
Distributed Subgraph Enumeration

Author:
Lai, Longbin

Publication Date:
2017

DOI:
https://doi.org/10.26190/unsworks/19738

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/58084 in https://
unsworks.unsw.edu.au on 2024-03-29

http://dx.doi.org/https://doi.org/10.26190/unsworks/19738
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/58084
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Distributed Subgraph Enumeration

by

Longbin Lai

B.E. Shanghai Jiao Tong University, 2010

M.E. Shanghai Jiao Tong University, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE SCHOOL

OF

Computer Science and Engineering

Wednesday 21st June, 2017

All rights reserved.

This work may not be reproduced in whole or in part,

by photocopy or other means, without the permission of the author.

c� Longbin Lai 2016

PLEASE TYPE
THE UNIVERSITY OF NEW SOUTH WALES

Thesis/Dissertation Sheet

Surname or Family name: LAI

First name: LONGBIN Other name/s:

Abbreviation for degree as given in the University calendar: PhD

School: School of Computer Science and Engineering Faculty: Faculty of Engineering

Title: Distributed subgraph enumeration

Abstract 350 words maximum: (PLEASE TYPE)

Subgraph enumeration is a fundamental graph problem with many applications. However, existing algorithms for subgraph enumeration fall short
in handling large graphs due to the computational hardness. In this work, we propose a general approach that solves subgraph enumeration in the
distributed contexts, including MapReduce and Spark. The approach features a decomposition-and-join manner, in which the pattern graph is
decomposed into a set of structures, called join unit. We introduce the distributed graph storage mechanism to determine what structure can be
the join unit. Consequently, we obtain the results by joining the matches of all join units following a specific join structure. Based on the general
approach, we first propose a star-based join framework. In the framework, we adopt a basic graph storage mechanism that only supports a star (a
tree with depth 2) as the join unit, and we apply the left-deep join structure to process the join. We then show that a special star called TwinTwig -
an edge or two incident edges of a node - is enough to guarantee instance optimality in the star-based join framework under reasonable
assumptions, which inspires the TwinTwigJoin algorithm. We devise an A*-based algorithm to compute the optimal join plan for TwinTwigJoin.
TwinTwigJoin is still not scalable to large graph because of the constraints in the left-deep join structure and that each join unit must be a star. We
then explore the graph-based join framework that allows us to use more than just star as the join unit. In addition, we use the bushy join structure
rather than left-deep join to guarantee the optimality of the join plan. Aware that it is storage-inefficient to use any structure as the join unit, we
develop the SEED algorithm that implements an effective distributed graph storage mechanism to use star and clique (complete graph) as the join
units. We then devise a dynamic-programming algorithm to compute an optimal bushy join plan. SEED frees us from the constraints in
TwinTwigJoin, and greatly improves the performance of subgraph enumeration. Ultimately, we develop two data-compression techniques, namely
compressed graph and clique compression, to further reduce the enormous cost while transferring and maintaining the (intermediate) results.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all
property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

 Signature Witness Signature
……….……………………...…….…

 Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional
circumstances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

21/06/2017

 COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed ……………………………………………...........................

Date ……………………………………………...........................

 AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………..............

Date ……………………………………………..............

Abstract

Subgraph enumeration is a fundamental graph problem with many applications.

However, existing algorithms for subgraph enumeration fall short in handling large

graphs due to the computational hardness. In this work, we propose a general

approach that solves subgraph enumeration in the distributed contexts, including

MapReduce and Spark. The approach features a decomposition-and-join manner,

in which the pattern graph is first decomposed into a set of structures, called join

unit. We propose the distributed graph storage mechanism to determine what

structure can be the join unit. Consequently, we obtain the results by joining the

matches of all join units following a specific join structure. Based on the general

approach, we first propose a star-based join framework. In the framework, we

adopt a basic graph storage mechanism that only supports a star (a tree with

depth 2) as the join unit, and we apply the left-deep join structure to process the

join. We then show that a special star called TwinTwig- an edge or two incident

edges of a node - is enough to guarantee instance optimality in the star-based

join framework under reasonable assumptions, which inspires the TwinTwigJoin

algorithm. We devise an A*-based algorithm to compute the optimal join plan

for TwinTwigJoin. TwinTwigJoin is still not scalable to large graph because of the

constraints in the left-deep join structure and that each join unit must be a star.

We then explore the graph-based join framework that allows us to use more than

iii

just star as the join unit. In addition, we use the bushy join structure rather

than left-deep join to guarantee the optimality of the join plan. Aware that it

is storage-ine�cient to use any structure as the join unit, we develop the SEED

algorithm that implements an e↵ective distributed graph storage mechanism to

use star and clique (complete graph) as the join units. We then devise a dynamic-

programming algorithm to compute an optimal bushy join plan. SEED frees us

from the constraints in TwinTwigJoin, and greatly improves the performance of

subgraph enumeration. Ultimately, we develop two data-compression techniques,

namely compressed graph and clique compression to further reduce the enormous

cost while transferring and maintaining the (intermediate) results.

iv

Publications Involved in Thesis

• Longbin Lai , Lu Qin, Xuemin Lin, Lijun Chang. Scalable Subgraph Enu-

meration in MapReduce, in VLDB, 2015. (Chapter 4)

• Longbin Lai , Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang. Scalable

Distributed Subgraph Enumeration, in VLDB, 2017.(Chapter 3, Chapter 5

and Chapter 6)

• Longbin Lai , Lu Qin, Xuemin Lin, Lijun Chang. Scalable Subgraph Enu-

meration in MapReduce - A Cost-Oriented Approach, under reviewed, VLDB

Journal. (Chapter 6)

v

vi

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Prof.

Xuemin Lin for the continuous support of my Ph.D study and related research, for

his patience, motivation, immense knowledge, and financial support. His guidance

helped me in all the time of research and writing of this thesis. I can always

remember his motto: “A good researcher is an outstanding hunter in the dark

forest. He who embraces the loneliness, desperation and bitterness would ultimately

be granted what he hunts for.”

A special thanks goes to my joint-advisor, Dr. Lu Qin, who is most responsible

for helping me complete the writing of the academic papers and this dissertation

as well as the challenging research that lies behind them. Lu has been a friend

and mentor. He taught me how to write papers, and as an ACM competition

winner, instructed me to be a better programmer. He always had confidence in

me, even when I deeply doubted myself after a whole-year futile work in finding

the research topic. He guided me all the way out with his continuous brilliant ideas

and inspirations.

The work in this thesis can not be accomplished without the guidance of Dr. Li-

jun Chang and Dr. Ying Zhang, whose creativity, passion and hardworking not

only light up my candle of hope when it is nearly extinguished by the sense of

desperation, but only set up high-end examples of outstanding researchers.

vii

I would also like to thank Dr. Wenjie Zhang, Prof. Wei Wang, Dr. Jianbin Qin

and Dr. John Shepherd for annually reviewing my Ph.D process. I recognised that

you had always given me so many credits in the review reports, much more than

what I had fulfilled, which helped me build my confidence till finally completing

the Ph.D thesis.

Let me also say “thank you” to the following people at UNSW, Australia: Mr.

Simon Garrod (Technical Support) and Mr. Tianlun Bill for your consistent help

in my English. Mr. Philip Rodwell (Technical Support) and Craig Howie (IT man-

ager) for sorting everything out, even for my stand-working facility. Dr. Zengfeng

Huang, Dr. Xin Cao, Dr. Muhammad Aamir Cheema, Dr. Chengyuan Zhang, Dr.

Xiang Zhao and Dr. Gaoping Zhu, for sharing your brilliant ideas and experiences.

Dr. Xiaoyang Wang and Dr. Shiyu Yang, for your restless assistance whenever

I need. Mr. Xiang Wang, Mr. Long Yuan, Mr. Xing Feng, Mr. Jianye Yang,

Miss Lu Shen, Mr. Fei Bi, Mr. Dong Wen, Mr. Fan Zhang, Mr. Haida Zhang,

Miss Chen Zhang and Mr. Wei li, for sharing the happiness and bitterness with

me during my Ph.D study.

I am also greatly indebted to many teachers in Shanghai Jiao Tong University: Prof.

Minyi Guo, Prof. Kefei Chen, Prof. Jingyu Zhou and Prof. Wujun Li for arousing

my interests in research, and referencing me for my Ph.D study. Miss Chunling

Zhu, for your guidance of my life and study since fresh year in the university.

Last but not least, I thank my family: my mother, Xiubi Lai, for bringing me to

this world and for educating me to be a descent man. My sister Yuru Lai and

my brother Junyong Lai, for sharing their experiences of life with me, for listening

to my complaints and frustrations, and for believing in me. My girlfriend, Miao

Wang, for her selfless support, persistent encouragement and ceaseless company.

viii

Contents

Abstract iii

Publications v

Acknowledgements vii

List of Figures xii

List of Tables xiv

List of Algorithms xvi

1 Introduction 1

1.1 Motivation . 2

1.2 Our Approach . 3

1.3 Contributions . 6

1.4 Related Work . 8

1.5 Outline . 10

2 Preliminaries 11

3 A General Approach 16

3.1 Execution Plan . 16

ix

3.2 Challenges . 19

4 TwinTwigJoin: Optimal Star-based Left-deep Join 21

4.1 Star-based Join Framework . 21

4.2 Existing Work . 25

4.2.1 Star-based Join . 26

4.2.2 Multiway Join . 27

4.3 TwinTwigJoin Algorithm . 30

4.3.1 TwinTwig Decomposition 30

4.3.2 Cost Analysis . 31

4.3.3 Instance Optimality of TwinTwigJoin 34

4.3.4 Optimal Execution Plan . 39

4.3.5 Symmetry Breaking . 42

4.4 Handling Power-Law Graphs . 44

4.5 Optimization Strategies . 48

4.5.1 Order-aware Cost Reduction 48

4.5.2 Workload Skew Reduction 51

4.5.3 Early Filtering . 52

4.6 Performance Studies . 54

4.7 Chapter Conclusion . 63

5 SEED: Optimal Graph-based Bushy Join 64

5.1 Graph-based Join Framework . 66

5.2 SEED Algorithm . 68

5.2.1 Beyond Stars: SCP Graph Storage 69

5.2.2 Cost Analysis . 76

5.2.3 Optimal Execution Plan . 82

x

5.3 Performance Studies . 91

5.4 Chapter Conclusion . 101

6 Optimisation using Data Compression 102

6.1 Compressed Graph . 102

6.1.1 Constructing the Compressed Graph 105

6.1.2 Querying the compressed graph 114

6.2 Clique Compression . 120

6.2.1 Clique Precomputation . 121

6.2.2 Online Clique Compression 122

6.2.3 Online Join Processing . 126

6.3 Performance Studies . 130

6.4 Chapter Conclusion . 134

7 Conclusion 135

Bibliography 138

A Appendix 143

xi

List of Figures

2.1 Pattern Graph P (Left) and Data Graph G (Right). 13

3.1 Di↵erent Join Trees. 18

4.1 The pattern decomposition and the corresponding partial patterns. 25

4.2 Constructing the TwinTwig decomposition D based on a certain star

decomposition D0. 37

4.3 The values of � in di↵erent parameter combinations. 44

4.4 The order-aware decomposition of a 4-Clique. 50

4.5 The E↵ect of Workload Balancing 52

4.6 Queries used in the TwinTwigJoin experiment. 56

4.7 The results of Exp-1: Vary Algorithms. 57

4.8 The results of Exp-2: Vary Datasets. 59

4.9 The results of Exp-3: Vary Queries. 60

4.10 The results of Exp-4: Vary Graph Size. 61

4.11 The results of Exp-5: Vary Average Degree 62

4.12 The results of Exp-6: Vary Slave Nodes 62

5.1 The redundant node, cut nodes and cut edges. 87

5.2 Queries used in the SEED experiment. 94

5.3 The results of Exp-1: SCP Storage Mechanism. 95

xii

5.4 The results of Exp-3: SEED vs SEED-NO. 96

5.5 The results of Exp-4: Test against all queries. 97

5.6 The results of Exp-5: Vary Datasets. 98

5.7 The results of Exp-6 and Exp-7: Vary graph properties. 99

5.8 The results of Exp-8: Vary slave nodes. 100

6.1 The Compressed node and compressed graph of the given data graph.105

6.2 The local graph of u1, and clique compression. 123

6.3 Queries for data compression. 131

6.4 The results of Exp-1: TT vs. TT+C. 132

6.5 The results of Exp-2: SEED vs. SEED+C. 133

A.1 A pattern graph for symmetry breaking. 146

xiii

List of Tables

2.1 Notations frequently used in this article. 15

4.1 Datasets used in the TwinTwigJoin experiment. 54

4.2 The number of (intermediate) results for processing q4 on lj (in

billions). 57

4.3 The ratio of intermediate results that contain only small-degree

nodes (↵). 63

5.1 The number of extra edges introduced by G1
u and G2

u. 75

5.2 The number of the matches of P ld
2 and P b

2 in the PR graph (in billions). 82

5.3 Amazon virtual instance configurations. 92

5.4 Datasets used in the SEED Experiments. 92

5.5 The results of Exp-2: Cost comparisons while enumerating q5 on yt

using SEED and SEED-LD (in millions). 96

6.1 The symbols “⇥”, “)” and “⇥” and their descriptions. 106

6.2 Resolve compressed matches to the original matches. 120

6.3 Datasets used in the data-compression experiments. 130

6.4 Varying the degree threshold that makes us directly assign the node

into a trivial compressed node. 132

xiv

6.5 Comparison of the size of the output data (in billions) while enu-

merating q1 and q2 on the original and compressed graph. 133

xv

List of Algorithms

1 SubgraphEnum-Star(data graph G, pattern graph P) 22

2 MultiwayJoin(data graph G, pattern graph P) 28

3 OptExecPlan-TwinTwig(data graph G, pattern graph P) 41

4 SubgraphEnum-Graph(data graph G, pattern graph P) 65

5 OptExecPlan(data graph G, pattern graph P) 84

6 ComprNodeGen-I(G stored as �0(G) (Chapter 4.1)) 106

7 ComprNodeGen-II(G stored as �0(G)) 107

8 ComprNodeGen-III(Outputs of Algorithm 6 and Algorithm 7) 108

9 ComprEdgeBind(data graph G, The compressed node set V (G⇤)) . . 111

10 ComprMatch ((S;N ⇤(S)), p) . 117

11 Clique-Search(data graph G) . 121

12 CompressedClique(pk, Gu) . 125

13 mapi(key: ;; value: either compressed matches (f c, fn) 2 R(P 0
j)

and (hc, hn) 2 R(P 0
s) for some j < i, s < i or Gu 2 �(G)) 128

14 reducei(key: Ujoin; value: Two sets of compressed matches H1 and

H2) . 129

xvi

Chapter 1

Introduction

In this article, we study subgraph enumeration, a fundamental problem in graph

analysis. Given an undirected, unlabelled data graph G and a pattern graph P ,

subgraph enumeration aims to find all subgraph instances of G that are isomorphic

to P . Subgraph enumeration is widely used in many applications. For example,

subgraph enumeration is used for network motif computing [MSOI+02, ADH+08]

to facilitate the design of large network from biochemistry, neurobiology, ecology,

and bioinformatics. It is utilized to compute the graphlet kernels for large graph

comparison [SVP+09, Prz07] and property generalization for biological networks

[MP08]. It is considered as a key operation for the synthesis of target structures

in chemistry [RR01]. It is also adopted to illustrate the evolution of social net-

works [KWL12] and to discover the information trend in recommendation net-

works [LSK06]. In addition, as a special case of subgraph enumeration, triangle

enumeration is a preliminary operation in cluster coe�cient calculation [WS98] and

community detection [WC12].

1

2 Chapter 1. Introduction

1.1 Motivation

Enumerating subgraphs in a big data graph, despite its varied applications, is

extremely challenging for two reasons. First, subgraph enumeration is compu-

tationally intensive since determining whether a data graph contains a subgraph

that is isomorphic to a given pattern graph, known as subgraph isomorphism, is

NP-complete. Second, the lack of label information makes it hard to filter infea-

sible partial answers in early stages, rendering a large number of partial results,

whose size can be much larger than the size of the data graph and the final results.

Due to these challenges, existing sequential algorithms for subgraph enumeration

[CN85, GK07] are not scalable to big graphs. Some other studies try to find ap-

proximate solutions [ADH+08, GRS10, ZKKM10] to reduce the computational cost,

however, they only estimate the count of the matched subgraphs rather than locate

all the subgraph instances.

Researchers hence seek distributed solutions for scalability consideration, which

typically leverage big data (graph) engines such as MapReduce [DG04] and Pregel

[MAB+10]. As representatives, there are two existing approaches in MapReduce,

namely, EdgeJoin [Pla13] and MultiwayJoin [AFU13], and one work in Pregel called

PSgL [SCC+14].

In EdgeJoin [Pla13], the pattern graph is decomposed into an ordered list of

edges. The algorithm proceeds in multiple MapReduce rounds, each of which grows

one edge using the join operation. EdgeJoin is ine�cient as joining one edge in

each round cannot fully make use of the structural information, which may render

numerous partial results. In MultiwayJoin [AFU13], only one MapReduce round

is needed. Each edge is duplicated in multiple machines such that each machine

can enumerate the subgraphs independently and no match is missed. However,

MultiwayJoin usually encounters serious scalability problems by keeping almost the

Chapter 1. Introduction 3

whole graph in the memory of each machine when the pattern graph is complex.

PSgL is Pregel-based and processes subgraph enumeration via graph traversal

opposed to join operation. The algorithm applies a breadth-first-search strategy -

that is, each time it picks up an already-matched but not fully-expanded node v,

and searches the matches of its neighbors in order to generate finer-grained results.

PSgL is e�cient while processing small dataset, benefiting from Pregel’s in-memory

computation (maintaining the result in memory), but it su↵ers from severe memory

issue immediately when data graph becomes large.

1.2 Our Approach

Important as the subgraph enumeration though, there lacks an e�cient and scalable

solution in the literature. To close this gap, we propose a general decomposition-

and-join approach that can be implemented in the general-purposed big data pro-

cess engine, including MapReduce [DG04], Spark [MMJ+], Dryad [IBY+] and Myria

[HTC+]. For simplicity, we will introduce all proposed algorithms using MapRe-

duce. Given the hardness of the subgraph enumeration, we first decompose the

pattern graph into a set of easier-solving structures, called join unit. We then

introduce the distributed graph storage mechanism, which determines what struc-

ture can serve as the join unit. Consequently, we obtain the results by joining the

matches of all join units following a certain join structure. The whole procedure

processes in multiple rounds, and each of them handles a two-way join. In order

to evaluate the proposed algorithms (and their optimality), we carefully compute

the cost, taking into account the cost of transferring and maintaining the (partial)

result set in each algorithm.

Based on the general approach, we first propose the star-based join framework.

4 Chapter 1. Introduction

In the framework, we adopt the basic graph storage mechanism, in which a star

(a tree with depth 2) is the join unit. After decomposing the pattern graph into a

set of disjoint stars, we join the matches of these stars in a left-deep join structure.

We will show that the star-based join framework can generalize the EdgeJoin and

StarJoin algorithms. However, it is sometimes ine�cient to process a star due to the

enormous results produced. For example, a celebrity node with 1,000,000 neighbors

in the social network would incur O(1018) matches of a star of three edges. One

such large-degree node alone would exhaust both the computation and storage

in any machine and become a huge bottleneck of the algorithm. Aware of the

deficiency, we propose the TwinTwigJoin algorithm that decomposes the pattern

graph into TwinTwig- a star of either one or two edges - instead of a general

star. The TwinTwigJoin has several advantages. First, based on a well-defined

cost model as well as a variant of Erdös Rényi random (ER) graph model [ER60],

we show that TwinTwigJoin can ensure instance optimality in the star-based join

framework. Second, the simple structure of a TwinTwig makes it easy to devise

an A*-based algorithm to compute the optimal left-deep join plan. The algorithm

runs with space and time complexities of O(2m) and O(dmax ·m · 2m) respectively,

where m is number of edges and dmax is the maximum degree in the pattern graph.

Third, a lot of optimization strategies can be designed on top of TwinTwigJoin,

including order-aware cost reduction, workload skew reduction, and early filtering.

TwinTwigJoin only guarantees optimality under two constraints: (1) each join

unit is a star, and (2) the join structure is left-deep. These constraints hamper its

practicality in several respects. First, TwinTwigJoin only mitigates but not resolves

the issues in the star-based join. For example, the node of degree 1,000,000 still

produces O(1012) matches of a two-edge TwinTwig. Second, it takes TwinTwigJoin

at least m
2 (m is the number of pattern edges) rounds to solve subgraph enumera-

Chapter 1. Introduction 5

tion, making it ine�cient to handle complex pattern graph. Finally, the algorithm

utilizes a left-deep join plan, which may result in a sub-optimal solution [JK84].

Last but not least, TwinTwigJoin bases the cost analysis on the ER model , which

can be biased considering that most real-life graphs are power-law graphs.

Targeting the deficiencies of TwinTwigJoin, we further explore the graph-based

bushy join framework so as to use more than just star, but any structure, as the

join units. After noticing that it is storage-ine�cient to consider any structure as

join unit, we develop the SEED ((Subgraph EnumEration in Distributed context))

algorithm that implements the star-clique-preserved (SCP) storage mechanism to

support star and clique (a complete graph) as join units. With clique as an alter-

native, we can make a better choice other than star, where possible, and reduce

the number of execution rounds. Ultimately, this leads to a huge reduction of the

intermediate results. In addition, we refine the cost model in TwinTwigJoin by bas-

ing the cost analysis on the power-law random (PR) graph model [CLV03a] instead

of the ER model. Considering that many real graphs are power-law graphs, the PR

model o↵ers more realistic estimation than the ER model. Finally, we develop a

dynamic-programming algorithm to compute the optimal bushy join plan. With

the same space complexity and a slightly larger time complexity O(3m) compared

to the A*-based algorithm in TwinTwigJoin that solves the left-deep join plan, we

arrive at optimality by settling the more challenging bushy join plan. We also show

that it is beneficial to overlap edges among the join units. Given some practical

relaxation, we are able to compute an optimal join plan that overlaps the join units

with the same complexity as the non-overlapped case.

Despite the optimality guarantee in the proposed algorithms, the huge cost of

subgraph enumeration can potentially a↵ect the scalability to large graph. We

therefore study two data compression techniques to further reduce the cost. The

6 Chapter 1. Introduction

first technique, called compressed graph, leverages the symmetric structure in the

data graph. A set of nodes that have the same neighborhoods are aggregated

into one compressed node, which transforms the original graph into a compressed

graph. We then process the query on the compressed graph in order to save the

cost of computing, transferring and maintaining the results associated with the

compressed nodes. Ren et al. applied the technique in [RW15] to boost the labeled

subgraph matching. However, their centralised algorithm cannot scale to web-scale

real graph. In this work, we propose non-trivial distributed algorithms (on MapRe-

duce) to construct the compressed graph and process queries on it. We first identify

three kinds of compressed nodes, and use them to bind the compressed edges and

construct the compressed graph. Then we extend the TwinTwigJoin algorithm to

handle the compressed graph by leveraging the properties of compressed node in

the computation of the matches of TwinTwig. Note that we can also adapt SEED to

the compressed graph, but we focus on TwinTwigJoin in this article to deliver the

intuitive idea. The second data compression technique, namely clique compression,

utilizes the fact that any k-combination of the nodes in a large clique is a match

of the k-clique. We first precompute and index all cliques in the data graph with

sizes larger than a given threshold. When we are computing the matches of clique

(as join unit) in SEED, we attempt to maintain the results that involves in the

precomputed cliques in a compressed form as much as possible, which significantly

reducing the cost of the algorithm. Clique compression can only applied to SEED

where clique can be the join unit.

1.3 Contributions

We make the following contributions in this work.

Chapter 1. Introduction 7

(1) A general approach to process subgraph enumeration in the distributed context.

We introduce a general decomposition-and-join approach for subgraph enumera-

tion that can be implemented in a variety of general-purposed big data process

engines. We formulate the distributed graph storage mechanism to determine

what structures can serve the join units in the pattern decomposition.

(2) TwinTwigJoin: Optimality in star-based left-deep join. We first introduce the

star-based join framework, which features a basic graph storage mechanism that

only supports star as join unit and a left-deep join structure. A comprehensive cost

model is introduced based on the ER model to evaluate the proposed algorithm,

according to which we are able to prove that using TwinTwig as the join unit is

enough to guarantee instance optimality in the star-based join framework, which

motivates the TwinTwigJoin algorithm that uses TwinTwig instead of a general

star as the join unit. We devise an A*-based algorithm to compute the optimal

TwinTwig join plan, and explore three optimization strategies, namely, order-aware

cost reduction, workload skew reduction, and early filtering, to further improve the

TwinTwigJoin algorithm.

(3) SEED: Optimality in graph-based bushy join We explore the optimal graph-

based bushy join to resolve the constraints of TwinTwigJoin, which results in the

SEED algorithm. We show that it is storage-ine�cient to use any general structure

as the join unit, and then introduce the star-clique-preserved (SCP) storage mech-

anism that supports star and clique as the join units. In order to produce more

realistic cost estimation, we base the cost analysis on the PR model rather than the

ER model. Ultimately, we develop a dynamic-programming algorithm to compute

an optimal bushy join plan. We also show that it is beneficial to overlap edges

among the join units. Given some practical relaxation, we compute an optimal join

plan that overlaps the join units with the same complexities as the non-overlapped

8 Chapter 1. Introduction

case.

(4) The data compression techniques. We propose two data compression tech-

niques to further reduce the cost while processing subgraph enumeration. The

first technique targets compressing the data graph by aggregating the nodes that

have the same neighborhood into one single compressed node. The second tech-

nique aims at reducing the partial result set by using the set of nodes in a large

cliques to represent all involved matches of a smaller clique.

1.4 Related Work

Dataflow Engines. The shared-nothing architecture has become a standard for

large data processing nowadays, and there emerge a variety of shared-nothing data

engines in both academy and industry. MapReduce was proposed by J.Dean et

al. [DG04] to provide scalable and convenient big-data processing capabilities.

Spark [MMJ+] improves MapReduce in multi-iteration tasks by o↵ering in-memory

computation. Dryad [IBY+] was proposed by M.Isard et al. as a general-purpose

distributed execution engine for coarse-grain data-parallel applications. D.Halperin

et al. proposed Myria [HTC+] targeting a distributed, shared-nothing big-data

management system. These engines can all be used to implement TwinTwigJoin

and SEED.

Subgraph Matching. Most subgraph matching approaches work in labeled con-

text, where nodes (and/or edges) are assigned labels in both data and query

graphs. For example, node labels in the neighborhood are used to filter unex-

pected candidates in [HS08] and [ZH10]. In [HLL13], the authors observed that a

good matching order can significantly improve the performance of subgraph query.

Lee et al. [LHKL12] provided an in-depth comparison of subgraph isomorphism

Chapter 1. Introduction 9

algorithms. Subgraph enumeration in a centralized environment has also been

studied in exact and approximate settings. The exact solutions including [CN85]

and [GK07] are not scalable to large data graphs. The approximate solutions

[ADH+08, GRS10, ZKKM10] only estimate the count rather than locate all the

subgraph instances.

Subgraph Matching in Cloud. Many recent works focused on solving subgraph

matching in the cloud. Zhao et al. [ZKKM10] introduced a parallel color cod-

ing method for subgraph counting. Ma et al. [MCHW12] studied inexact graph

pattern matching based on graph simulation in a distributed environment. Sun

et al. [SWW+12] proposed a subgraph matching algorithm that uses node filter-

ing to handle labeled graphs in the Trinity memory cloud. Recently, Shao et al.

[SCC+14] developed PSgL to list subgraph instances in Pregel, which can be seen

as a StarJoin-like algorithm and shall be proven to be worse than our TwinTwigJoin

algorithm [LQLC15].

Subgraph Enumeration in MapReduce. Subgraph enumeration in MapRe-

duce has attracted a lot of interests. Tsourakakis et al. [TKMF09] proposed an

approximate triangle counting algorithm using MapReduce. Suri et al. [SV11] in-

troduced a MapReduce algorithm to compute exact triangle counting. Afrati et

al. [AFU13] proposed multiway join in MapReduce to handle subgraph enumera-

tion. Plantenga [Pla13] introduced an edge join method in MapReduce which can

be used for subgraph enumeration. In [FFF14], small cliques are enumerated us-

ing MapReduce, however the method can only be used to enumerate small cliques

rather than any general pattern graphs.

10 Chapter 1. Introduction

1.5 Outline

Chapter 2 presents the preliminaries and formulates the problem. Chapter 3 in-

troduces the general framework for the proposed algorithms. We introduce the

star-based join framework, and show the instance optimality of the TwinTwigJoin

algorithm in star-based join. In Chapter 5, we demonstrate how SEED resolves the

constraints of TwinTwigJoin via the SCP graph storage mechanism and the optimal

bushy join plan. Chapter 6 explores the two data compression techniques, and

Chapter 7 concludes the whole article.

Chapter 2

Preliminaries

Given a graph g, we use V (g) and E(g) to denote the set of nodes and edges of

g. For a node µ 2 V (g), denote N (µ) as the set of neighbors, and d(µ) = |N (µ)|

as the degree of µ. A subgraph g0 of g, denoted g0 ✓ g, is a graph that satisfies

V (g0) ✓ V (g) and E(g0) ✓ E(g).

A data graph G is an undirected and unlabeled graph. Let |V (G)| = N ,

|E(G)| = M (assume M > N), and V (G) = {u1, u2, . . . , uN} be the set of data

nodes. We define the following total order among the data nodes as:

Definition 2.1. (Node Order) For any two nodes ui and uj in V (G), ui � uj if

and only if one of the two conditions holds:

• d(ui) < d(uj),

• d(ui) = d(uj) and id(ui) < id(uj),

where id(u) is the unique identity of node u 2 V (G).

A pattern graph P is an undirected, unlabeled and connected graph. We let

|V (P)| = n, |E(P)| = m, and V (P) = {v1, v2, . . . , vn} be the set of pattern nodes.

11

12 Chapter 2. Preliminaries

We use P = P 0 [P 00 to denote the merge of two pattern graphs, where V (P) =

V (P 0) [V (P 00) and E(P) = E(P 0) [E(P 00).

Definition 2.2. (Match) Given a pattern graph P and a data graph G, a match f

of P in G is a mapping from V (P) to V (G), such that the following two conditions

hold:

• (Conflict Freedom) For any pair of nodes vi 2 V (P) and vj 2 V (P) (i 6= j),

f(vi) 6= f(vj).

• (Structure Preservation) For any edge (vi, vj) 2 E(P), (f(vi), f(vj)) 2 E(G).

We use f = (uk1 , uk2 , . . . , uk
n

), to denote the match f , i.e., f(vi) = uk
i

for any

1 i n.

We say two graph gi and gj are isomorphic if and only if there exists a match of

gi in gj, and |V (gi)| = |V (gj)|, |E(gi)| = |E(gj)|. The task of Subgraph enumeration

is to enumerate all g 2 G such that g is isomorphic to P .

Remark 2.1. An automorphism of P is an isomorphism from P to itself. Sup-

pose there are A automorphisms of the pattern graph. If the number of enumerated

subgraphs is s, then the number of matches of P in G is A ⇥ s. Therefore, if P

has only one automorphism, the problem of subgraph enumeration is equivalent to

enumerating all matches (Definiton 2.2). Otherwise, there will be duplicate enu-

meration. In this work, for the ease of analysis, we will assume that the pattern

graph P has only one automorphism, and focus on enumerating all matches of P

in G.

Details of resolving the duplication caused by automorphism will be discussed in

Chapter 4.3.5.

Chapter 2. Preliminaries 13

!

! !

!
! !

! !

!

Figure 2.1: Pattern Graph P (Left) and Data Graph G (Right).

We use RG(P) to denote the matches of P in G, or simply R(P) when the

context is clear. Since a match is a one-to-one mapping from the pattern nodes to

the data nodes, we regard R(P) as a relation table with V (P) as its attributes.

Example 2.1. Figure 2.1 shows a square pattern graph P , and a data graph G with

4 nodes and 6 edges. We can find the following three subgraphs of G that is iso-

morphic to P : (u1, u2, u3, u4) (the peripheral square), (u1, u3, u2, u4) (the shadowed

part), and (u1, u2, u4, u3) (the white part).

Problem Statement. Given a data graph G stored in the distributed file system,

and a pattern graph P , the purpose of this work is to enumerate all matches of P

in G (based on Definiton 2.2) in the distributed environment.

