
Dynamic scheduling of tasks on partially reconfigurable
FPGAs

Author:
Diessel, Oliver; ElGindy, Hossam; Middendorf, M; Schmeck, H; Schmidt, B

Publication details:
IEE Proceedings - Computers and Digital Techniques
v. 147
Chapter No. 3
pp. 181-188
1350-2387 (ISSN)

Publication Date:
2000

Publisher DOI:
http://dx.doi.org/10.1049/ip-cdt:20000485

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39656 in https://
unsworks.unsw.edu.au on 2024-04-25

http://dx.doi.org/http://dx.doi.org/10.1049/ip-cdt:20000485
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39656
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Dynamic Scheduling of Tasks on Partially Recon�gurable

FPGAs

Oliver Diessel

School of Computer and Information Science� University of South Australia�

Mawson Lakes SA ����� Australia

Hossam ElGindy

School of Computer Science and Engineering� University of New South Wales�

Sydney ����� Australia

Martin Middendorf� Hartmut Schmeck� Bernd Schmidt

Institute of Applied Computer Science and Formal Description Methods�

University of Karlsruhe� D��	
�� Karlsruhe� Germany

August ���
���

Abstract

Field�Programmable Gate Arrays �FPGAs� that allow partial recon�guration at

run�time can be shared among multiple independent tasks� When the sequence of

tasks to be performed is unpredictable the FPGA controller needs to make allocation

decisions on�line� Since on�line allocation su�ers from fragmentation� tasks can end

up waiting despite there being su	cient� albeit non�contiguous resources available to

service them� The time to complete tasks is consequently longer and the utilization

of the FPGA is lower than it could be�

We propose rearranging a subset of the tasks executing on the FPGA when doing

so allows the next pending task to be processed sooner� We describe and evaluate

methods for overcoming the NP�hard problems of identifying feasible rearrangements

and scheduling the rearrangements when moving tasks are reloaded from o��chip�

�

� Introduction

Dynamically recon�gurable �eld�programmable gate arrays �FPGAs� are composed of

uncommitted logic cells and routing resources whose functions and interconnections are

determined by user�de�ned con�guration data stored in static RAM� This memory can

be modi�ed at run�time� thereby allowing the con�guration for some part of the chip to

be altered while other circuits operate without interruption�

The ability to recon�gure parts of a chip while it is operating allows functional com�

ponents	tasks to be swapped in and out of the chip as needed� thereby reducing required

chip area at the cost of some recon�guration overhead� control circuitry� and memory�

Embedded applications that have successfully exploited this feature to conserve hardware

include an image processing system
��� and a recon�gurable crossbar switch
�� Successful

designs for cryptographic applications
���� video communications
���� and neural com�

puting
��� attest to the suitability of the architecture for high performance array�based

computations�

As more ambitious systems are developed� it is conceivable that it becomes possible

and desirable for related or even disparate functions to share a single hardware platform

�� ��� A purely time�shared approach to multi�tasking may not be appropriate because

of the overhead in loading a con�guration� and the limited availability of on�chip memory

for caching� Space�sharing is a way of partitioning the FPGA logic resource so that each

function or task obtains as much resource as it needs and executes independently of all

others as if it were the sole application executing on a chip just large enough to support it�

When the logic resource of an FPGA is to be shared among multiple tasks� each having

their own spatial and temporal requirements� the resource becomes fragmented� If the

requirements of tasks and their arrival sequence is known in advance� suitable arrangements

of the tasks can be designed and su�cient resource can be provided to process tasks in

parallel
���� However� when placement decisions need to be made on�line� it is possible

that a lack of contiguous free resource will prevent tasks from entering although su�cient

resource in total is available� Tasks are consequently delayed from completing and the

utilization of the FPGA is reduced because resources that are available are not being used�

�

The system designer may be tempted to provide additional resource� thereby increasing

the physical and economic needs of the system�

To maintain system speed� and to contain size and cost� we propose rearranging a

subset of the executing tasks when doing so allows the next waiting task to be processed

sooner� Our goal is to increase the rate at which waiting tasks are allocated while mini�

mizing disruptions to executing tasks that are to be moved� We describe three methods

by which feasible rearrangements may be identi�ed that allow the waiting task to be ac�

commodated as well� We present techniques for scheduling the task movements so as to

minimize delays to the moving tasks when their con�guration bit streams are reloaded at

new locations� We conclude with a summary and directions for further investigation�

� The techniques

Rearranging a subset of executing tasks� or partial rearrangement� proceeds in two steps�

The �rst step identi�es a rearrangement of the tasks executing on the FPGA that frees

su�cient space for the waiting task� and the second schedules the movements of chosen

tasks so as to minimize the delays to their execution� The schedule for each feasible

rearrangement is evaluated for the maximum delay to the executing tasks and the time

needed to complete the schedule�

The following assumptions are made� A space�shared dynamically recon�gurable

FPGA is modelled as a rectangular array of con�gurable logic and routing resources that

may be partitioned among multiple independent tasks
�� ��� Each task is controlled

by a process executing on a host� Tasks are queued and processed in arrival order� they

are assumed to be independent and to be contained within orthogonally aligned� non�

overlapping� rectangular sub�arrays of the FPGA� Interdependent sub�tasks are assumed

to be con�ned to the task�s bounding box� We assume I	O with individual tasks is handled

via user de�ned registers rather than through wires routed from the chip�s periphery� The

interesting problem of rerouting I	O to a task after it is moved is outside the scope of this

paper and will not be considered�

�

� Identifying feasible rearrangements

The problem of deciding whether or not a waiting task can be accommodated on an

FPGA executing a set of tasks is equivalent to the problem of deciding whether a set

of non�overlapping orthogonal rectangles can be packed into a larger rectangle� which is

NP�complete
��� Heuristic solutions are therefore sought� In the following� we present

three methods including two heuristics � which we refer to as local repacking and ordered

compaction � and an evolutionary approach by a genetic algorithm�

��� Local Repacking

The local repacking method
�� attempts to repack the tasks within a sub�array so as

to accommodate the waiting task as well� A quadtree decomposition of the free space

in the array is used to identify those sub�arrays capable of accommodating the waiting

task by virtue of the total number of free cells they contain� Every node in the quadtree

corresponds to a sub�array and stores the number of free cells in its sub�array�

.

Key:

1 2
3 4

Node partially allocated to one or more tasks
Node entirely allocated to a task
Node completely free

Figure �� Task arrangement �left� and corresponding quadtree �right�

Tasks which only partially intersect a node�s sub�array need to be handled in some

way� Should they be included into the packing� moved elsewhere� or left where they are

to be packed around� The approach adopted in this technique is to attempt to repack

these tasks completely into the sub�array� Sub�arrays that contain su�cient free cells to

potentially accommodate the waiting task as well as the total area of all intersected tasks

thus become candidates for repacking� This approach avoids further searching and allows

�

the use of a fast strip�packing heuristics for the repacking�

For the repacking we use a two�dimensional strip�packing method of Sleator
���� Gi�

ven a set of oriented rectangles and a two�dimensional bin of �xed width� strip�packing

involves �nding a non�overlapping orthogonal packing of minimal height� The method of

Sleator has a good worst case bound of � times the optimal height plus the height of the

largest rectangle� While the orientation of the allocated tasks relative to the width of

the strip needs to be preserved to obtain the performance bounds� a packing with each

orientation of the waiting task is attempted� The algorithm results in a feasible rearran�

gement if the height of the packing is less than the height of the sub�array� Otherwise�

the orientation of the strip is �ipped so that its width is considered to be the height of

the sub�array and packing within the width of the sub�array is attempted� If the resul�

ting packing represents a feasible rearrangement of the tasks� movement of the tasks can

be scheduled in order to evaluate the costs of the rearrangement� To �nd nodes in the

quadtree that correspond to promising sub�arrays� a depth��rst search strategy is follo�

wed� For an FPGA of width W and height H � with m � maxfW�Hg� and n executing

tasks� the local repacking heuristic requires O�mn logn� time to check for the existence of

a feasible rearrangement�

��� Ordered compaction

The ordered compaction heuristic
�� places the waiting task at a favourable location� and

moves those tasks initially occupying the site o� in one direction� Ordered compaction

therefore has the e�ect of sliding the executing tasks that are to be compacted closer

together� Without loss of generality� we describe ordered compaction to the right hand

side�

It can be shown that it su�ces to attempt to place the waiting task adjacent to a pair

of tasks �or the border of the array� such that one task abuts the allocation site on its left�

and the other abuts the allocation site below� Let S be the set of such sites �see Figure

