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Abstract

Decline in cognitive functions including memory, processing speed and executive pro-

cesses, has been associated with ageing for sometime. It is understood that every

human will go through this process, but some will go through it faster, and for some

this process starts earlier. Differentiating between cognitive decline due to a patho-

logical process and normal ageing is an ongoing research challenge. According to

the definition of the World Health Organization (WHO), dementia is an umbrella

term for a number of diseases affecting memory and other cognitive abilities and be-

haviour that interfere significantly with the ability to maintain daily living activities.

Although a cure for dementia has not been found yet, it is often stressed that early

identification of individuals at risk of dementia can be instrumental in treatment and

management. Mild Cognitive Impairment (MCI) is considered to be a prodromal

condition to dementia, and patients with MCI have a higher probability of progress-

ing to certain types of dementia, the most common being Alzheimer’s Disease (AD).

Epidemiological studies suggest that the progression rate from MCI to dementia is

around 10-12% annually, while much lower in the general elderly population. There-

fore, accurate and early diagnosis of MCI may be useful, as those patients can be

closely monitored for progression to dementia.

Traditionally, clinicians use a number of neuropsychological tests (also called

NM features) to evaluate and diagnose cognitive decline in individuals. In contrast,

computer aided diagnostic techniques often focus on medical imaging modalities such

as magnetic resonance imaging (MRI) and positron emission tomography (PET).

This thesis utilises machine learning and deep learning techniques to leverage both

of these data modalities in a single end-to-end pipeline that is robust to missing infor-

mation. A number of techniques have been designed, implemented and validated to

diagnose different types of cognitive impairment including mild cognitive impairment

and its subtypes as well as dementia, initially directly from NM features, and then



in fusion with medical imaging features.

The novel techniques proposed by this thesis build end-to-end deep learning

pipelines that are capable of learning to extract features and engineering combina-

tions of features to yield the best performance. The proposed deep fusion pipeline

is capable of fusing data from multiple disparate modalities of vastly different di-

mensions seamlessly. Survival analysis techniques are often used to understand the

progression and time till an event of interest. In this thesis, the proposed deep sur-

vival analysis techniques are used to better understand the progression to dementia.

They also enable the use of imaging data seamlessly with NM features, which is the

first such approach as far as is known. The techniques are designed, implemented and

validated across two datasets; an in-house dataset and a publicly available dataset

adding an extra layer of cross validation. The proposed techniques can be used to

differentiate between cognitively impaired and cognitively normal individuals and

gain better insights on their subsequent progression to dementia.

vi
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Chapter 1

Introduction

According to the definition set forth by the World Health Organization (WHO),

dementia is “an umbrella term for several diseases affecting memory, other cognitive

abilities and behaviour that interfere significantly with the ability to maintain daily

living activities. Although age is its strongest known risk factor, dementia is not a

normal part of ageing” [Org19b]. Dementia can often cause long-term and gradual

decrease in cognitive abilities, emotional problems, language difficulties and decreased

motivation. A number of different diseases can cause dementia, including Alzheimer’s

disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), vascular

dementia (VD), syphilitic dementia (SD), mixed dementia (MD), senility dementia

(SD) or the combined effect of two or more dementia types and even stroke. However,

the primary cause of dementia may not be identified as it is not a specific disease.

As Fymat [Fym18] points out, the greatest shortcoming is the inability to pinpoint

the root cause of the condition, making it difficult to treat. Currently available

medications can treat some of the symptoms but not the condition itself and hence

there is no known cure for dementia [Fym18].

According to Global Health Estimate 2016 report by WHO [Org19a], AD
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Year 2016 2010
Cause Deaths % of total

deaths
Deaths % of total

deaths
Ischaemic heart disease 9433.22 16.58 7028.95 13.43
Stroke 5780.64 10.16 5169.67 9.88
Chronic obstructive pul-
monary disease

3041.44 5.34 2972.06 5.68

Lower respiratory infections 2957.13 5.19 3324.51 6.35
Alzheimer disease and other
dementias

1991.70 3.50 803.56 1.53

Trachea, bronchus, lung can-
cers

1707.74 3.00 1256.70 2.40

Diabetes mellitus 1598.52 2.81 944.24 1.80
Road injury 1402.30 2.46 1136.38 2.17
Diarrhoeal diseases 1382.70 2.43 2246.25 4.29
Tuberculosis 1292.90 2.27 1684.21 3.22
Cirrhosis of the liver 1254.07 2.20 987.84 1.88
Kidney diseases 1179.83 2.07 726.81 1.39
Preterm birth complications 1013.33 1.782 0 0
HIV/AIDS 1011.99 1.77 1469.30 2.80
Hypertensive heart disease 897.68 1.57 0 0

Table 1.1: Top 10 global causes of deaths in 2000 and 2016. The statistics used to create
the figure are from Global Health Estimate 2016. Number of deaths are in 1000s.
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and other dementias are listed as the fifth major cause of deaths. As Table 1.1

shows, this is a significant increase compared to year 2000. Cases of dementia have

increased from 35.6 million in 2010 to 46 million in 2015 and around 50 million in

2017 while projections suggest it will increase to 82 million in 2030 and 152 million

by 2050 [Fym18]. There are no known cures for dementia currently, therefore, it

is important to identify individuals who are at risk of progressing to dementia be-

fore they become demented. This thesis examine computer aided diagnosis methods

to identify individuals who are at risk of dementia from available data and better

understand the progression to dementia.

Mild cognitive impairment is considered as a prodromal stage to dementia

and it is characterized by cognitive decline that is greater than normal for the age

without significantly impairing daily functions [HMH+13]. It can be considered as

a criterion to predict progression to dementia. Previous studies have found that

individuals with MCI progress to dementia at a rate of 6-15% per year, whereas

the progression to dementia in the general older population is about 1-2% [MSF09].

In clinical terms, MCI is divided into several subtypes, with the main categories

being amnestic MCI (aMCI) and non-amnestic MCI (naMCI). In aMCI, memory is

impaired and is considered to have resemblance to Alzheimer’s disease (AD). naMCI

is characterized as the impairment of one or more non-memory cognitive domains such

as frontal-executive function, language or visuospatial ability. naMCI is found to have

an increased risk of progressing to non-Alzheimer’s dementias. These subtypes can

be further categorized with respect to the domain of impairment. aMCI is divided

into single domain aMCI (sd-aMCI) and multiple domain aMCI (md-aMCI) while

naMCI is divided into single domain naMCI (sd-naMCI) and multiple domain naMCI

(md-naMCI). It is useful to identify the subtypes of MCI, because the subtypes have

differential rates of conversion to dementia [KSB+10].

Cognitive decline in individuals is diagnosed mainly using neuropsycholog-
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ical test measures (called NM features) in clinical settings. These are a battery of

standardized tests administered to evaluate different cognitive functions including

memory, executive functions and visuospatial ability. A comprehensive description

of such tests are included in Chapter 2.

Recent focus in this area of research has been on using advanced medical

imaging modalities such as magnetic resonance imaging (MRI) and positron emission

tomography (PET) to differentiate between AD and subtypes of MCI. Some early

work on the use of imaging modalities for this purpose [ALLF07,CLE+05,CWSS08,

CWC+09,HMH+13,HSXJ11,RKB+13,RWK+14,RZW+14,SZBW13,SLC+13,TWZ+12]

are described in detail in Chapter 3. Understanding the progression to cognitive im-

pairment and dementia is also considered important. Survival analysis techniques

may be used for this purpose effectively. Survival analysis is a set of techniques used

to analyze available variables to determine the time until the occurrence of an event

of interest, which in this case is the onset of any type of cognitive impairment. In past

studies, mostly classifier based approaches have been considered for such progression

tracking.

The focus of this thesis is on leveraging the research already performed on

NM measures and MRI based features for MCI and dementia diagnosis to propose

robust techniques for differentiating dementia and MCI from cognitively normal (CN)

individuals and, predicting the progression to MCI and dementia over time by lever-

aging on the features already derived for the diagnosis task. The methods are based

on conventional machine learning, recent developments in deep learning and deep

survival analysis, all of which are reviewed in Chapter 3.

The thesis goals are stated in section 1.1 while the scope is defined in sec-

tion 1.2. An overview of the thesis is presented in section 1.3 and contributions

are described in section 1.4. Finally, the organization of this thesis is described in

section 1.5.
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1.1 Thesis Goals

The goal of this thesis is to present computer aided diagnostic techniques that are

capable of differentiating between CN individuals and individuals with cognitive de-

cline, and methods to track progression to dementia starting from CN and MCI using

survival analysis techniques. Two datasets that contain multi-modal data are used in

this study. The thesis proposes techniques that leverage multi-modal data including

neuropsychological measure based features and neuroimaging based features for the

diagnosis task. It also utilizes the fused data in survival analysis to achieve progres-

sion tracking of the disease states. Multiple feature extraction, classification, deep

fusion and survival analysis techniques are proposed, implemented and validated for

this purpose.

1.2 Thesis Scope

The methods in this thesis are based on computer vision, machine learning and deep

learning. Two datasets are used in this work: an in-house dataset from Sydney

Memory and Ageing Study (MAS) [SBR+10] and an open dataset from Alzheimer’s

Disease Neuroimaging Initiative (ADNI) [Ini05]. The latter is used as a benchmark

dataset, and the results reported in this thesis will serve as a benchmark for MAS

in future studies. A detailed description of these datasets are included in Chapter 2.

This thesis does not attempt to differentiate the types of dementias and the datasets

used focus AD exclusively. Therefore, AD and dementia are used interchangeably

in this thesis. Algorithm accuracy and other performance measures are measured

using appropriate metrics that are commonly used for evaluating similar work in the

literature. The experiments are performed at the population level and personalised

machine learning models are not in the scope of this thesis.
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1.3 Thesis Overview

The thesis proposes multiple techniques to differentiate between dementia and its

subtypes from cognitively normal individuals, and track progression over time be-

tween the disease states. In order to achieve the goal of differentiating between CN,

MCI and dementia, NM based features were explored first. As far as is known, NM

based features have not been used for automated diagnosis so far, even though they

are the basis for diagnosis by physicians. The correlations between these features were

explored and conventional machine learning algorithms designed and implemented to

classify individuals into CN, dementia and MCI subtypes. This was used as a base-

line to evaluate more optimized techniques, including deep learning techniques. The

resulting pipeline was validated using cross-validation and shown to be generalizable.

While NM based features are a great starting point, acquiring them is chal-

lenging as it is both time consuming and expensive. Imaging modalities such as MRI

can alleviate the difficulties in acquiring NM based features, therefore structural MR

images were explored for the same task. Traditionally, the medical imaging pipeline

consists of feature extraction and feature engineering, which may introduce bias and

requires significant domain expertise. In order to address this challenge and create an

end-to-end pipeline, a deep neural network architecture was designed. As structural

MR images comprise multiple horizontal slices stitched together, a 2-dimensional

(2D) deep network as well as a 3-dimensional (3D) deep network were designed.

When designing computer aided diagnostic systems, the challenges include

data paucity and the complexity of leveraging all the available data modalities. To

address these issues, a novel deep fusion pipeline that can seamlessly fuse information

from multiple disparate modalities such as MR images and NM features has been

proposed. It has also been demonstrated that a model trained on one dataset can

effectively be used as a starting point for another dataset (called transfer learning)

6



to address the issue of data paucity. The deep fusion architecture is also resilient to

missing information, which is an added advantage. It can also be readily extended

to fuse information from other imaging modalities.

Finally, a novel survival analysis based deep learning technique has been

proposed to better understand the progression from CN and MCI to dementia from

NM and MR data. As far as is known, survival analysis has not been applied to de-

mentia progression analysis nor have medical images been used for the purpose. The

survival analysis method proposed in this thesis is capable of analyzing a patient’s

survival using NM features as well as MR image based features without requiring

significant domain knowledge or an additional feature extraction and engineering

step.

1.4 Thesis Contributions

This thesis makes contributions to the following fields: computer vision, machine

learning, deep learning, medical image analysis and cognitive impairment diagnosis.

Conventional machine learning based methods and novel deep learning techniques

for classification of dementia and its subtypes have been designed, implemented and

demonstrated on two datasets. Transfer learning has been explored to show that

models trained on one dataset can be used as a starting point to train models on an-

other dataset. Survival analysis based techniques are proposed to better understand

the progression from cognitively normal and MCI to dementia.
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1.5 Thesis Organization

The remaining chapters of this thesis are organized as follows. A background on

brain anatomy, cognitive impairment and available datasets is included in Chapter 2.

Related work on classification of cognitive impairment is provided in Chapter 3.

The focus of Chapter 4 is the diagnosis of mild cognitive impairment sub-

types and dementia using NM based features. The features and the conventional

machine learning algorithms used are presented and the results are compared against

those of the deep learning architectures. A discussion of the utility of deep learning

architectures ensues.

In Chapter 5, MR image based deep learning networks are proposed, fol-

lowed by a novel deep fusion pipeline for NM and MR features. A comprehensive

set of experiments is described that are used to demonstrate the efficacy of the deep

fusion pipeline.

Survival analysis based techniques are proposed to better understand the

progression of dementia in Chapter 6. The proposed approach is novel in the field of

cognitive impairment diagnosis as it uses MR images in addition to NM features.

Finally, Chapter 7 summarizes the thesis and presents the contributions

made to computer vision, machine learning, deep learning, medical image analysis

and cognitive impairment diagnosis. The limitations of the proposed methods and

potential future works are described in Chapter 7 followed by concluding remarks.
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Chapter 2

Background

In differentiating between cognitively normal individuals from cognitively impaired

individuals and predicting their risk of progression to a cognitively impaired state,

neuropsychological measures are most popular with advanced medical imaging tech-

niques such as magnetic resonance imaging (MRI) providing supplementary informa-

tion.

Mild cognitive impairment (MCI) is considered as a prodromal stage to

dementia, with the former characterized by cognitive decline that is greater than

normal for age without significantly impairing daily functions. Previous studies have

found that individuals with MCI progress to dementia at a rate of 6-15% per year,

whereas the progression to dementia in the general older population is about 1-

2%. From a clinical perspective, MCI is divided into several subtypes. The main

categories can be categorized as amnestic MCI and non-amnestic MCI (aMCI and

naMCI respectively). In aMCI, memory is impaired and is considered to have resem-

blance to Alzheimer’s disease (AD). naMCI is characterized by impairment of one

or more non-memory cognitive domains such as frontal-executive function, language

or visuospatial ability. naMCI is found to have an increased risk of progressing to
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non-Alzheimer’s dementias. These subtypes can be further categorized with respect

to the domain of impairment. Consequently, aMCI is divided into single domain

aMCI and multiple domain aMCI (sd-aMCI, md-aMCI) while naMCI is divided into

single domain naMCI and multiple domain naMCI (sd-naMCI, md-naMCI).

Since MCI is considered a prodromal stage of dementia, it may be consid-

ered as a criterion to predict progression to dementia. However, many patients with

MCI will not necessarily progress to dementia. Further analysis of imaging data

may help refine and improve such predictive efforts, and facilitate the easy and early

identification of those who are at risk of dementia. Also, a combination of image and

non-image data may assist in better optimizing and improving the performance of

existing classification and progression analysis studies. Therefore, in this thesis, novel

methods based on computer vision and machine learning techniques are developed

in order to better analyze and understand brain MR images and neuropsychological

measures for the purpose of MCI and dementia diagnosis. Although the focus is on

structural MRI images of the brain, the methods are equally applicable to other types

of imaging, and in fact other human soft tissue organs for diagnosis of other diseases.

Existing algorithms are carefully examined and improved, and new algorithms are de-

veloped. The algorithms are tested and validated on the MR scans acquired as a part

of Sydney Memory and Aging Study (MAS) and Alzheimer’s Disease Neuroimaging

Initiative (ADNI).

Another motivation for using these datasets is that relatively little work has

been carried out using a combination of image and non-image features. Significantly,

in routine medical practice, diagnosis is mostly based on neuropsychological measures,

leading to tagging of labels arrived at by observing non-image features to the image

features, which is an additional theoretical constraint.

The remainder of this chapter is organized as follows. The anatomy of the

brain relevant to cognitive impairment diagnosis is briefly described in section 2.1.
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The types of cognitive impairment are discussed in section 2.2 followed by a descrip-

tion of available datasets in section 2.3. Neuropsychological tests used to evaluate

cognitive impairment are included in section 2.4 while relevant medical imaging tech-

niques are covered in section 2.5. Labelling of the datasets are described in section 2.6

while section 2.7 summarizes this chapter.

2.1 Brain Anatomy

The human brain consists of a large mass of nerve tissues that is protected by a

skull. The basic anatomy of the brain is depicted in Figure 2.1. The largest part

of the brain is the cerebrum, which is divided into two hemispheres separated by a

groove called the longitudinal fissure. Each hemisphere is broken into broad regions

known as lobes that are associated with different functions. The frontal lobes are

the largest and are located in the front part of the brain. They are responsible for

coordinating high-level behaviours such as motor skills, problem solving, judgement,

planning, attention, impulse control and management of emotions. The parietal lobes

are responsible for organizing and interpreting sensory information from other parts

of the brain. They are located behind the frontal lobes. The temporal lobes that

are located on either side of the head at ear level are responsible for coordinating

specific functions including visual memory, verbal memory and the interpretation of

emotions and reactions of others. Finally, the occipital lobes found at the back of

the brain are involved in the ability to read and recognize printed words and other

aspects of vision [SSH19]. Other parts of the brain are not of direct interest in this

work, and are not discussed. A more in-depth description of brain anatomy can be

found [CMMK05].
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Figure 2.1: Basic Anatomy of the Brain [adapted from [Lea19]]
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2.2 Cognitive Impairment

Cognitive impairment is suspected when a person has trouble remembering, leaning

new things, concentrating or making decisions that affect their everyday life [fDCP19].

There are different kinds of cognitive impairments depending on the stage that the

patient is at and the functions that are affected. The common types of cognitive

impairments and the datasets used are discussed below.

2.2.1 Cognitively Normal Individuals

Cognitively normal (CN) individuals exhibit no apparent impairment to their cogni-

tive abilities. If a patient is not diagnosed with either Mild Cognitive Impairment or

dementia and no subjective complaints were made by the participant or their escort,

they are diagnosed as CN individuals.

2.2.2 Mild Cognitive Impairment

Mild cognitive impairment (MCI) is considered to be an intermediate stage between

normal aging and dementia. It is defined as cognitive decline greater than expected

for an individual’s age and education level but that does not interfere notably with

activities of daily life [GRZ+06]. Epidemiological studies suggest that this is prevalent

in 3-19% of adults older than 65 years [GRZ+06]. More than 50% of that population

progresses to dementia within 5 years but there have been reports on stable MCI

individuals as well as individuals who have reverted to a cognitively normal state.

This makes MCI an interesting phenomenon to study, as there are three likely stages

of progression to it.

Since more than 50% individuals with MCI progress to dementia, MCI is
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considered as a prodromal stage to dementia. Recent advances in dementia treatment

suggest that treatments are far more effective when performed before developing

dementia. Therefore, it is worthwhile to understand the diagnosis, progression and

tracking of MCI in order to reliably predict progression to dementia.

2.2.3 Dementia

Dementia is characterized by deterioration of mental function in its cognitive, emo-

tional aspects [Gus96]. A declining memory that is evident in learning, retention and

recall of new information and the remote past is considered obligatory for diagnosis of

dementia. In addition, at least one of the following symptoms are usually required to

diagnose dementia: spatial disorientation (increased difficulty in finding one’s way);

language disturbances (increased difficulties in understanding or in expressing oneself

verbally or in writing); reduced practical abilities (increased difficulty in maintain-

ing learned skills or managing everyday activities and personality changes resulting

in lack of judgment, increased sentimentality, emotional bluntness, aggressiveness

or lack of insight) [Gus96]. Alzheimer’s disease (AD) is the most common form of

dementia accounting for up to 70% of dementia cases in United States [PLF+07].

2.3 Available Datasets

The solutions proposed by this thesis are trained and validated on two datasets

which are described briefly in this section, while their characteristics are elaborated

in Chapters 4, 5 and 6 at time of use.
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2.3.1 Sydney Memory and Ageing Study Dataset

The Sydney Memory and Ageing Study (MAS) dataset is based on 1037 community-

dwelling, non-demented individuals, who were recruited randomly from two elec-

torates of East Sydney, Australia [SBR+10]. The baseline age of these individuals

was 70-90 and each participant was administered a comprehensive neuropsychological

test battery. Only 52% of the study population underwent an MRI scan. Individ-

uals were excluded if they had a Mini-Mental State Examination (MMSE) score <

24 (adjusted for age, years of education and non-English-speaking background), a

diagnosis of dementia, mental retardation, psychotic disorder (including schizophre-

nia and bipolar disorder), multiple sclerosis, motor neuron disease and progressive

malignancy or inadequate English to complete assessments. Seven repetitive waves

after the baseline assessment have been carried out to date at a frequency of 2 years,

and the first four waves were made available for this work. Details of the sampling

methodology have been published previously [SBR+10]. This study was approved by

the Human Research Ethics Committees of the University of New South Wales and

the South Eastern Sydney and Illawarra Area Health Service, and all participants

gave written informed consent.

2.3.2 Alzheimer’s Disease Neuroimaging Initiative Dataset

The second dataset was obtained from the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) database [Ini05]. ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging(MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD). Up-to-date information on
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ADNI is available [Ini05]. A complete listing of ADNI investigators can be found

at:1 ∗.

2.4 Cognitive Assessments

A subset of prominent cognitive assessment measures that are used in both ADNI

and MAS datasets are described herein. A number of cognitive assessment scales and

protocols were selected by the designers of the MAS and ADNI studies to represent

the patient population and adequately sample cognitive domains of interest in sub-

jects who are normal, or have MCI or dementia. These studies can also be used to

measure change over the duration of a longitudinal study and are reasonably efficient

and meet the practical demands of the MAS and ADNI studies [Ini05]. The following

subsections briefly discuss the different measures of cognitive assessment employed

by the two studies.