Remark 2.2. For simplicity, we discuss the algorithm in MapReduce. However,

all techniques proposed in this work are platform-independent, so it is seamless to

implement the algorithm in any general-purpose distributed dataflow engine, such

as Spark [MMJ+], Dryad [IBY+] and Myria [HTC+].

Graph Models. In this work, we will depict the data graph using two graph

models, based on which we can estimate the number of matches of any given pat-

tern graph, so as to facilitate the computation of cost model and other theoretical

analysis.

Erdös-Rényi Random (ER) Graph Model . We model the data graph as a Erdös-

Reńyi Random (ER) graph according to [ER60], which is denoted as <. In the ER

14 Chapter 2. Preliminaries

model, a graph is constructed by connecting nodes randomly. Each edge is included

in the graph with probability ! independently from every other edges. Thus, for

a data graph with N nodes and M edges, the probability ! can be calculated as:

! = 2M
N(N�1) , which can be approximated as 2M

N2 when N is large.

Power-Law Random (PR) Graph Model . We model the data graph as a power-

law random (PR) graph according to [CLV03a], which is denoted as G. Corre-

sponding to the set of data nodes, we consider a non-decreasing degree sequence

{w1, w2, . . . , wN} that satisfies power-law distribution, that is, the number of nodes

with a certain degree x is proportional to x��, where � is the power-law exponent

1. For any pair of nodes ui and uj in a PR graph, the edge between ui and uj is

independently assigned with probability

Pri,j = wiwj⇢,

where ⇢ = 1/⌃N
i=1wi. It is easy to verify that the E[d(ui)] = wi for any 1

i N (E[·] computes the expected value). We define the average degree as w =

(⌃N
i=1wi)/N , and the expected maximum degree as wmax. In case that Pri,j 1

holds, we require wmax
p
wN [VL05]. As shown in [LQLC15], in real-life graphs,

although there are nodes with degree larger than
p
wN , the intermediate results

from these nodes are not the dominant parts in subgraph enumeration. In this

work, if not otherwise specified, we simply let wmax =
p
wN . Given �, w, N and

wmax, a degree sequence can be generated using the method in [VL05].

In this paper, unless otherwise specified, we will use random graph to represent

a graph constructed using the ER model, and power-law random graph for a graph

constructed via PR model.

1If not specially mentioned, � is set to 2 < � < 3 in this work, a typical setting of � for

real-life graphs [CLV03b, CSN09].

Chapter 2. Preliminaries 15

Summary of Notations. Table 2.1 summarizes the notations frequently used in

this article.

Notations Description

V (g), E(g) The set of nodes and edges of a graph g
N (µ), d(µ) The set of neighbor nodes and the degree of µ 2 V (g)

G The data graph
N,M The number of nodes and edges in the data graph
u, ui An arbitrary data node and the data node with id i

P The pattern graph
n,m The number of nodes and edges in the pattern graph
v, vi An arbitrary pattern node and the patter node with id i
pi The join unit

D(P) = {p0, p1, . . . , pt} The pattern decomposition
Pi The i[-th] partial pattern, Pi ✓ P

P l
i , P

r
i The left and right join patterns while processing Pi

f A match of P in G
RG(P), R(P) The relation of the matches of P in G

�(G) The storage mechanism of G
Gu The local graph of u 2 V (G), where Gu 2 �(G)

< An Erdös-Rényi random graph
G A power-law random graph
� The power-law exponent of G
wi The expected degree of ui in G

Table 2.1: Notations frequently used in this article.

Chapter 3

A General Approach

In this section, we propose a general approach for subgraph enumeration, based

on which we can describe all proposed algorithms in this work. The approach

follows a decomposition-and-join manner. We will first introduce the concept of

graph storage mechanism, which determines the join unit and hence the pattern

decomposition. Consequently, we will discuss two join structures, left-deep join

and bushy join, for join processing.

3.1 Execution Plan

Graph Storage. We solve the subgraph enumeration in a decomposition-and-

join manner. Specifically, we first decompose the pattern graph into a set of sub-

structures, called join unit, then we join the matches of these join units to gain the

results.

To determine what structure can be the join unit, we first introduce the graph

storage mechanism, which is defined as �(G) = {Gu | u 2 V (G)}, where Gu ✓ G is

a connected subgraph of G with u 2 V (Gu), and it must satisfy that (u, u0) 2 E(Gu)

for all u0 2 N (u). Each Gu is called the local graph of u. Specifically, the data

16

Chapter 3. A General Approach 17

graph G is maintained in the distributed file system in the form of key-value pairs

(u;Gu) for each Gu 2 �(G). We define the join unit as:

Definition 3.1. (Join Unit) Given a data graph G and the graph storage �(G) =

{Gu | u 2 V (G)}, a connected structure p is a join unit w.r.t. �(G), if and only if

RG(p) =
[

G
u

2�(G)

RG
u

(p).

In other words, a join unit is a structure whose matches can be enumerated inde-

pendently in each local graph Gu 2 �(G). We further define pattern decomposition

as:

Definition 3.2. (Pattern Decomposition) Given a graph storage �(G), a pat-

tern decomposition is denoted as D = {p0, p1, . . . , pt}, where pi 2 P (0 i t)

is a join unit w.r.t. �(G) and P = p0 [p1 [· · · [pt.

Join Plan. Given the decomposition D = {p0, p1, . . . , pt} of P , we solve the

subgraph enumeration using the following join:

R(P) = R(p0) 1 R(p1) 1 · · · 1 R(pt). (3.1)

A join plan determines an order to solve the above join, and it processes t

rounds of two-way joins. We denote Pi as the i[-th] partial pattern whose results

are produced in the i[-th] round of the join plan. Obviously, we have Pt = P . The

join plan is usually presented in a tree structure, where the leaf nodes are (the

matches of) the join units, the internal nodes are the partial patterns.

A join tree uniquely specifies a join plan, and we use join tree and join plan

interchangeably. If all internal nodes of the join tree have at least one join unit as

its child, the tree is called a left-deep tree 1. Otherwise it is called a bushy tree

1More accurately, it is the deep tree, which is further classified into the left-deep and right-

deep tree. As it is insignificant to distinguish them here, we simply refer to the deep tree as

left-deep.

18 Chapter 3. A General Approach

[IK91]. Note that a left-deep tree is also a bushy tree.

Example 3.1. Given a pattern decomposition D(P) = {p0, p1, p2, p3}, we present

a left-deep tree and a bushy tree in Figure 3.1. Here we use triangle as the join

unit. In the left-deep tree, we process R(P ld
1) = R(p0) 1 R(p1) in the first round,

followed by R(P ld
2) = R(P ld

1) 1 R(p2), and finally R(P) = R(P ld
2) 1 R(p3). Note

that there involves a join unit in each round. In the bushy join, we first compute

R(P b
1) = R(p0) 1 R(p1) and then R(P b

2) = R(p2) 1 R(p3), and finally R(P) =

R(P b
1) 1 R(P b

2) is processed. It is obvious that there is no join unit in the third

round.

v1
v2

v3
v4
v5

v6

v1v2

v3

v1

v3
v4

v1
v2 v4

v3
on

v1

v4
v5

on

v1
v2
v3 v4

v5
v1

v5

v6

on

v1
v2 v3

v1

v3
v4

v1v2 v4
v3

on

v1
v4

v5
v1
v5

v6

v1

v4 v5
v6

on

on

R(p0) R(p0)R(p1) R(p1)

R(P ld
1)

R(P ld
2)

R(p2) R(p2)

R(p3)

R(p3)

R(P b
1)

R(P b
2)

R(P)

v1v2

v3

v1

v3
R(ptt0) R(ptt1)

v1
v2

v3
on

v1

v3
v4

R(ptt2)

v1
v2 v4

v3
on

v1

v4 v5
R(ptt3)

v1
v2
v3 v4

v5

on

v1

v5

v6

R(ptt4)

on

D(P) = {p0, p1, p2, p3}

 Clique + Left-deep Join Clique + Bushy Join
(SEED)

Dtt(P) = {ptt0 , ptt1 , ptt2 , ptt3 , ptt4 }

R(P tt
1)

R(P tt
2)

R(P tt
3)

TwinTwig + Left-deep Join
(TwinTwigJoin)

E1 E2 E3

Figure 3.1: Di↵erent Join Trees.

It is worth noting that in the left-deep join, the pattern decomposition D(P) =

{p0, p1, . . . , pt} (with specified order) uniquely determines a join plan, in which

the i[�th] join is R(Pi) = R(Pi�1) 1 R(pi), where P0 = p0 and Pi(i > 0) =

p0 [p1 · · · [pi.

Execution Plan. An execution plan of subgraph enumeration task, denoted as

Chapter 3. A General Approach 19

E = (D, J), contains two parts - a pattern decomposition D and a join plan J .

Consider an execution space ⌃ and a cost function C defined over ⌃. We formulate

the problem of optimal execution plan for solving subgraph enumeration as follows:

Definition 3.3. (Optimal Execution Plan) An optimal execution plan for solv-

ing subgraph enumeration is an execution plan Eo = (Do, Jo) 2 ⌃ to enumerate P

in G using Equation 3.1, such that,

C(Eo) is minimized.

3.2 Challenges

To pursuit the optimality for subgraph enumeration, we have to address multiple

key challenges. Specifically,

• It is non-trivial to develop an e↵ective graph storage mechanism. In star-

based join (Chapter 4), we will use a basic graph storage that only supports

star as the join unit. We resolve this constraint in the graph-based join

(Chapter 5) by bring in extra edges to the simple local graph used in star join.

However, the size of each local graph should not be too large for scalability

consideration.

• A well-defined cost function is required to estimate the cost of each execution

plan. In the subgraph enumeration problem, the tuples that participate in

the joins are the matches of certain pattern graph, whose size is di�cult to

estimate, especially in a power-law graph.

• It is in general computationally intractable to compute an optimal join plan

[JK84]. We will apply an easier-solving left-deep join in Chapter 4, which

may render sub-optimal solution. In Chapter 5, we will further explore the

20 Chapter 3. A General Approach

optimal bushy join plan - a much harder task given the larger searching space

[IK91].

Chapter 4

TwinTwigJoin: Optimal

Star-based Left-deep Join

In this chapter, we introduce the star-based join framework, in which we apply the

basic graph storage mechanism and the left-deep join structure. We discuss three

existing solutions, namely EdgeJoin, StarJoin and MultiwayJoin, among which the

former two methods also follow the star join. According to a well-defined cost model

and the ER model, we show that it is su�cient to guarantee instance optimality

in the star-based join framework by using TwinTwig, instead of a general star as

the join unit, which inspires our TwinTwigJoin algorithm. We explore three opti-

mization strategies to improve the performance of the algorithm. Ultimately the

performance studies are conducted to demonstrate the e↵ectiveness of the proposed

techniques.

4.1 Star-based Join Framework

The star-based join framework implements the basic graph storage mechanism and

the left-deep join structure in the general approach (Chapter 3), and can generalize

21

22 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

the EdgeJoin, StarJoin and TwinTwigJoin algorithms.

Algorithm 1: SubgraphEnum-Star(data graph G, pattern graph P)

1 function SubgraphEnum-Star (G, P)

2 compute a graph decomposition {p0, p1, . . . , pt} of P , where each join unit is a

star;

3 for i = 1 to t do

4 R(Pi) R(Pi�1) 1 R(pi); (using mapi and reducei)

5 return R(Pt);

6 function mapi(key: ;; value: Either a match f 2 R(Pi�1) when i > 1 or a local

graph G0
u 2 �0(G))

7 {vk1 , vk2 , . . . , vk
l

} V (Pi�1) \ V (pi);

8 if i = 1 then

9 R(Gu)(P0) all matches of P0 in Gu;

10 forall the match f 2 R(Gu)(P0) do

11 output ((f(vk1), f(vk2), . . . , f(vk
l

)); f);

12 if Value is a match f 2 R(Pi�1) then

13 output ((f(vk1), f(vk2), . . . , f(vk
l

)); f);

14 else

15 R(Gu)(pi) all matches of pi in Gu;

16 forall the match h 2 Ru(pi) do

17 output ((h(vk1), h(vk2), . . . , h(vk
l

));h);

18 function reducei(key:r = (uk1 , uk2 , . . . , uks); value: F = {f1, f2, . . . }, H =

{h1, h2, . . . })

19 forall the (f, h) 2 (F ⇥H) s.t. (f � r) \ (h� r) = ; do

20 output (;; f [h);

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 23

Basic Graph Storage. We denote the basic graph storage mechanism as

�0(G) = {G0
u | u 2 V (G)},

where V (G0
u) = {u}[N (u) and E(G0

u) = {(u, u0)|u0 2 N (u)}. Star is the join unit

regarding �0(G) , as the matches of a k-star (a star of k edges) rooted at a certain

node u can be computed by enumerating the k-combinations from N (u). It is also

obvious that star is the only join unit for �0(G) that satisfies Definiton 3.1.

Left-deep join structure. The star-based join framework applies the left-deep

join structure. As we mentioned in Chapter 3, the pattern decomposition (with

fixed order) itself can determine a left-deep join plan. Consequently, in the rest of

the chapter, we will use pattern decomposition and the join plan interchangeably.

Also, we redefine the pattern decomposition and partial pattern in this chapter for

the ease of presentation.

Definition 4.1. (Pattern Decomposition) Given a pattern graph P , a pattern

decomposition of P , D = {p0, p1, . . . , pt} is a disjoint partition of the edges of P ,

such that pi (0 i t) is a star (a tree of depth 1), and V (pi)\
S

0j<i V (pj) 6= ;

(i 6= 0).

Definition 4.2. (Partial Pattern Pi) Given a pattern decomposition

{p0, p1, . . . , pt} of P , a partial pattern Pi (0 i t) is a subgraph of P , such

that V (Pi) =
S

0ji V (pj) and E(Pi) =
S

0ji E(pj). We have P0 = p0 and

Pt = P . We use Di = {p0, p1, . . . , pi} to denote a partial pattern decomposition of

partial pattern Pi for any 0 i t.

According to the above definitions, we require that each join unit pi shares at

least a common node with the partial pattern Pi�1 for any 1 i t. Note that the

pattern decomposition used here is a disjoint partition of the pattern edges, which

24 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

is not a constraint in Definiton 3.2. As a matter of fact, it is beneficial to allow

edge overlaps in the decomposition when more complex structures are considered

as the join unit (details in Chapter 5.2.3).

Algorithm Overview. We show the star-based join framework in Algorithm 1.

We first compute a pattern decomposition {p0, p1, . . . , pt} of P , where each join unit

is a star (details in Chapter 4.3.4). The decomposition itself indicates an optimal

left-deep join plan (line 2). Then the algorithm is processed in tMapReduce rounds.

Each round computes the result set R(Pi) by joining R(Pi�1) with R(pi) (line 4)

using MapReduce via mapi and reducei.

(Function mapi):. According to the left-deep join, the input of mapi is either a

match f 2 R(Pi�1) if i > 1, or a local graph G0
u 2 �0(G) (line 6). We first calculate

the join key (line 7). If i = 1, we need to compute the matches of P0 = p0, RG
u

(P0),

based on node u and its neighbours N (u). We output each such match (as a match

in R(P0)) along with the corresponding join key (lines 8-10). As p0 is a star, we can

compute its matches by enumerating the node combinations in N (u) (Gu). Then,

if the input of mapi is a match f 2 R(Pi�1), we simply output f along with the

corresponding join key (line 12). Otherwise, we compute the matches of pi in Gu,

as we do when we compute p0 (lines 14-16).

(Function reducei): The set of key-value pairs with the same key r = (uk1 , uk2 ,

. . . , uk
l

) are processed using the same function reducei. There are two types of

values, F = {f1, f2, . . . } and H = {h1, h2, . . . }, generated by R(Pi�1) and R(pi)

respectively. For each (f, h) 2 (F ⇥ H) that shares the same join key, we output

f [h with the condition that (f � r) \ (h� r) = ; to avoid node conflict (refer to

the conflict freedom condition in Definiton 2.2)(lines 18-19).

Example 4.1. In Figure 4.1, we decompose the pattern graph into {p0, p1, p2}.

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 25

!

! !

!

!

! !

!

! !

!

!

!

!

! !

! !

! !

! !

! !

!

! !!

! !!!

Figure 4.1: The pattern decomposition and the corresponding partial patterns.

The corresponding partial patterns P0, P1, and P2 are also presented. Based on

the left-deep join plan, the subgraph enumeration algorithm is processed in two

MapReduce rounds. In the first round, we compute R(P1) using R(P0) 1 R(p1)

with V (P0)\ V (p1) = {v2, v3, v4} as the join key. In the second round, we compute

R(P2) using R(P1) 1 R(p2) with V (P1) \ V (p2) = {v3, v4} as the join key.

Assumptions. To facilitate our theoretical analysis, we consider the following

assumptions in this chapter.

• A1: The data graph is a random graph.

• A2: The algorithm follows the star-based join framework.

• A3: The data graph is sparse; more specifically, the average degree d =

2M/N <
p
N .

4.2 Existing Work

In this subchapter, we introduce three state-of-the-art algorithms for subgraph

enumeration: EdgeJoin, StarJoin, and MultiwayJoin. Both EdgeJoin and StarJoin

follow the star-based join framework with di↵erent pattern decomposition strate-

gies. MultiwayJoin uses a new strategy that enumerates all subgraphs using only one

26 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

MapReduce round by duplicating the data edges. In the following, we introduce

EdgeJoin and StarJoin in Chapter 4.2.1 and MultiwayJoin in Chapter 4.2.2.

4.2.1 Star-based Join

Algorithm EdgeJoin. The EdgeJoin Algorithm is proposed by Plantenga [Pla13].

In EdgeJoin, each pattern graph P is decomposed into {p0, p1, · · · , pt} where each

pi is an edge in E(P) (note that an edge is a special star). Then the data edges

are joined to produce the results via a specific order. The EdgeJoin Algorithm has

two drawbacks. Firstly, it may generate a large number of intermediate matches.

Secondly, it needs t = m�1 MapReduce rounds, which are too many for a complex

pattern graph. We explain the two drawbacks using the following example.

Example 4.2. For the square given in Example 2.1, the optimal pattern decom-

position based on EdgeJoin is p0 = {(v1, v2)}, p1 = {(v2, v3)}, p2 = {(v3, v4)},

p3 = {(v4, v1)}. However, using this pattern decomposition strategy, the algorithm

needs three execution rounds, and the partial pattern P3 is a path of length 3, whose

result set can be enormously large. A better strategy is to decompose P into two

parts: p0 = {(v1, v2), (v2, v3)} and p1 = {(v3, v4), (v4, v1)}, which can be processed

in only one MapReduce round, and the size of the intermediate matches is not large,

relative to the size of the final result R(P).

Algorithm StarJoin. The StarJoin algorithm decomposes the pattern graph into

a set of stars using the the strategy proposed by Sun et al. [SWW+12]. Given a

pattern graph P , and a node v 2 V (P), denote star(v) the star rooted at v with

N (v) as its child nodes. A star decomposition of P is defined as follows.

Definition 4.3. (Star Decomposition) Given a pattern graph P , a star decom-

position is a decomposition {p0, p1, · · · , pt} of P , such that there exists {vk0 , vk2 ,

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 27

· · · , vk
t

} ✓ V (P) with p0 = star(vk0), and pi = star(vk
i

) \ Pi�1 for any 1 i t.

From a selected initial node vk0 , the star decomposition iteratively extracts star

composed with a node and its neighbors in the residual pattern graph until the

pattern graph becomes empty. Compared to EdgeJoin, StarJoin can often largely

reduce the number of execution rounds, however, StarJoin still su↵ers from the

scalability issue due to the large number of intermediate results generated when

evaluating a star with many edges, as we mentioned in Chapter 1.

Essentially, the PSgL algorithm [SCC+14], following a BFS strategy, can be

considered as a StarJoin algorithm [LQLC15] that processes the joins between the

matches of the star rooted on current visiting node and the partial subgraph in-

stances obtained from the previous step. As a result, PSgL also su↵ers the above

issue of StarJoin.

4.2.2 Multiway Join

The MultiwayJoin algorithm was proposed by Afrati et al. [AFU13], and it enu-

merates subgraphs in only one MapReduce round. In the map phase, each edge in

G is duplicated several times, and each duplication is sent to a certain reducer. In

the reduce phase, each reducer computes its matches independently according to

the set of edges received.

The map and reduce functions of MultiwayJoin is shown in Algorithm 2. Let hi

(1 i n) be a hash function that hashes an arbitrary node u 2 V (G) to an integer

in the range of [1, bi] (line 3). In the map phase, for each edge (u, u0) 2 E(G), it

traverses each edge (vi, vj) 2 E(P) (lines 4-5) to be matched by (u, u0) in a certain

reducer. For each such candidate edge to be matched, it enumerates all possible

combinations (x1, x2, · · · , xn) with xi = hi(u), xj = hj(u0), and xk 2 {1, 2, · · · ,

bk} for all 1 k n with k 6= i and k 6= j (line 6). Each of the combination is

28 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

Algorithm 2: MultiwayJoin(data graph G, pattern graph P)
Input : G, The data graph,

P , The pattern graph.

Output : R(P), all Matches of P in G.

1 function map(key: ;; value: G)

2 Xi {1, 2, · · · , bi} for any 1 i n;

3 hi a hash function that maps v 2 V (G) to x 2 Xi (1 i n);

4 forall the (u, u0) 2 E(G) do

5 forall the (vi, vj) 2 E(P) do

6 forall the (x1, x2, · · · , xn) s.t. xi = hi(u), xj = hj(u
0), and xk 2 Xk (for all

1 k n, k 6= i, k 6= j) do

7 output a key-value pair with key (x1, x2, · · · , xn) and value

(u, u0)! (vi, vj);

8 function reduce(key: (x1, x2, · · · , xn); value: G0 = {(uk1 , u0k1)! (vi1 , vj1),

(uk2 , u
0
k2
)! (vi2 , vj2), · · · })

9 compute all matches for P based on candidate edges in G0;

sent to the reducer represented by key (x1, x2, · · · , xn) with value (u, u0)! (vi, vj)

indicating that (u, u0) is a candidate edge to be matched by (vi, vj) in the reducer

(line 7). In the reduce phase, for each key (x1, x2, · · · , xn) it simply collects all the

candidate edges to match each (vi, vj) 2 E(P), and computes all the matches for P

according to such candidate edges (lines 8-9). How to select each bi for 1 i n

to minimize the total communication cost is discussed in [AFU13]. It is easy to

prove that each match (uk1 , uk2 , · · · , uk
n

) will only be generated in the reducer

with key (h1(uk1), h2(uk2), · · · , hn(uk
n

)).

Example 4.3. Let P be a triangle (v1, v2, v3). In this case, the optimal bi assign-

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 29

ment is b1 = b2 = b3 = b according to [AFU13]. In Algorithm 2, for each edge

(u, u0) 2 E(G), it is sent to the reducers in the following three groups:

• (u, u0) matches (v1, v2): (u, u0) is sent to b reducers with key (h(u), h(u0), x3)

for 1 x3 b.

• (u, u0) matches (v2, v3): (u, u0) is sent to b reducers with key (x1, h(u), h(u0))

for 1 x1 b.

• (u, u0) matches (v1, v3): (u, u0) is sent to b reducers with key (h(u), x2, h(u0))

for 1 x2 b.

As a result, each edge is duplicated for 3b � 2 times, and the total number of

reducers is b3. In this way, each triangle in G that matches P is guaranteed to be

generated in one of the reducers.

Cost Analysis. It is shown in [AFU13] that MultiwayJoin can be e�cient when P

is a triangle. However, it will su↵er from the scalability problem when P becomes

more complex. For ease of analysis, we suppose P is a clique (complete graph)

with n nodes, in which the optimal bi assignment is b1 = b2 = · · · = bn = b

according to [AFU13]. Using MultiwayJoin, the number of duplications for each

edge (u, u0) 2 E(G) is ⇥(m · bn�2) = ⇥(n2 · bn�2). The number of reducers is

⇥(bn). Thus, the total number of edge duplications are ⇥(M · n2 · bn�2) and the

edge duplications received be each reducer is ⇥(M ·n2·bn�2

bn
) = ⇥(M · n2

b2
). There are

two cases:

• (Case-1: b n) A reducer will receive ⇥(M · n2

b2
) � ⇥(M) edges, which is

equivalent to holding the whole graph G.

• (Case-2: b > n) The total number of edge duplications is ⇥(M ·n2 · bn�2) >

⇥(M · nn), which is too large.

30 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

Obviously, both case-1 and case-2 are not scalable for handling either a large

data graph or a complicated pattern graph. Similar result can be derived when P

is a general graph.

4.3 TwinTwigJoin Algorithm

As discussed above, EdgeJoin, StarJoin, and MultiwayJoin will encounter scalability

problems when the data graph is large or the pattern graph is complex. In this

subchapter, we propose a new algorithm TwinTwigJoin that also follows the star

join with a new pattern decomposition strategy, namely, TwinTwig decomposition.

We first introduce the TwinTwig decomposition strategy, and analyze its optimality

based on the ER graph model. Then we propose an optimal TwinTwig decomposi-

tion algorithm based on the A* framework. Finally, we discuss how to adapt the

TwinTwigJoin to the power-law graph.

4.3.1 TwinTwig Decomposition

Definition 4.4. (TwinTwig Decomposition) A TwinTwig decomposition is a

decomposition D = {p0, p1, . . . , pt} of pattern P such that each pi (0 i t) is

a TwinTwig, where a TwinTwig is either a single edge or two incident edges of a

node.

TwinTwigJoin is a tradeo↵ between EdgeJoin and StarJoin. Compared to

EdgeJoin, TwinTwigJoin makes use of more structural information of the pat-

tern graph to reduce the size of the intermediate results. Compared to StarJoin,

TwinTwigJoin avoids joining a star with many edges by restricting the number of

edges to be at most 2, and it is more flexible to select which one or two edge(s) of

a star to join in a certain round to minimize the overall cost. Next, we introduce

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 31

a special TwinTwig decomposition, namely, strong TwinTwig decomposition.

Definition 4.5. (Strong TwinTwig Decomposition) Let D = {p0, . . . , pt} be

a TwinTwig decomposition of P , a TwinTwig pi (1 i t) is a strong TwinTwig

if |V (pi) \ V (Pi�1)| � 2, otherwise pi is a non-strong TwinTwig. D is a strong

TwinTwig decomposition if each pi (1 i t) is a strong TwinTwig. The pattern P

is strong TwinTwig decomposable, denoted SDEC, if there exists a strong TwinTwig

decomposition of P .

In the following, we will introduce the cost model, based on which we can prove

the instance optimality of TwinTwigJoin in the star-based join framework under

the aforementioned assumptions.

4.3.2 Cost Analysis

Cost Model. In Algorithm 1, for each MapReduce round i (1 i t), we

consider three types of data, denoted Mi, Si, and Ri, which are defined as follows:

• Mi is the input of the i-th map phase. Mi includes all edges of graph G, and

the partial result R(Pi�1) generated in the previous round (if i > 1). Thus,

we have |M1| = |E(G)| and |Mi| = |R(Pi�1)|+ |E(G)| for i > 1.

• Si is the data transferred in the i-th shu✏e phase, which is also the output of

the i-th map phase as well as the input of the i-th reduce phase. Si includes

two parts, R(Pi�1) and R(pi), thus we have |Si| = |R(Pi�1)|+ |R(pi)|.

• Ri is the output of the i-th reduce phase. Ri includes the set of partial

matches R(Pi), thus we have |Ri| = |R(Pi)|.

There are many factors that can a↵ect the e�ciency of the algorithm, including

I/O cost, communication cost, computational cost, number of MapReduce rounds,

32 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

and workload balancing. We hence consider an overall cost C as follows:

C =
tX

i=1

(|Mi|+ |Si|+ |Ri|)

= 3
tX

i=1

|R(Pi)|+ |R(P0)|+
tX

i=1

|R(pi)|+ t|E(G)|� 2|R(Pt)|

= 3
tX

i=1

|R(Pi)|+
tX

i=0

|R(pi)|+ t|E(G)|� 2|R(Pt)|.

(4.1)

Obviously, C is a comprehensive measurement of I/O cost, communication cost

and computational cost, and it also implies the impact of the number of MapRe-

duce rounds. Note that the last term 2|R(Pt)| = 2|R(P)| is independent of the

decomposition strategy, thus it can be removed from the cost function. Therefore,

given any pattern decomposition D = {p0, p1, . . . , pt}, the cost function, denoted

as cost(D), can be defined as

cost(D) = 3
tX

i=1

|R(Pi)|+
tX

i=0

|R(pi)|+ t|E(G)|. (4.2)

Similarly, for any 0 i t, we can define the cost of a partial pattern decom-

position Di as

cost(Di) = 3
iX

j=1

|R(Pj)|+
iX

j=0

|R(pj)|+ i|E(G)|. (4.3)

For any 1 i t, given that Di = Di�1 [{pi}, we have

cost(Di) = cost(Di�1) + 3|R(Pi)|+ |R(pi)|+ |E(G)|. (4.4)

Our aim is to find a decomposition D of the pattern graph P so that cost(D)

is minimized.

Graph Model. We apply two graph models, namely the ERmodel [ER60], and the

PRmodel [ACL00], for the purpose of evaluating the cost of di↵erent decomposition

strategies. As indicated by assumption A1, we first focus on the case that the data

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 33

graph is a random graph. Then we will extend our algorithm to handle the power-

law graph in Chapter 4.4.

Recall that a match f of P in G should satisfy two conditions, namely, conflict

freedom and structure preservation (refer to Definiton 2.2). With the two condi-

tions, we can derive the following lemma on the expected number of matches of P

in a random graph. In the following, for ease of analysis, when calculating the cost

using ER model, we relax the conflict free condition of a match to allow duplicated

nodes in a match. Thus, the number of matches calculated is an upper bound

of the actual number of matches. Under such an assumption, we can derive the

following lemmas on the number of matches of pattern graph P a random graph.

Lemma 4.1. Given a random graph < and a pattern graph P , if P is a tree, we

have (1� ✏)⇥ (2M)n�1

Nn�2 |R(P)| (2M)n�1

Nn�2 , where ✏ = n2

N
.

Proof. We first prove (1� n
N
)n ⇥ (2M)n�1

Nn�2 |R(P)| (2M)n�1

Nn�2 by induction. When

P is an edge, i.e., n = 2, obviously, we have |R(P)| = (2M)n�1

Nn�2 = 2M . Suppose

when n = k, it holds that

(1� k

N
)k ⇥ (2M)k�1

Nk�2
 |R(P)| (2M)k�1

Nk�2
.

When n = k + 1, P can be formed by combining a tree P 0 with k nodes and

an edge (v, v0) with v 2 V (P 0) and v0 /2 V (P 0). Thus, given any match f 0 of P 0, v0

can match any node in V (G) � f 0 with probability !. It follows that

|R(P)| = |R(P 0)|⇥ (N � |V (P 0)|)⇥ !.

On the one hand,

|R(P)| = |R(P 0)|⇥ (N � k)⇥ ! � (1� k

N
)k+1 ⇥ (2M)k

Nk�1

� (1� k + 1

N
)k+1 ⇥ (2M)k

Nk�1
;

34 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

on the other hand,

|R(P)| = |R(P 0)|⇥ (N � k)⇥ ! |R(P 0)|⇥N ⇥ ! (2M)n�1

Nn�2
.

Therefore, by induction, we prove (1� n
N
)n⇥ (2M)n�1

Nn�2 |R(P)| (2M)n�1

Nn�2 , since

(1� n
N
)n � 1� n2

N
= 1� ✏, Lemma 4.1 holds.

Lemma 4.2. Given a random graph < and a pattern graph P , if P is a connected

graph, we have (1� ✏)⇥ (2M)m

N2m�n

 |R(P)| (2M)m

N2m�n

, where ✏ = n2

N
.

Proof. Since P is a connected graph, we can obtain a spanning tree P 0 of P .

According to Lemma 4.1:

(1� ✏)⇥ (2M)n�1

Nn�2
 |R(P 0)| (2M)n�1

Nn�2
.

Given a match (uk1 , uk2 , . . . , uk
n

) of P 0, for any edge (vi, vj) 2 E(P) � E(P 0),

with probability !, (uk
i

, uk
j

) 2 E(G). There are totally m � n + 1 edges in

E(P)� E(P 0), thus we have

|R(P)| = |R(P 0)|⇥ !m�n+1.

Therefore, (1� ✏)⇥ (2M)m

N2m�n

 |R(P)| (2M)m

N2m�n

.