��� It can be shown that S contains a feasible allocation site which minimizes the total

area of all tasks that intersect it �if one exists�� Such a site is a good candidate because

�

the time to complete the compaction is proportional to the size of the tasks� The number

of allocation sites which have to be checked is also signi�cantly reduced to O�n���

1 2

3

4 6

7

5

5

1

1 5 10

t t

t

t t

t

t

. of intersected tasks
Site in S with minimal area

Site in S

1: 6
(2,7)
[1,8]

3: 5
(5,6)
[5,8]

2: 5
(2,3)
[1,3]

5: 2
(1,3)
[1,3]

4: 4
(6,8)
[6,8]

7: 1

[7,7]
(7,7)

6: 3
(6,6)
[6,6]

5: 2
(1,3)
[1,3]

3

3

1

3

1

1

Key:

(Bottom,Top) rows occupied by task
[Bottom,Top] rows occupied by subgraph

Task Id.: Distance task can move right

Figure �� Task arrangement with set S for waiting task of size �x� �left�� visibility graph

for the arrangement �right�

The feasibility of a site is decided by searching a visibility graph that is de�ned over

the executing tasks� Two nodes �tasks� ti and tj of the visibility graph are connected by

an arc �ti� tj� if ti directly dominates tj � Task ti is said to directly dominate tj if cells cj

of tj and ci of ti exist such that they are in the same row� cell ci is to the left of cj� and no

other task separates them� For each node the following parameters are computed� i� the

maximal number of columns the task can move to the right� ii� the range of rows occupied

by the task� and iii� the range of rows occupied by some task in the subtree rooted at the

node�

For each site s � S the subgraphs that span rows intersected by s are searched� The

leftmost tasks intersecting a site can be identi�ed by a depth �rst search� Once found� the

feasibility of moving them right the required distance can be checked in time O�n�� The

order in which the sites in S are searched in�uences the e�ciency of the ordered compaction

method� In general it is advantageous to search sites in a left to right sweep because

intersecting tasks based closer to the left have a better chance of being accommodated on

�

the right�

Set S can be determined in time O�n��� the visibility graph can be built in time O�n���

and a feasible site with minimal total area of intersected tasks can be found in time O�n���

��� Genetic Algorithm

A genetic algorithms �GA� is a probabilistic search method based on an evolutionary

approach� A simpli�ed structure of a GA is presented in Figure ��

� �� �

initialize P ���

while stopping condition not met do

� �� � � �

�� create new population P ��� ��

evaluation

selection

crossover

mutation

end while

Figure �� Structure of a genetic algorithm

In a GA possible solutions �individuals� are represented by a data structure called a

chromosome� All individuals living at a speci�c time form a population� With regard

to the chronological development� populations are also known as generations� An initial

population of possible solutions is created by means of a speci�c initialization method� As

long as the stopping condition �e�g� exceeding a given number of generations� has not been

met a new generation is created� This involves determining the �tness of each individual

by the application of an evaluation function� By means of the obtained �tness values

the individuals in the population can be compared with each other� Individuals which

represent desirable solutions �high �tness values� are selected with high probability to

produce o�springs� In a so�called crossover process� some parts of the parent chromosomes

are combined to create a child chromosome� Additionally� in a mutation process the child�s

chromosome is changed at random in order to introduce new genetic information� The

children created by crossover and mutation are inserted into the new population thereby

replacing other low��tness individuals� The GA used for �nding rearrangements � called

R�GA � has the following characteristics
����

i� Representation� R�GA works only on the subset of possible arrangements that allow

a speci�c genetic representation� called a slicing tree� Such a task arrangement � called

a slicing task arrangement � is recursively de�ned as either a single task� or there exists

a vertical or horizontal line segment dividing it into two slicing task arrangements� Each

slicing task arrangement can be represented by a slicing tree �see Figure ��� A leaf repres�

ents a task with �xed orientation� A parent node corresponds to the minimal bounding

box containing two horizontally or vertically aligned patterns represented by the children�

Such a pattern can be either a task or another bounding box� The leaves are labelled with

the index of the task and its orientation� Parent nodes contain the cut direction �vertical

or horizontal��

1 n 2 n

3 r 5 r 4 n

t4
h

h

h

v
v

h

h

h

t1 t5

t2

t3

Figure �� Arrangement �left� with corresponding slicing tree �right�

ii� Initialization� An initial population is formed by individuals ��xed slicing trees�

which are built bottom�up by random pairing� i�e� starting with the leaves� two randomly

chosen nodes are linked together by a newly created parent node until a complete slicing

tree is obtained�

�

iii� Evaluation� The evaluation function considers the ratio of the tasks completely

allocated inside the FPGA border� the compactness of the arrangement and the total

number of cells of the individuals that have to be rearranged�

iv� Crossover� The crossover operation is based on gene�pool crossover
���� All sub�

trees �including leaves� excluding the complete trees� of the two parents are inserted into a

gene�pool� Duplicate subtrees are removed� A new individual is created from the subtrees

in the gene�pool� Each subtree is evaluated by a rating function which considers the com�

pactness� the number of tasks allocated inside the FPGA� and the total number of tasks

in the subtree� The resulting subtree with the highest rating is chosen �rst� All subtrees

in the gene�pool containing at least one task of the selected subtree are removed� The

next disjoint subtree can then be drawn as the highest ranked subtree of the remaining

gene�pool� The two selected subtrees are combined by checking each node of one subtree

as a potential insertion point of the other subtree� The insertion point with the highest

rating value of the resulting combined subtree is chosen� By repeatedly adding disjoint

subtrees to the resulting subtree the crossover operator terminates with a complete slicing

tree containing all tasks�

v� Mutation� Mutation changes the structure of a �xed slicing tree� If a tree was

selected for mutation� one of three di�erent mutation types is applied� Exchange mutation

swaps two randomly selected subtrees �see Figure ��a��� Insertion mutation attaches a

randomly chosen subtree at a randomly selected insertion node of the tree �see Figure ��b���

Rotation mutation randomly selects a subtree whose corresponding task arrangement is

rotated by ��� left or right or ���� �see Figure ��c���

� Scheduling task rearrangements

We assume the time to load a task is proportional to its area� The choice of tasks to move

therefore �xes the time needed to complete the rearrangement� We assume a task may

continue executing until it is suspended prior to moving and that a task is resumed as

soon as it has been reloaded� If its destination is not free when it is reloaded� the tasks

occupying the destination are immediately suspended and removed�

�

h

h

h

v

h

v

h

h

1 2

3 45r r

n n

n

4

5

1 2

3

n

r

r

n n

�a� Exchange mutation

1 2

3 5 4

3

5 4 1 2n n

r r n

r

r n n n

new

v

v

v

h

h

h

h 8 h

�b� Insertion mutation

1 2

3

r n

n 3

1 2

r

n r 2 1

3

r n

r 3

2 1

n

n r

original

v

h v

h

90 degrees right

h

v

180 degrees

h

v

90 degrees left

�c� Rotation mutation

Figure �� Mutation operations

��

In this work� we distinguish between the minimum possible cost of moving a task� and

the actual cost of moving it� The minimum cost is the time needed to save and reload

the task� which is unavoidable� However� the actual cost needs to account for the time a

task is suspended while other tasks are being reloaded� The di�erence between the actual

and minimum costs represents a schedule delay that is to be minimized for all tasks� The

problem of scheduling FPGA task rearrangements to realize this goal is NP�complete
���

Further heuristics are therefore needed� First we describe an approximation algorithm and

a genetic algorithm for scheduling rearrangements in arbitrary order� Then we describe a

method that does not delay the moving tasks more than the minimum� if they are to be

orderly compacted�

��� Arbitrary rearrangements

����� Search Tree

The problem of optimally scheduling the tasks can be viewed as a search for an optimal

path in a state�space tree
��� Each node represents the choice of a task to place into

the �nal arrangement next� and a path from the root to a leaf represents the sequence in

which tasks are chosen to be placed� A depth��rst search heuristic that uses a local cost

estimator to determine which node to expand next can be used to �nd a near�optimal

path� Here we measure the cost of a node v as the maximal time a suspended task is

delayed on a minimal�cost path from the root passing through node v to a leaf� For the

�rst part� from the root to v� the maximum delay of the tasks already moved is known�

For the second part� an estimator is used that ignores all executing tasks and determines

the maximum amount by which the suspended tasks could be delayed� Since the executing

tasks are ignored� this causes no additional tasks to be suspended� It can be shown that

the optimal solution for this case is achieved when the suspended tasks are scheduled in

nondecreasing r�t� � s�t� order� where r�t� is the time when task t was removed from the

array and s�t� is the size of t� Clearly� this estimator will never over�estimate the maximum

delay of a relocated task� Di�erent depths of lookahead can be used when deciding which

task is scheduled next� For this paper we choose a lookahead of depth two� i�e� at a node

