E-04 15.1 0.23 0.61 0.03 13.4 11.3 3 18.3
10 45 9.01 9.99E-05 15.4 0.058 2.20E-01 9 1.63E-03 10.6 0.31 0.47 0.07 13.7 11.6 3 26.1
11 55 10.01 1.00E-04 59.2 0.010 3.00E-01 10 1.56E-03 296 0.27 0.97 0.07 20.6 17.5 2 355
12 66 11.01 1.00E-04 230 0.000 3.60E-01 11 2.29E-03 34.2 0.27 0.43 0.12 16.1 13.7 2 264
13 78 12.01 3.59E-04 300 0.050 3.60E-01 12 2.05E-03 55.9 0.24 0.83 0.03 22.8 19.3 2 355
14 91 13.01 5.83E-04 300 0.010 4.00E-01 13 3.27E-03 52.3 0.27 0.43 0.07 19.0 16.1 2 352
15 105 14.02 6.80E-04 300 0.082 4.60E-01 14 3.22E-03 300 0.25 0.63 0.07 23.5 19.9 2 600

Table 6.2: Summary of results for 2D CP instances with a speed control range of [−6%,+3%] and a heading control range of
[−30◦,+30◦]. All runtimes (Time) are reported in seconds while 1

|A|
∑
i∈A

ti,max
i∈A

ti and min
i∈A

ti are in hours. The optimality gap

(Gap) is reported in percentage.
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Avoidance

|A| |nc| Obj. Gap (%) Time (s)
∑
i∈A
|1− qi|

∑
i∈A
|θi|

∑
i∈A

fi

RCP-10 3.10 (1.5) 2.16 (0.93) 3.4E-5 (3.5E-5) 0.01 (0.00) 0.02 (0.03) 0.02 (0.02) 2.16 (0.93)
RCP-20 13.4 (3.4) 6.66 (1.19) 8.2E-5 (2.4E-5) 0.33 (0.31) 0.10 (0.08) 0.12 (0.06) 6.67 (1.19)
RCP-30 33.7 (5.7) 12.6 (1.46) 9.1E-5 (1.6E-5) 6.46 (9.02) 0.39 (0.18) 0.40 (0.15) 12.6 (1.47)

Recovery Algorithm 5

|A| Obj. Time (s) 1
|A|
∑
i∈A

ti max
i∈A

ti min
i∈A

ti Iter. ∆TC0
i ∆TCn

i Time (s)

RCP-10 5.28E-5 (1.7E-4) 2.14 (3.04) 0.24 (0.22) 0.61 (0.39) 0.00 (0.01) 2.6 (1.60) 4.58 (3.19) 3.89 (2.71) 2.16 (3.05)
RCP-20 4.86E-4 (4.1E-4) 259 (68.8) 0.34 (0.09) 0.94 (0.08) 0.11 (0.01) 3.4 (0.50) 13.6 (3.16) 11.5 (2.69) 259 (61.1)
RCP-30 8.32E-3 (1.0E-2) 300 0.65 (0.05) 0.95 (0.03) 0.02 (0.02) 1.1 (0.21) 32.2 (2.99) 27.3 (2.54) 600

Table 6.3: Summary of results for 2D RCP instances with a speed control range of [−6%,+3%] and a heading control range
of [−30◦,+30◦]. All runtimes (Time) are reported in seconds while 1

|A|
∑
i∈A

ti,max
i∈A

ti and min
i∈A

ti are in hours. The optimality gap

(Gap) is reported in percentage.
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6.5 Conclusion

The findings are summarised in Section 6.5.1 and future research directions are dis-

cussed in Section 6.5.2.

6.5.1 Summary of Findings

A new mixed-integer formulation and two two-stage algorithms for ACRP with tra-

jectory recovery are proposed. First, it is considered the 2D ACRP with discretised

heading control and continuous speed manoeuvres and a compact model is proposed

by adapting disjunctive separation conditions. The proposed formulation is linear

with the decision variables and it can incorporate the bounds for speed and heading

control directly without requiring any cut generation or additional constraint to im-

pose speed-violation requirements. It is built on and extended the complex number

formulation for the ACRP introduced by Rey and Hijazi (2017) by augmenting its

equations of motion to incorporate the set of alternative heading angles. This formu-

lation is assimilated into a two-stage sequential algorithm where the outputs of the

avoidance stage are used in the trajectory recovery stage. This model selects the op-

timal route based on the avoidance angle and the set of timestamps and those routes

can be pre-processed. The performance of the proposed formulation and algorithm

was tested and the performance of the proposed solution algorithms highlights the

scalability of the approach compared to existing methods in the literature. Further,

it is concluded that the combination of the avoidance model and trajectory recovery

model is capable to solve instances with up to 30 aircraft. Because the size of the

pre-processed routes is vital to the performance of the algorithm, a greedy algorithm

also was proposed and proved to be comparable to the exact formulation. However,

discretising the heading angles is limiting. In terms of performance, for the discre-

tised approach, the runtime of Models 10 and 11 increased exponentially with the

number of aircraft, highlighted the challenging nature of the problems. Comparing

trajectory recovery approaches, the greedy algorithm scales very efficiently in terms of

runtime compared to the exact model is able to find some optimal solutions. Overall

the average recovery time of the greedy algorithm is comparable to that of ER. In

some cases, the exact algorithm is able to override the decision at the first stage by

recovering aircraft initially deviated at t = 0, which means that such aircraft do not

need to perform any avoidance manoeuvre.

The performance of the second approach revealed that by echoing the cost asso-

ciated with trajectory recovery, the avoidance can be manipulated in order to pre-
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emptively minimise the overall cost of ACRP. On average, in a couple of iterations,

it showed that most instances can force the aircraft to have larger deviations in the

avoidance stage, but with an earlier recovery time in the recovery stage. In this case,

a trade-off between avoidance and recovery is observed. Another advantage of this

addition is the concept of stability of the solutions throughout iterations. One of

the main issues that happen by having an iterative algorithm, is the variation in the

profile of the solution. In each iteration, the algorithm provides a different group of

aircraft as a possible candidate to recover and each solution has a different deviation

cost and this can be an improvement. As expected, with a higher deviation angle,

the deviation cost is higher but the number of aircraft manoeuvring is small. In this

situation, adding the fi variable introduces an extra hurdle into modifying the status

of an aircraft. With multiple iterations, it can be expected that less deviation in

the whole set of aircraft will be observed, although a larger deviation in individual

aircraft. This creates stability in the solution. In the point of view of air traffic con-

troller, solutions where many aircraft are manoeuvring lead to higher workload and

are not desirable or implementable solutions.

Alternatively, an adaption of the of Algorithm 2 is proposed to solve the avoidance

stage considering speed, heading control and manoeuvre control as decision variables.

This is incorporated into an iterative two-stage algorithm that incorporates the pro-

jected cost of recovering the aircraft into the avoidance stage. Throughout a relatively

small number of iterations, it showed that it can increase the overall deviation in the

avoidance pre-emptively to reduce the recovery cost and ultimately the total cost. In

the numerical experiments, the performance of the proposed algorithms shows that

the number of aircraft that are required to be altered is reduced and for those that

are required to be changed, the deviation is larger in terms of heading angles but

the recovery time is smaller compared to the discretised version. In comparison with

the Disjunctive results, it also shows that while the former provides solutions that are

more balanced in terms of manoeuvres, they are also more invasive because it affects

the whole set of aircraft. The algorithm present in this chapter presents an alter-

native solution where fewer aircraft are controlled will higher deviations, suggesting

that this behaviour improves the total cost.

6.5.2 Future Research and Perspectives

The biggest limitation in the iterative two-stage algorithm is the decomposition of

conflict avoidance and trajectory recovery. Although this is a common practice in

mathematical programming, there is not guarantee of the quality of the solution.
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Ideally, a global solution should be created by jointly optimising both stages in a

unified formulation. This is heavily challenged by the non-linearity and complexity

that comes from such formulations. Therefore, further research into modelling this

problem more simply and efficiently is needed. In addition, the cost of recovery is

projected into the avoidance stage throughout the iterations. Alternatively, stochas-

tic optimization methods can be used as an attempt to determine the expected cost

of recovery manoeuvres already incorporate in the avoidance stage. Finally, the dis-

cretisation of any variable is a limitation and modelling recovery time as a continuous

variable may help in reducing the total cost of trajectories.
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Chapter 7

Conclusion

In this chapter, the contributions and the results discussed throughout this thesis are

revisited. This thesis began with four main aims: i) to produce global optimisation

methods based on mathematical programming that are scalable and efficient; ii) to

introduce a formal analysis of the aircraft separation conditions as well as to char-

acterise conflict-free trajectories for the deterministic version of the ACRP; iii) to

incorporate uncertainty on trajectory prediction methods within mathematical pro-

gramming based approaches for the ACRP and iv) to identify the limits of richer

mathematical programming formulation that can be developed to accommodate real-

ist ATC operations. These aims are pursued in the four core chapters of this thesis.

A summary of the thesis is presented in Section 7.1 where the main points of each

chapter and the main contributions are summarised. Then, modelling assumptions

and their limitations are discussed in Section 7.2, as well as the challenges and future

research. Final remarks are discussed in Section 7.3.

7.1 Summary and Contributions

This thesis is dedicated to exploring the characteristics, analysis and implementation

of novel mathematical programming formulations for the ACRP. After introducing

the main components of air traffic control in Chapter 1 and reviewing the state-of-

the-art in Chapter 2, basic mathematical programming formulations for the ACRP

are presented in Chapter 3. The goal of the ACRP is to find optimal trajectories for a

set of aircraft subject to separation constraints and available manoeuvres. The three

state-of-the-art formulations were reviewed and numerical results illustrating their

behaviour were reported. Three formulations for the two-dimensional problem with

continuous speed and heading control are formally reviewed. It is also shown how a

non-linear formulation can be linearised and that is the premise to obtain disjunctive
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linear separation constraints. Further, the shadow formulation, it is showed that the

disjunctive and the shadow formulation are equivalent. This solidifies the fact that

all formulations are, at their core, equivalent. The difference between the disjunctive

and shadow formulation are based on the number of binary variables: the shadow

formulation requires at least four binaries while the disjunctive formulation requires

only one. The difference between the non-linear formulation and the disjunctive is

that the former has non-linear components, while the latter is composed by a set of

linear conditions. Such conclusions revealed that even though those formulations are a

solid cornerstone, they suffer from many issues such as non-linearity and trigonometric

operators. Those factors can hinder the performance of such formulations in terms

of complexity and scalability.

In Chapter 4, new mixed-integer formulations for the deterministic ACRP were

proposed. The 2D ACRP is first considered with continuous speed and heading con-

trol manoeuvres based on the disjunctive separation conditions. Those conditions

are linear with regards to aircraft relative velocity variables and only require a single

binary variable per pair of aircraft. In addition, a simple pre-processing algorithm

was introduced to identify aircraft pairs that are conflict-free or non-separable for any

combination of controls. This can assist in reducing the size of instances by elimi-

nating pairs that are in conflict-free trajectories. The complex number formulation

is extended by augmenting its objective function with a preference weight to balance

the trade-off between speed and heading deviations. This 2D formulation is extended

to the context of altitude control by flight level (FL) change and a lexicographic

optimisation is proposed to solve the 2D+FL ACRP which aims to minimise the

number of FL changes in priority and resolve outstanding conflicts by 2D trajectory

control. The following methodological contributions to the field can be stated about

this chapter: i) the proposed disjunctive linear pairwise aircraft separation condi-

tions introduced by Rey and Hijazi (2017) are shown to be equivalent to the classical

non-linear separation conditions; ii) the set of 2D conflict-free trajectories based on

aircraft velocity bounds is fully characterised and a simple pre-processing algorithm

is proposed to identify aircraft pairs which are either always conflict-free, or which

cannot be separated using speed and heading control only; iii) existing convex relax-

ations are used and a novel exact constraint generation algorithm for the 2D ACRP

is presented; and, iv) altitude control is incorporated in the proposed formulations

and lexicographic optimisation formulation is introduced, whose primary objective

is to minimise the number of FL changes before resolving outstanding conflicts via

2D velocity control. Numerical experiments were conducted on four types of conflict
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resolution benchmarking instances consisting of a total of 2072 instances to test the

performance of the proposed mixed-integer formulations and algorithms. It is shown

that the proposed mixed-integer formulations and exact solution methods improve

on existing exact approaches in the literature in terms of scalability. Notably, the

benefits of using the proposed method are quantified by benchmarking it against two

methods based on state-of-the-art approaches. The first benchmark corresponds to

the method proposed by Rey and Hijazi (2017) which uses the same disjunctive linear

separation conditions as that of the proposed method, but in a less advanced algo-

rithm that is not always able to find optimal or even feasible solutions. The second

benchmark is based on the classical so-called shadow separation conditions and uses

the same algorithmic structure as that of the proposed method. The experiments

reveal that the proposed method significantly outperforms both benchmarks. In ad-

dition, an analytical approach was developed to solve two-aircraft conflict resolution

problem based on the Lagrangian function and the applications of the Karush-Kuhn-

Tucker conditions. Numerical tests using random variations of two-aircraft instances

showed that the ACRP can be instantly solved and this has the potential to be used

to develop global optimisation approaches for multi-aircraft problems.

In Chapter 5, the ACRP under trajectory prediction uncertainty is tackled. A

robust optimisation approach is proposed and it aims to guarantee that aircraft are

separated for any realisation of the random data and to identify minimum-deviation

trajectories. The robust optimisation approach proposed by Bertsimas and Sim (2004)

is proposed to control the level of robustness in the formulation and adapt state-of-

the-art solution methods to the deterministic ACRP to solve the resulting robust

ACRP. The sources of uncertainty are weather events and measurements errors and

a new formulation for the robust ACRP under trajectory prediction uncertainty is

proposed. For this, the ACRP with continuous speed and heading control manoeu-

vres is used and it is showed that robust separation constraints can be reformulated

as tractable integer-linear constraints using state-of-the-art approaches in robust op-

timisation. The complex number formulation for the ACRP is adapted and an exact

algorithm to solve the resulting robust complex number formulation model to op-

timality. The following methodological contributions to the field are made in this

Chapter: i) a model of aircraft trajectory prediction uncertainty is created based on

aircraft velocity components; ii) it is shown that the proposed uncertainty model can

be incorporated in a robust optimisation formulation for the ACRP; iii) the complex

number formulation of Rey and Hijazi (2017) is adapted and an exact algorithm of

Dias et al. (2020) to solve the robust ACRP is proposed; iv) numerical experiments
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conducted on benchmarking instances to test the proposed robust ACRP formulation.

The tests reveal that increasing the level of robustness or the size of the uncertainty

set rapidly increase the likelihood of infeasibility; and, v) re- and post-optimisation

analyses reveal that the number of conflicts and the total minimal pairwise distance

between aircraft trajectories can explain the behaviour of the model. A series of nu-

merical experiments on benchmarking instances of the literature was conducted to

explore the behaviour of the robust ACRP and test the computational performance

of the proposed approach. Upon testing, the performance of the proposed solution

algorithms highlights the scalability of the approach compared to existing determin-

istic methods in the literature. As far as the literature review in Chapter 2 goes, this

is the first exact robust optimisation formulation for the ACRP.

In Chapter 6, new formulations for the deterministic ACRP are extended to incor-

porate aircraft trajectory recovery, which is absent in the vast majority of mathemat-

ical programming approaches for conflict resolution Two new two-stage algorithms

for aircraft conflict resolution with trajectory recovery are presented. In these ap-

proaches, the speed and heading of the aircraft are first optimised to avoid conflicts

while minimising the deviation from their initial trajectories. Then, in a second stage,

aircraft trajectories are modified to recover a target position on the aircraft’s initial

trajectories. The first approach considered the heading angle is discretised, therefore

recovery analysis is done by selecting the optimal trajectories between a given finite

set of alternative trajectories. In this case, the recovery can be simplified as a route

selection problem. Based on the numerical results, this formulation represents an

alternative solution to this problem. However, because it contains variable discreti-

sation, this can be a limiting factor. The performance of this approach is tested via

an exact recovery approach and a greedy recovery algorithm. A second approach was

also implemented considering heading angle as a continuous variable.

In that approach, the avoidance stage is handled similarly as in Chapter 4 with

the additional of discrete variable to indicate which aircraft is controlled. In this

formulation, the proposed objective function minimises the total deviation in terms

of speed and heading angle control as well as the amount of aircraft controlled. The

performance of this approach was tested by an iterative two-stage algorithm. The

following methodological contributions to the field are made in this Chapter: i) a

model of aircraft trajectory recovery is created based on a two-stage algorithm; ii) it

is shown that the proposed algorithm is capable to reduce the overall cost of conflict

avoidance by increasing deviation in action and reducing recovery time in recovery;

iii) the complex number formulation is adapted into a heading angle discretised model
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and the exact algorithm of Dias et al. (2020) to solve ACRP is adapted; iv) numerical

experiments conducted on benchmarking instances to test the proposed algorithms.

The tests reveal that increasing the importance of avoidance and recovery can be

controlled throughout different iterations to explore several behaviours; and, v) post-

optimisation analyses reveal that the number of iterations and the different level of

variable discretisation can explain the behaviour of the algorithms. The discrete for-

mulation showed that solving recovery in an exact formulation or a greedy algorithm

are comparable and it can provide solution with lower overall cost. In the continuous

approach, the recovery cost can be incorporate into avoidance to obtain solutions with

lower costs. In this case, a trade-off between avoidance and recovery is observed. The

iterative approach is capable of building non-trivial solutions that do not compromise

the recovery cost (keeping it at minimum value) while manipulates the trajectory of

only a few aircraft.

7.2 Limitations and Future Research

The proposed approaches for the ACRP rely on several assumptions which may be

limiting in practice. One of the modelling assumptions at the core of the proposed

mixed-integer formulations is the assumption of uniform motion laws, which trans-

lates into infinite acceleration and deceleration rates. While such an assumption may

be plausible for constrained aircraft speed control, further research is needed to as-

sess the practicality of this assumption when considering varying types of aircraft or

different airspace environments, e.g. urban air mobility. At the same time, empiri-

cal observations show that most scenarios have aircraft using different motion laws,

which are not easily tractable via uniform linear formulations.

All formulations presented in this thesis assumed that it has a central control sys-

tem that is in charge of determining all the variables for each aircraft. This concept

is currently the most used format of ATC, but as the air capacity start to reach its

limits and due to the air traffic controller high workload, the concept of free-flight

can be incorporate, even though it might not be the most appealing technique in the

future. This technique can be applied in areas with low flight density such as the

Pacific Ocean, but it also leaves the aircraft vulnerable due to the lack of centralised

assistance in case of emergency. Another issue is the necessity of continuous com-

munication between aircraft will also cause security issues related data availability

and substantiation. An additional assumption is that all aircraft start moving in

that specific airspace at the same time, which is commonly used for simplifications
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aspects, but it does not correspond to reality. The usage of altitude changes can

also be challenged. In Chapter 4, a lexicographic approach is used, where the flight

assignment is done before the 2D ACRP is solved in each flight level individually.

Although the reasoning behind is in the accordance with the airspace structure, some

solutions could also be obtained by optimising flight level, speed and heading control

simultaneously. Such results could show a better performance than those presented.

For the robust components in Chapter 5, a simple model was used where a dis-

turbance was incorporated in the velocity component. This formulation is standard,

commonly used in the literature and very effective, but it is rather basic. It can be

argued that a more sophisticated formulation could be used which can ultimately

make the model more difficult, but can also represent a more dynamic version. In

terms of computational experiments, the analysis used in the formulation has focused

on a uniform uncertainty model across the aircraft. More realistic air traffic scenarios,

possibly generated from weather data, should be explored to gain more practical in-

sights into the impact of robustness in aircraft conflict resolution. Unfortunately, such

data is not publicly available and future research efforts may be needed to augment

existing data repositories for conflict resolution problems. The coordination of air-

craft conflict resolution manoeuvres also presents considerable operational challenges.

Although robust components were addressed, it is only taken into consideration in

the avoidance stages (according to the conditions already reinforced in the thesis),

there is also some level of uncertainty to be analysis in trajectory recovery.

The usage of heading deviations for conflict resolution also raises concerns regard-

ing aircraft trajectory recovery. It is well-acknowledged that resolving conflicts does

not guarantee conflict-free recovery trajectories. Once the aircraft have their trajec-

tories altered in order to avoid conflict, to guarantee that they will eventually return

towards their original destination will not be always free from conflict and further

analysis is required. As stated before, the concept of ”recovery” is also questionable.

Some models such as heuristics and genetic programming handle the trajectory of

the aircraft as a single profile component, which ultimately does not have to concern

about recovery. However, using mathematical programming, as it was applied in this

thesis, it also raises the same concern and therefore requires another level of opti-

misation. In Chapter 6, two attempts of solving this problem using mathematical

programming were made. In those, the proposed algorithm is a two-stage iterative

process that does not guarantee global optimisation. Although they showed positive

results, such results still are based on significant conditions such as time discretisation
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and space discretisation. There is also still room to improve on such formulations in

terms of computational performance and scalability.

The results and contributions presented in this thesis showed that there is a solid

effort into improving current state-of-the-art formulations, but many aspects require

further attention. Future research can look into alternatives where different aircraft

have the independence of movements and are controlled without a central component.

In this scenario, free-flight algorithms could be put into practice. In such models,

aircraft only have access to those that are in a limited vicinity and therefore many

pairing that will not be in conflict do not need to be incorporated into any formulation.

Although robust optimisation was used, there is another way to incorporate ran-

domness elements into those formulations and stochastic optimisation can be an alter-

native. Even though robust optimisation allows variations as a continuous variable,

stochastic allows analysing scenarios in a limited way. If those scenarios are created

properly, it shows that this formulation can be used even on larger scales. In addi-

tion, the presence of randomness concerns not only the avoidance (action) stage and

therefore, a full analysis of trajectory recovery under uncertainty should be carried

out.

7.3 Final Remarks

The motivation for this thesis was to address some of the gaps in the literature re-

lated to exact solutions of the ACRP, the effect of random events onto trajectory

prediction and trajectory recovery. It is clear that the contributions presented in this

thesis assisted on addressing some of those gaps and some level of novelty is proposed

throughout the models. However, there is still much more research required to be

done. Also, most of those formulations have a considerable runtime, their perfor-

mance is towards obtaining optimal solutions in any case. With the gradual advent

of automation technologies and computational performance, these models might be-

come more and more relevant. Hence, it has never been timely enough to explore

such aspects of ATC and to ask more complicated questions relating to this field.

It is hoped that the formulations presented in this thesis will kindle further interest

in this field in future researchers and possible implementation of some version of those

models and that the developments formulated in this thesis can be used to improve

the efficiency of ATC and conflict resolution problem.
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