Remark 4.1. In practice, when the graph is large, ✏ = n2

N
is close to 0. Therefore,

we can use (2M)m

N2m�n

to estimate |R(P)| with a small bounded error.

4.3.3 Instance Optimality of TwinTwigJoin

Results on SDEC Pattern Graph P . In order to show the instance optimality

of the TwinTwigJoin algorithm, we first study a special case, in which the pattern

graph P is strong TwinTwig decomposable (SDEC). We have the following lemma.

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 35

Lemma 4.3. Consider a random graph <, and an SDEC pattern graph P , and

one of its strong TwinTwig decompositions, D = {p0, p1, . . . , pt}. For any partial

pattern Pi (1 i t), we have

|R(Pi)| |R(Pi�1)|⇥
(2M)2

N3
 |R(p0)|⇥ (

(2M)2

N3
)i.

Proof. Suppose Pi contains ni nodes and mi edges, we have |R(Pi�1)| = (2M)mi�1

N2m
i�1�n

i�1

and |R(Pi)| = (2M)mi

N2m
i

�n

i

in G. Let �mi = mi �mi�1 and �ni = ni � ni�1, we have

|R(Pi)| = |R(Pi�1)|⇥ (
2M

N2
)�m

i ⇥N�n
i . (4.5)

Since D is a strong TwinTwig decomposition, there are three cases for pi (1

i t):

• (|E(pi)| = 1 and |V (pi) \ V (Pi�1)| = 2): In this case, �mi = 1 and �ni = 0.

It follows that

|R(Pi))| = |R(Pi�1)|⇥
2M

N2
< |R(Pi�1)|⇥

(2M)2

N3
.

• (|E(pi)| = 2 and |V (pi) \ V (Pi�1)| = 2): In this case, �mi = 2 and �ni = 1.

It follows that

|R(Pi))| = |R(Pi�1)|⇥ (
2M

N2
)2 ⇥N = |R(Pi�1)|⇥

(2M)2

N3
.

• (|E(pi)| = 2 and |V (pi) \ V (Pi�1)| = 3): In this case, �mi = 2 and �ni = 0.

It follows that

|R(Pi))| = |R(Pi�1)|⇥ (
2M

N2
)2 < |R(Pi�1)|⇥

(2M)2

N3
.

In all the above three cases, we have |R(Pi)| |R(Pi�1)| ⇥ (2M)2

N3 . As a result,

|R(Pi)| |R(Pi�1)| ⇥ (2M)2

N3 |R(Pi�2)| ⇥ ((2M)2

N3)2 . . . |R(p0)|⇥ ((2M)2

N3)i.

36 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

Corollary 4.1. Consider a random graph < and an SDEC pattern graph P , and one

of its strong TwinTwig decomposition, D = {p0, p1, . . . , pt}. Under the assumption

A3, for any partial pattern Pi (1 i t), we have

|R(Pi)| |R(Pi�1)| . . . |R(P0)| = |R(p0)|.

Proof. By the assumption A3 (d = 2M/N <
p
N), we know that (2M)2

N3 = d2

N
< 1. It

is immediate that Corollary 4.1 holds according to Lemma 4.3.

The General Case. We prove the instance optimality of the general TwinTwig

decomposition by showing that given any pattern decomposition D0 = {p00, p01, . . . ,

p0t0}, where each p0i (0 i t0) is a star, we can construct a corresponding TwinTwig

decomposition D = {p0, p1, . . . , pt} with cost(D) ⇥(cost(D0)).

We first introduce how to construct D based on D0. For any p0i 2 D0, let Di =

{pi1, pi2, . . . , pit
i

} be a TwinTwig decomposition of p0i which is constructed as follows:

Suppose ri is the root of p0i and {li1, li2, . . . , lit0
i

} is the set of leaves of p0i sorted by

putting those nodes lij with lij 2 V (P 0
i�1) in the front (P 0

i�1 is the i � 1-th partial

pattern w.r.t. D0), i.e., there exists a number ki, s.t., if 1 j ki, lij 2 V (P 0
i�1),

and if ki < j t0i, l
i
j /2 V (P 0

i�1). Di = {pi1, pi2, . . . , pit
i

} is constructed as follows:

• If t0i is an even number, then ti =
t0
i

2 , and pij (1 j ti) is a TwinTwig with

root ri and two leaves li2j�1 and li2j.

• If t0i is an odd number, then ti =
t0
i

+1
2 , and pij (1 j ti � 1) is a TwinTwig

with root ri and two leaves li2j�1 and li2j, and pit
i

is a TwinTwig with only one

edge (ri, lit0
i

).

In other words, Di is constructed by generating strong TwinTwigs followed by

non-strong TwinTwigs. After constructing Di for all 0 i t0, we have D by

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 37

!!!

!!!

!!!

!!!

!!!
!!!

! !!

!

! !

!

!

"

!
−

!

"

! !

!

"

!
+
!

! !

!

!

!
"

!

!
!

!

"

!
−

!

"

!
!

!

"

!
+ !

!

"

!

! ! !

!

!

! !
!

!

"

!
−

!

"

!
! "

!

"

! − !

!

"

!

!

!
!

!

!

!

!

!

"

!
+ !

!

"

!
+

!!

!"#$%&'()*%()*&+ ,$%-!"#$%&'()*%()*&+

! −

!

"

!
!−

!

"
!
!−

Figure 4.2: Constructing the TwinTwig decomposition D based on a certain star
decomposition D0.

combining all Di, i.e., D =
St0

i=0 Di. The construction of D from D0 is illustrated

in Figure 4.2.

We show the instance optimality of a general TwinTwig decomposition in the

following theorem.

Theorem 4.1. Consider a random graph <, a pattern graph P and a pattern

decomposition D0 = {p00, p01, . . . , p0t0} where each p0i (0 i t0) is a star. Let D

be the TwinTwig decomposition constructed based on D0 using the above method.

Under the assumption A3, we have cost(D) ⇥(cost(D0)).

Proof. For any pattern decomposition D, we divide cost(D) = 3
Pt

i=1 |R(Pi)| +
Pt

i=0 |R(pi)|+ t|E(G)| (Equation 4.2) into two parts:

• cost1(D) =
Pt

i=0 |R(pi)| + t|E(G)|.

• cost2(D) = 3
Pt

i=1 |R(Pi)|.

Accordingly, we divide the proof into two parts:

(Part 1): We prove cost1(D) ⇥(cost1(D0)). We only need to prove cost1(Di)

⇥(cost1({p0i})) for each 0 i t0. Note that when |E(p0i)| 2, cost1(Di) =

cost1({p0i}), thus, we only consider |E(p0i)| � 3. In this case, we have:

38 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

• cost1(Di) ⇥(t0i ·d2 ·N). According to Lemma 4.2, we know that each pattern

pij 2 Di is a TwinTwig with |R(pij)| (2M)2

N
= ⇥(d2 ·N). Hence, we have

cost1(D
i) =

dt0
i

/2eX

j=1

(|R(pij)|+ |E(G)|) ⇥(t0i · d2 ·N).

• cost1({p0i}) � ⇥(t0i · d3 ·N). This is because

cost1({p0i}) � |R(p0i)| = dt
0
i ⇥N � (t0i � 2)⇥ d3 ⇥N

� t0i/3⇥ d3 ⇥N (by t0i = |E(p0i)| � 3)

= ⇥(t0i · d3 ·N).

Thus, cost1(Di) ⇥(cost1({p0i})).

(Part 2): We prove cost2(D) = ⇥(cost2(D0)). We reformulate cost2(D0) as 3(p
0
0
2 +

P
t

0
i=1 |R(P 0

i�1)|+|R(P 0
i

)|
2 +

|R(P 0
t

0)|
2). Thus,

cost2(D0) = ⇥(
t0X

i=1

(|R(P 0
i�1)|+ |R(P 0

i)|)). (4.6)

Note that in D that is constructed based on D0, we will gradually combine pi1,

pi2, . . . , p
i
t
i

to P 0
i�1 in order to get P 0

i . Hence, the term |R(P 0
i�1)|+ |R(P 0

i)| for each

1 i t0 in cost2(D0) is replaced by

costi2(D) = |R(P 0
i�1)|+ |R(P 0

i�1 [pi1)|+

· · ·+ |R(P 0
i�1 [pi1 [· · · [pit

i

�1)|+ |R(P 0
i)|.

(4.7)

Recall that there exists a ki such that, when 1 j ki, pij is a strong TwinTwig,

and when ki < j ti, pij is a non-strong TwinTwig. Let x = ki and y = ti � ki,

then there are x+ y + 1 terms in costi2(D). We have,

• (S1): The sum of the first x + 1 terms in costi2(D) is ⇥(|R(P 0
i�1)|). Since

each pij is a strong TwinTwig, according to Lemma 4.3 and Corollary 4.1,

when j increases, the size of the j-th term decreases exponentially with a

rate (2M)2

N3 < 1, thus, statement S1 holds.

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 39

• (S2): The sum of the last y terms in costi2(D) is ⇥(|R(P 0
i)|). Since each pij is

a non-strong TwinTwig, according to Equation 4.5, when j increases, the size

of the j-th term increases exponentially with a rate � d > 1, thus, statement

S2 holds.

Based on S1 and S2, we have cost2(D) = ⇥(cost2(D0)), and therefore, Theo-

rem 4.1 holds.

4.3.4 Optimal Execution Plan

Based on the Theorem 4.1, we know that TwinTwigJoin (with TwinTwig decom-

position) assures instance optimality in the star-based join framework. We discuss

an A*-based algorithm to compute an optimal TwinTwig decomposition, which

corresponds to an optimal execution plan as defined in Definiton 3.3

The Cost Function. The key of the A*-based algorithm is to find a cost function

for each partial solution, which defines the priority of the partial solution to be

expanded to form the final solution. In the subgraph enumeration problem, for

any partial TwinTwig decomposition Di of P (refer to Definiton 4.2), we need to

define a cost function cost(Di, P), which is the cost lower bound for any TwinTwig

decomposition of P expanded from Di. We compute cost(Di, P) using dynamic

programming. Given a partial pattern Pi, we use �cost(Pi,�m,�n) to denote the

lower bound of the increased cost when adding any �m edges and �n nodes into

the partial pattern Pi. Let card(m,n) = |R(P)| be the number of matches of any

connected pattern graph P with m edges and n nodes, according to Lemma 4.2,

we have

card(m,n) = (2M)m/N2m�n. (4.8)

In the dynamic-programming algorithm, the initial state is �cost(Pi, 0, 0) = 0,

40 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

and according to Equation 4.4, the transaction function is formulated as

�cost(Pi,�m,�n) = min{�cost(Pi,�m� a,�n� b)

+ 3⇥ card(|E(Pi)|+�m, |V (Pi)|+�n) + card(a, b)

+M | 81 a 2, 0 b a, a �m, b �n}.

The conditions 1 a 2 and 0 b a are required to guarantee that we join

a TwinTwig each time. Accordingly, cost(Di, P) can be calculated as

cost(Di, P) = cost(Di)+

�cost(Pi, |E(P)|� |E(Pi)|, |V (P)|� |V (Pi|).
(4.9)

Note that �cost(Pi,�m,�n) is only dependent on |E(Pi)| and |V (Pi)|, thus

we can denote �cost(Pi, �m, �n) of any Pi as:

�cost(m0, n0,�m,�n)

where m0 = |E(Pi)| and n0 = |V (Pi)|. As a result, given a data graph G, we

can precompute �cost(m0, n0,�m,�n) for all possible m0, n0, �m, and �n, given

that �cost(m0, n0, �m, �n) is query independent. The time complexity and space

complexity for the precomputation are both O((m · n)2), where m and n are the

upper bounds on m0 and n0 respectively. In such a way, given any Di and P ,

suppose cost(Di) is computed, then cost(Di, P) can be computed in O(1) time.

The Algorithm. The A* algorithm to compute the optimal decomposition is

shown in Algorithm 3. Let H be a heap in which each entry has the form

(P 0,D0, cost(D0, P)), where P 0 is a partial pattern and D0 is the corresponding

partial TwinTwig decomposition. The top entry in H is a pattern decomposition

D0 with the minimum cost(D0, P). The algorithm follows a typical A* framework

that (1) iteratively pops the minimum entry (line 4 and line 11), (2) expands the

entry with one TwinTwig (line 6), and (3) updates the new entry if the correspond-

ing partial pattern is already in H and current cost is smaller than the existing

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 41

Algorithm 3: OptExecPlan-TwinTwig(data graph G, pattern graph P)
Input : G, The data graph,

P , The pattern graph.

Output : The optimal TwinTwigJoin plan for P .

1 H ;;

2 forall the TwinTwig p in P do

3 H.push((p, {p}, cost({p}, P)));

4 (P 0,D0, cost(D0, P)) H.pop();

5 while P 0 6= P do

6 forall the TwinTwig p with V (p) \ V (P 0) 6= ; and E(p) \ E(P 0) = ; do

7 if H.find(P 0 [p) 6= ; then

8 H.update(P 0 [p,D0 [{p}, cost(D0 [{p}, P));

9 else

10 H.push((P 0 [p,D0 [{p}, cost(D0 [{p}, P)));

11 (P 0,D0, cost(D0, P)) H.pop();

12 return The optimal left-deep join plan determined by D0;

one (line 8), or (4) pushes the new entry into H if the corresponding partial pat-

tern is not in H (line 10). The algorithm stops when the popped partial pattern

is the pattern graph P (line 5) and returns the last popped D0 as the TwinTwig

decomposition (line 5) that determines the optimal left-deep join plan.

Lemma 4.4. The space complexity and time complexity of Algorithm 3 are O(2m)

and O(d · m · 2m) respectively, where d = maxv2V (P) d(v).

Proof. We first prove the space complexity. Each entry (P 0,D0, cost(D0, P)) in H

is uniquely identified by the partial pattern P 0, and there are at most 2m partial

patterns, which consumes at most O(2m) space. Note that each P 0 and D0 can be

42 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

stored using constant space by only keeping the last TwinTwig p that generates P 0

and D0, and a link to the entry identified by P 0 � p.

Next we prove the time complexity. Let s be the possible number of TwinTwigs

in P , we have

s =
X

v2V (P)

d(v)2
X

v2V (P)

d(v)⇥ d = 2m⇥ d.

When an entry is popped out from H, it can be expanded at most s times.

Using a Fibonacci heap, pop works in log(|H|) time, and update and push both

work in O(1) time. Thus the overall time complexity is

O(2m · (s+ log(|H|))) = O(d ·m · 2m).

Discussion. In practice, the processing time for Algorithm 3 is much smaller than

O(d · m · 2m) since H only keeps connected subgraphs of P that can potentially

result in the optimal solution.

4.3.5 Symmetry Breaking

In this subsection, we show how to use symmetry breaking to remove the assump-

tion that the pattern graph P has no non-trivial automorphism. When |A(P)| > 1,

by directly applying Algorithm 1, each enumerated subgraph will be duplicated for

|A(P)| times. The primary goal is to e↵ectively prevent duplicates (i.e., a subgraph

of a data graph will not be enumerated twice) while not missing results. For this

purpose, we implemented the symmetry-breaking techniques introduced in [GK07].

Below we provide a brief description. We assume that there is a total order (defined

by �) among all nodes in the data graph G. Symmetry breaking is then performed

by assigning a partial order (defined by <) among some pairs of nodes in the

pattern graph P . Given such a partial order, a match is redefined as follows:

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 43

Definition 4.6. (Match) A match f from a pattern graph P to a data graph G

is a mapping from V (P) to V (G) that satisfies:

• (Conflict Freedom) The same as that in Definiton 2.2.

• (Structure Preservation) The same as that in Definiton 2.2.

• (Order Preservation) For any pair of nodes vi 2 V (P) and vj 2 V (P), if vi

< vj, then f(vi) � f(vj).

Compared to Definiton 2.2, a new order-preservation constraint is added in the new

definition of a match.

Example 4.4. The square given in Example 2.1 has 8 automorphisms. Thus, each

result subgraph will be duplicated 8 times using Algorithm 1. For example, the 8

matches (u1, u2, u3, u4), (u2, u3, u4, u1), (u3, u4, u1, u2), (u4, u1, u2, u3), (u4, u3,

u2, u1), (u3, u2, u1, u4), (u2, u1, u4, u3), and (u1, u4, u3, u2) all represent the same

subgraph with 4 edges (u1, u2), (u2, u3), (u3, u4), and (u4, u1). Suppose u1 � u2 �

u3 � u4, by defining a partial order: v1 < v2, v1 < v3, v1 < v4, and v2 < v4 in P ,

only one match (u1, u2, u3, u4) is left.

Algorithm 1 can be extended to handle the partial order as follows: In the

mapi phase, when computing R(pi) (line 9, line 15), we make sure that each match

satisfies the order preservation constraint. In the reducei phase, in line 19, we only

output those f [h that satisfy the order preservation constraint. In Chapter 4.5.1,

we will discuss how to use the partial order to further optimize the pattern decom-

position.

Note that all proposed algorithms based on the general approach (including

SEED) can use the above method to remove duplication caused by the isomorphism

of the pattern graph, thus we do not repeat in detail afterwards.

44 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

4.4 Handling Power-Law Graphs

In this subchapter, we adapt TwinTwigJoin to the power-law graphs, by showing

the instance optimality of TwinTwigJoin in the power-law random graph.

0

0.1

0.2

0.3

0.4

0.5

0.6

10K 100K 1M 10M 100M

γ

β = 2.1
β = 2.2
β = 2.3
β = 2.5
β = 2.9

(a) Vary N : d = 5

0

0.1

0.2

0.3

0.4

0.5

0.6

10k 100k 1M 10M 100M

γ

β = 2.1
β = 2.2
β = 2.3
β = 2.5
β = 2.9

(b) Vary N : d = 10

0

0.1

0.2

0.3

0.4

0.5

1M 2M 4M 8M 16M

γ

β = 2.1
β = 2.2
β = 2.3
β = 2.5
β = 2.9

(c) Vary N : d = 100

0.4

0.5

0.6

1M 2M 4M 8M 16M

γ

β = 2.1
β = 2.2
β = 2.3
β = 2.5
β = 2.9

(d) Vary N : d = 500

Figure 4.3: The values of � in di↵erent parameter combinations.

Recall that in the PR graph, the edge between ui and uj is independently

assigned with probability Pi,j = wiwj⇢, where ⇢ = 1/
PN

i=1 wi = 1/2M . We engage

the small-degree assumption A5 in this model as follows:

A4 : dmax
p
N.

Though this assumption may not be satisfied in some real graphs, in the exper-

iment (Chapter 4.6), we show the intermediate results from the nodes with degree

p
N play a dominant role in the total intermediate results.

Instance Optimality. In order to show the instance optimality, we will prove that

Theorem 4.1 holds in a power-law random graph under the small-degree assump-

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 45

tion A4, following the same proof structure as that in the proof of Theorem 4.1.

Similarly, we divide the proof into the following two parts: In part 1, we prove that

cost1(D) ⇥(cost1(D0)), and in part 2, we prove that cost2(D) = ⇥(cost2(D0)). In

order to prove part 2, we still compare Equation 4.6 and Equation 4.7, and then

prove the two cases, namely, S1: the size of the results decreases after joining a

strong TwinTwig; S2: the size of the results increases after joining a non-strong

TwinTwig. The detailed proof is as follows.

(Part 1): Let p be a two-edge TwinTwig, we have:

cost1(Di) = ⇥(|R(p)| · t0i) and,

cost1({p0i}) = ⇥(|R(p)| · E[d(u)t0i�2])

� ⇥(|R(p)| · E[d(u)]t0i�2) = ⇥(|R(p)| · dt0i�2),

where E[d(u)] is the expected degree for an arbitrary node u in V (G). Given that

d � 2 and t0i � 3, it is easy to see that cost1(Di) cost1({p0i}) for each 0 i t0,

which results in cost1(D) ⇥(cost1(D0)). Therefore, part 1 is proved.

(Part 2): For a certain pattern decomposition, we consider generating R(Pi)

using R(Pi�1) and R(pi). Suppose � is the expected number of matches in R(Pi)

that are generated from a certain match in R(Pi�1), we have:

|R(Pi)| = �|R(Pi�1)| (4.10)

The value of � depends on how pi is joined with Pi�1. Suppose pi =

{(v, v0), (v, v00)}, in order to prove part 2, we need to prove the following S1 and S2

accordingly.

(S1): We prove that � < 1 when pi is a strong TwinTwig with v0 2 V (Pi�1) and

v00 2 V (Pi�1). When v 2 V (Pi�1), � < 1 can be easily proved since no new node is

added into V (Pi). When v /2 V (Pi�1), suppose u0 and u00 are arbitrary matches of

46 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

v0 and v00 respectively, we have:

� = E[
X

u2V (G)
d(u0)d(u)⇢⇥ d(u00)d(u)⇢]

= E[d(u0)d(u00)]⇥ ⇢2
XN

i=1
w2

i

In order to calculate �, we simplify the calculation of E[d(u0)d(u00)] by only

considering the relationship between u0 and u00. There are two cases:

First, there is no edge between v0 and v00 in Pi�1, and we consider that

their matches, u0 and u00, are independent. In this case, E[d(u0)d(u00)] =

E[d(u0)]E[d(u00)] = d2. We have:

� = d2 ⇥ ⇢2
XN

i=1
w2

i =

PN
i=1 w

2
i

N2
(4.11)

According to A4, wi dmax
p
N , therefore, � < d2

max

N
 1.

Second, there is an edge between v0 and v00 in Pi�1. In this case, u0 and u00

must have an edge in the data graph. Using the Bayes equation, we can derive the

equation:

P (u0 = ui, u
00 = uj|u0, u00 form an edge)

=
P (u0, u00 form an edge |u0 = ui, u00 = uj)⇥ P (u0 = ui, u00 = uj)

P (u0, u00 form an edge)

=
Pi,j ⇥ (1/N2)

2M/N2
= ⇢Pi,j

As a result, we have:

E[d(u0)d(u00)] =
XN

i,j=1
⇢Pi,jwiwj

= ⇢2(
XN

i=1
w2

i

XN

j=1
w2

j) = ⇢2(
XN

i=1
w2

i)
2

Therefore, � can be calculated as:

� = ⇢2(
XN

i=1
w2
i)

2 ⇥ ⇢2
XN

i=1
w2
i =

(
PN

i=1w
2
i)

3

(
PN

i=1wi)4
(4.12)

It is hard to compute an upper bound for � in this case. However, we show

that � < 1 for most real-world graphs. In order to do so, we vary � from 2.1 to

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 47

2.9, d from 5 to 500, and N from 10, 000 to 100, 000, 000. Since � increases with

dmax, we set dmax =
p
N . With �, d, N , and dmax, we can generate wi(1 i N)

via [VL05], and thus � can be calculated via Equation 4.12. The results are shown

in Figure 4.3, in which we can see that � < 1 for all practical cases.

(S2): We prove that � > 1 when pi is a non-strong TwinTwig with u 2 V (Pi�1),

u0 /2 V (Pi�1), and u00 /2 V (Pi�1). In this situation, we have:

� = E[
X

u0,u002V (G)
d(u)d(u0)⇢⇥ d(u)d(u00)⇢]

= E[d(u)2]⇢2
XN

i,j=1
wiwj = E[d(u)2] =

XN

i=1
w2

i /N

(4.13)

Obviously, � � E[d(u)]2 = d2 > 1. Now according to S1 and S2, part 2 is proved

when pi is a two-edge TwinTwig. When pi only contains one edge, part 2 can be

proved similarly.

According to Part 1 and Part 2, the instance optimality of the TwinTwig de-

composition holds for a power-law random graph.

Optimal Decomposition. We show how to compute the optimal TwinTwig de-

composition using A* for power-law random graph. Recall that Algorithm 3 is

independent of the graph model. It is only required to compute cost(Di, P), which

is a cost lower bound for any TwinTwig decomposition of P expanded from Di.

In order to do so, we can simply set cost(Di, P) = cost(Di), where cost(Di) can

be computed using Equation 4.4, which depends on |R(Pi)| and |R(pi)|. Here,

|R(pi)| can be precomputed, and |R(Pi)| can be computed recursively using Equa-

tion 4.10, where the value of each � depends on how pi is joined with Pi�1. Three

typical cases for calculating � are given in Equation 4.11, Equation 4.12, and Equa-

tion 4.13, respectively. In this way, Algorithm 3 can be adopted to compute the

optimal TwinTwig decomposition for the power-law random graph. The space and

time complexities of the algorithm are the same as those shown in Lemma 4.4.

48 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

4.5 Optimization Strategies

Here we discuss three optimization strategies to further improve our subgraph enu-

meration algorithm, namely, order-aware cost reduction, workload skew reduction,

and early filtering.

4.5.1 Order-aware Cost Reduction

In this subsection, we discuss how to make use of the partial order to further reduce

the computational cost. We first consider a motivating example: Let the pattern

graph P be a triangle of three nodes v1, v2, and v3, with v1 < v2 < v3 for symmetry-

breaking. By TwinTwig decomposition, P is decomposed into D = {p, e}, where p

is a two-edge TwinTwig, and e is a single edge. According to Equation 4.2, we can

derive cost(D) = 3|R(P)| + |R(p)| + 2M . Since |R(P)| and M are fixed, cost(D)

is only dependent on p which has 3 choices: p1 = {(v1, v2), (v1, v3)}, p2 = {(v1,

v2), (v2, v3)}, and p3 = {(v1, v3), (v2, v3)}. Let the data graph G be a star with a

root node r and N � 1 leaf nodes. Obviously, in such a case |R(P)| = 0. Consider

the following 3 cases C1, C2 and C3:

• C1: r has the largest order in V (G). In this case, |R(p1)| = |R(p2)| = 0 and

|R(p3)| = ⇥(N2).

• C2: r has the smallest order in V (G). In this case, |R(p1)| = ⇥(N2) and

|R(p2)| = |R(p3)| = 0.

• C3: r has the median order in V (G). In this case, |R(p1)| = |R(p2)| =

|R(p3)| = ⇥(N2).

In both C1 and C2, we can find a p with |R(p)| = 0 which is optimal. This

extreme example motivates us to link the order of nodes in V (G) to their degrees.

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 49

Specifically, we assign a new total order of nodes in V (G) as in Definiton 2.1.

Given the new total order for V (G), for any u 2 V (G), we let N+(u) = {u0 | u0

2 N (u), u � u0} and N�(u) = {u0 | u0 2 N (u), u0 � u}. We then define d+(u) =

|N+(u)| and d�(u) = |N�(u)|, and d+max = maxu2V (G) d+(u) and d�max = maxu2V (G)

d�(u).

For a two-edge TwinTwig p = {(v, v1), (v, v2)}, we consider the following three

types of orders:

• T1: v < v1 < v2 or v < v2 < v1;

• T2: v1 < v < v2 or v2 < v < v1;

• T3: v1 < v2 < v or v2 < v1 < v.

Let pT1 , pT2 , and pT3 be TwinTwigs of types T1, T2, and T3 respectively. We

have the following results:

• |R(pT1)| = O(
P

u2V (G)(d
+(u))2) = O(↵ ·M);

• |R(pT2)| = O(
P

u2V (G)(d
+(u) · d�(u))) = O(d+max ·M);

• |R(pT3)| = O(
P

u2V (G)(d
�(u))2) = O(d�max ·M).

where ↵ is the arboricity of the graph G and ↵ d+max d�max according to [CN85].

Thus, when selecting TwinTwigs for joining, pT1 is preferable to pT2 , followed by

pT3 . We give an example below to show the three types of TwinTwigs.

Example 4.5. Figure 4.4 shows a 4-clique pattern graph P with order v1 < v2 <

v3 < v4, and two decomposition plans D1 and D2, both of which are strong TwinTwig

decompositions. However, D1 contains two pT1s and one pT2, and D2 contains two

pT2s and one pT3. Obviously, D1 is better than D2.

50 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

!

! !

!

! ! ! !< < <

!

!

!

! !

!

!

!

!!

!

!!
!

!! !!

!

! !!

! ! !

!

!

Figure 4.4: The order-aware decomposition of a 4-Clique.

Order-aware TwinTwig Decomposition. We discuss how to modify Algorithm 3

for TwinTwig decomposition by taking the partial order into consideration. Recall

that Algorithm 3 only depends on the cost function cost(Di, P) (Equation 4.9) for

any partial TwinTwig decomposition Di, and cost(Di, P) is calculated based on

cost(Di) and �cost(Pi,�m,�n), both of which are originated from Equation 4.2.

Thus, we only need to reestimate |R(pi)| and |R(Pi)| for any pi and partial pattern

Pi by taking the partial order into consideration.

(Reestimate |R(pi)|): Let pi = {(v, v1), (v, v2)}. In order to calculate |R(pi)|, we

precompute |R(pT1)|, |R(pT2)|, and |R(pT3)|. If pi only contains 1 edge, then |R(pi)|

= M ; otherwise, |R(pi)| can be calculated from |R(pT1)|, |R(pT2)|, and |R(pT3)|

depending on the partial orders defined on V (pi). For instance, if the partial order

is only defined on one pair v < v1 in pi, then |R(pi)| can be calculated as 2 ⇥

|R(pT1)| + |R(pT2)|.

(Reestimate |R(Pi)|): |R(Pi)| is hard to calculate when the partial order is

involved, however, after each round of join, we try to make use of the updated

information to better estimate |R(Pi)| at runtime. Specifically, after the j-th round

of join, suppose the current partial pattern is Pj, and |R(Pj)| has been accurately

calculated. Then for any possible future partial pattern Pi which is a supergraph

of Pj, according to Equation 4.5, |R(Pi)| can be calculated as:

|R(Pi)| = |R(Pj)|⇥ (
2M

N2
)|E(P

i

)|�|E(P
j

)| ⇥N |V (P
i

)|�|V (P
j

)| (4.14)

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 51

Based on the reestimating technique, Algorithm 1 is modified as follows: In the

first round, it computes the optimal decomposition plan using the A* algorithm

(Algorithm 3) directly, and then processes the first MapReduce round accordingly.

In the following round i (i > 1), before processing MapReduce, the algorithm re-

computes the optimal decomposition using the A* algorithm with the reestimating

technique where each |R(Pj)| for 0 j < i is replaced by the accurate value. In

this way, the partial order is involved in Algorithm 1.

4.5.2 Workload Skew Reduction

For many real graphs, it is very common that a small number of nodes in a graph

have very high degrees. Given a data graph G, we denote the high-degree nodes

by V H (e.g., nodes with degree larger than
p
M). Recall that G is stored in a

distributed file system using adjacency lists in the form (u;N (u)) for each u 2

V (G). For a two-edge TwinTwig p, evaluating p on the adjacency list (u;N (u))

will generate ⇥(d(u)2) matches, rendering very high workloads in the machines

that are processing high-degree nodes. This motivates us to consider the workload

balancing issue. In the following, we discuss our strategy to reduce the workload

skew.

Suppose there are � machines in the system, for any u 2 V H , instead of using

(u,N (u)), we divide N (u) uniformly into � partitions: N (u) = {N1(u), N2(u), . . . ,

N�(u)}. Note that we cannot simply distribute the � partitions into the �machines.

Because if so, given a TwinTwig p = {(v, v1), (v, v2)}, the match f = (u, u1, u2) 2

R(p) with u1 2 Ni(u) and u2 2 Nj(u) (i 6= j) cannot be generated by any machine.

To handle this, we create �⇥(�+1)
2 partitions in the following two sets S1(u) and

S2(u), and distribute the partitions uniformly into the � machines.

52 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
1

m
2

m
3

m
4

m
5

m
6

m
6

m
7

m
8

m
9

m
10

m
11

m
12

m
13

m
15

m
16

R
u
n
n
in

g
 T

im
e
 (

se
c)

Mappers

(a) No Workload Balancing

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
1

m
2

m
3

m
4

m
5

m
6

m
6

m
7

m
8

m
9

m
10

m
11

m
12

m
13

m
15

m
16

R
u
n
n
in

g
 T

im
e
 (

se
c)

Mappers

(b) After Workload Balancing

Figure 4.5: The E↵ect of Workload Balancing

• S1(u) = {(u;Ni(u))|1 i �};

• S2(u) = {(u; (Ni(u),Nj(u)))|1 i < j �}.

With S1(u) and S2(u), when evaluating a TwinTwig with one edge, only S1(u)

needs to be used; and when evaluating a TwinTwig with two edges, both S1(u) and

S2(u) need to be used. By setting � = ⇥(
p
�), the number of partitions becomes

⇥(�). As a result, each machine just keeps a constant number of partitions in

S1(u)[S2(u) uniformly. It is easy to verify that the total space used to keep S1(u)

and S2(u) is ⇥(
p
� · |N (u)|).

