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Abstract— This paper presents a generic approach to model
the noise covariance associated with discrete sensors such
as incremental encoders and low resolution analog to digi-
tal converters. The covariance is then used in an adaptive
Kalman Filter that selectively and appropriately carries out
measurement updates. The temporal as well as system state
measurements are used to predict the quantization error
of the measurement signal. The effectiveness of the method
is demonstrated by applying the technique to incremental
encoders of varying resolutions. Simulation of an example
system with varying encoder resolutions is presented to show
the performance of the new filter. Results show that the
new adaptive filter produces more accurate results while
requiring a lower resolution encoder than a similarly designed
conventional Kalman filter, especially at low velocities.

I. I NTRODUCTION

Quantization is an inherent feature in digitally controlled
systems. For analog sensors, quantization occurs at the
analog to digital converter. For discrete sensors such as
incremental encoders, quantization occurs at the sensor
itself. For estimators that attempt to determine states that
have a derivative component of the sensed signal, the effects
of quantization are detrimental. An example situation is
the implementation of a sliding mode controller in which
the only sensor is an incremental encoder. The sensed
position may not be 100% accurate at the sampling in-
stances. Worse than that is the estimated velocity, be it
through differentiation or through an estimator employing
a system model. If the sliding surface is a function of
the estimated velocity, the behavior of the sliding mode
controller becomes erratic. This paper presents a solution
to this problem by implementing a covariance profiling
function that is suitable for the sensor in question. Its
success is demonstrated by implementing the method in
a LQG type servo controller where the position is sensed
using an encoder.

Incremental encoders are a prominent means for mea-
suring relative displacement in control applications. They
produce a predictable pattern of highly colored noise super-
imposed on their output. A simplified model of noise, based
on the temporal information of the edge triggering, and
the estimated velocity, is used to profile the measurement
covariance error. Approaches to model quadrature encoder
irregularities have lead to detailed models of encoder non-
ideality such as those found in [1] and [2], the latter

compensating these via Kalman filtering for an analog
quadrature encoder. In Kalman filtering, the measurement
bandwidth is determined by the Kalman gain. The Kalman
gain is dependent on the measurement noise covariance so
by modifying the covariance, the filter weighting between
measured and estimated states can be controlled [3]. It is
important for the measurement covariance to be appropri-
ately selected to allow for the filter to make appropriate
measurement updates.

When a system moves within a quanta, the feedback
signal is essentially ineffective as it is unable to observe
any motion changes that fall within it. Measurements that
can be detected as within a quanta are nameduntrusted
measurements. As feedback is ineffective in this region it is
proposed that the system should be controlled in open-loop.
This is done by selecting a small Kalman gain which will
bias the measurements toward the estimated state, ignoring
the measurement update.

When a change in the sensed signal has been detected, the
algorithm takes it as atrustedmeasurement, albeit though
it may not be 100% accurate. A model of the covariance
of the trusted measurements is based on a function of cur-
rent estimated state, transducer accuracy and quantization
edge triggering. It is assumed that the trusted values are
bounded by a function of velocity, and inside the bounded
range have a Gaussian noise distribution [4]. These trusted
measurements will have a covariance considerably smaller
than the untrusted values at low velocities. This increases
the Kalman gain of the filter, and therefore allows for more
accurate measurement updates when trusted readings are
available, and to avoid inaccurate measurement updates at
other times.

This new adaptive Kalman filter configuration allows
for similar levels of noise rejection in comparison to the
implementation of a traditional non adaptive filter. The
improvement in state estimation may allow for the use of
lower resolution measurement devices in certain classes of
control problems.

II. EDGE LEVEL BASED STATE MEASUREMENT

The basis behind the ideas in this paper is that there
is additional information present in quantized signals that
have high repeatability. Traditionally this information is
ignored. Typically only the signal magnitude is used, but



if the sampling rate is considerably higher than the rate at
which the system transitions between quantized levels, there
is also information about the error of the measured value
that can be extracted. Estimating higher order states such as
velocity are particularly difficult with high sampling rates
or low velocities with the presence of quantization, using
standard estimation techniques [5] [6] [7]. By using the
temporal information of the quantized signal, the accuracy
of the estimates may be improved.

