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Abstract 

The Royal Australian Chemical Institute (RACI), the professional body for chemists 
in Australia, runs a yearly titration competition for high school students. In 1997, 
twenty five teams of three students competed in a heat at the University of New South 
Wales, Sydney. The results are an excellent set of data, showing random and gross 
errors, that can be used to illustrate many basic aspects of data analysis, including 
histograms, normal distribution of data, means and standard deviations, robust 
estimators, hypothesis tests and measurement uncertainty. They also support general 
observations that ¼ to ⅓ of analytical results might not be fit for purpose, and provide 
a platform for a discussion of quality in analytical chemistry. 

Key Words: Data analysis, statistics, normal distribution, measurement uncertainty, 
acid base titration  
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1 Introduction 
Teaching the statistics of data analysis to undergraduate students can be 

considered quite straight forward. Concepts such as mean and standard deviation 
might already be familiar, and the formulae for confidence intervals, t-tests and the 
like are not the hardest to understand. With access to spreadsheets, graphs and 
calculations have become much easier. What students struggle with, in my 
experience, is simply why they need to do data analysis, and what information is 
really being gleaned. Modern approaches to metrology stress the ‘uncertainty 
approach’ in which a holistic view is taken, rather than a classical assignment of  
dispersion of results in terms of random and systematic error (ISO, 2005). 
Laboratories that are accredited to ISO 17025 (ISO, 1999) must estimate 
measurement uncertainty and must report it with their results when required by the 
client and when there is comparison with a limit. A measurement result is a value 
(number plus unit) and an uncertainty, often expressed as an expanded uncertainty, 
which is a range in which the value of the measurand is expected to lie with a certain 
probability (ISO, 1993).  

This modern approach is an attempt to improve the quality of analytical results, and in 
the author’s view, this has to start as early as possible during the training of an 
analytical chemist. There are a number of examples of the high cost of poor analysis, 
and in recent years pronouncements from national institutes like NIST (National 
Institute of Standards and Technology, USA) (May, 2001) and the LGC (Laboratory  
of the Government Chemist, UK) (King, 1995) has implied that a surprisingly large 
fraction of analytical results are not fit for purpose. For example in a survey of clients 
of analytical chemistry laboratories carried out in the early 1990s, the LGC found 
29% of respondents reported results that did not meet the customer requirements, and 
of these 12% caused ‘very serious loss’ to the customer’s business (King, 1995). 

Courses on data analysis, often a few lectures in an analytical or physical chemistry 
subject, provide useful examples for their students to study, but these are often chosen 
piecemeal with a specific illustrative objective for each, and can lead to an incoherent 
whole. The data reported in this paper happens to have several useful qualities that 
provide an exemplar for a good part of basic data analysis. An advantage of the use of 
the data in Australia is that many university chemistry students will have taken part in 
the competition in their final year at high school, and so feel some ownership and 
sympathy with the anonymous students, whose results are being picked over and 
analyzed. Here about 5 or 6 lectures in a second year (of a three year BSc course) 
subject on analytical chemistry is based on one set of results, from the RACI titration 
competition of 1997. 

1.1 The RACI titration competition 
Each year the RACI organizes around the states and territories of Australia a titration 
competition, open to students attending high schools, usually in their last two years 
before tertiary education (grade 11 and 12). Winners of regional heats go on to a final, 
and the whole competition has been a good instrument for raising awareness of 
chemistry and the need for proper laboratory techniques. The model was the popular 
schools analysis competition under the auspices of the Royal Society of Chemistry, 
first organised in London by then Polytechnic of North London (now the London 
Metropolitan University) in 1982 (RSC, 2005).  
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In the RACI competition teams of three are given (1) a sodium hydroxide solution, (2) 
a hydrochloric acid solution of assigned molarity, and  (3) individual solutions of 
acetic acid. Common indicators are available, and glassware is provided (although 
many students from private schools come with their own calibrated pipettes and 
burettes). The students are expected to return the three amount concentrations of the 
acetic acid solutions, and a marking scheme is used that usually adds the absolute 
error (|assigned value – student’s reported value|) of each student, with the team with 
lowest aggregate being the winner. The expected procedure is that each student will 
titrate the hydrochloric acid solution with sodium hydroxide and thus calculate the 
molarity of the sodium hydroxide. Then with a suitable indicator (e.g. phenol 
phthalein) each will titrate the acetic acid with the, now standardized, sodium 
hydroxide and thus return the required concentration of their acetic acid. It is 
recommended that each student perform his or her own set of titrations, although it is 
known that some teams pool their knowledge of the concentration of sodium 
hydroxide (and with occasional disastrous results). 