Example 4.6. Figure 4.5 shows the workload distribution of 16 mappers of

TwinTwigJoin when evaluating the square pattern graph P shown in Figure 2.1 in

the orkut dataset (see Chapter 4.6 for the detailed description of the dataset). Ob-

viously, by considering workload balancing, the processing time is reduced by nearly

half, and all mappers stop almost at the same time.

4.5.3 Early Filtering

Recall that Algorithm 1 only requires very small memory in both mapi and reducei.

This motivates us to make use of the remaining memory for further optimization.

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 53

Specifically, we use bloom filter [Blo70] to prune the invalid partial matches in early

stages of the algorithm to reduce the cost. Generally speaking, given a set S and

a memory budget M , a bloom filter for S denoted as B(S), can be created using

no more than M memory such that given any element e, it can answer whether

e 2 S with no false negatives and a small probability of false positives denoted as

fp . There is a trade-o↵ between the size of the memory M and the probability of

false positives fp.

In our approach, we create a bloom filter B(E(G)) in every machine of the

system, and we use the bloom filter B(E(G)) for the following two types of early

filtering mechanisms in Algorithm 1:

• (Map Side Filtering): When evaluating R(pi) for any TwinTwig pi = {(v, v1),

(v, v2)} in the map phase, if (v1, v2) 2 E(P), then any match (u, u1, u2) with

(u1, u2) /2 E(G) is pruned by B(E(G)) with probability 1� fp.

• (Reduce Side Filtering): When evaluating R(Pi) for any partial pattern Pi

in the reduce phase, for any (v1, v2) 2 E(P) � E(Pi) with v1 2 V (Pi) and

v2 2 V (Pi), any partial match f 2 R(Pi) with (f(v1), f(v2)) /2 E(G) is pruned

by B(E(G)) with probability 1� fp.

Obviously, early filtering does not a↵ect the correctness of Algorithm 4 since only in-

valid partial patterns are pruned by the bloom filter B(E(G)). Note that early filter-

ing can be applied for all the three algorithms EdgeJoin, StarJoin, and TwinTwigJoin.

Example 4.7. Suppose the pattern graph P is a triangle of three nodes. We can

decompose P into D = {p, e} where p is a two-edge TwinTwig and e is a single edge.

According to Equation 4.2, we have cost(D) = 3|R(P)|+|R(p)|+2M . Without early

filtering, it is possible that |R(p)| dominates the whole cost with |R(p)| >> |R(P)|

and |R(p)| >> M . Suppose we use B(E(G)) with fp = 0.1, then R(p) is filtered

54 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

in the map phase with only 0.1 ratio of false positives, i.e., |R(p)| = 1.1|R(P)|, as

a result |cost(D)| = ⇥(|R(P)| + M), which is optimal since M is the size of the

input and |R(P)| is the size of the final output.

4.6 Performance Studies

In this subchapter, we show our experimental results for TwinTwigJoin algorithm.

We deployed a cluster of up to 15 computing nodes including one master node and

14 slave nodes and we used 10 slave nodes by default. Each of the computing nodes

has one 3.47GHz Intel Xeon CPU with 6 cores and 12GB memory running 64-bit

Ubuntu Linux. We allocated a JVM heap space of 1024MB for each mapper and

2048MB for each reducer, and we allowed at most 3 mappers and 3 reducers running

concurrently in each machine. The block size in HDFS was set to be 128MB, the

data replication factor of HDFS was set to be 3, and the I/O sort size was set to

be 512MB.

Datasets. We used five real-world data graphs (see Table 4.1) for testing. Among

them, sk, lj, orkut, and fs were downloaded from SNAP (http://snap.stanford.edu),

yt was downloaded from KONECT (http://konect.uni-koblenz.de), and uk, indo

and arabic were downloaded from WEB (http://law.di.unimi.it).

Table 4.1: Datasets used in the TwinTwigJoin experiment.

dataset name N(Mil) M(Mil)

as-skitter sk 1.70 11.10
youtube yt 3.22 12.22

live-journal lj 4.85 42.85
com-orkut orkut 3.07 117.19
uk-2002 uk 18.52 261.79
friendster fs 65.61 1806.07

Algorithms. We implemented and compared seven algorithms:

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 55

• Edge: EdgeJoin (Chapter 4.2) with early filtering (Chapter 4.5.3).

• Mul: MultiwayJoin (Chapter 4.2).

• Star: StarJoin (Chapter 4.2) with early filtering (Chapter 4.5.3).

• TTBS: TwinTwigJoin (Chapter 4.3) without optimization.

• TTOA: TTBS + order-aware cost reduction (Chapter 4.5.1).

• TTLB: TTOA + workload skew reduction (Chapter 4.5.2).

• TT: TTLB + early filtering (Chapter 4.5.3).

All algorithms were implemented using Hadoop (version 1.2.1) with Java 1.6. Note

that the early filtering strategy (Chapter 4.5.3) was also applied in Edge and Star,

and all the optimization strategies introduced in [AFU13] were applied in Mul. We

set the maximum running time to be 12 hours. If a test does not stop in the

time limit, or fails due to out-of-memory exception, we denote the running time

as INF. The time for computing the join plan using Algorithm 3 for TwinTwig

decomposition is less than one second for all test cases, thus it is omitted in the

total processing time.

Queries. The seven queries denoted by q1 to q7 are illustrated in Figure 4.6 with

edge number varying from 3 to 15 and node number varying from 3 to 6. We show

the node order for symmetry breaking under each query graph. Here, we have

n 5 for most queries for fair comparison, because when n is larger than 5, except

for TT, all other algorithms have very poor performance, which can be seen from

the “vary-query” test for q6. In this experiment, we only consider queries whose

nodes have degree at least 2 (the “closed” queries). Non-closed queries like paths

and stars often involve too many results, which can hardly be useful. For n = 4,

56 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

we have considered all closed queries (q1 - q4) with edge number varying from 4 to

6 to test the influence of edge number to the performance of di↵erent algorithms.

v1

v2 v3

v4 v1

v2 v3

v4 v1

v2 v3

v4

v1 < v2, v1 < v3
v1 < v4, v2 < v4

v1 < v3
v2 < v4

v1 < v2 < v3 < v4

q1 q2 q3 q4

v1

v2 v3
v1 < v2 < v3

q5

v1
v2 v5

v3 v4
v1 < v2 < v3
v3 < v4 < v5

v1
v2

v3
v4

v5

v6

v1 < v2 < v3
v3 < v4 < v5 < v6

q6

v1
v2

v3 v4

v5

v2 < v5
v3 < v4

q7
Figure 4.6: Queries used in the TwinTwigJoin experiment.

Exp-1: Vary Algorithms. In this experiment, we evaluated the performance of

all seven algorithms using two query graphs q3 and q4 as representatives on the

two datasets, yt and lj. The experimental results are shown in Figure 4.7. We

also list the size of the output (see Table 4.2) generated by mappers and reducers

in each round when we processed q4 on lj. Here we use “NA” to denote that the

algorithm crashes due to out-of-memory exceptions, and use “-” to denote that no

extra MapReduce round is needed. Note that we only present the results of the first

three rounds for Edge which actually finishes in five rounds. The sizes of the output

produced by TTLB and TTOA are the same, and thus we only show one of them.

When evaluating q3 on yt, we find that none of the algorithms can terminate in the

time limit without early filtering, since yt contains a lot of high-degree nodes. Thus

we applied early filtering for both TTBS and TTOA in this case. The experimental

results support our motivation to minimize the cost discussed in Chapter 4.3.2, as

lower cost generally results in better performance.

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 57

As shown in Figure 4.7, Mul fails in evaluating q3 on yt and lj, and q4 on lj due

to out-of-memory exceptions. We analyze the reason below. Take the evaluation

of q4 on lj for example. Mul outputs 0.9 billion data, which is approximately 20

times larger than the size of the data graph. Since we need to use auxiliary data

structures such as hash tables to index these data, each of which is represented

by around 20 integers, rendering 70GB memory consumption. However, we only

configured 60GB memory for all reducers in the cluster (2GB per reducer for 30

reducers). Therefore, Mul runs out of memory.

0

100

200

300

400

500

INF

yt lj

R
u

n
n

in
g

 T
im

e
 (

m
in

) Edge
Mul
Star

TTBS
TTOA
TTLB

TT

(a) Query q3

0

100

200

300

INF

yt lj

R
u

n
n

in
g

 T
im

e
 (

m
in

)

0.923.173.214.22

Edge
Mul
Star

TTBS
TTOA
TTLB

TT

(b) Query q4

Figure 4.7: The results of Exp-1: Vary Algorithms.

Table 4.2: The number of (intermediate) results for processing q4 on lj (in billions).

m/r Edge Mul Star TTBS TTLB TT

map1 0.09 0.90 10.20 2.77 1.36 0.57
reduce1 0.29 NA 9.93 16.34 14.9 9.93

map2 0.33 - 9.98 21.55 16.27 10.22
reduce2 9.94 - 9.93 9.93 9.93 9.93

map3 9.98 - - - - -
reduce3 9.94 - - - - -

total 90.29 NA 40.07 50.59 42.49 30.67

Edge is slow and cannot finish in the time limit when evaluating q3 on both

yt and lj. This is because Edge often generates numerous partial results in early

stages even after filtering. As shown in Table 4.2, Edge has to deal with over 9.9

58 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

billion data from the third round, yet there are two more rounds to complete the

task, in which more partial results are generated.

In most cases, Star is slower than TTBS, which demonstrates the instance opti-

mality of TwinTwig decomposition in Theorem 4.1. However, TTBS spends much

longer time than Star when evaluating q4 on yt. This is because yt contains many

high-degree nodes, and TTBS (without any optimization) can generate large num-

ber of partial results, while Star can avoid this issue by applying the early filtering

strategy.

TTOA performs better than TTBS in all cases, which verifies the e↵ectiveness of

the order-aware cost reduction strategy, and TTLB outperforms TTOA in all cases,

which is consistent with the analysis in Chapter 4.5.2. TT consistently outperforms

all other algorithms for all test cases. Comparing TT to TTLB, we observe from

Table 4.2 that TTLB generates 10 billion more data than TT, which shows the

e↵ectiveness of early filtering. In the rest of the experiments, we exclude the results

of TTBS, TTOA, and TTLB, since their relative performances are similar to those

shown in Figure 4.7. Therefore, we focus on comparing Edge, Star, and Mul with

our algorithm TT.

Exp-2: Vary Datasets. In this experiment, we tested the algorithms on all

the five datasets shown in Table 4.1 and show our results for query q1 and q4 for

algorithms Edge, Mul, Star, and TT.

Figure 4.8(a) shows the testing results for query q1. Note that for q1, star

decomposition is the same as TwinTwig decomposition, hence Star has the same

performance as TT, which outperforms Edge and Mul for over an order of magni-

tude. Generally, Mul performs slightly worse than Edge, except that Mul spends

much longer time on orkut. This is because orkut contains too many edges, which

results in a large number of edge duplications in Mul. Edge and Mul cannot handle

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 59

large data graphs uk and fs.

The testing results for q4 are shown in Figure 4.8(b). TT is 5 times faster than

Star on orkut, and is only 2 times faster than Star on lj. This is because that the

larger the average degree of the data graph is, the better performance TT has over

Star. The average degree of orkut, which is 76, is larger than that of lj, which

is 28. Hence, the results are expected. Another interesting observation is when

evaluating q4, it takes longer time on uk than fs, while uk is much smaller than fs.

The reason is that, uk is a web graph, which contains a lot of large cliques, since

webpages in the same domain tend to reference each other. On the contrary, fs is

a social network with fewer large cliques than a web graph.

0

10

20

30

40

INF

yt sk lj orkut uk fs

R
u
n
n
in

g
 T

im
e
 (

m
in

)

0.35 0.45

Edge
Mul
Star

TT

(a) Query q1

0
100
200
300
400
500

INF

yt sk lj orkut uk fs

R
u
n
n
in

g
 T

im
e
 (

m
in

)

4.22
0.92

5.13
1.65

Edge
Mul
Star

TT

(b) Query q4

Figure 4.8: The results of Exp-2: Vary Datasets.

Exp-3: Vary Queries. We evaluated all queries q1 to q7 in Figure 4.6. The

results are illustrated in Figure 4.9(a) to Figure 4.9(g) respectively. Note that Star

is the same as TT when processing q1 and q2 since no node in q1 and q2 has degree

larger than 2. Generally, the more complex the pattern graph is, the more costly

it is to evaluate the query. TT performs the best in all test cases. Note that all

the tests are conducted on yt and lj except for q5 and q6, which is conducted on

yt and sk. The reason is that, the number of results of q5 and q6 on lj is over 400

60 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

0

1

2

3

4

5

6

yt lj

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(a) Query q1

0

10

20

30

INF

yt lj
R

u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(b) Query q2

0
100
200
300
400

INF

yt lj

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(c) Query q3

0
50

100

200

300

INF

yt lj

R
u
n
n
in

g
 T

im
e
 (

m
in

)

4.22 0.92

Edge
Mul
Star

TT

(d) Query q4

0

10

20

30

INF

yt sk

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(e) Query q5

0

20

100

200

300

INF

yt sk

20.7
5.4

376.5

95.1

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(f) Query q6

0

20

100

200

300

INF

yt lj

56.5

11.5

348.4

R
u
n
n
in

g
 T

im
e
 (

m
in

) Edge
Mul
Star

TT

(g) Query q7

Figure 4.9: The results of Exp-3: Vary Queries.

billion, which surpasses the processing ability of our current cluster. However, we

can scale to handle this case by deploying more slave nodes. It is easy to find that

all algorithms except TT have very poor performance while handling q6. Edge and

Mul do not response in time for both datasets. Star runs for over six hours on sk, a

dataset of moderate size. As for q7, a relatively complicated query, TwinTwigJoin

significantly outperforms all competitors, especially on the larger dataset lj, where

all algorithms except TwinTwigJoin cannot finish in time.

Exp-4: Vary Graph Size. We extracted subgraphs of 20%, 40%, 60%, 80%, and

100% nodes from the original graph of fs, and tested the algorithms using queries

q1 and q4. The results are shown in Figure 4.10(a) and Figure 4.10(b) respectively.

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 61

We omit the curve of Star in Figure 4.10(a) since Star is the same as TT when

evaluating q1. When the graph size increases, the running time of Edge, Mul and

Star grow much sharper than TT. When the graph size is over 80%, only TT can

finish in the time limit. The testing results show the high scalability of our TT

algorithm.

0

50

100

INF

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

m
in

) Edge
Mul
TT

(a) Query q1 on fs

0

50

100

200

INF

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Edge
Mul
Star

TT

(b) Query q4 on fs

Figure 4.10: The results of Exp-4: Vary Graph Size.

Exp-5: Vary Average Degree. We fixed the set of nodes and randomly sample

20%, 40%, 60%, 80% and 100% edges from the original graph fs to generate graphs

with average degrees from 11 to 55, and tested the algorithms using queries q1

and q4. The results are shown in Figure 4.11(a) and Figure 4.11(b) respectively.

We omit the curve of Star in Figure 4.11(a) since Star is the same as TT when

evaluating q1. Edge and Mul fail at the very beginning. In Figure 4.11(b), TT is 3,

5, 8 and > 9 times faster than Star when the average degree varies from 11 to 55,

which shows the advantage of TT for dense data graphs. The trend is consistent

with our theoretical analysis in Chapter 4.3.

Exp-6: Vary Slave Nodes. In this experiment, we varied the number of slave

nodes from 6 to 14, and evaluated our algorithms on the lj and fs dataset using

query q4. The testing results are shown in Figure 6.4(a) and Figure 6.4(b) re-

spectively. As shown in Figure 6.4(a), when the number of slave nodes increases,

62 Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join

0

50

100

200

300

INF

11 22 33 44 55

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Edge
Mul
TT

(a) Query q1 on fs

0
100

200

300

400

500

INF

11 22 33 44 55

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Edge
Mul
Star

TT

(b) Query q4 on fs

Figure 4.11: The results of Exp-5: Vary Average Degree

0

100

200

300

400

INF

6 8 10 12 14

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Edge
Mul
Star

TT

(a) Query q4 on lj

0

100

200

300

INF

6 8 10 12 14

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Edge
Mul
Star

TT

(b) Query q4 on fs

Figure 4.12: The results of Exp-6: Vary Slave Nodes

the processing time of all algorithms decreases, and the running time drops more

sharply when the number of slave nodes is small. This is because that the incre-

ment of slave nodes, on the one hand, contributes to the performance improvement

as workloads are more largely shared, on the other hand, introduces extra com-

munication cost as more data transmissions are involved among slave nodes. As

shown in Figure 6.4(b), TT is the only algorithm that can compute the 4-clique on

fs even when 14 slave nodes are deployed. We also performed the tests using other

queries when varying slave nodes. The curves are similar to those in Figure 4.11

thus are omitted due to lack of space.

Exp-7: Small-Degree Assumption. In this experiment, we show that the small-

Chapter 4. TwinTwigJoin: Optimal Star-based Left-deep Join 63

Table 4.3: The ratio of intermediate results that contain only small-degree nodes
(↵).

queries / datasets sk yt lj

q1 0.740 0.784 0.971
q4 0.796 0.828 0.970

degree assumption A4 (refer Chapter 4.4) is useful in practice. We call a node u

with d(u) >
p
N a high-degree node. For a data graphG, we create G⇤ by iteratively

removing some edges of the high-degree nodes randomly until every node u in G

has d(u)
p
N . We denote C and C⇤ the cost (by Equation 4.2) when evaluating

a specific pattern in the graph G and G⇤, respectively. And we denote ↵ = C⇤/C

to show the ratio of the cost that is only related to G⇤ (in which our algorithm

can guarantee instance optimality). In Table 4.3, we show the value of ↵ when

evaluating q1 and q4 in the datasets sk, yt and lj, respectively. As we can see, the

cost in G⇤ are actually the dominate part.

4.7 Chapter Conclusion

In this chapter, we proposed the TwinTwigJoin algorithm based on the star-based

join framework in MapReduce. We have shown that under reasonable assumptions,

TwinTwigJoin is instance optimal in the star join. An A*-based solution was given

to compute the optimal join plan. We further improved our approach using three

novel optimization strategies and extend our approach to handle the power-law

random-graph model. We conducted extensive performance studies on real large

graphs with up to billions of edges to demonstrate the e↵ectiveness of our approach.

Chapter 5

SEED: Optimal Graph-based

Bushy Join

Although TwinTwigJoin is instance optimal in the star-based join framework, it

still su↵ers from scalability issues due to the constraints of the star join. Motivated

by this, we propose the graph-based bushy join framework in this chapter. We

first summarize the two constraints that TwinTwigJoin encounters, namely (1) the

simple graph storage mechanism that only supports star as the join unit, and (2)

the left-deep join structure that may result in sub-optimal solution. We resolve the

first constraint by exploring more structures as the join units. In order to do so,

we need to involve more edges to each local graph in the basic storage mechanism,

but we soon notice that it is storage-ine�cient. We carefully consider the tradeo↵

between the storage e�ciency and the availability of join unit, which results in

the development of the SEED algorithm that implements the SCP mechanism to

support star and clique as the join units. Then we break though the second limit

by devising an dynamic-programming algorithm to compute the optimal bushy

join plan. We also show that it is beneficial to allow overlapping edges among

64

Chapter 5. SEED: Optimal Graph-based Bushy Join 65

the join units. Recall that we apply the ER model to estimate the result size for

TwinTwigJoin in Chapter 4.3.2. We further propose to use the PR model in the cost

analysis for more realistic estimation. We ultimately show that SEED significantly

outperforms TwinTwigJoin in the experiment.

Algorithm 4: SubgraphEnum-Graph(data graph G, pattern graph P)

Input : G : The data graph, stored as �(G) = {Gu | u 2 V (G)},

P : The pattern graph.

Output : R(P): All Matches of P in G.

1 Eo OptExecPlan(G,P) (Algorithm 5);

2 for i = 1 to t do

3 R(Pi) R(P l
i) 1 R(P r

i) according to Eo (using mapi and reducei);

4 return R(Pt);

5 function mapi(key: ;; value: Either a match f 2 R(P l
i), h 2 R(P r

i) or

Gu 2 �(G))

6 Vk = {vk1 , vk2 , . . . , vks} V (P l
i) \ V (P r

i);

7 if P l
i is a join unit then genJoinUnit(P l

i , Gu, Vk);

8 else output ((f(vk1), f(vk2), . . . , f(vks)); f);

9 if P r
i is a join unit then genJoinUnit(P r

i , Gu, Vk);

10 else output ((h(vk1), h(vk2), . . . , h(vks));h);

11 function genJoinUnit(p,Gu, Vk = {vk1 , vk2 , . . . , vks})

12 RG
u

(p) all matches of p in Gu;

13 forall the match f 2 RG
u

(p) do

14 output ((f(vk1), f(vk2), . . . , f(vks)); f);

15 function reducei: The same as Algorithm 1

66 Chapter 5. SEED: Optimal Graph-based Bushy Join

5.1 Graph-based Join Framework

Constraints of TwinTwigJoin. To summarize, there are two major drawbacks of

TwinTwigJoin that inherit from the star join framework. First, the simple graph

storage mechanism �0(G) only supports star as the join unit, which can result

in severe performance bottlenecks. Although TwinTwigJoin uses TwinTwig as a

substitution, the issues are only mitigated but not evaded, especially when handling

nodes with very large degree. In addition, TwinTwigJoin must process at least m
2

rounds, which limits its utilization for complex pattern graph. Second, the left-

deep join plan may produce sub-optimal solution as it only considers the left-deep

searching space [JK84].

We tackle the issues of TwinTwigJoin by introducing the graph-based join frame-

work with more advanced graph storage mechanism and the optimal bushy join

structure.

SCP Graph Storage. We have known that the simple graph storage �0(G) used

in TwinTwigJoin only supports star as the join unit. We say �(G) is �-preserved

if �(G) supports � to be a join unit, and is strictly �-preserved, if � is the only

available join unit. Clearly �0(G) is strictly star-preserved. In the exploration of

other graph storage mechanisms that support more join units, we specifically define

the Star-Clique-Preserved (SCP) storage mechanism as:

Definition 5.1. (SCP storage mechanism) �(G) = {Gu | u 2 V (G)} is an

SCP storage mechanism, if both star and clique (a complete graph) are supported

to be the join units by �(G), and it is strictly SCP, if star and clique are the only

supported join units.

Here clique is particularly considered to embody its good features that can

facilitate the theoretical analysis for designing the graph storage mechanism (details

Chapter 5. SEED: Optimal Graph-based Bushy Join 67

in Chapter 5.2.1). With clique and other structures as alternatives in the SCP

mechanism, we can avoid processing star where possible, which not only saves the

cost in a single run, but reduces the rounds of execution as a whole.

Example 5.1. The plans E1 and E3 shown in Figure 3.1 are both left-deep joins,

but E1 uses triangles, while E3 uses TwinTwigs as the join units. Intuitively, we

expect that E1 draws smaller cost as a triangle attaches much fewer matches than

a two-edge TwinTwig, and E1 completes in three rounds, while E3 needs four.

Bushy Join. Here we solve the subgraph enumeration by processing the join in

Equation 3.1 using bushy join. Specifically, the following join is processed in the

i[-th] round:

R(Pi) = R(P l
i) 1 R(P r

i), (5.1)

where P l
i and P r

i are called the left and right join patterns regarding Pi, respectively.

The left (or right) join pattern can be either a join unit, or a partial pattern

processed in an earlier round.

Opposed to the left-deep join where at least one of P i
l and P i

r must be a join

unit, bushy join is a more general structure without such a constraint. We exploit

the bushy join structure to search for the optimal solution in the whole searching

space in order to guarantee the optimality.

Algorithm. We show the graph-based join framework in Algorithm 4. Given the

pattern graph P , we first compute the optimal execution plan Eo in line 1 using

Algorithm 5 (details in Chapter 5.2.3) 1. According to the optimal execution plan

Eo, the i[-th] join in Equation 5.1 is processed using MapReduce via mapi and

1Note that in Algorithm 1, we only need to compute the decomposition which already deter-

mines the left-deep join plan. The algorithm to compute the optimal bushy join plan is much

more complicated

68 Chapter 5. SEED: Optimal Graph-based Bushy Join

reducei (line 3). We apply the same reducei as in Algorithm 1, thus we focus on

mapi here.

The function mapi is shown in lines 5-10. The inputs of mapi are either a match

f 2 R(P l
i), a match h 2 R(P r

i) or (u;Gu) for all Gu 2 �(G) if we are dealing

with a join unit (line 5). We first calculate the join key {vk1 , vk2 , . . . , vks} using

V (P l
i) \ V (P r

i) (line 6) as in Algorithm 1. Then we compute the matches of P l
i

and P r
i . Take P

l
i for example. We know whether P l

i is a join unit in current round

according to the execution plan. If P l
i is a join unit, we invoke genJoinUnit (P l

i ,

Gu, Vk) (line 7) to compute the matches of P l
i in Gu for each Gu 2 �(G) (lines 12-

14). Note that we fully compute R(P l
i) by merging RG

u

(P l
i) for all Gu 2 �(G)

according to Definiton 3.1. If P l
i is not a join unit, the matches of P l

i must have

been computed in previous round. Then we directly fetch the partial results and

output them with the join key (line 8).

Note that Algorithm 4 actually generalizes Algorithm 1, where we can consider

each P l
i as Pi�1, and P r

i as pi, and the genJoinUnit function can be implemented

to compute the matches of star in G0
u. Furthermore, as we mentioned earlier, the

algorithm can remove duplication caused by automorphism of the pattern graph

using the method in Chapter 4.3.5, and we do not further discuss here.

5.2 SEED Algorithm

On top of the graph-based join framework, we introduce the SEED algorithm, short

for Subgraph EnumEration inDistributed context, that implements the SCP graph

storage mechanism to support clique and star as the join units (Chapter 5.2.1). We

also introduce how to utilize the PR model for cost analysis (Chapter 5.2.2) and

how to compute the optimal bushy join plan (Chapter 5.2.3).

Chapter 5. SEED: Optimal Graph-based Bushy Join 69

5.2.1 Beyond Stars: SCP Graph Storage

In this subchapter, we propose an e�cient SCP storage mechanism, in which each

local graph introduces a small number of extra edges to the simple local graph

in �0(G). We leverage the PR model for analysis. Denote ew as the second-order

average degree, which can be computed as [CLV03a]:

ew = (
NX

i=1

w2
i)/(

NX

i=1

wi) = w
��2w3��

max,

where = (��2)��1

(3��)(��1)��2 .

As we mentioned earlier, the simple storage mechanism �0(G) is not an SCP

mechanism. In the following, we will explore two SCP mechanisms - �1(G) and

�2(G), in which the local graphs for a data node u are denoted as G1
u and G2

u,

respectively. In order to use extra strutures as the join units, both mechanisms

introduce extra edges to each local graph in �0(G). Denote �(i)
u = E[|E(Gi

u)| �

|E(G0
u)|] as the expected number of extra edges introduced by �i(G) to G0

u for

i 2 {1, 2}, and let �(i)
max = maxu2V (G){�(i)

u }.

SCP Graph Storage. Let �1(G) = {G1
u | u 2 V (G)}, where V (G1

u) = V (G0
u) and

E(G1
u) = E(G0

u) [{(u0, u00) | u0, u00 2 N (u)^ (u0, u00) 2 E(G)}. We divide the edges

of each G1
u into two parts, the neighbor edges E(G0

u), and the triangle edges that

close triangles with the neighbor edges. Clearly the triangle edges are extra edges

introduced by �1(G). The following lemma shows that �1(G) is an SCP storage

mechanism.

Lemma 5.1. Given the storage mechanism �1(G) = {G1
u | u 2 V (G)}, p is a join

unit w.r.t. �1(G) if p is a star or a clique.

Proof. Clearly, �1(G) is star-preserved since each G1
u contains G0

u. Consider that

p is a k-clique (a clique with k nodes). We assume that its matches exist in the

70 Chapter 5. SEED: Optimal Graph-based Bushy Join

data graph, as otherwise it’s trivial. Let V (p) = {v0, v1, v2 . . . , vk�1}. We prove

that 8f 2 RG(p), 9u 2 V (G) such that f 2 RG1
u

(p). According to Definiton 3.1,

this su�ciently concludes that p is a join unit. Consider G1
u0

where u0 = f(v0)

for a given f . Obviously, (v0, vi) 2 E(p) for any 1 i k � 1 , which gives

(u0, f(vi)) 2 E(G), and more specifically, (u0, f(vi)) 2 E(G1
u0
) as they are the

neighbour edges of u0. Furthermore, as (vi, vj) 2 E(p) for any i 6= j, we have

(f(vi), f(vj)) 2 E(G). We know both f(vi) and f(vj) are the neighbours of u0,

thus we have (f(vi), f(vj)) 2 E(G1
u0
) as the triangle edge. It is immediate that

f 2 RG1
u0
(p).

Despite that �1(G) is an SCP storage mechanism, it can introduce a lot of extra

edges to a certain local graph in �0(G), as shown in the following lemma.

Lemma 5.2. Given a PR graph G, and the node ui 2 V (G), we have

�(1)
u
i

= (2w��2N2��)w2
i , and

�(1)
max = 2w��1N3��.

Proof. We denote ti as the expected number of triangles associated with ui. It is

easy to see G1
u
i

contains wi neighbor edges and ti triangle edges by expectation.

Thus:

�(1)
u
i

= E[|G1
u
i

|]� E[d(ui)] = ti.

Recall ew =
P

N

i=1 w
2
iP

N

i=1 wi

is the second-order average degree. When 2 < � < 3, we

can compute ew as [CLV03a]:

ew = w��2w3��
max, (5.2)

where = (��2)��1

(3��)(��1)��2 .

For a given node ui, we will locate uj and uk in the data graph to close a

Chapter 5. SEED: Optimal Graph-based Bushy Join 71

triangle. Following the PR model, we have:

�(1)
u
i

= ti =
NX

j=1

NX

k=1

⇢wiwj ⇥ ⇢wiwk ⇥ ⇢wjwk

= w2
i ⇢ ew2 = w2

i

ew2

N ⇥ w
(by ⇢ =

1
PN

i=1 wi

=
1

N ⇥ w
)

= (2w��2N2��)w2
i (by wmax =

p
wN)

We immediately have �(1)
max = 2w��1N3�� by letting wi = wmax.

Lemma 5.2 shows that the number of extra edges introduced by G1
u
i

is nearly

proportional to w2
i , which can cause severe workload skew and thus hamper the

scalability of the algorithm.

Discussion 5.1. Given a node v in P , we say v0 is its k-hop neighbor if there is a

shortest path of length k between v and v0. A graph is called a one-hop graph if there

is a node connecting all other nodes, and a multi-hop graph otherwise. Clearly, star

and clique are both one-hop graphs. �1(G) can actually support all one-hop graphs

as the join units, but it is storage-ine�cient according to Lemma 5.2. There is a

tradeo↵ between the size of each local graph and the availability of the join units.

Clearly, the more join units to support, the more edges should be involved in each

local graph. Here we carefully consider such a tradeo↵.

• All one-hop graphs. �1(G) supports this option, but is already una↵ordable

according to Lemma 5.2.

• Multi-hop graphs. In order to support multi-hop graphs, we need to involve all

two-or-more-hop neighbors of u and relevant edges into Gu, which will render

an even larger local graph than G1
u.

It hence remains to consider a proper subset of the one-hop graphs for the join

units. In order to do so, we need to reduce the number of edges taken into each

local graph, which inspires the ultimate storage mechanism in this work, �2(G).

72 Chapter 5. SEED: Optimal Graph-based Bushy Join

E�cient SCP Graph Storage. Targeting the deficiencies of �1(G), we consider

a more e�cient storage mechanism by leveraging the node order (Definiton 2.1).

Specifically, we define �2(G) = {G2
u | u 2 V (G)}, where V (G2

u) = V (G0
u) and

E(G2
u) = E(G0

u) [{(u0, u00) | (u0, u00) 2 E(G) ^ u � u0 ^ u � u00}. Compared to G1
u,

G2
u only includes the triangle edge when u is the minimum node in the triangle. It

is clear that G0
u ✓ G2

u ✓ G1
u. Next, we show that �2(G) is strictly SCP.

Corollary 5.1. Consider a pattern graph P and its two nodes v1, v2, where v1 are

adjacent to all nodes in V (P) \ v1. If an order is assigned between v1 and v2 using

the symmetry-breaking algorithm (see the appendix), then v2 must be adjacent to

all nodes in V (P) \ v2.

Proof. As v1 and v2 are assigned an order using symmetry breaking (see the Ap-

pendix for details), there must exist an automorphism (a match from P to itself)

�, such that �(v1) = v2. By Structure-Preservation (Definiton 2.2), v2 must be

adjacent to all nodes except itself in P .

Lemma 5.3. Given the storage mechanism �2(G) = {G2
u | u 2 V (G)}, p is a join

unit w.r.t. �2(G) if and only if p is a star or a clique.

Proof. (If.) Clearly, �2(G) is star-preserved since each G2
u contains G0

u. We next

show a k-clique is a join unit w.r.t. �2(G). Given a k-clique p where V (p) =

{v1, v2, . . . , vk}, we apply a full order v1 < v2 < · · · < vk for symmetry breaking

[GK07]. Assume that the match of p exists. We prove that, 8f 2 RG(p), 9u 2

V (G), such that f 2 RG2
u

(p). Given a match f , we let f(v1) = u1. For any

2 i < j k, it is clear that v1 < vi < vj and v1, vi, vj close a triangle in p.

This suggests u1 � f(vi) � f(vj) and u1, f(vi), f(vj) close a triangle in G. By the

definition of G2
u, we have:

(u1, f(vi)), (u1, f(vj)) and (f(vi), f(vj)) 2 E(G2
u1
)

Chapter 5. SEED: Optimal Graph-based Bushy Join 73

In other words, G2
u1

involves every edge of the matched instance of p. Hence,

f 2 RG2
u1
(p).

(Only If.) We prove this by contradiction. Let V (p) = {v1, v2, . . . , vn}, and

one of its match be f = (u1, u2, . . . , un). Assume that p is neither a star nor a

clique and the match f is preserved in some G2
u. Given the structure of G2

u, there

must exist a node v1 (w.l.g.) in p adjacent to all the other nodes of P , and the

match must be preserved in G2
u1
. There are at least two nodes that have no edge.

Let them be v2, v3 (w.l.g.), and we assume that (u2, u3) 62 E(G), where u2 = f(v2)

and u3 = f(v3). As p is not a star, we must have at least two nodes vi, vj such that

(vi, vj) 2 E(p) and vi, vj 6= v1. There are two cases: (1) v2 or v3 is one of vi, vj;

(2) neither v2 nor v3 is vi or vj. We show both cases are impossible. In case 1, let

vi = v2 and vj = v4 (w.l.g.). Clearly, (v2, v4) 2 E(p) implies (u2, u4) 2 E(G2
u1
). By

the definition of G2
u, we have u1 � u2 and u1 � u4, and by the order-preservation

match, we must have v1 < v2 and v1 < v4. According to Corollary 5.1, v2 must be

adjacent to all other nodes in p, this makes a contradiction as v2 does not connect

v3. In case 2, let vi = v4 and vj = v5 (w.l.g.). Similar to case 1, this implies that

v4 connects v2, which reduces to case 1 that has made a contradiction already.

The next lemma shows that �2(G) brings in much less extra edges than �1(G)

does to each local graph in �0(G).

Lemma 5.4. Given a PR graph G and a node ui 2 V (G), we have

�(2)
u
i

 �(2)
max [(3� �)(4� �)�

4��

3��]2 2w��1N3��.

Proof. Let T 0
i denote the set of triangles in Ti that have ui as the minimum node,

and t0i = |T 0
i |. We have:

�(2)
u
i

= E[|E(G2
u
i

)|]� E[d(ui)] = t0i.

74 Chapter 5. SEED: Optimal Graph-based Bushy Join

Consider a triangle (ui, uj, uk) rooted on ui such that ui � uj and ui � uk.

Recall that we arrange the nodes in G by non-decreasing order of their degree. We

hence have j � i+ 1, k � i+ 1. Therefore:

�(2)
u
i

= t0i =
NX

j,k=i+1

⇢wiwj ⇥ ⇢wiwk ⇥ ⇢wjwk

= ⇢w2
i (⇢

NX

j=i+1

w2
j)

2
= ⇢w2

i (⇢
NX

j=1

w2
j � ⇢

iX

j=1

w2
j)

2
.

Note that w1, w2, . . . , wi is a degree sequence that has wi as the maximum

degree. We then construct another sequence w0
1, w

0
2, . . . , w

0
i with w0

i = wi that has

the same power-law distribution as the original sequence. In other words, they

have the same � value. Since i < N , it is immediate that the frequency of w0
j must

be smaller than that of wj for any 1 j i. It is easy to find:

⇢
iX

j=1

w2
j � ⇢

iX

j=1

w02
j = w��2w3��

i .

Therefore, we have:

�(2)
u
i

 '(wi) =
2w2(��2) ⇥ ⇢w2

i (w
3��
max � w3��

i)2.

Let @'(w
i

)
@w

i

= 0, we have wi =
w

max

(4��)1/(3��) , and:

�(2)
max 2w2(��2)⇢[

wmax

(4� �)1/(3��)
]2(

3� �

4� �
)2(w2

max)
3��

= [(3� �)(4� �)�
4��

3��]2 2w��1N3��

In Lemma 5.4, we give an upper bound of �(2)
u
i

, while its value is often much

smaller. Specifically, �(2)
u
i

= 0 when d(ui) = 1 and d(ui) = maxu2V (G) d(u). In

general, we show that �(2)
max is much smaller than �(1)

max. In the PR graph, we

set w = 50, N = 1,000,000 and vary � = 2.1, 2.3, 2.5, 2.7, 2.9, and then compare

Chapter 5. SEED: Optimal Graph-based Bushy Join 75

�(1)
max and �(2)

max in Table 5.1. It is clear that �(2)
max ⌧ �(1)

max in all cases. When �

increases, observe that �(2)
max decreases significantly while �(1)

max remains in the same

order. In the experiments (Exp-1 in Chapter 5.3), we further compared �(1)
u with

�(2)
u for each data node u using synthetic and real datasets, and the experimental

results demonstrate that �(2)
u ⌧ �(1)

u for all data nodes except those with very

small degree in all datasets.

�max � = 2.1 � = 2.3 � = 2.5 � = 2.7 � = 2.9

�
(1)
max 141,939 195,260 117,851 76,685 141,797

�
(2)
max 7,652 7,652 2,586 710 174

Table 5.1: The number of extra edges introduced by G1
u and G2

u.

�2(G) only supports star and clique to be the join units by Lemma 5.3. In

order to support the other one-hop graphs, we must involve more edges to each

G2
u 2 �2(G), which makes it hard to bound the size of each local graph. We take

it as a future work to find other storage mechanisms that support more one-hop

graphs as the join units, yet still have size-bounded local graphs. In this work, on

top of the graph-based join framework, the SEED algorithm implements �2(G) to

only support star and clique as the join units. In the following, we will refer to G2
u

simply as Gu if not otherwise mentioned.

Implementation Details. Given a data graph G, we implement �2(G) by con-

structing Gu for each u 2 V (G). Specifically, we first aggregate the neighbor edges

of each u to G2
u. Then we apply existing triangle enumeration approaches such as

[AFU13] or our TwinTwigJoin algorithm. For each triangle (u1, u2, u3) generated

with u1 � v2 � v3, we add (u2, u3) to Gu1 as the triangle edge. With Gu for each

u 2 V (G), we can compute the matches of any star or clique using an in-memory

algorithm. The overheads of constructing the new graph storage is dominated

by triangle enumeration, which are relatively small, as shown in the experiment,

76 Chapter 5. SEED: Optimal Graph-based Bushy Join

comparing to the performance gains of using clique as the join unit.

5.2.2 Cost Analysis

We follow the cost model in TwinTwigJoin (Chapter 4.3.2) by summarizing the

map data M (the input and output data of the mapper), shu✏e data S (the data

transferred from mapper to reducer) and reduce data R (the input and output data

of reducer) in each round of Algorithm 4. Considering that most real-life graphs

are power-law graphs, we further contribute to estimate the number of matches of

a pattern graph based on the PR model instead of the ER model, and we show that

the PR model delivers more realistic estimations.

Note that the cost is more complicated than that in TwinTwigJoin, as we do not

know whether P l
i (or P

r
i) is a join unit or a partial pattern. Consequently, in order

to compute the cost, we first consider an arbitrary join R(P�) = R(p) 1 R(P↵),

where p is a join unit and P↵, P� are two partial patterns. Let M(P), S(P) and

R(P) denote the map data, shu✏e data and reduce data regarding a certain pattern

P . According to Algorithm 4, we have:

• The mapper handles the partial pattern P↵ and the join unit p in di↵erent

ways. For P↵, the mapper takes the matches R(P↵) as inputs and directly

outputs them with the join key. Therefore, M(P↵) = 2R(P↵). As for the

join unit p, the mapper first reads Gu for each data node u to compute R(p),

then outputs the results. Denote �(G) as the set of triangles in G, and it is

clear that
P

u2V (G) E(Gu) = �(G). Therefore, M(p) = �(G) +R(p).

• The shu✏e transfers the mapper’s outputs to the corresponding reducer.

Therefore, the shu✏e data is also the mapper’s output data, and we have

S(P↵) = R(P↵) and S(p) = R(p).

Chapter 5. SEED: Optimal Graph-based Bushy Join 77

• The reducer takes R(P↵) and R(p) as inputs to compute R(P�). Apparently,

the input data are R(P↵) = R(P↵) and R(p) = R(p), and the output data

are R(P�) = R(P�).

Summarizing the above, the cost for processing the join unit p in a certain join

is:

T (p) = |M(p)|+ |S(p)|+ |R(p)| = |�(G)|+ 3|R(p)| (5.3)

and the cost for processing the partial pattern P↵ is:

T (P↵) = |M(P↵)|+ |S(P↵)|+ |R(P↵)| = 5|R(P↵)| (5.4)

Note that R(P↵) must have been generated in earlier round, while the cost to

output R(P↵) is involved in T (P↵) for consistency, and R(P�) will be accordingly

computed in T (P�).

Given an execution plan E = (D, J), where D = {p0, p1, . . . , pt}, it is processed

using t rounds of joins, and in the i[-th] round the partial results R(Pi) are gen-

erated. We compute the cost by putting all costs of processing pi and Pi together

as:

C(E) =
tX

i=0

T (pi) +
t�1X

i=1

T (Pi), (5.5)

where T (pi) and T (Pi) are computed via Equation 5.3 and Equation 5.4, respec-

tively.

Result-Size Estimation. We need to estimate |R(P)| for a certain P in Equa-

tion 5.3 and Equation 5.4. It is obvious that all partial patterns in Algorithm 4

are connected. Given a connected pattern graph P , we next show how to estimate

|RG(P)| in the PR graph G.

Suppose P is constructed from an edge by extending one edge step by step,

and P (1) and P (2) are two consecutive patterns obtained along the process. More

specifically, given v 2 V (P (1)) and v0 2 V (P (2)) where (v, v0) 62 E(P (1)), P (2) is

78 Chapter 5. SEED: Optimal Graph-based Bushy Join

obtained by adding the edge (v, v0) to P (1). We let � and �0 be the degrees of v

and v0 in P (1), respectively. Here, if v0 62 V (P (1)), �0 = 0. Given a match f of P (1),

we let f(v) = u. We then extend f to generate the match f 0 of P (2) by locating

another node u0 2 V (G) where (u, u0) 2 E(G) and f 0(v0) = u0. Suppose there are

by expectation � matches of P (2) that can be extended from one certain match of

P (1), we have:

|RG(P
(2))| = �|RG(P

(1))|

The value of � depends on how the edge is extended from P (1) to form P (2).

There are two cases, namely, v0 62 V (P (1)) and v0 2 V (P (1)), which are respectively

discussed in the following.

(Case 1) v0 62 V (P (1)). In this case, a new node v0 is introduced to extend the

edge (v, v0). The potential match of v0, namely u0, can be any data node in G.

Therefore, we have:

� = E[
X

u02V (G)

d(u)d(u0)⇢] = E[d(u)]⇥ ⇢
X

u02V (G)

E[d(u0)]

= E[d(u)]⇥ ⇢
NX

i=1

wi = E[d(u)] =
NX

i=1

�iwi.

where �i is the probability that u appears as ui in the matches of P (1).

For ease of analysis, we focus on the relationships between u and its neighbors.

Denote k-star(u) as the star with k leaves rooted on u. Clearly, u and its neighbors

in the match form a �-star(u) (Note that the degree of u in the match is equal to

Chapter 5. SEED: Optimal Graph-based Bushy Join 79

the degree of v in P (1), that is �). Thus, we have:

�i = Pr(u = ui | u and its neighbors form a �-star(u))

=
Pr(u and its neighbors form a �-star(u) | u = ui)Pr(u = ui)

Pr(u and its neighbors form a �-star(u))

=
Pr(u and its neighbors form a �-star(u) | u = ui)PN
j=1 Pr(u and its neighbors form a �-star(u) | u = uj)

=
Pr(Ei)PN
j=1 Pr(Ej)

.

where Ei denotes the event that u and its neighbors form a �-star(u) given u = ui.

Given any node set {ut1 , ut2 , . . . , ut
�

} ⇢ V (G), Ei can be witnessed as there is an

edge connecting ui and ut
s

for any 1 s �. According to the PR model, the

probability that any ui and uj are connected is Pri,j = wiwj⇢, hence we have:

Pr(Ei) =
X

{u
t1 ,ut2 ,...,ut

�

}⇢V (G)

Pri,t1 ⇥ · · ·⇥ Pri,t
�

=
X

{u
t1 ,ut2 ,...,ut

�

}⇢V (G)

wiwt1⇢⇥ · · ·⇥ wiwt
�

⇢

= (wi)
� ⇥ C,

where C = ⇢�
P

{u
t1 ,ut2 ,...,ut

�

}2V (G)

Q�
s=1 wt

s

.

Note that C is a constant for any i. Therefore:

�i =
Pr(Ei)PN
j=1 Pr(Ej)

=
w�

iPN
j=1 w

�
j

, (5.6)

and

� =
NX

i=1

w�
i

⌃N
j=1w

�
j

wi =
⌃N

i=1w
�+1
i

⌃N
i=1w

�
i

. (5.7)

(Case 2) v0 2 V (P (1)). In this case, a new edge is added between two existing

nodes in P (1). In this case, a new edge is added between two existing nodes in

P (1). Consider the two nodes v and v0 in P (1), and u and u0 are their matches in

80 Chapter 5. SEED: Optimal Graph-based Bushy Join

an arbitrary match of P (1). We compute � as:

� = E[d(u)d(u0)⇢] = ⇢E[d(u)d(u0)].

We still consider the neighbors of u and u0 in the match. Suppose u and u0 has

� and �0 neighbors respectively. Denote �i,j as the probability that u and u0 appear

as ui and uj in the match. Then:

E[d(u)d(u0)] =
NX

i,j=1

�i,j wi wj.

There are two cases. If u and u0 have no common neighbor in the match, it is

obvious that:

�i,j = �i�j =
w�

iPN
s=1 w

�
s

w�0
jPN

s=1 w
�0
s

,

where �i and �j are computed according to Equation 5.6.

If their neighbors coincide, u and u0 are not independent. Let Vc =

{uc1 , uc2 , . . . , uc
t

} denote the common neighbors of u and u0, Vd = {ud1 , . . . , ud
��t

}

denote only u’s neighbors and V 0
d = {ud01

, . . . , ud0
�

0�t

} denote only u0’s neighbors.

The structure formed by u, u0 and their neighbors is called a twin star, and u and

u0 are the roots of the twin star. We have:

�i,j = Pr(u = ui, u
0 = uj | u, u0 root a twin star)

=
Pr(u, u0 root a twin star | u = ui, u0 = uj)Pr(u = ui, u0 = uj)

Pr(u, u0 root a twin star)

=
Pr(Ei,j)PN

s,t=1 Pr(Es,t)
,

where Ei,j denotes the event that u and u0 root a twin star given u = ui and u0 = uj.

Chapter 5. SEED: Optimal Graph-based Bushy Join 81

Following the same idea in deriving Equation 5.7, we have:

Pr(Ei,j) =
X

V
c

⇢V (G)

X

V
d

⇢V (G)

X

V 0
d

⇢V (G)

Pri,c1 ⇥ Pri,c2 ⇥ · · ·Pri,c
t

⇥ Pri,d1 ⇥ Pri,d2 ⇥ · · ·Pri,d
��t

⇥ Prj,c1 ⇥ Prj,c2 ⇥ · · ·Prj,c
t

⇥ Prj,d01 ⇥ Prj,d02 ⇥ · · ·Prj,d0
�

0�t

= w�
iw

�0

j ⇥
X

V
c

⇢V (G)

tY

s=1

⇢2w2
c
s

⇥
X

V
d

⇢V (G)

��tY

s=1

⇢wd
s

⇥
X

V 0
d

⇢V (G)

�0�tY

s=1

⇢wd0
s

= w�
iw

�0

j ⇥ C,

(5.8)

where

C =
X

V
c

⇢V (G)

tY

s=1

⇢2w2
c
s

⇥
X

V
d

⇢V (G)

��tY

s=1

⇢wd
s

⇥
X

V 0
d

⇢V (G)

�0�tY

s=1

⇢wd0
s

.

Note that C is a constant for any i, j. Therefore:

�i,j =
Pr(Ei,j)PN

s,t=1 Pr(Es,t)
=

w�
iw

�0
jPN

s,t=1 w
�
sw

�0
t

=
w�

iPN
s=1 w

�
s

w�0
jPN

s=1 w
�0
s

.

As a result of both cases, we have:

� = ⇢
NX

i,j=1

�i,jwiwj

= ⇢⇥ ⌃
N
i=1w

�+1
i

⌃N
i=1w

�
i

⇥
⌃N

j=1w
�0+1
j

⌃N
j=1w

�0
j

.

(5.9)

Given Equation 5.7 and Equation 5.9, we compute |RG(P)| for any connected

pattern graph P as follows. First, we run Depth-First-Search (DFS) over P to

obtain the DFS-tree. Then, starting from an edge e with |RG(e)| = 2M , we apply

Equation 5.7 iteratively to compute the size of the tree. Finally, we apply Equa-

tion 5.9 iteratively as we extend the non-tree edges. Note that, given a graph G,

82 Chapter 5. SEED: Optimal Graph-based Bushy Join

the � calculated by Equation 5.7 or Equation 5.9 only depends on � and �0, thus

can be precomputed.

|RG(P)| � = 2.1 � = 2.3 � = 2.5 � = 2.7 � = 2.9

|RG(P
ld
2)| 67618.5 14632.5 1993.0 610.2 83.4

|RG(P
b
2)| 230.2 69.5 16.3 6.2 1.5

Table 5.2: The number of the matches of P ld
2 and P b

2 in the PR graph (in billions).

Remark 5.1. The plans E1 and E2 shown in Figure 3.1 are actually the optimal

execution plans computed using the ER model and the PR model, respectively. Ob-

serve that E1 di↵ers from the E2 in the second round where P ld
2 is processed instead

of P b
2 . Generally, we have |R(P ld

2)| < |R(P b
2)| in the ER model [LQLC15], but

|R(P ld
2)|� |R(P b

2)| in the PR model. As a result, E1 and E2 are returned as the op-

timal plan regarding the ER model and PR model, respectively. Next we consider an

ER graph < and a PR graph G with N = 1,000,000 and M = 25,000,000, and com-

pute |R(P ld
2)| and |R(P b

2)| in both graphs for a comparison. According to [LQLC15],

we have |R<(P ld
2)| = 0.78, and |R<(P b

2)| = 312. Then we compute |RG(P ld
2)| and

|RG(P b
2)| using the proposed method, and show the results with various power-law

exponents in Table 5.2. It is clear to see that |RG(P ld
2)|� |RG(P b

2)| in all cases. In

Chapter 5.3, we further experimented using real-life graphs, which confirms that the

PR model o↵ers more realistic estimation and consequently renders better execution

plan.

5.2.3 Optimal Execution Plan

In this subchapter, we propose a dynamic-programming algorithm to compute the

optimal bushy join plan for SEED. We further consider overlaps among the join

units.

Chapter 5. SEED: Optimal Graph-based Bushy Join 83

Non-overlapped Case. To show the basic idea, we first introduce the non-

overlapped case.

Definition 5.2. (Partial Execution) A partial execution, denoted EP
↵

, is an

execution plan that computes the partial pattern P↵ ✓ P .

Given a partial pattern P↵ ✓ P , the optimal partial execution plan of P↵

satisfies:

C(EP
↵

) =

8
>><

>>:

0, P↵ is a join unit,

min
P l

↵

⇢P
↵

{C(EP l

↵

) + T (P l
↵) + C(EP r

↵

) + T (P r
↵)}, otherwise.

(5.10)

where P r
↵ = P↵ \ P l

↵, T (P l
↵) and T (P r

↵) are computed via Equation 5.3 or Equa-

tion 5.4 depending on whether they are join units or partial patterns. The optimal

partial execution EP
↵

is obtained while minimizing the sum of the cost of the opti-

mal EP 0
l

and EP 0
r

, and the cost of processing the join R(P↵) = R(P l
↵) 1 R(P r

↵), that

is T (P l
↵) + T (P r

↵). Note that C(EP
↵

) = 0 if P↵ is a join unit, as no join is needed

to compute the results of a join unit (Definiton 3.1).

We use a hash map H to maintain the so far best partial execution for each

P↵ ✓ P . The entry of the hash map for P↵ has the form (P↵, T , C, P l
↵, P

r
↵), where

T is an auxiliary cost computed via either Equation 5.3 or Equation 5.4, C is the

so far best cost C(EP
↵

) while evaluating P↵, P l
↵ is the left-join pattern when the

current best cost is obtained, and P r
↵ is the corresponding right-join pattern, where

P r
↵ = P↵ \ P l

↵, as no overlap is considered. The hash map is indexed by P↵ and we

can access one specific item I for a certain P↵ via HP
↵

(I), where I 2 {T , C, P l
↵, P

r
↵}.

The algorithm to compute the optimal execution plan is shown in Algorithm 5.

In line 5, We initialize an entry in the hash map for each connected P↵ ✓ P that

is potentially a partial pattern (line 2). Note that we precompute T (P↵) for each

P↵. To find the optimal execution plan for P , we need to accordingly find the

84 Chapter 5. SEED: Optimal Graph-based Bushy Join

Algorithm 5: OptExecPlan(data graph G, pattern graph P)
Input : The data graph G and the pattern graph P

Output : The optimal execution plan w.r.t. P .

1 forall the P↵ ✓ P , s.t. P↵ is connected do

2 H H [(P↵, T (P↵),1, ;, ;);

3 for s = 1 . . .m, where m = |E(P)| do

4 forall the P↵ ⇢ P s.t. P↵ is connected and |E(P↵)| = s do

5 if P↵ is a join unit then

6 HP
↵

(C) = 0;

7 else

8 forall the P l
↵ ⇢ P↵ s.t. P l

↵ and P r
↵ = P↵ \ P l

↵ are connected do

9 C HP l

↵

(C) +HP l

↵

(T) +HP r

↵

(C) +HP r

↵

(T); if C < HP
↵

(C) then

10 HP
↵

(C) C;

11 HP
↵

(P l
↵) P l

↵; HP
↵

(P r
↵) P r

↵;

12 Eo ComputePlan(H, P);

13 return Eo;

optimal partial execution plans for all P ’s subgraphs, in non-decreasing order of

their sizes. The algorithm performs three nested loops. The first loop in line 3

confines the size of the partial patterns to s, and the second loop enumerates all

possible partial patterns with size s (line 4). If the current partial pattern P↵ is

a join unit, we simply set the corresponding cost to 0 (line 6). Otherwise, the

third loop is triggered to update the optimal execution plan for P↵ (line 8). We

enumerate all P l
↵ (and P r

↵ = P↵ \ P l
↵), and for each P l

↵ where P l
↵ and P r

↵ are both

connected, we compute C(EP
↵

) via Equation 5.10 (line 9). In this way, we finally

find the P l
↵ to minimize C(EP

↵

), and update the entry of P↵ by setting HP
↵

(C),

Chapter 5. SEED: Optimal Graph-based Bushy Join 85

HP
↵

(P l
↵) and HP

↵

(P r
↵) correspondingly (line 10-11). After all the entries in the

hash map are computed, we first look up the entry for P to locate the P l
↵ and P r

↵

and repeat the procedure recursively on P l
↵ and P r

↵ until P l
↵ = ;. In this way, we

compute the optimal execution plan (line 12).

Lemma 5.5. The space complexity and time complexity of Algorithm 5 are O(2m)

and O(3m), respectively.

Proof. We first show the space complexity. Each entry inH is uniquely identified by

the partial pattern P↵, and there are at most 2m partial patterns, which consumes

O(2m) space.

Next we prove the time complexity. There are at most
�
m
s

�
partial patterns of

P sized s, which trigger
�
m
s

�
calls over the second loop. For each partial pattern

P↵ of size s, we enumerate all possible connected subgraphs of it as P l
↵, which

incurs at most 2s calls. By pre-computing any connected partial patterns of P

(which use O(2m) space and time), we can verify the connectedness of P l
↵ and

P r
↵ in O(1) time. Moreover, updating the entry has the cost O(1). Note that

Pm
s=1

�
m
s

�
· 2s = (1 + 2)m = 3m. Therefore, the time complexity of Algorithm 5 is

O(3m).

Discussion 5.2. In practice, the processing time for Algorithm 5 is much smaller

than O(3m) since we require that all partial patterns are connected.

Overlapped Case. The following lemma inspires us to consider overlaps among

the join units.

Lemma 5.6. Given a pattern graph P , and another pattern graph P�, where v, v0 2

V (P�), (v, v0) 62 E(P�) and P = P� [{(v, v0)}, we have:

|R(P)| |R(P�)|.

86 Chapter 5. SEED: Optimal Graph-based Bushy Join

Proof. Apparently, 8f 2 R(P), f 2 R(P�). Therefore, |R(P)| |R(P�)|.

Example 5.2. We have actually shown overlaps among the join units in Figure 3.1.

For example, we have E(p0) \ E(p1) = {(v1, v3)} in the bushy tree E2. Let p�1 =

p1 \ (v1, v3). In the non-overlapped case, we will execute R(P 0
1) = R(p0) 1 R(p�1)

instead. Clearly, |R(p1)| |R(p�1)| according to Lemma 5.6, and hence the plan

with overlaps is better.

A naive solution to allow the join units to overlap and still guarantee the op-

timality in Algorithm 5 is: when we evaluate P r
↵ = P↵ \ P l

↵ in line 8, we further

enumerate all possible P r⇤
↵ , where P r⇤

↵ are all connected structures formed by adding

any subset of E(P l
↵) to P r

↵. As a result, the time complexity is of the order:

mX

s=1

✓
m

s

◆
·

sX

t=1

✓
s

t

◆
2t = 4m.

All or Nothing. The time complexity of computing the optimal execution in the

overlapped case can be reduced to O(3m) with some practical relaxation. Given

a partial pattern P↵, and its left-join (resp. right-join) pattern P l
↵ (resp. P r

↵) (P
0
l

and P r
↵ may overlap), we define the redundant node as:

Definition 5.3. (Redundant Node) A node vr 2 V (P l
↵)\ V (P r

↵) is a redundant

node w.r.t. P↵ = P l
↵ [P r

↵, if P↵ = (P l
↵ \ vr) [P r

↵ or P↵ = P l
↵ [(P r

↵ \ vr).

In other words, the removal of a redundant node from either P l
↵ or P r

↵ does not

a↵ect the join results. Denote Vr as a set of redundant nodes w.r.t. P↵ = P l
↵ [P r

↵.

We further define the cut nodes Vc and the cut edges Ec as follows:

Vc(P
l
↵, P

r
↵) = (V (P l

↵) \ V (P r
↵)) \ Vr

Ec(P
l
↵, P

r
↵) = {(v, v0) | (v, v0) 2 E(P↵) ^ v, v0 2 Vc(P

l
↵, P

r
↵)}.

Chapter 5. SEED: Optimal Graph-based Bushy Join 87

Example 5.3. In Figure 5.1, we show a partial pattern P↵ and its left-join (resp.

right-join) pattern P l
↵ (resp. P r

↵). Clearly, v4 is a redundant node since P↵ =

P l
↵ [(P r

↵ \ v4), and we have Vc(P l
↵, P

r
↵) = {v2, v3} and Ec(P l

↵, P
r
↵) = {(v2, v3)}.

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v2

v3

v4

v5

v6

P↵ P l
↵ P r

↵

Figure 5.1: The redundant node, cut nodes and cut edges.

Based on the cut edges, we introduce an all-or-nothing strategy, which reduces

the time complexity of computing the optimal execution plan with overlaps to

O(3m). Specifically, when we evaluate P r
↵ = P↵\P l

↵ in Algorithm 5 (line 8), instead

of enumerating P r⇤
↵ by considering all subsets of E(P l

↵) in the naive solution, we

only consider adding all the cut edges w.r.t. P↵ = P l
↵ [P r

↵, or none of them. We

show that the all-or-nothing strategy returns an execution plan that is almost as

good as the naive solution.

Denote Eo = {Do, Jo} as the optimal execution plan with overlaps obtained by

the naive solution and E 0
o as the best execution plan obtained by the all-or-nothing

strategy. We know in the i[-th] round of the execution plan Eo, the following join

is processed:

R(Pi) = R(P l
i) 1 R(P r

i), 81 i |Do|� 1.

We then construct an intermediate execution plan eE by replacing each of the above

join as R(Pi) = R(P l
i) 1 R(fP r

i), where fP r
i = P r

i [{e1, e2, . . . , es}, and each ei 2

Ec(P l
i , P

r
i) ^ ei 62 E(P r

i). In other words, the alternative right-join pattern fP r
i is

obtained by adding all the cut edges to P r
i . It is trivial when fP r

i = P r
i . Otherwise,

we first generate R(fP r
i) by performing the joins R(P r

i) 1 R(e1) 1 · · · 1 R(er)

sequentially, and each join handles a cut edge. Then we execute the join R(Pi) =

R(P l
i) 1 R(fP r

i).

88 Chapter 5. SEED: Optimal Graph-based Bushy Join

Leveraging the intermediate execution plan eE , we prove that E 0
o (the best exe-

cution plan computed by “all-or-nothing” strategy) has the cost of the same order

as Eo (the optimal solution). We first prove C(eE) = ⇥(C(Eo)).

Lemma 5.7. If C(Eo) � ⇥(M), then C(eE) = ⇥(C(Eo)).

Proof. We divide eE into two parts. For 1 i t, the first part, denoted as eE1,

performs the join R(Pi) = R(P l
i) 1 R(fP r

i); the second part, denoted as eE2, handles

the generation of each R(fP r
i) by sequentially joining the matches of each cut edge

to R(P r
i). According to Lemma 5.6, we have:

|R(fP r
i)| |R(P r

i)|. (5.11)

Clearly, C(eE) = C(eE1) + C(eE2). We accordingly divide the proof into two parts.

(Part 1) We prove C(eE1) ⇥(C(Eo)). Denote EP
i

and eEP
i

as the partial execu-

tion of generating R(Pi) in Eo and eE1. According to Equation 5.10, we have:

C(EP
i

) = C(EP l

i

) + T (P l
i) + C(EP r

i

) + T (P r
i),

C(eEP
i

) = C(eEP l

i

) + T (P l
i) + C(eEP r

i

) + T (fP r
i),

where T (P↵) are computed via Equation 5.3 or Equation 5.4 depending on whether

P↵ is a join unit or a partial pattern.

Let t = |Do|�1 denote the number of rounds of Eo. We prove Part 1 by inducing

on i = 1, 2, . . . , t.

When i = 1, P l
1 and P r

1 must be the join units, thus C(EP l

i

) = C(eEP l

i

) = C(EP r

i

) =

C(eEP r

i

) = 0. Further, we have T (fP r
1) T (P r

1) given that |R(fP r
1)| |R(P r

1)| by

Equation 5.11. Hence, C(eEP1) ⇥(C(EP1)).

Assume that C(eEP
i

) ⇥(C(EP
i

)) holds for all 1 < i s � 1, s < t. Consider

i = s. Note that P l
s and P r

s are some Pj with j < i, we hence have C(eEP l

s

)

⇥(EP l

s

) and C(eEP r

s

) ⇥(EP r

s

) by the assumption. Additionally, T (fP r
s) T (P r

s) by

Chapter 5. SEED: Optimal Graph-based Bushy Join 89

Equation 5.11. It is immediate that C(eEP
s

) ⇥(C(EP
s

)). By induction, we have:

C(eE1)(= C(eEP
t

)) ⇥(CE
o

)(= ⇥(C(EP
t

))).