With the assumption of an infinite sampling rate and a
perfectly quantized signal, at the edge level transition, the
signal magnitude would be known with certainty. Studies
show that optical encoders have a high repeatability, trig-
gering with a 3-5% error of the actual edge [5]. This means
that their optical repeatability is 20-30 times higher than the
count output accuracy. Analog comparators can show even
higher repeatability. For the basic analysis that follows, it is
assumed that the triggering error is negligible in comparison
to the measured signal.

Fig. 1 shows a continuous signal that has been sampled
and quantized. Trusted values occur when the measured
quantized-value generates a positive or negative edge, indi-
cating a change between samples. This leads to the phrase
‘edge level based state measurement’, thesetrustedvalues
are indicated as plain dots. If no change occurs between
samples, the reading is deemeduntrusted, these values are
circled. As the system is moving, the trusted values can
deviate from the actual values, leading to the error shown
in the figure.
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Fig. 1. Quantizing effects showing trusted and untrusted values

Distinguishing between the trusted and untrusted values,
and modeling the predicted error in each case, is the basis
for the proposed adaptive Kalman filter.

III. C OVARIANCE PROFILING OF MEASUREMENTNOISE

To estimate the amount of quantization error present in
the trusted values, the input signal rate of the change is
needed. If a direct measurement is available, for instance
from a tachometer, it can be used otherwise it must be

estimated from the known system states. As the system has
a fixed sampling rate, it is possible to bound the maximum
error as a function of velocity. As the transducer measure-
ment operation occurs almost instantaneously compared to
the sampling interval, the maximum quantization has an
upper bound of one quantized intervalq. Fig. 2 shows
the relation between velocitẏθ , and maximum erroremax.
The maximum trusted-value quantization-error for a given
velocity happens when the sampling occurs just before a
quantized interval is traversed, while the minimum occurs
when the sampling and quantized interval traversal times
coincide. As the time at which the quantized level changes
and the sampling instance are uncorrelated, it is assumed
that this error has a Gaussian distribution between 0↔ emax

giving the expected error (2).
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Fig. 2. Quantizing errors showing maximum and expected values

Maximum Quantization Error: [10]

emax(θ̇) =


1 θ̇Ts > 1
−1 θ̇Ts <−1
θ̇Ts otherwise

(1)

emax = Maximum quantization error

Ts = Sampling rate

θ̇ = Encoder velocity

Expected Quantization Error:

E{e}=
1
2

emax (2)

As the trusted value error is a uniform probability distri-
bution, it is rectangular in shape. The width beingTsθ̇ and
the height 1

θ̇Ts
. The slower the velocity of the measured

state, the more concentrated the distribution, this indicates
that the lower the velocity, or the higher the sampling rate,
the more precise the trusted value.

For a continuous process, its covariance is defined as in
(3) [8]. The trusted measurement error has a meanmx(t) =
θ̇Ts
2 and a uniform probability distributionfx(x; t) = 1

θ̇Ts
with



the assumption thaṫθ is constant. Calculating the covariance
of the trusted value error as a function of velocityθ̇ with
a fixed sampling rateTs gives the relationship (4).

Ξ = E
[
{x(t)−mx(t)}{x(t)−mx(t)}T

]
=

∫ ∞

−∞
{x(t)−mx(t)}{x(t)−mx(t)}T

fx(x; t)dx (3)

E [ ] = Expected value operator

x(t) = Random sequence

mx(t) = Mean value ofx(t)
fx(x; t) = Probability distribution function ofx(t)

Ξ =
∫

θ̇Ts

0

(
x2−xθ̇Ts+

(
θ̇Ts
)2

4

)
1

θ̇Ts
dx

=
1
12

(
θ̇Ts
)2

(4)

Due to the bounding of the maximum quantized trusted
error to±1 quantum, the measurement covarianceRt has
a saturation function (5) [10]. The saturated value of co-
variance is in agreement with [4] which is the standard
analytical value for quantization noise. As the system has a
fixed sampling rateTs, Rt is only a function of velocityθ̇ . Of
interest is the area

∣∣θ̇Ts
∣∣< q, in this region it is possible to

extract more accurate system measurements, and therefore
state estimates.

Rt(θ̇) =


1
12q2

∣∣θ̇Ts
∣∣> q

1
12(θ̇Ts)2 otherwise

(5)

Rt = Trusted measurement covariance

q = Smallest quantized level
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Fig. 3. Normalized covariance shape

IV. M ODIFIED KALMAN FILTER

The following section describes the modification of a
standard Kalman filter to incorporate both trusted and
untrusted measurement readings. It assumes the measured
system to be linear time-invariant until the quantization
function at the measurementyk. All notation is as described
in [9], with (−) to indicate an estimate before measurement
update and(+) after the measurement update. As the main
issue is focused on measurement noise, plant noise will not
be discussed and is implemented as per standard convention.

The predicted error covariance and state estimates are
updated via the following measurement update equations,
where x̂k(−) is the state estimate andPk(−) is the error
covariance prior to measurement update.

x̂k(+) = x̂k(−)+ K̄k [yk−Hx̂k(−)] (6)

Pk(+) = [I − K̄kHk]Pk(−)

K̄k = P(−)HT [HPk(−)HT +Rk
]−1

(7)

The standard Kalman filter uses a non time-varying value
of R while the new adaptive filter allows for this value to
change as a function of both predicted velocity and encoder
edge level state (8)(9) [10].

θ̇ = Hvelx̂k(−) (8)

Rk =
{

Rt trusted= 1
Ru trusted= 0

(9)

To select the scalar quantity of the measured velocity,Hvel

is applied to the to the predicted state estimate ˆxk(−). Rt is
the trusted covariance (5) andRu is set to an arbitrary large
value. By settingRu≈ 5×105, K̄ → 0 effectively ignoring
the measurement update, which moves the estimator to
strongly bias its open loop estimate ˆxk(−) during untrusted
measurements.

The Kalman filter is designed for noise with a zero mean.
As (2) shows the measurement noise to have a bias in the
sign of velocity, with a bounding of±1 quantum. This
bias should be corrected for a favorable application of the
Kalman filter. It is proposed that to achieve a zero mean,
yk is updated via (10).

y
′
k = yk +E [e] (10)

The final filter is created by modifying (6) and (7)
with the substitution ofR and y with (9) and (10). This
new Kalman filter now integrates trusted and untrusted
measurement and has measurement noise that is zero mean
and uniformly distributed.

V. SIMULATION RESULTS

A servo motor simulation was performed to investi-
gate the quantization filtering performance of the modified
Kalman filter. A simple LQG position controller design
was implemented. As interest only lies in how accurately
the filter estimates system state, further information on



TABLE I

STANDARD FILTER MEASUREMENT NOISE COVARIANCE

Counts per rev R
4096 0.0833
2048 0.3333
1024 1.3333
512 5.3333

controller design has been omitted. A step and sine wave
command input of various frequencies was used to show
estimator performance over a range of different velocities
(Fig. 4). The position of the shaft was sampled using
a quantization function simulating an encoder of 4096,
2048, 1024 and 512 count per revolution to investigate
the effect of various magnitudes of quantization. The final
results have been normalized to the 4096 CPR encoder
so that meaningful comparison can be made. The Kalman
filter’s system equations had a+10% time constant error
introduced as a modeling inaccuracy.

To compare the performance of the new filter, a reference
Kalman filter was designed using [4],R = 1

12q2 as the
measurement noise covariance. The values for the different
quantization levels are in Table I. The measurement updates
were performed with the direct measurement ofy, no
unbiasing function was applied.

The system model used the following values:

Φ =
[

1.0000 0.0049
0 0.9753

]
Γ =

[
0.0036
1.4339

]
H =

[
1 0

]
Ts = 0.005

With a full state feedback controller with the following
values.

uk = −Kx̂k(+)+ N̄r

with:

K =
[

1.4205 0.1200
]

N̄ = 1.4205

where:

uk = Control output

K = State feedback matrix

N̄ = Reference gain

r = Reference input

To show the effectiveness of the trusted measurement
error functionE [e], state measurement error values from the
normal trustedyk and the unbiased trustedy

′
k values were

plotted while all untrusted values were omitted (Fig. 5a).
Fig. 5b shows a zoomed in section from the last sine wave
period for a clearer indication of the effects of unbiasing
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Fig. 4. Position command signal

the y measurement. As can be seen the unbiased error is
much closer to a 0 mean, indicating the validity of (2).

To allow for comparison between the performance of
the new adaptive filter to the standard Kalman filter, the
feedback controller used the exact state vectorxk. This
allowed for the estimators to be directly compared as
they had the same state trajectory to predict. The position
measurement was passed through a quantizing function to
simulate an encoder. Each filter was run concurrently and
the estimation error was defined as the difference between
the actual statexk and the filter estimate ˆxk(+). Fig. 6 shows
the position errors for encoder resolutions of 2048 and 512
counts per revolution (CPR). As can be seen, the standard
filter’s positional noise is highly biased with the direction of
velocity, while the new filter has near zero mean error. The
adaptive filter more accurately tracks the position, even with
a much reduced quantization resolution. Of interest is the
steady state error on the initial step. This is due to the error
introduced in the estimator system model. Regardless of
estimator, it is impossible to get a final accuracy higher than
the encoder output unless a perfect system model exists.

Fig. 7 shows the velocity error. As can be seen the
new adaptive filter very effectively removes quantization
effects for low velocities. As the velocity of the input signal
increases, the error of both standard and adaptive estimators
increase, and at high velocities the errors approach each
other. The reason for this is that

∣∣θ̇Ts
∣∣ approachesq leading

to both systems having the same amount of measurement
noise covariance. As the measurement error bias of the
standard encoder is roughly constant for a given velocity,
this does not effect the estimated velocity, so the unbiasing
function y

′
k does not advantage the new filter. For low

velocities the new filter clearly outperforms the traditional
design while at high velocities it matches the maximum
error but with less randomness.

A complete summary of the simulation is in Table II.
This presents the inaccuracy of the estimator as a mean
squared error to allow for easy comparison. The columns
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TABLE II

ESTIMATOR MEAN SQUARE ERROR

4096 CPR 0.25Hz 0.5Hz 1.0Hz
Conv pos 0.5069 0.5045 0.5342
New pos 0.1340 0.1759 0.2364
Conv vel 1.2622 2.4305 7.3049
New vel 0.8264 2.6608 8.1144

2048 CPR
Conv pos 1.0399 0.9703 1.0329
New pos 0.1906 0.2028 0.3470
Conv vel 2.2981 3.2503 8.0420
New vel 0.9181 2.8266 8.3307

1024 CPR
Conv pos 1.8753 1.7972 1.9612
New pos 0.2322 0.2541 0.4003
Conv vel 4.1555 5.0823 9.9972
New vel 0.9697 2.8709 9.3334

512 CPR
Conv pos 3.5312 3.5297 3.9654
New pos 0.3120 0.3080 0.6848
Conv vel 7.6090 8.9383 13.4968
New vel 1.0174 3.1759 10.3636

of the table are the different sinusoid frequencies to show
the effect of the system velocity on the estimation error.
The rows show the effect of the encoder resolution (CPR)
and the filter used. As can be seen the position error is
much improved with the new filter regardless of velocity or
encoder resolution. Also apparent is the fact that at low to
medium velocities, the new filter’s velocity estimation is far
more accurate. For velocity estimation with

∣∣θ̇Ts
∣∣ < 0.75q

the new filter with a 512 CPR encoder performs similarly
to that of a conventional estimator of 2048 counts, these
values have been marked bold in the table.

VI. CONCLUSION

By adaptively profiling covariance depending on sys-
tem state and quantization level edge-detection, the newly
proposed Kalman filter effectively removes a significant
amount of quantization noise. The method presented is
based on the proposition that a quantized sensor has a lower



level of uncertainty at the instance when it changes state,
to when it is within a quantum. This property allows for a
simple but effective method of improving state estimation.

The main application of this new filter is in allowing
lower resolution discrete sensors to be used than would
otherwise be necessary for the estimation of higher order
states. There is no claim that final positional accuracy can
be any higher than the quantization level. In the presented
servo example, the new filter required 4 times less resolution
to produce comparable results to the standard filter.
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