��

all possibilities for the next two scheduled tasks are evaluated by the estimator� We also

constrain the method to place the waiting task �rst of all �� With a lookahead of depth

two� this scheduling method needs O�n� logn� time�

����� Genetic Algorithm

The second approach to solve the task scheduling problem employs a GA� For our GA

� called S�GA � we represent a schedule by a string of integers corresponding to the

task indices arranged in the order they are moved� For initialization� a set of randomly

generated permutations of these indices is used� The mutation operator exchanges two

randomly chosen task indices in the gene string� For crossover we use order crossover

which is suited to genes that represent permutations� Order crossover chooses a pair of

cut points at random and combines two parental gene strings by keeping the substring

between the cut points and adding the missing genes in the order they appear in the other

parent �see Figure ���

3 5 4 1 8 2 9 7 6

1 8 5 3 7 9 6 2 4

1 8 2 9* * * * *

3 7 9 6 * ** * *

1 8 2 95 3 7 6 4

Parents Children

5 4 1 8 23 7 9 6

Figure �� Order crossover

��� Ordered compaction

If tasks are moved as they are discovered in a depth��rst traversal of the visibility graph of

the executing tasks� they are moved to free destinations� and therefore do not intersect or

suspend further executing tasks
��� Tasks are not delayed more than the minimum because

they are moved as soon as they are suspended� Although the waiting task is allocated

last of all� the rate at which waiting tasks can be allocated is una�ected� Clearly� ordered

compaction can be scheduled in O�n� time�

�Empirical evidence suggests maximum schedule delays incurred by the heuristic are usually less than

twice those of optimal solutions ���� Theoretical bounds have not yet been established�

��

� Performance assessment

A series of experiments was conducted to assess the performance of the methods with

synthetic task sets� For each experiment� sets of ������ tasks characterized by � inde�

pendently chosen uniformly distributed random variables were generated� Two of these

variables� representing the task row and column sizes� were permitted to range from �

cell to a speci�ed common maximum task side length� A variable representing the tasks�

service periods was allowed to range from � to ����� time units� and the intertask arrival

period was chosen between � time unit and a speci�ed maximum intertask arrival period�

These tasks were queued and placed in arrival order to a simulated FPGA of size ��� ���

The time needed to load a task was determined by the availability of space and the time

used to con�gure the cells needed by the task� The con�guration delay per cell was thus

also a parameter� Each experiment averaged the results of �� runs �respectively� � runs

for the GA��

For the GA approach with R�GA and S�GA we maintained a population size of ��

over �� generations for the R�GA and population size of � over ���� generations for the

S�GA� For a new generation �� individuals of the old generation were replaced by new

individuals� Mutation probability was ��� �with �	� chance for each mutation type in the

R�GA��

Note that the computation times of the suggested methods �local repacking� ordered

compaction� GA� are not included in the delays discussed in this section� One of the

reasons for this is that such methods may be possible to be executed in the background

����

Figure compares the performance of the three approaches local repacking� ordered

compaction and GA �combination of R�GA and S�GS� for a con�guration delay of �����

time units per cell� The bene�t of reallocating tasks was gauged by also examining the

performance of the �rst �t allocation method
���� which does not move the tasks once

placed� The results were obtained by varying the maximum intertask arrival period while

the maximum task side length and con�guration delay per cell were kept �xed�

Figure �a� shows the e�ect of varying intertask arrival period on the mean allocation

��

0

10

20

30

40

50

60

10 100 1000

M
e

a
n

 A
llo

ca
tio

n
 D

e
la

y
(t

u
s)

Maximum Intertask Arrival Period (tus)

Mean Allocation Delay

Local Repacking
Ordered Compaction

First Fit
Genetic Algorithms

1

10

100

1000

10000

100000

1000000

10 100 1000

M
e

a
n

 Q
u

e
u

e
 D

e
la

y
(t

u
s)

Maximum Intertask Arrival Period (tus)

Mean Queue Delay

Local Repacking
Ordered Compaction

First Fit
Genetic Algorithms

�a� �b�

100

1000

10000

100000

1000000

10 100 1000

M
e

a
n

 R
e

sp
o

n
se

 t
im

e
 (

tu
s)