(Part 2) We prove C(eE2) ⇥(C(E0)). In this part, we will generate each

R(fP r
i) by joining the matches of the cut edges {e1, e2, . . . , es} with R(P r

i). We

suppose at least one cut edge is processed as otherwise it is trivial. Denote fP r
i [x]

as P r
i [{e1, e2, . . . , ex}. As each ei is a cut edge for P r

i , we have R(fP r
i [x]) R(P r

i)

according to Equation 5.11.

Denote C(eE�fP r

i

) as the cost to generate R(fP r
i) in the i[-th] round. We have:

C(eE2) =
tX

i=1

C(eE�fP r

i

).

Let fP r
i [x] be P r

i [{e1, e2, . . . , ex}, and specifically fP r
i [0] = P r

i . According to

Equation 5.5, we have:

C(eE�fP r

i

) =
sX

j=1

T (ej) +
sX

x=0

T (fP r
i [x]).

Note that the number of cut edges is often small, and we treat s as a constant.

In this sense,
Ps

j=1 T (ej) = ⇥(M) and
Ps

x=0 T (fP r
i [x]) = ⇥(T (P r

i)), as T (fP r
i [x])

⇥(T (P r
i)) for each x given that |R(fP r

i [x])| |R(P r
i)| by Equation 5.11. Therefore:

C(eE2) = ⇥(M) +
tX

i=0

⇥(T (Pi
r

)) ⇥(C(Eo)).

According to Part 1 and Part 2, C(eE) ⇥(C(Eo)), and apparently, C(eE) � C(Eo).

Therefore, C(eE) = ⇥(C(Eo)).

We then show C(E 0
o) C(eE) under some practical relaxations.

Corollary 5.2. Given a pattern graph P , and any P l and P r, such that P =

P l [P r, we have (P \ P l) ✓ P r.

90 Chapter 5. SEED: Optimal Graph-based Bushy Join

Proof. This is apparently true as (P \ P l) is the smallest P r that satisfies P =

P l [P r.

Corollary 5.3. Given a pattern graph P , and any left-join (resp. right-join) pat-

tern P l (resp. P r), such that P = P l [P r, if there is no redundant node w.r.t.

P = P l [P r, then we have V (P r) = V (P \ P l).

Proof. It is obvious that V (P \ P l) ✓ V (P r) by Corollary 5.2.

We then prove V (P r) ✓ V (P\P l). For 8v 2 V (P r), we claim that v 2 V (P\P l).

There are two cases. If v 62 V (P l), it is immediate that the claim is true. Otherwise,

assume that v 62 V (P \ P l). Then (P \ P l) ✓ P r \ {v}. Therefore, we must have

P = P l [(P r \ {v}). In other words, v is a redundant node w.r.t. P = P l [P r.

This draws a contradiction.

Based on the above cases, the corollary holds.

Lemma 5.8. If there is no redundant node w.r.t. Pi = P l
i [P r

i for all 1 i

|Do|� 1 in Eo = (Do, Jo), then C(E 0
o) C(eE).

Proof. Given Pi = P l
i [P r

i in Eo, and fP r
i = P r

i [Ec(P l
i , P

r
i), we further denote

gP r⇤
i = (Pi \ P l

i) [Ec(P l
i , (Pi \ P l

i)).

We claim that eE must be within the searching space of the all-or-nothing strat-

egy. It su�ces to show that the join R(Pi) = R(P l
i) 1 R(fP r

i) will be evaluated in

the all-or-nothing strategy. Recall the process of the all-or-nothing strategy. When

we have P l
i , we will consider gP r⇤

i as the right-join pattern via the “all” strategy. In

this sense, we simply prove the claim by showing that:

fP r
i = gP r⇤

i .

Since there is no redundant node w.r.t. Pi = P l
i [P r

i , according to Corollary 5.3.

we have:

V (P r
i) = V (Pi \ P l

i).

Chapter 5. SEED: Optimal Graph-based Bushy Join 91

Therefore, V (gP r⇤
i) = V (fP r

i).

We first show fP r
i ✓ gP r⇤

i . 8e 2 E(fP r
i), we have two cases: (1) if e 2 P r

i and

e 62 Ec(P l
i , P

r
i), then e 62 P l

i . It is immediate that e 2 Pi \ P l
i . Hence, e 2gP r⇤

i ; (2)

If e 2 Ec(P l
i , P

r
i), let e = (v1, v2), v1, v2 2 V (P 0). This means v1, v2 2 Vc(P l

i , P
r
i) =

V (P l
i)\V (P r

i). On the other way, V (P l
i)\V (P r

i) = V (P l
i)\V (P 0\P l

i) = Vc(P l
i , P

0\

P l
i), which suggests e = (v1, v2) 2 Ec(P l

i , P
0 \ P l

i). Therefore, e 2 E(gP r⇤
i). With

both cases, we have fP r
i ✓gP r⇤

i .

Then we show gP r⇤
i ✓ fP r

i . 8e 2 E(gP r⇤
i), it is obvious that e 2 Pi \ P l

i . By

Corollary 5.2, we have Pi \P l
i ✓ P r

i , which suggests e 2 E(fP r
i). Thus, it holds that

gP r⇤
i ✓ fP r

i .

In conclusion, we have fP r
i = gP r⇤

i . This implies that eE must be within the

searching space of the “all-or-nothing” strategy. While E 0
o is the optimal solution

in the space, it is immediate that C(E 0
o) C(eE).

Theorem 5.1. If C(Eo) � ⇥(M) and there is no redundant node w.r.t. Pi = P l
i[P r

i

for all 1 i |Do|� 1 in Eo = (Do, Jo), then C(E 0
o) = ⇥(C(Eo))

Proof. With Lemma 5.7 and Lemma 5.8, Theorem 5.1 holds.

Discussion 5.3. We show that the two conditions in Theorem 5.1 are practically

reasonable. First, C(Eo) � ⇥(M). Actually, the cost of the execution is often

far larger than the size of the data graph. Second, no redundant node is involved.

In practice, the involvements of redundant nodes usually result in more iterations,

while the gain of such redundancies is rather limited.

5.3 Performance Studies

In this subchapter, we show the experimental results for SEED. We rented a cluster

from Amazon of up to 15 computing nodes including one master node and 14 slave

92 Chapter 5. SEED: Optimal Graph-based Bushy Join

nodes and we used 10 slave nodes by default. The instance configurations of master

and slave nodes are listed in Table 5.3. The hadoop configuration can be referred

to that in Chapter 4.6.

Node Type Instance vCPU Memory Storage

master m3.xlarge 4 15GB 2⇥ 40GB SSD

slave c3.4xlarge 16 30GB 2⇥ 160GB SSD

Table 5.3: Amazon virtual instance configurations.

Datasets. We tested six real-world data graphs and two synthetic graphs

(see Table 5.4). Among them, lj, orkut and fs were downloaded from SNAP

(http://snap.stanford.edu), yt was downloaded from KONECT (http://konect.uni-

koblenz.de), and eu and uk was downloaded from WEB (http://law.di.unimi.it).

pg21 and pg29 are two power-law random graphs generated via [VL05] with � = 2.1

and � = 2.9, respectively. For each dataset, we list the number of nodes and edges

(Note: m is for millions), and T (G) - the time of constructing the SCP graph

storage �2(G) (Chapter 5.2.1). Note that the T (G) for pg21 and pg29 are of no

interest. The computation of SCP graph storage is query independent, and thus is

considered as preprocessing step.

dataset name N M T(G)(s)

youtube yt 3.22m 12.22m 27

eu-2015 eu 0.86m 16.14m 41

live-journal lj 4.85m 42.85m 54

com-orkut orkut 3.07m 117.19m 185

uk-2002 uk 18.52m 261.79m 841

friendster fs 65.61m 1806.07m 2331

power-law(� = 2.1) pg21 10,000 50,000 -

power-law(� = 2.9) pg29 10,000 50,000 -

Table 5.4: Datasets used in the SEED Experiments.

Algorithms. We compared six algorithms:

Chapter 5. SEED: Optimal Graph-based Bushy Join 93

• SEED: The SEED algorithm implemented in MapReduce with optimal bushy

join plan and overlapping join units (Chapter 5.2.3).

• SEED-LD: SEED but with the (best) left-deep join plan.

• SEED-NO: SEED without overlapping join units.

• TT: The TwinTwigJoin algorithm implemented in MapReduce with all opti-

mizations (Chapter 4).

• PSgL: The Pregel-based subgraph enumeration algorithm with all optimiza-

tions proposed by Shao et al. [SCC+14].

All algorithms were compiled with Java 1.7. We implemented SEED and all its

variants and TT with Hadoop 2.6.0. All algorithms except PSgL are running on

the Yarn framework. The authors of [SCC+14] kindly provided the codes for PSgL,

implemented with Hadoop 1.2.0 on an old MapReduce framework. The perfor-

mance gap between Yarn and old MapReduce is very small, hence the comparison

between PSgL and the other algorithms is fair. We set the maximum running time

to 4 hours. If a test did not stop within the time limit, or failed due to out-of-

memory exceptions or other errors, we denoted the running time as INF. The time

to compute the execution plan using Algorithm 5 is less than one second for all

test cases, and thus has been omitted from the total processing time.

Queries. The seven queries denoted by q1 to q7 are illustrated in Figure 5.2 with

the number of edges varying from 4 to 10 and the number of nodes varying from

4 to 6. We show the order of the nodes for automorphism resolution (Remark 2.1)

under each query graph. Here, we have considered all queries (q1 - q4, q7) except

triangle in the literature. Note that triangle enumeration is used in this work as a

preprocessing step to construct the SCP storage. We further added the queries q5

94 Chapter 5. SEED: Optimal Graph-based Bushy Join

and q6 to demonstrate the advantages of our proposed techniques.

v1

v2 v3

v4 v1

v2 v3

v4 v1

v2 v3

v4
v1

v2

v3 v4

v5

v1
v2

v3 v4

v5
v1

v2 v5

v3 v4

v1
v2

v3
v4

v5

v6

v1 < v2, v1 < v3
v1 < v4, v2 < v4

v1 < v3
v2 < v4

v1 < v2 < v3 < v4 v2 < v5

v2 < v5
v3 < v4

v1 < v2 < v3
v3 < v4 < v5v3 < v5

q1 q2 q3 q4

q5 q6 q7
Figure 5.2: Queries used in the SEED experiment.

Exp-1: SCP Storage Mechanism. We measured �(1)
u (Lemma 5.2) and �(2)

u

(Lemma 5.4) and their relationships with d(u) for each data node u in both syn-

thetic and real graphs. Results on the datasets pg21, pg29, yt and orkut are shown

in Figure 5.3, where the X-axis depicts d(u) and the Y-axis depicts �(1)
u and �(2)

u .

For clarity, we only reported the results for top-10000 largest nodes of yt and orkut.

It is clear that �(1)
u is much more skewed and larger than �(2)

u in all tests. Par-

ticularly, we fit the curves for the d(u)-�(1)
u relationship in the synthetic graphs.

The results show that �(1)
u is almost proportional to d(u)2, which conforms with

the theoretical result in Lemma 5.2. On the real graphs yt and lj (Figure 5.3(c),

Figure 5.3(d)), besides skewness, we also observe that �(1)
max on lj is nearly half the

size of the data graph. As a result, �1(G) can not scale to large data graphs. On

the other side, the distributions of �(2)
u are comparatively flat and small over d(u)

in all tests. The results validate that �2(G) achieves good load balance and scal-

ability, and hence is more storage-e�cient. The local graph statistics for all other

datasets are similar to those shown in Figure 5.3 and hence have been omitted.

Chapter 5. SEED: Optimal Graph-based Bushy Join 95

0 50 100 150 200 250

0

200

400

600

800

1000

1200

 Local Graph 1
 Local Graph 2

Si
ze

 o
f L

oc
al

 G
ra

ph

d(u)

(a) Dataset: pg21

0 50 100 150 200 250 300

0

100

200

300

400

500

600

700

 Local Graph 1
 Local Graph 2

Si
ze

 o
f L

oc
al

 G
ra

ph

d(u)

(b) Dataset: pg29

0 20000 40000 60000 80000 100000

0

50000

100000

150000

200000

250000

300000

 Local Graph 1
 Local Graph 2

Si
ze

 o
f L

oc
al

 G
ra

ph

d(u)

(c) Dataset: yt

0 5000100001500020000250003000035000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

 Local Graph 1
 Local Graph 2

Si
ze

 o
f L

oc
al

 G
ra

ph

d(u)

(d) Dataset: orkut

Figure 5.3: The results of Exp-1: SCP Storage Mechanism.

Exp-2: Bushy vs Left-deep. We compare the performance of SEED and SEED-

LD using query q5 on yt to test the advantage of using the bushy join plan. The

plans E1 and E2 shown in Figure 3.1 illustrate the optimal execution plans for

SEED-LD and SEED, respectively. Table 5.5 presents the experimental results, in

which we observe a much better performance of SEED, compared to SEED-LD. We

also show the output of mappers and reducers in each stage and compute the cost

using Equation 5.5. The output of reduce3 is not shown, as it is the final result and

excluded in the cost. Observe that the algorithm with smaller cost always ends

up with better performance. Clearly, SEED, with smaller cost, performs better

than SEED-LD. The results are similar in the other datasets. We conclude that the

optimal bushy join plan computed via Algorithm 5 outperforms the left-deep join

96 Chapter 5. SEED: Optimal Graph-based Bushy Join

plan.

M/R map1 red1 map2 red2 map3 Cost Time(s)
SEED 12.3 3.2 12.3 3.2 6.4 471.9 306

SEED-LD 12.3 3.2 15.5 6110.9 6123.9 31365.2 INF

Table 5.5: The results of Exp-2: Cost comparisons while enumerating q5 on yt
using SEED and SEED-LD (in millions).

As we mentioned in Remark 5.1, the plans E1 and E2 in Figure 3.1 are also the

optimal execution plans computed via the ER model and the PR model, respec-

tively. In Table 5.5, the outputs of reduce2 of SEED and SEED-LD correspond to

|R(P b
2)| and |R(P ld

2)|, and it is obvious that |R(P ld
2)| � |R(P b

2)|. The results are

consistent with our analysis in Remark 5.1 that the PR model o↵ers more realistic

cost estimation, which leads to better execution plan.

We chose q5 in this experiment because of two reasons: (1) its optimal join plan

is bushy; (2) the “optimal” join plans computed via ER model and PR model are

di↵erent.

101

102

103

104

q2 q4

R
u
n
n
in

g
 T

im
e
 (

s)

29

2241

780

2508

SEED
SEED-NO

Figure 5.4: The results of Exp-3: SEED vs SEED-NO.

Exp-3: Overlapping Join Units. This experiment studied the benefit of

overlapping the join units (Chapter 5.2.3). We processed the queries q2 and

q4 on the dataset yt using SEED and SEED-NO. For q2, SEED joins two tri-

angles p0 = ((v1, v2), (v2, v3), (v1, v3)) and p1 = ((v1, v3), (v1, v4), (v3, v4)), while

SEED-NO, without overlapping the join units, can only join p0 to a TwinTwig

Chapter 5. SEED: Optimal Graph-based Bushy Join 97

p01 = ((v1, v4), (v3, v4)). Similarly, while processing q4, SEED handles the triangle

((v1, v2), (v1, v5), (v2, v5)) on the top, while SEED-NO can only use the TwinTwig

((v1, v2), (v1, v5)). In practice, the triangle often renders much fewer results than

the two-edge TwinTwig. Therefore, SEED outperforms SEED-NO, as shown in Fig-

ure 5.4. We obtained similar results on all queries other than q1 (no overlapping

exists), q3, q7 (clique itself is the join unit), and we only presented q2 and q4 as

representatives.

101

102

103

104

INF

yt lj

134 134 220 220

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

PSgL

(a) Query: q1

101

102

103

104

INF

yt lj

29

612

107

5206

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

PSgL

(b) Query: q2

101

102

103

104

INF

yt lj

35

63

279

75

1281

5071

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

PSgL

(c) Query: q3

101

102

103

104

INF

yt lj

780

3282
1686

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

PSgL

(d) Query: q4

101

102

103

104

INF

yt lj

306

5814

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

PSgL

(e) Query: q5

101

102

103

104

INF

yt lj

80

229

850 1200

6968

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

PSgL

(f) Query: q6

101

102

103

104

INF

yt lj

40

129

493

1347

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

PSgL

(g) Query: q7

Figure 5.5: The results of Exp-4: Test against all queries.

Exp-4: Test against all queries. We compared SEED with TT and PSgL by

enumerating all queries on yt and lj, and reported the results in Figure 5.5(a)-

Figure 5.5(g). When enumerating q1, SEED uses the same execution plan, and

98 Chapter 5. SEED: Optimal Graph-based Bushy Join

hence has the same performance as TT, and they outperform PSgL. In all the

other queries, SEED significantly outperforms TT, due to the use of clique as the

join unit. For example, SEED is over 20⇥ faster than TT while processing q2 on

both yt and lj, and over 15⇥ faster than TT while processing q3 on lj. Moreover,

SEED processes complex queries such as q4, q5, q6 and q7 e�ciently on both yt and

lj. On the contrary, TT often runs out of time when querying on lj. PSgL can only

process q3 on yt and lj, and q7 on yt, and in these cases, PSgL performs worse than

TT. The reasons are two aspects. First, PSgL can be seen as StarJoin, which is

already proven to be not better than TwinTwigJoin (Theorem 4.1). Second, the

Pregel-based PSgL maintains all intermediate results in the main memory, and

the numerous intermediate results produced in subgraph enumeration can exhaust

the memory and cause unexpected termination of the algorithm. In conclusion, the

proposed SEED algorithm significantly outperforms all existing algorithms, and TT

also performs better than PSgL. Next we would exclude PSgL from the experiments,

as it can only process simple queries on relatively small datasets.

101

102

103

104

INF

yt eu lj orkut uk fs

29

612

79
107

5206

287

4724

854 1144

R
u
n
n
in

g
 T

im
e
 (

s)

SEED
TT

(a) Query: q2

101

102

103

104

INF

yt eu lj orkut uk fs

40

129

980 1347

158

3467

11560

608

9425

R
u
n
n
in

g
 T

im
e
 (

s)

SEED
TT

(b) Query: q7
Figure 5.6: The results of Exp-5: Vary Datasets.

Exp-5: Vary Datasets. We compared SEED with TT by querying q2 and q7

on all datasets in order to show the advantages of SEED regarding di↵erent data

properties. The results are shown in Figure 5.6(a)-Figure 5.6(b). In all tests, SEED

Chapter 5. SEED: Optimal Graph-based Bushy Join 99

significantly outperforms TT, with the performance gain varying from an order of

magnitude to over 50⇥ (enumerating q2 on lj). Specifically, SEED processes q2

on the two largest datasets - uk and lj, in less than 20 minutes, while TT cannot

terminate in the allowed time. This experiment demonstrates that SEED scales

better for handling large data graphs due to the use of clique as the join unit, and

the optimal bushy join plan with overlapping join units.

101

102

103

104

INF

20% 40% 60% 80% 100%

160

1022

3981

INF INF

44

125

344
567

1144

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

(a) Vary Graph Size: q2

101

102

103

104

INF

20% 40% 60% 80% 100%

205

618

2354
3774

9425

50
95

189
333

608

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

(b) Vary Graph Size: q7

101

102

103

104

INF

20% 40% 60% 80% 100%

474

2022

5882

INF INF

56

158

465 600
1144

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

(c) Vary Avg. Degree: q2

101

102

103

104

INF

20% 40% 60% 80% 100%

402
1210

3228
5845 9425

44
118

235
330

608

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

(d) Vary Avg. Degree: q7

Figure 5.7: The results of Exp-6 and Exp-7: Vary graph properties.

Exp-6: Vary Graph Size. We extracted subgraphs of 20%, 40%, 60%, 80%, and

100% nodes from the original graph of fs, and tested the algorithms using queries

q2 and q7. The results are shown in Figure 5.7(a) and Figure 5.7(b) respectively.

When the graph size increases, the running time of TT grows much more sharply

than SEED. When the graph size is over 60%, only SEED finishes enumerating

q2 in the time limit. The test shows that SEED algorithm is more scalable than

TwinTwigJoin.

100 Chapter 5. SEED: Optimal Graph-based Bushy Join

Exp-7: Vary Average Degree. We fixed the set of nodes and randomly sampled

20%, 40%, 60%, 80%, and 100% edges from the original graph fs to generate graphs

with average degrees from 11 to 55, and tested the algorithms using queries q2 and

q7. The results are shown in Figure 5.7(c) and Figure 5.7(d) respectively. In

Figure 5.7(d), SEED is 9, 10, 13, 17 and 15 times faster than TT when the average

degree varies from 11 to 55, which shows the advantage of SEED for dense data

graphs.

102

103

104

6 8 10 12 14

8504
6406 5294 4739 3817

156 131 106 106 100R
u

n
n
in

g
 T

im
e

 (
s)

SEED
TT

(a) On lj: q2

103

104

INF

6 8 10 12 14

INF INF INF INF INF

2400 1704 1347 1123 1050R
u

n
n
in

g
 T

im
e

 (
s)

SEED
TT

(b) On lj: q7

102

103

104

6 8 10 12 14

8337
5956

4724 4072 3609

325 296 287 274 268

R
u

n
n

in
g

 T
im

e
 (

s)

SEED
TT

(c) On orkut: q2

102

103

104

6 8 10 12 14

5520 4200 3467 2902 2510

230 189 152 130 112R
u

n
n
in

g
 T

im
e

 (
s)

SEED
TT

(d) On orkut: q7

Figure 5.8: The results of Exp-8: Vary slave nodes.

Exp-8: Vary Slave Nodes. In this experiment, we varied the number of slave

nodes from 6 to 14, and evaluated our algorithms on the lj and orkut datasets

using queries q2 and q7. The test results are shown in Figure 5.8(a)-Figure 5.8(d)

respectively. When the number of slave nodes increases, the running time of all

algorithms decreases, and it drops more sharply when the number of slave nodes is

small. On the one hand, increasing the number of slave nodes improves performance

Chapter 5. SEED: Optimal Graph-based Bushy Join 101

by sharing the workload; on the other hand, it introduces extra communication

costs from data transmissions among the slave nodes. As shown in Figure 5.8(b),

even when 14 slave nodes are deployed, SEED is the only algorithm that can process

q7 on lj. We also tested other queries with various amount of slave nodes, and found

curves similar to those in Figure 5.8(a)-Figure 5.8(d), thus the results have been

omitted.

5.4 Chapter Conclusion

In this chapter, we proposed SEED, a scalable distributed subgraph enumeration

algorithm. Compared to TwinTwigJoin (Chapter 4), SEED features with the follow-

ing properties: (1) a novel SCP graph storage mechanism that allows using cliques,

in addition to stars, as the join unit; (2) a comprehensive cost model based on the

PR model; (3) a dynamic-programming algorithm to compute the optimal bushy

join plan with overlapping join units. We have conducted extensive performance

studies on real graphs with up to billions of edges, which shows that SEED outper-

forms the state-of-the-art works, including our TwinTwigJoin, by over an order of

magnitude.

Chapter 6

Optimisation using Data

Compression

We have discussed the optimal execution plan that aims at minimizing the cost

while processing subgraph enumeration. Unfortunately, the task of subgraph enu-

meration for big graph often produces numerous intermediate results even while

applying the optimal execution plan. Therefore, we introduce two data compres-

sion techniques, namely compressed graph (Chapter 6.1) and clique compression

(Chapter 6.2) that further reduce the intermediate results by maintaining them in

a compressed manner.

6.1 Compressed Graph

By aggregating data nodes that have the same neighbors into a compressed node, we

construct a compressed graph, upon which the performance of subgraph enumer-

ation can be further improved. In this subchapter, we introduce the MapReduce

algorithm that correctly constructs the compressed graph, and show that the algo-

rithm has linear communication cost, and hence can scale to web-scale real graphs.

102

Chapter 6. Optimisation using Data Compression 103

We then discuss how to correctly process the query upon the compressed graph.

For convenience, we only show details of adapting the TwinTwigJoin algorithm to

the compressed graph, although similar technique can also be applied to SEED.

To start, we define the Node Equivalence, Compressed Node and Compressed

Graph.

Definition 6.1. (Node Equivalence) Given two nodes ui and uj in the data

graph G, we say ui is equivalent to uj, denoted ui ' uj, if and only if N (ui)\{uj} =

N (uj) \ {ui}.

Given the node-equivalence relation, we partition the data nodes into a set of

equivalence classes.

Definition 6.2. (Compressed node) Given a data graph G, the compressed node

regarding u, denoted S(u), represents a set of nodes in V (G) that are equivalent to

u (u included). We denote |S(u)| as the size of the compressed node. A compressed

node S(u) is trivial if S(u) = {u}.

S(u) represents an equivalence class of u w.r.t. the node-equivalence relation,

and it is clear that S(u) = S(u0) for any u0 2 S(u). We call the node with the

minimum identity in S(u) the representative data node of S(u), denoted as rS(u).

For the ease of presentation, we also use Sid(rS(u)) to denote S(u). It is worth

noting that the nodes inside a non-trivial compressed node S either form a clique

(mutually connected) or an independent set (mutually disconnected). We use a

field, S.clique, to distinguish the two cases. Specifically, if the nodes in S form

a clique, we call S a clique compressed node and set S.clique = true, otherwise,

we call it an independent compressed node and set S.clique = false. We also set

S.clique = false if S is trivial.

104 Chapter 6. Optimisation using Data Compression

Definition 6.3. (Compressed Graph) Given a data graph G = (V (G), E(G)),

the compressed graph corresponding to G is a graph G⇤ = (V (G⇤), E(G⇤)), such

that,

• V (G⇤) = {S(u) | u 2 V (G)},

• E(G⇤) = {(S(u),S(u0)) | S(u),S(u0) 2 V (G⇤) ^ S(u) 6= S(u0) ^ (u, u0) 2

E(G)}. Each edge in E(G⇤) is called a compressed edge.

We define the compressed neighbors of a compressed node S in G⇤ as N ⇤(S) =

{S 0 | (S,S 0) 2 E(G⇤)}.

Definition 6.4. (Compressed Node Order �⇤) Given two compressed nodes

S(u) and S(u0) in V (G⇤), we say S(u) �⇤ S(u0), if and only if rS(u) � rS(u0)

(Definiton 2.1).

We then revise the total order � (Definiton 2.1) as �0 in the data graph.

Definition 6.5. (Operator �0) For any two nodes ui and uj in V (G), ui �0 uj

if and only if one of the two conditions holds:

• S(ui) �⇤ S(uj),

• S(ui) = S(uj) and id(ui) < id(uj).

Example 6.1. In the data graph G presented in Figure 6.1, we have u1 ' u2 ' u3

and u5 ' u7. Hence the compressed nodes are, S1 = S(u1) = {u1, u2, u3}, S4 =

S(u4) = {u4}, S5 = S(u5) = {u5, u7}, S6 = S(u6) = {u6} and S8 = S(u8) =

{u8}. Among the compressed nodes, we have h1.clique = true, and false for the

others. We then construct the compressed graph G⇤ by connecting the compressed

nodes. For example, (S1,S4) 2 E(G⇤) as (u1, u4) 2 E(G), and (S5,S6) 2 E(G⇤) as

(u5, u6) 2 E(G). It is clear that S5 �⇤ S6 �⇤ S1 �⇤ S8 �⇤ S4 by Definiton 6.4.

Chapter 6. Optimisation using Data Compression 105

u1

u2 u3

u4

u5 u6

u7u8

u5 � u6 � u7 � u1 � u2 � u3 � u8 � u4

S1 = {u1, u2, u3}

S4 = {u4} S8 = {u8}
S6 = {u6}

S5 = {u5, u7}

Data Graph Compressed Graph

Figure 6.1: The Compressed node and compressed graph of the given data graph.

6.1.1 Constructing the Compressed Graph

We show how to construct the compressed graph corresponding to a given data

graph G using MapReduce. We divide the process into two steps, namely

Compressed-Node Generation (ComprNodeGen) and Compressed-Edge Binding

(ComprEdgeBind).

Compressed-Node Generation. Given a data graph G and the corresponding

compressed graph G⇤, there are three cases for a compressed node S 2 V (G⇤):

• If S is a clique compressed node, then 8u, u0 2 S, N [u] = N [u0], where

N [u] = N (u) [{u} is the closured neighbors of u;

• If S is an independent compressed node, then 8u, u0 2 S, N (u) = N (u0);

• If S is a trivial compressed node, then S = {u} for some u 2 V (G).

Intuitively, to compute the compressed nodes is to aggregate the nodes that have

the same (closured) neighbors. We describe the detailed algorithm in Algorithm 6,

Algorithm 7 and Algorithm 8, where the symbols “⇥”, “)” and “⇥” are attached

to indicate what kind of compressed node is being processed, as shown in Table 6.1.

The algorithm processes three rounds. In the first round (Algorithm 6), we

aggregate the nodes that have the same closured neighbors by making N [u] for

each u 2 V (G) as map1’s output key. If there are more than one node gathered in

106 Chapter 6. Optimisation using Data Compression

Table 6.1: The symbols “⇥”, “)” and “⇥” and their descriptions.

Symbols Description

⇥ A clique compressed node
) An independent compressed node
⇥ Cannot determine in the context

Algorithm 6: ComprNodeGen-I(G stored as �0(G) (Chapter 4.1))

1 function map1(key: u; value: N (u))

2 if d(u)
p
M then output (N [u]; u);

3 else output ({$}; u);

4 function reduce1(key: U ; value: S = {us1 , us2 , . . . , us
k

}, where

us1 � us2 , · · · � us
k

)

5 if V = {$} then

6 foreach u 2 S do

7 output (u; (), {u}));

8 else

9 if |S| > 1 then

10 output (us1 ; (⇥, S));

11 else output (us1 ; (⇥, S = {us1}));

the reduce1 function (|S| > 1), we output the set of nodes S with us1 as the key and

the symbol “⇥” (line 10), indicating that S must form a clique compressed node

with us1 as its representative node (the minimum node in the compressed node).

Otherwise, we cannot determine whether the compressed node of us1 is independent

or trivial at current stage, we associate the output with a “⇥” (line 11).

The second-round algorithm (Algorithm 7) is more or less the same, but we

aggregate the nodes via the neighbors of each node. Those nodes gathered by

reduce2, if more than one, must form an independent compressed node, and we

Chapter 6. Optimisation using Data Compression 107

Algorithm 7: ComprNodeGen-II(G stored as �0(G))

1 function map2(key: u; value: N (u))

2 if d(u)
p
M then output (N (u); u);

3 function reduce2(key: U ; value: S = {us1 , us2 , . . . , us
k

}, where

us1 � us2 · · · � us
k

)

4 if |S| > 1 then

5 output (us1 ; (), S));

6 else output (us1 ; (⇥, S = {us1}));

associate the output with a “)” (line 5), otherwise, a “⇥” is attached similar to

the first round (line 6). Note that in line 2 of Algorithm 6 and Algorithm 7, a degree

threshold (
p
M) is applied, which will be explained later. For now we assume that

there is no such a threshold in the algorithm. To summarize, the outputs of a node

u in the first round and second round, denoted as out1(u) and out2(u), are related

to the kinds of the compressed node of u. We have:

Proposition 6.1. Given u 2 V (G) and its compressed node S(u), we have

(i) S(u) is a trivial compressed node if and only if

out1(u) = (u; (⇥, {u})), out2(u) = (u; (⇥, {u})).

(ii) S(u) is a clique compressed node if and only if

out1(u) =

8
><

>:

(u; (⇥,S(u))), u = rS(u)

;, otherwise
,

out2(u) = (u; (⇥, {u})).

108 Chapter 6. Optimisation using Data Compression

Algorithm 8: ComprNodeGen-III(Outputs of Algorithm 6 and Algorithm 7)

1 function map3(key: u; value: (x, S), where x 2 {),⇥,⇥}, u 2 S)

2 output (u; (x, S));

3 function reduce3(key:u; value:{(x1, S1), [(x2, S2)]?}, where x1, x2 2 {),⇥,⇥})

4 Create compressed node S(u) = S1;

5 if There are two values in the value list then

6 if x1 6= ⇥ then S(u).clique false;

7 else S(u).clique true;

8 Output (u; S(u));

9 else if x1 =) then

10 S(u).clique false;

11 Output (u; S(u));

(iii) S(u) is an independent compressed node if and only if

out1(u) = (u; (⇥, {u})),

out2(u) =

8
><

>:

(u; (),S(u))), u = rS(u)

;, otherwise

Proof. (i) is apparently true, and the proof of (iii) is similar to (ii), hence we

concentrate on case (ii) here.

(If) Let S1 be the set of nodes aggregated on N [u] in reduce1 (Algorithm 6)

and S2 be the set of nodes aggregated on N (u) in reduce2 (Algorithm 7). If S(u)

is a clique compressed node, we show that (1) S(u) = S1, and (2) S2 = {u}.

(1) On the one way, 8u0 2 S(u), and u0 6= u, we know N [u0] = N [u], and u0 must

be aggregated in reduce1 (Algorithm 6) on the key N [u]. Thus, u0 2 S1, and as a

result, S1 ✓ S(u). On the other way, 8u0 2 S1 and u0 6= u, we have N [u] = N [u0],

leading to N (u0)\{u} = N (u)\{u0}. According to Definiton 6.1 and Definiton 6.2,

Chapter 6. Optimisation using Data Compression 109

we have u0 2 S(u). As a result, S(u) ✓ S1. Conclusively, S(u) = S1 holds. Note

that we only output the record in line 10 (Algorithm 6) for us1 , the minimum node

in S1 (also the representative node of S(u)). Therefore, we have out1(u) as shown

in case (ii).

(2) It su�ces to show that @u0 6= u, such that N (u0) = N (u). We prove this

by contradiction. Suppose there is such a u0. By N (u0) = N (u), we must have

u0 62 N (u). As S(u) is a clique compressed node, 9u00 6= u0 and u00 6= u, such that

N [u00] = N [u]. We hence have u00 2 N (u)) u00 2 N (u0)) u0 2 N (u00)) u0 2

N (u). This draws a contradiction. As a result, there are not nodes but u itself

gathered in reduce2 (Algorithm 7), and we have out2 as shown in case (ii).

(Only If) While u = rS(u) and having out1(u) = (u; (⇥,S(u))), it is apparent

that S(u) is a clique compressed node. Otherwise, out1(u) = ;. Clearly u does not

belong to a trivial compressed node, as otherwise case iis expected. Additionally,

S(u) cannot be an independent compressed node, as out2(u) would never be asso-

ciated with a “⇥” if this is the case. Therefor, S(u) must be a clique compressed

node.

Based on Proposition 6.1, we generate the compressed nodes in the third round

(Algorithm 8). The map3 function reads out1(u) and out2(u) for each u 2 V (G),

and outputs them in the form of (u; (x, S)), where x 2 {⇥,),⇥}. Given di↵erent

kinds of S(u), we will expect one or two values in reduce3. Note that we use [X]?

to indicate that X may not present in the value list in the reduce function. We

assume that the value with “)” and “⇥” will appear in the value list before the

one with “⇥”. If there are two values, u either belongs to a trivial compressed

node, or u is the representative node of the corresponding compressed node. We

will output the compressed node after properly setting S(u).clique (line 5-8) 1.

1Line 9-11 deal with the node with degree larger than the threshold.

110 Chapter 6. Optimisation using Data Compression

Next we show the correctness of the ComprNodeGen algorithm.

Lemma 6.1. Algorithm 8 returns each compressed node once and only once.

Proof. It is clear that each trivial compressed node S(u) = {u} will be output

in reduce3 (Algorithm 8) on the key u. Consider a non-trivial compressed node

S = {us1 , us2 , . . . , us
k

}. According to Proposition 6.1, reduce3 will receive two

values only on the key us1 , where the compressed node S is generated with us1 as

the representative node.

Example 6.2. Following Example 6.1, we trace the outputs of node u1 in each

stage to show how ComprNodeGen runs. To start, map1 outputs (N [u1] =

{u1, u2, u3, u4}; u1) for u1. In reduce1, S = {u1, u2, u3} is gathered on the key

N [u1], and (u1; (⇥, {u1, u2, u3})) is output by the reducer. In the second round,

map2 outputs (N (u1) = {u2, u3, u4}; u1). On the key {u2, u3, u4}, reduce2 receives

S = {u1}, thus the algorithm outputs (u1; (⇥, {u1})). After reduce3 receives both

(u1; (⇥, {u1, u2, u3})) and (u1; (⇥, {u1})) for u1 (line 20), the clique compressed

node S1 = S(u1) = {u1, u2, u3} is constructed. The procedures for the other nodes

are similar, and we finally compute the five compressed nodes shown in Example 6.1.

Handling large-degree node. The node u with d(u) �
p
M will be directly assigned

to a trivial compressed node in Algorithm 8 (line 9-11). We apply this thresh-

old to avoid a very large key that can trigger overwhelmingly large sort cost in

MapReduce. We show that it is highly impossible for such a node to have another

equivalent node using the PR model. We assume that u connects a set of nodes

that have the same degree bd. It is clear that bd < 2M/d(u). We now calculate the

the probability pr that there exists another node u0 connecting to all u’s neighbors

in a power-law random graph as

pr < (
bd d(u)

2M
)d(u).

Chapter 6. Optimisation using Data Compression 111

It is clear that
bd d(u)
2M < 1 in a power-law random graph. We hence have pr ⇡ 0

when d(u) is large enough (e.g. d(u) >
p
M for a large data graph). We further

show in the experiment that we can almost obtain the compressed graph by using

such a threshold in all datasets.

Algorithm 9: ComprEdgeBind(data graph G, The compressed node set

V (G⇤))
Input : G, The data graph;

V (G⇤), The compressed nodes, stored as (rS ;S) for each S 2 V (G⇤).

Output : G⇤, The compressed graph.

1 function map11(key: u; value: N (u))

2 output (u; N (u));

3 function map12(key: rS ; value: S)

4 output (rS ; S);

5 function reduce1(key: u; value: {[S(u)?],N (u)})

6 if S(u) exists in the value list then output (S(u); N o(S(u)) = N (u) \ S(u));

7 function map21(key: S; value: N o(S))

8 for each u0 2 N o(S) do output (u0; (!,S));

9 function map22(key: rS ; value: S)

10 output (rS ; (2,S));

11 function reduce2(key: u; value: {[(2,S(u))?], [(!,S(u0))?]})

12 if both (2,S(u)) and (!,S(u0)) exist in the value list then

13 if S(u) �⇤ S(u0) then output (S(u); S(u0));

Compressed-Edge Binding. Given the compressed nodes, we can construct the

compressed graph by binding the compressed edges. The procedure is shown in

112 Chapter 6. Optimisation using Data Compression

Algorithm 9. We define the original neighbors of a compressed node S(u) as

N o(S(u)) = N (u) \ S(u).

We say a data node u “connects” a compressed node S(u0) if S(u) 6= S(u0)

and (u, u0) 2 E(G). The original neighbors of S(u) contains all data nodes that

“connect” S(u). For all u0 2 N o(S(u)), it is obvious that (S(u),S(u0)) 2 E(G⇤).

In Algorithm 9, we use the symbol “!” (resp. “2”) to indicate that a data node

connects (resp. belongs to) a compressed node. There are two rounds of executions

in the algorithm. In the first round, the map function processes two inputs, namely

(u;N (u)) for all u 2 V (G) (line 1), and (rS ;S) for all S 2 V (G⇤) (line 3). The

reduce1 function then computes the original neighbors for each compressed node

(line 6). In the second round, the map21 function takes (S,N o(S)) for all S 2 V (G⇤)

as input, and outputs (u0; (!,S)) for each u0 2 N o(S), indicating u0 “connects” S

(line 8). In addition, map22 reads (rS ,S) for all S 2 V (G⇤) and outputs (rS ; (2,S))

(line 10).

When the above two key-value pairs associated with the same u, namely

(u; (!,S(u0))) and (u; (2,S(u0))), arrive in reduce2, we can determine that

(S(u),S(u0)) 2 E(G⇤) (line 13).

Lemma 6.2. Algorithm 9 returns all compressed edges.

Proof. Given any compressed edge (S,S 0) 2 E(G⇤), we show it is returned by

Algorithm 9. Let u = rS . On the one hand, map22 (Algorithm 9) outputs (u; (2,S)).

On the other hand, we have u 2 N o(S 0) when (S,S 0) 2 E(G⇤). As a result, map21

(Algorithm 9) involves (u; (!,S 0)) in the output. Finally, the above two key-value

pairs arrive at reduce2 (Algorithm 9), and the corresponding compressed edge is

binded.

Chapter 6. Optimisation using Data Compression 113

Example 6.3. We have generated the compressed nodes in Example 6.2, we use

(S1,S4) as an example to show how to bind the compressed edges via Algorithm 9.

Note that all other compressed edges are handled in a similar way. In the first

round, map11 and map12 output (u4;N (u4) = {u1, u2, u3, u8}) and (u4;S4 = {u4}) on

the key u4, respectively. The reduce1 immediately computes N o(S4) = N (u4)\S4 =

{u1, u2, u3, u8}. In the second round, on the one hand, map21 emits (u1; (!,S4))

indicating that u1 connects S4; on the other hand, map22 outputs (u1; (2,S1)). On

the key u1, reduce
2 discovers the compressed edge (S1,S4).

Complexities. Based on Lemma 6.1 and Lemma 6.2, we have correctly built the

compressed graph. Next we show that the communication cost of constructing the

compressed graph is linear to the size of the data graph.

Lemma 6.3. Given the data graph G, the communication cost of constructing the

compressed graph of G is O(M +N), where M = |E(G)|, and N = |V (G)|.

Proof. In MapReduce, communication cost is triggered by transferring the output

data of each mapper to the reducer. In Algorithm 6 and Algorithm 7, map1 and

map2 output the neighbors for each node, and the cost is O(M), and map3 in

Algorithm 8 outputs each node with its compressed node, and the cost is O(N ·|S|),

where |S| is the average size of the compressed nodes. In Algorithm 9, map11 outputs

each node with its neighbors and map12 outputs the representative node with its

compressed node. They contribute to O(M +N · |S|) cost. As for map21 and map22,

we can simply use rS(u) to represent S(u), hence they render the same cost as the

first stage. To summarize, the overall communication cost of the construction of

compressed graph is O(M +N · |S|), or simply O(M +N) considering that |S| is

often small.

114 Chapter 6. Optimisation using Data Compression

6.1.2 Querying the compressed graph

For convenience, we follow TwinTwigJoin to discuss how to process subgraph enu-

meration on the compressed graph. We first introduce the Compressed Match.

Definition 6.6. (Compressed Match) Given a pattern graph P and a com-

pressed graph G⇤, a compressed match f ⇤ is a mapping from V (P) to V (G⇤) such

that the following three conditions hold:

• (Structure Preservation) For any edge (vi, vj) 2 E(P), either

(f ⇤(vi), f ⇤(vj)) 2 E(G⇤) if f ⇤(vi) 6= f ⇤(vj), or f ⇤(vi).clique = true if

f ⇤(vi) = f ⇤(vj).

• (Size Limitation) For vi1 , vi2 , . . . , vi
k

2 V (P), if f ⇤(vi1) = f ⇤(vi2) · · · =

f ⇤(vi
k

), then k |f ⇤(vi1)|.

• (Order Preservation) For any pair of nodes vi 2 V (P) and vj 2 V (P), if vi

< vj and f ⇤(vi) 6= f ⇤(vj), then f ⇤(vi) �⇤ f ⇤(vj).

We use f ⇤ = (Sk1 ,Sk2 , . . . ,Sk
n

) to denote the match f ⇤, i.e., f ⇤(vi) = Sk
i

for

any 1 i n.

It is worth noting that a compressed node S can now be matched up to |S| pat-

tern nodes by a compressed match. Consider a pattern graph P = (v1, v2, . . . , vk),

a data graph G and its compressed graph G⇤. We show how f and f ⇤ can be

converted to each other as follows:

• f ! f ⇤: Given a match of P in G, f = (u1, u2, . . . , uk), and a bijective

mapping � where �(u) = S(u), we obtain a compressed match of P in G⇤ as:

f ⇤ = f � � = (S(u1),S(u2), . . . ,S(uk)).

• f ⇤ ! f : Given a compressed match of P in G⇤, f ⇤ = (S1,S2, . . . ,Sk), and a

bijective mapping �0 where �0(Si) = u under the conditions that: (1) u 2 Si,

Chapter 6. Optimisation using Data Compression 115

(2) �0(Sj) 6= u, for any j 6= i, and (3) �0(Si) �0 �0(Sj) if vi < vj, or �0(Sj) �0

�0(Si) otherwise, we obtain a match of P in G as: f = f ⇤ � �0.

When dealing with f ⇤ ! f , we replace each compressed node with one data node

that satisfies all the above three conditions. The first condition says we only replace

each compressed node by one of the data nodes inside it. The second condition

indicates that we can only replace the compressed node by a data node that has

never been used. The third condition guarantees the Order-Preservation constraint

for a match. Note that we use the revised total order �0 (Definiton 6.5). Clearly,

a compressed match can represent multiple matches.

Example 6.4. Consider the square pattern graph given in Figure 2.1. There are

four matches of the square in the data graph presented in Figure 6.1. They are: f1 =

(u1, u2, u3, u4), f2 = (u1, u3, u2, u4), f3 = (u1, u2, u4, u3) and f4 = (u5, u6, u7, u8).

Meanwhile, we find three compressed matches. They are: f ⇤
1 = (S1,S1,S1,S4),

f ⇤
2 = (S1,S1,S4,S1) and f ⇤

3 = (S5,S6,S5,S8). Among them, f ⇤
1 compresses f1 and

f2, f ⇤
2 relates to f3, and f ⇤

3 relates to f4.

Computing the compressed matches. As long as the compressed matches are

given, it is trivial to recover the original matches, following the three conditions

discussed in f ⇤ ! f . We hence focus on the algorithm - SubgEnumCompr - that

computes the compressed matches of P in G⇤.

Recall that in TwinTwigJoin, with the pattern graph decomposing into a set of

TwinTwigs D(P) = {p0, p1, . . . , pt}, we enumerate the subgraph using t rounds of

MapReduce. In the ith round, the following join is processed:

R(Pi) = R(Pi�1) 1 R(pi)

To process the above join, the ith round of TwinTwigJoin will (1) compute the

join attributes as V (Pi�1)\V (pi); (2) read the partial matches R(Pi�1) (computed

116 Chapter 6. Optimisation using Data Compression

in previous round) and map each of them according to the join key; (3) read (u;G0
u)

for each u 2 V (G), use them to compute R(pi), and map R(pi) to the corresponding

join key; (4) process the join by filtering the results of R(Pi�1) ⇥ R(pi) according

to the Conflict-Freedom and Order-Preservation constraints of Definiton 4.6.

Denote R⇤(P) as the set of compressed matches. Given the same pattern de-

composition, the SubgEnumCompr iteratively processes the join using MapReduce:

R⇤(Pi) = R⇤(Pi�1) 1 R⇤(pi).

In order to do so, SubgEnumCompr follows the above four steps as TwinTwigJoin,

but handles the compressed matches instead. Specifically, step (1) remains the

same. In step(2) SubgEnumCompr processes R⇤(Pi�1), while in step (3), it gen-

erates the compressed matches R⇤(pi) of the TwinTwig pi. Finally, in step

(4), SubgEnumCompr filters the results based on the Size-Limitation and Order-

Preservation constraints in Definiton 6.6.

We first discuss how SubgEnumCompr computes R⇤(p) in step (3) for a TwinTwig

p on the compressed graph. Note that the idea can be applied handle star and

clique, so that we can also adapt SEED to the compressed graph. For ease of

presentation, we assume that p is a two-edge TwinTwig (the one-edge case can be

done analogously). Let p = ((v0, v1), (v0, v2)), and suppose G⇤ is stored in the form

of (S;N ⇤(S)) for each S 2 V (G⇤). We focus on computing the compressed matches

of p for each S independently. Denote R⇤
S(p) = {f ⇤ | f ⇤(v0) = S} as the S-fixed

compressed matches. It is clear that R⇤(p) =
S

S2V (G⇤) R
⇤
S(p). We show that we

can correctly compute R⇤
S(p) on each S (and hence R⇤(p)) using Algorithm 10.

Corollary 6.1. Given a TwinTwig p and any compressed node S 2 V (G⇤), Algo-

rithm 10 correctly computes R⇤
S(p).

Proof. Consider match of p - (u0, u1, u2), and the corresponding compressed match

Chapter 6. Optimisation using Data Compression 117

Algorithm 10: ComprMatch ((S;N ⇤(S)), p)

Input : (S;N ⇤(S)): The compressed neighbors of S, where

N ⇤(S) = {Si1 ,Si2 , . . . ,Si
t

},

p = ((v0, v1), (v0, v2)): A two edge TwinTwig.

Output : R⇤
S(p): The S-fixed compressed matches of p.

1 RS(p) ;

2 if |S| � 3 and S.clique = true then

3 RS(p) = RS(p) [{ (S,S,S) };

4 for j 2 {1, 2, . . . , t} do

5 if |S| � 2 and S.clique = true then

6 RS(p) = RS(p) [{ (S,S,Si
j

), (S,Si
j

,S) };

7 if |Si
j

| � 2 then RS(p) = RS(p) [{ (S,Si
j

,Si
j

) };

8 for k 2 {j + 1, . . . , t} do

9 RS(p) = RS(p) [{ (S,Si
j

,Si
k

), (S,Si
k

,Si
j

) };

10 return RS(p);

(S(u0),S(u1),S(u2)) that has S(u0) = S. As a valid match of p, we must have

(u0, u1) 2 E(G) and (u0, u2) 2 E(G). There are four cases for the compressed

match.

• S = S(u0) = S(u1) = S(u2). In this case, u0, u1, u2 2 S, and we must have

S.clique=true due to (u0, u1) 2 E(G). This compressed match is handled in

line 3 in Algorithm 10.

• S = S(u1) or S = S(u2). In this case, S has at least two nodes and similarly

S.clique =true. This compressed match is processed in line 6.

• S(u1) = S(u2) and S(u1) 6= S. Note that S(u1) 2 N ⇤(S), and this case is

covered in line 7.

118 Chapter 6. Optimisation using Data Compression

• S 6= S(u1) 6= S(u2). Both compressed nodes are S’s neighbors. Algorithm 10

covers this case in line 9 by enumerating the pairs of compressed nodes in

N ⇤ (S).

Summarizing the above cases, Algorithm 10 returns all R⇤
S(p), which completes

the proof.

We then formally show that SubgEnumCompr is correct by iteratively processing

the join of compressed matches.

Lemma 6.4. Given the pattern graph P , and the compressed graph G⇤,

SubgEnumCompr correctly computes all compressed matches.

Proof. Following the pattern decomposition D(P) = {p0, p1, . . . , pt}, the algorithm

processes t rounds. We prove this lemma by making inductions on the MapReduce

rounds.

Initially, it is round 0 where P0 is a TwinTwig. The lemma holds as

SubgEnumCompr correctly computes all compressed matches of a TwinTwig ac-

cording to Corollary 6.1.

Suppose SubgEnumCompr correctly computes all compressed matches of Pn�1

in the (n � 1)th round, where 1 < n t. In this nth round, we know that

SubgEnumCompr will process the joinR⇤(Pn) = R⇤(Pn�1) 1 R⇤(pn). Let the join at-

tributes be Vk = V (Pn�1)\V (pn) and V (Pn) = (V (Pn�1)\Vk, Vk, V (pn)\Vk). Given

a match of Pn - f - we divide it into three parts, namely fn�1 = f(V (Pn�1) \ Vk),

fk = f(Vk) and fn = f(V (pn) \ Vk)), where f(V) = (f(v1), f(v2), . . .) for all

vj 2 V . Define a bijective mapping � : V (G) 7! V (G⇤) such that �(u) = S(u)

for all u 2 V (G). The compressed match related to f , can hence be written as

f � � = (fn�1 � �, fk � �, fn � �). It is obviously that (fn�1 � �, fk � �) 2 R⇤(Pn�1)

and (fk � �, fn � �) 2 R⇤(pn). According to the induction and Corollary 6.1, the

Chapter 6. Optimisation using Data Compression 119

algorithm correctly computes all R⇤(Pn�1) and R⇤(pn). Therefore, (fn�1 ��, fk ��)

and (fk ��, fn��) must have been computed and will be joined in this round on the

key fk � � to generate the compressed match of f . In other words, any compressed

match in R⇤(Pn) that is related to a valid match will be correctly computed.

By induction, SubgEnumCompr correctly computes all compressed matches of

P after t rounds of MapReduce.

Example 6.5. Consider the square pattern in Figure 2.1. The partial order is

v1 < v2 < v4 and v1 < v3. We show how to process the SubgEnumCompr al-

gorithm on the compressed graph in Figure 6.1. The square is partitioned into

p0 = {(v1, v2), (v1, v4)} and p1 = {(v3, v2), (v3, v4)}. Suppose we match the com-

pressed node to V (p0) in the order (v1, v2, v4), and V (p1) in the order (v3, v2, v4).

According to Algorithm 10, we find three compressed matches of p0 in the com-

pressed graph, namely (S1,S1,S1), (S1,S1,S4) and (S5,S6,S8). And we find

eight compressed matches of p1. They are (S1,S1,S1), (S1,S1,S4), (S4,S1,S1),

(S4,S1,S8), (S8,S4,S5), (S8,S5,S5), (S5,S6,S8) and (S6,S5,S5). To explain how

the join is processed, we discuss the following three join keys:

• (S1,S1): The reducer processes one partial result of p0 - (S1,S1,S1), and two

partial results of p1 - (S1,S1,S1) and (S4,S1,S1). They are joined to pro-

duce the compressed matches f ⇤
1 = (S1,S1,S1,S1) and f ⇤

2 = (S1,S1,S4,S1).

Among them, f ⇤
1 is not a valid compressed match as it violates the Size-

Limitation constraint.

• (S1,S4): The reducer processes one partial result of p0 - (S1,S1,S4), and one

partial result of p1 - (S1,S1,S4). They are joined to produce the compressed

match (S1,S1,S1,S4).

• (S6,S8): The reducer processes one partial result of p0 - (S5,S6,S8), and one

120 Chapter 6. Optimisation using Data Compression

partial result of p1 - (S5,S6,S8). They are joined to produce the compressed

match (S5,S6,S5,S8).

After we obtain the compressed matches, we resolve them to the original

matches, as shown in Table 6.2.

Table 6.2: Resolve compressed matches to the original matches.

compressed match Original Match

(S1,S1,S4,S1) (u1, u2, u4, u3)
(S1,S1,S1,S4) (u1, u2, u3, u4), (u1, u3, u2, u4)
(S5,S6,S5,S8) (u5, u6, u7, u8)

6.2 Clique Compression

To start this section, let us consider a motivating example.

Example 6.6. We find a large clique with 943 nodes in the uk dataset used in our

experiment in Table 6.3, which alone contributes to
�
943
5

�
⇡ 6⇥ 1012 matches for a

5-clique, and causes huge burden on storage and communication. Alternatively, we

can encode all these results using the nodes of the large clique itself, and this costs

linear space to the number of nodes in the clique.

This example motivates us to consider clique compression, aiming at reducing

the cost of transferring and maintaining the intermediate results. In order to do so,

we compute a set of non-overlapping cliques in the data graph G as a preprocessing

step. Let pk be a clique of k nodes. In query processing, when pk is considered as

a join unit, instead of computing all the matches of pk directly, we represent the

matches in a compressed way, and we also try to maintain the compressed matches

in future joins. Note that we only apply clique compression to SEED where clique

can be the join unit. In the following, we first show how to precompute the non-

Chapter 6. Optimisation using Data Compression 121

overlapping cliques, followed by discussing the way of compressing the matches of

pk. Finally, we introduce how to process joins with the compressed results.

Algorithm 11: Clique-Search(data graph G)
Input : G, the data graph.

Output : A set of non-overlapping cliques.

1 G0 G; S ;;

2 while G0 is not empty do

3 u The node with largest degree in G0;

4 K A maximal clique containing u in G0;

5 if |V (K)| > thresh then

6 S = S [{K};

7 G0 G0 \K;

8 return S;

6.2.1 Clique Precomputation

As a preprocessing step, we compute a set of non-overlapping (by nodes) cliques

S = {K1, K2, . . . , Ks} in the data graph G. We show the greedy algorithm to

compute S in Algorithm 11. Each time we select a node u with the largest degree

from G, compute a maximal clique containing u in G, add the clique into S if its size

is larger than a threshold (e.g., 50) and remove it from G. We repeat the process

until all nodes are removed from G. After computing S, we index all the cliques

on each machine in the cluster (e.g. using “Distributed Cache” in MapReduce).

Specifically, we maintain a map M in each machine, so that we can use M(u) to

determine the clique that a node u (u 2 V (G)) belongs to in constant time. Let

M(u) = ; if u does not belong to any clique in S. The space used to index the

122 Chapter 6. Optimisation using Data Compression

cliques is small since we only need to index the nodes in each clique. We show

in the experiment that the overhead of clique precomputation is relatively small,

and it contributes to improving the performance of SEED, especially when the data

graph contains some large cliques.

6.2.2 Online Clique Compression

During query processing, suppose a k-clique pk is involved in the join, where

V (pk) = {v1 , v2 , . . . , vk} and v1 < v2 < · · · < vk (for symmetry breaking (Re-

mark 2.1)). We compress the matches of pk as follows. In each local graph

Gu 2 �2(G) (Chapter 5.2.1), we divide the nodes in V (G2
u) into two parts,

namely, the clique nodes V c
u and the non-clique nodes V n

u . Here V c
u = {u0|u0 2

V (G2
u) \ {u},M(u0) = M(u)} is the set of nodes in G2

u that belong to the

same clique as u in S, and V n
u = V (Gu) \ V c

u . Note that we have u 2 V n
u for

the ease of presentation. Specifically, when M(u) = ;, we have V c
u = ; and

V n
u = V (Gu). The nodes in both set are rearranged via the data node orders

(Definiton 2.1). With the two di↵erent types of nodes, a compressed match, which

represents multiple matches of the k-clique, is denoted as f ⇤ = (f c, fn), where

f c = (f c.V, f c.U) = ({vc1, vc2, . . . , vcs}, {uc
1, u

c
2, . . . , u

c
t}) is the compressed part of the

match and fn = (fn.V, fn.U) = ({vn1 , vn2 , . . . , vnk�s}, {un
1 , u

n
2 , . . . , u

n
k�s}) is the non-

compressed part. We also regard fn as a partial match, where fn(vin) = un
i . Here,

the following five constraints must be satisfied:

• C1: u 2 fn.U .

• C2: fn.U ✓ V n
u and the nodes in fn.U must form a clique in G2

u.

• C3: f c.U ✓ V c
u and every node in f c.U is adjacent to all nodes in fn.U in G2

u.

• C4: |f c.V | |f c.U |.

Chapter 6. Optimisation using Data Compression 123

• C5: f c.V [fn.V = V (pk).

In this way, a compressed match (f c, fn) represents
�
t
s

�
matches of a k-clique,

that is, the k � s nodes fn.U = {un
1 , u

n
2 , . . . , u

n
k�s} and every combination of s

nodes in f c.U = {uc
1, u

c
2, . . . , u

c
t} recover a match. Note that C1 restricts that u

must be in the match, which is applied to avoid duplicates. For example, consider

a 5-clique {u1, u2, u3, u4, u5} as the data graph, and a 4-clique p4 as the pattern

graph. Without C1, the match (u2, u3, u4, u5) will be computed twice in both Gu1

and Gu2 . However, this match will be removed from Gu1 by C1 as u1 does not

appear in the match. Considering the Order-Preservation constraint (Remark 2.1),

we actually match the smallest node in pk to u (note that u is the smallest node in

Gu). Thus, C1 can be accordingly written as fn(v1) = u.

u1

u2

u3

u4u5

u6u7

u8
u9

M(u1) = K↵

Figure 6.2: The local graph of u1, and clique compression.

Example 6.7. In Figure 6.2, we show the local graph Gu1. Note that all nodes

except u1 have neighbors not presented in Gu1 and these nodes are already arranged

by their orders (Definiton 2.1) in the data graph. The shadowed circle highlights

a 5-clique K↵ that u1 belongs to. Observe that u2 forms a larger clique with K↵

but it does not belong to it. This can happen when we assign u2 to the other larger

clique. Thus, we have the clique nodes V c
u1

= {u3, u4, u5, u6}, and the non-clique

nodes V n
u1

= {u1, u2, u7, u8, u9}. Hereunder, we show the compressed matches of the

4-clique p4 in Gu1:

124 Chapter 6. Optimisation using Data Compression

f c.V f c.U fn.V fn.U # matches

f⇤
1 {v2 , v3 , v4} {u3, u4, u5, u6} {v1} {u1} 4

f⇤
2 {v3 , v4} {u3, u4, u5, u6} {v1 , v2} {u1, u2} 6

f⇤
3 ; ; {v1 , v2 , v3 , v4} {u1, u7, u8, u9} 1

Considering the Order-Preservation constraint (Remark 2.1), the data node se-

quence that matches p4 must be arranged in the increasing order. In f ⇤
1 , u1 together

with each 3-combination of f c.U (increasing order) recover a match of the 4-clique,

and thus f ⇤
1 compresses

�
4
3

�
= 4 results. Similarly, f ⇤

2 compresses
�
4
2

�
= 6 results.

Additionally, f ⇤f ⇤
3 corresponds to a non-compressed match. As a whole, we use 3

compressed matches to represent 11 results.

The algorithm to compute all compressed k-cliques in a certain G2
u is shown in

Algorithm 12. It is worth noting that Algorithm 12 can handle the non-compressed

(unoptimized) case by letting M(u) = ; for each u 2 V (G). Before moving forward

to the algorithm, we define the clique neighbors and common clique neighbors as

follows:

Given u0 2 V n
u , the clique neighbors of u0, denoted as CN(u0), are the nodes

in V c
u that are adjacent to u0 in Gu, that is, CN(u0) = {u00|u00 2 V c

u ^ (u0, u00) 2

E(Gu)}, and the common clique neighbors of a set of data nodes U 0, denoted as

CCN(U 0) =
T

u02U 0 CN(u0).

In Algorithm 12, we first assign the clique nodes V c
u and the non-clique nodes

V n
u in line 2-3, and we use V n

u [i] to denote the i[-th] (start from 1) node in V n
u . In

line 4, we report (f c = (V (pk) \ {v1}, V c
u), f

n = ({v1}, {u})) as a fully compressed

results. Clearly, u and each k�1 combination of V c
u recover a match of pk. We then

call the recursive function CompressedCliqueRec to further generate the compressed

matches (line 5). In the recursive function, we use U 0 to record the non-clique

nodes that form a clique in Gu, which will be expanded in each recursive call, and

be assigned to fn.U afterwards.

Chapter 6. Optimisation using Data Compression 125

Algorithm 12: CompressedClique(pk, Gu)

Input : pk, the k-clique, where V (pk) = {v1 , v2 , . . . , vk},

Gu, the local graph of a certain u 2 V (G).

Output: A set of compressed matches of pk.

1 F ;;

2 V c
u {u0|u0 2 V (Gu) \ {u} ^M(u0) = M(u)};

3 V n
u V (Gu) \ V c

u ;

4 if |Vu| � k � 1 then F F [(f c = (V (pk) \ {v1}, V c
u), f

n = ({v1}, {u}));

5 CompressedCliqueRec(pk, V c
u , V

n
u \ {u}, F , 1, {u})

6 return F ;

7 function CompressedCliqueRec(pk, V c
u , V

n
u , F , i, U 0)

8 foreach j 2 [i, |V n
u |] do

9 u0 V n
u [j];

10 if u0 forms a clique with U 0 in Gu then

11 U 0 U 0 [{u0};

12 Initialize the compressed match (f c = {;, ;}, fn = {;, ;});

13 if (|U 0| < k) then

14 f c.U CCN(U 0);

15 if |U 0|+ |f c.U | � k then

16 foreach {vn1 = v1 , v
n
2 , . . . , v

n
k�s} ✓ V (pk) s.t. vn1 < vn2 < · · · vnk�s,

where |U 0| = k � s do

17 fn.V {vn1 , vn2 , . . . , vnk�s};

18 f c.V V (pk) \ fn.V ;

19 fn.U U 0;

20 F F [(f c = (f c.V, f c.U), fn = (fn.V, fn.U));

21 if |U 0| < k ^ j 6= |V n
u | then

22 CompressedCliqueRec(f c.U, V n
u \ U 0, F , j + 1, U 0);

126 Chapter 6. Optimisation using Data Compression

The algorithm then proceeds by checking the above five constraints for a com-

pressed match. C1 is guaranteed to be satisfied while we fix u in fn.U in line 4.

For each non-clique nodes that have not been visited (line 8), we verify that if

it forms a larger clique with U 0 (line 10) in order to guarantee that C2 is satis-

fied. U 0 is expanded by involving the qualified node (line 11). If |U 0| < k, we let

f c.U = CCN(U 0) (line 14) to satisfy C3. Otherwise, U 0 must have included all

nodes for a full-matched subgraph, and we simply leave f c.U = ;. The condition

|U 0| + |f c.U | � k in line 15 guarantees C4 and C5 are satisfied, and once does, we

follow the procedure in line 16-20 to generate the compressed matches. For each

k�s nodes from V (pk) that involves v1 (line 16), we assign them to fn.V (line 17),

and then we obtain a partial match fn = (fn.V, fn.U = U 0). Thus, we construct a

compressed match (f c = (f c.V, f c.U), fn = (fn.V, fn.U)) (line 20). We recursively

call CompressedCliqueRec as |U 0| < k (line 22).

Example 6.8. In Example 6.7, we have shown the compressed matches f ⇤
1 , f

⇤
2 and

f ⇤
3 of p4 in Gu1. According to Algorithm 12, f ⇤

1 is computed in line 4. Now that

we have V n
u = {u2, u7, u8, u9} (u1 is excluded). In the first recursive call, we have

U 0 = {u1, u2} after adding u2 (line 11). It is clear that CCN(U 0) = {u3, u4, u5, u6}.

As u1 has already been fixed to match v1 , we iterate the nodes in {v2 , v3 , v4} to

match u2. When v2 is matched to u2, we obtain f ⇤
2 (line 16). After processing u2,

we move to the next node in V n
u , that is u7, and the recursive function will return

f ⇤
3 as a non-compressed match. (line 13).

6.2.3 Online Join Processing

We apply clique compression to SEED, which follows Algorithm 4 to process joins,

but replace each match f in Algorithm 4 as a compressed match f ⇤ = (f c, fn).

We correspondingly revise the map and reduce functions to handle the compressed

Chapter 6. Optimisation using Data Compression 127

match. Note that here we generalize the concept of “compressed match”, which

not only represents a compressed match of a k-clique, but also the compressed join

results produced in each round (Details are in Algorithm 14). For a non-compressed

match, we simply let f c.V = f c.U = ;. The main challenge is that, when a

compressed match (f c, fn) is involved in a join, we do not need to immediately

recover all matches from (f c, fn). Instead we try to maintain its compressed part

f c as much as possible. We call this process partial expansion. Given a compressed

match (f c, fn), suppose it is involved in a join with join attributes Vjoin, the process

of partial expansion is shown in lines 12-20 in Algorithm 13. We first compute the

non-clique join attributes V n
join and its corresponding match Un

join (lines 13-14).

Then we compute V c
join - the set of join attributes that need to be expanded in

the clique part f c (line 15). Line 16 enumerates all matches U c
join of V c

join in f c.

For each U c
join, we output a key-value pair (line 20) where the key is computed as

U c
join [Un

join (line 17) and the value is a compressed match (f c
out, f

n
out) by moving

the original match of V c
join from f c to fn (line 18-19). The revised mapi procedure

is shown in Algorithm 13 to replace mapi in Algorithm 4.

Example 6.9. Suppose f ⇤
1 = (fn

1 , f
c
1) in Example 6.7 is involved in the join with

Vjoin = {v1 , v3}. We have fn
1 .V = {v1}, fn

1 .U = {u1}, f c
1 .V = {v2 , v3 , v4}

and f c
1 .U = {u3, u4, u5, u6}. We first compute V n

join = fn
1 .V [Vjoin = {v1} and

Un
join = {u1}. Then we have V c

join = f c.V \ Vjoin = {v3}. Consequently, we

should partially expand f c
1 by taking a node out of f c.U as U c

join. We first take

u3, and the join key is {u1, u3}, then we compute f c
out = ({v2 , v4}, {u4, u5, u6}) and

fn
out = ({v1 , v3}, {u1, u3}). Ultimately, the key-value pair ({u1, u3}; (f c

out, f
n
out)) is

generated.

Algorithm 14 presents the detailed algorithm of the revised reducei, which takes

the compressed matches as inputs, and output the join results in the same com-

128 Chapter 6. Optimisation using Data Compression

Algorithm 13: mapi(key: ;; value: either compressed matches (f c, fn) 2

R(P 0
j) and (hc, hn) 2 R(P 0

s) for some j < i, s < i or Gu 2 �(G))

1 Vjoin V (P 0
j) \ V (P 0

s);

2 if P 0
j is a star then genJoinUnit(P 0

j , Gu, Vjoin);

3 else if P 0
j is a clique then genCompressedClique(P 0

j , Gu, Vjoin);

4 else PartialExpansion(f c, fn, Vjoin);

5 if P 0
s is a star then genJoinUnit(P 0

s, Gu, Vjoin);

6 else if P 0
s is a clique then genCompressedClique(P 0

s, Gu, Vjoin);

7 else PartialExpansion(hc, hn, Vjoin);

8 function genCompressedClique(pk, Gu, Vjoin)

9 F CompressedClique(pk, Gu);

10 foreach (f c, fn) 2 F do

11 PartialExpansion(f c, fn, Vjoin);

12 function PartialExpansion(f c, fn, Vjoin)

13 V n
join = {vn1 , vn2 , . . . , vnp } fn.V \ Vjoin;

14 Un
join {fn(vn1), f

n(vn2), . . . , f
n(vnp)};

15 V c
join f c.V \ Vjoin;

16 foreach U c
join ✓ f c.U s.t. |U c

join| = |V c
join| do

17 key U c
join [Un

join;

18 f c
out (f c.V \ V c

join, f
c.U \ U c

join);

19 fn
out (fn.V [V c

join, f
n.U [U c

join);

20 output (key; (f c
out, f

n
out));

pressed way, which can hence be treated as compressed matches in a future join.

Given two compressed results h1 = (hc
1, h

n
1) and h2 = (hc

2, h
n
2), we say h1 has larger

compression power than h2 if |hc
1.V | > |hc

2.V |. For the two compressed results from

the current join patterns, the idea is to expand the one with smaller compression

Chapter 6. Optimisation using Data Compression 129

Algorithm 14: reducei(key: Ujoin; value: Two sets of compressed matches

H1 and H2)

// We assume |hc1.V | � |hc2.V | (w.l.g.).

1 foreach h1 = (hc1, h
n
1) 2 H1, h2 = (hc2, h

n
2) 2 H2 s.t.

(hn1 .U \ Ujoin) [(hn2 .U \ Ujoin) = ; do

2 if hc2.V = ; then

3 fn.V = hn1 .V [hn2 .V ; fn.U = hn1 .U [hn2 .U ;

4 f c.V = hc1.V ; f c.U = hc1.U ;

5 output (;; (f c, fn));

6 else

// We need to expand h2 that has smaller compression.

7 f c.V = hc1.V ; f c.U = hc1.U ;

8 fn.V = hn1 .V [hn2 .V [hc2.V ;

9 foreach U 0 ✓ hc2.U s.t. |U 0| = |hc2.V | do

10 fn.U = hn1 .U [hn2 .U [U 0 ;

11 output (;; (f c, fn));

while keeping the other. In reducei, we process the join of h1 and h2 for each

h1 2 H1 and h2 2 H2 (line 1). Without loss of generality, we assume that h1 has

larger compression power. If h2 is not compressed (line 2), we simply union hn
1 and

hn
2 to form the non-compressed part fn (line 3), keep hc

1 in the compressed part f c

(line 4), and output the results. Otherwise, we have to expand h2. We still keep

hc
1 in f c (line 8), while fn now includes not only hn

1 and hn
2 , but a part from the

expansion of hc
2 (line 8). We hence iterate every U 0 ✓ hc

2.U with |U 0| = |hc
2.V |,

compute fn.U = hn
1 .U [hn

2 .U [U 0 (line 10), and output the compressed results

(line 11). In this way, we compress the results in each join, and they can be treated

130 Chapter 6. Optimisation using Data Compression

just like the compressed matches of the k-clique in the future join (Algorithm 13).

6.3 Performance Studies

We present the experiment results that verifies the e↵ectiveness of the data com-

pression techniques. The MapReduce setting is the same to that in the SEED

experiment (Chapter 5.3).

Datasets. We present the dataset in Table 6.3. The number of edges and nodes

for each data can be found in Table 4.1 and Table 5.4. The “rv” and “re” columns

in the table represent the node-compression ratio of and edge-compression ratio

for compressed graph, and are computed as rv = |V
h

|
|V | and re = |E

h

|
|E| , respectively.

The “time / s (MR)” and “time / s (Ren)” columns write the processing time

(in second) of constructing compressed graph using MapReduce with 4 computing

nodes and the centralized algorithm given by [RW15]. Clearly, our MapReduce

implementation is far more e�cient than Ren’s algorithm. The “time / s (C)”

column denotes the time to precompute and index the clique for each dataset.

Table 6.3: Datasets used in the data-compression experiments.

dataset name rv (%) re (%) time/s (MR) time/s (Ren) time/s (C)

youtube yt 45.48 79.47 165 467 58
eu-2015 eu 56.87 42.14 170 1056 129

live-journal lj 77.37 95.16 179 1332 170
com-orkut orkut 97.73 99.94 222 7995 345

indochina-2004 indo 50.28 39.44 124 INF 897
uk-2002 uk 50.82 39.96 264 INF 1270
friendster fs 65.31 99.66 2138 INF 368

Algorithms. We implemented and compared the following algorithms:

• TT: The TwinTwigJoin algorithm with all optimizations.

Chapter 6. Optimisation using Data Compression 131

• TT+C: TT on the compressed graph (Chapter 6.1).

• SEED: The most optimized SEED algorithm.

• SEED+C: SEED with clique compression (Chapter 6.2).

All algorithms were implemented using Hadoop (version 2.6.2) with Java 1.7. We

set the maximum running time to 4 hours. If a test did not stop within the time

limit, or failed due to out-of-memory exceptions or other errors, we denoted the

running time as INF.

Queries. We use four most representative queries q1 to q4 from our previous

experiments as shown in Figure 6.3 to test the data compression technique.

q1

v1

v2 v3
v1 < v2 < v3

v1

v2 v3

v4

v1 < v2 < v3 < v4
q2

v1
v2

v3 v4

v5

v2 < v5
v3 < v4

q3

v1
v2 v5

v3 v4
v1 < v2 < v3
v3 < v4 < v5

q4
Figure 6.3: Queries for data compression.

Exp-1: Compressed Graph. In Table 6.3, we observe a more notable compres-

sion ratio of the compressed graph built from eu, uk, indo than the other graphs.

The reason is, to our best speculation, these three graphs are web graphs, and the

web pages from the same domain often reference each other, which tends to forming

large cliques. We have found large compressed nodes in the form of cliques in eu,

uk and indo of the size 992, 943 and 6823, respectively.

Recall that we will directly assign a node u with d(u) >
p
M to a trivial

compressed node (i.e. S(u) = {u}). We varied the threshold as M0.25, M0.33, M0.5,

M0.75, M , and constructed the compressed graph accordingly in order to verify that
p
M is a reasonable threshold in practice. Note that when the threshold is equal to

132 Chapter 6. Optimisation using Data Compression

Table 6.4: Varying the degree threshold that makes us directly assign the node into
a trivial compressed node.

datasets / threshold M0.25(%) M0.33(%) M0.5(%) M0.75(%)
'0.25
v '0.25

e '0.33
v '0.33

e '0.5
v '0.5

e '0.75
v '0.75

e

lj 99.92 99.15 99.99 99.97 100 100 100 100
orkut 99.99 99.99 100 100 100 100 100 100
indo 98.13 53.78 99.36 56.65 99.99 99.47 100 100
uk 98.40 70.39 99.58 78.94 99.99 99.99 100 100

M , we obtain the exact compressed graph. We use 'i
v ('

i
e) to represent the ratio of

the number of the exact compressed nodes (edges) over the number of compressed

nodes (edges) when the threshold is M i (for i 2 {0.25, 0.33, 0.5, 0.75, 1}). We list

the experimental results for the datasets lj, orkut, indo and uk in Table 6.4, which

cover the cases of two non-web graphs and two web graphs. We omit the other

datasets as they render similar results. Clearly, '1
v = 100% and '1

e = 100%, hence

they are not presented. As we can see, when we set the threshold as M0.5, we

can obtain a compressed graph covering almost 100% compressed nodes and 100%

compressed edges in all the cases.

0

10

20

30

40

213.3

lj orkut indo uk fs

1.15

1.25

R
u
n
n
in

g
 T

im
e
 (

m
in

) TT
TT+C

(a) Query q1

0

50

100

150

200

556.6

INF

lj orkut indo uk fs

R
u

n
n

in
g

 T
im

e
 (

m
in

)

TT
TT+C

(b) Query q2

Figure 6.4: The results of Exp-1: TT vs. TT+C.

We next compared the running time of enumerating q1 and q2 by using TT

on both the original data graphs and the compressed graphs of lj, orkut, indo, uk

and fs. The results are shown in Figure 6.4. The performances are all improved

Chapter 6. Optimisation using Data Compression 133

Table 6.5: Comparison of the size of the output data (in billions) while enumerating
q1 and q2 on the original and compressed graph.

queries m/r lj lj-h uk uk-h

q1
map1 0.33 0.29 4.71 1.30
reduce1 0.29 0.25 4.45 1.04
overall 0.62 0.54 9.16 2.34

q2

map1 0.57 0.51 8.90 2.09
reduce1 9.94 8.50 157.20 17.55
map2 10.23 8.76 161.65 18.60
reduce2 9.93 8.50 157.19 17.55
overall 30.67 26.67 484.95 55.78

when dealing with the compressed graphs compared to the original graphs. The

improvement is especially remarkable for uk and indo. As these two graphs are web

graphs, some large cliques inside them are potentially aggregated as compressed

nodes. We also show the size of the output data in Table 6.5 for the datasets lj,

uk and their compressed graphs lj-h and uk-h, while enumerating q1 and q2. We

obtain a reduction of the output data as expected. The algorithm produces 13%

less data on the compressed graph of lj in the enumeration of q1 and q2, while on

uk-h, given a higher compression ratio as presented in Table 6.3, it produces 74.4%

and 88.80% less data while enumerating q1 and q2, respectively.

101

102

103

104

INF

eu lj

1003 1013 1200

R
u
n
n
in

g
 T

im
e
 (

s)

SEED+C
SEED

(a) q3

101

102

103

104

INF

eu lj

205

980 1206 1347

R
u
n
n
in

g
 T

im
e
 (

s)

SEED+C
SEED

(b) q4

Figure 6.5: The results of Exp-2: SEED vs. SEED+C.

Exp-2: Clique compression. We tested the e↵ectiveness of clique compression

134 Chapter 6. Optimisation using Data Compression

by comparing SEED to SEED+C. We queried q3 and q4 on the datasets eu and lj

using both algorithms and present the results in Figure 6.5(a) and Figure 6.5(b).

Observe that SEED+C runs faster than SEED in all tests, especially while processing

q3 on eu, where SEED+C terminates in 1003 seconds but SEED runs out of time.

Note that the e↵ect of clique compression is more notable on eu than that on lj.

The reason is that, to our best speculation, in a web graph like eu, web pages within

a domain tend to link each other to form large cliques, while in a social network

like lj, such a strong tie is rarely formed; Obviously, larger clique in the data graph

contributes to better clique compression. Although we spend time enumerating and

maintaining the large cliques (see T (C) in Table 6.3) for clique compression, the

technique does improve the performance of SEED, and it will play an important role

when the data graph contains many large cliques (e.g. while processing q6 on eu).

This experiment has demonstrated that the performance of subgraph enumeration

is further improved after applying clique compression.

6.4 Chapter Conclusion

We introduced two data compression techniques to further improve the performance

of subgraph enumeration. The first technique utilizes the properties of the data

graph. By aggregating the data nodes that share the same neighbors into a com-

pressed node, we could construct a compressed graph, which improves subgraph

enumeration via saving both the computation and communication cost related to

the compressed node. The second technique is based on the fact that a large clique

in the data graph can represent a large number of matches of a small clique. We

hence precomputed the cliques in the data graph, and used them to compress the

matches of the clique when it is the join unit in the execution plan.

Chapter 7

Conclusion

Subgraph enumeration is one of the most fundamental problems in graph database

with a variety of applications. However, all existing solutions can not scale to web-

scale real graphs due to the computational hardness of the problem. In this work,

we proposed to solve subgraph enumeration on existing big data processing engine

such as MapReduce. We introduced a general decomposition-and-join approach for

all proposed algorithms. Based on the general approach, we first proposed the star-

based join framework, which used the simple graph storage mechanism that only

supports star as the join unit, and applied a left-deep join structure. Based on a

well-proposed cost model, we proved that it was su�cient to guarantee instance op-

timality in the star-based join framework by using TwinTwig, rather than a general

star, as the join unit, which inspires the TwinTwigJoin algorithm. TwinTwigJoin

can only guarantee optimality in the star-based join framework, with the restraints

of the simple graph storage mechanism and the left-deep join structure. Motivated

by this, we further proposed the SEED algorithm on the graph-based join frame-

work that guarantees the optimality without the constraints of TwinTwigJoin. In

short, SEED implements the SCP graph storage mechanism that supports clique,

135

136 Chapter 7. Conclusion

in addition to star, as the join units. In addition, a dynamic-programming algo-

rithm was proposed to compute the optimal bushy join plan for SEED. We con-

ducted extensive performance studies to show that TwinTwigJoin is already more

e�cient and scalable than the state-of-the-art works, while SEED further outper-

forms TwinTwigJoin by up to two orders of magnitude. Though we have arrived at

optimality, the algorithm still su↵ers from maintaining and transferring the enor-

mous intermediate results (communication cost) while processing complex queries

on large data graphs. Aiming at further reducing the communication cost, we pro-

posed two data compression techniques. The first technique transforms the data

graph into a compressed graph, and the query processing on the compressed graph

can be greatly boosted considering that the huge cost within the compressed nodes

has been saved. The second technique utilizes the fact that we can use a large

clique in the data graph to represent a large number of matches of a smaller clique

when it is the join unit, and hence the results can be expressed in a much more

compact way.

Subgraph enumeration also sparks many interesting perspectives that can be

considered as future research topics. These include: (1) the distributed join opti-

mization. Now that there are distributed data-flow systems that can process data

in a very large scale. There still lack in e�cient and scalable techniques that can

solve join operation involving many relations in the distributed context. Traditional

database heavily relies on indexing and filtering techniques to boost the join. Nev-

ertheless, it is very challenging to adapt these techniques to the distributed system.

Essentially, the join operation can be depicted as a graph pattern matching (sub-

graph enumeration) problem so that we can apply the exisiting graph algorithms,

sequential or parallel, to solve join more e�ciently. (2) parallel external algorithm.

Both IO and computation intensive, it is very challenging to solve subgraph enumer-

Chapter 7. Conclusion 137

ation in scale. To achieve e�ciency, researchers are seeking distributed solutions,

however, in the reflection of this work, it is extremely challenging to handle that

massive data exchange among di↵erent machines. A parallel external algorithm

may potentially fit into this problem. The external technique can relieve memory

burden caused by the massive results, while the multi-core driver can parallelize the

execution to a promising extent. Last but not the least, the huge data exchange

now happens within one machine instead of among multiple machines that can

reside in di↵erent geological locations.

Bibliography

[ACL00] William Aiello, Fan Chung, and Linyuan Lu. A random graph model

for massive graphs. In Proc. of STOC ’00, 2000.

[ADH+08] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari,

and Süleyman Cenk Sahinalp. Biomolecular network motif counting

and discovery by color coding. In Proc. of ISMB’08, 2008.

[AFU13] Foto N. Afrati, Dimitris Fotakis, and Je↵rey D. Ullman. Enumerating

subgraph instances using map-reduce. In Proc. of ICDE’13, 2013.

[Blo70] Burton H. Bloom. Space/time trade-o↵s in hash coding with allowable

errors. Commun. ACM, 13(7), 1970.

[CLV03a] Fan Chung, Linyuan Lu, and Van Vu. Eigenvalues of random power

law graphs. Annals of Combinatorics, 7(1):21–33, 2003.

[CLV03b] Fan R. K. Chung, Linyuan Lu, and Van H. Vu. The spectra of random

graphs with given expected degrees. Internet Mathematics, 1(3), 2003.

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing

algorithms. SIAM J. Comput., 14(1), 1985.

[CSN09] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-

law distributions in empirical data. SIAM Rev., November 2009.

138

BIBLIOGRAPHY 139

[DG04] Je↵rey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-

cessing on large clusters. In Proc. of OSDI’04, 2004.

[ER60] Paul Erdos and Alfred Renyi. On the evolution of random graphs. In

Publ. Math. Inst. Hungary. Acad. Sci., 1960.

[FFF14] Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco. Counting

small cliques in mapreduce. CoRR, abs/1403.0734, 2014.

[GK07] Joshua A. Grochow and Manolis Kellis. Network motif discovery us-

ing subgraph enumeration and symmetry-breaking. In Proc. of RE-

COMB’07, 2007.

[GRS10] Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other

small subgraphs in sublinear time. In Proc. of SODA’10, 2010.

[HLL13] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: To-

wards ultrafast and robust subgraph isomorphism search in large graph

databases. In Proc. of SIGMOD’13, 2013.

[HS08] Huahai He and Ambuj K. Singh. Graphs-at-a-time: Query language

and access methods for graph databases. In Proc. of SIGMOD’08,

2008.

[HTC+] Daniel Halperin, Victor Teixeira, Lee Lee Choo, Shumo Chu, and et al.

Demonstration of the myria big data management service. In SIGMOD

’14.

[IBY+] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis

Fetterly. Dryad: Distributed data-parallel programs from sequential

building blocks. In EuroSys ’07.

140 BIBLIOGRAPHY

[IK91] Yannis E. Ioannidis and Younkyung Cha Kang. Left-deep vs. bushy

trees: An analysis of strategy spaces and its implications for query

optimization. In SIGMOD’91, pages 168–177, 1991.

[JK84] Matthias Jarke and Jurgen Koch. Query optimization in database

systems. ACM Comput. Surv., 16(2):111–152, June 1984.

[KWL12] Sanjay Ram Kairam, Dan J. Wang, and Jure Leskovec. The life and

death of online groups: Predicting group growth and longevity. In

Proc. of WSDM’12, 2012.

[LHKL12] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon

Lee. An in-depth comparison of subgraph isomorphism algorithms in

graph databases. PVLDB, 6(2), 2012.

[LQLC15] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable sub-

graph enumeration in mapreduce. PVLDB, 8(10), 2015.

[LSK06] Jure Leskovec, Ajit Singh, and Jon Kleinberg. Patterns of influence in

a recommendation network. In Proc. of PAKDD’06, 2006.

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.

Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:

A system for large-scale graph processing. In Proc. of SIGMOD’10,

2010.

[MCHW12] Shuai Ma, Yang Cao, Jinpeng Huai, and Tianyu Wo. Distributed

graph pattern matching. In WWW, 2012.

[MMJ+] Zaharia Matei, Chowdhury Mosharaf, Franklin Michael J., Shenker

Scott, and Stoica Ion. Spark: Cluster computing with working sets.

In HotCloud’10, pages 10–10.

BIBLIOGRAPHY 141

[MP08] Tijana Milenkovic and Natasa Przulj. Uncovering biological network

function via graphlet degree signatures. Cancer Inform, 6, 2008.

[MSOI+02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and

U. Alon. Network motifs: Simple building blocks of complex networks.

Science, 298(5594), 2002.

[Pla13] Todd Plantenga. Inexact subgraph isomorphism in mapreduce. J.

Parallel Distrib. Comput., 73(2), 2013.

[Prz07] Natasa Przulj. Biological network comparison using graphlet degree

distribution. Bioinformatics, 23(2), 2007.

[RR01] Gerta Rücker and Christoph Rücker. Substructure, subgraph, and

walk counts as measures of the complexity of graphs and molecules.

Journal of Chemical Information and Computer Sciences, 41(6), 2001.

[RW15] Xuguang Ren and Junhu Wang. Exploiting vertex relationships in

speeding up subgraph isomorphism over large graphs. Proc. VLDB

Endow., 8(5):617–628, January 2015.

[SCC+14] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu.

Parallel subgraph listing in a large-scale graph. In SIGMOD’14, pages

625–636. ACM, 2014.

[SV11] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the

curse of the last reducer. In Proc. of WWW’11, 2011.

[SVP+09] N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and

K. M. Borgwardt. E�cient graphlet kernels for large graph compari-

son. In AISTATS, 2009.

142 BIBLIOGRAPHY

[SWW+12] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong

Li. E�cient subgraph matching on billion node graphs. PVLDB, 5(9),

2012.

[TKMF09] Charalampos E. Tsourakakis, U Kang, Gary L. Miller, and Christos

Faloutsos. Doulion: Counting triangles in massive graphs with a coin.

In Proc. of KDD’09, 2009.

[VL05] Fabien Viger and Matthieu Latapy. E�cient and simple generation of

random simple connected graphs with prescribed degree sequence. In

COCOON’05, 2005.

[WC12] Jia Wang and James Cheng. Truss decomposition in massive networks.

PVLDB, 5(9), 2012.

[WS98] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’

networks. Nature, 6684(393), 1998.

[ZH10] Peixiang Zhao and Jiawei Han. On graph query optimization in large

networks. PVLDB, 3(1-2), 2010.

[ZKKM10] Zhao Zhao, Maleq Khan, V. S. Anil Kumar, and Madhav V. Marathe.

Subgraph enumeration in large social contact networks using parallel

color coding and streaming. In Proc. of ICPP’10, 2010.

Appendix A

Appendix

In this appendix, we introduce the algorithm of symmetry breaking in [GK07] that

assigns partial order to the pattern graph and formally prove its correctness. we first

give some preliminary knowledge of automorphism. Then we show the intuition

of eliminating duplicated enumeration by the order-preservation constraint, and

present the symmetry-breaking algorithm via assigning the partial orders among

nodes in the pattern graph introduced in [GK07]. Finally, we show the correctness

of the algorithm.

Automorphism. We denote the automorphism group of a graph � as A�. We

say v1 and v2 in a graph � is automorphism equivalent, denoted v1 ⇠ v2, i↵ there

is an automorphism ↵ of � s.t. ↵(v1) = v2. The equivalence classes of the nodes

of a graph under the action of the automorphisms are called node orbits. Here we

simply call it orbit. An orbit is trivial if it contains only one node. We denote OA

the set of orbits given by the automorphism group A.

We often use a permutation ⇡ to express an automorphism, which is further

represented in the disjoint cycle form.

Example A.1. Considering an automorphism that maps (v1, v2, v3, v4, v5, v6)

143

144 Chapter A. Appendix

to (v3, v2, v1, v6, v5, v4), correspondingly. It gives the permutation ⇡ =
�
v1 v2 v3 v4 v5 v6
v3 v2 v1 v6 v5 v4

�
, which has the disjoint cycle form as ⇡ = (v1v3)(v2)(v4v6)(v5).

For the sake of simplicity, we will ignore an element v in the cycle form of an

automorphism ↵ if ↵(v) = v. For example, (v1v3)(v2)(v4)(v5)(v6) will be simplified

as (v1v3). We use I to denote the identity.

Order-Preservation Constraint and Symmetry Breaking. Suppose a sub-

graph g of G is isomorphic to the pattern graph P . Let f be the match that maps

V (P) to V (g). We consider an orbit {v1, v2, · · · , vk} of P w.r.t AP , and a data

node set {u1, u2, · · · , uk}. Without loss of generality, we assume u1 has the small-

est order, and f(vi) = ui for all 1 i k. Taking v1 as an example, it is clear that

there exists an automorphism ↵i 2 AP where ↵i(v1) = vi for 2 i k. Therefore,

for all the ↵i, the mapping ↵i � f from V (P) to V (g) corresponds to the same sub-

graph instance g, leading to duplicated enumerations. We then consider an order

< among some nodes in the orbit and apply the order-preservation constraint on

the mapping (order-preserved mapping). More specifically, if vi < vj, the mapping

f is allowed i↵ f(vi) � f(vj). In this case, we enforce the order v1 < vi for all

2 i k, which eliminates all ↵ � f where ↵(v1) 6= v1 (or similarly preserves only

↵�f where ↵(v1) = v1) by order preservation. In this way, we avoid the duplicated

enumeration caused by v1. Note that by enforcing such an order, a mapping f from

V (P) to V (g) is valid i↵ f(v1) = u1, which means v1 can only be mapped to a fixed

node in a given subgraph instance.

We call the node v in the pattern graph P the fixed node if given a subgraph

g of G, all the valid matches (according to Definiton 2.2) that map v to a fixed

node in g. We know that each node that belongs to a trivial orbit is a fixed node.

As discussed previously, after assigning the orders to v1, that is v1 < vi for all

2 i k, v1 becomes a fixed node by the order-preserved matching.

Chapter A. Appendix 145

Symmetry Breaking Algorithm. The algorithm in [GK07] first initializes the

automorphism group A as A AP . It then runs the following steps iteratively

until A = {I}.

• Pick up the largest orbit {vi1 , vi2 , vi3 , · · · , vi
k

} from OA.

• Assign the order vi1 < vi2 , vi1 < vi3 , · · · , vi1 < vi
k

to make vi1 a fixed node.

• Refine A {↵|↵ 2 A ^ ↵(vi1) = vi1}.

The final step refines the automorphism group A which contains only the auto-

morphisms that map v1 to itself. It is easy to verify that after the refinement A is

still a group. Note that after A is refined, OA is refined correspondingly. We show

a running example using the pattern graph presented in Figure A.1.

Example A.2. The automorphism group A is initialized as AP =

{I, (v1v2v3)(v4v5v6), (v1v3v2)(v4v6v5), (v2v3)(v5v6), (v1v3)(v4v6), (v1v2)(v4v5)}.

The automorphisms partition the nodes into two orbits, namely OA = {{v1, v2, v3},

{v4, v5, v6}}. We first pick up v1 from {v1, v2, v3}, and assign the order

v1 < v2, v1 < v3. We then refine A to contain the automorphisms that map node

v1 to itself, which gives A = {I, (v2v3)(v5v6)}, and the new orbits given by A on

the remaining nodes are clearly OA = {{v2, v3}, {v5, v6}}. We further pick up v2

and assign the order v2 < v3. After this, A should be refined to contain the auto-

morphisms that map v1 to v1, and v2 to v2, which gives A = {I}. The algorithm

hence terminates by assigning the following order: v1 < v2, v1 < v3, v2 < v3.

Next, we prove the correctness of the techniques proposed in [GK07] by showing

that the results after applying the order restraints given by the algorithm 1) are

complete; 2) contain no duplicated results.

146 Chapter A. Appendix

!
!

!

!

!
!

!
!

!
! !

Figure A.1: A pattern graph for symmetry breaking.

Correctness of the Algorithm. 1) Completeness. We prove the completeness

of the results by induction on the step of the algorithm. By completeness we mean

that the algorithm only eliminates the matches introduced by automorphisms. To

start, namely step 0, the results are clearly complete. In step k, we assume that the

results are complete. In step k+1, according to the algorithm, we pick up an orbit,

{vi1 , vi2 , · · · , vi
k

} from OA, and assign the order vi1 < vi2 , vi1 < vi3 , · · · , vi1 < vi
k

.

We consider vi1 < vi2 , and the automorphism ↵ = (vi1vi2). For any match f

where f(vi1) � f(vi2), the order vi1 < vi2 only eliminates ↵ � f and nothing more

is a↵ected, which means that the order only eliminate duplicated results due to

automorphism. We have identical results for the remaining orders. Therefore, the

results after assigning the order (by order preservation) are still complete, which

completes the proof.

2) No Duplicates. Assume that there are two isomorphisms f1 and f2 that

map (by order preservation) the pattern graph to the same subgraph in the data

graph. There must exist an non-trivial automorphism ↵ 2 A s.t. f1 = ↵ � f2. This

is impossible since this contradicts the termination condition of the algorithm in

[GK07], where only the identity will be preserved in A.

Given this, we conclude that by assigning the orders via [GK07], we can break

the symmetry which ensures, 1) completeness; 2) no duplicates.

	Title page - Distributed Subgraph Enumeration
	Abstract
	Publications Involved in Thesis
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	Chapter 1 - Introduction
	Chapter 2 - Preliminaries
	Chapter 3 - A General Approach
	Chapter 4 - TwinTwigJoin: OptimalStar-based Left-deep Join
	Chapter 5 - SEED: Optimal Graph-based Bushy Join
	Chapter 6 - Optimisation using Data Compression
	Chapter 7 - Conclusion
	Bibliography
	Appendix A