2 The results of the 1997 UNSW heat 
Table 1 gives the results of the 26 teams that took part in the 1997 heat held at the 
University of New South Wales, Sydney. 

Table 1: Results of the analysis of three acetic acid solutions Assigned values: A = 
0.1147 M; B = 0.1241 M; C = 0.1340 M. 

 Solution 

Team 
concentration 
of A (M) 

concentration 
of B (M) 

concentration 
of C (M)  

1 0.1146 0.1242 0.1341 
2 0.1148 0.1238 0.1343 
3 0.1150 0.1241 0.1343 
4 0.1150 0.1243 0.1336 
5 0.1148 0.1247 0.1346 
6 0.1139 0.1244 0.1336 
7 0.1142 0.1244 0.1336 
8 0.1144 0.1227 0.1339 
9 0.1152 0.1245 0.1327 

10 0.1155 0.1256 0.1345 
11 0.1158 0.1252 0.1350 
12 0.1143 0.1243 0.1323 
13 0.1141 0.1255 0.1335 
14 0.1153 0.1262 0.1336 
15 0.1145 0.1231 0.1319 
16 0.1177 0.1249 0.1360 
17 0.1134 0.1246 0.1306 
18 0.1144 0.1281 0.1352 
19 0.1219 0.1299 0.1414 
20 0.1138 0.0908 0.1330 
21 0.1143 0.0855 0.1328 
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22 0.0920 0.0840 0.1278 
23 0.1222 0.1212 0.0850 
24 0.1556 0.1645 0.1231 
25 0.0936 0.0854 0.0818 
26 0.9083 0.8589 0.7746 

 

Apart from the hapless teams 25 and 26 many of the students appear to have made a 
good attempt at the analysis. When teaching with these data, I point out that tabulated 
values are not always easy to interpret and form an impression of the nature of the 
results. I also observe that out of 75 results only one person (team 3 B) actually 
returned a value that was ‘correct’, and recall the famous saying by Berzelius who is 
quoted as saying about analysis “…… not to obtain results that are absolutely exact – 
which I consider only to be obtained by accident – but to approach as near accuracy as 
chemical analysis can go.”     

2.1 Analysis of the data 

2.1.1 Plots 
It is always recommended to graph the data in some way. A simple plot against team 
number highlights the real problem team (Figure 1a) , but also shows that one great 
outlier compresses the rest of the data. 

 

Figure 1: Results of the RACI titration competition for sample B. Dashed line is the 
assigned value. 

 

The data is sorted and the greatest point left out, now showing some more potential 
outliers (Figure 2). Homing in on the plot of Figure 3 shows the data that we can 
demonstrate (later) to be normally distributed. Students’ attention must be drawn to 
the scales on the y-axes to emphasise the differences between the core data and the 
outliers. 
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Figure 2: The data of Figure 1, ordered. 

 

Figure 3: The data of Figure 1 with outliers removed. 

 

2.1.2 Histogram 
A problem with displaying data using histograms, is that unless there is a reasonable 
amount of data, they rarely look convincingly normal. Here the 78 data have been 
expressed as a % error = 100 × (value – assigned value)/assigned value, to allow for 
the different assigned values and a histogram is shown in Figure 4. This results in two 
groups, one of extreme values (the 21 in the ‘less’ and ‘more’ categories) and the 
remaining majority which seem to cluster about the correct answer (i.e. error = 0).  
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Figure 4: A histogram of the errors of the results of Table 1. A bar contains values 
between the value shown for the previous bin and its value, e.g. the bar labelled 0.5 
counts results between 0 and 0.5 %.  The solid line is the normal distribution with 
mean 0.01% and standard deviation 0.94 %. 

 

2.1.3 Rankit 
There is not always time in a short course of data analysis to cover testing of data for 
normality, but the Rankit method can be quickly implemented in Excel and can 
provide a platform for a discussion of distributions. The Rankit method is as follows, 
with each step creating data in an adjacent column. 

1. Sort the data into ascending order. In Excel this is done via a command in the 
Data menu, or icon on the Standard icon bar. 

2. Write the cumulative frequency of the data, that is how many data have values 
equal to or less than the ranked value. This definition means that ties get the 
higher rank. (data 7.1, 7.3, 7.3, 7.5 is ranked 1, 3, 3, 4)In Excel this becomes = 
COUNT($range) + 1 – RANK(cell ,$range), where $range is the range of 
cells containing the ordered data with reference fixed  to allow copying down 
the column (e.g. $A$1:$A$27), and cell is the cell containing the value to be 
ranked (e.g. A1). 

3. Calculate the normalized cumulative frequency as f = cumulative 
frequency/n+1, where n is the number of data.   

4. Calculate the point on the normal distribution corresponding to the normalized 
cumulative frequency, z =NORMSINV(f) 

5. Plot z against the data.  

0

2

4

6

8

10

12

14

16

18

20

Le
ss -1
.5 -1

-0
.5 0

0.
5 1

1.
5 2

2.
5

M
or

e

Error (%)

Fr
eq

ue
nc

y



Hibbert Teaching modern data analysis 7 

A straight line through f(z) = 0 indicates normality. Outliers are displaced to the left or 
right . Table 2 has example Rankit calculations, and Figure 5 is the Rankit plot for all 
the data. As before, team 26 distorts the plot, but by reducing the data set, data that 
gives a good straight line indicating a normal distribution is easily found (Figures 6 
and 7). 

Table 2. Rankit calculations for the 78 results of the titration competition. Error = 100 
× (result – assigned value)/assigned value. (The data is copied directly from an Excel 
spreadsheet and no precision of the values is implied). 

Error 
(%) Rank z 

-38.9552 1 -2.23654 

-36.5672 2 -1.95458 

-32.3127 3 -1.77469 

-31.1845 4 -1.63875 

… … … 

32.55439 74 1.527719 

35.65824 75 1.638748 

478.0597 76 1.774688 

592.1031 77 1.954577 

691.8919 78 2.236538 

 

 

Figure 5: Rankit plot for the 78 results of the titration competition 
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Figure 6: Rankit plot of the titration data without the highest 9 and lowest 8 data 

 

Figure 7: Rankit plot of the titration data with the ‘more’ and ‘less’ data of the 
histogram of Figure 4 removed. The solid line is a Trendline generated by Excel. 

 

As with the raw data, mention must be made of the x-axis scales of these plots. With 
this kind of data, an outlier test for single outliers such as a Grubbs’ test, now 
recommended by ISO and IUPAC, or a Dixon’s Q-test, should not be used (Miller 
and Miller, 2000). 
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 (1) 

and the sample standard deviation (s) 

 (2) 

However these estimates are only valid if the data on which they are based are a 
random sample of normally distributed data. The titration data illustrates the dangers 
of calculating sample means and standard deviations before checking for outliers and 
normality. So-called ‘robust’ estimators are used when a data set is not perfectly 
normally distributed to provide reasonable values for mean and standard deviation.  
The median, which is the middle value of data when they are arranged in order (or the 
average of the two middle values if there are an even number of data), is a robust 
estimator of the mean. A basis of the equivalent estimator of standard deviation is the 
interquartile range or IQR. The data is ordered and the median determined. Then the 
medians of each half of the data give the IQR. The IQR is thus the range of data 
containing the middle 50% of the data. Calculation of the IQR requires sufficient data 
to bin into quartiles, and so cannot be used on less than about one dozen data.  As ± 1 
standard deviation encompasses 68% of the data it is easy to show that the IQR × 0.75 
is an estimate of the standard deviation. This is called the normalised interquartile 
range, or NIQR. An alternative robust estimator of the standard deviation, the 
normalised median absolute deviation (NMAD), has been supported by Miller and 
Miller (Miller and Miller, 2000) as a more useful robust estimate for small data sets. 
The median absolute deviation (MAD) is the median of the absolute differences 
between each value and the median of the data.  Divided by 0.68 the MAD becomes 
the normalised MAD (NMAD). Table 3 has the mean, median, standard deviation, 
NIQR and NMAD for the titration data.  

 

Table 3: Statistics of the titration results for team member B. Assigned value = 
0.1241 M. NIQR = interquartile range × 0.75, NMAD = median| xi – median(x)| /0.68 

statistic (unit) All data 
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Mean (M) 0.1486 0.1243 (assigned value 0.1241) 

s (M) 0.1458 0.00114 
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NMAD (M) 0.00169 0.00059 
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Courtesy of team 26, the raw data is skewed high, as has been seen, and the mean and 
standard deviation of the original data does not give a useful estimate of the centre of 
the data nor the spread. The median and NIQR and NMAD for the whole data do 
return  values that are in keeping with the mean and standard deviation of the 
normally distributed data. The message that goes with these calculations is that 
wherever possible data that can be demonstrated to be normally distributed should be 
identified and the sample mean and sample standard deviation calculated. When this 
is not possible or desirable, and the data is known to have outliers or be skewed in 
some way, robust estimates of mean and standard deviation are to be used. An 
example is in interlaboratory trials where each result must be preserved and robust z-
scores, zi = [xi – median(x)]/NIQR , used (Hibbert, 2005).  At this stage it is worth 
reminding students that all of these statistics have the units of the measurand (here 
M), and that the symbol for sample standard deviation is s, not sd, s.d., SD, std dev, 
and so on.  

2.2 Did the students get the right answer? 
If the course includes hypothesis testing then the data can be used to answer the 
question, are the means of the students’ data significantly different from the assigned 
values? A Student-t test is used for each set of results (A, B, C). 

, with n – 1 degrees of freedom (1) 

where ARV is the assigned reference value and and s the sample mean and standard 
deviation of the normally distributed data. The equation for the t value is written as in 
(1) in order to emphasize that t is just the difference between mean and assigned value 
expressed in standard deviations of the mean. The null hypothesis, H0, is that the 
experimental data come from a population with mean  µ = ARV.  The t values from (1) 
may be compared with 95% two-tailed t, generated in Excel by =TINV(0.05,n – 1), or 
the probability associated with t calculated by P =TDIST(t, n – 1,2). This allows 
discussion of what is being tested – not the probability of H0, but the probability of the 
data given the truth of H0. Later a more formal definition of P as the probability of 
finding a t value more extreme than t in repeated experiments, can be given together 
with the knowledge that P is also the probability of making a Type I error if H0 is 
rejected. 
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Table 4: Student-t tests on the means of the titration results 

 Solution 
 A B C 
Assigned value /M 0.1147 0.1241 0.1340 
mean /M 0.1146 0.1243 0.1338 
s /M 0.0006 0.0011 0.0010 
n 19 18 19 
standard deviation 
of the mean /M 0.00014 0.00027 0.00024 
t 0.7493 0.8058 0.7831 
P(T>t) 0.4634 0.4315 0.4438 
t0.05”,n-1 2.1009 2.1098 2.1009 

 

So the answer is clear, analysis of the solutions by team members who obtained 
results that were not classed as outliers gave mean results that were consistent with 
coming from populations with the assigned values. (At this stage we might lapse from 
statistical orthodoxy and suggest ‘they did get the answer right’).  

3 Measurement uncertainty  
A major change in our understanding of measurement results has come with the rise 
of the field of ‘metrology in chemistry’. This has brought understanding of 
measurement uncertainty as something more than a 95% confidence interval 
calculated from a few repeated measurements. The ISO-approved method for 
estimating uncertainty is given in the “Guide to the expression of uncertainty in 
measurement” (ISO, 1993) and referred to by everyone as ‘the GUM’. A full GUM 
calculation is a serious business (as an example see (Saed Al-Deen, Hibbert et al., 
2004)) but the principles of auditing what factors might contribute to the uncertainty 
of a result can be instilled. The approach I have taken in my course is to try and 
predict the relative standard deviations of the students’ results which were, for the 
normally distributed data, A: 0.0053, B: 0.0092, and C: 0.0077, i.e. between 0.5 to 1 
%.   
Also recorded with the results are the students’ actual titration volumes. If the relative 
standard deviations are averaged (as squared RSDs) over the top ten teams an estimate 
of the repeatability of a single titration as an RSD is 0.0033, or for a volume of 25 mL 
sr = 0.083 mL . Conventional wisdom has that the reproducibility (precision under 
conditions of changing analysts, equipment, reagents, time) is two to three times the 
repeatability (precision under conditions in which the experiment is replicated by the 
same analyst with the same equipment over a short period of time), and this is 
followed here. 

Approaches to estimating measurement uncertainty suggest construction of a cause-
and-effect diagram based on the formulae used to calculate the result. A cause and 
effect diagram, also called after its early protagonist Ishikawa, or its fish-bone shape, 
is a way of displaying and connecting information about a particular outcome. The 
amount concentration  
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 (2) 

 (3) 

where MNaOH and MAcOH are the molarities of sodium hydroxide and acetic acid 
respectively and the V are the volumes of the subscripted solutions. Most students 
kept the sodium hydroxide in the burette and titrated first 25 mL of the standard 
hydrochloric acid, and then 25 mL of acetic acid. As the assigned molarity of the 
hydrochloric acid solution was 0.1068 M, the volumes of the titrations would be 
around 25 mL, and the uncertainty estimations need only be done once for this 
volume. 

A cause and effect diagram is evolved by considering first equation 3 (figure 8), and 
then expanding MNaOH in equation 2 (figure 9), and finally collecting all the precision 
terms to give the repeatability (figure 10). 

 

Figure 8: Cause-and-effect diagram for the uncertainty of the concentration of an 
acetic acid solution by titration 
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Figure 9: Cause-and-effect diagram for the uncertainty of the concentration of an 
acetic acid solution by titration including the uncertainty of the sodium hydroxide 
solution. 
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Figure 10: Cause-and-effect diagram for the uncertainty of the concentration of an 
acetic acid solution by titration with repeatability treated separately. 

In the GUM nomenclature, the repeatability of the results is a Type A uncertainty, 
while any estimates of other effects, such as the calibration of the pipettes, and 
burettes, errors in estimating the end points and changes in temperature are classed as 
Type B effects. It comes as a surprise to students that a 25 mL pipette might not 
deliver 25.00 mL even when correctly filled to the mark. Few courses require students 
to calibrate their glassware (as I recall doing in the 1970s), so any calibration bias 
must be included in the uncertainty. The manufacturer gives the tolerance on a 25 mL 
pipette as ± 0.03 mL, which taken as a rectangular distribution leads to u = 0.03/√3 = 
0.017 mL. The temperature effect can be calculated from an estimate of the 
temperature fluctuations in a laboratory. The students are told that the 95% confidence 
interval (i.e. ± 2 σ) on the temperature in the laboratory was ± 3 °C, and the volume 
coefficient of water is 0.00021 °C-1. Therefore u = 3 × 0.00021 × 25 × ½  = 0.008 mL. 
These combine as 

 (4) 

A similar calculation for the volume delivered by the burette has the tolerance ± 0.05 
mL (u = 0.05/√3 = 0.029 mL). The greatest uncertainty is in the estimation of the end 
point which after some discussion is agreed to be 0.1 to 0.2 mL. If we take a 
rectangular distribution with a = 0.15 mL, u = 0.15/√ 3 = 0.087 mL, and the combined 
uncertainty is 
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The relative uncertainty of the molarity of NaOH (Equation 2) is  

 (6) 

where the uncertainty in the standard HCl is zero (we have no information on this, and 
as everyone used the same solution, any error will be as a bias in all results and not 
contribute to the reproducibility.) Therefore 

 (7) 

A similar calculation for the uncertainty of the molarity of acetic acid is 

 (8) 

A bright student might point out that the calibration error of the burette should cancel 
between the two titrations. Although adding this component two times overestimates 
the uncertainty (Hibbert, 2003), the effect is not great and this might be seen as an 
unnecessary complication. The relative uncertainty of the molarity of the acetic acid is 
thus estimated to be 0.71%, which agrees well with the range of RSD% found for the 
teams. The process is very instructive for causing the students to think about sources 
of error, and it becomes clear that there are only two major variances, the repeatability 
and the end point uncertainty.  Combining two repeatabilities for the two titrations 
and two end point errors gives: 

 (9) 

which is a quick, and entirely appropriate estimate. The moral is that if you are trying 
to reduce the uncertainty of an analysis, it is only worth tackling the one or two 
greatest sources. 

4 Discussion 
As has been shown, the data from this competition is an ideal pedagogical tool for 
introducing nearly all the important concepts in statistical data analysis. (In my course 
only calibration is not touched by these data). Apart from being used to teach the 
manipulations of data using a spreadsheet such as Excel, the results can be used as a 
basis for discussions about the practice of analytical chemistry. Why were 23 of the 
78 or 29% (accidentally the same as the LGC figure) outside a reasonable estimate of 
the uncertainty? Why does this appear to fit in with the ¼ to ⅓  findings of NIST and 
the LGC? Some of the more errant values, as found in the wider studies are not 
chemical errors, but misplaced decimal points, or transcription errors, but as I say to 
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the students there is no help in a pathologist explaining to grieving relatives that the 
dosage recommended was right, except that it was ten times too much! 

The nature of random error can be discussed. What is the ‘bell shaped curve’ of figure 
4 telling us? If the competition were held a week later, we would expect the same 
distribution of results (this is the raison d’etre of statistics), but would the same teams 
be best and worst? In other words, is the distribution one of abilities in titration, or is 
it a random measurement uncertainty on the day? If it is the latter, should all the teams 
who are within the expected measurement uncertainty receive a prize, as the team that 
happens to have the best score on the day could find themselves less well placed 
another time? 

With a reproducibility of less than 0.5 %, even in the hands of relatively unskilled 
chemists, a titration is still one of the most accurate analytical methods. The results 
are traceable to the international system of units (SI) if appropriately traceable 
standard solutions are used. Someone might ask how we know the assigned values are 
correct? This is a good question, as they are determined by repeat titrations by the 
organisers of the competition, who might be expected to provide accurate results, but 
they do not go to much greater lengths than the competitors and do not provide 
uncertainty statements. As the judges’ answer is final, this is a good example of 
assigned values rather than demonstrably traceable results. However, the good 
agreement between the consensus means and the assigned values suggest they are not 
too far out. 

5 Conclusions 
High School titration and analysis competitions have been good ambassadors for 
chemistry and their usefulness can be extended to university courses. Data from the 
1997 RACI competition round held at the University of New South Wales  has 
provided a complete environment for teaching modern data analysis. Students who 
have been exposed to this approach since 2000, have shown a greater motivation in 
wanting to understand what the data and their interpretation means. The impact of the 
approach is augmented when coupled with a practical course for which uncertainties 
have to be estimated, and towards the end of the session, results are analysed in a 
similar manner. Finally the importance of quality analytical measurements is stressed, 
hopefully giving students a proper attitude to their work when they join the 
workforce. 
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