Maximum Intertask Arrival Period (tus)

Mean Response Time

Local Repacking
Ordered Compaction

First Fit
Genetic Algorithms

0

10

20

30

40

50

60

70

80

90

10 100 1000

M
e

a
n

 U
til

iz
a

tio
n

 (
%

)

Maximum Intertask Arrival Period (tus)

Mean Utilization

Local Repacking
Ordered Compaction

First Fit
Genetic Algorithms

�c� �d�

Figure � E�ect of varying the task load on allocation performance� �a� Mean allocation

delay� �b� mean queue delay� �c� mean response time� �d� mean utilization�

��

delay� i�e� the time between the allocation start and load start� In the left part of the curves

the FPGA was saturated while tasks arrived faster than they could be allocated� However�

performance di�erences between the methods are caused by their di�ering abilities to

make or �nd space for the new task waiting at the head of the queue� Comparing the

di�erent approaches� the GA is in the lead� followed by local repacking� ordered compaction

and �rst �t� The corresponding values of the mean allocation delay are approximately

����� ����� ����� and ���� The bene�t of partially rearranging the tasks placed on the

FPGA disappeared when tasks arrived infrequently enough for them to be accommodated

immediately and the FPGA came out of saturation� The rearrangement heuristics enter

the unsaturated region earlier than �rst �t� For instance� the mean allocation delay falls

below one time unit at maximum inter�task arrival periods of approximately ��� ���� ����

and ��� time units for GA� local repacking� ordered compaction and �rst �t respectively�

Finally� no rearrangements are necessary because tasks can be loaded as soon as they reach

the head of the queue�

Figure �b� shows the e�ect of varying task load on mean queue delay� i�e� the time

between task arrival at the tail of the queue and allocation start� Figure �c� shows the

e�ect of varying task load on mean response delay� i�e� the time between task arrival at

the tail of the queue and execution stop� Both �gures are similar to �gure �a� with the

exception that the curves are not constant in the saturation region� since queue delays

decrease as intertask arrival times rise�

In Figure �d� the mean utilization is measured for di�erent task load levels� In the

saturated region the GA is superior with a constant utilization level of approximately

����� followed by local repacking with ����� ordered compaction with ���� and �rst �t

with only ������ Since the rearrangement approaches leave the saturated region earlier�

their utilization values drop earlier but they always remain at least as high as the values

of �rst �t�

In Figure � the e�ect of a varying con�guration delay per cell from ����� to ��� on the

allocation and execution delays are shown� The range of values corresponds to increasing

the mean con�guration delay per task from approximately � to ��� time units� Two

��

di�erent levels of system load were examined� At a maximum inter�task arrival period of

�� time units the system has to cope with a heavy load� whereas a maximum inter�task

arrival period of ��� time units corresponds to a system leaving the saturated region�

0

5

10

15

20

25

30

35

40

45

50

55

60

1 10 100 600

M
e

a
n

 A
llo

ca
tio

n
 D

e
la

y
(t

u
s)

Mean Configuration Delay per Task (tus)

Mean Allocation Delay at Saturation

Local Repacking
Ordered Compaction

First Fit
Genetic Algorithms

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

1 10 100 600

M
e

a
n

 E
xe

cu
tio

n
 D

e
la

y
(t

u
s)

Mean Configuration Delay per Task (tus)

Mean Execution Delay at Saturation

Local Repacking
Ordered Compaction

Genetic Algorithms

�a� �b�

0

5

10

15

20

25

30

35

40

45

50

55

60

1 10 100 600

M
e

a
n

 A
llo

ca
tio

n
 D

e
la

y
(t

u
s)

Mean Configuration Delay per Task (tus)

Mean Allocation Delay coming out of Saturation

Local Repacking
Ordered Compaction

First Fit
Genetic Algorithms

0

50

100

150

200

250

300

350

400

450

500

1 10 100 600

M
e

a
n

 E
xe

cu
tio

n
 D

e
la

y
(t

u
s)

Mean Configuration Delay per Task (tus)