2.4.1 Mini-mental State Exam (MMSE)

MMSE is frequently used in AD drug studies and is a fully structured screening

instrument. Orientation to place, orientation to time, registration (immediate rep-

etition of three words), attention and concentration (e.g. serially subtracting seven

beginning with 100), recall (recalling the previously repeated three words), language

(naming, repetition, reading, writing, comprehension) and visual construction (copy

two intersecting pentagons) are evaluated by this test. It is scored as the number

of correctly completed items with lower scores indicative of poorer performance and

greater cognitive impairment. The total score ranges from 0 to 30 [Ini05,FFM75].

∗1. http://adni.loni.usc.edu/wp-content/uploads/how˙to˙apply/ADNI˙Acknowledgement˙List.pdf
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2.4.2 Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-

COG)

ADAS-COG evaluates memory (word recall, word recognition), reasoning (following

commands), language (naming, comprehension), orientation, ideational praxis (plac-

ing letter in envelope) and constructional praxis (copying geometric designs). It also

obtains ratings of spoken language, language comprehension, ability to remember

test instructions and word finding difficulty. As the results are represented in errors,

higher scores reflect poorer performance where scores can range from 0 (best) to 70

(worse) [Ini05,ada84].

2.4.3 Logical Memory Test (Delayed Paragraph Recall)

This test used in the ADNI study is a modification of the episodic memory measure

from Wechsler Memory Scale-Revised (WMS-R). Free recall of one short story (story

A) that consists of 25 bits of information is elicited immediately after it is read aloud

to the subject, and again after a thirty minute delay in this modified version. The

total bits of information from the story that are recalled immediately (maximum

score = 25) and after the delay interval (maximum score = 25) are recorded. A

retention or “savings” score can be computed by dividing the score achieved during

delayed recall by the score achieved during immediate recall [Ini05,Elw91].

2.4.4 Boston Naming Test

The Boston naming test measures visual confrontation and requires the subject to

name objects depicted in outline drawings. In the ADNI study, a modified version of

the original test was used where only 30 items are presented (either the odd or even

numbered items from the full 60-item test). The drawings get increasingly difficult
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and the easiest ones are presented first. If a naming difficulty is encountered, a

stimulus cue and/or a phonemic cue is provided. The number of spontaneous correct

responses (maximum score = 30) and spontaneous plus semantically-cued correct

responses (maximum score = 30) are recorded. The number of perceptual errors,

circumlocutions, paraphasic errors, and perseverations can also be used to evaluate

the subjects’ language performance [Ini05,KGW83].

2.4.5 Category Fluency Test

This test measures verbal fluency in which the subject is asked to generate exam-

ples from each of two semantic categories (animals and vegetables) in successive

one-minute trials. The number of correct, unique examples generated for the two

categories is considered the primary performance measure. Repetitions of a correct

item (perseveration) and non-category items (intrusion) errors are also taken into

consideration [Ini05,BGS+87].

2.4.6 Clock Drawing Test

This test is a visuo perceptual constructional task where the subject is given a blank

sheet of 8 1/2” x 11” paper and instructed to ”Draw a clock, put in all the numbers

and set the hands for 10 after 11”. Thereafter, a copy condition ensues where the

subject attempts to copy a drawing of a clock with the hands set at ten past eleven.

A maximum total score of 10 is derived for each drawing by adding the scores of three

separate features: a maximum of 2 points is given for the integrity of the clock face;

a maximum of 4 points for the presence and sequencing of the numbers; a maximum

of 4 points for the presence and placement of hands [Ini05,Nas84]. This test has been

proven effective in discriminating between patients with AD and cognitively normal

adults [CSM+96].

18



2.4.7 Digit Span Test

The subject is expected to repeat sequences of single digit numbers which are read

aloud by the examiner. The subject must repeat the sequence in the same order and

then digits should be repeated in reverse order. The lengths of the sequences increase

progressively from three to nine digits in the forward direction and from two to eight

digits in the backward direction. Two trials are presented for each sequence length.

When the subject misses both trials at a given sequence length, testing is terminated.

One point is awarded for each sequence correctly produced and the maximum score

for each condition is 14 points.

2.4.8 American National Adult Reading Test (ANART)

Estimating premorbid verbal intelligence is the objective of this test where this skill

is thought to remain relatively preserved until the later stages of Alzheimer’s disease.

It requires patients to read and correctly pronounce fifty ”irregular” words that do

not follow common rules of phonography and orthography. Pronouncing such words

depends solely on previous familiarity and cannot be accomplished by applying com-

mon grammatical rules (eg: the word ’naive’ might be pronounced ’nave’ if common

English grammatical rules were employed). A large premorbid vacabulary is corre-

lated with a high premorbid verbal intelligence and this is characterized by the ability

to correctly pronounce progressively less common irregular words [Ini05,NO78]. Pre-

morbid verbal intelligence can be estimated from the formula derived by Grober and

Sliwinski [GSRK08].
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2.4.9 Rey Auditory Verbal Learning Test

Multiple cognitive parameters associated with learning and memory are assessed by

this learning task. There are five learning trials where 15 unrelated words (all nouns)

are presented orally at the rate of one word per second and immediate free recall of

the words is elicited. The number of correctly recalled words are recorded. After a

20-minute delay filled with unrelated testing, free recall of the original 15 word list

is elicited. Finally, a yes/no recognition test is administered which consists of the

original 15 words and 15 randomly interspersed distracter words [Ini05,Rey64].

2.4.10 Trail Making Test: Parts A and B

There are two parts to this test: part A consists of 25 circles numbered 1 through

25 distributed over a white sheet of 8 1/2” x 11” paper while part B also consists of

25 circles but these circles are either numbered (1 through 13) or contain letters (A

through L). In part A, the subjects are instructed to connect the circles with a drawn

line as quickly as possible in ascending numerical order. In part B, subject should

connect the circles while alternating between numbers and letters in an ascending

order (eg: A to 1; 1 to B; B to 2; 2 to C). The time required for a subject to complete

each trial and the number of errors of commission and omission are used as the

assessing criteria [Ini05,MR58].

2.4.11 Digit Symbol Substitution Test

This test has 110 small blank squares presented in seven rows, each randomly paired

with one of nine numbers (1 to 9) printed directly above it. There is a ”key” printed

above the row of blank squares that pairs each of the numbers 1 through 9 with an

unfamiliar symbol. A short series of practice trials are given and then the subjects
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must use the key to fill in the blank squares in order (working left to right across the

rows) with the symbol that is pared with the number above it, working as quickly as

possible for 90 seconds. The correct number of blank squares filled within the time

limit is the measure of interest where the maximum raw score is 110 [Ini05,Wec81].

2.4.12 Clinical Dementia Rating (CDR)

Five degrees of impairment in performance on each of 6 categories of cognitive func-

tioning including memory, orientation, judgment and problem solving, community

affairs, home and hobbies and personal care are described by this test. The degree

of impairment obtained on each of the six categories of function are synthesized into

one global rating of dementia (ranging from 0 to 3), with a more refined measure of

change available by use of the sum of boxes. It is used as a global measure of severity

of dementia, as its reliability and validity has been established as well as the high

inter-rater reliability [Ini05,Ber84].

2.4.13 Functional Activities Questionnaire (FAQ)

This test is based on an interview with a caregiver or a qualified partner. A subject

is rated on their ability to carry out ten complex activities of daily living: 1) manage

finances, 2) complete forms, 3) shop, 4) perform games of skill or hobbies, 5) prepare

hot beverages, 6) prepare a balanced meal, 7) follow current events, 8) attend to

television programs, books or magazines, 9) remember appointments, 10) travel out

of the neighborhood. The score has three scales, 0 (does without difficulty), 1 (needs

frequent advice or assistance) and 2 (someone has taken over the activity). Scores

are then summed across items to provide a total disability score with a maximum

score of 20, with a higher score indicating greater impairment [Ini05,PKH+82].
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2.4.14 Neuropsychiatric Inventory Q (NPIQ)

This test is also performed as an interview with a caregiver or a qualified partner. It is

a well-validated, reliable,multi-term instrument to assess psychopathology in AD. It

is a brief interview of 15 minutes and carries a maximum score of 36 [Ini05,KCK+00].

2.4.15 Geriatric Depression Scale

The objective of this test is to identify symptoms of depression in the elderly in a

self report. It consists of 15 printed questions that the subject is asked to answer by

circling yes or no on the basis of how they felt over the past week. More benign items

are presented first. Five items are negatively oriented for depression (ex: do you

feel full of energy) while ten are oriented positively (ex: do you often feel helpless).

Each appropriate positive or negative answer indicative of a symptom of depression

is given one point. Scores ranging from 0-5 are considered normal while 6-15 are

considered depressed [Ini05,SY86].

2.5 Medical Imaging

There are a number of advanced medical imaging techniques such as X-ray radio-

graphy, X-ray computer tomography (CT), magnetic resonance imaging (MRI), ul-

trasonography, elastography, optical imaging, positron emission tomography (PET)

and thermography [KEbS15]. However, the focus here is on MRI, as it is the primary

imaging data source used in the experiments. Other imaging modalities such as PET

and diffusion tensor imaging (DTI) are also described briefly, as they are used in

cognitive impairment diagnosis.

MRI is frequently divided into structural MRI and functional MRI (fMRI).
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Nuclear magnetic resonance (NMR) was first observed in 1945 and was subsequently

developed over the next three decades to obtain the first human in-vivo MR im-

ages [SJSY04]. MR images of the head provided excellent anatomical detail and

strong grey / white matter contrast compared to imaging modalities extant at the

time. The core protocols of clinical MRI include T2- and T1-weighted sequences,

which are described below. Therefore, most pathological processes are described in

terms of T1 or T2 signal behavior. In recent times, fluid attenuated inversion recov-

ery (FLAIR) has been introduced as a complement of the conventional T2-weighted

sequence. Newer techniques have been introduced over the years to increase the

spatial resolution and sensitivity in T2 imaging.

In MRI acquisition, no ionizing radiation is used. A magnetic field is used

that causes protons in the body to align and then pulsed radio waves are directed

at the patient, causing a disturbance of the proton alignment. Atoms then realign

by emitting absorbed radio-frequency. The time it takes the protons to regain their

equilibrium state is known as the relaxation time. There are two types of relaxation

times, T1 (longitudinal: parallel to the magnetic field) and T2 (transverse: perpen-

dicular to the magnetic field). Relaxation time and proton density can be considered

as the main determinants of signal strength. The main determinants of contrast (also

known as weighting) are the repetition time (TR), which is the time between two

successive radio frequency (RF) pulses, and the echo time (TE), which is the time

between the arrival of the RF pulse that excites and the arrival of the return signal

at the detector.

There are two main governing characteristics of image quality; spatial res-

olution and signal to noise ratio (SNR). Resolution is mostly determined by the

number of picture elements (pixels) in the frequency, and phase encoding directions

and the through-plane resolution by the slice thickness. Pixel size, slice thickness,

scan time and the sequence used govern the SNR. Any motion while capturing MRI
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Figure 2.2: A sample T1w brain MR image [Ins19]

can cause motion artifacts [SJSY04].

T1 weighted MRI (T1w) is one of the basic MR image techniques that

demonstrates the T1 relaxation times of tissues. In T1w, the image relies on the

longitudinal relaxation of a tissue’s net magnetization vector such that spins aligned

to an external field are put into the transverse plane by an RF pulse. These can

then slide back toward the original equilibrium of the external field. As all tissues

do not get back to equilibrium equally quickly, a tissue’s T1 relaxation time reflects

the amount of time that its protons’ spins take to realign with the main magnetic

field [MJ19]. Essentially, T1 weighted MRI is acquired when TR and TE are short.

A sample T1w MR image of the brain is shown in figure 2.2.

The difference between T1w and T2w is that T2w MR images rely on the

transverse magnetization as opposed to the longitudinal magnetization used in T1w.

The method of acquisition is similar, however with long TR and long TE. A sample
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Figure 2.3: A sample T2w brain MR image [Ins19]

T2w MR image of the brain is shown in figure 2.3.

Diffusion tensor imaging (DTI) is a modality for characterizing micro-structural

changes or differences. DTI can be used to map and characterize the three-dimensional

diffusion of water as a function of spatial location. The diffusion tensor elaborates the

magnitude, degree of anisotropy and orientation of diffusion anisotropy. The most

commonly used diffusion-weighted imaging (DWI) approach is the pulsed-gradient

spin echo (PGSE) pulse sequence with a single-shot, echo planar imaging (EPI)

readout. At least six non-collinear diffusion encoding directions are needed to mea-

sure the full diffusion tensor [ALLF07]. Owing to the way image acquisitions are

performed, DTI images are considered as a temporal sequence and hence cannot be

represented by a single image. However values derived from DTI images such as

fractional anisotropy (FA) or mean diffusivity (MD) can be displayed, as shown in

Figure 2.4.
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Figure 2.4: A sample MD and FA image derived from DTI sequence. T1w and T2w images
are also displayed [ALLF07].

PET imaging is based on detecting two time-coincident high-energy photos

from the emission of a positron-emitting radioisotope [VK15]. It is a non-invasive

imaging modality that provides physiological information through the injection of

radioactive compounds, detection of radiation and reconstruction of the distribution

of the radiotracer [VK15]. It is a prominent method used in diagnosis and staging in

oncology as well as for neurological and cardiovascular indications [VK15].

2.6 Labelling of Datasets

The characteristics used to diagnose and label each patient in the MAS and ADNI

datasets are described here. The labelling procedure for MCI is discussed first fol-

lowed by those for AD and Dementia.
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2.6.1 Labelling of MCI

The participants of MAS dataset were labelled with MCI if they exhibited the fol-

lowing criteria as outlined in international consensus criteria [Pet04].

i A subjective complaint of decline in memory or other cognitive function (from

the participant and/or their informant).

ii Cognitive impairment as shown by performance at 1.5 standard deviations (or

equivalent) below published normative values (matched for age and education

where available) on a neuropsychological test measure.

iii Normal or minimally impaired functional activities as determined by informant

ratings on the Bayer-ADL scale [Hin98]. This is a questionnaire completed by

the participant’s informant that rates the participant’s level of difficulty in

instrumental activities of daily living.

iv Not demented i.e.no diagnosis of DSM-IV dementia [APATFoNaAPACoNa00],

as determined by a consensus diagnosis from an expert team comprising psy-

chogeriatrician, neuropsychiatrists and neuropsychologists.

The inclusion criteria for MCI participants in the ADNI study are outlined

in Table 2.1.

Table 2.1: Inclusion criteria for MCI in ADNI study

Item Description

Memory complaints Memory complaint by subject or study

partner that is verified by a study partner.
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Memory Function Abnormal memory function documented

by scoring below the education adjusted

cutoff on the Logical Memory II sub-

scale (Delayed Paragraph Recall) from the

Wechsler Memory Scale – Revised (the

maximum score is 25): a) less than or

equal to 8 for 16 or more years of edu-

cation b) less than or equal to 4 for 8-15

years of education c) less than or equal to

2 for 0-7 years of education.

MMSE Mini-Mental State Exam score between

24 and 30 (inclusive) (Exceptions may be

made for subjects with less than 8 years of

education at the discretion of the project

director).

CDR Clinical Dementia Rating = 0.5. Memory

Box score must be at least 0.5.

General Cognition General cognition and functional perfor-

mance sufficiently preserved such that a

diagnosis of Alzheimer’s disease cannot be

made by the site physician at the time of

the screening visit.

Hachinski Modified Hachinski score of less than or

equal to 4.

Age Age between 55 and 90 (inclusive).
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Stability of Permitted medications Permitted medications stable for at least 4

weeks prior to screening. In particular: a)

Subjects may take stable doses of antide-

pressants lacking significant anticholiner-

gic side effects (if they are not currently

depressed and do not have a history of ma-

jor depression within the past 1 year) b)

Estrogen replacement therapy is permis-

sible c) Gingko biloba is permissible, but

discouraged d) Washout from psychoac-

tive medication (e.g., excluded antidepres-

sants, neuroleptics, chronic anxiolytics or

sedative hypnotics, etc.) for at least 4

weeks prior to screening. e) Cholinesterase

inhibitors and memantine are allowable if

stable for 4 weeks prior to screen

Geriatric Depression Scale Geriatric Depression Scale score of < 6

Study partner Study partner is available who has fre-

quent contact with the subject (e.g. an

average of 10 hours per week or more), and

can accompany the subject to all clinic vis-

its for the duration of the protocol.

Visual and auditory acuity Adequate visual and auditory acuity to al-

low neuropsychological testing.

General Health Good general health with no additional

diseases expected to interfere with the

study.
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Pregnancy/Childbearing Potential Subject is not pregnant, lactating, or of

childbearing potential (i.e. women must

be two years post-menopausal or surgically

sterile).

Testability Willing and able to complete all baseline

assessments. Willing and able to partici-

pate in a 3-year protocol.

Commitment to neuroimaging and

providing study samples

Willing to undergo MRI 1.5 Tesla neu-

roimaging (PET and MRI 3Tesla are op-

tional) and provide DNA for ApoE assess-

ments and banking as well as plasma sam-

ples at protocol specified time points.

Commitment to provide CSF samples Willing to provide CSF for biomarker

studies at protocol specified time points

(optional).

Education Completed 6 grades of education (or had

a good work history sufficient to exclude

mental retardation).

Language Fluent in English or Spanish.

In the MAS study, MCI individuals are labelled by four subtypes in turn

depending on the affected region and function [Pet04] according to their neuropsycho-

logical test performances. The four subtypes are amnestic single domain MCI(only

memory domain impaired)[sd-aMCI], amnestic multiple domain MCI(memory plus

at least one non-memory domain impaired)[md-aMCI], non-amnestic single domain

MCI(one non-memory domain impaired)[sd-naMCI] and non-amnestic multiple do-

main MCI(more than one non-memory domain impaired)[md-naMCI]. The subclas-
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Figure 2.5: The sub-classification of MCI and their causes [Pet04].

sification is better represented in figure 2.5.

In the ADNI study, MCI is more generally subdivided into two categories,

early MCI (EMCI) and late MCI. Therefore, ADNI does not have the same level of

resolution in the subtypes of MCI as MAS does.

A variety of neuropsychological tests were used to evaluate and diagnose

individuals in the MAS study and these tests are listed in Table 2.2.

A number of these overlap the tests used in ADNI. However, for complete-

ness, the tests used by ADNI are also listed in Table 2.3. It should be noted that

some tests are regional variants of the same tests as MAS, as ADNI was conducted

in the Americas while MAS was conducted in Australia.

2.6.2 Labelling of Dementia

For the MAS study, diagnosis of dementia was based on DSM-IV criteria [APATFoN-

aAPACoNa00] that takes into consideration factors such as the presence of multiple

cognitive deficits that represent a decline from a previous level of functioning and in-
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Table 2.2: Neuropsychological Test Battery and Normative Data used for Diagnostic Clas-
sification for MAS [SBR+10]

Cognitive Do-
main

Test

Normative
Data &
Demographic
adjust-
ments

Premorbid Intel-
ligence

National Adult Reading Test (NART)*

Attention/ Pro-
cessing speed

Digit Symbol-Coding [Axe01]
Trail Making Test(TMT) A [SSS06]

Age [Axe01]
Age & Education
[Tom04]

Memory

Logical Memory Story A delayed recall
[Axe01]

Rey Auditory Verbal Learning Test
(RAVLT) [SSS06]
RAVLT total learning: sum of trials 1-5
RAVLT short-term delayed recall:trial 6
RAVLT long-term delayed recall: trial 7

Benton Visual Retention Test
Recognition [Ste05]

Education [MRSea04]

Age [IMS+92a]

Age & Education

Language
Boston Naming Test - 30 items [Rot11]

Semantic Fluency (Animals) [SSS06]

Age [FDM98]

Age & Education
[TKR99]

Visuo-spatial Block Design [Axe01] Age [IMS+92b]

Executive Func-
tion

Controlled Oral Word Association Test
[SSS06]

Trail Making Test(TMT) B [SSS06]

Age & Education
[TKR99]

Age & Education
[Tom04]
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Table 2.3: Neuropsychological Tests conducted for ADNI [Ini05]

Tests Cognitive domain
American National Adult Reading Test Premorbid Intelligence
Mini Mental State Examination Multiple
Logical Memory I and II Memory
Digit Span Attention / Processing speed
Category Fluency Language
Trails A & B Executive Function
Digit symbol Attention / Processing speed
Boston Naming Test Language
Auditory Verbal Learning Test Memory
Geriatric Depression Scale Multiple
Clock drawing Visua-spatial
Neuropsychiatric Inventory Q Executive function
ADAS-Cog Multiple
Clinical Dementia Rating Scale Multiple
Activities of Daily Living(FAQ) Multiple

clude memory impairment and at least one other cognitive disturbance as described

above. Participants who were diagnosed with dementia at baseline were excluded

from the study.

The inclusion criteria for dementia diagnosis in ADNI are outlined in Ta-

ble 2.4. Compared to MAS, patients diagnosed with dementia at baseline were not

excluded from ADNI.

Table 2.4: Inclusion criteria for Dementia in ADNI study [Ini05]

Item Description

Memory complaints Memory complaint by subject or study

partner that is verified by a study partner.
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Memory Function Abnormal memory function documented

by scoring below the education adjusted

cutoff on the Logical Memory II sub-

scale (Delayed Paragraph Recall) from the

Wechsler Memory Scale – Revised (the

maximum score is 25): a) less than or

equal to 8 for 16 or more years of edu-

cation b) less than or equal to 4 for 8-15

years of education c) less than or equal to

2 for 0-7 years of education

MMSE MMSE between 20 and 26 (inclusive) (Ex-

ceptions may be made for subjects with

less than 8 years of education at the dis-

cretion of the project director).

CDR Clinical Dementia Rating = 0.5, 1.0

General Cognition NINCDS/ADRDA criteria for probable

AD.

Hachinski Modified Hachinski score of less than or

equal to 4.

Age Age between 55 and 90 (inclusive).
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Stability of Permitted medications Permitted medications stable for at least 4

weeks prior to screening. In particular: a)

Subjects may take stable doses of antide-

pressants lacking significant anticholiner-

gic side effects (if they are not currently

depressed and do not have a history of ma-

jor depression within the past 1 year) b)

Estrogen replacement therapy is permis-

sible c) Gingko biloba is permissible, but

discouraged d) Washout from psychoac-

tive medication (e.g., excluded antidepres-

sants, neuroleptics, chronic anxiolytics or

sedative hypnotics, etc.) for at least 4

weeks prior to screening. e) Cholinesterase

inhibitors and memantine are allowable if

stable for 4 weeks prior to screen.

Geriatric Depression Scale Geriatric Depression Scale score of ¡ 6

Study partner Study partner is available who has fre-

quent contact with the subject (e.g. an

average of 10 hours per week or more), and

can accompany the subject to all clinic vis-

its for the duration of the protocol.

Visual and auditory acuity Adequate visual and auditory acuity to al-

low neuropsychological testing.

General Health Good general health with no additional

diseases expected to interfere with the

study.
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Pregnancy/Childbearing Potential Subject is not pregnant, lactating, or of

childbearing potential (i.e. women must

be two years post-menopausal or surgically

sterile).

Testability Willing and able to complete all baseline

assessments. Willing and able to partici-

pate in a 2- year protocol.

Commitment to neuroimaging and

providing study samples

Willing to undergo MRI 1.5 Tesla neu-

roimaging (PET and MRI 3Tesla are op-

tional) and provide DNA for ApoE assess-

ments and banking as well as plasma sam-

ples at protocol specified time points.

Commitment to provide CSF samples Willing to provide CSF for biomarker

studies at protocol specified time points

(optional).

Education Completed 6 grades of education (or had

a good work history sufficient to exclude

mental retardation).

Language Fluent in English or Spanish.

2.7 Summary

This chapter described cognitive impairment in detail, including relevant brain anatomy

and the methods currently utilized to diagnose cognitive impairment. Two data

modalities from two different studies are used in this thesis, and both modalities and

datasets were described in detail including the labelling protocols employed.
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Chapter 3

Machine Learning and Deep

Learning for Diagnosis of Cognitive

Impairment and Survival Analysis

This thesis utilizes machine learning techniques as the method of choice to assign

a class label of CN, MCI or dementia to patient data. Classical machine learning

algorithms reason from externally supplied labelled instances to produce a general

hypothesis, which is then used to make predictions about the labels of future in-

stances, called supervised learning. Formally, the goal of supervised learning is to

build a concise model of the distribution of class labels in terms of predictor features.

The resulting classifier is then used to assign class labels to test instances, where the

values of the predictor features are known but the class label is unknown [Kot07].

Generally, the same features that are used to arrive at class labels are used to make

the predictions as well. If labels are unavailable, algorithms exist that can still pro-

duce a model for a similar purpose and is called unsupervised learning.

Recently, machine learning has bifurcated into conventional machine learn-
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ing and deep learning. Deep learning is a special type of machine learning that

predominantly uses deep artificial neural networks that are capable of working with

structured as well as unstructured data. Conventional machine learning on the other

hand almost always requires structured data and is further described in section 3.1.

Deep learning techniques are discussed in section 3.2. Diagnosis of cognitive impair-

ment is discussed in detail and prior work reviewed in section 3.3, while survival

analysis for cognitive impairment and dementia is introduced in section 3.4. Finally,

the motivation for this thesis is described in section 3.5 and the chapter is summarised

in the final section.

3.1 Conventional Machine Learning

Machine learning may be defined as a set of techniques enabling machines to learn

from data without explicit programming or handwritten rules [Cha19]. In the context

of this thesis, machine learning techniques other than deep learning are considered

to be conventional machine learning techniques. These require structured data and

are often shallow compared to deep learning techniques. A number of conventional

machine learning techniques such as decision trees, random forest (RF), support

vector machine (SVM), AdaBoost (AB) and ensemble methods (ES) are discussed.

These have been selected as they perform effectively with structured data such as the

neuropsychological measure (NM) features described in Chapter 2. Feature subset

selection algorithms are introduced briefly as well. A set of supporting terms are

defined before discussing specific techniques.

i Class is a set of similar samples grouped together. For example, patients with

dementia may be considered to be a class.

ii Class label is the label that indicates the class that an instance belongs to. A
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patient with dementia will have a class label of dementia.

iii Classifier is a model trained on instances, labelled or unlabelled, that can then

be used to classify a new instance and provide a label.

iv Classification is the process of estimating the class label of an unlabeled instance

using a trained classifier.

v Supervised learning occurs when a training set consists of pairs of input features

and a class label, and the objective is to learn a mapping function between the

two [Sim18].

vi Unsupervised learning occurs when the training set consists of unlabelled in-

put features, and the objective is to explore and discover properties of the

mechanism generating the data [Sim18].

vii Training and test sets are used to build and validate the performance of a

classifier. The dataset is usually divided into a larger training set and a smaller

non-overlapping testing set. The training set is used to train the classifier

which is then used to estimate the class labels of the test set to evaluate the

performance of the classifier.

viii Cross validation occurs when multiple non-overlapping training and test sets

are derived from a dataset to better validate the performance of a classifier.

ix n-fold cross validation is the division of the dataset into n equal sets, where

nine are used for training and one for testing. This is then repeated n times by

changing the test set each time, and the results are averaged to measure the

performance of the classifier.
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3.1.1 Logic Based Algorithms

Decision trees are one of the oldest techniques used for classification and have evolved

much in the last two decades. A good overview can be found [Mur98]. Decision

trees can be considered as trees that classify instances by sorting based on feature

values [Kot07]. Each node in a decision tree represents a feature of an instance to be

classified and each branch represents a possible value that the node can take. The

classification of instances starts from the root node and sorted based on their feature

values.

Constructing optimal binary decision trees is an NP-complete problem and

therefore efficient heuristics have been proposed to construct near-optimal decision

trees. The feature that best divides the training data is placed at the root node of

the tree. A number of methods are used to find the most discriminative feature (ie:

root node), including information gain and gini index. Although myopic measures

estimate each attribute independently, algorithms such as RELIEFF [Kon94] esti-

mate them in the context of other attributes. However, most studies have concluded

that there is no single best method and the choice depends on the application do-

main [Mur98]. The same procedure is then reapplied over the created data partitions

in order to create subtrees, until all the training data is divided into subsets of the

same class.

A decision tree, or any learned hypothesis h for that matter, is said to

overfit training data if another hypothesis h́ exists such that h́ has a larger error

than h when tested on the training data, but a smaller error than h when tested on

the entire dataset. Decision trees use two common approaches to avoid overfitting.

i Stop the algorithm before it reaches a point at which it perfectly fits the training

data
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ii Prune the induced decision tree after the algorithm has terminated

If two trees arrived at using the two approaches above respectively attain

the same accuracy level, the tree with fewer leaves is then preferred. One of the most

useful characteristics of decision trees is that they are human-readable. They can

also be converted to a set of rules without much effort, which can be an advantage

in certain instances. Decision trees tend to perform better when dealing with dis-

crete/categorical features as the key assumption in constructing decision trees is that

instances belonging to different classes have different values in at least one of their

features.

3.1.2 Random Forests

A random forest (RF) is a collection of decision trees [LW02]. Classification of a new

instance is obtained by majority vote over the classifications provided by individual

trees included in the forest. A random bootstrap sample of data is used to train a

tree [LW02]. Conventional decision trees use the best split among all variables to

decide how each node is split. However, the best split among a subset of all variables

is chosen in RF. Although this may appear counterintuitive, it has been pointed out

that random forests perform comparably or better than a majority of classifiers such

as discriminant analysis, SVM and neural networks, and are also inherently robust

against overfitting [LW02].

3.1.3 Support Vector Machines

Support Vector Machines (SVM) was introduced by Vapnik et al. in 1995, which can

be considered as a more recent algorithm compared to the history of other learning

algorithms [CV95]. SVM is a margin based technique, where the margin is on either
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side of a hyperplane that separates two data classes. Maximizing the margin creates

the largest possible distance between the separating hyperplane and the instances on

either side of it, and it has been proven to reduce the upper bound on the expected

generalization error [Kot07].

If the training data x is linearly separable, then a pair (w,b) exists such

that

wTxi + b ≥ 1, for all xi ∈ P

wTxi + b ≤ −1, for all xi ∈ N
(3.1)

with the decision rule fw,b given by

fw,b = sgn(wTx + b) (3.2)

where w is termed the weight vector and b the bias (-b is termed as threshold).

It has been shown that when there are two linearly separable classes, an optimum

separating hyperplane can be found by minimizing the squared norm of the separat-

ing hyperplane. This minimization problem can be reduced to a convex quadratic

programming (QP) problem:

Minimize
w,b

Φ(w) =
1

2
||w||2

subject to yi(w
Txi + b) ≥ 1, i = 1, .., l

(3.3)

Data points that lie on its margin are known as support vector points and

hence the name Support Vector Machine, as shown in figure 3.1. The solution is

represented as a linear combination of support vectors while other data points are

ignored. The model complexity of a SVM is not affected by the number of features

encountered in the training set and SVM is considered well suited for learning tasks

with a large number of features compared to the number of training instances.
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Figure 3.1: Maximum margin hyperplane and margins of a SVM trained on a two class
dataset

When the classes are not linearly separable, SVM uses a kernel trick to map

data onto a higher-dimensional space and define a separating hyperplane in that

space. This higher-dimensional feature space is known as the transformed feature

space. Conversely, a linear separation in the transformed feature space corresponds

to a non-linear separation in the original input space. The mapping of the data to

a Hilbert space H can be written as Φ : Rd → H. Therefore the training algorithm

would only depend on the data through the dot products in H, ie: on functions of the

form Φ(xi).Φ(xj). If there is a kernel function K such that K(xi, xj) = Φ(xi).Φ(xj),

the training algorithm can use K instead of explicitly determining Φ. Hence, kernels

are considered to be a special class of functions that allow inner products to be

calculated directly in feature space [Kot07,Mit97].

Training of the SVM may be considered as solving an Nth dimensional QP

problem, where N is the number of samples in the training dataset. The Sequen-

tial Minimal Optimization (SMO) algorithm is used to solve this problem relatively

quickly, and there are several optimizations available as extensions [Kot07].
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3.1.4 AdaBoost

AdaBoost (AB) is a variant of boosting, with the roots of boosting going back as far as

the theoretical framework of PAC (Probably Approximately Correct) learning [FS99].

Boosting builds on the concept that a ‘weak’ learning algorithm that performs slightly

better than chance (random guessing) can be boosted into a strong learning algo-

rithm. AdaBoost addresses the potential difficulties faced by other boosting algo-

rithms and has become a standard in recent times.

The AdaBoost algorithm description is available [FS99] and is presented in

Algorithm 3.1. Decision trees are used as the base algorithm for AdaBoost in the

experiments in this thesis.

Given: (x1, y1), ..., (xm, ym) where xi ∈ X, yi ∈ Y = {−1,+1}

Initialize D1(i) = 1/m

For t = 1, ..., T :

i Train weak learner using distribution Dt

ii Get weak hypothesis ht : X → {−1,+1} with error εt =

Pri Dt [ht(xi) 6= yi]

iii Choose αt = 1
2
ln(1−εt

εt
)

iv Update Dt+1(i) = Dt(i)
Zt

x {e
−αt if ht(xi)=yi
eαt if ht(xi)6=yi where Zt is a normalization

factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis: H(x) = sign(
∑T

t=1 αtht(x))

Algorithm 3.1: The AdaBoost Algorithm [FS99]

44



3.1.5 Ensemble Methods

The underlying concept of ensemble methods (ES) is similar to boosting. A set of

weak learners, each of which performs slightly better than chance, can be combined

to train a strong classifier. While many other methods of combination exist, weighted

averaging and voting are commonly used. The ensemble method used is trained with

multiple types of base learners, whose outputs are combined using voting. Multiple

copies of base learners are trained with varying parameters and the best classifiers

are determined. While some classifiers can be considered as the best reported, others

yield mediocre performance. Therefore, instead of combining both the good and

bad models together, a forward stepwise selection may be used to select the subset

of models that, when averaged together, yield excellent performance. The basic

ensemble selection procedure is summarized in Algorithm 3.2 as follows [CNMCK04].

i Start with the empty ensemble.

ii Add to the ensemble the model in the library that maximizes the en-

semble’s performance based on the error metric on a hillclimb valida-

tion set.

iii Repeat step 2 for a fixed number of iterations or until all the models

have been used.

iv Return the ensemble from the nested set of ensembles that has maxi-

mum performance on the hillclimb validation set.

Algorithm 3.2: The Ensemble selection procedure [CNMCK04]
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3.1.6 Feature Subset Selection Algorithms

The objective of feature subset selection is to eliminate redundant features from

a dataset. A number of algorithms have been introduced for this purpose [Hal00]

that falls into three categories: filter based, information gain based and wrapper

based. The wrapper based techniques use a classifier to evaluate the features based

on accuracy estimates. For a given classifier, wrapper based algorithms omit a feature

at a time and test the impact of omission on the accuracy. In contrast, filter and

information gain based methods use characteristics of the dataset such as correlations

between features and the class label or information theoretic measures to determine

and select a subset of features that are important. Filter based techniques used in

this thesis include correlation based, Pearson correlation based and RELIEF subset

selection, while wrapper based techniques include SVM wrapper based, RF wrapper

based and cross validation based feature selection. Information gain based techniques

include gain ratio based and information gain based feature selection. More detailed

descriptions of these techniques can be found [Hal00,Yil15].

3.2 Deep Learning

Deep learning is a branch of machine learning that has recently became promi-

nent [LBH15a]. Deep learning has made major advances on many problems that

have been challenging for the AI community [LBH15b]. A better description of such

applications can be found [LD14]. Deep learning models used in this thesis may

be divided into two categories, namely discriminative models and generative mod-

els. Convolutional neural networks (CNN) and recurrent neural networks (RNN) are

the discriminative models and stacked auto-encoders (SAE) is the generative model

that are described and later used. Many other architectures of both categories are

available in the literature [LD14].
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Figure 3.2: A multi layered perceptron network which is better know as ANN.

3.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are an advanced type of artificial neural net-

works (ANN) that consists of multi layered perceptrons. The basic version has an

input layer, an hidden layer and an output layer as depicted in figure 3.2. If x1...xn

are input feature values and w1...wn are connection weights, then the perceptron

computes the sum of weighted inputs:
∑

i xiwi and the output goes through an ad-

justable threshold: if the sum is above the threshold, output is 1, otherwise it is

-1. The most common way a perceptron is used for learning is to run the algorithm

repeatedly through the training set until it finds a prediction vector that is correct

on all of the training set. This prediction rule can then be used to predict labels of

new instances [Kot07].

Convolutional Neural Networks (CNN) have been explored in the past and

draw inspiration from typical neural networks [LBBH98]. While they were initially

shown to be excellent at hand written digit recognition [LBBH98], the inability to

scale CNNs to cater to larger image sizes made it impossible to use in most applica-

tions. As this was largely due to hardware and memory constraints, coupled with lack

of sufficiently large datasets, recent advances in GPU computing and the curation of
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large datasets such as ImageNet [Lab16] have recently made it possible to use CNNs

again. The building blocks of CNNs are briefly introduced below and two popular

architectures are discussed, while leaving detailed descriptions to others [SSM+16].

3.2.2 Convolution

The issue with traditional fully connected neural networks when dealing with images

has always been the explosion of parameters. For example, when an image of size

100 x 100 is considered as input, the neural network would have 10,000 input nodes

which in turn implies 10,000 x 10,000 = 100 million parameters, assuming that the

network has 10,000 nodes in the first hidden layer. As the networks become deeper,

the number of parameters grows exponentially and nearly impossible to handle even

by the most advanced hardware. Therefore, instead of dealing with the whole im-

age at one go, learning a set of convolutional filters of varying sizes is much more

tractable. Convolution can be considered as a linear operation that is used for fea-

ture extraction [YNDT18]. The height and width of a convolutional filter are smaller

than the input image. Each convolutional filter is slid across the width and height of

the input image and the dot products between the image and the filter are computed

at every spatial position, which then makes up an activation map. The output of

the convolutional layer consists of the activation maps of all filters stacked along the

depth dimension [KLB+18].

The added advantage of this approach is that the spatial characteristics of

the image can be accounted for, unlike conventional neural networks. CNNs can be

thought of as regular neural networks with two constraints [Bis07]:

Local Connectivity: In essence, each neuron is only connected to a small part

of the image instead of the whole image which is the case in regular neural

networks.
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Parameter Sharing: Since the same convolution filter is applied across the whole

image, weights are shared between these filters.

3.2.3 Pooling

A pooling operation essentially reduces the size of the activation maps for the next

layer, enabling use of a smaller number of parameters progressively [YNDT18]. CNNs

use different types of pooling depending on the architecture, however max-pooling

is the most used pooling technique. For an n x n region, max-pooling will replace

that region with its maximum value, reducing the size by a factor of n2. Providing

a small degree of spatial invariance can be considered as an added advantage of

pooling [YNDT18].

3.2.4 Non-linearity

Since a cascade of linear systems such as convolutions generate another linear sys-

tem, non-linearities between convolutions are added to expand their expressive power.

The outputs of the convolutional layer are then passed through the non-linear acti-

vation layer. Modern CNNs typically use ReLu non-linearity which can be expressed

as ReLu(x) = max(0, x). CNNs with ReLu non-linearity are shown to converge

faster [NH10].

3.2.5 AlexNet

Adding the building blocks together, AlexNet may be taken as an early example of a

CNN network [KSH12a]. AlexNet was trained on ILSVRC 2012 training data which

contained 1.2 million training images categorized into 1000 classes. AlexNet has 7
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layers consisting of combinations of convolution, pooling and non-linearity as shown

in Figure 3.3. Visualization of the output of layers shows that earlier layers tend

to learn low level features similar to gabor-like oriented edges and blob-like features,

while later layers tend to learn higher level features such as shapes and textures. Final

layers also appear to learn semantic attributes such as eyes or wheels [LBH15a].

Figure 3.3: An illustration of the architecture of our CNN, explicitly showing the delineation
of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the
figure while the other runs the layer-parts at the bottom. The GPUs communicate only at
certain layers. Illustration and description adapted [KSH12a]

3.2.6 GoogleNet

GoogleNet is another CNN trained on the ILSVRC14 dataset, and has 22 layers and

the visualizations of the network are available [SLJS14]. The same group presented a

new architecture called Inception that tries to use readily available dense components

to approximate the optimal local sparse structure of a convolutional vision network.

A better description of the layers and the rationale for their individual use can be

found in the original paper.
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3.2.7 RNN

Despite the power of standard neural networks, one limitation they suffer from is

the assumption of independently generated samples. If the samples used to train

a classifier are related in time or space, neural networks can fall short. A typical

example would be time-series data such as frames from a video or snippets of audio.

Another issue with these types of data is that the samples can be vectors of different

lengths at different time points, whereas typical neural networks rely upon sample

vectors of fixed length. Recurrent neural networks (RNN) was proposed to alleviate

these issues as a connectionist model with the ability to selectively pass information

across sequence steps, while processing sequential data one element at a time [Lip15].

A standard RNN computes the hidden vector sequence h = (h1, h2...hT ) and

output vector sequence y = (y1, y2, ...yT ) given an input sequence x = (x1, x2, ...xt)

by iterating over equation 3.4 from t = 1 to T [GMH13]:

ht = H(Wxhxt +Whhht−1 + bh)

yt = softmax(Whyht + by)
(3.4)

Here Wxh is similar to the conventional weight matrix between the input

and the hidden layer, while whh can be thought of as the weight matrix between the

hidden layer and itself at adjacent time steps [Lip15]. This can be represented in

Figure 3.4 and the dynamics of the network across time steps can also be visualized

by unfolding it as shown in Figure 3.5.

RNNs are better described elsewhere [Lip15, GMH13, HS13]. A popular

extension of RNN is long-short term memory networks (LSTM) that are widely used

today [HS13]. RNNs are rarely used in medical imaging, although there can be

interesting applications, as medical imaging applications do have sequential data.
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Figure 3.4: A simple recurrent network. At each time step t, activation is passed along
solid edges as in a feed-forward network. Dashed edges connect a source node at each time
t to a target node at each following time t + 1. Illustration adapted from [Lip15]

Figure 3.5: The recurrent network of Figure 3.4 unfolded across time steps. Illustration
adapted from [Lip15]

3.2.8 Auto-encoders

Auto-encoders are a type of artificial neural network that can be defined with three

layers: (i) input layer (ii) hidden layer and (iii) output layer. They transform in-

puts into outputs with the least possible amount of distortion. Auto-encoders were

first introduced in the 1980s and their history and evolution are elaborated else-

where [Bal12]. The typical architecture of an AE is shown in Figure 3.6. It is

predominantly an unsupervised learning algorithm but recent advances have made

it possible to use a set of auto-encoders stacked on top of each other as a supervised

learning algorithm [HOT06].
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Denoting the input vector by x ∈ RDI , where DH and DI denote the num-

ber of hidden and input units respectively, an auto-encoder creates a deterministic

mapping from an input to a latent representation y such that y = f(W1x+ b1). This

is parameterized by the weight matrix W1 ∈ RDHxDI and the bias vector b1 ∈ RDH .

This latent representation y ∈ RDH is mapped back to a vector z ∈ RDI which

can be considered as an approximate reconstruction of the input vector x with the

deterministic mapping z = W2y + b2 ≈ x where W2 ∈ RDHxDI and b2 ∈ RDI .

Figure 3.6: A typical AE transforms the input x to output x̃ with minimum amount
of distortion by encoding the input into z and decoding it back. Illustration adapted
from [Le15].

3.2.9 Transfer Learning

Transfer learning was proposed as a solution to one of the prevalent problems in

machine learning; namely the paucity of training data [TSK+18]. Especially in a

domain like medical imaging, it becomes a challenge to find appropriate labelled

training data. Transfer learning is the improvement of learning in a new task through

the transfer of knowledge from a related task that has already been learned [OGS+09].

There are two prominent ways to operationalize transfer learning: further develop a

trained model or fine-tune a pre-trained model [KJS18]. The former technique allows

one to train a model for a specific task and then reuse all or parts of that model along
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with further changes if necessary and on another similar task. The latter technique

focuses on using a pre-trained network and retraining it on a different dataset which is

known as fine-tuning [TSG+16]. An extension of this method specific to deep learning

is to use an already trained deep neural network to extract features that are relevant

and subsequently use those features to train another machine learning algorithm of

choice [TSK+18, TSG+16, ARS+14]. This thesis explores transfer learning based on

deep learning using discriminative models.

An important consideration when applying the transfer learning paradigm

is the domain of the trained network and the new domain of application. It has been

demonstrated that performance improves if both networks share the domain [ARS+14].

In natural classification problems, this has become particularly straight-forward with

the availability of a plethora of pre-trained networks trained on the ImageNet dataset

and other natural image datasets [KSH12a, SLJ+14, Lab16]. However, this is still a

significant challenge in the medical imaging domain as the images used in the natural

domain and medical imaging domains vary significantly. For instance, natural im-

ages have three channels (full colour) whereas medical images are usually grayscale.

Medical images also tend to be translation and rotation invariant, whereas natural

images do not exhibit such characteristics commonly [ARS+14].

3.3 Diagnosis of Cognitive Impairment

The diagnosis of cognitive impairment can be subdivided into two categories depend-

ing on the data that is used for diagnosis. The prevalent method is based on neu-

ropsychological test scores, as already described in Section 2.4. In addition to that,

medical imaging techniques as described in Section 2.5 are also used as supplemen-

tary information to diagnose cognitive impairment. The use of neuropsychological

test scores are expanded in Section 3.3.1, while Section 3.3.2 describes how medical
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imaging techniques are utilized. The final subsection expands on how these two data

modalities are used with machine learning to diagnose cognitive impairment.

3.3.1 Diagnosing Cognitive Impairment using Neuropsycho-

logical Measures

Any patient with suspected MCI undergoes a comprehensive history and physical

examination focusing on cognitive function, functional status, medications, neuro-

logical or psychiatric abnormalities, and laboratory testing [LL14]. The suggested

approach for diagnosis and management of MCI is depicted in Figure 3.7.

3.3.2 Diagnosing Cognitive Impairment using Medical Imag-

ing

National Institute on Aging and the Alzheimer’s Association (NIA-AA) guidelines do

not recommend routine neuroimaging in the typical clinical assessment of cognitive

impairment [LL14]. They however do propose research criteria where neuroimaging

may help in determining cognitive decline etiology and prognosis. There are a number

of published studies that suggest the use of structural magnetic resonance imaging

for identifying cognitive impairment [CSL+12,CWL+12,JSL+14,RKB+13].

A list of biomarkers based on structural MRI (T1w and T2w) were collected

and are listed in Table 3.1 [CSL+12,CWL+12,JSL+14,RKB+13]. These biomarkers

and their importance are further elaborated in section 3.3.3.
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Figure 3.7: Suggested Approach to the Diagnosis and Management of MCI. The illustration
is recreated from [LL14]
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Table 3.1: Common biomarkers based on Structural MRI found in Literature
Biomarkers based on structural MRI
Cortical Thickness
Cortical Volume
Subcortical Volume
Grey Matter Atrophy
Hippocampal Atrophy
Entorhinal Volume

3.3.3 Diagnosing Cognitive Impairment with Machine Learn-

ing

Depending on the data modality used, diagnosis of cognitive impairment using ma-

chine learning may be divided into two; using NM features and using multi-modal

MR images. However, the work presented in this thesis is the first attempt to use NM

features and machine learning to diagnose cognitive impairment as far as is known.

The current progress in the area may be categorized into three areas of interest:

i Brain MR image preprocessing and analysis: This includes initial preprocessing,

registration, segmentation and temporal tracking of the brain MR images.

ii MCI diagnosis using multi-modal MR images: This includes the use of Diffusion

Tensor Imaging and Perfusion imaging modalities in addition to structural MR

images.

iii Reliable differentiation between MCI subtypes: This includes the differentiation

between aMCI and naMCI as well as their single/multiple domain subtypes.

The first is a strong area of research, as it has ubiquitous utility in many

other areas as well. Techniques such as registration, segmentation and tracking of

brain MR images have been examined thoroughly and state-of-the-art algorithms
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perform very well in these tasks [Bow14]. As brain MR preprocessing and analysis is

not the focus of this thesis, they are not further reviewed.

MCI diagnosis using multi-modal MR images is a recent development, with

the development of different MRI modalities in recent times. Structural MR modali-

ties such as T1 and T2 have been in use for a long time, whereas other MR modalities

such as diffusion imaging and perfusion imaging are relatively new. Scientists have

begun to utilize these imaging modalities to improve the performance of existing

diagnosis algorithms. A review of this area is in section 3.3.3.1.

The third area of focus is the differentiation between the individual subtypes

of MCI, as different subtypes have different propensities to progress to different types

of dementia. This has benefited from both structural MR image analysis and multi-

modal MR image analysis and continues to improve in performance. A review is in

subsection 3.3.3.2.

3.3.3.1 MCI Diagnosis using multi-modal MR images

The modalities used to diagnose MCI include T1w, T2w and DTI images. The earliest

work in this regard was by Peterson et al. [JPX+99]. They reported that Hippocam-

pal volume was associated with progression from MCI to dementia with a relative

risk of 69%. Leyla et al. carried out a similar experiment to understand whether

Hippocampal volume or entorhinal volume is the better predictor of conversion from

MCI to AD [dMSB+XX]. A sample image is shown in Figure 3.8 highlighting both

entorhinal and hippocampal formations. They reported that entorhinal volume was

in fact the better predictor. They concluded that the right hemisphere entorhinal

volume was the best predictor of conversion with a concordance rate of 93.5%.

Chételat et al. also tried to associate the structural changes occurring in

the brain to conversion of MCI to AD [CLE+05]. They indicate that hippocampal
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Figure 3.8: A single coronal slice illustrating the segmentation of the entorhinal cortex
(left-hand side) and the hippocampal formation (right-hand side) [dMSB+XX].

atrophy plays a discriminative role in this and in fact, the regions that exhibit most

grey matter loss are the inferior and middle temporal gyrus, posterior cingulate, and

precuneus. This can be seen in Figure 3.9. Similar approaches have been attempted

for discrimination between MCI and AD, MCI and CN, CN and AD as well as MCI

subtypes [CWL+12,DBS+11,EWT+12,HSXJ11,JSL+14,MFD09].

Raamana et. al took a different approach and used a derived measure in-

stead of the volumetric measure to differentiate between the subtypes of MCI [RWK+14].

They used FreeSurfer [RSRF12] to perform the initial cortical reconstruction and

volumetric segmentation of the whole brain. The feature they derived from that

was cortical thickness which was measured by solving a discrete approximation of

Laplace’s equation. It was then registered to the surface of a common atlas so that

vertex-wise correspondence could be analyzed. Thereafter, they applied dimension-

ality reduction techniques before using SVM for classification. The results of this

study are further discussed in section 3.3.3.2.
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Figure 3.9: (A) ‘Glass brain’ representation showing significant clusters of greater gray
matter loss in converters compared to non-converters. (B) The same results as projected
onto coronal sections of the whole brain customized template [CLE+05].

Wolz et al. used a different approach by combining a range of features ob-

tained from structural MR images such as hippocampal volume, tensor-based mor-

phometry and cortical thickness [WJK+11]. They tested their techniques on the

ADNI dataset and reported 90% sensitivity and 84% specificity using a LDA classi-

fier to classify AD and CN individuals.

Another use of multi-modalities (although not MRI modalities) is the study

carried out by Cui et al [CSL+12]. They used a mixture of non-image data such

as neuropsychological test scores in conjunction with neuroimaging morphological

measures to predict conversion from CN to MCI. This study uses the MAS dataset.

The initial preprocessing was carried out with FreeSurfer and they used a Region of

Interest based (74 cortical regions of interests per hemisphere) feature set that in-

cludes features such as cortical thickness average, surface area, cortical volume, mean

curvature, Gaussian curvature, folding index and curvature index. Fisher Informa-

tion criteria were used for feature selection and SVM for the classifier. They suggest

that the combination of neuropsychological and neuroimaging features results in best

performance.

So far, the discussion has been centred on T1w and T2w MR images.
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There are multiple studies that use DTI images in MCI diagnosis as well. Chua

et al. provide one of the first reviews that details the experiments carried out before

2008 [CWSS08]. They then proceed to identify the DTI of the posterior cingulate

as a useful biomarker of MCI in a subsequent publication [CWC+09]. In this study,

they found that individuals with aMCI demonstrated microstructural pathology in

para-hippocampal white matter (WM), frontal WM, splenium of corpus collosum

and posterior cingulate region. Individuals with naMCI on the other hand demon-

strated microstructural pathology in frontal WM, internal capsule, occipital WM

and posterior cingulate region. They have suggested that DTI of the left posterior

cingulate is the distinguishing feature in identifying individuals with aMCI. Another

study by the same group studied microstructural changes in WM of CN individuals

who are at risk of aMCI [ZST+12]. It was a longitudinal study and compared 193

CN individuals out of whom 20 were diagnosed as aMCI after two years. It was re-

ported that at baseline compared to CN-stable individuals, CN-aMCI converters had

substantial reductions in WM integrity in the precuneus, parahippocampa cingulum,

parahippocampal gyrus WM and fornix. It was also found that fractional anisotropy

(FA) values of the precuneus is a predictor of conversion from CN to aMCI. In addi-

tion, FA values of parahippocampal gyrus WM were predictive of subsequent episodic

memory decline. A sample FA map is shown in Figure 3.10.

Yet another study by the same group reports that WM changes detect early

aMCI as opposed to popular observation of hippocampal atrophy [ZST+13]. They

use DTI tractography and the key finding of this study is that there is a regional

difference between early aMCI, late aMCI and CN individuals. Compared to CN,

late aMCI had lower WM integrity in the fornix, parahippocampal cingulum and

uncinated fasciculus while early aMCI showed WM damage in the fornix. Fornical

measures were correlated with hippocampal atrophy in late aMCI while abnormality

of the fornix in early aMCI did not correlate with hippocampal volumes because that

occurred in the absence of hippocampal atrophy.
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Figure 3.10: Pattern of fractional anisotropy (FA) reductions in presymptomatic individuals
who eventually developed aMCI [ZST+12].

Similar approaches are reported elsewhere [TWZ+12, CWC+09, SKF+11,

SM10,RZW+14,SLC+13].

3.3.3.2 Reliable Differentiation between MCI subtypes

Differentiation between MCI subtypes is an area that was overlooked initially but has

gathered pace more recently. This is important because different MCI subtypes can

progress to different types of dementia. As it has been established that any treat-

ment for dementia may need to be initiated before the individual becomes demented,

research on MCI identification and progression has come into the limelight.

Initially subtype classification was attempted using morphological images.

The study carried out by Whitewell et al. gives a good base to build on [WPN+07].

They report grey matter loss in both sd-aMCI and md-aMCI groups in the medial

and inferior lobes compared to CN individuals. Individuals diagnosed with na-MCI

were showing grey matter loss in the left inferior temporal lobe, basal forebrain and

62



Figure 3.11: Probability maps of white matter hyperintensities (WMHs) from early (A)
and late aMCI (B). WMHs were shown in the red-yellow and superimposed on the MNI
T1 template. The colour bar denotes the percentage of subjects who had WMHs at each
image voxel [ZST+13].
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Figure 3.12: Patterns of grey matter atrophy identified by voxel-based morphometry in
amnestic single-domain (A), amnestic multi-domain (B), non-amnestic single-domain (C),
and non-amnestic multi-domain (D) MCI subgroups compared to controls [WPN+07].

hypothalamus.

Another study carried out by Thillainadesan et al. conducts a group com-

parison between individuals classified to MCI subtypes [TWZ+12]. They use regional

FA and mean diffusivity (MD) scores to compare groups. They report that individ-

uals with MCI subtypes had increased MD in the right putamen, right anterior limb

of the internal capsule, genu and plenium of the corpus callosum, right posterior cin-

gulate gyrus, left superior frontal gyrus and right and left corona radiate. They also

localized the regional changes for different subtypes of MCI. The study by Cui et al.

is aimed at identifying individuals with aMCI using a combined feature set derived

from T1w images and DT images [CSL+12]. A classification accuracy of 71% was

reported in this study in discriminating between CN and aMCI individuals. A subse-

quent study by the same group reports microstructural WM changes occurring in CN

individuals at risk of aMCI [CWL+12]. They ascertained that CN-aMCI converters
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had substantial reductions in WM integrity in the precuneus, parahippocampa cin-

gulum, parahippocampal gyrus WM and fornix. It was also found that FA values of

the precuneus is a predictor of conversion from CN to aMCI. In addition, FA values of

parahippocampal gyrus WM were predictive of subsequent episodic memory decline.

Another study by the same group compares the microstructural WM changes

between CN, early aMCI and late aMCI individuals [ZST+13]. This may be consid-

ered as a step towards progression tracking and helps the medical community to

better understand the exact changes occurring. They use DTI parameters such as

FA, MD, and axial diffusivity in this experiment. The key finding of this study is

that there is a regional difference between early aMCI, late aMCI and CN individuals.

Compared to CN, late aMCI had lower WM integrity in the fornix, parahippocam-

pal cingulum and uncinated fasciculus, while early aMCI showed WM damage in the

fornix. Fornical measures were correlated with hippocampal atrophy in late aMCI

while abnormality of the fornix in early aMCI did not correlate with hippocampal

volumes because that occurred in the absence of hippocampal atrophy.

A recent study on sub-classification of aMCI using MRI based cortical thick-

ness measures uses an SVM classifier [RWK+14]. They aim to discriminate between

aMCI subtypes such as sd-aMCI and md-aMCI. The highest accuracy they obtained

is for the classification of md-aMCI and CN, where they report 61% accuracy. The

other experiments resulted in accuracies of around 50% which is not very useful. A

subsequent study using a derived feature set reported improved highest accuracy of

62% for the same classification and improved accuracy levels centered around 57%

for the other experiments [RKB+13]. Although the accuracies reported are on the

low side, the method they used to derive the feature set is of interest. They de-

rived secondary measures using cortical thickness, which were then used to train a

classifier. Initially FreeSurfer was used to reconstruct and segment the whole brain

to obtain pial and WM/GM surfaces. Then the cortical thickness measures were
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calculated in the resulting cortical parcellations by solving a discrete approximation

to Laplace’s equation. The surface of each subject was registered to the surface of a

common atlas in order to establish vertex wise correspondence, enabling group wise

analysis of difference in thickness. Each cortical label was partitioned using k-means

clustering and then a mean thickness value for each partition was calculated. Each

of these partitions is modelled as a node in a graph and links between nodes are

established if the difference in mean thickness exceeds a certain threshold. The net-

work built by this process is known as ThickNet and network features such as node

degree, betweenness centrality and clustering coefficient are calculated and used as

features in the classifier. The classifier used in this experiment is Variational Bayes

probabilistic Multiple Kernel Learning (VBpMKL).

The highest performance for a classifier trying to discriminate between MCI

subtypes and CN individuals was a study carried out by Haller et. al [HMH+13].

They report an accuracy of around 98% for all of their experiments and they use a

feature set derived from DT images such as FA and MD. However, the authors also

suggest a degree of over-fitting since, based on work done so far, accuracy of that

calibre with the same feature set has not been achieved.

3.4 Survival Analysis for Cognitive Impairment

and Dementia

Better understanding of the progression of cognitive impairment has been a chal-

lenge. This thesis exploits survival analysis techniques and proposes solutions to

better understand the progression from CN and MCI states to dementia. Sur-

vival analysis techniques are capable of evaluating the significance of prognostic

variables to determine events such as death or recurrence of a disease such as can-

cer [YSK+16,CYA13,BT04,RA13]. The objectives of survival analysis are three fold:
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(i) to estimate survival and hazard functions from survival data, (ii) to compare sur-

vival and hazard functions between groups and (iii) to assess the relationship between

predictor variables and survival time [CAIH+16]. The focus of this thesis is on the

first and the last objectives. Typically, survival analysis requires as inputs the prog-

nostic variables (baseline or time-varying), time to an event of interest and the binary

event outcome. These can then be used to train a survival analysis model capable

of predicting time to an event of interest given a new patient’s prognostic variables.

The deep survival analysis techniques proposed in this thesis are the first approach

that allows utilization of imaging data as far as can be ascertained. They also exploit

the deep fusion network proposed in Chapter 5 to extract imaging and fused features

to build survival analysis models. The descriptions of current survival networks fit

better with the proposed models, and are explained in detail in Chapter 6.

Other than survival analysis, personalised machine learning techniques such

as evolving spiking neural networks may also be re-purposed for the same task [KH10].

Personalised modelling focuses on creating an individual model from data to better

predict an unknown outcome for an individual. It is different to global (group-

level) modelling in that models are created to cover an individual rather than the

whole problem space [KH10,KFH+14]. However, due to the complexity involved and

paucity of data, personalised modelling is out of scope from this thesis.

3.5 Motivation for Thesis Approach

Many methods for diagnosing cognitive impairment have been introduced in recent

years. Conventional machine learning methods as well as deep learning methods have

been proposed [JNS19]. However, at the time of writing of this thesis, neuropsycho-

logical measure based features with machine learning have not been used to diagnose

cognitive impairment. This type of data is significantly different from neuroimaging
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data, making it a worthwhile exploration. In addition, while neuroimaging data has

been used with machine learning for diagnosis of cognitive impairment, only a few

studies investigate the use of multi-modal neuroimages in a single pipeline. Finally,

investigating the application of survival analysis techniques for cognitive impairment

prediction has not explored at the time of writing this thesis. These reasons together

with access to two unique datasets, namely MAS and ADNI have provided several

different motivations for this research. However, this is a fast evolving field.

The main motivation of this thesis is to investigate the fusion of data from

multiple modalities in a single machine learning pipeline. To acquire a baseline for

this, it was important to design and propose machine learning pipelines using NM

features and structural MRI based features. Another significant contribution is the

design of deep learning algorithms capable of extracting features from structural

MRI without having to go through the conventional hand designed feature engineer-

ing pipeline that includes registration, segmentation and feature extraction. Better

understanding of when an individual experiences cognitive decline is another strong

motivation for this thesis. Survival analysis using NM features and MRI based fea-

tures are proposed in thesis.

3.6 Summary

This chapter described the machine learning methods that are currently utilized to

diagnose cognitive impairment and introduced the use of survival analysis to better

understand progression to cognitive impairment. A brief introduction to machine

learning was presented first. The techniques used to diagnose cognitive impairment

were described followed by an introduction to survival analysis. Finally, the motiva-

tions for the thesis approach were presented. The identified issues are investigated

and solutions proposed in the ensuing chapters.
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Chapter 4

Diagnosis of MCI using Machine

and Deep Learning Techniques∗

Ageing is frequently associated with brain pathology, especially neurode-

generative and vascular, and the distinction between normal and pathological ageing

may sometimes be difficult to make [HG04]. The current understanding is that ev-

eryone goes through this process but at varying rates [CWC+09,CSL+12,GRZ+06].

Therefore, distinguishing between normal ageing and decline due to pathological

processes has become increasingly important. Alzheimer’s disease (AD) is one of the

Portions of this chapter appear in:

1. Senanayake, U., Sowmya, A., Dawes, L., Kochan, N. A., Wen, W., Sachdev, P. (2016). Clas-
sification of mild cognitive impairment subtypes using neuropsychological data, in ICPRAM
2016: Proceedings of the 5th International Conference on Pattern Recognition Applications
and Methods, pp. 620-629

2. Senanayake U;Sowmya A;Dawes L;Kochan NA;Wen W;Sachdev P, 2017, Deep learning ap-
proach for classification of mild cognitive impairment subtypes, in ICPRAM 2017 - Proceed-
ings of the 6th International Conference on Pattern Recognition Applications and Methods,
pp. 655 - 662
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best studied neurodegenerative diseases that involve dementia in this context. It is a

neurodegenerative disease that causes progressive cognitive impairment with lasting

effects for the patients and their families. Although drug treatment and preventative

clinical trials have largely been unsuccessful, there remains a major research focus

on early and accurate identification of individuals at risk of AD and other dementias

who are the most appropriate target group for trials.

Mild Cognitive Impairment (MCI) is considered a prodromal condition of

dementia that is characterized by a decline in cognitive functions without severely

affecting the patient’s daily functions [CLE+05,CWL+12,HMH+13,PKB+09]. Indi-

viduals with MCI have a 6-10% risk of progressing to dementia in a year [MSF09].

Consensus diagnosis criteria for MCI exist [WPK+04,ADD+11], but these are oper-

ationalized differently in different studies and regions, resulting in differing rates of

MCI [KSB+10]. This makes it difficult to reliably separate individuals with MCI from

cognitively normal individuals and to identify those at increased risk of progression

to dementia. While researchers in this area focus on three distinct problems, namely:

(i) differentiating between cognitively normal (CN) and MCI individuals, (ii) pre-

dicting conversion from MCI to AD and (iii) predicting the time to conversion from

MCI to AD [LSG+12], the focus of this chapter is on the first, with the second and

third problem dealt with in Chapter 6. In addition, classification of MCI subtypes is

also of interest as each subtype has differential rates of conversion to different types

of dementia [AHK+17].

There are two major subtypes of MCI; amnestic MCI and non-amnestic

MCI. The amnestic subtype of MCI (aMCI) refers to impairment in memory, while

the non-amnestic subtype of MCI (naMCI) refers to non-memory impairments af-

fecting executive functions, attention, visuospatial ability or language. These two

subtypes are further divided depending on the number of domains impaired, leading

to four subtypes of MCI, as shown in Table 4.1 [WPK+04,ADD+11]. Recent studies
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Amnestic subtype of MCI
(aMCI)

Non-amnestic subtype of MCI
(naMCI)

Single domain aMCI (sd-aMCI) Single domain naMCI (sd-naMCI)
Multi domain aMCI (md-aMCI) Multi domain naMCI (md-naMCI)

Table 4.1: The subtypes of MCI

point out that md-aMCI has the highest probability of progression to AD and other

types of dementia [GSS+11].

Much recent effort in this area of research has been spent on the use of

advanced medical imaging modalities such as magnetic resonance imaging (MRI)

and positron emission tomography (PET) to differentiate between AD and subtypes

of MCI [CLE+05, SM10, SKF+11, RZW+14]. This chapter, however, is focused on

evaluating the efficacy of neuropsychological measures (NM) for the same purpose.

This is especially important as current clinical diagnosis criteria of dementia and

mild cognitive impairment are mostly derived from NM measures.

The rest of this chapter is outlined as follows. An introduction to the dataset

is presented in section 4.1 while section 4.2 delves into the methodology. Results are

presented in section 4.3 and the chapter is concluded with section 4.4.

4.1 Dataset

The MAS dataset used for this work was described in section 2.3.1. The demograph-

ics of the participants at baseline are given in Table 4.2. Of the sample of 1037

individuals at baseline, 164 individuals of non-English speaking background (English

acquired after the age of nine years of age) were excluded as their test performance on

neuropsychological tests may be disadvantaged on measures developed and normed

on native English speakers [KSB+10], and also 36 others who did not have complete

neuropsychological data. Dataset sizes for all four waves grouped by the individual
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Sample size: 837 Baseline (wave 1)
Age (years) 78.57 ± 4.51 (70.29-

90.67)
Sex (male/female) 43.07% / 56.92%
Education (years) 12.00 ± 3.65
MMSE (Mini-Mental State
Exam)

28.77 ± 1.26

CDR (Clinical Dementia Rat-
ing)

0.066 ± 0.169

Table 4.2: Demographic characteristics of participants at baseline

classes are listed in Table 4.3.

Class Wave 1 Wave 2 Wave 3 Wave 4
CN 504 405 378 293
sd-aMCI 103 93 44 63
md-aMCI 82 58 46 42
sd-naMCI 122 87 64 76
md-naMCI 26 22 16 14
Dementia 0 18 29 39

Table 4.3: Dataset size for different waves

4.1.1 Cognitive Assessments

The list of Neuropsychological measures (NM) used are listed in Table 4.4 [SBR+10].

MCI was diagnosed according to international consensus criteria [WPK+04] and was

based on the presence of cognitive impairment (i.e., 1.5 standard deviations below

published normative values for age and/or education on a neuropsychological mea-

sure), a subjective complaint of decline in memory or other cognitive function along

with normal or minimally impaired instrumental activities of daily living attributable

to cognitive impairment (total average score <3.0 on the Bayer Activity of Daily

Living Scale [Hin98] adjusted for physical impairment). Participants with no im-

pairments on NM were deemed to have normal cognition. Apart from this, when

unusual clinical features or an indication of possible dementia were found, a panel of
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psychiatrists, neuropsychiatrists and neuropsychologists were consulted. Consensus

diagnosis of MCI, dementia or cognitively normal (CN) was made using all available

data where necessary and the detailed methodology has been published [SBR+10].

The same tests were administered over all the waves at two yearly intervals. The

relevant test for each cognitive domain is in Table 4.4. Each is then further broken

down into individual tests, with the mean and standard deviation values grouped for

each wave in Table 4.5. As the number of CN individuals decreases as the waves

progress, an interesting trend seems to emerge for each test. For example, the mean

of DSym raw decreases from wave 1 to wave 4 while the mean of TMTA raw appears

to increase. While these are not considered as diagnostic biomarkers individually,

they do indicate cognitive decline if the same cohort is considered.

4.2 Method

The proposed method uses neuropsychological test scores as input and builds models

that are capable of differentiating between individuals with MCI and those that are

cognitively normal. In the study, the initial focus was on identifying the relevant

techniques. Once the techniques were identified, improving performance became the

main focus. The rest of this section is continued as follows. Correlation between

covariates are studied in section 4.2.1, while section 4.2.2 and 4.2.3 describe class

breakdown and feature subset selection. In section 4.2.4, the deep learning tech-

niques used and the results are described, and section 4.2.5 concludes by discussing

validation of results.
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Table 4.4: Neuropsychological Test Battery and Normative Data used for Diagnostic Clas-
sification

Cognitive Do-
main

Test

Normative
Data &
Demographic
adjust-
ments

Premorbid Intel-
ligence

National Adult Reading Test (NART)

Attention/ Pro-
cessing speed

Digit Symbol-Coding [Axe01]
Trail Making Test(TMT) A [SSS06]

Age [Axe01]
Age & Education
[Tom04]

Memory

Logical Memory Story A delayed recall
[Axe01]

Rey Auditory Verbal Learning Test
(RAVLT) [SSS06]
RAVLT total learning: sum of trials 1-5
RAVLT short-term delayed recall:trial 6
RAVLT long-term delayed recall: trial 7

Benton Visual Retention Test
Recognition [Ste05]

Education [MRSea04]

Age [IMS+92a]

Age & Education

Language
Boston Naming Test - 30 items [Rot11]

Semantic Fluency (Animals) [SSS06]

Age [FDM98]

Age & Education
[TKR99]

Visuo-spatial Block Design [Axe01] Age [IMS+92b]

Executive Func-
tion

Controlled Oral Word Association Test
[SSS06]

Trail Making Test(TMT) B [SSS06]

Age & Education
[TKR99]

Age & Education
[Tom04]
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Feature Wave 1 Wave 2 Wave 3 Wave 4
DSym raw 48.45±12.16 47.86±12.97 46.39±12.62 44.09±12.56
TMTA raw 45.70±15.37 47.08±22.49 48.36±18.16 50.71±20.72
BNT raw 24.97±3.48 25.00±3.55 25.00±3.68 24.95±3.85
Animal raw 15.94±4.33 15.05±4.24 14.81±4.37 14.32±4.54
TMTB raw 118.95±53.75 125.98±73.43 128.32±62.54 146.39±87.00
FAS raw 37.83±12.27 36.79±12.34 37.43±12.27 37.51±12.97
RVLTtotal raw 41.26±9.19 39.68±9.89 40.21±10.31 39.43±11.16
RVLT6 raw 8.12±3.25 7.76±3.36 7.85±3.47 7.56±3.59
RVLT7 raw 7.63±3.47 7.21±3.49 7.44±3.64 7.04±3.83
LM delay raw 9.42±4.05 9.55±4.11 9.61±4.01 9.01±4.39
BVRT raw 11.85±1.80 12.06±1.75 12.07±1.82 11.86±1.94
Block raw 21.60±8.12 21.61±8.61 22.03±8.40 20.27±9.07
LM immed raw 11.12±4.01 10.97±3.87 11.09±3.94 10.61±4.26
RVLT1 raw 4.78±1.48 4.78±1.71 4.89±1.59 5.02±1.81
RVLT3 raw 8.79±2.36 8.47±2.41 8.48±2.48 8.38±2.68
RVLT4 raw 9.84±2.41 9.35±2.56 9.55±2.74 9.11±2.83
RVLT5 raw 10.69±2.48 10.02±2.71 10.21±2.73 9.81±2.99
RVLT LOT raw 17.39±7.13 15.75±6.92 15.76±7.25 14.31±7.55
RVLT RPC raw 89.55±9.16 87.95±10.34 88.89±10.63 87.47±11.37
RVLT intrusions raw 2.94±3.40 3.24±3.49 3.16±3.40 3.30±3.41
RVLT recTP raw 13.54±1.71 13.21±2.03 13.53±1.92 13.21±2.34
RVLT recFP raw 1.67±1.89 1.83±2.00 1.88±2.00 1.97±2.09
F raw 12.74±4.45 12.72±4.51 13.03±4.34 13.10±4.64
A raw 11.25±4.56 10.79±4.43 10.98±4.53 10.97±4.71
S raw 13.86±4.80 13.29±4.84 13.42±4.77 13.44±5.08

Table 4.5: Statistics of Neuropsychological Measure based Features
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4.2.1 Correlation between covariates

Pearson’s correlation was used to analyze the correlation between input variables

before proceeding to classification experiments and the results are shown in Fig-

ure 4.1. This allows one to define the scope of machine learning experiments and

exclude linear methods such as linear discriminant analysis due to the varying levels

of correlation between input variables [NM01,VLBMR16]. It is interesting to observe

clusters of sequential variables that are highly correlated, which is more accentuated

in the earlier waves.

After defining the scope, a number of experiments comparing different con-

ventional machine learning algorithms as well as deep learning methods were carried

out, for the purpose of classification of MCI subtypes and CN, and the results are

in Table 4.6. These machine learning algorithms were identified as the most well

established algorithms in their class. In addition, both AdaBoost and ensemble

methods were selected to decrease the variance and increase the robustness of the

models [Bü12]. NM features were then used to train models that are capable of

learning complex latent patterns from the underlying dataset.

Conventional Machine Learning Deep Learning
Support Vector Machines Stacked Auto Encoders
Random Forest Deep Neural Networks
AdaBoost 1D Convolutional Neural Networks
Ensemble Methods 2D Convolutional Neural Networks

Table 4.6: Different Machine Learning Methods Compared

4.2.2 One vs One and One vs All experiments

In order to evaluate the performance of the different techniques used, a number of

distinct experiments were conducted. Data from four waves were used, and each wave

was treated as an independent dataset, giving rise to four datasets to compare the
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(c) Correlation of variables in Wave 3
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(d) Correlation of variables in Wave 4

Figure 4.1: Correlation of variables used in all four waves. Insignificant correlations (p ≤
0.05) are indicated with ’x’ marks in the graphs. The order in which features appear in the
graphs corresponds to how strong the correlations are for each wave
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techniques on. For each wave, two scenarios were considered for each technique in use:

(i) one-vs-one experiments and (ii) one-vs-all experiments. All conventional classifiers

used are binary classifiers, and in one-vs-one experiments, the goal is to discriminate

between two classes, while one-vs-all experiments treat one class as positive and all

other classes as negative. This creates a richer negative sample set but may also give

rise to class imbalance problems. The reason for training one-vs-all classifiers was to

extend them to multi-class classifiers. The classes of interest are MCI subtypes and

cognitively normal individuals, and Table 4.7 describes the different models trained.

For deep neural network based methods, multi-class classification experiments were

conducted directly, where classification of all classes at once is performed.

One vs One One vs All
MCI vs CN aMCI — everything else
aMCI vs CN naMCI — everything else
naMCI vs CN sd-naMCI — everything else
aMCI vs naMCI (MCI Subtypes) md-naMCI — everything else
sd-aMCI vs md-aMCI (aMCI Sub-
types)

sd-aMCI — everything else

sd-naMCI vs md-naMCI (naMCI Sub-
types)

md-aMCI — everything else

Table 4.7: The different classes used for experimentation

4.2.3 Feature Subset Selection

Feature subset selection was carried out in an effort to improve the performance of the

conventional machine learning techniques, and the experimental pipeline is shown in

Figure 4.2. In order to evaluate the effectiveness of feature subset selection, random

forests was picked as the main technique, as it showed relatively stable results across

the initial experiments. Three major categories of feature selection algorithms were

used: correlation based feature selection, information gain based feature selection and

wrapper based feature selection. Specific algorithms used are (i) Correlation based

subset evaluation (ii) Pearson correlation based (iii) Cross validation based (iv) Gain

79



ratio based (v) Information gain based (vi) SVM wrapper based (vii) Random forest

wrapper based and (viii) RELIEFF. The results are presented in Section 4.3.

Figure 4.2: Experimental Framework for Conventional Methods

Feature selection for deep learning methods was not considered as a separate

step, because deep learning methods are themselves capable of feature selection by

taking into account the complex latent patterns that the dataset exhibits. In order

to improve the performance of the SAE classifier, an ensemble of SAE classifiers at

the model level was designed. The same training/test datasets were used to train

multiple SAE classifiers with different hyper-parameters and these classifiers were

then used in conjunction with a voting scheme, to come up with the final class label.

4.2.4 Deep Learning Methods

The hyper-parameters for convolutional neural networks were designed heuristically

and fine-tuned after experimentation; they are included in Table 4.8. In order to

utilise 2D convolutional neural networks, the dataset was put through a feature
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Figure 4.3: Experimental Framework for Deep Learning Methods

transformation stage as shown in Figure 4.3. In this step, the uni dimensional feature

vector for each subject was rearranged into a two-dimensional feature matrix that

was then used as input to the 2D CNN.

Layers 1D CNN 2D CNN
Convolution 1x3 convolution kernel, 8

activations
3x3 convolution kernel, 8
activations

BatchNormalization
and ReLu

No Parameters No Parameters

MaxPooling 1x2 max pooling 2x2 max pooling
Convolution 1x3 convolution kernel, 16

activations
3x3 convolution kernel, 16
activations

BatchNormalization
and ReLu

No Parameters No Parameters

Dropout 0.5 dropout 0.5 dropout
FullyConnected and
Classification

No Parameters No Parameters

Table 4.8: The Hyper parameters for Convolutional Neural Networks

An ensemble of SAEs at the model level was considered to improve perfor-

mance. The proposed ensemble is a model level ensemble rather than a data level
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ensemble, as different models with different hyper-parameters are trained on the same

training set and tested on the same test set. The results of individual SAE classifiers

are then taken into consideration and the majority vote is used to predict the class

label. This strategy enables the use of different versions of auto-encoders including

conventional auto-encoders and sparse auto-encoders together.

Instead of carrying out one-vs-all experiments with deep learning, a multi-

class classification approach was taken to distinguish between all six classes. The

original rationale behind training one-vs-all classifiers using conventional techniques

was in fact to convert them to multi-class classifiers.

4.2.5 Validation of Results

The experiments used the same dataset consistently. Ten-fold cross validation was

performed for all experiments based on conventional machine learning techniques.

The same randomly picked folds were used to compare the techniques. Ten repetitions

of ten-fold cross validation were carried out to reduce the variability in results. The

deep learning techniques were five-fold cross validated instead of ten-fold, allowing

for the higher time complexity of the models. The order of the features was shuffled

for each fold as well.

4.3 Results

The results of the experiments are discussed in two main subsections. The results

of the conventional machine learning methods are presented first, followed by those

of deep learning methods. Both one-vs-one and one-vs-all classification scenarios are

considered.
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4.3.1 Conventional Machine Learning Methods

While a range of conventional machine learning methods were implemented, the re-

sults are presented for the three best classifiers, namely AdaBoost (AB), Random

Forests (RF) and ensemble methods (ES). Results are presented for one-vs-one ex-

periments in Figure 4.4 and for one-vs-all experiments in Figure 4.5 across the first

wave for comparison purposes. It can be seen that AdaBoost consistently performs

better than the other methods in both one-vs-one and one-vs-all experiments.

CN vs MCI CN vs aMCI CN vs naMCI MCI Subtypes aMCI Subtypes naMCI Subtypes

AB RF ES
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Figure 4.4: Percentage accuracy for the three best conventional machine learning methods
considered in one-vs-one classification on first wave. The AUC is above 0.8 for all, except
for AB in naMCI subtypes which dips to 0.74

Since data from four different time points were available (four waves, each

two years apart), they are treated as four independent datasets to train classifiers on

each set. Results for the best classifier (AdaBoost) are presented across all four waves

for one-vs-one classification in Figure 4.6, while one-vs-all is presented in Figure 4.7.

As the waves progress, the dataset gets smaller and this appears to have an adverse

effect on the classification accuracy, as can be seen in Figures 4.6 and 4.7. This is
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Figure 4.5: Percentage accuracy for the three best conventional machine learning methods
considered in one-vs-all classification on first wave

further exacerbated when a differentiation into aMCI subtypes is attempted, as the

data subset becomes increasingly small. The effects of this can be clearly seen in

Figure 4.6. However, the discrimination also shows the efficacy of one-vs-all classifi-

cation, as differentiation between sd-aMCI and md-aMCI in a one-vs-all scenario has

improved.

Feature subset selection was attempted to improve the performance of the

classifiers. The difference in accuracy across the methods is depicted in Figure 4.8.

Only one model was significantly improved by feature subset selection, namely the

classification of MCI subtypes where the accuracy improved to 91.27% from 86.01%.

For large datasets, the best improvement in performance was obtained with random

forest wrapper based feature selection. Performance was worse for CN vs naMCI

and naMCI subtypes. The reason can be deduced by considering the sample sizes

as listed in Table 4.3. For the naMCI subtype classifier, there are 122 instances for

md-naMCI and 26 instances for sd-naMCI. With a wrapper based feature selection
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Figure 4.6: Percentage accuracy for the best conventional machine learning method (AB)
in one-vs-one classification across four waves
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Figure 4.7: Percentage accuracy for the best conventional machine learning method (AB)
in one-vs-all classification across four waves
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method, the training set becomes even smaller, which explains the relative decrease

in AUC of around 40% from 0.82 to 0.5. In addition, methods that improve the

accuracy of at least three classifiers out of the six being tested are highlighted in

Figure 4.9.

CN vs MCI CN vs aMCI CN vs naMCI MCI Subtypes aMCI Subtypes naMCI Subtypes

Correlation Based

Pearson Correlation Based

Cross Validation Based

Gain Ratio Based

Information Gain Based
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Figure 4.8: Percentage accuracy difference after feature subset selection by different meth-
ods, in comparison to original accuracy of Random Forests model for Wave 1

4.3.2 Deep Learning Methods

Experimental results for three different deep learning techniques are presented and

compared against the conventional techniques in Figure 4.10 across the first wave.

NM based features are transformed into a 2-dimensional input space in order to

use 2D convolutional neural networks, while they are used directly as a 1D vector

with 1D convolution kernel in the case of 1D CNN. Both these methods performed

equally well and exceeded the performance of SAE. The results of both 1D and 2D

CNNs across the four waves are presented in Figure 4.11. The results are intriguing

because CNNs usually work better when there are spatial correlations between the
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Figure 4.9: Percentage accuracy and area-under-curve (AUC) difference after feature subset
selection by the two best methods, in comparison to original accuracy and AUC of Random
Forests model for Wave 1. The wrapper based AUC for naMCI subtypes reaches -39.0243
and is truncated for clarity

input features, which was not the case here [RW17].

An ensemble of SAEs at the model level was built to improve performance,

and results on wave 3 as an example are presented in Figure 4.12. Results of the other

waves are included in Appendix A. While the accuracies almost always improved,

the area under the ROC curve significantly benefited from the ensemble of classifiers.

This in turn means that the classifiers trained are more generalizable and robust to

noise. An optimal configuration of the ensemble was found using grid search.

Multi-class classification is inherently compatible with deep learning, and

the results of the best approaches are shown in Figure 4.13.

From the array of experiments conducted, the best three techniques iden-

tified are 1D CNN, 2D CNN and AdaBoost. As can be seen from Table 4.9, all

three techniques perform very well, with different techniques excelling in different
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Figure 4.10: Percentage Accuracy for three deep learning models on first wave

circumstances. Deep learning techniques appear to have an edge in most cases, while

conventional techniques dominate in CN vs aMCI and MCI Subtypes classification,

albeit not significantly.

4.4 Summary

In this chapter, the diagnostic value of NM features was studied using both deep learn-

ing techniques and conventional machine learning techniques. As far as is known,

this is the first study that uses both 1D and 2D CNNs to distinguish between MCI

subtypes using NM features. This is particularly interesting as CNNs are usually

used with images where there is an obvious spatial correlation [RW17]. In this case,

neuropsychological measures represented as a 2D matrix do not have any obvious

spatial correlation. Similarly, 1D CNNs are usually used for sequence prediction

problems in the literature [LZZW17]. Although NM features are used as a vector

input to 1D CNNs, there is usually no relationship between consecutive elements in
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(a) Percentage Accuracy of 2D CNN across four waves
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(b) Percentage Accuracy of 1D CNN across four waves

Figure 4.11: Comparison between 1D CNN and 2D CNN
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(a) Percentage Accuracy of SAE classifier and SAE Ensemble classifier
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(b) Percentage AUC of SAE classifier and SAE Ensemble classifier

Figure 4.12: Comparison of best SAE classifier results against SAE Ensemble classifier
results for Wave 3. Results for the other waves are included in the Appendix A. Accuracy
(E) and AUC (E) stands for the accuracy and AUC of the SAE ensemble classifier
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Figure 4.13: Multi-class classification using 1D CNN and 2D CNN

the NM feature vector. However, the CNNs have outperformed simple deep networks

such as SAE in all cases and traditional techniques in most cases as well. An intuitive

explanation for this phenomenon could be that CNNs are capable of capturing local

correlations even if they are not spatially correlated, as demonstrated in the experi-

ments. This study confirms that it is worthwhile to invest the time in exploring CNN

based solutions, even when the dataset in question is not correlated spatially.

As the results presented in Table 4.9 show, conventional techniques perform

well in most cases. However, an additional reason to train a deep learning network

is to subsequently leverage its power and adaptability so that features from different

modalities may be fused seamlessly, as will be demonstrated in Chapter 5. Typically

in an MCI diagnosis scenario, either NM features or MR images (or both) are acquired

for clinical diagnosis. Therefore, the dataset usually contains both NM features

and multi-modal MR images, which facilitates the design of a classification system

enriched with multi-modal input data. In fact, as deep learning models are capable

of extracting features without intervention, this would also make the training process
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end-to-end.
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Chapter 5

Feature Fusion using

Convolutional Neural Networks∗

While Chapter 4 focused on differentiating mild cognitive impairment and

dementia from cognitively normal behaviour using neuropsychological measure (NM)

features, this chapter deals with the same problem using medical imaging based

features. This is then further extended to treat both neuropsychological features and

imaging based features seamlessly for the same task. The use of medical imaging

based features is particularly important in this context because conducting a battery

of neuropsychological tests can take a considerable amount of time and can also be

prohibitively expensive. Medical imaging can be considered as an alternative, as it

can be both relatively less expensive and also take less time. Therefore, it is worth

Portions of this chapter appear in:

1. U. Senanayake, A. Sowmya and L. Dawes, ”Deep fusion pipeline for mild cognitive impairment
diagnosis,” 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, 2018, pp. 1394-1997. doi: 10.1109/ISBI.2018.8363832
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exploring the diagnostic value of medical imaging either on its own or along with

neuropsychological tests.

A novel deep learning based pipeline is designed and employed in this study

to combine information from multiple modalities of data seamlessly. The two modal-

ities initially considered are 3D structural magnetic resonance images (MRI) and

uni-dimensional NM features. Until recently, a mix of handcrafted features from

MR images were used to train popular classifiers such as support vector machines

(SVM) [HMH+13,CWL+12]. In contrast, this chapter presents a complete deep learn-

ing pipeline that encompasses feature generation, extraction, fusion and classifica-

tion that can significantly simplify the classification process and reduce the expertise

needed for interpretation. The architecture was designed and tested to address three

issues: (i) addressing paucity of data, (ii) leveraging the characteristics unique to

medical images and (iii) creating a pipeline that can meaningfully fuse data from dif-

ferent modalities. The basis of the proposed model is convolutional neural networks

(CNN), which are a category of artificial neural networks that became prominent

with the advent of deep learning techniques [KSH12b]. They are typically used for

image classification problems and became well-known for solving a class of computer

vision problems that computer scientists have struggled to solve in the past [SLJ+14].

The underlying concepts of ResNet, DenseNet and GoogLeNet architec-

tures, already discussed in Chapter 3, inspired the proposed model. The model

classifies MRI scans of subjects diagnosed as AD, MCI and CN. A number of pre-

vious studies using deep learning for AD classification are based on two main deep

learning techniques: generative models, specifically, auto-encoder (AE) based models,

and discriminative models, specifically, convolutional neural network (CNN) based

models. The efforts by Suk et. al [SS13] and Li et. al [LTT+14] are a good starting

point for AE based techniques. They use MRI and Positron Emission Tomography

(PET) images in their classifier. The work presented in Chapter 4 is also directly
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relevant as it uses deep learning in discriminating MCI subtypes using NM. Korolev

et. al [KSBD17] report their approach on using a discriminative 3D CNN, which is

used as a baseline in this work. A more comprehensive review can be found else-

where [VPM17].

While many approaches have been proposed for AD classification, the main

difference between the proposed approach and the closest [KSBD17] is the use of

a fusion pipeline where information from multiple modalities are fused seamlessly

through a single deep learning pipeline. The main components of the proposed

architecture is a 3D CNN and a deep neural network that are fused and co-optimized

together, which allows the use of 3D structural MR images and uni-dimensional

feature vectors such as NM based features in a unified framework. As far as can be

ascertained, this is the first effort that treats 3D structural MR images and NM based

features in a single end-to-end deep learning pipeline. The proposed approach is also

distinctive in that it incorporates a multi-class classification approach. Other than

the baseline [KSBD17], classifiers built using single data modalities are also used for

comparison.

The rest of the chapter is organized as follows. In section 5.1, the charac-

teristics of the datasets used in this work, including MAS and Alzheimer’s Disease

Neuroimaging Initiative (ADNI) datasets, are described. The proposed methods are

described in section 5.2. Results are presented in section 5.3, and the final section

presents a summary of the work.

5.1 Dataset

Two datasets are used in the experiments of this work. The MRI based subset of

data in the MAS dataset is described in section 5.1.1 while section 5.1.2 describes
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the ADNI dataset including MRI data and NM data.

5.1.1 MRI Data of MAS Dataset

The MAS dataset was described in section 2.3.1, including a description of the

NM features. The primary objective of the MAS study is to examine the clini-

cal characteristics and prevalence of MCI and related syndromes in non-demented

older Australians, and to determine the rate of change in cognitive function over

time [SBR+10]. In this subsection, MRI based data acquired by the MAS study is

described.

Participants at the baseline were invited to undergo an MRI scan and were

scanned using a Philips 3T Achieva Quasar Dual scanner located at the Prince of

Wales Medical Research Institute, Sydney [SBR+10]. The standard protocol for ac-

quisition of 3D T1-weighted structural MRI images is described elsewhere [SBR+10].

The slice thickness was 1mm with no gap, yielding 1x1x1mm2 isotropic voxels. De-

identified images were made available for this work. These were then further post-

processed for the experiments, to obtain sixty 2D image slices that are representative

of each volume and the same sixty slices were used to create the 3D MRI volume as

well. A subset of these sixty MRI image slices are depicted in Figure 5.1.

5.1.2 ADNI Dataset

The ADNI dataset was briefly introduced in section 2.3.2. The characteristics of

the dataset including the data modalities and demographic information are discussed.

This subsection is divided into two, focusing on NM based features and MRI based

features acquired under the ADNI study respectively.
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Figure 5.1: Slices of MRI volume of patient 0033A, diagnosed with multi-domain amnestic
mild cognitive impairment. MRI volume considered for the experiments consists of 60
slices, out of which every other slice is shown in this figure
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5.1.2.1 ADNI Neuropsychological Measures based features

There are a number of overlapping neuropsychological features in the ADNI and

MAS datasets. However, all the features used in this work are presented here for

completeness. The demographics of the cohort at the baseline is presented in Ta-

ble 5.1.

Sample size: 819 Baseline
Age (years) 75.185 ± 6.638 (54.4 - 90.9)
Sex (male/female) 59.90 / 40.1
Education (years) 15.534 ± 3.048
MMSE (Mini-Mental State Exam) 26.743 ± 2.673
CDR (Clinical Dementia Rating) 1.796 ± 1.837

Table 5.1: Demographic characteristics of participants at baseline [WHC+13]

The baseline diagnosis for the patients included 188 patients with AD, 402

patients with late MCI and 229 CN individuals. The NM used are listed in Table 5.2.

The pairwise correlations between variables are presented in Figure 5.2. The correla-

tions were calculated at baseline, 6 months, 12 months and 24 months from baseline.

It is evident that the correlations between variables are higher at baseline and gradu-

ally evolve and decrease over time in subsequent acquisitions. This makes it an ideal

dataset to understand the longitudinal effects of the onset of Alzheimer’s disease and

its progression with time. While data from four time points are presented, only data

from two time points, namely baseline and 12 months, are considered in this work

as overlapping MRI acquisition along with the NM tests were a requirement for the

experiments.

5.1.2.2 ADNI MRI image based features

A subset of ADNI data from ADNI I phase (baseline and 1 year scans) that has

already been preprocessed [WHC+13] was used in this work. The resulting dataset
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(c) Correlation of variables acquired in 12th month
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(d) Correlation of variables acquired in 24th month

Figure 5.2: Correlation of variables used in four measurement windows. Insignificant cor-
relations (p ≤ 0.05) are indicated with ’x’ marks in the graphs. The order in which features
appear in the graphs corresponds to how strong the correlations are for each measurement
window
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Tests Cognitive domain
American National Adult Reading Test Premorbid Intelligence
Mini Mental State Examination Multiple
Logical Memory I and II Memory
Digit Span Attention / Processing speed
Category Fluency Language
Trails A & B Executive Function
Digit symbol Attention / Processing speed
Boston Naming Test Language
Auditory Verbal Learning Test Memory
Geriatric Depression Scale Multiple
Clock drawing Visua-spatial
Neuropsychiatric Inventory Q Executive function
ADAS-Cog Multiple
Clinical Dementia Rating Scale Multiple
Activities of Daily Living(FAQ) Multiple

Table 5.2: Neuropsychological Tests conducted for ADNI [Ini05]

has 515 MR volumes that belong to three classes: 161 AD volumes, 193 MCI volumes

and 161 CN volumes. Only MRI volumes acquired at a resolution of 3T were used

in this work. The MRI images were broken down into two input feature spaces: two

dimensional (2D) image slices and three dimensional (3D) image volumes. Each MRI

image volume was sliced at the preprocessed spatial resolution of 1.0x1.0x1.2mm3.

A representative subset of these slices (n=60) was selected as the input. In the two

dimensional scenario, each patient has 60 of these selected slices, whereas in three

dimensional scenario, each patient had one MRI volume comprising these 60 selected

slices. A subset of these 60 slices is presented in Figure 5.3.

5.2 Method

This work proposes three progressively more complex methods to classify CN, AD,

and MCI individuals. The basis of the proposed methods is CNNs. As the structural

MRI images are 3D, the convolutional filters used need to be 3D as well. However, if
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Figure 5.3: Slices of MRI volume of patient 002˙S˙0816, diagnosed with Alzheimer’s disease.
MRI volume used in the experiments consists of 60 slices, out of which every other slice is
shown in this figure

the 3D structure of MRI images is broken down to a collection of multiple 2D slices,

2D convolution can be used. Therefore, section 5.2.1 describes the use of 2D CNNs

and the dataset preparation for training and testing. This is then extended to 3D
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CNNs in section 5.2.2 while section 5.2.3 presents a novel deep fusion network. In

section 5.2.4, the transfer learning process is adapted to use classifiers trained on

the ADNI dataset to fine-tune the training on the MAS dataset. This is followed

by section 5.2.5 elaborating the behaviour of the model when dealing with missing

information. In section 5.2.6, the experimental setup is presented.

5.2.1 2D CNN

A 2D CNN is the most popular form of convolutional neural networks [RW17]. As

the advent of CNN occurred with image classification tasks and images in general are

two-dimensional, a 2D CNN is viewed as the standard form of convolutional neural

networks. The proposed architecture for the 2D CNN used in this work is depicted

in Figure 5.4.

Compared to the formulation of a CNN for traditional image classification,

the proposed architecture takes a set of 2D slices extracted from volumetric MRI

images as the input. Each set of 2D slices corresponding to a patient is fed into the

network together, and has the same label across the slices. This ensures that the

classification for a patient is performed by the majority classification assigned by the

network for the whole set of 2D slices. Sixty slices containing the brain were extracted

for each patient from the preprocessed 3D MRI volumes. These were used to train

the network and a validation set was used to evaluate the network performance.

5.2.2 3D CNN

While simultaneously feeding a set of 2D image slices to a 2D CNN allows the network

to understand the sequential properties of the image slices, a 3D CNN can make better

use of the inherently volumetric nature of MRI images. This is because instead of
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Figure 5.4: The architecture of 2D CNN

105



feeding 2D image slices, the 3D volumes can be fed directly into the network and 3D

convolutions can convolve across the image volumetrically. This directly benefits a

problem like Alzheimer’s disease classification as most known MRI based biomarkers

are volumetric in nature.

The architecture of a 3D CNN network is depicted in Figure 5.5. It has

been sufficiently expanded to cater to the complexity of volumetric images compared

to the 2D CNN. The input to this network is the 3D volumetric image per patient

and to keep the results comparable, the same volume comprising the 60 slices fed

into the 2D CNN were used.

5.2.3 Deep Fusion

A novel deep fusion architecture that can seamlessly fuse data from multiple modali-

ties is proposed herein. This work uses two data modalities, namely 3D MR volumes

and NM based feature vectors. The challenge in combining these two disparate data

sources is in matching the dimensions. The NM based feature vector has 35 features,

whereas the 3D MR volume would have slightly more than ten million features if it

were flattened. The pipeline proposed meaningfully reduces the dimensions of the

3D MR volumes to a comparable dimension so that the two feature vectors can be

merged together. A combination of several techniques is used for this purpose, which

are explained below. The architecture of the proposed CNN is depicted in Figure 5.6.

Other than the concepts discussed below, conventional components of CNNs such as

batch normalization [LD14] and dropout [LD14] are also employed in designing the

architecture, in order to reduce the internal covariate shift in the network and to

reduce overfitting.
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Figure 5.5: The architecture of 3D CNN
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Figure 5.6: Architecture of the deep fusion network. Conv3D denotes a 3D convolutional
layer, BN stands for batch normalization, ReLu stands for rectified linear units while FC
stands for fully connected layer
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5.2.3.1 Dilated Convolution

Dilated convolution was proposed by Yu and Koltun [YK15] for dense predictions. It

can be considered as a way to incorporate global context into the convolution opera-

tion, as systematic dilation allows exponential expansion of the receptive field without

loss of resolution or coverage, and the original article contains a better description.

Let F : Z2 → R be a discrete function, Ωr = [−r, r]2 ∩ Z2 and k : Ωr → R

be a discrete filter of size (2r + 1)2. The discrete convolution operation ∗ is defined

as

(F ∗ k)(p) =
∑
s+t=p

F (s)k(t) (5.1)

Generalizing this, let l be a dilation factor and let ∗l be defined as

(F ∗l k)(p) =
∑
s+lt=p

F (s)k(t) (5.2)

Dilated convolution with a dilation factor l is denoted by ∗l. The tradi-

tional convolution is simply the 1-dilated convolution. A more detailed description

of dilated convolution can be found [YK15]. The proposed approach uses 2-dilated

convolution. The advantage of using dilated convolution is that it addresses the

multi-scale problem efficiently without increasing the number of parameters signifi-

cantly. It integrates knowledge of the wider, global context by dilating the receptive

field.
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5.2.3.2 Residual Connections

Residual connections proposed by He et. al [HZRS16] allow easier training of deeper

networks. The core idea in residual networks is to explicitly allow layers to fit a

residual mapping instead of directly fitting a desired underlying mapping to a stack

of layers. A better description of residual connections and ResNet architecture can be

found [HZRS16]. The proposed method specifically requires a deeper network in order

to meaningfully reduce the complexity of volumetric features in the fusion pipeline

and therefore, residual connections are integral to maintaining ease of training of

the whole network. As the proposed network has an increased number of layers, an

individual layer may not modify the signal significantly. The residual connections

eliminate these singularities by breaking the permutation symmetry of nodes and by

reducing the possibility of node elimination [HZRS16].

5.2.3.3 Dense Connections

Dense connections were introduced by Huang et al. [HLW16], taking a step further

from residual connections. A better description of dense connections and DenseNet

architecture can be found [HLW16]. The core idea is to connect every layer to every

other layer. This ensures ease of error propagation throughout the network regardless

of its depth. Rather than using the addition operator for skip connections, dense

connections consist of stacking layers. Besides better parameter efficiency, this also

achieves improved flow of information and gradients throughout the network making

the network easy to train. Each layer has direct access to the gradients from the loss

function and the original input signal, leading to implicit deep supervision [HLW16].

The authors also suggested that dense connections have a regularizing effect that

reduces over-fitting when the dataset size is small, which further justifies the use of

dense connections in this proposed pipeline.
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The caveat here is that only layers with the same height and width can be

stacked. This is why both dense connections and residual connections are employed,

as they are necessary to reduce the complexity of 3D MR volumes in a meaningful

manner while maintaining trainability of the network.

5.2.3.4 1x1 Convolutions

The proposed method also employs 1x1 convolutions (or specifically, 1x1x1 convo-

lutions for 3D CNN) as these can be used for dimensionality reduction in feature

space while still maintaining spatial relevancy. This may be considered as a coordi-

nate dependent feature transformation stage in filter space and was popularized by

GoogLeNet architecture [SLJ+14].

5.2.4 Transfer Learning

In order to evaluate the generalizability of the trained models, the models trained on

one dataset were fine-tuned on the second dataset. This was made possible because

both MAS and ADNI datasets were used for these experiments. The models were

first trained using the ADNI dataset for the different categories of experiments and

the trained models were further fine-tuned and tested using the MAS dataset. This

method is identified as transfer learning [KJS18].

Although the imaging modalities have the same dimensions, the NM fea-

tures have different dimensions on the ADNI and MAS datasets. Therefore, when

NM features from the MAS dataset were fed into the trained model to fine-tune it,

the feature vector was zero-padded to match the dimension of the ADNI NM feature

vector.
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5.2.5 Evaluating the resilience of deep fusion network to

missing information

Given that the proposed deep fusion network fuses information from two modalities,

it stands to reason that it should be resilient to missing information from any one

modality. The objective of this experiment was to understand the minimum number

of NM based features required for a trained network to make the correct discrimina-

tion, as that could manifest in a reduced number of tests necessary to be performed

on the patients. Therefore, one feature at a time was removed from the validation

set and the performance of the model measured. Zero-padding was used to restore

the size of the NM feature vector to the original size as the trained network expects

a fixed size feature vector.

Three techniques of removing features were used. A random clipping was

considered as a baseline first called ‘random’ hereinafter. The NM features were then

ranked from the most important to the least important using the feature importance

matrix derived from the deep learning model, and features were clipped both in

ascending and descending orders of importance (called ‘ascending’ and ‘descending’),

in order to evaluate the robustness of the network for missing information.

5.2.6 Experimental setup

Six different classification scenarios are possible with the three classes considered:

three binary (one vs one) and three multi-class (one vs all). The breakdown of the

sample sizes in ADNI and MAS datasets for each of these scenarios is presented in

Table 5.3. A 15% validation set was identified using stratified sampling and used

to evaluate the performance of the trained model, as n-fold cross validation was not

possible due to the increased computation time necessary for training a single fold.
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Class Sample size ADNI Sample size MAS
Normal vs All 161 — 354 293 — 234
MCI vs All 193 — 322 195 — 332
AD vs All 161 — 354 39 — 488
Normal vs MCI 161 — 193 293 — 195
MCI vs AD 193 — 161 195 — 39
Normal vs AD 161 — 161 293 — 39

Table 5.3: The ADNI and MAS dataset sample size of different scenarios

5.3 Results

The results of the experiments carried out are presented in this section. As two

datasets were available, it was decided to use the more stable ADNI dataset to train

and test the 2D CNN, 3D CNN and deep fusion models, and then use these pre-

trained networks as starting points to train on the MAS dataset, which is formally

known as transfer learning. Therefore, the results for the ADNI dataset are presented

first, where performance of 2D CNN, 3D CNN and and the proposed deep fusion

network are compared.

The starting hypothesis was that 3D CNN should perform better than 2D

CNN, as the former can capture the volumetric nature of MRI volumes better. The

results for 2D CNN, 3D CNN as well as the novel deep fusion network trained on the

ADNI training set and tested on the validation set are in Figure 5.7. This confirms the

starting hypothesis, with the 3D CNN indeed performing better than the 2D CNN.

Further to that, the deep fusion network performs better than the 2D and 3D CNNs

in most of the experiments. This is because the deep fusion network attempts to

utilize data from multiple modalities including NM based features and MRI images.

The deep fusion network was designed to capture the intrinsic properties of both

these modalities and co-optimize the network to discriminate between the classes

considered. As deep fusion is an amalgamation between two networks, an ablation

test was performed to evaluate the performance of each of the parts as well. The
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performance comparison between the deep fusion network, a network trained with

NM features alone (NM network) and 3D CNN trained with MRI images is presented

in Figure 5.8. The NM network is comparable to deep fusion network after removing

the imaging arm. It can be ascertained that NM features yield the best results,

while the deep fusion network follows closely. This may be interpreted by examining

two facets; (i) the deep fusion network is not overly biased towards one information

mode; if that were the case, the performance of the deep fusion network would be

on par with that of the network trained using NM features alone, for example, and

(ii) while deep fusion improves performance when compared to 3D CNN, using NM

features alone is still a better approach as literature reports that NM features are

dominant. Overall, the deep fusion model constitutes a milestone in fusing different

information information modalities in an end-to-end pipeline. As far as is known,

this is the first proposed deep fusion pipeline for Alzheimer’s disease recognition

and it is also significantly different from comparable models due to the fact that

the information modalities used are fundamentally different. Other approaches such

as the one presented by Kumar et al. [KFFK18] focused on feature fusion, that

too between similar modalities such as Positron Emission Tomography (PET) and

Computed Tomography (CT) images. The intrinsic value of the deep fusion network

proposed in this thesis is that it can be readily extended to fuse data from other

modalities such as medical imaging (PET / CT) and supplementary data (hospital

records, blood reports, gene records).

The 2D CNN, 3D CNN and deep fusion networks trained using the ADNI

dataset were then used as the starting point for training on the MAS dataset. A

typical issue when using CNNs for medical imaging problems is that there are no

readily available pre-trained networks available for transfer learning. The available

networks are usually trained on natural images, which are a fundamentally differ-

ent modality to medical imaging. It has been demonstrated that transfer learning

works best when pre-trained networks are from the same domain [TSK+18]. The per-
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Figure 5.7: Comparison of performance between 2D CNN, 3D CNN and deep fusion network
on ADNI dataset
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Figure 5.8: Ablative testing comparing the performance of the deep fusion network against
its components

115



formance of the networks fine-tuned on the MAS dataset is presented in Figure 5.9.

The networks fine-tuned on MAS dataset almost always perform equally well as those

trained on the MAS dataset from scratch, if not better as evident by Figure 5.10.

This demonstrates the generalizability and the transferability of the deep networks

initially trained on the ADNI dataset, which can be considered as an extra level of

validation.
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Figure 5.9: Performance of the fine-tuned network on MAS dataset

Additionally, the performance of the deep fusion networks directly trained

on ADNI and the one subsequently fine-tuned on MAS are compared to the best

results presented by Korolev et. al [KSBD17] in Figure 5.11; the latter can be con-

sidered as the closest experiments to the ones presented in this chapter as they report

performance of two 3D CNN architectures based on VGG and ResNet [HZRS16] net-

works on the ADNI dataset. While they do not carry out all the experiments reported

by this thesis, Figure 5.11 presents the results for similar experiments. It is evident

that the deep fusion network exceeds the performance of the 3D volumetric CNN

reported by Korolev et. al.

Finally, the ability of the networks to perform with partial information

116



Normal vs All MCI vs All AD vs All Normal vs MCI MCI vs AD Normal vs AD

2D CNN 3D CNN Deep Fusion

P
e

rc
e

n
ta

g
e

 D
if
fe

re
n

c
e

 A
c
c
u

ra
c
y

−
2

0
2

4
6

8

Figure 5.10: The percentage accuracy difference between fine-tuned network on MAS com-
pared to networks trained from scratch on MAS
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Figure 5.11: Comparison between the closest approach reported by Korolev et.
al [KSBD17]. Results for the first three classification scenarios were not reported by them.
Fusion ADNI refers to the deep fusion network directly trained on ADNI, while Fusion
MAS refers to the deep fusion network trained on ADNI and fine-tuned on MAS. Each
model was tested on its validation set.
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was also tested using the model fine-tuned on MAS dataset. The performance on

the validation set of the MAS dataset was evaluated while reducing the number of

NM features input to the network. The results of this experiment are depicted in

Figure 5.12, where the performance is plotted against the number of NM features

clipped using the three clipping methods described. The network is robust to missing

information upto a point and then the performance collapses significantly. However,

adapting a systematic clipping method and only removing NM features with lower

importance allows one to determine a minimal set of NM features required to ef-

fectively utilize the deep fusion network. Therefore, this can reduce the number of

neuropsychological tests required for AD diagnosis, which will reduce the cost and

time implications for patients.
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Figure 5.12: The effect of clipping neuropsychological measure based features

It can be ascertained that up to eight features (23% of the total number

of features) can be removed without significantly affecting the performance of the

network if the features are removed using the ascending importance method. The

remaining features are presented in order of importance with respective feature im-

portance in Table 5.4. While random clipping is not as robust, it still maintains upto

90% of the initial performance until 7 features are removed. However, if features
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are removed in order of descending importance, the network quickly falls apart as

expected, since the most important features are removed first.

It is gratifying to note that the most important features identified by the

deep fusion network have also been suggested as discriminative biomarkers in the

literature [MDP+,BWP+13,EGKB+03,KMA+15,HK14], thereby confirming the va-

lidity of the results.

Feature Name Importance
FAS˙raw 0.1534091
RVLT˙intrusions˙raw 0.01818182
RVLTtotal˙raw 0.01534091
RVLT˙RPC˙raw 0.01534091
BNT˙raw 0.01136364
Animal˙raw 0.01079545
RVLT6˙raw 0.009090909
Age 0.008522727
TMTB˙raw 0.008522727
LM˙immed˙raw 0.007386364
GPegtest˙raw 0.00625
TMTA˙raw 0.004545455
Block˙raw 0.004545455
S˙raw 0.003409091
NART˙err˙raw 0.003409091
NART˙IQ 0.002272727
RVLT1˙raw 0.001704545
RVLT3˙raw 0.001136364
RVLT˙recTP˙raw 0.001136364
RVLT4˙raw 0.000568182

Table 5.4: Feature importance in descending order as identified by the deep fusion network

5.4 Summary

In this chapter, a number of deep learning pipelines are proposed to differentiate

between cognitively normal individuals from individuals with mild cognitive impair-

ment and Alzheimer’s disease or dementia. The major motivation in designing these
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pipelines is to make use of advanced medical imaging modalities such as magnetic

resonance imaging. The main contribution of this chapter is a novel deep fusion

pipeline that is capable of combining data from multiple modalities including vol-

umetric MR and NM features. These two modalities exhibit the most disparity

between their data sizes and complexities. In principle, this approach may be readily

extended to incorporate other MR modalities such as diffusion tensor images or even

other imaging modalities such as PET. The proposed network draws inspiration from

a range of state-of-the-art deep learning architectures such as GoogLeNet, ResNet

and DenseNet to effectively reduce the complexity of the datasets in order to enable

fusion. As far as can be ascertained, this is the first work discussing the fusion of vol-

umetric MR images with neuropsychological measure based features in an end-to-end

deep learning pipeline.

The efficacy of the proposed fusion pipeline has been demonstrated by com-

paring it against the best 3D CNN model and that of a recent work based on two

3D CNN models [KSBD17]. The major advantage of the proposed model is its ease

of use which is important in a domain such as medical imaging, as domain experts

may have neither the expertise nor the time to carefully design and train classifiers.

It should also be noted that this approach may also be used in a scenario where

MR imaging is available while NM based features are only partially available, which

is typically the case since the full battery of neuropsychological testing is cost pro-

hibitive compared to MR imaging. This has been verified by testing the resilience

of the trained deep fusion network against an increasing set of missing NM features.

It was demonstrated that the deep fusion network was able to maintain its accuracy

upto a reduction of 23% of the commonly used NM features.

Finally, the efficiency of the pre-trained network as the starting point for

another machine learning effort has been tested. The initial deep learning pipelines

were trained on the ADNI dataset and the trained networks were then used to initial-
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ize and fine-tune the deep learning pipelines using the MAS dataset. This approach

allows one to seamlessly utilize a pre-trained network that has been standardized

either as a classifier or as a starting point for a transfer learning experiment where it

is fine-tuned using new data. Therefore, the expertise required to design and train a

deep neural network from scratch is alleviated, which can assist neuroscientists and

other medical professionals with limited machine learning knowledge.
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Chapter 6

Survival Analysis for Dementia∗

Survival analysis is used to evaluate the significance of prognostic / predic-

tor variables (or covariates in statistical terms) in determining events such as death

or recurrence of a disease such as cancer [YSK+16, CYA13, BT04, RA13]. The goals

of survival analysis are three fold: (i) to estimate survival and hazard functions from

survival data, (ii) to compare survival and hazard functions between groups and (iii)

to assess the relationship between predictor variables and survival time [CAIH+16].

The focus of this chapter is on the first and the last goals. Three mandatory sets

of information are necessary to perform survival analysis: (i) the covariates (either

at baseline or time-varying), (ii) time to an event of interest and (iii) binary event

outcome. Traditionally, survival analysis is a statistical technique and established

methods are based on a statistics perspective. Generating a Kaplan-Meier (KM)

curve from survival data to represent the probability of survival is the initial step

Portions of this chapter appear in:

1. Senanayake, U., Sowmya, A., Dawes, L., Kochan, N. A., Wen, W., Sachdev, P., ”Deep
Survival Analysis for Cognitive Impairment” (under preparation)
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of any survival analysis task. The KM curve illustrates the estimate of the condi-

tional probability of the time to failure calculated at each time point recording an

event [YSK+16, CAIH+16]. Log rank test is used to compare the difference in sur-

vival between two or more groups, when evaluating treatment effectiveness against a

control group [PCPA+77].

In this work, deep learning based survival analysis is applied to the do-

main of cognitive impairment and dementia for the first time. Traditional sur-

vival analysis has been explored for Alzheimer’s disease and dementia using NM

features [Hel09,aSWLM15] as well as MRI based features [EZELL+15]. However, an

inherent issue with these studies is that a considerable amount of domain knowledge

is needed to extract features, particularly for medical images. A study by Zeifman et

al. [EZELL+15] used voxel level grey matter volume, which needs a significant level of

expertise to extract. Using NM features on the other hand is comparatively straight-

forward, as the feature preprocessing can be trivial [aSWLM15]. The work in this

chapter attempts to alleviate these difficulties by streamlining the feature extraction

process, thereby allowing scientists without significant domain knowledge to carry

out survival analysis experiments. Deep learning based survival analysis techniques

already developed for other domains are then modified and applied to the MAS and

ADNI datasets to demonstrate their effectiveness for survival analysis of dementia.

The rest of this chapter is structured as follows. In section 6.1, the dataset

utilized is described, while section 6.2 discusses the methodology used for exper-

iments. In section 6.3 the results of the study are presented and the chapter is

concluded in the final section.
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6.1 Dataset

The datasets used in this work are the same as those already described in Chap-

ters 2, 4 and 5, namely the Sydney Memory and Ageing Study (MAS) and the

Alzheirmer’s Disease Neuroimaging Initiative (ADNI) datasets. The dataset de-

scriptions are not repeated. However, the preprocessing performed before carrying

out survival analysis is described in this section. Both MAS and ADNI datasets are

longitudinal studies that follow patients from a baseline. This allows one to derive

two essential elements, namely the event indicator E and a failure event time T, to

analyze survival on top of the covariates x that are available at each longitudinal time

point. The event of interest can be a number of different things in survival analysis.

This work focuses on the onset of dementia as the event of interest. Therefore, the

preprocessing pipeline identifies individuals who become demented within the du-

ration of the longitudinal study and these individuals are assigned a positive event

indicator. The failure event time is derived as the time to event from baseline for

individuals with a positive event indicator. Individuals without an event occurring

in the duration of the study are known as censored individuals, in this case they are

right-censored. Censoring happens when incomplete information is available about

the failure time of certain individuals [LEA97]. What is known about these individ-

uals is that they have survived up until the end of the study without undergoing an

event, or until they were lost to the study. The transitions between different states

that were observed for the ADNI and MAS studies are shown in Tables 6.1 and 6.2.

Both ADNI and MAS datasets have a similar percentage of censored individuals,

namely 70.74% and 66.07% of the cohort considered respectively.
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Table 6.1: Transitions between states from baseline for patients in ADNI study
End Stage

Start Stage NL EMCI LMCI AD
NL 348 0 48 14
EMCI 26 17 225 36
LMCI 11 0 155 93
AD 0 0 1 232

Table 6.2: Transitions between states from baseline for patients in MAS study
End Stage

Start Stage CN sd-aMCI md-aMCI sd-naMCI md-naMCI Dementia
CN 410 32 11 39 1 11
sd-aMCI 18 63 7 5 3 7
md-aMCI 8 4 49 7 5 9
sd-naMCI 25 9 7 72 3 6
md-naMCI 0 0 5 3 16 2

6.2 Method

This section describes the method used to conduct survival analysis on the datasets

discussed in section 6.1. The proposed techniques attempt to modify and utilize

deep learning based survival analysis techniques inspired by other domains. These

techniques are validated on the two datasets to understand their efficacy and gen-

eralizability. The main contribution of this work is the design, implementation and

validation of a deep learning survival analysis pipeline that is capable of utilizing

both NM and MRI based features without requiring significant domain knowledge to

extract relevant features.

Survival and hazard functions are the fundamental functions of interest in

survival analysis. The Survival function may be denoted as S(t) = Pr(T > t), where

S(t) is the probability that an individual has survived beyond a certain time t. In

this context, survival refers to remaining cognitively normal, ie: surviving dementia.

The hazard function can be considered as a measure of risk at time t. A larger

hazard value indicates a greater risk of an event occurring. The hazard function λ(t)
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is defined as [KSC+18].

λ(t) = lim
δ→0

Pr(t ≤ T < t+ δ|T ≥ t)

δ
(6.1)

An individual’s survival given their baseline data x is commonly modeled

using the proportional hazards model. The latter assumes that the hazard function

is composed of two functions, namely the baseline hazard function λ0(t) and a risk

function, h(x) that denotes the effects of an individual’s covariates. It is assumed

that the hazard function has the form λ(t|x) = λ0(t) · eh(x).

The rest of this section is organized as follows. In section 6.2.1, the statistical

methods used as well as the deep learning methods adapted for survival analysis in

this thesis are described, while section 6.2.2 discusses survival analysis using NM

features. Survival analysis using MRI based features and fused features is described in

section 6.2.3. Finally, section 6.2.4 details the methods used to validate the proposed

methods and results.

6.2.1 Survival Analysis Models in Literature

A number of survival analysis models have been reported in the literature and the

relevant models are discussed now. Cox Proportional Hazards Model is first described

which is used to explore the survival characteristics of the datasets. This is followed

by an overview of three different deep survival networks.

6.2.1.1 Cox Proportional Hazards Model

Cox Proportional Hazards model (CPH) was developed by Sir David Cox and is

widely used in epidemiological and medical studies [Cox72]. It is a proportional
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hazards model that uses a linear function ĥβ(x) = βTx to estimate the risk function

h(x). The weights β are tuned to optimize Cox partial likelihood in order to perform

Cox regression. The partial likelihood is the product of the probabilities at each

event time Ti that the event has occurred to individual i, given the set of individuals

still at risk at time Ti. It is defined as in Equation 6.2 and parameterized β [KSC+18]

where Ti is the event time, Ei is the event indicator and xi denotes the baseline data

for the ith observation. The term risk set IR(t) = i : Ti ≥ t denotes the patients still

at risk of the event at time t. The covariates are assumed to have a multiplicative

effect on the hazard. It is also assumed that this effect is constant over time.

Lc(β) =
∏
i:Ei=1

exp(ĥβ(xi))∑
j∈IR(Ti)

exp(ĥβ(xj))
(6.2)

6.2.1.2 DeepSurv

DeepSurv is a method proposed by Katzman et al. [KSC+18] that applies deep learn-

ing techniques to a nonlinear cox proportional hazards network. It is a multi-layer

perceptron that predicts a patient’s risk of an event. The output of the deep learning

network is a single node that estimates the risk function ĥθ(x) parameterized by the

weights of the network θ. The loss function used is the negative log partial likelihood

as described in Equation 6.3.

l(θ) = −
∑
i:Ei=1

ĥθ(xi)− log ∑
j∈IR(Ti)

eĥθ(xj)

 (6.3)

The model uses multiple hidden layers and modern techniques such as

weight decay regularization, Rectified Linear Units (ReLu) with batch normalization,

Scaled Exponential Linear Units (SELU), dropouts, gradient descent optimization al-

gorithms (Stochastic Gradient Descent and Adaptive Moment Estimation (ADAM)),
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Nesterov momentum, gradient clipping and learning rate scheduling [KSC+18]. A

random hyper-parameter optimization search is carried out to tune the network’s

hyper-parameters. The optimized network has 17 hidden layers, 3 dense layers, a

dropout rate of 0.401 and ReLu as the activation function.

DeepSurv is used in this work in its original form in analysing NM features,

which is discussed in section 6.2.2.

6.2.1.3 DeepHit

DeepHit is a deep learning based survival analysis approach proposed by Lee et

al. [LZYvdS18]. Compared to a traditional approach such as the CPH, DeepHit

has the ability to consider competing risks in survival analysis. These are settings

where there is more than one possible event of interest. The formulation of the

deep learning network and the input data is therefore different. In DeepHit, K ≥

1 possible events of interest are considered. It is assumed that exactly one event

eventually occurs for each patient (eg: patient eventually dies, but can only die from

one cause) [LZYvdS18]. Right censored data is also considered as an event of interest

and is denoted by ∅ and therefore the set of possible events are K = ∅, 1, ..., K. The

input data is mapped into a triple (x, s, k) where x ∈ X is the feature vector or

covariates of the patient, s is the time-to-event or censoring, and k ∈ K is the unique

event that occurred at time s. Experiments consider a single event of interest, namely

the onset of dementia, therefore the set of possible events is limited to K = ∅, 1.

True probability P (s = s∗, k = k∗|x = x∗), ie: the true ex-ante probability that a

patient with covariates x∗ will experience the event k∗ at time s∗ is of interest given

the tuple (x∗, s∗, k∗) with k∗ 6= ∅. However, the true probability cannot be known

considering a finite dataset and hence the network estimates P̂ of true probabilities.

The original DeepHit neural network was proposed with cause-specific sub-
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networks to cater to competing risks. In this study, the original DeepHit network is

modified and trained to consider the scenario of a single risk, which is discussed in

section 6.2.2.

6.2.1.4 Deep Recurrent Survival Analysis

Deep recurrent survival analysis (DRSA) is a technique proposed by Ren et al. [RQZ+19].

Traditionally, survival analysis has only been performed using baseline data [CAIH+16].

Although extensions exist that consider both baseline data and later data for CPH,

the performance has been inconsistent [FL99]. Deep recurrent survival analysis has

been proposed to take time varying covariates into consideration using recurrent neu-

ral networks. The problem formulation differs significantly from the models described

so far. The true occurrence time for an event of interest is defined as z if the event

has been tracked. This leads to the definition of the probabilistic density function

of the true event time p(z), which is the probability that the event truly occurs at

time z [RQZ+19]. The survival rate at each time t is the cumulative distribution

function defined as in Equation 6.4, which is the probability of the observed patient

surviving (event not occurring), until the observed time t. Defining the event rate or

the probability of the event occurring before the observation time t becomes trivial

and is denoted by Equation 6.5.

S(t) = Pr(z > t) =

∫ ∞
t

p(z)dz (6.4)

W (t) = Pr(z ≤ t) = 1− S(t) =

∫ t

0

p(z)dz (6.5)

The input set for the model can be represented by a tuple (x, z, t) where

t > 0 is the observation time for the given patient. Censored samples were marked
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with null for variable z as the observation of true time was unavailable. Covariates

are denoted by x at a given time t. Modelling the distribution of the true event time

p(z) over all the historical time-to-event while handling censored data, of which the

true event time is unknown, can be considered as the goal of this model [RQZ+19].

Translating this to survival analysis, estimating the probability distribution p(z|x)

of event time, with regard to the sample feature vector x, is of interest. The model

creates a mapping function T that learns the patterns within the data and predicts

the event time distribution over the time space as p(z|x) = T (x) [RQZ+19].

In order to build a recurrent neural network based model, a discrete time

equivalent of the conditional hazard rate over time needs to be formulated. Over con-

tinuous time, the conditional hazard rate models the instant occurrence probability

of the event at time t given that the event has not occurred before, and is represented

by Equation 6.6.

h(t) = lim
∆→0

Pr (t < z ≤ t+ ∆t|z > t)

∆t
(6.6)

Converting this to discrete space considering the grouping of continuous

time as l = 1, 2, ...L and uniformly dividing disjoint intervals Vl = (tl−1, tl) where

t0 = 0 and tl is the last observation interval boundary for the given sample, the

event rate function and the survival rate function over discrete time space can be

formulated as in Equation 6.7 and 6.8 respectively [RQZ+19].

W (tl) = Pr(z ≤ tl) =
∑
j≤l

Pr(z ∈ Vj) (6.7)

S(tl) = Pr(z > tl) =
∑
j>tl

Pr(z ∈ Vj) (6.8)
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Therefore, the discrete event time probability function at the l − th time

interval can be represented by Equation 6.9 and the discrete conditional hazard rate

hl, defined as the conditional probability approximating the continuous conditional

hazard rate function h(tl) in Equation 6.6 as the intervals Vl become infinitesimal is

represented by Equation 6.10.

pl = Pr(z ∈ Vl) = W (tl)−W (tl−1) = S(tl−1)− S(tl) (6.9)

hl = Pr(z ∈ Vl|z > tl−1) =
Pr(z ∈ Vl)
z > tl−1

=
pl

S(tl−1)
(6.10)

So far, the discrete time model and the survival probability over the discrete

time space have been described, which are needed for the definition of the recurrent

neural network (RNN) model with the parameter θ [RQZ+19]. This enables the

network to capture sequential patterns for conditional probability hil at every time

interval Vl for the ith sample. At each time interval Vl, the l − th RNN cell predicts

the instant hazard rate hil given the covariates xi and the current time tl conditioned

upon the previous events as in Equation 6.11 where fθ is the RNN function taking

(xi, tl) as the input and hil as the output. rl−1 is the hidden vector calculated from the

RNN cell at the last time step which contains the information about the conditional.

The RNN function is implemented as a standard LSTM unit.

hil = Pr(z ∈ Vl|z > tl−1, x
i; θ) = fθ(x

i, tl|rl−1) (6.11)

Using the probability chain rule, one can derive the survival rate function

S(t) and the corresponding event rate function W (t) at time t for the ith individual

sample from Equations 6.7, 6.8, 6.10 and 6.11.
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S(t|xi; θ) = Pr(t < z|xi; θ)

= Pr(z 6∈ V1, z 6∈ V2, ..., z 6∈ Vli |xi; θ)

= Pr(z 6∈ V1|xi; θ) · Pr(z 6∈ V2|z 6∈ V1, x
i; θ) · · · Pr(z 6∈ Vli |z 6∈ V1, ..., z 6∈ Vli−1, x

i; θ)

=
∏
l:l≤li

[
1− Pr(z ∈ Vl|z > tl−1, x

i; θ)
]

=
∏
l:l≤li

(1− hil)

(6.12)

W (t|xi; θ) = Pr(t ≥ z|xi; θ) = 1−
∏
l:l≤li

(1− hil) (6.13)

pil = Pr(z ∈ Vli |xiθ) = hili
∏
l:l<li

(1− hil) (6.14)

In Equations 6.12 and 6.13, li denotes the time interval index for the ith

sample at ti and equation 6.14 denotes the probability of time z lying in the interval

of Vli for the ith sample.

The loss function used to train DRSA is the maximum log-likelihood over

the empirical data distribution. Three objectives are considered when deriving the

loss function [RQZ+19]. The first loss minimizes the negative log-likelihood of the

true event time z = zi over uncensored samples as in Equation 6.15 where li is the

index of the interval of the true event time zi ∈ Vli .
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Lz = −log
∏

(xi,zi)∈Duncensored

Pr(z ∈ Vli |xi; θ)

= −log
∏

(xi,zi)∈Duncensored

hili
∏
l:l<li

(1− hil)

= −
∑

(xi,zi)∈Duncensored

[
log(hili) +

∑
l:l<li

log(1− hil)

] (6.15)

Minimizing the negative partial log-likelihood of the event rate over the

uncensored samples as in Equation 6.16 is the second loss. The third loss is de-

rived considering the censored samples where partial log-likelihood embedded in the

censored samples is used to correct the learning bias of the model as in Equation 6.17.

Luncensored = −log
∏

(xi,zi)∈Duncensored

Pr(ti ≥ z|xi; θ)

= −log
∏

(xi,zi)∈Duncensored

W (ti|xi; θ)

= −
∑

(xi,zi)∈Duncensored

log

1−
∏
l:l≤li

(1− hil)


(6.16)

Lcensored = −log
∏

(xi,zi)∈Dcensored

Pr(z > ti|x;θ)

= −log
∏

(xi,zi)∈Dcensored

S(ti|xi; θ)

= −
∑

(xi,zi)∈Dcensored

∑
l:l≤li

log(1− hil)

(6.17)

The combination of Equations 6.16 and 6.17 describes the classification of
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survival status at time ti of each sample as in Equation 6.17 which can be considered

as the cross entropy loss for predicting the survival status at time ti given xi over all

the data Dfull = Duncensored

⋃
Dcensored. Hence, the goal of the model is to minimize

the negative log-likelihood over all the data samples as denoted by Equation 6.19

where an hyperparameter α controls the loss value balance between Lz and Lc. The

deep recurrent survival analysis model is illustrated in Figure 6.1.

DRSA is used in this work in its original form in analysing NM features,

which is discussed in section 6.2.2.

Lc = Luncensored + Lcensored

= −log
∏

(xi,zi)∈Dfull

[
S(ti|xi; θ)

]ci · [1− S(ti|xi; θ)
]1−ci

= −
∑

(xi,zi)∈Dfull

(
ci · logS(ti|x;θ) + (1− ci) log[1− S(ti|xi; θ)]

) (6.18)

argmin
θ
αLz + (1− α)Lc (6.19)

6.2.2 Survival Analysis using NM Features

NM features that are used for survival analysis were already described in detail in

Chapters 4 and 5. Both MAS and ADNI datasets are used in this work. The features

were preprocessed to isolate the features at baseline and the subsequent diagnosis was

used to derive the event indicator E and the time to failure T. An additional column

was also derived, whose values indicate whether a subject has been censored or not.

These collectively form the input dataset for this study. The event of interest is

the onset of dementia or its prodromal condition, namely mild cognitive impairment
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Figure 6.1: Detailed illustration of Deep Recurrent Survival Analysis model. Only un-
censored samples have the true event time and can calculate pz for the loss of Lz. The
illustration was recreated from the original work [RQZ+19]

(MCI). Only patients with a cognitively normal diagnosis at baseline are considered

for survival analysis. However, patients who are diagnosed with MCI at baseline

are included as well when computing the Kaplan-Meier (KM) curve. This allows

exploration of differential rates of survival between cognitively normal individuals

and those with MCI.

The Kaplan-Meier (KM) curve may be considered as one of the best meth-

ods to measure the fraction of subjects surviving a certain amount of time after

treatment [GKK10]. The effect of intervention is evaluated by measuring the num-

ber of patients who survived after that intervention over a period of time in clinical

trials. KM curves are capable of handling censored data, as the latter is a practical

reality in clinical trials where patients are either lost to follow-up or do not experience

an event before the end of the study. In the current study, no control group exists.

However, the same techniques can be applied to observe the differential effects on

patients enrolling in the study as cognitively normal and patients who are cognitively

impaired.
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Figure 6.2: Kaplan-Meier curve for MAS dataset where time is in months

The KM curve for the MAS dataset is depicted in Figure 6.2. The verti-

cal lines in this plot indicate censored data while their corresponding x-axis value

indicates the time of censoring. The log-rank p-value of 0.0001 indicates a signifi-

cant result considering p < 0.05 as the statistical significance level. For the MAS

dataset, it appears that the baseline diagnosis significantly affects the survival prob-

ability. This affirms the observation that those with mild cognitive impairment have

a higher risk of progressing to dementia.

The KM curve for the ADNI dataset is depicted in Figure 6.3. As the ADNI

study has run for longer, it has a much lengthier x-axis. The log-rank p-value of 0.021

indicates a significant result considering p < 0.05 as the statistical significance level.

Just as in the MAS dataset, it appears that the baseline diagnosis significantly affects

the survival probability.

The DeepSurv network and DRSA are used in their original form with NM

features. However, the original DeepHit neural network was proposed with cause-
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Figure 6.3: Kaplan-Meier curve for ADNI dataset where time is in months

specific sub-networks to cater to competing risks. In this study, the original DeepHit

network is modified and trained to consider the scenario of a single risk. The original

network and the modified network are shown in Figure 6.4. The network architecture

proposed in this thesis has a single sub-network node, compared to multiple sub-

networks in DeepHit.

6.2.2.1 Evaluation

Concordance index (C-index) is the standard measure used to evaluate a survival

analysis model. The ordering of predicted survival times are evaluated by this mea-

sure. A score of 0.5 is the expected outcome from random predictions while 1.0 is

the perfect concordance [RSK+07]. Let T be the event time, Z be a px1 covariate

vector and g(Z) be the theoretical counterpart of the estimated risk score for the

subject with Z. Considering two independent copies (T1, Z1, g(Z1))
′
, (T2, Z2, g(Z2))

′

of (T, Z, g(Z))
′
, commonly used concordance measure is [UCP+11]
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(a) DeepHit Network by Lee et al. [LZYvdS18]

(b) Modified DeepHit

Figure 6.4: Original and modified DeepHit Networks. The original DeepHit network illus-
tration was recreated from the original work [LZYvdS18]
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C = pr(g(Z1) > g(Z2)|T2 > T1) (6.20)

When there’s right censoring, a modified version of C-index is considered

with a fixed, pre-specified follow-up period (0, τ) where [UCP+11]

Cτ = pr(g(Z1) > g(Z2)|T2 > T1, T1 < τ) (6.21)

6.2.3 Survival Analysis using MRI based Features

The main contribution of this work is the use of MRI based features for survival

analysis. This is particularly important in the context of dementia and Alzheimer’s

disease, as imaging is considered to be the cheaper and quicker alternative to con-

ducting a battery of neuropsychological tests which takes longer and costs more.

Two approaches are attempted with MRI based features: (i) a convolutional layer

is directly used to capture the MRI based features and (ii) MRI based features are

extracted from the best models trained in section 5.2.3 and used as input to sur-

vival analysis. DeepSurv is used as the baseline survival analysis method followed

by DeepHit. The architecture diagram for the convolutional layer based DeepSurv

network and DeepHit network are depicted in Figure 6.5, and the feature extraction

methods used for the experiments are discussed below.

6.2.3.1 Feature Extraction

When 3D MRI images are directly used in the end-to-end survival analysis network,

it could be argued that the number of image samples is insufficient to learn the

risk function due to the complexity of the MRI images and the shallow network
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(a) The Architecture of the CNN based
DeepSurv network

(b) The Architecture of CNN based
DeepHit network

Figure 6.5: End-to-end 3D MRI based survival analysis using DeepSurv and DeepHit. The
parameters were optimized against a validation set and the displayed parameters are those
with the best performance. Conv3D stands for a 3D convolution kernel and Conv3D(3x3x3)
stand for a field-of-view of 3x3x3
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used. Therefore, extracted features were also used separately to train DeepSurv in

order to evaluate the performance against the end-to-end model. In doing this, two

methods of feature extraction were attempted. From using the best deep learning

network trained in section 5.2.2, features were extracted from the last layer before

the classification layer. However, as the DeepFusion network yielded better results

overall, it is also possible to extract fused features, with both MRI based features

and NM features fused. The corresponding architectural diagrams are in Figure 6.6.

6.2.4 Validation of Results

The comparison experiments were carried out with the same subset across the differ-

ent techniques attempted. Each experiment was ten-fold cross validated to generalize

the results and reduce variance. The folds were randomly picked. The results pre-

sented in section 6.3 show the averaged results.

6.3 Results

The intention of this chapter was to take inspiration from statistics based survival

analysis practice that is prevalent in clinical studies, and explore its application to

predict the survival of a cognitively normal individual with respect to progressing to

dementia. There were two datasets that were available for experimentation, namely,

the ADNI and MAS datasets. Each of these datasets contains multiple modalities,

namely, NM scores and structural MR images. Four techniques were used to compare

and contrast the performance between them in the task of survival analysis.

First, a comparison between the different techniques applied to the ADNI

dataset is presented in Figure 6.7. Although only two types of data modalities were

considered, the results are for three post-processed modalities, namely, the NM fea-
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(a) Extracting 3D MRI based features

(b) Extracting fused features using 3D MRI and NM
features

Figure 6.6: The feature extraction and training pipeline for MRI based survival analysis
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tures alone, extracted MRI image based features alone and fusion based features.

An end-to-end deep learning network was designed for structural MRI, where the 3D

MRI volume was directly fed as input, and the results for this approach are presented

in Figure 6.8. As is evident, this did not result in good performance, as the shallow

network architecture prevalent in survival analysis coupled with 3D convolution was

not complex enough to learn the feature representation and the survival function

concurrently. This is the reason why extracted features from a pre-trained 3D con-

volutional neural network, discussed in Chapter 5 was used next. The third set of

features was derived by extracting features from the deep fusion network where the

latent representation from both NM features and MRI volumes were considered. The

pre-trained network used for this purpose was presented in sections 5.2.2 and 5.2.3.
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Figure 6.7: Comparison of different techniques used for survival analysis using multiple
modalities of data for ADNI dataset

CPH was used as the baseline and as expected, it has the lowest performance

across all feature modalities as evident from Figure 6.7. DeepSurv, a deep neural

network technique inspired by CPH has performed slightly better but on par with

CPH. Both DeepHit and DRSA are deep neural network based methods and they

have performed very well on this task. It should be noted that while CPH, DeepSurv
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Figure 6.8: The performance of modified DeepSurv and DeepHit techniques using 3D MRI
volumes as input

and DeepHit only use the baseline covariates of the patients, DRSA is capable of using

the subsequently available covariates as well. The recurrent cells used in DRSA thus

enable the capture of time-varying features, which traditional survival analysis lacks.

The best performing survival analysis method is DRSA, although DeepHit is close.

The same experiments were repeated on the MAS dataset in order to ver-

ify the performance of the different techniques. As presented in Figure 6.9, DRSA

is indeed the best performing survival analysis method for MAS as well. The gap

between the performance of DeepHit and DRSA has also widened compared to per-

formance on ADNI. DeepSurv closely follows the performance of CPH as expected.

In order to isolate these variations across datasets, the results based on extracted

features and fused features are presented in Figure 6.10. These results shed light on

the effect of input modalities on the techniques applied and the value of determining

the complexity of the techniques and matching them to the data complexity and

size. With both extracted features and fused features, ADNI dataset provides better

results than MAS in Figure 6.10. However, when it comes to DeepHit and DRSA,

MAS dataset has better performance than ADNI. The MRI volumes used in the MAS

study was of 3T resolution, while the ones in ADNI study were of 1.5T resolution.
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Given the difference in resolution, it can be clearly deduced that the amount of in-

formation input to the model is richer for the MAS dataset than the ADNI dataset.

This in turn means that the extracted features could be a richer latent representa-

tion in MAS compared to ADNI. It is more than likely that this is why MAS dataset

has better performance on both DeepHit and DRSA, which are models capable of

consuming complex input information. On the other hand, both CPH and DeepSurv

are comparatively shallow techniques that are unable to fully utilize the richer data.

Therefore, it is important that the complexity of the technique is matched to the

dataset complexity.
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Figure 6.9: Comparison of different techniques used for survival analysis using multiple
modalities of data for MAS dataset

Finally, the same pattern is confirmed by comparing the results of the best

performing technique, namely DRSA, for both MAS and ADNI. As depicted in Fig-

ure 6.11, it is evident that the models trained on the MAS dataset outperforms those

trained on the ADNI dataset.
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(a) Comparison of performance when using extracted features from 3D MRI based CNN
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(b) Comparison of performance when using extracted features from DeepFusion network

Figure 6.10: Comparison between the performance of extracted features from 3D MRI
based CNN and DeepFusion network
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Figure 6.11: The performance of DRSA model for MAS and ADNI across different feature
modalities

6.4 Summary

In this chapter, the survival of a cognitively normal patient with respect to dementia

and MCI was studied. The event of interest considered is the onset of dementia or

its prodromal conditions such as MCI. Survival analysis models estimate the survival

and hazard functions for patients. These can then be utilized to determine the risk of

progression to dementia for a cognitively normal patient. Traditionally, this is done

with shallow data modalities such as NM scores and methods such as proportional

hazard models. While such models are optimized for shallow data modalities, they are

neither optimized for more complex data modalities such as medical images nor are

they free of underlying assumptions such as proportionality or absence of competing

causes.

This chapter proposes a collection of novel techniques that can be used to

overcome the inherent assumptions and utilize complex data modalities at the same

time. This is particularly important for dementia progression prediction, because a
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battery of neuropsychological tests can be both cost prohibitive and time consuming

to conduct, which does not bode well for elderly individuals. As far as is known,

this is the first effort to incorporate a medical imaging modality such as MRI into

deep survival analysis. It was demonstrated that deep learning techniques such as

DeepHit and DRSA can effectively consume more complex data modalities. It was

established that the ability to use time-varying covariates can significantly improve

the performance, as demonstrated by the performance difference between DeepHit

and DRSA. In this regard, it is recommended to use DRSA as the technique of choice

for survival analysis if there are time-varying covariates. However, DeepHit can be

considered as a comparable technique if the study does not have curated time-varying

covariates and only contains baseline data.

Finally, the efficacy of using extracted features from structural MRI images

and fused features from the deep fusion network which fused both structural MRI

and NM features was demonstrated. This cements the main effort of this chapter, by

proposing a technique to handle complex input data models with survival analysis.

This also adds further credibility to the experiments and the work carried out in

Chapter 5, as the trained networks therein were used to extract features that are

also useful in survival analysis, confirming that the networks have indeed learned the

latent representation of the input data space.
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Chapter 7

Conclusion

The goal of this thesis was to design, build and test a set of computer aided diagnostic

techniques for differentiating cognitively normal individuals from individuals with

mild cognitive impairment and dementia, and track their progression to dementia

using survival analysis techniques. Two datasets were used in this work: an in-house

dataset and a publicly available dataset, which allows additional validation of the

proposed techniques. As far as is known, neuropsychological measure based features

have not been used to differentiate between MCI subtypes and dementia in a machine

learning or deep learning setting, even though they play a large part in diagnosis.

Further, fusing of information from disparate data modalities such as NM data and

MR images has not been reported before. This was a strong motivation for the thesis,

as it allows researchers to leverage all information modalities in a computer aided

diagnostic system rather than relying on a single data modality at a time. This thesis

presents an end-to-end deep fusion pipeline that is capable of fusing information from

multiple modalities and validates the model using two datasets. Finally, this thesis

also explores deep survival analysis techniques to better understand the progression

to dementia. As far as is known, this is the first attempt to use deep survival analysis

for tracking cognitive impairment and dementia diagnosis. This is also the first time
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that survival analysis is proposed with MR images for the same diagnoses, as far as

can be ascertained.

The remaining chapter is organized as follows. A summary of the thesis

is presented in section 7.1 while thesis contributions are described in section 7.2.

Limitations and possible future work are reported in section 7.3 and section 7.4

concludes the thesis.

7.1 Thesis Summary

A set of techniques that can be used for diagnosis of cognitive impairment and de-

mentia and their progression tracking has been presented in this thesis. This includes

novel methods to train automated classification systems using multi-modal data and

survival analysis techniques to better understand the progression to cognitive impair-

ment and dementia.

First, NM based features were used to train conventional machine learning

classifiers to differentiate between individuals with cognitive impairment and those

who are cognitively normal. As far as is known, NM based features have not been

used for cognitive impairment diagnosis using machine learning. This was used as

the baseline and extended to a deep learning pipeline based on architectures such

as stacked auto-encoders and convolutional neural networks. This improved on the

baseline results, establishing a new benchmark for the in-house dataset. It was shown

that while CNNs are often recommended when adjacent features are correlated, they

do not have to be in a strict order to leverage the architectures.

A typical problem when using NM based features is that the tests used

to acquire the data are both lengthy and expensive. As cognitive impairment is

prevalent in the older population, it is also important to make the testing as non-
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intrusive as possible. To that end, a non-invasive medical imaging technique like

structural MR images can be a huge improvement. Traditionally, neuropsychologists

use MR images to diagnose cognitive impairment only when the NM based features

values are ambiguous. This thesis proposes an end-to-end deep learning pipeline

to train a computer aided diagnostics system with MR images using 2D and 3D

convolutional neural networks. The added advantage of this approach is that the

need for feature extraction or engineering is eliminated. The implementation of the

deep fusion pipeline enabled the seamless fusion of data from multiple disparate

modalities of vastly different dimensions such as NM based features and MR images.

Although fusion has been attempted before for different problems, it was between

similar data modalities such as MR images and PET images. The challenge in fusing

data from disparate modalities is in ensuring that neither modality over-saturates

the learning process. This was achieved through the architecture proposed by this

thesis.

The deep fusion pipeline was also demonstrated to be robust against missing

information. This enables patients with incomplete NM based features to benefit from

the computer aided diagnostics system, which is otherwise impossible. Additionally,

the deep fusion pipeline demonstrated the efficacy of transfer learning by model

training on the ADNI dataset and finetuning of the pre-trained model on a smaller

dataset such as the MAS dataset. This effectively addresses the data paucity problem

that researchers typically face in medical imaging studies.

Another important motivation for this thesis was to better understand the

progression to dementia from MCI and normal cognition. Survival analysis techniques

were employed for this purpose. First, conventional survival analysis techniques

were used to determine the time to survival (or time till progression to cognitive

impairment or dementia in this case). These initial results were then used as the

baseline and the method extended using deep learning techniques to achieve better
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and more robust results. As far as is known, this is the first time that survival analysis

techniques have been used to understand the progression of cognitive decline. The

techniques were designed so that the structural MR images and fused features can

be used for survival analysis, which also demonstrates another use case for the deep

fusion pipeline as well as making feature engineering redundant.

7.2 Thesis Contributions

While accomplishing the set goals, the thesis also contributes to two different fields;

computer vision, machine learning and deep learning, and cognitive impairment di-

agnosis and prediction.

7.2.1 Contributions to Computer Vision, Machine Learning

and Deep Learning

The main contributions of this thesis to computer vision, machine learning and deep

learning are summarized below.

i Creating a baseline for classification systems using NM based features for cog-

nitive impairment diagnosis.

ii Design of 1D, 2D and 3D convolutional neural networks that uniquely exploit

the characteristics of the data modalities they are trained on for cognitive

impairment diagnosis.

iii Establishing the limitations of 2D convolutional neural networks trained on low

resolution 2D structural MR images.
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iv Establishing the utility and applicability of machine learning and deep learning

algorithms for cognitive impairment diagnosis.

v Design of an end-to-end deep fusion pipeline that fuses information from dis-

parate multiple modalities of vastly different dimensions such as NM based

features and MR images.

vi Establishing that the proposed deep fusion pipeline is robust to missing infor-

mation.

vii Establishing a baseline for transfer learning based model fine-tuning for deep

fusion pipeline across two datasets.

viii Design of deep learning based survival analysis techniques to better understand

the progression to cognitive impairment and dementia that uses MR images and

fused features without having to extract or engineer features by itself.

7.2.2 Contributions to Cognitive Impairment Diagnosis and

Prediction

This thesis also makes important contributions to cognitive impairment diagnosis

and prediction as summarised below.

i Development of a computer aided classification system to diagnose cognitive

impairment using NM based features.

ii Development of a computer aided classification system to diagnose cognitive

impairment using multi-modal data such as NM based features and MR images.

iii Demonstrating a computer aided classification system that is robust to missing

information.
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iv Development of a computer aided survival analysis system to better understand

the progression to cognitive impairment and dementia.

v Establishing and facilitating a range of computer aided diagnostic techniques

for the in-house MAS dataset, with ADNI as a benchmark.

7.3 Limitations and Future Work

The set of techniques proposed in this thesis effectively diagnoses stages of cognitive

decline and elicits better understanding of progression to dementia. As two datasets

were used for this thesis, cross comparison between models was possible. However,

the datasets used also have some limitations, with the two datasets having some

differences in features such as different NM features or differing resolutions of MR

images. This is a potential limitation, and the performance of the proposed system

could be further improved if the two datasets were similar. Another limitation of the

survival analysis technique stems from the fact that only four time points were used

for the MAS dataset, which limits the use of advanced deep learning techniques such

as recurrent neural networks to better model the longitudinal nature of the dataset.

The scope for future work includes the following:

i The survival analysis techniques should be validated on a lengthier longitudinal

dataset to improve the performance.

ii The deep fusion pipeline can utilize higher resolution MR images if available,

which can be used to improve the performance.

iii Techniques such as Generative Adversarial Networks (GANs) can be used to

improve the quality of the dataset, effectively improving the performance of the

whole system.
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iv Techniques such as GANs can also increase the size of the dataset by generating

new data which can address the limited dataset size.

v Active learning techniques can be developed to incorporate a feedback loop

from the clinicians, in order to continuously improve the system performance.

vi Personalised modelling techniques may be adapted to better understand pro-

gression to dementia as more longitudinal data becomes available.

7.4 Concluding Remarks

Automated diagnosis of cognitive impairment and dementia continues to be impor-

tant. The techniques and frameworks presented in this thesis build on earlier at-

tempts while also addressing the shortcomings identified. Novel methods have been

proposed, implemented and validated, including NM based cognitive impairment di-

agnosis, a deep fusion pipeline to fuse data from multiple disparate modalities and

deep survival analysis based techniques to better understand the progression to de-

mentia. The comprehensive battery of experimental results show that the proposed

methods are effective solutions and could further benefit from more data and exper-

iments.
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AUC values for Figures 4.4, 4.5, 4.6 and 4.7 are tabulated in Table A1, A2,

A3 and A4.

CN vs MCI CN vs aMCI CN vs naMCI MCI Subtypes aMCI Subtypes naMCI Subtypes
AB 0.93 0.97 0.85 0.95 0.87 0.74
RF 0.94 0.98 0.95 0.94 0.89 0.82
ES 0.92 0.98 0.94 0.95 0.88 0.8

Table A1: AUC for the three best conventional machine learning methods considered in
one-vs-one classification on first wave

naMCI aMCI md-aMCI md-naMCI sd-aMCI sd-naMCI
AB 0.77 0.96 0.73 0.55 0.73 0.66
RF 0.91 0.97 0.92 0.94 0.92 0.86
ES 0.9 0.98 0.9 0.93 0.91 0.84

Table A2: AUC for the three best conventional machine learning methods considered in
one-vs-all classification on first wave

CN vs MCI CN vs aMCI CN vs naMCI MCI Subtypes aMCI Subtypes naMCI Subtypes
W1 0.93 0.97 0.85 0.95 0.87 0.74
W2 .95 .96 .84 .92 .88 .79
W3 .91 .93 .86 .89 .87 .75
W4 0.88 .91 0.87 0.90 0.86 0.75

Table A3: AUC for the best conventional machine learning method (AB)in one-vs-one
classification across four waves

naMCI aMCI md-aMCI md-naMCI sd-aMCI sd-naMCI
W1 0.77 0.96 0.73 0.55 0.73 0.66
W2 0.81 .92 .78 .69 .78 .72
W3 .8 .93 .82 .68 .81 .75
W4 .83 .91 .79 .70 .81 .71

Table A4: AUC for the best conventional machine learning method (AB)in one-vs-all clas-
sification across four waves

An ensemble of SAEs at the model level was built to improve performance

in Chapter 4 where Figure 4.12 depicted the results on wave 3. The results on wave

1, 2 and 4 are presented in Figures A1, A2 and A3.
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Figure A1: Comparison of best SAE classifier results against SAE Ensemble classifier
results for Wave 1. Accuracy (E) and AUC (E) stands for the accuracy and AUC of the
SAE ensemble classifier
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Figure A2: Comparison of best SAE classifier results against SAE Ensemble classifier
results for Wave 2. Accuracy (E) and AUC (E) stands for the accuracy and AUC of the
SAE ensemble classifier
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Figure A3: Comparison of best SAE classifier results against SAE Ensemble classifier
results for Wave 4. Accuracy (E) and AUC (E) stands for the accuracy and AUC of the
SAE ensemble classifier
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Measures other than accuracy used to evaluate the model performance in

Chapter 4 are reported in Table A5.
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