Mean Execution Delay coming out of Saturation

Local Repacking
Ordered Compaction

Genetic Algorithms

�c� �d�

Figure �� E�ect of mean con�guration delay� �a� Mean allocation delay at saturation� �b�

mean execution delay at saturation� �c� mean allocation delay of a system coming out of

saturation� �d� mean execution delay of a system coming out of saturation�

Figure ��a� shows that at saturation the heuristics start with mean allocation delays

which are similar to the values in Figure �a�� As the mean con�guration delay increases�

ordered compaction achieves better allocation delays than local repacking� Later GA

reaches a local optimum at the mean con�guration delay of approximately time units

per task� This minimum is yet to be explained� At the beginning GA is superior� At mean

con�guration delays of ��� �� and �� time units per task it commences performing worse

��

than ordered compaction� �rst �t and local repacking respectively� The global maximum

is encountered at a mean con�guration delay of approximately ��� time units per task�

From a mean con�guration delay longer than �� time units per task �rst �t performs

better than all arrangement approaches� This behaviour can be explained as follows�

� The longer the mean con�guration delay� the more tasks can �nish their executions

while a task is loaded� and before the next task is tried to be allocated� Consequently�

it is more likely that �rst �t �nds an allocation site for the new task�

� Partial rearrangement is used if �rst �t fails� But while executing a rearrangement�

the I	O ports of the FPGA are blocked� i�e� the next request can not be satis�ed� The

longer the mean con�guration delay� the longer the I	O ports are blocked� While the

rearrangement takes place� some tasks might have regularly �nished their executions�

thereby freeing enough space for the next task� In other words� rearrangement

retards the allocation of new tasks� whereas �rst �t could �nd an allocation site

earlier�

As a consequence� the use of partial rearrangement should be restricted to applications

where the mean con�guration delays are low compared to the execution times� However�

from a con�guration delay of ��� time units per task the GA shows a very strange beha�

viour� The values of the mean allocation delay fall below the corresponding values of �rst

�t� Finally� they drop to � time units�

In Figure ��b� the mean execution delays of ordered compaction and local repacking

increase until a mean con�guration delay of �� time units per task is reached� The mean

execution delay of the GA approaches its global maximum at ��� time units per task�

After the global maxima are passed the mean execution delays drop with an increasing

mean con�guration delay� Two factors might explain the shape of the curves�

� A rise in the mean con�guration delay leads to an increasing execution delay� because

rearrangements take longer�

� As the mean con�guration delay increases� more and more tasks can be allocated

�

without allocation delays� Consequently� less tasks are rearranged and the mean

execution delay falls�

Just as the mean allocation delay� the mean execution delay for the GA drops to � time

units at a con�guration delay of ��� time units per task� For �rst �t no curve is shown�

since no tasks are rearranged by this approach� On average ordered compaction performs

signi�cantly better than local repacking� Local repacking in turn performs signi�cantly

better than the GA� The higher the mean execution delay of an algorithm the more often

a task is moved� or larger tasks are more likely to be rearranged� Another factor is the

chosen scheduling method and the objective of the scheduling problem� Since the S�GA

minimizes the mean execution delay� the large gap between local repacking and the GA is

more likely to be caused by a higher amount of rearranged cells�

Figure ��c� shows the mean allocation delay of a system coming out of saturation�

In contrast to �rst �t� the curves for local repacking� ordered compaction and the GA

obviously changed their shapes� The crossing points of �rst �t and the rearrangement

algorithms are approximately the same as before �cmp� Figure ��a��� Therefore� the mean

con�guration delay at which �rst �t becomes better is likely to be independent of the

system�load level� The GA performs best of all at con�guration delays up to � time units

per task and at con�guration delays greater than ��� time units�

The similarities between the plots in �gures ��b� and �d� are noticeable� But the mean

execution delays in the medium�load situation are slightly smaller than the values at

saturation� At saturation more tasks are rearranged causing a rise in the mean execution

delay�

� Concluding remarks

When tasks arrive more quickly than they can be processed� partial rearrangements can

reduce queue delays signi�cantly� As a consequence� tasks are completed earlier� the

utilization of the hardware is improved� and the system is more resilient to saturation�

Current FPGA technology supports task movement by recon�guration� When the mean

��

time to recon�gure a task is small compared to the mean processing time� this approach

is adequate�

Areas for further investigation include elucidating the hardware support necessary for

on�chip task movements� developing algorithms for arbitrary on�chip task rearrangements�

designing algorithms that avoid relocating tasks too often� and developing techniques for

decentralized or autonomous garbage collection to further reduce overheads�

References

�� Atmel� AT���� FPGA Con�guration Guide�� Document ����B� Atmel� ���

�� Brebner� G�� A Virtual Hardware Operating System for the Xilinx XC������ Har�

tenstein� R�W� and Glesner� M� �Eds��� Proc� �th International Workshop on Field�

Programmable Logic �FPL����� LNCS ����� Springer�Verlag� Berlin� Germany� �����

pp� �� � ���

�� Diessel� O� and ElGindy� H�� Run�Time Compaction of FPGA Designs�� Luk� W� and

Cheung� P�Y�K� and Glesner� M� �Eds��� Proc� th International Workshop on Field�

Programmable Logic and Applications �FPL���� Springer�Verlag� Berlin� Germany�

���� pp� ��� � ���

�� Diessel� O� and ElGindy� H�� Partial FPGA Rearrangement by Local Repacking��

Technical Report ����� Department of Computer Science and Software Engineering�

The University of Newcastle� ���

�� Diessel� O�� On Scheduling Dynamic FPGA Recon�gurations � A Partial Rearran�

gement Approach�� PhD Dissertation� Department of Computer Science and Software

Engineering� The University of Newcastle� ����

�� Dillien� P� and Phillips� I�� ASIC design �exibility with ERAs�� Electronic Product

Design� ����� �� ���� pp� �� � ��

� Eggers� H�� Lysaght� P�� Dick� H� and McGregor� G�� Fast Recon�gurable Crossbar

Switching in FPGAs�� Hartenstein� R�W� and Glesner� M� �Eds��� Proc� �th Internatio�

��

nal Workshop on Field�Programmable Logic �FPL����� LNCS ����� Springer�Verlag�

Berlin� Germany� ����� pp� �� � ���

�� Eldredge� J�G� and Hutchings� B�L�� Density enhancement of a neural network using

FPGAs and run�time recon�guration�� Buell� D�A� and Pocek� K�L� �Eds��� Proc�

IEEE Workshop on FPGAs for Custom Computing Machines� IEEE Computer So�

ciety� Los Alamitos� CA� ����� pp� ��� � ���

�� Li� K� and Cheng� K�H�� Complexity of Resource Allocation and Job Scheduling Pro�

blems on Partitionable Mesh Connected Systems�� Proceedings �st IEEE Symposium

on Parallel and Distributed Processing� IEEE Computer Society� Los Alamitos� CA�

����� pp���� � ���

��� M!uhlenbein� H� and Voigt� H��M�� Gene pool recombination in genetic algorithms��

Osman� I�H� and Kelly� J�P� �Eds��� Proc� Metaheuristics Int� Conf�� Kluwer Academic

Publishers� Norwell� ����

��� Schmidt� B�� FPGA Task Arrangement with Genetic Algorithms�� Diploma thesis�

Institute of Applied Computer Science and Formal Description Methods� University

of Karlsruhe� ����

��� Sleator� D�� A ��� times optimal algorithm for packing in two dimensions�� Informa�

tion Processing Letters� ����� �� ���� pp� � � ��

��� Teich� M�� Fekete� S� and Schepers� J�� Compile�Time Optimization of Dynamic

Hardware Recon�gurations�� Proc� Int� Conf� on Parallel and Distributed Processing

Techniques and Applications �PDPTA����� Las Vegas� U�S�A�� ����

��� Villasenor� J�� Jones� C� and Schoner� B�� Video Communications Using Rapidly

Recon�gurable Hardware�� IEEE Transactions on Circuits and Systems for Video

Technology� ����� � ���� pp� ��� � ��

��� Vuillemin� J�E�� Bertin� P�� Roncin� D�� Shand� M�� Touati� H�H� and Boucard� P��

 Programmable Active Memories� Recon�gurable Systems Come of Age�� IEEE Tran�

sactions on Very Large Scale Integration �VLSI� Systems� ����� � ���� pp� �� � ��

��

��� Wirthlin� M�J� and Hutchings� B�L�� Sequencing Run�Time Recon�gured Hardware

with Software�� ACM Fourth International Symposium on Field Programmable Gate

Arrays �FPGA����� ACM Press� New York� NY� ����� pp� ��� � ���

�� Xilinx� XC���� Field Programmable Gate Arrays�� Xilinx� Inc�� ���

��� Zhu� Y�� E�cient Processor Allocation Strategies for Mesh�Connected Parallel Com�

puters�� Journal of Parallel and Distributed Computing� ����� �� ���� pp� ��� � ��

��

