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Abstract

Internet Service Providers (ISPs) continue to get complaints from users on poor experience
for diverse Internet applications ranging from video streaming and gaming to social media
and teleconferencing. Identifying and rectifying the root cause of these experience events
requires the ISP to know more than just coarse-grained measures like link utilizations
and packet losses. Application classification and experience measurement using traditional
deep packet inspection (DPI) techniques is starting to fail with the increasing adoption of
traffic encryption and is not cost-effective with the explosive growth in traffic rates. This
thesis leverages the emerging paradigms of machine learning and programmable networks
to design and develop systems that can deliver application-level intelligence to ISPs at
scale, cost, and accuracy that has hitherto not been achieved before.

This thesis makes four new contributions. Our first contribution develops a novel
transformer-based neural network model that classifies applications based on their traffic
shape, agnostic to encryption. We show that this approach has over 97% f1-score for diverse
application classes such as video streaming and gaming. Our second contribution builds
and validates algorithmic and machine learning models to estimate user experience met-
rics for on-demand and live video streaming applications such as bitrate, resolution, buffer
states, and stalls. For our third contribution, we analyse ten popular latency-sensitive
online multiplayer games and develop data structures and algorithms to rapidly and accu-
rately detect each game using automatically generated signatures. By combining this with
active latency measurement and geolocation analysis of the game servers, we help ISPs
determine better routing paths to reduce game latency. Our fourth and final contribution
develops a prototype of a self-driving network that autonomously intervenes just-in-time
to alleviate the suffering of applications that are being impacted by transient congestion.
We design and build a complete system that extracts application-aware network teleme-
try from programmable switches and dynamically adapts the QoS policies to manage the
bottleneck resources in an application-fair manner. We show that it outperforms known
queue management techniques in various traffic scenarios. Taken together, our contribu-
tions allow ISPs to measure and tune their networks in an application-aware manner to
offer their users the best possible experience.
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Chapter 1

Introduction

Contents

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The Internet is rapidly evolving to support diverse applications such as video streaming,

online gaming, teleconferencing, and social media. With the global COVID19 pandemic

confining people to their homes, the Internet has seen an explosive growth in usage (average

household consuming 650-750 Gigabytes per month in 2021 [1]) and engagement (average

household spending 4.2 hours per day on popular apps [1]). The Internet is increasingly

being used for critical purposes like daily work and education beyond entertainment. Fur-

ther, Cisco’s report [2] predicts that there will be 5.3 billion Internet users (66% of the

global population) by 2023, up from 3.9 billion (51% of the global population) in 2018. The

increase in the number of users and demand for the Internet, especially in the last couple

of years, has subsequently resulted in at least 20% growth in peak rates across Internet

Exchange Points (IXPs) and Tier 1 Internet Service Providers (ISPs) around the world.

Several networks were not provisioned to handle such growth and encountered issues while

running “hot", close to peak capacity [3].

Given the growth and dependence on the Internet, users want a good experience with

their applications. Content providers have led efforts in improving the application per-

formance by employing caches [4], developing novel congestion control algorithms [5] and

1



Chapter 1. Introduction

transport-layer protocols [6]. However, they do not control the last mile network which is

typically the point of congestion [7] and can cause the poor experience. Therefore, it is

paramount for network operators such as ISPs to ensure that their networks are meeting

the diverse application requirements. Applications like video streaming (that account for

around 60% of Internet traffic by volume [1]) require sustained high bandwidth to stream

videos in 4K resolutions while applications like online gaming and teleconferencing require

sustained low latencies to the servers to ensure a real-time communication. Further, emerg-

ing applications like Cloud Gaming (and Augmented Reality/Virtual Reality apps) require

both high bandwidth and low latencies. The network operators are now realizing that net-

works designed to support just bandwidth/usage are no longer serving the requirements of

all the applications. More importantly, using “speed” as a measure of network performance

is no longer sufficient and operators need new ways of measuring and tuning their network’s

quality for each application.

Traditional network monitoring solutions have relied on counting packet and byte rates

of traffic at various aggregation levels ranging from a switch port to a VLAN using legacy

protocols like SNMP [8]. These measures are coarse, aggregate, and give a very high-level

view of network operations and only from a usage point of view. To gather finer-grained

data, proposals like NetFlow [9] and sFlow [10] emerged that could count and export per-

flow records by maintaining a flow cache. While they improve on the granularity, they

still are not sufficient to measure application performance on the network. To do so, the

network operators need to identify the application traffic i.e. assign a network traffic flow

to an application type (e.g. video streaming), measure the application’s performance (e.g.

able to play 4K videos without buffering), and subsequently take actions to manage the

application performance by tuning their networks.

In-network monitoring and management of application performance and associated user

experience, while desirable, is a non-trivial task. On the one hand, there are proposals that

require communication between the network and the applications directly via APIs [11–13].

These approaches are hard to deploy as they (a) require collaboration between networks

and application developers and (b) are difficult to scale with several thousand instances

of applications. On the other hand, presently deployed monitoring solutions, collect sam-

pled and coarse granular data (at a per-flow level) which are not sufficient to estimate

2



Chapter 1. Introduction

application-level performance. Implementing an in-network application performance mon-

itoring and management solution has the following challenges:

1. Widely employed encryption technologies such as TLS and AES make it difficult to

detect the application let alone monitor its performance;

2. Each application has a different performance criteria (video streaming requires high

resolution and no buffering, games require low latency, etc.) and hence requires

different measurements;

3. Customizing network monitoring for each application introduces complexity, comes

at a higher cost (both computationally and economically), and is challenging to scale

to the growing volumes of internet traffic;

4. Managing performance of multiple applications whose traffic mix changes dynami-

cally requires operators to continuously configure and tune their networks which is

not practical.

In this thesis, we present our efforts in addressing the existing gap in the space of

application-aware network monitoring and management. Our thesis leverages advance-

ments in Machine Learning and Programmable networks to tackle the aforementioned

challenges by:

1. Performing encrypted traffic classification by employing modern machine learning

and statistical algorithms by capturing traffic shape in a compact data structure;

2. Studying the behaviour of bandwidth-sensitive (live and on-demand video stream-

ing) and latency-sensitive (multiplayer gaming) applications to design appropriate

network telemetry functions (NTFs) that can accurately extract the required mini-

mal set of features that can estimate the associated user experience;

3. Developing systems that leverage technologies like fast packet I/O (e.g., DPDK [14])

and modern programmable switches (e.g., Tofino [15]) to execute the network teleme-

try at scale and low costs;

3



Chapter 1. Introduction

4. Designing automatic control loops and frameworks that can manage the application

performance at the bottleneck links via dynamic resource sharing according to either

ISP set policies or application performance estimations.

1.1 Thesis Contributions

In this thesis, we make significant contributions to the field of application-aware network

monitoring and management starting with application classification as the first step. Then

we focus on measuring application performance and associated user experience of popular

applications starting with video streaming. We subsequently shift our focus to detect-

ing and monitoring the performance of latency-sensitive gaming applications. Finally, we

develop methods to proactively measure and improve the performance of applications con-

tending on congested links. The four contributions are enumerated in detail below:

1. First, we develop a deep-learning-based network traffic classification system consist-

ing of two components (a) a novel network behaviour representation (called Flow-

Print) that extracts per-flow time-series byte and packet-length patterns, agnostic

to packet content and (b) use attention-based Transformer encoders (called Flow-

Formers) to enhance FlowPrint representation and classify internet traffic to iden-

tify application type and provider. FlowPrint extraction is real-time, fine-grained,

and amenable for implementation at Terabit speeds in modern P4-programmable

switches. FlowFormers leverage transformer encoders to outperform conventional

DL models. Implementation and evaluation of FlowPrint and FlowFormers on live

university network traffic, yields a 95% f1-score to classify popular application types

within the first 10 seconds, going up to 97% within the first 30 seconds, and yields a

95+% f1-score to identify providers within video and teleconferencing traffic flows.

2. Second, we develop a system to monitor the user experience of both on-demand

and live video streaming applications. We develop a measurement tool for collecting

network flow activity and video client playback metrics and deploy it in home net-

works and synthetic network conditions to collect over 500 hours of video playback

data. We, then, analyse the behavioural profile of videos from Netflix, Twitch, and
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YouTube showing how on-demand and live streaming have different patterns of net-

work activity. We develop methods for the ISP to infer Netflix (on-demand video)

user experience in terms of buffer fill-time, video bitrate, and throughput, and detect

playback buffer depletion and quality degradation events. For live video streaming,

we develop a method that estimates QoE metrics in terms of resolution and buffer

stall events with overall accuracies of 93% and 90%, respectively.

3. Third, we develop methods that give ISPs visibility into online gaming and asso-

ciated server latency. We analyse packet traces of ten popular games and develop

a method to automatically generate signatures and accurately detect game sessions

by extracting key attributes from network traffic. Field deployment in a university

campus network identifies 31k game sessions representing 9,000 gaming hours over a

month. We perform BGP route and Geolocation lookups, coupled with active ICMP

and TCP latency measurements, to map the AS-path and latency to the 4,500+

game servers identified. We show that the game servers span 31 Autonomous Sys-

tems, distributed across 14 countries and 165 routing prefixes, and routing decisions

can significantly impact latencies for gamers in the same city. Methods proposed in

this chapter give ISPs much-needed visibility into gaming so they can optimize their

peering relationships and routing paths to better serve their gaming customers.

4. Fourth, we propose a self-driving network architecture (called AppAssist) that di-

rectly measures, optimizes, and dynamically controls application performance. We

develop a method to measure and model application state in real-time using net-

work behaviour data. We apply our framework to two representative applications,

video streaming, and gaming, and show how the network can detect application

deterioration in terms of playback buffers and ping latency respectively, and apply

remedial action to improve application performance without requiring any explicit

signalling. Building upon it, we design and develop a complete system (called Auto-

QoS ) that extracts application-aware network telemetry from programmable switches

and dynamically adapts the QoS policies to manage the bottleneck resources in an

application-fair manner. We implement AutoQoS in both software and hardware

testbeds. We show that it outperforms known queue management techniques in vari-

ous traffic scenarios and can closely approximate an optimal static QoS configuration.
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Taken together, our contributions help ISPs to detect applications, monitor the per-

formance of QoE-sensitive applications (such as video streaming and gaming), and help

alleviate congestion-induced QoE degradation at the bottleneck links by automatically

distributing the queue resources to enhance user experience. We extract application intel-

ligence from the network traffic and enable ISPs to measure and tune their networks in

an application-aware manner to offer a good experience to their users. We obtained ethics

clearance (HC16712) for work in this thesis which uses data from our university network –

this clearance approves the analysis of campus network traffic data to derive insights into

aggregate video streaming and gaming behaviours without identifying the users behind the

client ip addresses.

1.2 Thesis Organization

The rest of this thesis is organized as follows.

Chapter 2 surveys related literature to give a background on network measurements,

inferencing methods, and adaptation strategies used to monitor and manage application

performance on the Internet. It reviews current state-of-the-art tools and techniques in

the field of in-network Internet application performance management and highlights the

potential of emerging technologies including programmable networks and machine learning

to address the identified gaps.

Chapter 3, presented in [16], elaborates on encrypted traffic classification methods using

rich yet compact network telemetry and state-of-the-art ML model architectures.

Chapter 4, presented in [17, 18], describes the design and implementation of a real-time

video performance monitoring system that consists of statistical and ML-based models to

infer on-demand and live video streaming QoE in terms of resolution and buffer health

using sophisticated network measurements like chunk metadata extraction.

Chapter 5, presented in [19], develops a deterministic and fast game detection system

using automatically generated gameplay signatures derived from labelled packet traces

and performs passive and active latency measurements to map out the gaming servers and

identify high latency paths within ISP networks that can be optimized using better peering
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relationships.

Chapter 6, presented in [20, 21], begins by describing a prototype self-driving network

that can dynamically assist suffering applications and thereafter develops a robust system

that leverages application intelligence extracted from programmable networks to automati-

cally configure QoS policies and optimize the performance of diverse classes of applications

in a dynamically varying traffic mix.

Chapter 7 concludes this thesis and discusses potential future directions.
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In this chapter, we survey the existing work done by academia and industry in the field

of in-network monitoring and management of Internet performance. We begin by giving an

overview that decomposes the work into three parts: measurement, inference, and control.

In each part, we show the evolution of methods and technologies in recent decades and

highlight the current state-of-the-art.

Figure 2.1 shows an overview of the major components required to run large networks

that can better serve applications.To do so, ISPs need to:

1. measure and collect metrics in-network (from packets) indicative of application per-
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Figure 2.1: System Overview for monitoring and management of application performance.

formance,

2. analyse the measurements and make inferences/decisions using data-driven models,

3. adapt the network configuration to make it more performant using the inferences

made from the measurements

These measurement and inference components constitute network monitoring and en-

hance visibility into the network. The adaptation component enables ISPs to take action

to manage the network to improve the application performance. Monitoring and manage-

ment, when coupled together, yield the best results in forming a self-driving network [22].

However, the ISPs may adopt an incrementally deployable approach in which monitoring

components are deployed first to enable visibility into the network. Adding on to the mon-

itoring systems, ISPs can deploy management components to take actions either at a short

time scale (e.g., seconds to minutes) such as dynamic resource distribution [20, 21] or a

long time scale (e.g., weeks to months) such as provisioning capacity or performing better

peering.

Prior work has tackled each of these aspects and has made significant progress over the

past few decades. We now focus on each of these three pillars and highlight their related

work.
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2.1 Network Measurements

Overview. Network measurements have been done for decades not only to monitor,

debug, and manage networks but also for securing and optimizing them. Early “active

measurement” tools like ping [23] and traceroute [24] aided in reachability measurements

while tools like tcpdump [25] aided in passively capturing packets. Then came tools like

SNMP [8, 26] and NetFlow which primarily aided in network management. With the advent

of Software-Defined Networking (SDN) that decoupled the network control plane and data

plane, many customized measurement tools started to be developed by both industry and

academia such as OpenConfig [27], OpenNetMon [28] and more [29]. Recently, with the

introduction of programmable data planes [30], very accurate and fine-grained in-band

telemetry tools have started to evolve which can perform per-packet measurements at

terabits per second.

We classify the related work in network measurement by considering its prominent

aspects:

1. Who measures the network?

The network can be measured by applications themselves to run in a fair and efficient

manner, or the operators to manage the network well or other entities such as content

providers and end-users. Modern applications (e.g., video streaming [31–33]) and

protocols (e.g., TCP) continuously measure the network conditions (such as available

bandwidth) and adapt their application logic (e.g., bitrate adaptation [34] or TCP

back-off [35]) to enhance application performance leading to a better user experience.

Network operators, on the other hand, primarily measure the network elements for

aggregated statistics such as port rates and traffic volumes to help them with network

management and operations [8, 26]. Further, industrial, government and research

organizations also perform measurements on a global scale to understand the state

of the Internet, connectivity issues, and track Internet evolution [36]. Finally, some

measurements such as latency and speed tests [37] are also triggered by end-user to

measure their network quality.

2. What type of network measurement?
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There are predominantly three types of measurements: Active, Passive and Hybrid

(active and passive) [38]. In active measurements, packets are injected into the

network to measure its properties such as latency, throughput, loss etc. Ping and

speed tests are examples of active network measurements. In passive measurements,

already existing traffic is monitored to extract measures of interest. For instance,

one can passively estimate latency to web servers by analysing the three-way TCP

handshake which occurs to establish an HTTP(S) connection. Hybrid measurements

include both active and passive methods i.e., packets are injected into the network

and also passively measured (say in the core) to estimate network metrics.

3. What objectives can be addressed by measuring the network?

Network measurements are often done to dimension and tune the network to give

users the best possible experience at lowest cost to the operator. In addition, they

also serve some specific use-cases such as network security [39], IoT device detection

[40], accounting and legal interception [41]. Traffic monitoring, especially heavy-

hitter detection [42], is also a common use case for network-wide measurements.

Modern programmable networks also support fine-grained in-band telemetry [43] to

analyse network performance to the granularity of queues in high-speed data center

switches.

4. What is the granularity of network measurement?

Network measurements can be taken in varying granularities ranging from most-

granular raw packet captures (using tcpdump [25]) to very aggregated per-device or

per-port traffic rate counts (using SNMP [8]). Intermediate data commonly involves

flow level logs exported using NetFlow [9] or HTTP logs typically collected at the

server endpoint to debug service performance [44].

5. How frequently is the network measured?

Network measurement can be ad-hoc or taken continuously. Often network operators

take coarse grained measures such as link utilizations continuously but rely on finer-

grained information only when certain incidents occurs. Another form of infrequent

measurement is collecting packet captures (aka pcaps) of events to be analysed at a

later point in time (post-facto) if needed.
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In this section, we chronologically review the domain of network measurements as it

applies to the context of this thesis i.e., we look at measurements primarily done in operator

networks with an objective to manage Internet performance (more specifically application

performance and the associated user experience). While we describe the related work we

also discuss the measurement type, granularity (per-packet, per-flow, app-level or device-

level) and frequency (ad-hoc or continuous). We begin by describing traditional network

measurements which started in 1990s-2000s, followed by measurements made after the

advent of SDN (after 2008) and finally discuss modern measurement tools and methods

fueled by recent (since 2015) programmable data plane technology.

2.1.1 Traditional Network Measurements

Traditional measurements majorly focused on relatively simple performance metrics like

connectivity (is the network reachable? ), latency (how far apart are two endpoints? ), band-

width (what is the available capacity for data transfer between two end-points? ) [45, 46].

Active measurement tools like Ping [23] are typically used to check connectivity and la-

tency. Traceroute [24] was later developed to provide more fine-grained path information

consisting of hops in between the endpoints. Tools like iperf [47] are used to measure

bandwidth between two endpoints. In addition to these active measurement tools, passive

tools such as tcpdump [25, 48] was developed to create packet captures to help operators

debug protocol-based issues.

In addition to running tools on end-hosts such as described above, operators also col-

lected information such as link utilizations from network elements such as switches and

routers via port traffic counters. Simple Network Management Protocol (SNMP [8, 26]

was adopted as a standard protocol through which these measurements could be taken.

As switching chipsets started to mature, technologies like NetFlow [9], IPFIX [49] and

sFlow [10] started to emerge as data exporting formats. NetFlow [9] and IPFIX [49] use

software agents on switches to export traffic statistics at a flow level. sFlow [10] on the

other hand, uses packet sampling technique to offer visibility into the network traffic. Due

to limited compute and memory resources in the switches, these tools collect only sampled

and aggregated information which is not enough for use cases like application performance
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and user experience monitoring.

2.1.2 Software-Defined Network Measurements

Software-defined networking was a paradigm of networking which decoupled the control

plane from the data plane. OpenFlow [50] introduced a standard way for disaggregated

network control planes to talk to the data planes. Its monitoring features included APIs

to fetch statistics such as byte and packet counters at various granularities from ports to

five tuple flows. It introduced a flexible match-action paradigm in which packets could

be matched on their header fields and then statistics can be exported for that matched

flow. Many tools were developed leveraging SDN’s flexibility to measure not only at a finer

granularity but also targeted to use cases beyond simple network management [29].

OpenNetMon [28] was one of the earliest works which leveraged OpenFlow to design

and build a monitoring system. Since then various SDN-based measurement methods

have been proposed in both academia and industry for traditional network performance

measurements such as available bandwidth [51], packet loss [52], latency [53] big-data

based traffic monitoring [54] and specific use cases such as network security [39], heavy

hitter detection [42, 55], path tracing [56], long flow monitoring [57], trouble shooting [58],

etc. Many of the SDN based monitoring methods are passive with some like path tracing

methods adopting a hybrid approach.

OpenConfig [27] standardized its APIs following the SDN paradigm and introduced

Open Streaming telemetry [59]. In OpenConfig streaming telemetry is developing vendor

agnostic measurement methods which address the problems faced by SNMP including

scalability and complexity. The streaming telemetry methods advocate for continuous

"push-based" telemetry as opposed to the traditional ad-hoc and pull-based telemetry. The

SDN paradigm had created a huge shift towards making networks more open, measurable,

and flexible to support multiple measurement use-cases including performance.

Along with SDN came Network Function Virtualization (NFV) in which network func-

tions such as NATs, firewalls etc. shifted to using commodity servers. Intel’s DPDK [14] is

a key technology enabling fast packet processing using kernel bypass techniques. Sophis-
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ticated packet processing logic can be written to analyse packet and flow-level attributes

of the traffic. Work in [60] develops a flow monitoring solution to get accurate flow-level

statistics using DPDK at rates of 10s of gigabits per second.

2.1.3 Programmable Network Measurements

About half a decade later, high-speed protocol independent programmable switching tech-

nology was introduced [30]. It allows the network switch to be programmed using a higher

level programmable language such as P4. It enabled very sophisticated measurements such

as in-band per-packet telemetry [43]. Further, all these measurements can be taken at a

line-rate of terabits per second. While one cannot program arbitrarily complex telemetry

functions, it gives enough flexibility to go beyond packet and byte counters which we’ve

leveraged in our thesis to extract rich information to classify traffic and measure applica-

tion performance. Our prior work in [57] uses OpenFlow and DPDK to monitor long flows

in university traffic.

Traffic monitoring tools built on programmable data planes included use cases like heavy

hitter detection, flow monitoring, sketch-based traffic matrix monitoring, in-band network

telemetry, query-driven telemetry among others. Work in [61–63] use hash tables in the

data plane to detect the heaviest flows of the network which typically cause congestion and

performance issues. Several researchers have proposed flow monitoring solutions which

leverage the flexible parsing and register/counter based memory features to accurately

measure flow level statistics at scale. Turboflow [64] leverages both switch compute and

CPU compute and memory to extract accurate flow level statistics by collecting micro

flows on the switch and aggregating them using CPU. FlowStalker [65] maintains statistics

at the switches and uses crawler packets to collect them network wide and aggregates at

a collection point. Flow monitoring processes a lot of data to produce accurate records.

Sketch based measurements offer a way to approximately measure traffic properties based

on summaries collected of the current traffic state. ElasticSketch [66], Interleaved Sketch

[67] and FCM [68] are some examples that leverage sketch data structure to approximately

measure traffic statistics at scale.
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Two new telemetry paradigms have emerged with the advent of programmable data

planes: In-band telemetry [43] and query-driven telemetry [69]. In-band telemetry refers

to taking measurements alongside the packets traversing the network. This is a hybrid

measurement in which a packet/flow is passively monitored with active information about

queueing and path information. It has been used to detect micro-bursts in the datacenter

[70] and diagnosing latency spikes in web performance [71]. Work in [69, 72] performs

query driven telemetry in which queries are compiled down to the P4 dataplane to extract

very specific information about the network traffic.

Our Work

This thesis leverages advances in network measurement described above to collect metrics

that aid in application classification and performance estimation. We leverage NFVs and

sophisticated telemetry function support in DPDK to extract flow behaviour profiles in

Chapter 3 (specifically in section §3.2) and fine-grained and chunk-based telemetry to

extract user experience metrics such as resolution and buffer stalls for video streaming

applications in Chapter 4 (specifically in sub-section §4.2.1). Further, in Chapter 6 we

leverage P4 dataplanes to extract sophisticated and specific metrics from the traffic which

are indicative of application performance (§6.3.3).

2.2 Analysis and Inference

The measurements taken from the network need to be analysed to produce some actionable

outcomes. Network traffic analysis has been done in the contexts of network security [39]

(detecting attacks using analysis and anomaly detection models), IoT device detection [40,

73] (detecting which devices are present on a network), application classification (detecting

which application is using the network) [74], website fingerprinting[75] (detecting websites

being accessed on network), also application performance (QoS/QoE) (inferring how vari-

ous applications are performing on the network). While prior inferencing approaches relied

on statistical models, machine learning is being increasingly applied [76] in various network

traffic analytics use cases. In this thesis, we focus on network analysis and inferencing done
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specifically to classify applications and measure their user experience.

We classify the related work by considering the following major aspects of network

traffic analysis:

1. What is the granularity of analysis?

Network traffic can be analysed at packet-level, flow-level, or anything intermediate

(such as HTTP logs [77]). Note that while measurement and data collection can be

at a packet level (using pcaps), the analysis can be a flow-level.

2. What kind of inferencing models are developed?

Prior analytical models relied majorly on empirically tuned statistical models [78,

79]. However, more recently, machine-learning based approaches [80] have shown

significant advantages in developing models that can make smart inferences (e.g.,

network security [39], IoT device detection [40] etc.)

3. When are the measurements analysed?

Network measurements can be analysed either in real-time or post-facto. While

most of the methods perform post-facto analysis using publicly available traces [81],

recently researchers have begun developing real-time analysis systems [18, 82–84].

We now use these lenses and review literature specifically in the contexts of application

detection/traffic classification and application QoS/QoE estimation.

2.2.1 Network Traffic Classification

Network Traffic Classification (NTC) has been extensively studied by many researchers over

several decades [74, 78, 79, 85]. Early work surveyed in [78, 79] typically used attributes

like port number etc. and clear-text information in the packets to identify different types

of application like e-mail, web browsing, FTP etc. by essentially detecting the protocol

they were using. Over the recent years, as encryption is becoming increasingly adopted, it

is getting challenging to detect applications just based on protocols. For instance, video

streaming, web browsing and file transfers all happen over HTTPS which is not only
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encrypted i.e., no clear text information such urls accessed etc., but also uses the same

port 443 on the server side (with a dynamic port on client side).

More recently, researchers have begun the use of machine learning/deep learning models

for classification of network traffic [80]. Recent work for encrypted NTC using deep learning

can be categorized into packet-based, flow content-based and flow time-series-based. Work

in [86] and [87] classifies applications using 1-D CNNs and Stacked Auto Encoders (SAE)

on byte sequences extracted using packet headers and/or payloads. Flow content-based

approaches use RNN/LSTM models in addition to CNN and SAE with features collected

over multiple packets within a flow, like session bytes (concatenated packet payloads) [88,

89], packet inter-arrival times [90], and packet lengths to identify internet apps.

Most of the prior work in packet-based and flow content-based categories was evaluated

using a public dataset [91] which contains many un-encrypted protocols such as SMTP,

POP3 (email label) and SFTP and FTP (file transfer label) which are easily distinguishable

using just the packet headers and/or first few payload bytes. Further, to classify encrypted

applications/services based on HTTPS, DL-models often fit to features in TLS handshake

such as cipher info and server name indication field (SNI) (e.g. youtube.com) without which

the model accuracy drops significantly [89]. Thus, such approaches are either outdated, due

to the increasing use of encryption, or are susceptible to failure with upcoming protocols

like TLS 1.3 wherein even the handshake is completely encrypted. Our work doesn’t

consider packet payloads as input but instead relies on flow’s traffic shape and behaviour

characteristics which are robust even with TLS 1.3 encrypted traffic.

Flow time-series-based approaches [40, 75, 84, 92, 93] rely purely on time-series features

such as packet/PDU (protocol data unit) lengths [92], [75], [40] of a flow over time, inter-

arrival times [40] and/or statistical features like transfer rates (bps/pps), burstiness, idle-

time etc., derived from downstream traffic [84]. Work in [84] was limited to Video vs.

Download classification. Authors in [93] use all of the above features i.e. time-series

packet lengths, IATs along with TLS handshake bytes (excluding SNI and cipher info)

and summarized flow statistics. Their dataset contains only TLS/QUIC-based flows and

it relies on statistical flow information which is only available at the end of the flow. In

other words, it performs a post-hoc classification of the flow.
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2.2.2 Application QoS/QoE Prediction

Network traffic analysis is also performed to infer QoS/QoE that a network provides to an

application [94]. Some researchers have built analytical models which map QoS metrics to

QoE of applications. Prior work analysed network traffic to infer behaviour and QoE of ap-

plications like web browsing [95], video streaming [82, 96–98], video conferencing [99–101].

Further, the analysis was not restricted to desktop-based or browser based applications

but also was extended to mobile applications [102]. Of all applications, video streaming

was studied by many researchers due to its popularity and increasing user engagement. As

we tackle video streaming QoE prediction in this thesis, we now focus on network analysis

literature in the context of video streaming.

Video Streaming QoE Prediction

Existing approaches for estimating video users’ experience are either statistical modelling-

based or machine learning-based. Recent attempts such as eMIMIC [97] and BUFFEST [103]

employ statistical models, using packet traces and HTTP requests respectively, to quan-

tify users quality of experience (QoE). Machine Learning (ML) approaches [104–106] used

recently, attempt at measuring QoE by predicting categorical estimates of experience met-

rics like low, med, high bitrates [105], [106] or low, high probability of bitrate switches and

rebuffering [105],[106]. To collect the ground-truth, both [104] and [106] used client-side

instrumentation on mobile devices, and [105] used HTTP logs and metrics exported to

content provider. However, all of them used packet traces to derive fine-grained attributes

such as RTT, packet losses, ACKs, retransmissions which are expensive to compute. In

a parallel work [107], authors attempt to classify buffer states (i.e., filling, maintaining,

depleting) for YouTube videos using attributes derived from aggregate network profile. In

[83], authors use low-level packet features to detect startup delay and re-buffering events

in real-time for YouTube traffic but do not report the quality of video playback or its

variation.

Many researchers [82, 97, 98, 108] have studied QoE metrics for video streaming services

across providers such as YouTube, Netflix, Facebook, Bilibili and Amazon, particularly
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focusing on VoD. Among existing works, only [98] studied QoE for live streaming services

(Twitch) by estimating only the resolution metric. Further, prior works predominantly

performed post-facto analysis of video streaming QoE using features extracted from pcap

traces [82, 97, 108], or CDN logs [77, 109]. Authors of [98], however, evaluated their online

methods via deployment in home networks.

Our Work

In this thesis, we use both machine-learning based and statistical models to classify appli-

cation type (video streaming vs. conferencing vs. downloads etc.) in §3.3, detect gaming

applications in §5.2 and also to infer application QoE metrics (like resolution, buffer states

etc.) in §4.3. The models make inferences based on analysis of raw network traffic by

deriving high-level metrics (such as chunk for video streaming) from packets of network

flows.

2.3 Control and Adaptation

Measurements and inferences can help operators take better control of their networks.

Operators can take actions on infrastructure such as network planning, better peering

and route selection. They can additionally take actions to actively manage traffic such as

fix transient congestion, dynamic prioritization of traffic, selective routing of traffic onto

special low latency paths, traffic shaping etc.

While protocols such as TCP adapt to network conditions by using signals like available

throughput, loss etc., we are looking at how the network can enforce control over the traf-

fic to help the mix of applications achieve a better performance. There have been studies

showing how just using TCP congestion control schemes is not enough to manage network

resources as they are not interoperable with each other[110] and that active network inter-

vention (by separating congestion control schemes into their own queues [111]) can improve

their interoperability and performance. Modern data center protocols are also starting to

leverage in-network control primitives such as priority queues to improve metrics such as
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flow completion times [112].

Currently, network operators such as ISPs enforce control in security related contexts

such as blocking malicious traffic using firewalls and IDS systems or blocking access to

certain websites / services as done by the great firewall of China [113]. Actions such as

active traffic management, beyond dropping/blocking or zero-rating [114] traffic to improve

user experience, have seldom seen adoption in operator networks at the last mile bottleneck

[7]. However, we believe that with the emergence of programmable networks and machine

learning models being able to provide operators with rich metrics about user experience at

scale,operators can now exercise different control schemes to ensure a good user experience.

We study the related work in the field of network control considering the following

aspects:

1. Where is the control being enforced?

Network control can be enforced at any point between the user and the service. Closer

to the user at the home gateway, network control is exercised to enforce parental

controls, per device fairness, bandwidth limits and active queue management systems.

On the other end, application services running in data centers use network control

to enforce geo-blocking, load balancing etc. The network operator enforces control

such as bandwidth shaping, queue management, legal interception etc. to manage

internet traffic. In addition to these points of control, government organizations can

control the network to apply country-wide policies.

2. Who has access to APIs to control the network?

Often the control APIs are exercised by the entity owning the point of control i.e.,

users control their home gateway and operators control the broadband network gate-

way (BNG) to do the shaping of all their subscriber traffic. However, some proposals

[11–13] have proposed APIs that operators can expose to users and content providers

to take actions within their network (with some economic pricing models). Such

cross-domain network control is starting to see some deployment in modern networks

with users given some control over their network [115].

3. What granularity of traffic is controlled?
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Internet traffic can be controlled at various levels of granularity. For instance,

bottleneck buffer management using active queue management techniques such as

CoDEL[116] operate on a per-packet level to manage buffer bloat on congested links,

whereas a routing/peering action is done on a per prefix/AS level while traffic shap-

ing is done at BNGs at a per-subscriber level. Firewalls typically block traffic on a

per-connection/flow level. Traffic prioritization/zero-rating[114] is often done on a

per protocol/application level.

4. What is the timescale of control?

Network control configuration can be enforced once, updated periodically at scales

of weeks to months or can also be real-time requiring dynamic inputs. Configuring

active queue management algorithms[117] such as Codel, PIE [116, 118, 119] or

Cake[120], is a one time action which can help to fix bufferbloat-induced latency

problems [121]. Network capacity expansion, BGP peering and routing optimizations

are often done at timescales of weeks to months. Further, network firewalls also

typically receive signature updates to detect new malware etc. in similar timescales.

Any API driven control scheme, as presented in [11–13], require real-time control of

the network and work using APIs called by either end-users or content providers to

manage their traffic. We note that while all these systems interact with packets in

real-time basis, what we considered is the timescale of intervention by an operator

to configure/update these control schemes.

We now look at prior work focusing on network control frameworks and technologies

designed to improve application QoS/QoE and subsequently enhance user experience. To

manage QoS/QoE in a traffic mix, the general requirements are (1) classification (into

classes of traffic based on their requirements), (2) marking (to indicate to the network what

is required) and (3) scheduling (schedule applications’ traffic to satisfy their requirement).

We begin by looking at scheduling algorithms that are typically adopted to manage traffic

followed by frameworks which build on top of these to share the resources amongst the

traffic classes.
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2.3.1 Scheduling Primitives

Traffic scheduling has been studied for decades and has been surveyed by many researchers

[122, 123] and more recently researches have proposed abstractions such as PIFO [124],

PIEO [125] and AIFO [126] to implement multiple scheduling algorithms at line rate in

programmable switches. We now discuss most widely used scheduling algorithms to manage

traffic with different requirements.

First-In First-Out (FIFO): The most basic scheduling primitive is a Drop-tail First-

In First Out Queue. In this scheme, packets are enqueued into the buffer from the tail-end

and are dequeued from the head. If the buffer gets full, incoming packets are dropped i.e.,

not enqueued into the buffer. The exact implementation commonly used in linux kernels

can be found here [127]. Protocols like TCP were designed assuming the dynamics of a

FIFO scheme and react to congestion (i.e., filled buffers) by measuring the drops/increase

in latency and then reduce their sending rates to recover from the congestion.

Priority Queueing: In a priority queueing scheduler, there are multiple queues each

serving traffic of certain priority. The packets are enqueued into a queue depending on

their priority and are dequeued from the queues from the highest to the lowest priority. By

its design, priority queueing stalls traffic of lower priority queue if a higher priority queue

has packets to dequeue. This is known as starvation and is a common drawback noted

in priority queueing. Often, the traffic prioritized is either known to be constant bitrate

encoded or very short flows that finish within a few RTTs.

Unsurprisingly, this primitive is often used to serve latency critical applications such as

VoIP and real-time communications. More recently, researchers have proposed leveraging

priority queueing to minimize flow completion times in data center networks [112].

Weighted Fair Queueing (WFQ): WFQ schedulers also have multiple queues into

which traffic is enqueued. At the dequeue however, each queue is given a fixed amount of

available capacity which is configured by its weight. It is an extension of fair queueing in

which each queue is given an equal amount of capacity (if it contains traffic). WFQ doesn’t

suffer from the starvation problem that exists in priority queueing.
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WFQ schedulers are used to distribute available capacity (bandwidth) among classes of

traffic. They are widely used for bandwidth-based Network Utility Maximization (NUM)

[128]. Some researchers have proposed combining priority queue (called a low latency queue

– LLQ) and WFQ to create a scheduler for real-time communications [129].

Programmable Scheduling Primitives More recently, researchers have designed

and developed abstractions that can be used to specify a wide variety of scheduling algo-

rithms on the same hardware making the scheduler programmable. PIFO [124] uses push-in

first-out primitive which allows inserting packets into a random position of a queue to im-

plement scheduling algorithms such as priority, weighted and deadline aware scheduling.

PIEO [125] extends PIFO by making the abstraction push-in extract-out and can also im-

plement non-work conserving disciplines. The recent work AIFO [126] uses intelligence at

enqueue to implement PIFO using a single queue. Work in [130] approximates per flow

fair queueing using rotating strict priority queues. Subsequently, the authors designed

an improved systems using calendar queues to implement more complex and non-work

conserving scheduling disciplines [131].

2.3.2 Active Queue Management

Active queue management techniques have been developed in parallel with the congestion

control algorithms to combat buffer bloat [121] and help protocols like TCP achieve high

network utilization with low latencies [132]. Notable techniques in the past which saw

widespread deployment were Random Early Detection (RED) and its variant Weighted

RED (WRED). In both schemes, the scheduler drops a packet randomly (depending on its

drop probability) before the queue gets full. This triggers the loss-based TCP congestion

control algorithm to reduce its rate. Doing so, the schemes aimed at keeping the buffer

low. However, network operators found it challenging to tune the parameters.

Since then, new AQM techniques have been developed starting from Controlled Delay

(CoDEL [133]) which explicitly tries to minimize the queueing delay and keeping it close

to the target value. It was shown to reduce bufferbloat and offer lower latencies and high

utilizations. FQ-CoDEL was subsequently developed [116] and added to the linux imple-
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mentation [134] which added flow-fair scheduling on top of CoDEL. Other notable AQM

implementations include PIE [118] (and correspondingly FQ-PIE [135]) which use propor-

tional integral controller to manage queue occupancy. More recently CAKE (Common

applications kept enhanced) [120] which uses heuristics to improve on top of FQ-CoDEL

and FQ-PIE. Most of the vanilla AQM algorithms assume a drop-tail FIFO queue as the

scheduling discipline. However, their flow queue (FQ) variant use multiple drop-tail queues

(typically 1024) configured to dequeue in a round-robin fashion to ensure a flow-fair be-

haviour.

AQM techniques have shown to help to reduce congestion-induced latency in operator

networks [136] and since recently are readily available in router and DOCSIS implementa-

tions [137].

2.3.3 QoS Control Frameworks

Traditional Internet treats every packet equally and has a best effort model to serve the

traffic. However, to ensure a good QoS, the Internet evolved to support different require-

ments. The most prominent proposals to improve Internet QoS were Differentiated Services

(DiffServ) [138] and Integrated Services (IntServ) [139]. DiffServ allowed applications to

mark their traffic belonging to certain traffic class (e.g., low delay, high bandwidth etc.)

and required the routers in the core network to serve the requirements. DiffServ was a

mechanism to give relative QoS. Intserv on the other hand was a framework designed to

give absolute or guaranteed QoS to applications. It required network-wide resource reser-

vation scheme which would pre-allocate the required resources to serve the application

traffic. While IntServ was not scalable due to network-wide resource reservation, DiffServ

didn’t see much deployment due to challenges in tuning the required parameters such as

rates and drop probabilities [140] at the routers.

Software-Defined Networking enabled development of new QoS control frameworks

[141]. With its decoupled control and data plane, researchers proposed frameworks to

reserve resources by making requests to the control plane which maintains network-wide

state[142]. Further, updated versions of the OpenFlow [50] also supported traffic man-
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agement primitives such as meters and integration with hardware queues. The paradigm

of match-action made it possible to selectively manage traffic up to a per-flow level[143].

These new features of SDN were used for QoS improvement of multimedia applications

[143, 144], of real-time applications [145] and to perform inter-domain routing [146] to

improve QoS among other use cases (as presented in the survey[141]).

Another parallel stream of work in network resource distribution (to control QoS) uses

Network Utility Maximization (NUM) approach. NUM frameworks use utility functions

to distribute bottleneck resource (predominantly bandwidth) while maximizing a service

level objective. Work in [128] allows data center operators to configure an objective that

gets applied throughout the network and distributes bandwidth accordingly. Work in [21]

applies a similar concept to ISP networks which can use utility curves to differentiate their

service and offer various plans to their customers. There is a large body of literature on

NUM-based resource distribution (refer to this survey [147]). They are primarily deployed

to achieve objectives such as fairness or weighted fairness (in terms of throughput/rates)

across tenants, hosts, or flows. These control frameworks rely on operator-level policies

and do not often consider application performance as an objective directly.

Our Work

In our work (presented in Chapter 6), we leverage the rich metrics extracted from networks

that are indicative of user experience to drive the network control decisions. We leverage

widely deployed scheduling algorithms such as priority queueing (§6.2.2) and weighted-fair

queueing (§6.2.2) as our traffic management primitives. However, we dynamically adapt

the queue configuration and the traffic going to the queues using a custom designed control

frameworks (§6.2.2 and §6.3.2) that can manage and enhance application QoE.

2.4 Summary

Prior work has studied each aspect of network management individually: network mea-

surement, analysis and control. In network measurement, researchers have studied active
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and passive measurements being done at different granularity but haven’t yet addressed

the gap of how to use these measurements to improve end user experience. In network

traffic analysis, researchers have analysed traffic at a packet-level and flow-level to identify

applications, detect IoT devices, infer application QoE etc. However, very few researchers

have tackled the problem of analysis and inferencing at scale and in real time. In the field

of network control, various packet scheduling and queue management techniques have been

proposed but they do not make use of the application specific measurements and inferences

that can be made from the network using modern programmable data planes and machine

learning models to better guide the scheduling decisions.

This thesis primarily addresses the gap of bringing these pieces together to enhance end-

user experience by extracting application level intelligence from the network behaviour. In

doing so, it builds upon several state-of-the-art methods and proposes algorithms that can

measure and monitor applications’ performance with high accuracy and designs scalable

systems that can execute every function (measurement, analysis and control)in real-time

while making sure they feed into each other forming a closed loop.
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Internet Service Providers (ISPs) often perform network traffic classification (NTC) to

dimension network bandwidth, forecast future demand, assure the quality of experience to

users, and protect against network attacks. With the rapid growth in data rates and traffic

encryption, classification has to increasingly rely on stochastic behavioural patterns inferred

using deep learning (DL) techniques. To do so, two key challenges pertain to (a) high-speed

and fine-grained feature extraction, and (b) efficient learning of behavioural traffic patterns
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by DL models. To overcome these challenges, we propose a novel network behaviour

representation called FlowPrint that extracts per-flow time-series byte and packet-length

patterns, agnostic to packet content. FlowPrint extraction is real-time, fine-grained, and

amenable for implementation at Terabit speeds in modern P4-programmable switches. We

then develop FlowFormers, which use attention-based Transformer encoders to enhance

FlowPrint representation and thereby outperform conventional DL models on NTC tasks

such as application type and provider classification. Lastly, we implement and evaluate

FlowPrint and FlowFormers on live university network traffic, and achieve a 95% f1-score

to classify popular application types within the first 10 seconds, going up to 97% within

the first 30 seconds and achieve a 95+% f1-score to identify providers within video and

conferencing traffic flows.

3.1 Introduction

Network traffic classification (NTC) is widely used by network operators for tasks including

network dimensioning, capacity planning and forecasting, Quality of Experience (QoE)

assurance, and network security monitoring. However, traditional classification methods

based on deep packet inspection (DPI) are starting to fail as network traffic gets increasingly

encrypted. Many web applications now use HTTPS (i.e. HTTP with TLS encryption)

and browsers like Google Chrome now use HTTPS by default[148]. Applications like

video streaming (live/on-demand) have migrated to use protocols like DASH and HLS on

top of HTTPS. Non-HTTP applications which are predominately UDP-based real-time

applications like Conferencing and Gameplay also use various encryption protocols like

AES and Wireguard to protect the privacy of their users. With emerging protocols like

TLS 1.3 encrypting server names, and HTTP/2 and QUIC enforcing encryption by default,

NTC is bound to get even more challenging.

In recent years researchers have proposed to use Machine Learning (ML) and Deep

Learning (DL) based models to perform various NTC tasks such as IoT device classifi-

cation, network security, and service/application classification, ranging from coarse grain

application type (e.g. video streaming, conferencing, downloads, gaming) to specific appli-
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cation providers (e.g. Netflix, YouTube, Zoom, Skype, Fortnite). However, many of these

existing approaches train ML/DL models on byte sequences from the first few packets of

the flow. While the approach of feeding in raw bytes to a DL model is appealing due

to automatic feature extraction capabilities, it usually ends up learning patterns such as

protocol headers in un-encrypted applications and server name in TLS based applications.

Such models have failed to perform well in the absence of such attributes [89], for example

in TLS 1.3 that encrypts the entire handshake thereby obfuscating the server name.

Our work takes an alternative approach by building a time-series behavioural profile

(a.k.a. traffic shape) of the network flow, and using that to classify network traffic at both

application type and provider level. Firstly, we develop a method to extract flow traffic

shape attributes (aka FlowPrint) at high-speed and in real-time (§3.2). FlowPrint’s data

representation format keeps track of packet and byte counts in different packet-length bins

without capturing any raw byte sequences, and provides a richer set of attributes than the

simplistic byte and packet counters. It also operates in real-time, unlike other approaches

e.g. [93] that perform post-facto analysis on packet captures. We show that FlowPrint

is amenable for implementation in modern programmable hardware switches operating at

multi-Terabit scale, and is hence suitable for deployment in large Tier-1 ISP networks.

We then design and develop FlowFormers: DL architectures that introduce attention-

based transformer encoder [149] to the traditional Convolutional Neural Network (CNN)

and Long Short Term Memory (LSTM) networks (§3.3). Transformer encoder greatly

improves the performance as it allows the models to give attention to the relevant parts of

the input vector in context of the NTC task. In other words, transformer encoder enhances

our FlowPrint data prior to being fed to CNN and LSTM.

In §3.4, we evaluate both FlowPrint and FlowFormers on a real-world dataset obtained

from our university campus traffic. We evaluate the data representation and the models

on NTC tasks identifying (1) Application type (e.g. Video vs. Conferencing vs. Download

etc.), (2) Video provider (e.g Netflix vs. YouTube vs. Disney etc.) and (3) Conferencing

provider (Zoom vs. MS Teams vs. Discord etc.). We show that using FlowPrint collected

just for the first 10 seconds of a flow yields a 95+% f1 score to identify 5 types of applica-

tions. We further show that applying transformers increases the accuracy of both CNNs
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Figure 3.1: FlowPrint Datastructure and Algorithm

and LSTMs consistently across all the tasks. We demonstrate that the use of a transformer

encoder together with LSTM (TE-LSTM) performs the NTC tasks with f1 scores 97.15%,

95.68% and 94.92% respectively.

3.2 FlowPrint: Capturing Flow Behaviour

FlowPrint is a data format built using counters to capture the traffic shape and behavioural

profile of network flows. The data captured in FlowPrint doesn’t include header/payload

contents of packets and hence is protocol-agnostic and doesn’t rely on clear-text indicators

like SNI. It aims to support wide range NTC tasks which rely on activity profile such as

application type identification (e.g. Video vs. Conferencing vs. Download), application

service detection (e.g. Netflix, Zoom etc.), Device Identification (IoT sensors, smart gadgets

etc.) etc. FlowPrint has been designed to be implementable not just in software, but also

in modern P4 programmable network switches like Intel Tofino[15] that operates at several

terabit per sec.

FlowPrint consists of four 2-D arrays: upPackets, downPackets, upBytes and down-

Bytes. Each array consists of two dimensions: (length bins, time slots). As shown in

Fig. 3.1, an incoming packet is placed into appropriate bin i based on its length. A list

of packet length boundaries (PLB) creates b discrete length bins (on the y-axis). On the

x-axis, the packet is placed into the time slot j in which it arrives relative to the flow start

30



Chapter 3. Application Identification via Encrypted Network Traffic Classification

1500
1250

0up

Video

1500
1250

0do
wn

1500
1250

0up
Conferencing

1500
1250

0do
wn

1500
1250

0up

Large Download

0 5 10 15 20 25
Time (sec)

1500
1250

0do
wn 0.0

0.2

0.4

0.6

0.8

1.0
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– duration of the time slot is an input parameter called interval. Assuming its an upload

packet, the cell (i,j ) in upPackets array is incremented by 1 and the cell (i,j ) in upBytes

array incremented by the payload length of the packet (refer to Fig. 3.1). Thus, cell (i,j )

of upPackets would contain the sum of all packets that arrive in time slot j with lengths

between PLB[i-1 ] and PLB[i ]. The process remains similar in the other direction – down

arrays are shown stacked in dark shade.

The choice of interval and PLB determines FlowPrint’s granularity and size. One may

choose to have a small interval say 100ms and have 3 packet length boundaries or a large

interval say 1 sec have 15 packet length bounds (in steps of 100Bytes). Such a choice needs

to be made depending on the NTC task and compute/memory resources. We explore some

of the trade-offs of FlowPrint configurations in §3.4.3.

Fig. 3.2 shows FlowPrint examples collected in our dataset. They show normalized

upBytes and downBytes of 3 application types: Video, Conferencing and Large Download.

The parameters used for the example are: interval = 1sec and PLB = [0, 1250, 1500]

– intuitively these length boundaries attempt to form 3 logical bins: ACKs, MTU-sized

packets and packets in between. One can observe that FlowPrint clearly demarcates the

behavioural profile of the flows. The video flow on top shows periodic activity – there
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are media requests going in the up direction with payload length between 0 and 1250 and

correspondingly media segments are being sent by the server using MTU-sized packets that

fall in the bin (1250,1500]. Conferencing on the other hand is continuously active in the

mid-bin (0,1250) in both upload and download direction with down being more active due

to video transfer as opposed to audio transfer in the upload. A large download transferred

typically using HTTP-chunked encoding involves the client requesting chunks of the file to

the server which responds continuously with MTU-sized packets (in highest bin) until file

downloads. Thus, this example illustrates the ability of FlowPrint to capture the traffic

shape that can create markedly different patterns to identify application types.

We note that by a flow, we mean a set of packets identified using a flow_key constructed

out of packet headers. Often, a 5-tuple consisting of srcip, dstip, srcport, dstport and

protocol is used to form a flow_key to identify network flows at the transport level i.e. TCP

connections and UDP streams. While our work also uses 5-tuple flow_key, FlowPrint is

not inherently constrained by it. One may even use a 2-tuple (srcip and dstip) to construct

a flow_key to identify all the traffic between a server and a client as a flow.

FlowPrint is amenable to implementation in high-speed P4 programmable switches[15].

A flow can be identified using its flow_key as match in a table, and sets of 4 registers can

keep a track of up/down byte and packet counters. A controller can periodically poll the

registers to get time-series of the counters at the defined interval. Once classified, the

registers can be reused for a new flow.

FlowPrint fundamentally consists of four 2-D arrays. However, it can be extended by

deriving two additional arrays: upPacketLength and downPacketLength by dividing the

Bytes arrays by the Packets arrays in each direction. For instance, the upPacketLength[i,j]

will contain the average packet lengths of packets which arrived in time slot j and are in

the length bin i. These arrays can give precise time-series packet length measurements

across the length bins. It is specifically useful to identify providers (e.g. Netflix, Disney)

within a particular application type (video) as the overall shape remains very similar. In

summary, the FlowPrint data structure has six 2-D arrays – collected over two directions

and three counter types (packets, bytes, lengths) with each array of dimensions (numbins,

time slots).
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3.3 FlowFormers: Transformer-based Classifiers

In the section, we develop transformer-based DL models which efficiently learn features

from FlowPrint to perform NTC tasks. We first explain the specific NTC tasks we consider

in our work and our dataset. We then provide a background on 1-D CNN and LSTM

models which are commonly used DL model architectures for NTC tasks. We also explain

the process to convert the FlowPrint arrays into suitable input formats for these models.

Finally, we present a brief overview of transformer encoder and develop FlowFormer models

by introducing transformer encoders to the CNN and LSTM architectures.

3.3.1 Objective & Dataset

In our work, we tackle two specific NTC tasks: (a) Application Type Classification: Identify

the type of an application (e.g. Video vs. Conference vs. Download etc.) and (b) Applica-

tion Provider Classification: Identify the provider of the application/service (e.g. Netflix

vs. YouTube or Zoom vs. Microsoft Teams etc.). These tasks are typically performed

today in the industry using traditional DPI solutions but however rely on information like

DNS, SNI or IP-block/AS based mapping. Due to increasing encryption adoption these

solutions may no longer work and hence we instead take an alternative approach focusing

on using traffic behavioral profile captured by FlowPrint.

Application Type Classification: The task identifies 5 common application types:

Video streaming, Live video streaming, Conferencing, Gameplay and Downloads. An ML

model will be trained to classify a flow into one of these 5 classes. Each type contains

flows from different providers to make it diverse and not limited to provider-specific pat-

terns. For instance, the Gameplay class has examples from the top 10 games active in

our university network. For large downloads, while one may consider traffic from different

sources, we chose Gaming Downloads/Updates from providers like Steam, Origin, Xbox

and Playstation since they tend to be consistently large in size as opposed to downloads

from other providers like Dropbox etc. which may contain smaller, say PDF, files. We note

that Live video (video broadcasted live for example on platforms like Twitch etc.) has been

intentionally separated from video on-demand to create a challenging task for the models.
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Table 3.1: Classification Dataset

Task # Flows per class Classes

Application Type 40,000 Video, Live Video, Gameplay,
Conferencing and Downloads

Video Provider 30,000 Netflix, YouTube, DisneyPlus
and PrimeVideo

Conference Provider 40,000 Zoom, Microsoft Teams,
Whatsapp and Discord

Application Provider Classification: This task identifies the provider within each

type of application. We choose two popular types: Video streaming and Conferencing (and

correspondingly train separate models). The objective is to detect the provider serving

that content type. For Video, we detect if it is one of Netflix, YouTube, DisneyPlus or

PrimeVideo (top providers used in our university). For conferencing, we detect if it is

one of Zoom, Microsoft Teams, WhatsApp or Discord – two popular video conferencing

platforms and two popular audio conferencing platforms.

Dataset: To perform the tasks above, we need a labelled FlowPrint dataset. We

obtained the labels from a third-party commercial DPI which associates both application

type and provider to each flow being collected. So, every data record is a three tuple

< FlowPrint, Type, Provider >. The FlowPrint arrays are recorded for 30 seconds at

an interval of 0.5sec and with 3 bins (PLB = [0, 1250, 1500]). The data is filtered, pre-

processed and labelled appropriately per task before feeding it to ML models. For instance,

for the application type classification task, we filter the top providers of each class and just

associate the type as the final label. So, Video class, for example, has records from top

providers (e.g. Netflix, Disney etc.) but just with the label “Video" after the pre-processing.

Table 3.1 shows number of flows (approx.) that have been used for each task.

3.3.2 Vanilla DL Models

We now present a brief overview of CNN and LSTM models extensively used for NTC tasks

and how FlowPrint can be fed into each model. DL models, as opposed to traditional ML

models, are suitable since they automatically extract task-specific features from FlowPrint.
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Figure 3.3: CNN Architecture with FlowPrint input

1-D CNN. It is a type of neural network widely used in the domain of computer vision

to perform tasks like image classification, object detection, segmentation and since recently

are also being used in time-series classification tasks. Traditional CNNs (2-D CNNs) are

inspired from visual circuitry in brains wherein a series of filters (also called as kernels)

stride over an channeled (RGB) image along both height and width collecting patterns of

interest for the task. However, 1-D CNN (where filters stride over 1 dimension of image)

have been shown to be more effective for time-series classification objectives such as NTC

tasks. Further, CNN’s fast execution speed and spatial invariance makes them particularly

suitable for NTC tasks [88].

FlowPrint needs no further processing to pass as an input to CNN (we omit 1-D for

brevity) as it can be viewed as a colored image. Just as a regular image has height, width

and 3 color channels (RGB), FlowPrint has bins (height), time slots (width) and, direc-

tion and counter types together forming six channels – upPackets,downPackets, upBytes,

downBytes, upPacketLengths and downPacketLengths. Thus, FlowPrint is equivalent to

a 6 channeled image of shape (numbins, timeslots, 6).

The CNN architecture (shown in Fig. 3.3) used in our work has 4 sub-modules each

using a particular kernel size to perform multiple sequential convolutions on the FlowPrint

image. The 4 kernel sizes used in our work are 3,5,7 and 9 along the time slot axis i.e. their

field of view includes all bins, all channels and time slots equal to their kernel size. Using

multiple sequential convolutions helps build features in a hierarchical way, summarizing to

the most important features at the last convolutional layer. We use 8 layers as we found

that results show marginal improvements on increasing the number of layers any further.
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The output from last layer of each module is flattened to a 32-dimensional vector using a

dense layer, which is concatenated with the outputs of other modules. The concatenated

output (32x4) is then passed to linear MLP (2 dense layers with 100 and 80 neurons) and

then a softmax layer that outputs a probability distribution over the classes of the NTC

task.

LSTM. It is type of Recurrent neural network (RNN) widely used in tasks such as

time series classification, sequence generation etc since they are designed to extract time-

dependent features out of the raw input. LSTM processes a given sequence one time step

at a time while remembering context from previous time steps by using hidden states and

cell state that effectively mimic the concept of memory. After processing the entire input,

it produces a condensed vector consisting of features extracted to perform the given task.

Due to this, LSTMs have been used to perform NTC tasks[90, 93] in addition to CNNs.

Our FlowPrint arrays need to be reshaped to be fed into an LSTM model. We convert

FlowPrint into a time-series vector X = [X0, X1, X2, ...XT ] where each Xt is a 3 ∗ 2 ∗ b

dimensional vector consisting of values collected in time slot t, from 3 counters types (i.e.

bytes, packets and packet lengths) collected in 2 directions (i.e up and down) and for b

packet length bins i.e. all counters collected in time t.

The architecture used in our work (shown in Fig. 3.4) has one LSTM layer (of 80

neurons) which sequentially processes the input X while keeping a hidden state h(t) and a

cell state c(t) (cell state omitted in the figure). At each time step t, the LSTM is fed Xt,

and h(t−1) and c(t−1) from previous time steps, to produce new h(t) and c(t). The final

hidden state h(T ) is then fed to a linear MLP and a softmax layer to generate a probability
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distribution over the classification labels.

3.3.3 FlowFormers

In order to improve the performance of CNN and LSTM based models on NTC tasks, we

propose the use of Transformer Encoders on the input prior to feeding it into the vanilla

model architectures. We first present a brief overview of Transformers, with a particular

focus on its encoder which uses attention mechanism to enhance input features. We then

develop two models by extending previous DL models using Transformer Encoders: TE-

CNN and TE-LSTM respectively. We refer to TE-CNN and TE-LSTM as FlowFormers as

they enhance FlowPrint features using Transformers to perform the NTC tasks.

Overview. Transformers[149] have become very popular in the field of NLP to perform

tasks like text classification, text summarization, translation etc. A Transformer model has

two parts an encoder and a decoder. The encoder extracts features from an input sequence

and the decoder decodes according to the objective. For example, in task of German

to English translation, the encoder will extract features from the German sentence and

the decoder will decode them to generate the translated English sentence. For tasks like

sentence classification only the feature extraction is required so the decoder part of the

transformer is not used. Transformer encoder Models like BERT [150] are very effective in

text classification tasks. Drawing inspiration from them, we develop a transformer encoder

suited for NTC tasks.

Self-Attention. Transformer was able to outperform prior approaches in NLP due

to one key innovation: Self-Attention. Prior to this, in NLP tasks, typically each word in

a sentence was represented using a encoding vector independent of the context in which

the word was used. For example, the word “Apple" was assigned same vector while it

can refer to a fruit or the company depending on the context. A transformer encoder, on

the other hand, uses a self attention mechanism in which other words in the sentence are

considered to enhance the encoding of a particular word. For example while encoding this

sentence, “As soon as the monkey sat on the branch it broke." Attention mechanism helps

the transformer encoder to associate “it” with the branch, which is otherwise a non-trivial
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task.

Concretely, self attention works by assigning an importance score to all input vectors

for each output vector. The encoder takes in a sequence X0, X1, ...XT where each Xt is a

k dimensional input vector representing t-th word in the sentence. It outputs a sequence

Z0, Z1, ...ZT where each Zt is the enhanced encoding of the t-th word. For each Zt, it learns

the importance score ct (0 <= ct <= 1) to give to each input Xt, and then constructs Zt

as follows:

Zt =

T∑
t=0

ct.Xt, where

T∑
t=0

ct = 1

This is just an intuitive overview of attention, the exact implementation details are

described in [149].

Transformers for NTC. Similar to enhancing a word encoding, transformers can be

used to enhance the time-series counters collected in FlowPrint. We implement this idea by

developing an architecture for FlowFormers (shown in Fig. 3.5). FlowFormers TE-CNN

and TE-LSTM are CNN and LSTM extended with Transformer Encoders. FlowPrint
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is first encoded by a Transformer Encoder before being fed into the CNN and LSTM

architectures. In our work, we use 4 stacked transform encoders each with 6 attention

heads. Each transformer encoder is designed exactly as in [149] with the dimensions of

key, value and query set at 64.

The input format to the transformer encoder model is time-series vector X exactly

similar to the input of LSTM. The input is passed through multiple stacked encoders

which enhance the input with attention at each level. We empirically found that using 4

stacked encoders gives us the best results. The output of the final encoder is the enhanced

vector Z exactly of the same dimensions as X. Now, instead of using raw FlowPrint X as

input, we use enhanced version Z as an input to both models.

For TE-LSTM, the vector Z is directly fed into the LSTM model with no modification.

For TE-CNN however, the vector Z is first converted into a 6-channel image (essentially,

the reverse of the process of converting 6-channel image into input X described for LSTM).

The image formatted input is then fed into the CNN model. We would like to highlight

that since the input X and output Z are of exact same dimensions, the transformer encoder

component is “pluggable" into the existing architectures requiring no modification to them.

Like most DL-models, the learning process even with transformer encoders is end-to-end

i.e. all the model parameters including attention weights are learned by using stochastic

gradient descent (SGD) and reducing the error of classification. Intuitively, in the case of

TE-CNN, the CNN architecture updates the encoder weights to be more suitable to extract

features using visual filters while in case of TE-LSTM, the LSTM updates the encoder

weights to pick out time-series features. Irrespective of the vanilla model architecture used

on top, transformer encoder is capable of enhancing the input such that it is amenable to

how vanilla model works. This in turn makes the entire model (TE + vanilla model) learn

and perform better compared to just the vanilla model architectures across the range of

NTC tasks as shown in the evaluations next.
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3.4 Training and Evaluation

Having explained the architectures of our DL-models, we now describe the training process

followed by an evaluation of both FlowPrint and the models. As described in §3.3.1, we

train our models for 2 tasks: (a) application type classification, (b) provider detection for

video and conference application types. The dataset contains FlowPrint arrays labelled

with both type and provider collected with the configuration mentioned in §3.3.1.

In addition to evaluating prediction performance of the models on the tasks above,

we also evaluate the impact of parameters of FlowPrint. In particular, we evaluate the

models’ performance in various binning configurations and also with FlowPrint collected

for a smaller duration i.e. 10sec and 20sec. For all these configurations, the training process

remains the same as explained next.

3.4.1 Training

For each NTC task, the data is divided into train, validation and testing tests in the

ratios 60%, 15% and 25% respectively. The data contains approximately equal examples

from each class (for each task). All the DL models are trained for 15 epochs where in each

epoch the entire dataset is fed to the model in batches of 64 at a time. Cross-entropy loss is

calculated for each batch and then model parameters are learned through back-propagation

using the standard Adam optimizer with an empirically tuned learning rate of 1e-4. After

each epoch, the model is tested on the validation data and if the results on the validation

data begin to drop, the training process is halted. This makes sure that the model is

not over-fitting to the data it is being trained on, commonly known as early stopping in

DL literature. These training parameters (and models’ hyper-parameters) can be tuned

specifically to perform slightly better. However, our aim in this chapter is to evaluate

efficacies of different model architectures on FlowPrint as opposed to investigating specific

tuning parameters for the models for each task. Hence, we keep the training process simple

and consistent across all models and tasks to perform a fair comparison.
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3.4.2 Model Evaluation

We evaluate the vanilla models (CNN and LSTM) and FlowFormers (TE-CNN and TE-

LSTM) on application type classification and provider classification tasks using FlowPrint

input configured with 3 bins (0,1250,1500) and collected for 30 seconds (at 0.5 sec interval

i.e. 60 time slots). We consider the commonly used metric f1-score ( harmonic mean of

precision and recall) as a measure of model performance across the tasks. We note that

in our evaluation we observed that the overall precision and recall of the models was very

close to the f1-score (varying in the third decimal place) and hence we show only f1-score

for brevity.

Type Classification. For application type classification task, we consider the follow-

ing labels: Video, Live Video, Conferencing, Gameplay, Download. We divide the dataset

into 2 mutually exclusive sets based on application providers: set A and B (as shown in

Table 3.2). We train the model on 75% data (60% train and 15% validation) of set A, and

perform two evaluations: 1) test on 25% of data in set A and 2) On all the data in set B.

We note that the class “Live Video" has been excluded in this set as it contained only two

providers.

The evaluation on set A (shown in Fig. 3.6-top), compares weighted and per-class f1

scores of both vanilla models (CNN, LSTM) and FlowFormers (TE-CNN and TE-LSTM).

Firstly, all models have a weighted average f1-score of at least 92% indicating the effec-

tiveness of FlowPrint to capture the traffic shape and distinguish application types. Sec-

ondly, FlowFormers consistently outperform vanilla models (by 2-6%) showing the impact

Table 3.2: Dataset split for type classification

App Type Set-A Providers Set-B Providers

Video Netflix, Youtube,
Disney AmazonPrime, Facebook

Conferencing MS teams, Zoom,
Discord Skype, Whatsapp , Hangout

Gameplay Genshin Impact,LoL,
CoD,WOW, CS:GO,

CoD: Black Ops Cold War,
Fortnite, Overwatch,
Halo Reach, Battlefront II,
Hearthstone

Downloads Steam , XboxLive Playstation, Oculus, Origin
Live Video Twitch , Seven Live ——————————-
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Figure 3.6: Type Classification Results.

of transformer encoders.

The evaluation on set B (shown in Fig. 3.6-bottom) tests the ability of models to learn

provider-agnostic patterns to detect the application type since they were never shown

examples from set B’s providers. While the performance drops across models as expected,

we observe that FlowFormers outperform vanilla models by a huge margin (6-11%). This

clearly depicts that FlowFormers can generalize better than vanilla DL models due to

attention-based encoders enhancing the FlowPrint input.

Provider Classification. For application provider classification, we aim to classify

top providers amongst 2 application types: Video and Conferencing, i.e. classify amongst

Netflix, YouTube, Disney and AmazonPrime for Video and Microsoft Teams, Zoom, Dis-

cord and WhatsApp for Conferencing. This task is inherently more challenging since all

the providers belong to the same application type and hence largely have the same traffic

shape. The models need to pick up on intricate patterns and dependencies such as packet

length distribution and periodici

For video provider classification (shown in Fig. 3.7-top), we observe that FlowFormers

evidently perform better that the vanilla models with a 12% gain in the weighted average
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Figure 3.7: Provider Classification Results.

(e.g. TE-LSTM vs LSTM). We believe TE-LSTM outperforms other models since it can

better pick up the periodic patterns (transfer of media followed by no activity shown in

3.2) that exist in the video applications. For instance, we observe (in our dataset) that

YouTube transfers media every 2-5 seconds, whereas Netflix transfers it every 16 seconds.

Transformers enrich FlowPrint by learning to augment this information and thus improving

the classification accuracies.

Similarly in conference provider classification (shown in Fig. 3.7-bottom), FlowFormers

outperform the vanilla models by 7% on an average (TE-CNN vs. CNN). We note that

for this task, TE-CNN performs slightly better than TE-LSTM since this task predomi-

nantly relies on packet length distributions which tend to be different for the providers of

conferencing applications rather than periodic patterns observed in video applications.

To summarize, FlowFormers are able to learn complex patterns beyond just the traf-

fic shape, to outperform vanilla models in the challenging tasks of video provider and

conference provider classification.
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Figure 3.8: FlowPrint Bin Results.

3.4.3 FlowPrint Evaluation

We now evaluate the performance of FlowPrint by varying number of bins and length of

data. We show that FlowPrint’s binning is a key factor that increases the performance

across models, especially in the challenging task of provider classification.

Bin analysis. In previous evaluations, each FlowPrint sample had 3 bins (PLB =

[0, 1250, 1500]). Now, we evaluate the impact of reducing bins to 2 (PLB = [1250, 1500])

and 1 (PLB = [1500]) on the performance of the models. We note that to reduce to 2 bins

we have two choices, either (a) merge bin 2 and bin 3 or (b) merge bin 1 and bin 2 in the

original 3 bin configuration. We chose to merge bin 1 and bin 2, since that was giving a

better performance. So, in other words, the 2-bin configuration tracks the counters in less-

than-MTU (0 <= pkt.len <= 1250) and close-to-MTU bins (>= 1250). We additionally

note that 1 bin, essentially means that there is no binning at all i.e. FlowPrint with 1

bin tracks the total byte and packet counts of the flow without any packet length based

separation.

We re-train and evaluate every model on each of the 3 bin configurations for the tasks

Application Type Classification and Video Provider Classification (weighted average f1

scores shown in Fig. 3.8). We observe that the f1 scores across the models and tasks

generally improve with more bins. However, the performance improvement also depends
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on the task complexity. For type classification task, the models improve by less than 2%

per addition of a band (the difference is further insignificant for FlowFormers). For video

provider classification however, the performance increment is evidently drastic since the

task is more challenging and requires fine grained data with binning. On the other hand,

Conference Provider Classification (not shown in the figure), has little to no impact on

f1 scores by reducing bands as almost all packets exchanged within the one bin (0 <=

pkt.len <= 1250).

Thus, the configuration of FlowPrint can be decided depending upon the NTC task

at hand. Higher number of bins would imply higher memory footprint which is especially

expensive in programmable switches which have very limited memory. So, this evaluation

helps to navigate the bin vs. memory tradeoff to configure FlowPrint parameters and

achieve a particular target accuracy for an NTC task.

Time Period Analysis. We now evaluate the impact of the time period for which

FlowPrint is collected on each task. We re-train and evaluate FlowFormers (vanilla models

omitted for brevity) on FlowPrint collected for 10sec, 20sec and 30sec (the max configura-

tion). The Fig. 3.9 shows the weighted average f1-score of TE-LSTM (top) and TE-CNN

across the tasks (x-axis). We note that both models are able to classify application types

with about 95 % f1 score with just 10 seconds of data while going up to 97% with 30

seconds. Similarly, the conferencing provider classification results do not vary by much

with increasing time as a conference call tends to exhibit similar behaviour over the given

time range. However, for video provider classification task, we can observe a significant

gain by using FlowPrint collected for a longer duration. This is due to the periodic nature

of the flows which repeats at a longer interval (e.g. 16 seconds for Netflix).

Thus, the parameters of FlowPrint i.e. numbins, time duration, interval etc. can be

configured depending upon the NTC task, the available compute/memory resources and

required performance in terms of classification speed and overall accuracy.
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Figure 3.9: FlowPrint Duration Results.

3.5 Conclusion

With diverse applications being used on the internet, Network Traffic Classification is

becoming important but increasingly challenging due to encryption. Existing approaches

either rely on non-encrypted content of traffic or perform post-facto classification of flows.

Our work has developed methods for accurately classifying traffic in real-time and at scale

by using only the behavioural patterns agnostic to flow content. To this end, we design

FlowPrint, a data-structure to efficiently capture traffic behaviour that is amenable to

implementation in high-speed programmable switches. We further propose the use of

transformer-encoders (FlowFormers) to outperform existing DL models. Our evaluations

show that the combination of FlowPrint and FlowFormers can classify application type

and providers at scale with high accuracies and in real-time.
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Having developed a robust classification system in the previous chapter, we now shift

our focus on monitoring one of the classes of traffic: video streaming. Streaming video is one

of the most engaging application that continues to grow, accounting for about 54% of traffic

on the Internet according to the Sandvine 2021 report [1]. There are two types of video

streaming: on-demand streaming and live streaming. Video on-demand (VoD) streaming

consists of users watching content such as movies and TV shows on-demand. Netflix[31] is

the most popular on-demand video streaming platform with over 222 million subscribers

around the world [151]. On the other hand, in live video streaming, users watch live content

that is broadcasted such as a sporting event or gaming streams. YouTube[32] since 2017

allows the larger public to do live streaming, and is widely used for concerts, sporting

events, and video games. Twitch (acquired by Amazon) [33] is a popular platform for live

streaming video games from individual gamers as well as from tournaments. In this chapter,
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we analyse the behaviour of both on-demand and live video streaming applications (Netflix,

Twitch and YouTube Live) and devlop ML-based and statistical models to estimate video

QoE metrics in terms of bitrate, resolution and buffer state with high accuracy.

4.1 Introduction

Given the high traffic volumes and popularity of video streaming platforms, network oper-

ators are keen to provide a good experience to their subscribers. However, they currently

lack fine-grained visibility into per-stream QoE as existing methods often rely on collecting

packet traces and/or HTTP logs which are infeasible from an operator’s vantage point.

Further, ensuring good QoE for live video streams is challenging, since clients per-force

have small playback buffers (a few seconds at most) to maintain a low latency as the

content is being consumed while it is being produced. Even short time-scale network con-

gestion can cause buffer underflow leading to a video stall, causing user frustration. Indeed,

consumer tolerance is much lower for live than for on-demand video [152], since they may

be paying specifically to watch that event as it happens, and might additionally be missing

the moments of climax that their social circle is enjoying and commenting on.

In this chapter, we develop a real-time system to monitor video streaming performance

in operator networks. We begin by analysing thousands of traffic traces (annotated with

video performance metrics) across video providers such as Netflix (on-demand), YouTube

and Twitch (live) to understand their network activity patterns and their correlation with

their performance. We then develop network telemetry methods to extract the right gran-

ularity of metrics (using flow-level and chunk-level metadata) that are indicative of video

performance. Finally, we build statistical and machine-learning-based models to infer video

streaming performance in terms of buffer-state, resolution and bitrates. Our models ac-

curately classify buffer-states of with 93% accuracy, predict resolution bins (e.g., LD, SD,

HD) with 90+% accuracy and predict buffer stalls with about 90% precision. Our system

works at scale and in real-time and was deployed in the field at an ISP serving over 7000

home subscribers. The deployment insights are not part of the scope of this thesis but can

be found in our paper [153].
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Figure 4.1: VideoMon Tool Architecture.

4.2 Video Streaming Characteristics

Video on-demand (VoD) streaming uses HTTP Adaptive Streaming (HAS) technology in

which the video client requests media segments (video/audio) from a server. The server

hosts a collection of videos (movies and TV shows) which are available in multiple reso-

lutions. Depending upon the network conditions, the client uses adaptive bitrate (ABR)

algorithms (which account for buffer health and network conditions) to fetch segments of

appropriate resolution/bitrate of the stream. The client fetches multiple segments in the

beginning to fill up the large buffer and thereafter tops it up as the playback continues.

In contrast, Live video streaming uses HTTP Live Streaming (HLS) technology to

deliver video content which is simultaneously recorded and broadcasted in real-time. The

content uploaded by the streamer sequentially passes through ingestion, transcoding, and

a delivery service of a content provider before reaching the viewers ([154–156]). More

recently, content providers have started to offer “ultra-low” latency live streaming using

CMAF [157] containers in which each segment is divided into small chunks (e.g., containing

a few frames), the player renders the segment even if its not fully downloaded. Thus, a live

streaming client maintains a short buffer of content so as to keep the latency between the

streamer and the viewer to a minimum. This increases the likelihood of buffer underflow

as network conditions vary, making live videos more prone to QoE impairments such as

resolution drop and video stall ([77, 109]).
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4.2.1 VideoMon: Data collection tool

To construct an accurate profile of video streams, we have developed a tool – VideoMon –

which automatically plays videos, measures their network activity profile along with client

playback metrics, and stores measured records into a pair of CSV files.

VideoMon has three main components, each packaged into a separate docker container:

a custom-built network measurement app called FlowFetch, a selenium browser instance,

and a video orchestrator application which signals the browser to play videos. There is also

an optional network conditioner which uses tc linux tool to shape traffic by synthetically

changing network conditions in software. Containerizing applications eases deployment of

the FlixMon. A shared virtual network interface among the containers ensures that packets

flowing through FlowFetch originate solely from the browser, eliminating other traffic on

the machine where FlixMon runs.

FlowFetch is a tool that we built in Golang to record flow-level activity by capturing

packets from a network interface. By a flow, we mean a transport-level TCP connection or

UDP stream identified by a unique 5-tuple consisting of source IP, source port, destination

IP, destination port and protocol. We believe that collecting per-flow measurements makes

our method more practical in real environments (compared to capturing packet traces),

thus enabling operators to measure at scale in real-time. For a TCP/UDP flow, the tool

records (at a configurable granularity) cumulative byte and packet counts into a CSV.

FlowFetch is also able to filter flows of interest belonging to certain providers (e.g., Netflix,

Twitch and YouTube) by either filtering on server names from SNI/DNS metadata or

filtering on flows classified from FlowFormers (presented in previous chapter).

In FlowFetch, multiple fully programmable telemetry functions can be associated with

a flow. Two functions used in this chapter are (1) 100ms packet and byte counters

and (2) chunk telemetry. The first function exports the number of packets and bytes

observed on the flow every 100ms. The second function builds upon the chunk detection

algorithm proposed in [82] and exports information like chunkSize (in bytes and packets)

and timestamps such as chunkRequest, chunkBegin and chunkEnd corresponding to the

media chunks. We note that the first function is simple and scales better (easier to translate
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to programmable hardware primitives) in comparison to second function that requires

bidirectional state and tracking multiple timestamps.

We further note that the metrics extracted for video performance estimation is different

from metrics extracted for classification (in the previous chapter). FlowPrint’s objective

is to capture shape of traffic to classify applications while video performance estimation

often requires specific telemetry (e.g., chunk telemetry) as per the application (e.g., live

video streaming). We demonstrate how the specific network telemetry helps in estimating

video performance in §4.3.

For the video orchestrator, we have used Selenium client library in Python to interact

with a remote Selenium browser instance (i.e., server) for loading and playing Netflix

videos. At the beginning of each measurement session, a browser instance (i.e., Firefox or

Chrome) is spawned with no cache or cookies saved which loads the Netflix web-page and

logs in to the user account by entering credentials (shown by step 1 in Fig. 4.1). The

tool can be configured in either of two ways to generate a video list: (a) from a fixed set of

video links specified in a config file, or (b) by fetching the URLs of recommended videos on

the homepage that are updated regularly. Given the list, VideoMon starts playing videos

sequentially. Prior to playback of each video, the player module signals the FlowFetch to

start measuring network activity (shown by step 2 in Fig. 4.1). Then, the orchestrator

signals the browser to load the video and collects the playback metrics (shown by step 3

and 4.1 respectively in Fig. 4.1) – video players offer a hidden menu that can be enabled

to track streaming quality stats and diagnose any potential issues. The real-time stats

(refresh every second) for audio and video media include the buffering/playing bitrates,

buffer health (in seconds and bytes), and the CDN from which the stream is sourced.

Additionally, position and duration of the playback, frame statistics (e.g., frame rate and

frame drops), and throughput are also provided. The orchestrator stores client playback

metrics (every second) into a CSV file (step 4.2) that exists in storage – a shared volume

among the orchestrator and Flowfetch containers. Simultaneously, Flowfetch stores the

network activity into another co-located CSV (step 4.3).

The dataset of video streams collected from VideoMon consists of two CSVs for each

video stream being played for at least 5 minutes. One containing the client-side metrics
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Table 4.1: VideoMon Dataset

Provider Number of streams

Netflix 2639
Twitch Live 2587
YouTube Live 1430
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Figure 4.2: Network profile of flows in a typical Netflix video stream.

(indicating session quality stats) and one containing the network telemetry. In this chapter,

we consider three video streaming providers: Netflix (on-demand streaming), YouTube and

Twitch (live streaming). Tab. 4.1 shows the distribution of the dataset across providers.

In total, we have collected over 500 hours of video playback in different network conditions

(varying the bandwidth from 100kbps to 20Mbps) imposed by the conditioner module

within VideoMon.

4.2.2 On-Demand Video Streaming Characteristics: Netflix

We now present our analysis into the dataset we collected by looking at a few exemplary

video streams across providers. We begin by analysing Netflix video streams followed by

the analysis of live video streams from YouTube and Twitch.

Fig. 4.2 illustrates a time-trace of network activity measured for a representative Netflix

video stream played for 5 minutes with no interruption. The top subplot shows in black

lines the total downstream traffic profile for this stream, and the four subplots below in

52



Chapter 4. Monitoring Video Streaming QoE

blue lines show downstream traffic profile of each TCP flow associated with this stream.

We observe that the Netflix client established four parallel TCP flows to start the video,

three of them come from Netflix server 203.219.57.106 and one from 203.219.57.110. All

four TCP flows actively transferred content for first 60 seconds. Thereafter, two flows

(A,C) became inactive (i.e., idle) for a minute before being terminated by the client (i.e.,

TCP FIN). It is seen that the remaining two active flows (B,D) changed their pattern of

activity – FlowB has small spikes occurring every 16 seconds and flowD has large spikes

occurring every 4 seconds.

Let us correlate this with metrics offered by the Netflix client application for the same

video stream shown in Fig. 4.3. We show in Fig. 4.3(a) and 4.3(b) the buffer health of audio

and video respectively which is measured in terms of: (a) volume in bytes (shown by solid

blue lines and left y-axis) and (b) duration in seconds (shown by dashed red lines and right

y-axis). We observe that the buffer health in seconds for both audio and video ramps up

during the first 60 seconds of playback, till it reaches to a saturation level at 240 seconds

of buffered content – thereafter, this level is consistently maintained by periodic filling.

Note that the audio and video buffers are replenished every 16 and 4 seconds respectively,

suggesting a direct contribution from the periodic spikes in network activity (observed in

FlowB and FlowD).

Netflix client interface reports a metric called “throughput” which is an estimate of

bandwidth available for the video stream. Fig. 4.3(c) shows the throughput (in Mbps,

solid blue lines, on the left y-axis) and the buffering-bitrate of video (in Kbps, dashed

red lines, on the right y-axis). We observe that the video starts at a low-quality bitrate

950Kbps, switches to higher bitrate 1330Kbps after 2 seconds, and jumps to its highest

bitrate 2050Kbps after a second. Note that it stays at this highest bitrate for the rest

of video playback even though far more bandwidth is available. Additionally, we note in

Fig. 4.3(b) that the video buffer health in volume is variable while the buffer in seconds

and the buffering bitrate are both consistent. This is because of variable bitrate encoding

used by Netflix to process the videos where each video chunk is different in size depending

on scene complexity. In contrast, buffer health volume for audio in Fig. 4.3(a) stays at

3MB with periodic bumps to 3.2MB – this indicates a constant bitrate encoding used for

audio content and bumps occur when a new audio chunk is downloaded and an old one is
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Figure 4.3: Client metrics of a Netflix stream.

0 60 120 180 240 300
Time (Seconds)

0

2

4

6

8

10

Ra
te

 (M
bp

s)

0

50

100

150

200

250

Au
di

o 
Bu

ffe
r H

ea
lth

 (S
ec

on
ds

)

(a) Audio buffer (on client) versus corresponding
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(on network).

Figure 4.4: Correlation of network activity and client behavior.

discarded from the buffer. For audio, we observed (not shown in the Fig. 4.3(c)) a constant

bitrate of 96Kbps throughout the playback.

Having analysed streaming behaviour on network and client individually, we analyse

their correlation. We observed two distinct phases of video streaming: (a) the first 60

seconds of buffering, (b) followed by stable buffer maintenance. In the buffering phase, the

client aggressively transferred contents at a maximum rate possible using four concurrent

flows and then in the stable phase it transferred chunks of data periodically to replenish

the buffer using only two flows.

Of the two flows active in stable phase, FlowB (with a spike periodicity of 16 seconds)

displays a strong correlation between the spikes of its network activity and the replenishing

audio buffer levels on the client, as shown in Fig. 4.4(a). This suggests that the TCP flow

was used to transfer audio content right from the beginning of the stream. Isolating

content chunks of this flow , we found that the average chunk size was 213KB with a
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standard deviation of 3KB (1.4%). Every chunk transfer corresponds to an increase of

16 seconds in the client buffer level. Considering the fact that each chunk transferred

16 seconds (indicated by both periodicity and increase in buffer level) of audio and the

buffering bitrate of audio was 96Kbps, the size of audio chunk is expected to be 192KB

which is very close to our computed chunk size of 213KB which includes the packet headers.

Additionally, we note that for this specific flow, the server IP address differs from other

flows (as shown in Fig. 4.2) and the Netflix client statistics also indicate that audio comes

from a different CDN endpoint.

Further, FlowD (with a spike periodicity of 4 seconds) during the stable phase, displays

a similar correlation between its network activity and the client buffer health of video, as

shown in Fig. 4.4(b). The chunks of this flow have an average size of 1.15MB and a

standard deviation of 312KB (27%). With each chunk constituting 4 seconds of video

content and the video bitrate on client measured as 2050Kbps, the actual chunk size is

expected to be 1.00MB which is close to the computed average chunk size while accounting

for packet headers. Additionally, a high deviation in video chunks size also suggests that

video is encoded using variable bitrate (in contrast, audio has a constant bitrate).

Trickplay: Having understood the streaming behavior during a normal playback (with

no interruption), let us now analyze the behavior of Netflix streams during trickplay events.

Trickplay occurs when the user watching the video decides to play another segment far from

current seek position by performing actions such as fast-forward, or rewind. A trickplay is

performed either within the buffered content (e.g., forward 10 seconds to skip a scene) or

outside the buffered content (e.g., random seek to unbuffered point). In the former case

(within buffer), our observations show that the Netflix client uses existing TCP flows to

fetch the additional content filling up the buffer up to 240 seconds. However, in the latter

case, the client discards the current buffer and existing flows, and starts a new set of flows

to fetch content from the point of trickplay. This means that trickplay outside the buffer is

very similar to the start of a new video stream, making it difficult to determine whether the

client has started a new video (say next episode in a series) or has performed a trickplay.

For this reason, we consider a trickplay event equivalent to start of a new video stream

and compute our experience metrics accordingly. Additionally, we note that for a stream

in the stable phase, trickplay results in transitioning back to the buffering phase until the
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Figure 4.5: Download activity and its auto-correlation of Twitch streaming: (a) Live, and
(b) VoD.

buffer is replenished. In §4.3.1, we will distinguish trickplay from network congestion that

can cause a stream to transition into the buffering phase.

4.2.3 Live Video Streaming Characteristics: Twitch and YouTube

Fig. 4.5 shows the client’s network behavior (download rate collected at 100 ms granularity)

of live and VoD streams (both from Twitch). It can be clearly seen how the two time-trace

profiles differ. The live streaming client downloads video segments every two seconds. In

contrast, the VoD client begins by downloading multiple segments to fill up a long buffer

and then fetches subsequent segments every ten seconds (very similar behaviour to Netflix

as shown above).

To better understand the delivery mechanism of live videos, we collected the playback

data from the video client such as latency modes, buffer sizes and resolutions (using browser

automation tool described in §4.2.1). We also used the network debugging tools available

in Google Chrome [158] browser and Wireshark[48] (configured to decrypt SSL) to gain

insights into protocols being used, patterns of the requests made for content and manifest

files, their periodicity, and the available latency modes as shown in Table 4.2.

Twitch: The Twitch VoD client uses HTTP/2 and fetches combined audio and video

media segments (with extension .ts) from a server with the SNI vod-secure.twitch.com.

Twitch live, however, uses HTTP/1.1, and on the same TCP flow fetches separate audio
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Table 4.2: Fetch mechanisms of Twitch and YouTube video streaming.

Provider Type Protocol Request for Manifest Frequency Latency modes

Twitch
VoD HTTP/2 Once 10s -
Live HTTP/1.1 Periodic (different flow) 2/4s Low, Normal

YouTube
VoD HTTP/2 + QUIC Once 5-10s -
Live HTTP/2 + QUIC Manifestless 1/2/5s Ultra Low, Low

and video segments from a server endpoint with the SNI video-edge*.abs.hls.ttv.net. This

obfuscated URL pattern is indicative of CDNs and edge compute usage. Additionally, it

requests manifest updates from a different server endpoint with name prefix “video-weaver ”

which also seems to be distributed using CDNs. The periodicity of segment requests is

around 10 seconds for VoD and 2 seconds for live streams [154], corroborating our earlier

observation in this section. Additionally, Twitch offers two modes of latency, i.e., Low

and Normal. We note that major differences between these modes include a) client buffer

capacity – it is higher (i.e., 6-8 seconds) for Normal when compared to Low (i.e., 2-4

seconds) and b) use of CMAF media containers – it is predominant in Low but rarely used

in Normal.

YouTube: YouTube primarily uses HTTP/2 over QUIC [159] for both VoD and live

streams, fetching audio and video segments separately on multiple flows (usually two in

case of QUIC). These flows are established to the server endpoint with name matching

pattern “*.googlevideo.com". If QUIC protocol is disabled or not supported by the browser

(e.g., Firefox, Edge, or Safari), YouTube uses HTTP/1.1 and multiple TCP flows to fetch

the video content. YouTube live operates in manifestless mode (as indicated by the client

playback statistics) and thus manifest files are not transferred on the network. In case of

VoD, after filling up the initial buffer, the client typically tops it up at a periodicity of 5-10

seconds. We observed that the buffer size and periodicity can vary depending on resolution

selected and network conditions. In case of live streaming, however, the buffer health and

periodicity of content fetch will depend on the latency mode of the video. There are three

modes of latency for YouTube live including Ultra Low (buffer health: 2-5 sec, periodicity:

1 sec, uses CMAF media containers), Low (buffer health: 8-12 sec, periodicity: 2 sec), and

Normal (buffer health: 30 sec, periodicity: 5 sec). We found that live streaming in normal

latency mode displays the same network behavior as VoD, and hence is excluded from our
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study – this mode of streaming is not as sensitive as the other two modes.

The analysis of live video streaming across Twitch and YouTube indicated that (a)

there’s very little buffering of the video stream (no separate buffering and stable phase like

with Netflix), (b) each media segment was delivered periodically with the lowest transcod-

ing time possible indicating that each segment if tracked on network (using chunk telemetry

described in 4.2.1) can indicate buffer stability and resolution of the video. In the next

section, we look at estimating the video performance metrics from network telemetry in

detail.

4.3 Inferring Video Streaming Performance

In the last section, we looked at video streaming behaviour and correlated it with network

activity. Now, we will develop algorithms to infer video streaming performance from the

network activity.

A video streaming client tries to load its buffers quickly and play the highest quality

under good network conditions. When the network deteriorates however, the client needs

to adjust the quality of playback using adaptive bitrate algorithms [34, 160]. It asses

the network conditions (typically using estimates of available bandwidth) and switches to

lower bitrates. If the network conditions do not improve over time, it may result in a

buffer depletion and eventually lead to stall. Our goal in this section is to predict the

changes in video behaviour when network conditions worsen and estimate metrics that can

quantify video performance. We begin by developing performance prediction algorithms

for on-demand streaming followed by live video streaming.

4.3.1 On-demand streaming performance

For on-demand video streaming, we first build a classifier to detect buffer-phase of the

Netflix video stream. Subsequently, we identify 3 key metrics that estimate video perfor-

mance and describe methods to compute them. Finally, we show examples of detecting

on-demand performance degradation. For all the tasks, we rely only on the per-flow byte
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counter telemetry collected every 100ms as described in 4.2.1.

Buffer-phase classification

We observed in §4.2.2 that on-demand streaming has two distinct phases: buffering and

stable. In buffering phase, the client continuously fetches segments and in stable phase it

periodically fetches segments. A client will go into buffering phase only in a few situations:

(a) at the beginning of the stream to fill up the buffer, (b) when the network conditions

deteriorate and client starts losing the buffer i.e. playback is faster than buffer fill-up, and

(c) when the user performs trickplay i.e. fast forward/backward to an unbuffered point in

the video. Thus, knowledge about the buffer phase is useful to model the video behaviour

and infer its performance. To do so, we build machine learning-based model to classify the

phase (i.e., buffering or stable) of a video streaming playback by using several waveform

attributes (explained next).

Data Labeling: Each video streaming instance in our Netflix dataset is broken into

separate windows of each 1-minute duration. We label a window of individual TCP flows

associated with a stream using the client buffer health (in seconds) of that stream. For

each window, we consider three measures namely the average, the first, and the last value

of buffer health in that window. If both the average and last buffer values are greater than

220 seconds, then we label it as “stable”. If both the average and the last buffer values

are less than 220 seconds but greater than the first buffer value, then we label the window

as “buffering”. Otherwise (e.g., transition between phases), we discard the window and do

not use for training of our model.

Attributes: For each flow active during a window, we compute two sets of attributes.

Our first set of attributes include: (a) totalVolume – relatively high during buffering

phase; (b) burstiness (i.e., µ/σ) of flow rate – captures the spike patterns (high during

stable phase); (c) zeroFrac, fraction of time the flow is idle (i.e., transferred zero bytes)

– this attribute is expected to be smaller in the buffering phase; (d) zeroCross, count of

zero crossing in the zero-mean flow profile (i.e., [x-µ]) – this attribute is expected to be

high in the buffering phase due to high activity of flows; and (e) maxZeroRun, maximum
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Figure 4.6: Performance of phase classification: (a) confusion matrix, and (b) CCDF of
confidence-level.

duration of being continuously idle – this attribute is relatively higher for certain flows

(e.g., aging out or waiting for next transfer) in the buffering phase.

Our next set of attributes are computed by isolating chunks of transfers from the flow

profile. Each chunk in a flow is isolated by three successive data points of zero (i.e., 300 ms

idle after a transfer). Our five attributes computed from chunks are: (f) chunksCount;

(g,h) average and standard-deviation of chunk sizes; (i,j) average andmode of chunks

inter-arrival time. In the buffering phase, the flow would have less chunks, lower inter-chunk

time, and higher volume in each chunk compared to the stable phase. In total, for each

flow in a window, we have 10 attributes computed (considering just the waveform profile,

independent of available bandwidth) for each training instance (i.e., 1-min window of a

TCP flow).

Classification Results: We used the RandomForest ML algorithm available in Python

scikit-learn library. We configured our model to use 100 estimators which are used to pre-

dict the output along with a confidence-level of the model. We split our labeled data of

12,340 instances into training (80%) and testing (20%) sets. We evalued the performance

of our classifier using the testing set and obtained a total accuracy of 93.15%, precision of

94.5% and recall of 92.5%. We show in Fig. 4.6(a) the confusion matrix of our classifier.

It is seen that 93.9% of buffering and 92.4% of stable instances are correctly classified.

Fig. 4.6(b) illustrates the CCDF of the model confidence for both correctly and incorrectly

classified instances. The average confidence of our model is greater 94% for correct clas-
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sification while it is less than 75% for incorrect classification – setting a threshold of 80%

on the confidence-level would improve the performance of our classification.

Use of Classification: For each TCP flow associated with a streaming session, we

call our trained model to predict its phase of video playback. As explained earlier, multiple

flows are expected especially at the beginning of a stream. We perform majority voting

on outputs of the classifier for individual flows to determine phase of the video stream.

In case we have a tie, we pick the phase with maximum sum confidence of the model. In

addition to the classification output, the count of flows in the stable phase (i.e., two flows)

can be used to check (validate) the phase detection. This cross-check method also helps

detect the presence of concurrent video streams for a household to discount them out of

the analysis – having more than two Netflix flows for a household IP address, while the

model indicates the stable phase (with a high confidence), likely suggests parallel playback

streams.

Computing Performance Metrics

We now identify three key metrics that together help us infer Netflix performance. The

first two are metrics directly related to performance, and the third one is used to deduce

events affecting performance.

1) Buffer Fill-Time: As explained in §4.2.2 (by Fig. 4.3(a) and 4.3(b)), Netflix

streams tend to fill up to 240 seconds worth of audio and video to enter into the stable

phase – a shorter buffer fill-time implies a better network condition and hence a good

user experience. Once the stream starts its stable phase, we begin by measuring buffer-

ingStartTime when the first TCP flow of the stream was established. We then identify

bufferingOnly flows – those that were active only during the buffering phase, go inac-

tive upon the completion of buffering, and are terminated after one minute of inactivity

(FlowA and FlowC shown in Fig. 4.2). We, next, compute bufferingEndTime as the latest

time when any bufferingOnly flow was last seen active (ignoring activity during connec-

tion termination (e.g., TCP FIN)). Lastly, the buffer fill-time is obtained by subtracting

bufferingEndTime and bufferingStartTime.
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Fill-Time Results: To quantify the accuracy of computing buffer fill-time, we use our

client data of video buffer health (in seconds) as ground-truth. Results show that our

method achieved 10% relative error for 75% of streams in our dataset – the average error

for all streams was 20%. We observe that in some cases a TCP flow starts in the buffering

phase and (unexpectedly) continues carrying traffic in the stable phase for some time after

which it goes idle and terminates. This will result is our predictions of buffer fill-time to

be larger than its true value thereby underestimating the user experience.

2) Bitrate: A video playing at a higher bitrate brings a better experience to the user.

We estimate the average bitrate of Netflix streams using the following heuristics. During

the stable phase, Netflix replaces the playback buffer by periodically fetching the video and

audio chunks. This means that over a sufficiently large window (say, 30 seconds), the total

volume transferred on the network would be equal to the playback buffer of the window

size (i.e., 30 seconds) since the client tends to maintain the buffer at a constant value (i.e.,

240 seconds). Therefore, the average bitrate of the stable stream is computed by divinding

the volume transferred over the window by the window length. During the buffering phase,

Netflix client downloads data for the buffer-fill-time and an additional 240 seconds (i.e.,

the level maintained during the stable phase). Thus, the average bitrate of the buffering

stream is computed by dividing total volume downloaded by sum of buffer fill-time and

240 seconds.

By tracking the average bitrate, we are able to determine the bitrate switches (i.e.,

rising or falling bitrate) in the stable phase. As discussed earlier, there are a range of

bitrates available for each video. For example, title “Eternal Love” was sequentially played

at 490, 750, 1100, 1620, 2370, and 3480Kbps during a session in our dataset. We note that

Netflix makes bitrates available in a non-linear fashion – bitrate values step up/down by a

factor of ∼1.5 to their next/previous level (e.g., 490×1.5 approximately indicates the next

bitrate level 750). We use this pattern to detect a bitrate switch if the measured average

bitrate changes by a factor of 1.5 or more.

Bitrate Results: We evaluated the accuracy of our bitrate estimation using the client

data as ground-truth. For the average bitrate in buffering phase, our estimation resulted

a mean absolute error of 158Kbps and an average relative error of 10%. The estimation

62



Chapter 4. Monitoring Video Streaming QoE

0 60 120 180 240 300
Time (Seconds)

0

2500

5000

7500

10000

12500

M
ax

 T
hr

ou
gh

pu
t (

kb
ps

)

0

2500

5000

7500

10000

12500

Bi
tra

te
 (k

bp
s)

(a) Good expeirence (bitrate saturates while
more bandwidth available).

0 60 120 180 240 300
Time (Seconds)

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Th
ro

ug
hp

ut
 (k

bp
s)

0

1000

2000

3000

4000

5000

Bi
tra

te
 (k

bp
s)

(b) Bad expeirence (bitrate follows stream
throughput closely).

Figure 4.7: Inferring user experience considering throughput.

errors for average bitrate in stable phase, were 297Kbps and 18% respectively. These errors

arise mainly due to the fact that Netflix client seems to report an average bitrate of the

movie but due to variable bitrate encoding, each scene is transfered in different sizes of

chunks, hence a slightly different bitrate is measured on the network. Nonetheless, we note

that detection of bitrate switch events will be accurate since the average bitrate would

change by more than a factor of 1.5 in case of bitrate upgrade/downgrade.

3) Throughput: We use the aggregate throughput measurements of the stream (ob-

tained by summing up the throughput of all TCP flows involved) to detect experience

events listed below. To do so, we derive two signals over a sliding window (say, 5 seconds)

of the aggregate throughput: (a) max throughput, and (b) average throughput – note that

the flow throughput is measured every 100ms.

Max bitrate playback. For a video stream, if the gap between the max throughput and

the computed average bitrate is significantly high (say, twice the bitrate being played), then

it implies that the client is not using the available bandwidth as it is currently playing at

its maximum possible bitrate, as shown in Fig. 4.7(a), indicating a good experience.

Bitrate variations during buffering. If the max throughput measured is relatively close

to the bitrate ranges of Netflix (up to 5000 kbps) and is highly varying, it indicates possible

bitrate switching events. In this case, the actual bitrate strongly correlates with the average

throughput signal, as shown in Fig. 4.7(b). The fluctuating average throughput with high

standard deviation (i.e., ≥ 20%) causes the stream to switch bitrates and becomes unstable,

indicating a bad experience.

63



Chapter 4. Monitoring Video Streaming QoE

0 120 240 360 480 600
Time (Seconds)

0

50

100

150

200

250

Bu
ffe

r H
ea

lth
 (S

ec
on

ds
)

0

1000

2000

3000

4000

5000

Bi
tra

te
 (k

bp
s)

(a) Quality dropped due to congestion
(client behavior of Video1).
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(b) Quality maintained even with conges-
tion (client behavior of Video2).
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(c) Quality dropped due to congestion (net-
work activity of Video1).
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(d) Quality maintained even with conges-
tion (network activity of Video2).

Figure 4.8: Detecting video quality degradation for users.

Detecting Buffer Depletion and Quality Degradation

We now detect bad experiences in terms of buffer health and video quality using the metrics

described above. To illustrate our method, we conducted an experiment in our lab whereby

the available network bandwidth was capped at 10 Mbps. We first played a Netflix video

on a machine, and one minute after the video went into the stable phase (i.e., 240 seconds

of buffer filled on client) we introduced UDP downstream traffic (i.e., CBR at 8Mbps using

iperf tool) to congest the link. For videos, we chose two Netflix movies – Season 3 Episode

2 of “Deadly 60” with high quality bitrate available up to 4672Kbps (Video1), and Season

1 Episode 1 of “How I Met Your Mother” with a maximum bitrate of 478Kbps (Video2).

Fig. 4.8 shows client behavior (top plots) and network activity (bottom plots) for the two

videos.

Considering Fig. 4.8(a) for Video1, it is seen that the stream started at 679Kbps bitrate

(dashed red lines), quickly switched up, and reached to the highest possible value 4672Kbps

in 30 seconds. It continued to play at this bitrate and entered into the stable phase (at

second 270) where only two flows remained active, as shown in Fig. 4.8(c), and the buffer
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health (solid blue lines) reached to its peak value of 240 seconds. Upon commencement

of congestion (at second 340), we observe that the buffer started depleting followed by

a bitrate drop to 1523Kbps. Moving to the network activity in Fig. 4.8(c), we observe

that two new flows spawned, the stream went to the buffering phase, and the network

throughput fell below 2Mbps. The change of phase, combined with a drop in throughput,

indicates that the client experiences a buffer depletion – a bad experience. Using our

method, we detected a phase transition (into buffering) at second 360 and deduced bitrate

from the average throughput (as explained earlier in Fig. 4.7(b)), ranging from 900Kbps

to 2160Kbps. This estimate shows a significant drop (i.e., more than a factor of 1.5) from

the previously measured average stable bitrate (i.e., 3955Kbps). Additionally during the

second buffering phase, we observe a varying average throughput with the mean 1.48Mbps

and the standard-deviation 512Kbps (i.e., 35% of mean) indicating a fluctuating bitrate

on the client. We note that although a transition from stable to buffering can result from

a trickplay (discussed in §4.2.2) we do not detect a bad experience since no change in max

throughput is observed.

4.3.2 Live streaming performance

The QoE of a live video stream can be captured by two major metrics, namely, video quality

and buffer stalls. Video quality can be measured using: (a) resolution of the video, (b)

bitrate (number of bits transferred per sec), and (c) more complex perceptual metrics like

MOSS [161] and VMAF [162, 163]. In this subsection, we develop a method to estimate

the resolution of the playback video since the ground-truth data is available across the

three providers. Also, resolution is typically reported (or available to select) in popular

live streaming services. In addition to video resolution, we devise a method to detect the

presence of buffer stalls which are more likely to occur in case of live streaming (compared

to VoD), since a smaller buffer size is maintained on the client to reduce the latency between

the producer and the viewer. In what follows, we present our analysis of data collected

from the network consisting of audio/video segments versus metrics recorded on the client.

Subsequently, we develop methods that estimate video resolution and detect buffer stalls.
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Network-Level Measurement

To estimate QoE metrics for the live stream, we need to estimate the size of the media

segments being fetched from the packets traversing on the network flow. The data down-

loaded between two consecutive requests is a good estimate of the size of media segments.

We refer to this estimate as a chunk. Hence, we use the term segment for a unit of me-

dia requested by the player, while chunk denotes a corresponding unit of data observed

on the network (demarcated by the request packets). We build upon existing network

chunk-detection algorithms [82, 97] to isolate the video chunks fetched by the live player.

In short, the algorithm identifies the start of a chunk by an upstream request packet, and

aggregates all subsequent downstream packets to “form” the chunk. For each chunk, we

extract the following features: requestTime, i.e., the timestamp of the request packet,

requestPacketLength, chunkStartTime and chunkEndTime, i.e., timestamps of the

first and the last downstream packets following the request (subtracting these two times-

tamps gives chunkDownloadTime), and lastly chunkPackets and chunkBytes, i.e.,

total count and volume of downstream packets corresponding to the chunk.

During the playback of a live video stream, the chunk telemetry function operates on a

per-flow basis in our FlowFetch tool, and exports the features mentioned above for every

chunk observed on five-tuple flow(s) carrying the video. We note that chunk telemetry is

more expensive (in both compute and memory) than simply exporting 100ms counters as

done for Netflix. However, since the volume for Netflix is very high we rely on simpler

function whereas live video is comparatively low and hence we can execute these functions

in operator networks.

As earlier mentioned in §4.2.1 we collect resolution and buffer health metrics reported

by the video client. In what follows, we correlate and analyze the chunk data obtained from

the network and client metrics to train our models for estimating resolution and detecting

the presence of buffer stalls.
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Table 4.3: Dataset resolution distribution.

Provider LD SD HD SOURCE

Twitch 17% 32% 34% 17%
YouTube 36% 36% 28% -

Estimating Resolution

The resolution of a live video stream indicates the frame size of video playback – it may

also sometimes indicate the rate of frames being played. For example, a resolution of

720p60 means the frame size is 1280×720 pixels while playing 60 frames per sec. For a

given fixed duration video segment, the video segment size (and hence our corresponding

chunk estimate) usually increases in higher resolutions as more bits need to be packed into

the segment.

We analysed the live video streams played using our tool for both content providers to

better understand the distribution of video segment sizes across various resolutions. We

also consider four bins of resolution, namely Low Definition (LD), Standard Definition

(SD), High Definition (HD), and Source (originally uploaded video with no compression,

only available in Twitch) – Table 4.3 shows the distribution of streams across these bins.

The bins are mapped as follows, anything less than 360p is LD, 360p and 480p belong to

SD, 720p and beyond belongs to HD. If the client tags a resolution (usually 720p or 1080p)

as Source, it is binned into Source. Such binning serves two purposes: (a) it accounts

for a similar visual experience for a user in neighbouring resolutions, and (b) it provides

a consistent way to analyze across providers. Fig. 4.9 shows the distribution of chunk

sizes versus resolutions, and will be further explained next. We estimate the resolution

in two steps: (a) first, separating chunks corresponding to video segments, and (b) next

developing an ML-based model to map the chunk size to resolution.

Separation of video chunks Network flows corresponding to a live stream can carry

chunks of data that correspond to any of video segments, audio segments, or manifest

files, and hence the video component needs to be separated out to estimate its resolution.

Moreover, our telemetry engine also picks up some other small stray chunks which are not

actual HTTP GET responses. We employ a simple method to separate the stray chunks
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by ignoring a chunk less than a threshold (say, 10KB) – both audio and video segments are

larger than 10KB across content providers. However, the method to isolate video segments

depends on the provider – it can be developed by analysing a few examples of streaming

sessions and/or by decrypting SSL connections and analysing the request URLs.

Twitch usually streams both audio and video segments on the same 5-tuple flow for live

video streaming, and manifest files are fetched in a separate flow. We observed that audio

is encoded in a fixed bitrate, and thus its chunk size is consistent (≈ 35 KB). Further,

Twitch video chunks of the lowest available bitrate (160p) have a mean of 76 KB. Thus,

video chunk identification is fairly simple for Twitch live streams, i.e., all chunks more

than 40 KB in size.

YouTube live usually uses multiple TCP/QUIC flows to stream the content consisting

of audio and video segments – Youtube operates manifest-less. As indicated in Table 4.2,

Youtube live operates in two modes, i.e., Low Latency (LL) with 2 sec periodicity of

content fetch, and Ultra Low Latency (ULL) with 1 sec periodicity. We found that the

audio segments have a fixed bitrate (i.e., size per second is relatively constant) regardless

of the latency mode – audio chunk size of 28− 34 KB for the ULL mode, and 56− 68 KB

for the LL mode. However, separating the video chunks is still nontrivial as video chunks

of 144p and 240p sometimes tend to be smaller in size than the audio chunks.

To separate the audio chunks, authors of [82] used the requestPacketLength as they

observed that the audio segment requests were always smaller than the video requests.

We used this method for TCP flows but found it inaccurate in UDP QUIC flows as the

audio segment requests are sometimes larger than video segment requests due to header

compression. Further, QUIC flows pose additional challenges, especially for live video

streams. Because of bi-directional stream support available in HTTP/2 + QUIC, a request

for a media segment can be sent before the previous segment completely downloads. Since

our chunk telemetry function relies on the request packets to mark the start of chunks,

the chunk sizes computed by the network telemetry function differ from the actual size of

media segments. For this reason, we cannot accurately capture individual media segments

for YouTube videos delivered over QUIC flows. Thus, performance inferencing for YouTube

QUIC video streams is beyond the scope of this chapter.
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Figure 4.9: Chunk size versus resolution for Twitch (left), and YouTube (right).

Table 4.4: Resolution prediction accuracy.

Provider Resolution Resolution bin

Twitch 90.64% 97.62%
YouTube 75.17% 90.08%

Analysis and inference After identifying the chunks corresponding to the video seg-

ments for each provider, we now look at the distribution of chunk sizes across various

resolutions at which the video is played. Fig. 4.9 shows box plots of mean (video) chunk

size in MB versus the resolution (i.e., actual value or binned value) in categorical values.

Note that the mean chunk size is computed for individual video streams of duration 2-5

minutes. Further, the label (S) on the X-axis indicates a Source resolution.

Looking at Fig. 4.9, we make the following observations: (a) video chunk size increases

with resolution across both the providers; (b) chunk sizes are less spread in lower resolu-

tions; and (c) chunk sizes of various transcoded resolutions (i.e., not the source resolution)

do not overlap much with each other for Twitch. However, the overlap of neighboring

resolutions becomes more evident in YouTube streams. Such overlaps make it challenging

to estimate the resolution.
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We use the Random Forest algorithm for mapping chunk sizes to the resolution of

playback as it creates overlapping decision boundaries using multiple trees and then uses

majority voting to estimate the best possible resolution by learning the distribution from

the training data. Using the mean chunk size as an input feature, we trained two models,

i.e., one estimating the exact resolution and the other estimating the resolution bin. We

perform 5-fold cross-validation on the dataset with 80-20 train-test split, and our results

are shown in Table 4.4.

Predicting Buffer Stalls

Buffer stalls occur when the playback buffer is emptied out because the video segments

cannot be fetched in time. This QoE metric is vital for live streams, which typically

maintain short buffers (4 seconds for Twitch LL and Youtube ULL modes). Even for a few

seconds, network instability can cause the live buffer to deplete, leading to a stall causing

viewer frustration.

To better understand the live buffering mechanism across the three providers, we collect

data for live video streams (≈ 5min per session) while using the network conditioner

component of our tool to impose synthetic bandwidth caps. We created a commonly

occurring situation in a household wherein cross-traffic (browsing/e-mail etc.) is introduced

for a few seconds while a live stream is going on. To do so, the tool starts with a cap

of 10 Mbps (typical household bandwidth) and then, after every 30 seconds, caps the

download/upload bandwidth at a random value (between 100 Kbps to 2 Mbps) for a

duration of 10 seconds (mimicking the congestion due to cross traffic). Live videos being

played in the browser are accordingly affected by these bandwidth switches. We found that

if videos are played at Auto resolution, then the clients avoid stalls most of the time by

switching to lower resolutions. Therefore, we forced the video streams to play at one of the

HD resolutions (1080p or 720p) to gather data of buffer stall events. In total, we collected

more than 250 video streams across the three providers. On average, 15% and 6% of the

playback time were spent in the stall state for Twitch and YouTube.

Fig. 4.10 shows the dynamics of buffer health for a representative stream in our dataset.
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Figure 4.10: Time-trace of buffer health value: ground-truth predicted, for a sample
Twitch stream.

Algorithm 1: Predict Buffer Stall.
Parameters: Buf min,Segdur
Data: Chunks detected on network {c1, c2, . . . , cn}
Output: Estimated buffer health

1 b← 0 (tracks current buffer)
2 t← 0 (tracks endTime of last chunk)
3 for each network chunk c do
4 b += Segdur
5 if b <= Bufmin then
6 t = c.EndT ime
7 continue

8 b –= c.EndT ime− t if b <= 0 then
9 b = 0

10 t = c.EndT ime

We observe that this low latency Twitch video starts with 2 seconds of the buffer. It soon

encounters the first stall (highlighted by the red bar) around second 25 due to network

congestion caused by cross traffic. Following that, the stream linearly increases its buffer

to 10 seconds but experiences stalls a couple more times until the second 100. After this

point, the buffer value increases to more than 20 seconds. It can be seen that a stall event

not only deteriorates user experience but also increases the latency of the live stream as the

user is watching content that was recorded at least 20 seconds ago – defeating the purpose

of live streaming.

To predict such stalls, our buffer estimator algorithm takes two parameters as input.

The first is Segdur; live video streams typically encode content into video segments of
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fixed duration. This duration depends on the playback mode - for instance, YouTube

ULL streams have Segdur = 1 sec, while YouTube LL streams have Segdur = 2 sec. We

automated this estimation by equating Segdur to be the median inter-request time (IRT) of

video segments in the first window of n seconds (empirically configured to be 20 sec). The

second parameter is Buf min; a client typically fetches few video segments (at least one)

until a minimum buffer is filled before it begins playback. In the case of Twitch, playback

begins after the first segment finishes downloading – hence, Buf min = 2 sec (one segment

long). However, in the case of YouTube, Buf min seemed to vary between 2-10 seconds.

Thus, we conservatively choose the mean value in our dataset – 3 sec for ULL streams and

6 sec for LL streams.

Using the parameters above and the isolated video chunks mentioned above, the buffer

estimation algorithm (Algorithm 1) works as follows. At the beginning of a stream, its

buffer is initialized at zero and increases by steps of Segdur at the end of every chunk

observed on the network, until it reaches Buf min (Algorithm 1, Lines: 4-7). For every sub-

sequent video chunk, the buffer value is adjusted by: (a) adding Segdur and (b) subtracting

the time elapsed in the playback since its previous chunk (Algorithm 1, Lines: 4,8).

Our algorithm predicts the current buffer value (in seconds) of the client video player

for both providers. To quantify the accuracy of predicting buffer stalls (buffer value = 0),

we first divide a given video stream into 5-sec windows and assign a boolean value (true

when there was a stall and false otherwise) to each window. The ground truth of buffer

stalls comes from the playback metrics collected by our tool described in §4.2.1. Table 4.5

summarizes the performance of predicting buffer stalls across all playback windows. Among

all the windows across the video playback, we computed the accuracy, precision and false

positive rate of our algorithm across providers as shown in Table 4.5. Overall, our algorithm

yields about 90% accuracy in predicting the presence of a buffer stall in a 5-sec window.

Note that our method tends to underestimate the buffer health in YouTube videos (false

positive rate 14.2%) since we choose a conservative Buf min value, leading us to predict

stalls even when the buffer value is small but non-zero. We found that in more than 50%

of the false-positives, our algorithm underestimates the buffer value by at most 2.3 sec (≈

the duration of a segment).
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Table 4.5: Buffer Stall Prediction Results.

Accuracy Precision FP Rate

Twitch 90.1% 90% 10%
YouTube 89% 88% 14%

4.4 Conclusion

Video streaming is a rapidly growing Internet application. ISPs today lack tools to infer

its performance metrics in their network as existing DPI-based solutions fall short due to

encryption and scale. In this chapter, we built a tool to collect a dataset on playback

metrics and network measurement of video streams from Netflix, Twitch and YouTube,

and subsequently analysed it to understand the correlation between video behaviour (on-

demand and live) and its network activity. Subsequently, we developed algorithms and

ML based models to infer video performance including buffering phase detection, bitrate

estimation and quality degradation detection for on-demand video streams and prediction

of resolution and buffer stall events for the live streams using chunk attributes extracted

from the network flows. Our method enables ISPs to better understand the experience

of video streaming services purely using the behavioural profile of network flows, and

subsequently enables them to take corrective actions to help improve user experience.
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In this chapter, we shift our focus to understand another class of highly engaging

applications: online multiplayer gaming. Most online games require only a few hundred

kbps of bandwidth, but are very sensitive to latency. Internet Service Providers (ISPs) keen

to reduce “lag” by tuning their peering relationships and routing paths to game servers are

hamstrung by lack of visibility on: (a) gaming patterns, which can change day-to-day as

games rise and fall in popularity; and (b) locations of gaming servers, which can change
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from hour-to-hour across countries and cloud providers depending on player locations and

matchmaking.

In this chapter, we develop methods that give ISPs visibility into online gaming activity

and associated server latency. As our first contribution, we analyze packet traces of ten

popular games and develop a method to automatically generate signatures and accurately

detect game sessions by extracting key attributes from network traffic. Field deployment

in a university campus identifies 31k game sessions representing 9,000 gaming hours over

a month. As the second contribution, we perform BGP route and Geolocation lookups,

coupled with active ICMP and TCP latency measurements, to map the AS-path and

latency to the 4,500+ game servers identified. We show that the game servers span 31

Autonomous Systems, distributed across 14 countries and 165 routing prefixes, and routing

decisions can significantly impact latencies for gamers in the same city. Our study gives

ISPs much-needed visibility so they can optimize their peering relationships and routing

paths to better serve their gaming customers.

5.1 Introduction

Online gaming is experiencing explosive growth: 2.9 billion players collectively contributed

$178 billion to global revenues in 2020, representing a 23% growth over the year before

[164]. Popular online games like Fortnite, Call-of-Duty, League of Legends and Counter-

Strike account for hundreds of millions of online players. Interestingly, most of these

games are free-to-play, and generate their whopping revenues from in-game purchases (in-

game currency, emotes, skins, stickers, weapons, backblings, battle passes, and other such

trinkets). Game publishers and platforms are therefore strongly motivated to give gamers

the best possible experience to keep them engaged, and thus deploy their game servers

on cloud platforms across multiple countries in an effort to minimize network latency for

users.

Network latency (aka “lag”) is indeed one of the largest sources of frustration for online

gamers. A typical shooting game requires no more than a few hundred kbps of bandwidth,

so a higher speed broadband connection does not by itself have a material impact on
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gaming experience. By contrast, a 100 ms higher latency can severely handicap the gamer

[165], since their gunshots will be slower to take effect, and their movements lag behind

others in the game. A whole industry of “game acceleration” is dedicated to address the

latency issue, ranging from gaming VPNs/overlays (e.g., WTFast[166] and ExitLag[167])

to gaming CDNs (e.g., SubSpace[168]); indeed, one innovative eSport hosting company

(OneQode[169]) has even gone to the extent of locating its servers in the island of Guam

to provide equidistant latency to several Asian countries.

Internet Service Providers (ISPs), who have hitherto marketed their broadband offering

based purely on speed, are now realizing that they are blind to latency. This is hurting their

bottom line, since gamers are vocal in online forums comparing gaming latencies across

ISPs, and quick to churn to get any latency advantage. With new game titles and seasons

launching every week, and their popularity waxing and waning faster than the phases of the

moon, ISPs are struggling to stay ahead to keep gamers happy, and consequently bearing

reputational and financial damage.

ISPs have almost no tools today to give them visibility into gaming latencies. Tradi-

tional Deep Packet Inspection (DPI) appliances target a wide range of applications span-

ning streaming, social media, and downloads, and have evolved to largely rely on hostnames

found in DNS records and/or the TLS security certificates of a TCP connection. Tracking

modern games requires specialized machinery that can track UDP flows with no associated

DNS or SNI signaling by matching on multiple flow attributes in a stateful manner. Fur-

ther, game developers and publishers use different cloud operators in various countries to

host their game servers, and use dynamic algorithms for game server selection depending

on the availability of players and match making. These factors have made it very challeng-

ing for ISPs to get visibility into game play behaviors, limiting their ability to tune their

networks to improve gaming latencies.

In this chapter, we develop a method to detect games, measure gaming latencies, and

relate them to routing paths. Our first contribution in §5.2 analyzes ten popular games

spanning genres, developers, and distributors. We identify key game-specific attributes

from network traffic to automatically construct game signatures, and consolidate these

into an efficient classification model that can identify gaming sessions with 99% accuracy
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within first few packets from commencement. Deployment of our classifier in a University

network over a month identified 31k game sessions spanning 9,000 gaming hours, and

we highlight interesting patterns of game popularity and engagement in terms of session

lengths.

Our second contribution in §5.3 uses the servers identified using our classifier from the

previous contribution to measure game servers location and latencies. We perform BGP

route and Geolocation lookups, coupled with active ICMP and TCP latency measurements,

to map the AS-path and latency to the 4,500+ game servers identified. We illustrate the

spread of game servers across 31 ASes, 14 countries, and 165 routing prefixes, and the

resulting impact on latency for each game title. We further show that different ISPs serving

gamers in the same city can offer radically different gaming latency, influenced by their

peering relationships and path selection preferences. Our study gives ISPs much-needed

visibility into gaming behaviors and game server locations so they better optimize their

networks to improve gaming latencies.

Table 5.1: List of games.

Game Genre Developer Distributor/Publisher

Fortinite Shooter Epic Games Epic Games
Call of Duty: Modern Warfare (CoD:MW) Shooter Infinity Ward Blizzard Entertainment
World of Warcraft (WoW) RTS Blizzard Entertainment Blizzard Entertainment
League of Legends (LoL) MOBA Riot Games Riot Games
Counter Strike: Global Offensive (CS:GO) Shooter Valve Corp. Steam
FIFA 20/21 Sports Electronic Arts Origin
Rocket League Sports Psyonix Steam
Hearthstone Card game Blizzard Entertainment Blizzard Entertainment
Escape From Tarkov Shooter Survival Battlestate Games Battlestate Games
Genshin Impact Action RPG miHoYo miHoYo

5.2 Game Detection

In this section, we begin by illustrating the network behavior of a representative online

game (§5.2.1), followed by developing: (i) a method to automatically generate signatures

of gaming flows (§5.2.2), and (ii) a deterministic classifier that combines the signatures

to passively detect games using in-network attributes (§5.2.3). The classifier is evaluated

(§5.2.3) and deployed (§5.2.4) to observe the gaming patterns in our university network.
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We first collected and analyzed hundreds of pcap traces by playing ten popular online

games (shown in Table 5.1) that represent a good mix across genres (e.g., Shooting, Strat-

egy, Sport), multiplayer modes (e.g., Battle-Royale, Co-Operative, Player-vs-Player), and

developers/distributors. These traces (labeled lab data) were collected by playing games

on a desktop computer in our university research lab. Next, we collected over 1000 hours

of game-play packet traces selected from a full mirror (both inbound and outbound) of

our university campus Internet traffic (on a 10 Gbps interface) to our data collection sys-

tem from the campus border router. Selected pcaps (labeled field data) were recorded by

filtering the IP address of the game servers (to which our lab computer connected while

playing). This helped us collect all game-play traffic to those “known” servers when some-

one on our campus played any game. To gather and analyse this data, ethics clearance

(HC16712) has been obtained from UNSW Human Research Ethics Advisory Panel. This

clearance approves the analysis of campus network traffic data to derive insights into ag-

gregate video streaming and gaming behaviours without identifying the users behind the

client ip addresses.

5.2.1 Anatomy of Multiplayer Games

Let us start with an illustrative example from a popular online game: Fortnite. It is a

third person shooter (TPS) game developed by Epic Games which has risen in popularity

with a game mode called Battle Royale wherein 100 players fight each other to be the last

one standing. Fortnite is played by over 350 million players around the world [170]. In

what follows, we outline the anatomy of a Fortnite game session by manually analyzing a

packet capture (pcap) trace from our labeled lab data.

Gamer Interaction: A gamer first logs in to the Epic Games launcher and starts the

Fortnite game client. The game starts in a lobby where users have access to their social

network, collectibles, player stats, and game settings. When the user decides to play, the

client contacts Fortnite’s matchmaking server that groups players waiting in a queue and

assigns a server on which the online game runs. Subsequently, the match starts, and its

duration depends on how long the player lasts in the battle royale – the last one/team

standing wins among 100 players. After the game, the user returns to the lobby area,
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where they may choose to start another game.

Table 5.2: Fortnite Services, their name prefixes (suffix=ol.epicgames.com) and purpose.

Service Domain Name Prefix Purpose

Launcher launcher-public-service-prod06 Epic games launcher for login
Waiting Room fortnitewaitingroom-public-service-prod The user decides the game mode
Party party-service-prod Lobby area to invite friends to play
Social Network friends-public-service-prod In-game social network
Matchmaking fortnite-matchmaking-public-service Creates matches among waiting players
Anti-cheat hydra.anticheat.com Third-party anti-cheat service
Data reporting data-router Anonymous stats reporting

Network Behavior: From the pcap trace, we observe that the client communicates

with various service endpoints (which can be identified by their unique domain name) for

joining the lobby, matchmaking and social networking (as shown in Table 5.2). These

communications occur over encrypted TLS connections and constitute “foreplay” before

game-play begins. Once the game starts, the actual game-play traffic is exchanged over

a UDP stream between the client and a game server (which is usually different from the

foreplay endpoints). However, the IP address of the gaming server is not resolved by DNS

lookup – we, therefore, believe the server IP address is exchanged over the encrypted con-

nection during the matchmaking process. The lack of the server identity/name (common

across other game titles) makes the game-flow detection challenging. We note that the

game server and other servers may or may not be co-located – e.g., the game server may

be very close to the user, but the matchmaking server could be operating from a different

cloud in a different country.

The Fortnite game-play stream (identified using a five-tuple: SrcIP, DstIP, SrcPort,

DstPort and Protocol) has a packet rate of 30-40 pkt/sec upstream and about 30 pkt/sec

downstream throughout the game – fluctuations depend on player actions. However, this

profile of flow rate (as used in some prior works to classify applications [84]) is insufficient

to detect the game since we observed a similar pattern in other games. Most gameplay

flows have the following traffic characteristics: they operate in the packet rate range of

20-130 packets per second – games with competitive genres like Shooters and Strategy

have higher tick-rates while games which are turn-based like Hearthstone have low packet

rates. Further, gameplay streams contain packets of varying sizes depending on type of
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game and the messages exchanged between the client and server i.e., during an intense

fight the packet sizes increase for certain games (like Call of Duty). The packet lengths

however rarely are close to MTU. The similarities in flow level behaviour make it difficult

to distinguish games using traffic classification models like FlowFormers presented earlier.

That being said, gameplay streams do contain some idiosyncratic characteristics. For

example, in Fortnite, the client connects to port 9017 on the server-side in our example

trace; it starts with a few packets of payload size of 29 bytes; the first upstream packet

contains 28 trailing 0x00s; etc. These features, albeit simple, seem to be unique to Fortnite.

The other competitive games we analyzed displayed similar patterns of user activity and

interaction including contacting various services and having idiosyncratic patterns in the

first few packets. We next describe methods to analyze multiple gaming flows to extract

such signatures automatically.

5.2.2 Signature Generation

As briefly mentioned above, game-play servers typically lack DNS records, and the flow rate

profile is quite similar across games. Therefore, identifying the game-play flows (among a

mix of traffic) becomes challenging and requires us to inspect packets of flows for patterns.

While signatures can be generated manually by playing the game to collect packet traces, we

develop a method to automatically extract signatures from a collection of flows associated

with game servers captured in our field dataset.

Dataset: From the lab and field packet traces (described above), we obtained over

20,000 labeled flows, with each game at least having 500 flows. We filtered and cleaned

the field traces to remove non-game-play flows using simple heuristics such as flow du-

ration (games typically tend to last for more than a minute at the very least) and pro-

tocols (excluding ICMP traffic). A flow record in our dataset contains: (i) game name,

(ii) transport-layer protocol (UDP/TCP), (iii) server-side port number – e.g., 9017 for

the Fortnite example considered in §5.2.1, (iv) packet size (in bytes) arrays of upstream

and downstream directions each for five intial packets – e.g., up:[29,29,50,314,78] and

down:[29,29,116,114,114], and (v) payload byte (in hex strings) arrays of upstream and
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downstream directions each for five initial packets – e.g., [“17aabb...”,“28a004...”]. We

note that while client-side port numbers can be useful, they are often obfuscated due to the

presence of NAT and hence are not considered in this study. Further, we extract packet-

level attributes from just the first five upstream and five downstream packets as they are

enough to capture game-specific handshakes.

To extract game signatures from our dataset, we focused on extracting specific patterns,

which could be a static value (consistent across all flows of a game title) or a range of

dynamic values. To illustrate, Fortnite1 comes with the following specific signatures: the

server UDP port number is a dynamic value between 9000 and 9100; 1st upstream and

downstream packets have a static size of 29 bytes (u_0_len = d_0_len = 29)2; second to

tenth byte of 1st upstream packet are 0x00. (u_0_b_1 = ... = u_0_b_9 =0x00)3

Static Signatures: We extract static signatures from protocol, packet size and payload

byte content specific to each game title by checking if an attribute has the same value for

more than α fraction of the flows. If so, the attribute and its value are added to that specific

game’s signature (e.g., “u_0_len = 29” or “u_0_b_9 =0x00”). Note that if α is set to

a small value (say, 0.5), the game’s signature becomes richer (containing more attributes

to match) and more specific to that game. A rich signature demands more stringent

requirements from a flow (i.e., higher chance of rejecting a flow with minor deviation from

expected attributes – resulting in false-negatives). Setting α to a value close to 1 makes

the signature fairly generic, which would imply a chance of overlap with other games –

resulting in false positives. We empirically tuned it at 0.90 to strike a balance and detect

the games accurately. In addition, we use another parameter k to specify the depth of

packet payload (in number of bytes) to be analyzed. We found that most of the static

payload byte values can be captured by looking at just the first 10 bytes of each packet,

meaning k = 10.

Dynamic Signatures: We extract dynamic signatures for server-side port numbers as

they often do not have a fixed value but lie in a specific range of possible values (configured

1A snippet of our signatures for three representative games is shown in Fig. 5.2)
2“d_0_len”: first letter denotes the direction (“d” for downstream and “u” for upstream), second letter

(“0”) denotes the packet index, and third letter (“len”) denotes the packet size.
3“u_0_b_9”: the letters “u” and “0” are same as above while third letter (“b”) denotes byte, and fourth

letter (“9”) denotes the byte index.
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Game Protocol Server Port Up Pkt sizes Down Pkt sizes Up Payloads Down Payloads

Fortnite 17 9017 [29, 29, 45, 62, 80] [29,29, 45, 62, 80] [0x170000, …] [0xd7bf45e8, …]

Fortnite 17 9002 [29, 29, 35, 43, 51] [29,29, 45, 62, 80] [0x170000, …] [0x570000c0, …]

Fortnite 17 9035 [29, 29, 37, 89, 74] [29,29, 45, 62, 80] [0x170000, …] [0x07e86474, …]

Fortnite 17 9067 [29, 29, 41, 39, 72] [29,29, 45, 62, 80] [0x160000, …] [0xf0c476e6, …]

Figure 5.1: An illustrative example of signature generation using Fortnite traffic traces

“Fortnite”: {
“protocol": 17,
“ports": [9000,9100],
“u_0_len": 29,
“d_0_len”: 29,
“u_0_b_0”: 0x00,
“u_0_b_1”: 0x00,
“u_0_b_2”: 0x00,
…

},

“Call of Duty MW”: {
“protocol": 17,
“ports": [30000,45000],
“u_0_len": 29,
“u_0_b_0": “0x0d",
“d_0_len": 29,
“d_1_len": 29,
“d_2_len”: 116,
“d_3_len”, 114,
…

}

“Rocket League”: {
“protocol": 17,
“ports": [7700,8800],
“u_0_len": 80,
“d_0_len": 48,
“u_1_len": 48,

}

Figure 5.2: Signature of three representative game titles

by their developers). Since we collected a rich set of flows in the field dataset, we use the

min and max of the port numbers to identify an expected range. We further expand the

range by rounding the min and max to the nearest 100 to capture those port numbers that

might have missed out in our traces. Doing so gives us a signature like port = [9000−9100]

for Fortnite.

Example: Fortnite Game Signature Generation As shown in Fig. 5.1 above, each

row corresponds to attributes extracted from the first few packets of Fortnite gaming flows

from our dataset. The attributes include protocol, transport layer port numbers, packet

sizes and payload bytes. In one flow (identified by the standard five-tuple), protocol and

server port remain the same but the packet sizes and content vary as more packets arrive.

For this illustration, the table shows 5 packet sizes in each direction and (stripped) payload

content of the first packet. Some attribute values (shown in red) are fixed/constant across

all the flows (called static signatures) and other (shown in green) fall within a close range

of values (called dynamic signatures). These signatures are same across the flows implying

that they can detect a Fortnite game session.

Fig. 5.2 shows example signatures generated from our dataset. We can see that while

all attributes have a key and a value, only ports has a range since it is a dynamic signature.

We note that the complexity of signatures varies: some are primarily based on packet size
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protocol:port
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Figure 5.3: The structure of our classifier, illustrating a progressive classification of a flow.

(Rocket League) while others require payload bytes too (Fortnite and Call of Duty MW);

some are based on attributes of first two packets (Fortnite and Rocket League) while others

require more data (Call of Duty MW). These signatures need to be combined to predict

the actual game being played as they may have some common attributes for e.g., both

Fortnite and Call of Duty MW have the first upload packet length as 29 and thus require

further inspection to classify the game. Therefore we need a classifier model takes into

account all attributes and looks at the minimum number of packets to rapidly detect the

game.

5.2.3 Game Classifier

We employ a two-level hash table (Fig. 5.3) that is constructed by combining all the game

signatures extracted above, enabling us to rapidly detect game-play flows (and dismiss

undesired traffic). The first level contains the packet attributes (e.g., u_0_len, u_0_b_0)

as keys. The second level contains the possible values of the attribute as key, and possible

game titles that have the same value as the entry of the hash table.

Flow of Events: Given the pre-populated hash table, we demonstrate our classifica-

tion algorithm for an illustrative example in Fig. 5.3. We initialize the predicted output

by the set of all possible games in our dataset (shown on the right side). For each incoming

packet of a given flow (shown on the left side), the attributes are extracted and looked

up in the hash table. For each attribute, a set of possible game classes is inferred. For
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an illustrative WoW (World of Warcraft) flow, upon arrival of the first packet, the pro-

tocol and port are identified as TCP:3724. Looking them up in the hash table followed

by intersection with {all games} gives us the set {‘‘WoW’’, ‘‘Hearthstone’’} as output.

We then proceed by looking up the packet size of 52 bytes. While 52 only yields WoW in

our hash table, keep in mind that Hearthstone corresponds to a wildcard (* : indicating

that attribute values were not static) meaning that the size of the first upstream packet

in Hearthstone can be anything (including 52) and hence no change in the output game

set. Upon extracting the second byte of the first upstream packet (u_0_b_1) we narrow

it down to WoW. When the set of games reduces to one game, we declare it as classified.

Thus, the classifier rapidly eliminated other possibilities and detected a WoW game-play

flow by analyzing the protocol, port, packet size, and the first few bytes of the upload

packet. Note that packets’ inter-arrival time in a game-play flow is in the order of mil-

liseconds, giving sufficient room for hash table lookups (in the order of microseconds) in

between packets.

We intentionally employ an algorithmic model rather than a machine learning model

since the latter requires all the input attributes to be collected, stored and processed

in memory to make a classification decision, which is more expensive in memory and

compute. Our classifier model detects the game or rejects non-gaming flows progressively

on a per-packet basis, without necessarily requiring the attributes of all ten initial packets.

Whenever the possible games reduce to an empty set, we do not process packets of that

flow further by classifying it as a non-gaming flow. This helps us quickly eliminate flows

(often on the first packet) that do not form a part of our game set. For example, none of the

games use HTTP(S), so a majority of the traffic using TCP:80 or TCP:443 is eliminated

straight away and is never detected as a game. This avoids unnecessary per-flow state

maintenance (no state is maintained for flows rejected on the first packet) and helps our

detection method scale.

5.2.4 Evaluation

Our model (signatures and classifier algorithm) achieves an overall accuracy of 99.6%

(with a precision of 100% and a false negative rate of 0.36%) when it is applied to our field
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dataset. We used the metrics precision to signify that flows that were identified as games

were indeed classified with the right title. The metric false negative rate indicates that a

small fraction of gameplay traffic wasn’t detected as gameplay. We found that flows of nine

game titles receive a perfect accuracy 100%, while 4.5% of WoW flows are not detected as

a game flow. Note that our game-specific signatures are generated based on traffic patterns

found in α = 0.90 fraction of labeled game flows; hence a minority of flows that do not

conform to those signatures will not be detected as gaming flows. Our model may miss

some game flows but indeed detects games correctly and confidently. We observe that the

model is able to detect all games in our dataset within the first two packets (first upload

and first download) as the signatures across the ten games are fairly unique, resulting in a

rapid detection.

5.2.5 Field Deployment and Insights

The game detection system was deployed in our university campus network (with users

from offices and student dormitories) during the month of Sep 2021 to obtain insights

into the game playing patterns, as well as to determine corresponding gaming servers that

clients connect to and their latency from our campus (discussed in §5.3). Our classifier

(loaded with the signatures) is implemented as a DPDK[14] application running on a server

which receives campus traffic mirror from optical taps (observed total traffic peak: 8Gbps).

To reduce the rate of false positives in the wild i.e., not detect non-gaming traffic as games,

we made our algorithm more conservative to analyze all attributes of the initial ten packets

of each flow before classifying the flow. Also, we monitored the activity of the flow for the

first minute of its lifetime, ensuring packet rates match the expected rate of gaming flows

(typically less than 100 pkts/sec).

The system detected over 31k game-play sessions, constituting nearly 9000 hours worth

of game-play across the ten titles. We found that the top three games by the number of

gaming sessions were CoD:MW (9545), Fortnite (7930), and League of Legends (6290).

Interestingly, LoL dominated by the total number of gaming hours – LoL was played

for 2611 hours, followed by CoD:MW for 1575 hours and Fortnite for 1562 hours. This

highlights the games with which gamers generally engage most.
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Figure 5.4: Dynamics of daily game-play hours across ten titles during field trial.

Fig. 5.4 shows the dynamics of daily game-play hours across the ten titles. Unfor-

tunately there was a power outage in our lab on 14 Sep, causing data to be missed for

that day. We make a couple of observations: (a) there is a slight decreasing trend of daily

gaming hours during this period (more gaming hours in the first half than the second half)

due to academic term starting on 13-Sep following a study break; and (b) gaming hours

fluctuate across game titles – as an example, Genshin Impact (shown in brown) was more

popular early in September (≈ 87 hours daily), but then trended down to less than half

that (≈ 37 hours daily) towards the end of the month; Fortnite (shown in green) was played

for 475 hours in the third week when Chapter 2 Season 8 was released, but this dropped to

325 hours in the fourth week once the excitement wore off – such ebb and flow is the norm

in gaming [171], requiring ISPs to have constant visibility so they can tune their networks

accordingly.
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Figure 5.5: Distribution of game-play session duration across the ten titles.

Fig. 5.5 shows the distribution of game-play session duration across the ten titles. We

observe a few patterns of user engagement with various games: Several CS:GO, Genshin

Impact, and WoW gamers spend more than an hour in each gaming session, with CS:GO
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being the most engaging game with median duration of 32 minutes. Rocket League is

played for a relatively fixed duration of 10 minutes. Further, the impact of game modes

is pronounced in games like CoD:MW with three bumps on its corresponding curve, high-

lighting three clusters of game modes, namely 5v5, GroundWar, and BattleRoyale offered

by this game title.

Lastly, we analyzed short game flows (with duration less than 2 min), which can indicate

game abandonment. While only 3.5% of the flows with local servers (within Australia) were

short, it quadruples to more than 12% when the game is played on remote servers. Though

correlation should not be interpreted as causation, it does indicate that gamers tend to

abandon games more often when the latency to the server is high. The next section draws

insights into game server locations and latencies.

Table 5.3: Summary of detected game-play sessions in our field trial.

# Game Session # Game Hour # Game Server # IP Prefix # AS # Country
31673 8956 4523 165 31 14

5.3 Mapping Game Server Locations and Latencies

Having measured gaming behaviors in the University campus over a one-month period,

we now shift focus to the game servers, including their location and latency. For each of

the game-play servers, we obtain their geo-location, BGP routing prefix, and the AS num-

ber from public data sources. Additionally, we perform active ICMP/TCP-based latency

measurements to the detected game servers. This covers over 31k gaming sessions played

against 4,500 unique game servers, spread across 14 countries and 165 routing prefixes and

31 ASes, as shown in Table 5.3.

5.3.1 Active Measurements: Geolookup and Latency

We employed an IP Geolocation service [172] to tag the location of every server IP address.

We also used the online Looking Glass tool exposed by the University’s ISP, that offers

ping, traceroute, and BGP queries to obtain routing prefix (i.e., the subnet of the server

IP address) and its AS path. Furthermore, we estimated the latency (we will use latency
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Figure 5.6: Estimating TCP RTT.

interchangeably with round-trip-time or RTT) by actively pinging the game servers our-

selves. Since only 26% of the servers responded to ICMP pings, we used two additional

tools – HPing3 [173] was used to perform TCP ping using SYN packets to servers of TCP-

based games (WoW and Hearthstone), and fping [174] to ping the entire subnet of the

game server (since the entire prefix is housed in the same AS), yielding min, average, and

max RTT to all servers in the subnet that respond. To corroborate the validity of (subnet)

fping, we compared its average value to (endpoint) ping where available, and found the

mean absolute percentage error (MAPE) to be less than 3%.

5.3.2 Passive Measurements: Continuous latencies

In addition to actively pinging servers, we also passively monitored latencies of TCP game-

play flows. TCP is an ACK based protocol i.e. the data sent from one endpoint to another

receives an acknowledgment of the data. Thus, using the seuqnce and ack numbers in

the TCP header we can estimate the RTT of every segment being transferred. We use

two queue data structures (one for each direction) and estimate the end-to-end RTT by

monitoring the packets of a flow in the middle.

We explain how our algorithm works via an example (Fig. 5.6). A (game) client sends/

receives data to/from the (game) server while our monitoring solution analyses packets in

between. The figure shows a point in time when client is sending some data using two

packets (say 1 byte each) back-to-back. It may do so if the CWND is high enough. When

monitor receives a packet, it enqueues a two tuple with a timestamp and a value (= seq

num. + data len) into the queue. In this case, the queue contains a couple of two tuples

88



Chapter 5. In-Network Game Detection and Latency Measurements

CoD: Modern Warfare

Fortnite

League of Legends

Genshin Impact

CS:GO

Hearthstone

Escape From Tarkov

World of Warcraft

FIFA

Rocket League

AU

JP

US

CN
TW
SG
KR
DE
BH
ID
HK
ZA
NL
IN

0-100 ms (82.3%)

100-200 ms (13.1%)

200-300 ms (3.6%)

300-400 ms (0.9%)

400+ ms (0.1%)

Figure 5.7: Sankey diagram depicting game sessions, countries, and latency bands.

with the latest one corresponding to seq n (+1). The server chooses to acknowledge them

both together and sends an data packet with ACK number set to n + 1. Now, the monitor

dequeues the two tuples until it finds one whose value is equal to the ack number (which

is packet two). Hence, it computes the RTT between the monitoring point and server by

substracting the timestamp of ack with timestamp in the two-tuple enqueued. The server

also send data along with ack (n +1) with a sequence number m. The monitor uses another

queue to store two-tuples in this direction and estimates the RTT between monitor and

client in a similar way. Thus, by adding up both the RTT, we can compute the RTT

between a gaming client and gaming server for the games running on TCP.

We note that in case of packet losses and restransmissions, a two-tuple with the same

sequence maybe enqueued twice (i.e. when loss happens after the monitoring point). To

account for such cases, the monitor dequeues the packets until the point when the head of

the queue has a greater sequence number than the ack number in the other direction.

We further note that we could not passively measure latencies for UDP games since

the UDP protocol does not have sequence numbers and acking mechanisms . In addition,

most of the games are asymmetric – upload stream is independent of download stream and

hence correlating both directions is non-trivial.
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Figure 5.8: Latency distribution of game servers from the campus field trial.

5.3.3 Mapping Game Servers from the University

A high level view of sessions of each of the ten game titles as they map to servers in various

countries and at different latency bands is shown in Fig. 5.7. Most countries map to a single

latency band (needless to say Australia (AU) is the home country), though some countries

(like US) map to multiple latency bands, due to disparities in routing paths to multiple

ASes in the same country, or to different subnets within the same AS. Specifically, 82.3%

of the game-play sessions connected to servers within Australia with fairly low latency of

2-20ms, 13.1% of the sessions experienced 100-200ms, 3.6% had 200-300ms, and 1% had

latency of 300+ ms.

Our measurements clearly reveal that game providers often use multiple CDNs (each

identified by a unique AS number) to host their game servers – for example, while Fortnite

largely connects to Amazon cloud locally, some sessions connected to Google cloud in

another country. There are several reasons why a gamer’s session may be hosted at a

server with high latency: (a) no nearer server availability; (b) there may not be enough local

players available, and the player is therefore matched with players in other geographies; or

(c) the player deciding to team with friends in another country, and the server is chosen in

proximity to the majority of players.

To get a better understanding of gaming latency per title, we plot in Fig. 5.8 the latency

distribution across the ten games. Fortnite and Escape from Tarkov predominantly use

local servers (50ms or lower); League of Legends and CoD:MW use only a small number of

local servers; while Hearthstone and Genshin Impact do not have any servers operational
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in the local country (the closest ones being 100+ ms away). It is also interesting to

see that servers are clustered for some games (e.g., Hearthstone, Genshin Impact, WoW),

highlighting servers co-located in the same CDN. Curiously, though WoW and Hearthstone

are from the same publisher (and share the AS owned by Blizzard), only WoW uses local

in-country servers.

To highlight the deeper dynamics of latency, we focus on League of Legends (LoL)

and show in Fig. 5.9 the distribution of latency across various server prefixes, color-coded

by their country of residence. The game connected to 293 servers located in 8 countries

spanning 22 routing prefixes. We observe that it has only one routing prefix locally (P1)

that offers a very low latency of under 5ms. Across other prefixes, we make a couple of

observations. First, prefixes (P3, P4, P9) and (P13, P15), while located in China, belong

to two different ASes and hence give very different latencies. In fact, P13 is geographically

closer to P3 but the latter is one AS hop away while P13 is 3 AS hops away, leading to

a latency differential of about 100ms. Second, prefixes (P5, P6, P16) belong to the same

AS and are located in USA. They are all one AS away from the source but P16 has a

120ms higher latency, illustrating that routing paths can vary for different subnets even

within the same AS (in this case owned by Riot Games, the publisher of LoL). Further,

counter-intuitively, prefix P16 is geographically closer (to game client) than P5 and P6.

This analysis can help ISPs identify game server locations and routing prefixes so they can

tune their peering relationships and path selections to improve latency for their gamers.
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Figure 5.9: Latency per IP prefix of the League of Legends servers.
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Figure 5.10: Measured latency across ISPs to popular external (outside country) game
server subnets of Genshin Impact (left) and CS:GO (right).

5.3.4 Comparing Gaming Latencies from Multiple ISPs

To better illustrate the impact of peering relationships and routing paths on latency, we

performed active latency measurements (using an automated script) from several volun-

teers’ home broadband connections in our local city to the game servers discovered in

§5.2. The volunteers were spread across four residential ISPs (numbered II-V, with ISP-I

representing the University), and we found that the average latency to game servers out-

side the country varied significantly across these ISPs, as illustrated in Fig. 5.10 for two

representative games namely Genshin Impact and CS:GO.

Genshin Impact has no local servers, and a majority of its servers are in Japan (JP).

It can be seen that ISP-III offers the lowest latency of 119ms while the latency is much

higher (at around 198ms) with ISP-V. The USA serves the next higher number of sessions

of Genshin Impact, and in this case ISPs II-V provide a latency of around 200ms, while the

University’s ISP-I has 300+ ms latency. For Denmark (DE), ISP II provides the highest

latency at 322ms. Overall, a Genshin Impact gamer would get a better experience if they

were with ISP-III. However, any ISP with this visibility into game server locations can

optimise their routing paths to improve the gamer experience.

The difference across ISPs for CS:GO is even more stark, as shown in the right side

of Fig. 5.10. In this case ISP-V offers a significantly worse latency to CS:GO servers

in Singapore (SG) and India (IN). Given that CS:GO is a tournament-grade first-person

shooting game, the latency handicap induced by ISP-V will be unacceptable to gamers,

and likely to lead to complaints and churn. The situation is very avoidable – indeed we
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have reached out to this ISP, urging them to look into their peering relationships and

routing path selections to address this issue.

5.4 Conclusion

The gaming industry is experiencing explosive growth, and ISPs are keen to offer a better

gaming experience to their subscribers. However, they are hamstrung by the lack of visibil-

ity into gaming patterns, servers, and latencies. We collected and analyzed packet traces

from ten popular games across various genres, extracted packet attributes, and developed

a deterministic model to identify games based on automatically generated game-specific

signatures. We deployed our system on live traffic of a university network, and over a 1-

month period detected 31k game sessions to gain insights into game popularity and gaming

engagement. We then related game latencies to routing paths by performing BGP/Geo

lookups and active latency measurements to the 4,500+ game servers identified. We illus-

trated how the spread of games servers across ASes and countries impacts latency. Finally,

we showed that ISPs serving gamers in the same city have varying latencies to these game

servers, influenced by their peering relationships. Our study gives ISPs much-needed vis-

ibility so they can optimize their peering relationships and routing paths to better serve

their gaming customers.
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In the previous chapters, we have tackled application detection and performance mon-

itoring looking specifically at two classes of traffic: video streaming and gaming. These

applications have different requirements from the network: video streaming being band-

width sensitive and gaming being latency sensitive. Different network impairments can

impact their performance and can result in a poor user experience. Examples include be-

ing far from a WiFi router affecting WiFi signal strength, inefficient routing leading to
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high latencies and multiple applications contending on a bottleneck link thereby adversely

impacting the performance of each other.

This chapter focuses on bottleneck links within operator networks that cause a poor

user experience since they are typically within the control of the operator and can be

actioned upon. We have worked on a few frameworks that assist network operators in

improving the application performance:

• Firstly, operators can formally specify bandwidth allocation amongst traffic classes

that suits most common scenarios and offer differentiated plans [21]. This framework

optimizes bandwidth allocation using formally specified utility curves without the

need of application performance measurement.

• Secondly, they can use application performance monitoring systems (that we’ve

shown in the past few chapters) and prioritize traffic depending upon their per-

formance (i.e., selectively prioritize “suffering" applications) [20]. This approach

leverages application level QoE metrics and uses simple prioritization primitive to

prioritize (and de-prioritize) applications according to their performance.

• Finally, we also propose an AutoQoS framework which takes specialized network

telemetry and dynamically adapts QoS configurations on the bottleneck link to share

the resource in an application fair manner. This is the most complete framework as

it combines techniques from the first two frameworks by incorporating sophisticated

telemetry and application-specific profiles (instead of operator specified functions) to

measure application performance and uses dynamic resource scheduling (instead of

simply prioritizing one class over another).

Depending on the requirements of operators, for instance, offering temporary application

boost plans etc. and the feasibility of the deployment, for instance, picking from the

available queueing primitives, a framework can be picked and employed.
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6.1 Introduction

User-perceived application experience is of paramount importance in broadband as well

as cellular networks, be it for video streaming, teleconferencing, gaming, or web-browsing.

The best-effort delivery model of the Internet makes it challenging for Application/Content

Providers to maintain user experience, requiring them to implement complex methods such

as buffering, rate adaptation, dynamic CDN selection, and error-correction to combat un-

predictable network conditions. Network operators, also eager to provide better user expe-

rience over their congested networks, often employ middle-boxes to classify network traffic

and apply prioritization policies. However, these policies tend to be static and applied on

a per-traffic-class basis, with the benefits to individual applications being unclear, while

also potentially being wasteful in resources.

In this chapter, we tackle the problem of active management of application QoE, espe-

cially focusing on aggregate QoE of applications sharing a common bottleneck link (typi-

cally in the last mile network [7]). We begin by proposing a self-driving network prototype

called AppAssist which uses simple telemetry functions to map out application behavioural

states and selectively prioritizes applications entering into a “bad" state. This prototype

gives an overview of a self-driving network designed to monitor and act upon application

performance. Subsequently, we then present a complete system called AutoQoS which

can leverage programmable networks to measure, monitor and manage application per-

formance and automatically update QoS parameters such as weights of a weighted-fair-

queueing scheduler to distribute the bottleneck resources in a fair manner. While we have

also worked on the first proposal of an open, formal and rigorous bandwidth allocation

framework in one of our papers [21], we do not include it in the scope of this thesis since

it doesn’t take in application performance metrics as input and instead relies on a policies

given by operators which is not always feasible. However, both AppAssist and AutoQoS

take application performance (as studied in previous chapters) under consideration while

making decisions to manage bottleneck resources and improve user experience.
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Figure 6.1: System architecture of assisting applications.

6.2 AppAssist: Self-driving network prototype

It is envisaged that Self-Driving Networks of the future will be able to address the problem

of active QoE management through a combination of continuous network measurement,

automated inferencing of application performance, and programmatic control to protect

user experience. This chapter works towards this goal, leveraging recent developments in

programmable networks and machine learning. Our aim is to show that the network need

not be manually pre-configured for resource sharing amongst applications; instead, it can

autonomously deduce application experience at run-time, and provide assistance as and

when required to specific traffic streams, thereby restoring user experience in a self-driving

manner (aka without any explicit signalling).

We begin by outlining the architecture of our system that uses a trained machine to

dynamically deduce the application state and apply corrective actions when application

performance deteriorates to an unacceptable state (§6.2.1). We then prototype our system

and apply our state inference methods to two applications, namely Netflix video streaming

(that is sensitive to network bandwidth) and Gaming (that is sensitive to network latency),

and show that network assistance can protect application experience in a timely manner

in the face of changing traffic conditions, without requiring any explicit signalling (§6.2.2).

Our work paves the way towards a network that can self-manage user experience without

human configuration.
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Figure 6.2: Example of performance states transition for a video streaming application.

6.2.1 System Architecture and Design

To realize a self-driven network assistance, three tasks are needed to be performed automat-

ically and sequentially: (a) “measurement”, (b) “analysis and inference”, and (c) “control”,

as shown by a closed-loop in Fig. 6.1.

In our architecture, a programmable switch is placed in-line on the link between the

access network and the Internet. In a typical ISP network, this link is the bottleneck (and

hence the right place to do traffic shaping) as it multiplexes subscribers to a limited back

haul capacity. First, traffic of a desired application (e.g., video streaming) is mirrored to

FlowFetch module which exports flow-level counters (measurement) to a classifier model.

Next, the network telemetry data is used by a classification model to determine the current

state of application (analysis and inference) and feed the state-machine module. If a critical

event of the application behaviour (e.g., video re-buffering) is detected by the state-machine

an assist request is sent to actor module. Lastly, the actor requests changes (e.g., queue

provision) to the switch controller which in turn sends FlowMod messages to the switch,

executing the corresponding action.

In order to automatically infer the performance (e.g., quality-of-experience) of an appli-

cation, we model its network behaviour using a state machine. Every application begins in

state “start”, when its first packet is seen on the network. Subsequently, it transitions into

different states depending on the type of application. We illustrate in Fig. 6.2 an example

of performance state-machine for a video streaming application as a sequence of states: init

→ buffering → stable → stable → depleting → terminate. Depending upon the policies of
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Figure 6.3: AppAssist data collection tool.

network operator for video streaming, a required action can be taken automatically at any

of these states (e.g., when it is found at depleting state, a minimum amount of bandwidth

is provisioned to corresponding flows, till the application comes back to its stable state)

Data Collection

To realize such a system architecture, we first need to acquire network activity data for

the applications of interest, labelled by their behavioural states. This enables the network

operator to train classifiers and build state machines which can infer application behaviour

without the need of any explicit signals from either the application provider or client. We

have developed a tool for generating application dataset – the high-level architecture of

our tool is shown in Fig. 6.3. It consists of three main components namely Orchestrator,

Application player, and FlowFetch. An implementation of this tool was presented in §4.2.1

to collect video streaming datasets. The orchestrator performs two tasks: (a) initiates and

runs the application instance, and keeps track of its behavioural state, and (b) signals to

the FlowFetch for recording the corresponding network activities (i.e., time-trace of flow

counters). The optional network conditioner module can be used to impose (synthetic)

network conditions such as limited bandwidth or extra delays to capture various behaviours

of the application.

Labelling Application States: As mentioned earlier, important application states

are needed to be labelled since they help the sate machine determine when a network as-

sist is required. For example, stall/buffer-depletion, high latency, and lag/jitter are crucial

states for video streaming, online gaming, and teleconferencing applications, respectively.
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Having identified the important behavioural states of an application, the orchestrator is

configured to detect and label these states. In prior research, authors have used GUI inter-

action tools [104], javascript APIs [105] and web automation tools (e.g., Selenium library)

[17, 18, 97] to automatically interact with the application and capture its behaviour.

Measuring Network Activity: The network activity of applications can be measured

in several ways ranging from a basic packet capture (expensive recording and processing)

to proprietary HTTP loggers combined with proxies (limited scalability). We propose a

method that strikes a balance by capturing flow-level activity at configurable granularity

using conditional counters. This method stores less data due to aggregation on a per-flow

basis, and can be deployed using hardware accelerators like DPDK or be implemented in

the data-plane using P4 [30].

Our FlowFetch tool (also described in §4.2.1) records flow-level activity by capturing

packets from a network interface. The output records will form the training dataset. We

added a telemetry function primitive called as conditional counters in which each flow

(i.e., 5-tuple) has a set of conditional counters associated with it – if an arriving packet

satisfies the condition, then the corresponding counter increments by a defined value. For

example, a counter to track the number of outgoing packets greater than a volume-threshold

(important to identify video-streaming experience [107]). Similarly, other basic counters

(without any explicit condition) to track volume of a flow can be defined. The set of

counters are exported at a configurable granularity (e.g., every 100ms) – it depends on the

complexity of application behaviour.

State Classification and State Machine

The training set consisting of multiple labelled application runs is used to train and generate

a model which will classify the application state given its network activity patterns. Certain

states can be identified from prior knowledge of application (e.g., video streaming always

starts in buffering state). For other states which require pattern recognition on the network

activity, it requires to extract important traffic attributes computed over a time window

(say 10 seconds) and build an ML-based classifier (as presented in chapter 3 and 44). Thus,
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the State Classifier is composed of rule-based and/or ML-based models which together

classify application’s current state that is passed as an update to the state-machine, shown

in Fig. 6.1.

State Machine Generation: The state machine of the application is generated using

the behavioural state labels available in the dataset along with corresponding transitions.

We note that all possible transitions may not occur for an application during data collection,

and hence we need to edit the state machine manually.

Experience-Critical Events Annotation: The state machine that models applica-

tion behaviour needs to be annotated with Experience-Critical (EC) events that require

assistance from the network. When such events occur within the state machine, a no-

tification is sent out to the Actor module (in Fig. 6.1). There might be multiple types

of EC events. For instance, a transition to “bad” state (e.g., buffer depletion for video

streaming) or spending long time in a certain state (e.g., prolonged buffering) indicate

QoE impairments, and thus are considered as EC events.

Actor: Enhancing Experience

Upon receiving assist requests from the State Machine, the Actor is responsible for en-

hancing the performance of the application via interaction with the Switch Controller.

Typically the application’s poor performance can be alleviated by prioritizing its traffic

over others in a congested scenario. This can be done in multiple ways including but not

limited to: (a) strict priority queues where priority levels are assigned depending on the

severity of the assist requests, (b) weighted queues where more bandwidth is provisioned

to applications in need, or (c) use packet coloring and assigning different drop probabilities

to different colors, e.g., a two-rate three-color WRED mechanism [heinanen1999two].

Assisting methods are confined by the capability of the programmable switching hardware

and the APIs it exposes. Nonetheless, the actor needs to request the switch controller to

map the flow(s) of the application to the prioritizing primitive (changing queues or coloring

using meters, etc.).

Note that the assisted application needs to be de-assisted after certain time for two
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Figure 6.4: Buffer-based state machine for video streaming.

reasons: (a) to make room for other applications in need (to be prioritized), and (b) the

performance (QoE) of the assisted application has already improved. However, doing so

might cause the application to suffer again and thus results in performance oscillation (i.e.,

a loop between assistance and de-assistance). To overcome this, we propose that the de-

assisting policy could be defined by the network operators using the network load (i.e.,

link utilization). A primitive policy could be to de-assist an application when the total

link utilization is below a threshold, say, 70%. This would ensure that the de-assisted

application has enough resources to (at least) maintain the experience, if not improve it.

These policies could be further matured depending on the number and type of applications

supported and also various priority levels defined by the operator.

6.2.2 Assisting Sensitive Applications

We now implement our framework and assist two applications, namely, Netflix (represen-

tative of bandwidth sensitive video streaming) and ping (representative of latency sensitive

online gaming). Although ping is relatively simple when compared to actual gaming ap-

plications, we note that the requirement of the application still remains the same, i.e., low

latency. In what follows next, we describe our measurements, state classification models

of the applications behavior, and subsequently elaborate on assistance methodology which

enhances the user experience.
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Dataset and State Classification

Dataset: We use our data collection tool, shown in Fig. 6.3, to orchestrate sessions of

Netflix video streaming and ping as follows. For Netflix, we use a web client on a chrome

browser (i.e., the Application block in Fig. 6.3) which is controlled by a python script

(i.e., the Orchestrator) using Selenium web automation library. The network data is col-

lected using our FlowFetch tool described in §6.2.1. The orchestrator also captures user

experience by enabling a menu that offers multiple video playback metrics. We detect bad

experience in terms of buffer depletion which often also leads to bitrate degradation as the

video client adapts to poor network conditions. Prior studies [97, 105, 106] have found that

chunks transfer in a flow starts by an upstream request packet of large size (other small

upstream packets are generally ACKs for the contents received). To capture such transfers,

we employ three conditional counters: “ByteCount” transferred both downstream and up-

stream, “PacketCount” both downstream and upstream, and “RequestCount” for upstream

packets greater than a threshold (say, 500 Bytes). We collected these flow counters every

100ms, over 6 hours worth of Netflix video playback.

For gaming (represented by ping), the experience metric, latency, is measured both at

the client-end and in the network using the FlowFetch. On the client, we have built a

python wrapper which reads the output of the ping utility. On the network, the FlowFetch

keeps track of the ICMPv4 flow using the 4-tuple sourceIP, destIP, Protocol and ICMP ID.

It calculates the latency by subtracting the timestamp in request and response packets.

We note that the latency measured from network is slightly lower than measured on client

as it does not include the latency in the access network.

Classifying Buffer-State for Video Streaming: In our dataset, we have observed

that Netflix client: (a) in buffer-stable state, it requests one video chunk every 4 seconds

and an audio chunk every 16 seconds, (b) in buffer-increase state, it requests contents at

a rate faster than playback, and (c) in buffer-depleting state, it requests less number of

chunks than being played.Given this knowledge of Netflix streaming, we devise a decision

tree-based classifier for the count of requests over a window of 20 seconds. To maintain

the buffer level over this window, the Netflix client should ideally request for 7 chunks,

i.e., 5 video chunks (of 4 second duration) and 2 audio chunks (of 16 second duration).
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Figure 6.5: Latency-based state machine for online gaming.

Thus, this naturally indicates a threshold to detect buffer increase (>7 chunk requests) and

buffer depletion (<7 chunk requests). However, in practice, deviations from ideal behaviour

are observed – we, therefore, built our decision three by slightly broadening the threshold

values as depicted in Fig. 6.4.

We acknowledge that it is needed to have a combination of counters and statistical

techniques to isolate chunk data and extract features to predict bitrate switches and buffer

stalls, as showed in chapter 4, to ideally capture the experience of video streaming. How-

ever, the scope of this chapter is limited to develop a framework for automatic assistance of

applications by acting upon triggers detected by real-time network measurement. Hence,

we use simple request counters based state to demonstrate the self-driving application

assisting framework which can additionally incorporate any number states reported by so-

phisticated models and assist the applications when experience-critical events are detected.

Classifying Latency-State for Gaming: In multiplayer online gaming applications,

an important experience metric is latency which represents the end-to-end delay from the

gaming client to either the servers or other clients (i.e., peers). The latency (also referred

to as “lag”, “ping rate”, or simply “ping”), arises by the distance between end-hosts (static),

and congestion in the network (dynamic) which causes packets to wait in queues. Our

solution attempts to alleviate the gaming performance by reducing the delay caused in

congested networks. Although the latency requirements differ depending on the type of

game being played, typically at least a latency of under 100ms is desired to have a smooth

experience [Latency] – although top gamers prefer a latency of up to 50ms. Using the

latency measurements, we define three states of gaming, i.e., “good” (0-50ms), “medium”
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(50-100ms) and “bad” (>100ms), as depicted in Fig. 6.5 – these latency ranges were reported

by players of various popular gaming applications such as Fortnite, Apex Legends and

CS:GO. Any transition into the bad state triggers a notification requesting an assist to the

actor.

Performance Evaluation

With state machines and classification models built, we now demonstrate the efficacy of our

framework by implementing the end-to-end system from measurement to action in a self-

driving network. Our lab setup consists of a host on the access network running Ubuntu

16.04 with a quad-core i5 CPU and 4 GB of RAM. The access network is connected to the

Internet via an inline SDN enabled switch (i.e., Noviflow model 2116). On the switch, we

have capped the maximum bandwidth of the ports at 10Mbps. We have pre-configured

three queues (i.e., A, B, and C) on two ports (i.e., P1: upstream to the Internet and

P2: downstream to the access) which are used to shape the traffic, assisting sensitive

applications. Queue A, is the lowest-priority default queue for all traffic and is unbounded

(though maximum is still 10Mbps). Queue B has medium priority and Queue C has the

highest priority. This means that packets of the queue C are served first, followed by the

queue B, and then the queue A.

We acknowledge that the queueing primitives we use in this prototype are limited to just

prioritization. In the next section, we describe a more robust queueing control system that

dynamically distributes weights of a weighted fair queueing (WFQ) scheduler depending

on the application performance.

We now set up a scenario with three applications – Netflix client on Chrome browser

representing video streaming application, ping utility representing gaming, and iperf to

create cross-traffic on the link. First, we use the applications without any assistance wherein

all network traffic is served by one queue without prioritizing any traffic (i.e., best-effort)

– performance of applications is shown in Fig. 6.6.

The flow of events is as follows. At t=0, we start a ping to 8.8.8.8 – this traffic persists

during the entire experiment (400 seconds). At t=10, we launch the chrome browser and
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Figure 6.6: Performance of sensitive applications without network assistance.

log in to Netflix. We observe that ping latency (shown by solid orange lines), which is

initially at around 2ms, starts increasing to 100ms once the user logs into Netflix. The

user, loads a Netflix movie (“Pacific Rim”) and starts playing it at t = 30. From this point

onward, we observe that the ping latency rises up to 300ms, and Netflix requests chunks

and transfers contents at its peak rates (purple lines) – the link utilization hits 100%, as

shown by solid black lines in the bottom plot. On the Netflix client, we see that the buffer-

health is increasing slowly (solid blue lines), and the client selects the highest available

bitrate of 2560 kbps (dashed red lines).

At t = 70, we initiate a downstream flow of UDP traffic with a max rate of 9 Mbps using

the iperf tool to create congestion. We immediately notice that both sensitive applications

start to suffer with the link utilization remains at 100%. The buffer level on the client starts

depleting from 110 to 100 after which the Netflix client switches to a lower video bitrate.

The video client does not request enough chunks as shown by a gap in the purple curve. It

only starts sending out requests again at around t = 100, when the video bitrate dropped.

The ping suffers even more and the latency reaches to 1300-1400 ms. Once the download

finishes at t=130, we notice that the video starts to ramp up its buffers, but at a lower
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Figure 6.7: Performance of sensitive applications with network assistance.

bitrate (because it just detected poor network conditions) and reaches the stable buffer

value of 4-minute at around t = 140. The ping also displays a better performance with

the latency between 300-400ms (during video buffering), but it gets even better dropping

to 100 ms when the video enters into its stable state.

At t = 220, we initiate another UDP traffic stream which makes the applications suffer

again. This time, we notice that video transitions into buffer-depleting state from buffer-

stable state. Again we observe gaps in video chunk requests, clearly indicating decrease in

buffer, and subsequently the video download rate falls below 2 Mbps. Ping reacts similarly

by reporting the latency of over a second. Upon completion of the download, we note that

both sensitive applications display an acceptable performance.

For our second scenario, we demonstrate the automatic assistance from a self-driving

network which continuously monitors the applications states and intervenes whenever

needed. In our prototype, we allocate the highest priority queue C to gaming applica-

tions, which will ensure reduction in latencies. The video streaming flows, when require

assistance, are served by the queue B. Note that we configured the max-rate on the queue

B at 4 Mbps – when exceeded, the priority of exceeded packets becomes equal to of the
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queue A. The need for such a mechanism is due to the elastic nature of video streaming

application, it will take up as much bandwidth as available. In other words, it will throttle

the default traffic to almost 0.

With these settings, we notice a significant improvement in the experience of both

sensitive applications as shown in Fig. 6.7. As described earlier, we start with only ping

where it reports a very low latency (i.e., <5ms). Logging into Netflix at t = 20 causes ping

latency to go beyond 100ms. First, the classifier finds the gaming application in the medium

state (a transition from the good state) which results in a request for assistance. The actor

elevates the ping experience by shifting its flow to the queue C. Following this action, we

observe that the ping latency immediately drops back to around 2ms. Meanwhile, the video

stream starts and is detected to be in the buffer-increase state, given the large number of

chunk requests. At t = 70, when the UDP iperf traffic (i.e., download) is introduced,

we note that the buffer depletes and no chunk requests are sent for a few seconds. Our

classifier now detects the video state at buffer-depleting which initiates an assist request.

Within a few seconds, all flows corresponding to the video stream are pushed to the queue

B. Upon assisting the video, we observe that buffer starts to rise again. Note that the

buffer rises slower this time because Netflix application gets about 4-5 Mbps due to the

queue configuration. Nonetheless, this ensures that the video performs better without

heavily throttling the download on the default queue. When the download stops, the

buffer steeply rises till it enters into the stable state. At this point, latency values go up

to 100ms. This happens due to de-assist policy which pushes back the applications’ traffic

to the default queue as the link utilization falls below the 70% threshold (for video) and

40% threshold (for gaming) respectively.

At t= 220, the iperf generates traffic again. As soon as the ping values go above

100ms, the ping flow is assisted, and thus its performance is improved. Similarly, the video

application is re-assisted as it is found in the buffer-depleting state. This time we note

that the video buffer fills up very quickly, taking the application back to its stable state.

Note that the video stream is not de-assisted since the iperf traffic is still present (i.e.,

high link utilization), and the video download rate is capped at around 4-5 Mbps. Once

the download traffic subsides (and thus the link utilization drops), both video stream and

ping traffic are pushed back to the default queue A.
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6.2.3 Summary

Packet networks are agnostic to applications, which have served to keep the Internet in-

frastructure simple and scalable over the past several decades. However, the best-effort

model is now seen as an inhibitor to meeting user experience expectations for the diverse

applications such as streaming video, gaming, browsing, and social media. Current meth-

ods for prioritization of certain application types are static, and do not react to changes in

network conditions or user experience. Sensitive applications need dynamic prioritization

from a self-driving network that reacts to changes in user experience.

In this subsection, we have proposed an architecture (called AppAssist) for continuous

monitoring and dynamic control over the performance of sensitive applications. We have

developed data-driven models for the behavioural state of applications in real-time. Lastly,

we showed how our scheme is able to detect performance deterioration and take remedial

action for two popular sensitive applications, video streaming and gaming. In the next

subsection, we describe an improved and scalable self-driving network which leverages

programmable networks and dynamically allocates resources across traffic classes in an

application fair manner.

6.3 AutoQoS: Application-aware automatic QoS configura-

tion

Few ISPs nowadays actively aim to improve the QoE of their customer traffic. Clearly,

this is not due to a lack of tools: nearly all modern network devices support advanced

QoS policies including traffic classifiers, policers, shapers, queuing and scheduling policies,

together with active queue management disciplines. The problem lies instead in how to use

these tools to consistently improve the QoE of an always-varying traffic mix: an optimal

configuration today might end up detrimental tomorrow.

In this subsection, we present AutoQoS, a system that dynamically adapts the QoS

policies running on a switch so as to optimize application performance. To do so, AutoQoS

leverages modern programmable networks to extract rich telemetry from the data plane
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that is indicative of application performance and dynamically adapts the parameters of QoS

schedulers so as to manage resources in an application-fair manner. We implement AutoQoS

in both software and hardware testbeds. Our evaluations show that AutoQoS closely

approximates optimally-tuned QoS configurations and outperforms static QoS policies and

active queue management disciplines in various traffic scenarios.

A modern Internet service provider (ISP) serves a diverse range of customers who run

multiple applications. Due to the recent pandemic confining users to their households,

home networks have seen their peak rates climb up and users have experiencing sustained

congestion[3]. In such scenarios, ISPs often receive complaints from their users like: “there’s

a high delay on conferencing calls”, “web pages load slowly” or “my game download takes

forever”. At its core, the problem is that multiple applications with different behaviours

and requirements struggle for bottleneck resources, where some applications suffer more

than others.

To manage the congestion and combat these issues, ISPs can potentially take the fol-

lowing approaches: (1) active queue management (AQM) techniques, and (2) QoS policies.

AQM is a queue management discipline that aims at reducing standing queue lengths and

queuing delay [175]. Since AQM is relatively easy to deploy, ISPs have rolled it out across

the edge network (where traffic gets queued predominantly [176]). AQM is neither aware

of applications nor does it actively distribute resources among them. Thus, congestion may

still impact some applications more than others. Indeed, ISPs have observed fewer “delay”-

related issues [136]. However, customers can still complain about “bandwidth”-related

issues, for instance, “my game download still takes ages!”.

Therefore, in addition to AQM, ISPs now require employing QoS policies to balance

application needs. First, they need to broadly classify application into categories like

conferencing calls, video, web browsing, and large downloads/file transfers using existing

classification tools such as DPI [177]. Simply prioritizing one class over another is not

a desired solution as it can starve the least-prioritized application(s) during congestion

(a shortcoming of the prototype presented in the previous section). Thus, ISPs need to

attempt to allocate different bandwidth fractions to each application class. This is easier

said than done, as it is far from trivial to estimate the optimal distribution of resources.
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While operators can rely on historical traffic data, picking an optimal distribution that

suits all scenarios is difficult.

Different traffic mixes require different optimal static QoS configurations. Not only is

the traffic different during the day and night (e.g., switching between conferencing applica-

tions and entertainment applications), but may also be impacted by irregular events. For

instance, networks were clogged up when a popular show was launched on Netflix[178].

Similar occurrences also prevail when a popular game (such as Fortnite) launches a new

update requiring users to download 10s of gigabits of files [179]. This means that the

network operator would need to tune the distribution frequently.

In summary, to tackle the high traffic demand and consequent congestion, deploying

AQM is insufficient and configuring QoS (finding the optimal resource allocation) is hard

for dynamic traffic distributions. We require an equally dynamic system that is aware of

application performance and can automatically adapt QoS parameters accordingly. While

there exist several tools to classify the application traffic (e.g., modern DPI appliances [177,

180]) and widely developed packet schedulers supporting schemes like priority queuing and

weighted fair queuing [176], there is a lack of: (a) in-network, per-class measurements that

can reliably indicate application performance; and (b) a feedback loop that can automat-

ically adapt QoS parameters (i.e., , the resource distributions between classes) based on

these measurements.

To this end, we build AutoQoS, which measures appropriate per-class metrics in-

network that approximately indicate application performance and automatically recon-

figures QoS parameters to provide a fair application performance during congestion. It

is essentially solving the bottleneck resource distribution problem using a control loop

consisting of:

• Sensing: Leverage modern programmable networks to extract sophisticated metrics

(beyond queuing delay) indicative of application performance.

• Decision: Translate the network metrics into a normalized score which indicates

relative application performance. Then, decide how to distribute the resources to

provide fair performance across applications.

111



Chapter 6. Data-driven Management of Application Performance

• Actuation: Enforce decisions by changing the appropriate QoS parameters to adapt

to the current application traffic mix.

While methods and tools exist in prior work to tackle individual aspects separately,

we combine them and build a dynamic re-configuration QoS system to better manage

application performance in varied congestion scenarios. We implement AutoQoS on both

software and hardware test beds running real application traffic. We evaluate AutoQoS

and show that:

• It outperforms widely deployed FIFO, FQ_Codel (an AQM approach [181]) and

priority based schemes in different traffic scenarios;

• By dynamically adapting the weights, it performs very close to an optimal fixed QoS

policy;

• It allows for deviation in the normalizing functions i.e., the functions need not pre-

cisely map to scores; they can be approximate; and,

• It is implementable in programmable hardware today.

6.3.1 Overview

In this section, we provide an overview of how AutoQoS distributes bottleneck resources

in an application-aware manner and automatically configures QoS parameters to ensure a

fair performance. AutoQoS has five major components: (a) traffic classification identifying

broad classes of applications, (b) weighted queues for each class, (c) per-class telemetry

logic that extracts relevant metrics, (d) mapping functions that map metrics to performance

scores and finally (e) online adaptation logic that redistributes the weight.

Example. Consider a small network serving a few households, each of which pre-

dominantly uses a different kind of application: household 1 uses VoIP like apps and web

browsing, household 2 does a lot of web browsing, and household 3 consists of a gamer

downloading a huge update. We begin by briefly describing the application behaviour,

followed by a walk-through of the system.
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Figure 6.8: AutoQoS System Overview.

Applications. Our example traffic can be divided into three classes. VoIP applica-

tions typically use UDP and send CBR-like traffic requiring low end-to-end delay to avoid

impairments like lag or echoes. They fall under the category “delay-sensitive” applications

(class A in the following). The other two applications, web browsing and file transfers both

predominantly use TCP at the transport layer, yet their behaviours differ significantly. Web

browsing is a “short-and-bursty” application (class B in the following) and uses multiple

TCP flows to load many small files (e.g., CSS, Javascript, Images). It requires the objects

to be transferred quickly, resulting in a responsive page load. In contrast, download clients

use few flows to fetch large files at a maximum rate from the servers, thus requiring high

throughput. This is a “throughput-intensive” application (class C in the following).

Congestion Behaviour. During congestion (assuming a drop-tail FIFO queue), these

applications compete for resources at the bottleneck queue. Depending on the traffic

distribution, one application may suffer more than the other. For instance, due to the

presence of both browsing and download flows creating standing queues (assuming TCP

Cubic like behaviour), the VoIP calls face an extra delay. Further, since two households

(1 and 2) are doing browsing it may dominate the download initiated by household 3.

To tackle such a scenario, we need a system to measure the appropriate metrics from
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network which can indicate the performance levels of each of this applications and adapt

the resource distribution accordingly.

Inputs. AutoQoS assumes the incoming traffic is classified into broad classes intro-

duced above. For each class, AutoQoS receives as input a telemetry function that exports

relevant metrics and a mapping function that maps metrics to a normalized score. Further-

more, the control plane requires two parameters: (a) epoch and (b) δw. AutoQoS adapts

the weights of the per-class queues by δw every epoch. In this example, we use AutoQoS’

default values of δw = 5% and one second epoch i.e., every second the weight is adjusted

by 5%.

Data plane. Each class is sent into a separate queue, and the scheduler dequeues

according to the weight of the class-level queues. After dequeueing, AutoQoS executes

telemetry functions (system input) on a programmable data plane on the traffic of each class

resulting in different network metrics being exported to the controller. For instance, we

measure queueing delay experienced by the delay-sensitive traffic while we measure Flowlet

transfer time (FTT) for bursty traffic that measures how quickly flowlets (approximately

mapping to web objects) are transferred on the network.

Control plane. The metrics are received by the controller, which first maps the

metric values (measuring different values) to a normalized score using mapping functions

(also system input). The controller combines all the scores and compares them to realize

that class C (gaming downloads in the example) performs the worst and class B (web

browsing) performs best. It adapts the queue weights by transferring a weight quanta

(δw) from class B to class C. These weight updates are then pushed to the scheduler in

the data plane, resulting in more resources being given to the gaming downloads. This

process (sensing→deciding→actuation) repeats every epoch to approximately converge at

a max-min fairness across applications.

6.3.2 System Design

In this section, we describe the design of AutoQoS, including traffic classification, data plane

telemetry and the control plane adaptation. We discuss requirements of each component
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followed by key insights that lead to our design.

Traffic Classification

Incoming traffic needs to be grouped into a class depending on the application type and

their network requirements. This enables the network to monitor and manage the classes

of traffic individually. An exemplary set of classes used in this chapter consists of delay-

sensitive class (VoIP traffic), short and bursty class (web browsing), and throughput-

intensive class (file transfers). Note that a particular application type (e.g., VoIP) im-

plemented by different developers (e.g., Whatsapp, Messenger, and Skype) can be grouped

into the same class. While the classifier design is beyond the scope of this chapter, we

recommend the use of modern DPI appliances [177, 180] or our proposal FlowFormers

(chaper 3) to accurately detect a wide range of applications on the Internet. They can be

used (beyond accounting or zero-rating [114]) to manage application requirements using

our framework.

Data Plane: Telemetry

Post-classification the application traffic needs to be monitored to know if and by how

much they are suffering at the bottleneck. To do so, we need metrics that are computable

in-network and can closely approximate the performance of the application. For instance,

while queueing delay may approximate the performance of delay-sensitive applications like

VoIP, online multiplayer gaming, it may not be sufficient to measure web page loading

times. A web page loads by fetching multiple small web objects, and the quicker they are

fetched, the lower time it will take for the page to load. While a low queueing delay is

required for browsing too, it does not directly translate into the application’s performance.

Instead, measuring “flowlet transfer times” (as we show in the next section) is a better

metric that incorporates both delay and available capacity and measures the time it takes

for flowlets to transfer (which actually carry the web page content).

We leverage the flexibility of modern programmable data planes to collect per-class

telemetry. The system first matches on the traffic class (can be present in a network header
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field) and then executes appropriate telemetry functions written in the P4 language [30].

The telemetry functions can range in complexity from simply exporting metadata about

queues to using stateful resources to execute per-flow measurements (as we show in in the

next section). The emerging programmable switches, being limited in compute and memory

resources, cannot implement any arbitrarily complex functions but offer enough flexibility

to explore metrics beyond basic queue stats. The collected metrics can be exported to a

control plane either via special telemetry packets (e.g. INT[43]) or using DMA channels

which then use the per-class telemetry to decide on the resource distribution.

Control Plane: Performance Mapping

The metrics being measured at the data plane now need to be mapped to a normalized

performance score. Let us say the metrics are a queueing delay of 50ms or an FTT of

1 µs/byte. What does this value mean to an application? Can the VoIP call work with

such delays, or are the web pages loading "fast-enough"?. To answer these questions, there

must be a function that maps the measurement to a normalized performance score, say

between 0 and 1. While metric indicates “what to measure?”, the mapping function lets

the network know at what “level” the application is performing. For instance, a VoIP call’s

queueing delay can be mapped using a simple thresholding function like: delay<20ms =⇒

1, 20<delay<50ms =⇒ 0.7 and delay>50ms =⇒ 0.3. With such a mapping function, the

network can now measure and compare the performance of competing applications. While

they might not accurately represent the exact end-user perceived performance, they serve

as a “good-enough” proxy for the network to distribute resources at the bottleneck.

We group both the metric and mapping function together to make the AppNet profile

of an application class. AutoQoS takes multiple AppNet profiles as input. They bridge

the gap between what can be measured in network and what performance the application

gets. In other words, an AppNet profile specifies what to measure (using a language like

p4) and how to map it to a normalized performance score (using a mathematical function).

AppNet profiles are dependent on the applications. However, applications in a particular

category tend to have very similar metrics and performance functions. For instance, VoIP

and online gaming fall under the “delay-sensitive” category and require low and consistent
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delays. So AppNet profiles can be defined on a coarser per-application category level. A

control plane can convert the metrics to performance scores with these profiles.

Control Plane: Resource Distribution

With the metrics and performance scores streaming in, the network control plane now

needs to act and manage the performance of applications at the bottleneck link. The

main challenge here is the heterogeneity of applications at the last-mile network. Modern

applications use different transport level protocols (UDP/TCP), have different CCAs, and

connect to servers with varying RTTs [176]. A control plane should ideally help alleviate the

degradation in performance experienced by different applications by distributing network

resources efficiently.

Overview. Fig. 6.8 shows a high-level view of AutoQoS’s control plane. It receives

the mapping functions as an input at startup along with the parameters epoch and weight

quanta δw. Every epoch, the control plane uses mapping functions to map raw metrics to

performance scores of all applications. The controller then picks the worst and the best

performing applications by comparing the scores. It then redistributes the weight by taking

a quanta (δw) of weight from best and gives it to the worst-performing application queue.

In this way, the control plane is able to measure the application performance and react to

make resource distribution application-fair.

Queueing Primitive. We choose weighted queueing as a mechanism to distribute

network resources among applications. We use one queue per application category (more

scalable compared to per-flow queues) to which a weight is assigned. Since flows within the

same application category tend to behave similarly, their transport level CCA’s are also

much more effective to operate within the given fraction of the total resource [111]. Using

weighted queueing has several advantages: (a) it uses a work-conserving scheduler i.e., if

a certain queue is not active, the resource is distributed to other queues, (b) it directly

indicates the proportion of resource given to an application type – which means increasing

it results in better performance, (c) it does not create starvation (a common issue with

priority queues) and (d) it is a commonly implemented scheduler from home routers to
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high-end programmable router chipsets. With weighted queueing primitive, the control

plane needs to decide: (a) what weights to give to different applications? and (b) when

and how frequently should the weights be changed?. Answers to both questions decide the

optimization strategy to achieve best effort fairness across application categories.

Last-mile Congestion Patterns. To answer these questions, let us understand the

type of congestion and its impact that is prevalent in last-mile networks. Firstly, as opposed

to micro-bursts in data centers, internet users perceive application degradation caused by

persistent congestion (in the order of seconds to minutes) [7]. Secondly, the congestion

build-up also happens slowly over time, typically during evenings [176]. Therefore, ISPs

need to ensure a good experience for their customers not at sub-second levels but in seconds

to minutes when the network is bottlenecked. This means that the control plane need not

necessarily adapt every few milliseconds but can operate at the granularities of 100’s of

milliseconds to seconds.

Optimization Strategy. AutoQoS controller employs a greedy strategy to distribute

resources based on the performance scores. It follows a "robinhood-like" approach by

taking resources (weight) from the best-performing application and giving them to the

worst-performing application. It continuously receives metrics, measures performance, and

redistributes weights to ensure fair performance across the applications. Developing a more

complex strategy (for instance, a gradient descent algorithm) requires the control plane to

know beforehand what impact a certain weight increment has on the application. Given

that the application performance is determined from metrics of different dimensions (e.g.,

delay, FTTs) and the traffic scenario is dynamic in nature, knowing the relation between

weight and performance is non-trivial. The greedy approach does not assume any such

relation except that it expects the performance of the application class to increase with an

increase in weight. This simple naive approach has other advantages like: (a) it doesn’t

enforce any constraints on performance curve (differentiability, convexity) since it just

relies on one point in the curve at a time – also perceived application performance often

doesn’t adhere to such constraints anyway [182] (b) it continuously measures and changes

the weights being adaptive to different kinds of congestion scenarios and (c) it is simple to

implement, test and verify.
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Challenges of greedy optimization. There are a couple of challenges in using the

greedy-approach for the control plane: (1) it may not achieve optimum allocation "fast-

enough" (compared to gradient-based techniques) i.e., takes a few epochs to converge

and (2) it may suffer from oscillations i.e., the quanta of weight may be allocated back

and forth between two classes. For the first challenge, since the users perceive persistent

congestion effects in the order of seconds to minutes, we choose to keep a simple model

which might take a few seconds to hit the optimum in favor of avoiding assumptions about

the traffic distribution or curve nature (required for gradient-based techniques). For the

second challenge, we use a simple heuristic: if the delta of performance score between

the highest and lowest class is less than a threshold α (empirically tuned to be 0.05), the

control plane does not redistribute the weight. This prevents oscillations and also keeps

controller intervention to a minimum.

In evaluation, we show the impact of the inputs to the control plane both by varying

the parameters and the mapping functions. We show that AutoQoS control plane can

provide approximate fairness and isolation across classes while being simple and scalable

to implement and deploy.

6.3.3 Implementation: Application Profiles and Telemetry

Having discussed the design of the framework, we describe the application classes, their

requirements, and corresponding AppNet profiles used in our work.

Our work considers three application categories used on the internet that have diverse

requirements from the network: “Delay sensitive”, “Short and bursty”, and “Throughput

intensive” applications. For each class, we answer the questions: (1) how to translate an

application’s requirements to in-network metrics? (2) how to collect the metrics using

modern programmable data planes? and (3) how to map the metrics to a normalizing

performance score?

We note that in the absence of developer-provided “AppNet” profiles, we use exemplary

utility and QoE curves that depend on different metrics published in the literature. Fur-

ther, while we use only three classes to demonstrate our system, the process is generally
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Figure 6.9: Performance Curves of different classes of applications.

applicable to other classes of applications as well (e.g., video streaming, cloud gaming).

Class A: Delay-sensitive

These applications are sensitive to delays between the server and client. Examples include

VoIP, Conferencing, and Multiplayer Gaming applications. During congestion, the packets

of these applications experience a higher delay (often higher than the RTT) as a result

of being queued at the bottleneck ( assuming a drop-tail queue). The increment in delay

degrades the user-perceived performance. For instance, in a multiplayer game, the user

receives a delayed response on the VoIP call or their actions not showing real-impact (e.g.,

resulting in a kill).

Unsurprisingly, the metric to measure for these applications is the queueing delay expe-

rienced by their packets. It can be measured in-kernel (if running on a linux based network

element) by keeping track of enqueue and dequeue times (like FQ-Codel). Modern pro-

grammable dataplanes have this information available via packet metadata at the egress

pipeline. Further, this can also be obtained via link tapping the bottleneck network ele-
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ment even if it is not programmable (as done in [183]). In our testbed, we use link tapping

in software testbed and packet metadata in programmable switches to obtain the queueing

delay metric.

Once measured, the value needs to be mapped to a performance score. We adapt the

delay utility curve of a conversational VoIP call presented in [184] which maps end-to-end

delay to a utility value. We subtract the baseline one-way delay (from server to client) to

convert the x-axis of the curve to represent just the queueing delay (Fig. 6.9(a)).

Class B: Short-and-bursty

These applications are interactive and require quick response times. Web browsing is a

popular application in this class that fetches small objects (CSS, javascript) from web

servers to load the content of a web page. During congestion, the web page loads slowly,

as it takes more time to transfer the objects with standing queues at the bottleneck.

Additionally, since they occur in short bursts, they are not active until the time required

to obtain a fair share from competing heavy flows for example. Further, since webpages

inherently have a dependency structure i.e., html loads first, then loads javascript that in

turn is executed to fetch more resources. Even in the beginning, short-term congestion can

cause the entire page to load slowly.

Flowlet Transfer Times. Queueing delays, while need to be relatively low for a good

browsing performance, do not capture the complete picture. Since web pages transfer web

objects from the server, directly measuring their transfer times serves as a better proxy.

Since modern browsers use long-lived connections to web servers and transfer multiple

objects within a transport connection, we need to measure the time it takes to transfer

flowlets as opposed to the entire flow. Flowlets are smaller chunks of data transferred

within a flow separated by at least the timeout of an RTT. They have been studied in

the context of load distribution and path selection in data center traffic scheduling[185].

We found that identification of flowlets and measuring their transfer times (normalized

to µs/byte) correlates very well with the actual web page load times i.e., a lower FTT

resulted in lower page loads time and vice-versa.
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FTT can be measured on the data plane using 3 registers per flow tracking flowletStart,

flowletEnd and flowletSize. Whenever a packet arrives that is more than RTT apart, the

data plane exports the previous flowlet information to the controller and reuses the register

to track the new ones. Similar to other per-flow counting measures, we make use of an

array of registers where the index is computed using a hash of the flow’s five-tuple. There

can be some collisions. However, since the controller takes an average for the entire class,

they have minimal impact on the decision.

To map the measured FTT to a performance score, we use the Page Load Time vs.

QoE curve presented in [182]. The curve shows a user QoE score from 1 to 5 when a

group of subjects were shown a web page loaded under certain conditions. The curve has

3 phases, the first phase where the load time is within 2 seconds, the user score is almost

close to 5, between 2 to 6 seconds is where the user is very sensitive and the QoE score

quickly drops and beyond six the score remains low and drops very slowly. We can’t use

that curve directly since the measuring Page Load time is very challenging in-network since

we cannot identify the start and end of a web page reliably. Instead, we use the metric

FTT measured in us/byte and map it to a page load time assuming an average web page

size (given as parametric input to the curve). So, for example, with a mean page size of

1MB, an FTT of 2 µs/byte leads to a 2 sec load time. We then map 2 µs/byte to the QoE

value in the curve for 2 sec load time. Since FTT correlates well with the web page load

times, the linear mapping is close to reality. Further, we show (in the next section) that

the overall system can tolerate inaccuracies and does not expect a precise performance

function which is difficult to obtain in the real world. The mapping function from FTTs

to browsing performance is shown in Fig. 6.9(b).

Class C: Throughput Intensive

Throughput-intensive applications typically transfer large files between a server and client.

Common examples include gaming downloads, software updates, and cloud backup/restore.

During congestion, their speeds drop, resulting in the file transfers/game updates taking

longer to finish. Often though, these classes of applications cause congestion since they

are elastic in nature i.e., they expand and try to use as much network capacity as possible
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(unless the sender is limited, which is rare). To transfer data at highest possible speeds,

these applications often use multiple flows established to the server in parallel (2 - 8). We

note that using multiple flows takes advantage of per-flow fair systems (such as TCP’s

congestion control or flow-fair AQM techniques) by grabbing more than fair-share at the

application level.

We leverage a programmable data plane to combat such applications to measure the

real-time throughput of a client’s download traffic independent of the number of flows

used. It multiple ways depending on the scale of deployment. One can use an array of

registers tracking byte counts of download traffic (indexed by hashing the client IP) and

export them to the control plane every second. This will indicate the number of active

download clients and their throughput in the last second. Another approach could be

used if the client cardinality is very high (e.g., millions of throughput intensive clients), an

approximate cardinality can be estimated using linear counting, hyperloglog etc. [186] and

the overall throughput of the application class (can be measured using a single counter)

can be divided by the estimated cardinality. We used the first approach in our work as the

number of clients was not so high.

The utility of a throughput intensive elastic application was proposed decades ago to

be an exponential curve with diminishing utility as capacity increases in [187]. We adapt

that utility curve by using average per-client throughput as the measurement on x-axis (as

shown in Fig. 6.9(c)). While applications of class A and B have some bound to measure

the best performance (i.e., queueing delay of 0ms or web-page load time within 1sec can

be 1), throughput intensive applications can grab as much as the bottleneck link supports.

In practice, however, they are limited on a per-subscriber basis to a "plan" speed such as

25Mbps, 50Mbps or 100Mbps. Therefore, we use per-client throughput which means that a

subscribers download application will get a utility close to one when they are getting close

to their plan speed (independent of the number of flows used). The operator can configure

two parameters: (a) max speed and (b) utility at max speed (typically lies in the range of

0.90-0.99) to configure the slope of the curve (the higher it is more quickly it gets to the

max utility). We vary it to a certain degree to show that our framework is tolerable to

minor variations in the curve parameters. We note that in this exemplary set of classes,

class C can be used as a default class in the absence of a classification since it by default
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Figure 6.10: AutoQoS Software Testbed.

maps performance to the plan speed that they paid for.

In summary, application developers, standardizing bodies and network researchers can

come up with AppNet profiles by understanding the application requirements, specifying

the metrics to be measured and the mapping function which can collectively make the

network "application-aware" and make it respond to congestion in a better way.

6.3.4 Implementation: Software and Hardware Testbed

We now describe both its software and hardware implementation (using Barefoot Tofino)

of AutoQoS.

Software Testbed

Our software testbed (shown in Fig. 6.10) consists of 3 major components: Applications

(servers and clients), Network Dataplane (Shaper + P4 software switch bmv2[188]) and

AutoQoS Control Plane. The applications communicate over a link that is shaped using the

Shaper and monitored using the P4 data plane and control plane. Since, shaping occurs

outside the p4 dataplane (using tc[189]), we have an additional component to measure

the queueing delay called MDelay. The network metrics (shown in green) are exported

to the control plane from the programmable data plane (and MDelay) configured with

the telemetry functions. The control plane ingests the metrics and updates the queueing

parameters (i.e. weights of the individual queues) according to congestion scenario and the
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specified mapping functions.

The applications in our testbed include VoIP, Web Browsing and File Transfers. VoIP

server and client contain wrapper code that runs the open-source PJSIP/PJSUA[190] appli-

cation in which an audio file is sent from the server to the client using the SIP protocol. At

the end of a call, the application reports call QoS stats in terms of RTT (avg/min/max),

Jitter and Loss which can be used to asses the VoIP performance. For Web Browsing

server-side, we used WebPageReplay[191] a web page caching server which can cache web

page objects in the record mode and serve them in replay mode. We used Alexa top

20 webpages[192] to build the cache which includes web pages from search engines, wiki

pages, e-commerce and social media websites. On the client-side, we used Google Chrome

browser[158] configured to fetch web pages from the web server. Web page load time is

recorded using javascript APIs as an indicator of web performance. For file transfers,

we use iperf3[193] and both server and client which can use multiple TCP flows to emu-

late a large download and report both instantaneous and average speed as a measure of

performance. All application servers and clients are containerized using Docker[194] to

ensure ease of deployment and repeatable tests as they package the application and its

software dependencies in one executable container. Additionally, we have written conve-

nience scripts to run experiments using a YAML specification which can orchestrate and

schedule applications for a wide variety of experimental scenarios.

The network elements connecting the application servers and clients in the testbed in-

clude bridges using OpenVSwitch [195] and the bmv2 P4 programmable software switch[188].

The ServerBridge and ClientBridge act as an aggregation element to send all traffic via

one link. A link itself is created using Linux veth port pairs (an approach Mininet[196]

also uses to create links in its emulated network). The Shaper component uses the linux

tool tc to create a wide range of queueing configurations including FIFO, FQ_Codel[181]

and HTB[197] based weighted queueing. We note that the interface that Shaper controls is

ensured to be the only bottleneck in the whole network. The P4Mon switch (connected to

the other end of veth Pair from the shaped interface) runs the P4 program which measures

various metrics according to the application type and sends it to the control plane (using

special packets sent via special cpu-port on the switch).
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The control plane is developed from scratch in Python. It takes the AppNet profiles

as input and collects network metrics by capturing the telemetry packets sent by the data

plane. In addition, it gets the queueing delay metric from MDelay using a REST API.

The network metrics are collected continuously and are mapped to application performance

using the respective mapping functions. When an application seems to suffer more than the

other, the control plane adjusts the queueing parameters (weight for the appropriate queue

in tc) to keep the performance fair across applications. It uses the algorithm mentioned in

§6.3.2 to adjust the weights and dynamically adapt to congestion at the bottleneck.

Hardware Testbed

The hardware testbed is essentially the same as the software one except that it substitutes

the network data plane with Intel Tofino[15], the Server and Client Bridges exit at a 10G

ethernet NIC and the links are copper wires. Since, the hardware switch offers shaping

support in its traffic manager, a bottleneck can be created between the ingress and egress

pipeline. We have adapted the P4 dataplane program to fit into the resource-constrained

hardware. In addition to measuring FTTs and Throughput via P4 program, Tofino also

supports the measurement of queueing delay "out-of-the-box" so MDelay is not required.

The control plane had to be modified to use the APIs of the programmable switch to

configure queues and the parameters. The rest of the operations, using AppNet profiles,

metric collection and optimization, remain the same.

The hardware implementation demonstrates that the metrics can be collected at scale

(also as shown by other prior work) which implies that congestion can be managed using

our framework at Access Aggregation Networks that operate at such high scales.

6.3.5 Evaluation

In this subsection, we evaluate the efficacy of our system by studying its behaviour in

different scenarios created in our software and hardware test beds. In what follows, we

first describe the experimental setup and introduce the algorithms we compare against,
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followed by a detailed comparison and sensitivity analysis for both the tunable parameters

and the input curves. In particular, we answer the following questions:

1. How does AutoQoS compare to other existing schemes?

2. How close is AutoQoS to a per-scenario optimal fixed weight distribution?

3. How sensitive is AutoQoS to mapping functions?

Experimental Setup

We run different traffic scenarios (as listed in Table 6.1) on our testbeds to evaluate Auto-

QoS by varying the following parameters: Number of calls for VoIP flows, Webpage type:

small (<1MB) and large (>1MB) and number of browsers for web browsing traffic and

number of TCP flows (Nflows) for file transfers/downloads. VoIP and Download flows are

started at the beginning of the scenario and last until the end of experiment – each run lasts

for a minute. In the case of web browsing, we have two access patterns of web browsing:

(a) Sequential in which a fixed number of web pages are fetched sequentially with a wait

of 1 second between them and it stops once the number of web pages are fetched and (b)

Loop in which a set of web pages are loaded in a loop (without any wait time) throughout

the experiment.

Scenarios A and B are relatively “light" congestion scenarios where in VoIP calls run

in parallel with browsing (A) and 1 TCP download flow (B). Scenario C involves fetching

all the Alexa top 20 webpages sequentially with 2 TCP download flows in the parallel.

Scenario D1 involves fetching large webpages (>1MB) continuously and 2 TCP download

flows with 4 VoIP calls. This introduces a mix of continuously active short TCP flows

(predominantly in slow-start phase) and long TCP flows (from file transfer). We tweak D1

to create D2 and D3 where in one application dominates the mix and thereby the traffic

mix at congestion varies: D2 being “download-heavy " and D3 being “browsing-heavy".
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Table 6.1: Experimental Scenarios

Scenario # VoIP
calls

# Web
Browsers

Page Size
(Access Pattern)

# Download
Flows

A 8 1 Small
(sequential) 0

B 8 - - 1

C - 1 All
(sequential) 2

D1 4 1 Large
(loop) 2

D2 4 1 Large
(loop) 16

D3 4 2 Large
(loop) 1

Comparison with existing schemes

We run all the scenarios described above across 4 scheduling schemes at the bottleneck

queue: (1) FIFO, (2) FQ_Codel, (3) Priority and (4) AutoQoS. The first three schemes

are available in standard linux tool called as tc which an enable any of the queueing

discipline with configurable parameters. For AutoQoS, we use tc to create a weighted

queueing scheme using Hierarchical Token Bucket (HTB) queueing classes.

Configuration. FIFO queue is configured with a maximum length of 1 BDP. FQ_-

Codel is a “no-knobs” queueing discipline and comes with standard configuration in which

it uses 1024 hash buckets to distribute 5-tuple flows and has a limit of 5ms to control the

queueing delay. We use 3 priority queues in the priority order: VoIP > Web Browsing

> Download (similar to configurations are typically used in ISP setting wherein VoIP is

given the highest priority and large file transfers are given the last priority [176] – we

additionally give web browsing a medium priority for quick load times). For AutoQoS,

we use the AppNet profiles described in §6.3.3 and the parameters epoch = 1sec and

δw = 5%. i.e., the control plane updates weights every second with a 5% transfer from

the best performing class to worst performing class. We will evaluate the impact of these

parameters in the next few subsections.

Criteria. For all the scenarios, we use both min-utility and jain fairness index to com-
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Figure 6.11: Comparison with different schemes across scenarios: Min-utilities (top) and
Jain’s fairness index (bottom)

pare the performance of the schemes. Since our control scheme aims for min-max fairness,

we score the output of the experiment by calculating the utility of each application (as

dictated by their curves) and then computing the minimum across all active applications.

We also compute Jain’s Fairness Index ([198]) using the application utilities (as opposed to

transport layer throughput as used in prior work). We note that the scores are computed

from the application reported metrics (e.g., the actual web page load time) as opposed to

network metrics used in the framework (e.g., flowlet transfer times) to give an accurate

performance depiction across the schemes.

Results. We observe that during “light” congestion scenarios (A and B), AutoQoS

performs similar to other schemes. This is broadly because the queue is not congested

and the competition is not high amongst the applications. However, we start observing

differences with remaining scenarios. In scenario C, FIFO performs the worst by taking

the most amount of time to load web pages and PRIO performs the best. In this “static”

scenario, since the volume of webpages transferred is constant, the rest of the capacity

is being used by the download flows until the end of the experiment. Therefore, the

download rates were very close to each other across all schemes as the volume downloaded

was very similar and thus the minimum utility was that of the browsing application. Here,
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theoretically, priority queueing is the optimal discipline as it results in fastest browsing

time (given fixed number of web pages). However, we note that AutoQoS is not far behind

from PRIO queueing.

In the rest of the (more dynamic) schemes D1-3, we can observe AutoQoS outperform-

ing other schemes. We see in scenario D1 where large webpages are fetched continuously

(no longer fixed volume of web content) and a 2 flow download is running in parallel,

FQ_Codel performs worse than FIFO. This indicates that network-supported "flow-fair"

scheduling might not be the optimal scheduling scheme when it comes to application per-

formance. In D2 where the number of download flows are increased, we observe that the

web browsing performance suffers in both FIFO and FQ_Codel since they are not able to

provide application isolation. An file application can “cheat" by using more TCP flows to

gain more bandwidth since these schemes support flow-fair behaviour. AutoQoS, on the

other hand, uses per-app queues to isolate the traffic and measures the performance of the

download independent of the number of TCP flows between the endpoints (as described by

the AppNet profile) and hence provides isolated and fair performance across classes. Since,

the browsing traffic is no longer “static", priority queueing no longer is the best scheme

and in D3 turns out to be the worst scheme as it blindly prioritizes heavy browsing traffic

over large downloads (which suffer a lot).

Overall, AutoQoS performs well tackling different kinds of congestion scenarios and

outperforms widely-deployed scheduling schemes. By collecting the right metrics that

indicate app-level performance and dynamically distributing the resources (using weights),

AutoQoS is able to achieve isolation and fairness at the application level.

Comparison with Fixed Optimum

Having compared AutoQoS to existing schemes, we now ask the question: How close

is AutoQoS to an optimal weight distribution set for a scenario? For this, we consider

the dynamic scenarios (D1-3) where AutoQoS ’s impact is observed. For each of these

scenarios, we find a constant weight distribution that can give the best min-max fairness

by performing a grid-search of all the weight combinations. We call this configuration
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Figure 6.12: Comparison with fixed optimum before and after tuning.

"fixed-optimal-weight". As shown in Fig. 6.12(b), we see that the fixed-optimal-weight

slightly outperforms AutoQoS in each of the scenarios. This is expected as the scenario was

run multiple times to figure out the optimal weights while AutoQoS has no prior knowledge

of the scenario and reacts dynamically. We note that this is not necessarily the absolute

optimal scheduling policy since in such a dynamic scenario, with real applications, finding

the optimal scheduling policy is itself a non-trivial task. We thus use the "fixed-optimal-

weight" as an upper bound to compare.

Having found the upper-bound, we now tune AutoQoS ’s parameters epoch and δw

to improve its performance. We do a grid search (as shown in Fig. 6.12(a)) by varying

the epoch from 250ms to 16s and quanta from 0.025 to 0.2. We found that an epoch of

less than 2 seconds generally yields good result however, a faster reaction time of 250ms

yields the best result since AutoQoS has more opportunities to redistribute the weights

in real-time. The quanta parameter needs to be between 0.05 and 0.1 and being lower

or higher than this leads to poor performance. A lower quanta made the reactive loop

slow since it took multiple epochs to increment the weight and a higher quanta results

in oscillations. We (unsurprisingly) found that AutoQoS tuned with epoch = 250ms and

quanta = 0.05 (named autoqos_∗) worked the better than the default configuration and is

very close to the “fixed-optimal-weight" while not requiring any prior knowledge. We note

that AutoQoS∗ slightly outperformed “fixed-optimal-weight" in scenario D3 since it could

dynamically adapt the weights and reach a better performance than fixed weights.
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Figure 6.13: Sensitivity to Mapping Functions.

Mapping Function Sensitivity

In addition to evaluating the impact of AutoQoS ’s parameters, we now study the impact of

variation in the performance mapping functions. In particular, we answer the question: Do

the mapping functions have to be very precise? If not, how much variation can AutoQoS

tolerate without affecting the overall performance?.

To study the impact of curve perturbation, we created two additional scenarios using

web browsing and download traffic: scenario 1 in which we use one browser to fetch all

Alexa top 20 webpages in a loop with 2 flows in the background and scenario 2 in which

we double the browsers and quadruple the download flows to create a heavy congested

scenario. Then, for each scenario, we first keep one curve constant, for example download

curve, and vary the other curve, say browsing curve. And then repeat the experiments

vice-versa. We study the impact of variation in the curve in both scenarios and take an

average score.

We observed in both cases that the curve even when varied up to 10% in area (as

shown in Fig. 6.13) creates only 1% deviation in the final min utilities of the applications.

We observe that AutoQoS is tolerant to imprecise curves. For instance, even though the

actual mean web page size (an input to define the browsing curve) was 2.05MB for the

experiment, perturbing the curve by using values from 1.6 to 2.4 MB (+-20%) had a very

small impact on the final performance. This is because of two major reasons: AutoQoS

employs weighted queuing which is work-conserving i.e., any resource not used by a class
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Figure 6.14: AutoQoS Hardware Benchmarks.

is automatically given to another class even at smaller timescales and secondly, AutoQoS

is approximate in measuring the performance as the network metrics act as a good proxy

but are not precise themselves. Thus, due to the approximations AutoQoS makes it can

tolerate some amount of perturbation. Upon further perturbing the curve (more than

10%), AutoQoS ’s operation results in gradual decrease of performance of the class being

effected i.e., AutoQoS deteriorates slowly and continuously.

Hardware Micro-benchmark

We now evaluate the hardware implementation of our framework on Tofino, in particular

focusing on accuracy and scale of measurements. Since Tofino has several resource con-

straints one needs to make some approximations. For example, while we could access,

store (in registers) and perform arithmetic on usec timestamps in bmv2, we could not

do the same on Tofino (especially for flowlet computation). However, we note that even

with approximations (storing only 32bit timestamps), our implementation produces a very

similar flowlet size distribution for the web browsing traffic as shown in 6.14(a). While

Tofino’s scale has been evaluated in prior work[68, 199, 200], we also show in our work

(refer to 6.14(b)) that we were able to measure per-flow throughput accurately to 100s of

concurrent large TCP connections using Tofino. We see that with on a 1Gbps bottleneck

link, the measurements accurately refelct the per-flow throughput as we keep doubling the

flows from 1 to 128 (maximum supported by iperf tool). One may use additional data

structures like bloom filters etc. to implement loglog counting method to estimate the
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average throughput of 1000s of concurrent flows. It is left out of the scope of this work.

6.3.6 Discussion

We discuss some key aspects and limitations of AutoQoS and set some directions for future

work.

AppNet Profile Dependency AutoQoS depends on the input profiles containing

the telemetry logic and the mapping function to measure and score the performance of

an application class. We argue that application developers are the ideal source of such

profiles. However, academia can also contribute in coming up with the profiles by testing

applications under different conditions[101] and/or giving scores based on subjective ex-

periments (as done in [182]). AutoQoS currently cannot auto generate such profiles but it

is an interesting direction for future work.

Adding new classesWhile we described three classes of traffic, AutoQoS is not limited

by it. One can add a new class to the system by first, separating the class from rest of

the traffic (using traffic classification tools), second, designing the right metric to extract

and writing data plane code to export network telemetry for it (can also re-use functions if

suitable) and third, specifying a mapping function to map to application performance. We

note that the metrics exported from data plane need not map directly to performance but

some higher level inferencing can be done on top of them. For instance, as shown in [17, 18,

82] one can use ML models on specific metadata extracted from network to infer properties

like resolution and re-buffering ratio which can be used to estimate a performance score. In

this chapter, we wanted to highlight the design of the system via a few exemplary classes

and hence didn’t study more applications. We encourage researchers to study different

applications and their requirements and test their proposals using our testbed.

Programmable Hardware Constraints. Programmable switches while are resource

constrained and cannot execute complex functions. We acknowledge that the number of

classes supported by the system can be limited by number of telemetry functions that

can run together on the hardware. While we use programmable data planes in our work

and borrow its limitations, the framework is not constrained by it: one can also use more
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flexible frameworks like DPDK [14] to extract more sophisticated telemetry.

Operational Context We designed AutoQoS to support deployment in ISP edge net-

works where bottleneck is predominant [176]. However, it can be deployed at any other

bottleneck, which consists of applications with different requirements. The current limi-

tation is that home routers are not programmable nor very powerful to extract telemetry,

but we hope future advancements make it possible.

6.4 Conclusion

In conclusion, increasing internet usage, fueled by the pandemic, is causing online appli-

cations to suffer due to persistent congestion prevalent in last mile bottlenecks. Network

operators find it difficult to manage bottlenecks as AQM policies only improve delay and

QoS policies are hard to tune with dynamic traffic scenarios. In this chapter, we first

presented our self-driving network prototype called AppAssist which can dynamically as-

sist suffering applications using priority queues. We showed that a control loop is indeed

possible if appropriate telemetry functions can be executed that can indicate a drop in

performance. We then built upon the ideas in that framework by developing a system

called AutoQoS which helps network operators offer better application performance by

automatically re-configuring the weights to each application class. It does so by leveraging

programmable networks to extract in-network metrics that are more indicative of applica-

tion performance, maps them to normalized performance scores and then redistributes the

resources to ensure a fair and performant network on the application level. Our framework

is extendable to support a variety of applications and can adapt to different traffic distribu-

tions automatically. Our evaluations showed that AutoQoS outperforms widely deployed

static QoS policies and AQM methods in various traffic scenarios, performs very close to

an optimally tuned QoS configuration and can be implementable at scale in programmable

hardware.
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7.1 Conclusions

Internet Service Providers (ISPs) have been struggling to offer good QoE for diverse ap-

plications ranging from video streaming and gaming to social media and teleconferencing.

To ensure a good user experience, ISPs have to understand and manage the performance

of the applications traversing their network. ISPs need to measure more than just coarse-

metrics link utilization and packet loss. Existing application classification and simplistic

QoE monitoring technologies using traditional DPIs are not only starting to fail with traffic

encryption but also are prohibitively expensive with exploding traffic rates of the Internet.

In this thesis, we leveraged emerging programmable networks to extract fine-grained

and specific telemetry and developed machine learning and statistical models that can

classify applications, monitor their performance, and tune the network to enhance user

experience. We built complete systems that can extract application-level intelligence from

encrypted network traffic and provide enhanced visibility to ISPs at scale, with high accu-

racy, and at low costs that the existing solutions are not able to achieve.
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The key contributions presented in this thesis toward application-aware monitoring and

management of operator networks are briefly summarized below.

• As a first step, we developed a novel data format and telemetry algorithm to capture

the behaviour of encrypted network flows. We then developed transformer-based

deep learning models which use self-attention to efficiently learn intricate patterns in

the traffic shape and classify application types and providers with f1 scores of 97%

and 95% respectively.

• We then focused on measuring the user experience of highly engaging applications

starting with video streaming. We developed a tool to collect client-side metrics

and network activity of over 500 hours of both on-demand and live video streaming

applications such as Netflix, Twitch, and YouTube. We analysed the data to highlight

the key characteristics of video streaming and designed telemetry functions to extract

flow-level and chunk-level data. Lastly, we developed machine learning-based and

statistical models to predict video streaming QoE metrics such as bitrate, buffering

states, resolution, and buffer stalls with 90+% overall accuracy.

• We shifted our focus to study latency-sensitive online multiplayer gaming applications

which are highly engaging and of high economic value. We collected and analysed

packet traces of ten popular online games to develop a classifier that quickly detects

a game from automatically generated signatures. We deployed this system in our

university traffic and found over 31,000 gaming sessions representing 9,000 gaming

hours over a month. We then performed latency measurements and BGP/Geo-IP

lookups to the 4,500+ gaming servers (spanning 14 countries and 165 routing pre-

fixes) and showed that routing and peering decisions can significantly impact gaming

latencies.

• Finally we developed systems to improve the QoE of applications contending at

congested links. We developed a self-driving network prototype that continuously

measures application states and automatically intervenes to assist “suffering” appli-

cations that are being impacted by transient congestion. Subsequently, we designed

and built a complete system that extracts application-aware network telemetry from

programmable switches and dynamically adapts the QoS policies to manage the bot-

137



Chapter 7. Conclusions and Future Work

tleneck resources in an application-fair manner. We showed that the system outper-

forms known queue management techniques in various traffic scenarios and closely

approximates optimally tuned configurations for each scenario.

We believe that our contributions presented in this thesis provide a new framework for

ISPs to effectively monitor and manage their network with enhanced application awareness.

The contributions taken together can classify applications, measure their QoE metrics, and

improve the QoE during congestion in an application-fair manner.

7.2 Future Work

We note that our methods, designs, and prototypes can be further improved and extended

to address their limitations or widen their applicability and scope. Some directions for

future work are highlighted below.

• In Chapter 3, we classified encrypted network traffic using the FlowPrint data struc-

ture and transformer-based deep learning models. Currently, it takes multiple reg-

isters in a memory-limited programmable switch to collect FlowPrint for each flow.

Optimizations to compress FlowPrint data structure while tracking the traffic shape

(even if approximate) can make it more scalable. Further, we currently used a fixed

time window to classify flows – a dynamic classification system that takes the min-

imum amount of time to detect a traffic class (while taking more time until the

confidence improves) can be developed.

• Chapter 4 executed network telemetry functions to extract fine-grained flow-level

telemetry and sophisticated chunk-level telemetry to estimate various video streaming

QoE metrics. While we implemented the telemetry using DPDK, we believe it can be

implemented at a larger scale in programmable switches by combining approximate

data structures like sketches and inactivity timeouts (to export the chunk). Further,

our existing methods export the QoE metrics every window of 30 seconds leading to

multiple metrics exported across thousands of concurrent video streams running for

hours. Big data analysis techniques can be used to process these metrics and help

ISPs zero in on the streams, users or sub-networks which have consistent poor QoE.
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• The game classification system described in Chapter 5 rapidly detects online games

using packet-byte and length-based signatures. While this chapter studied ten pop-

ular games, an evaluation of the proposed method on a wider set of games can be

done. If conflicts arise amongst games, the classifier may require richer signatures

extracted from more packets and/or deeper payload contents of individual packets.

Another avenue for future work is the analysis of public peering datasets to offer

low-latency peering recommendations within cost budgets to ISPs to improve their

gaming latencies.

• The self-driving network prototype to assist suffering applications presented in Chap-

ter 6 was quite limited in scope both in terms of applications and the action primitives

used. While we improved it further and proposed AutoQoS (§6.3), it still has a few

limitations which can be tackled with emerging technologies. For instance, AutoQoS

relies on programmable switches to export per-class application-specific telemetry at

scale. However, the compute and memory constraints limit the flexibility of teleme-

try and hence we cannot measure arbitrarily complex metrics. Further, the system

cannot be currently implemented in small-scale WiFi router chipsets due to the lack

of P4 programmability support. We believe newer technologies such as Tofino 2 [201]

and p4-based routers can help alleviate some of these issues.

• This thesis limits its scope to the operational context of ISP networks and focuses

on developing systems that can infer and improve QoE of sensitive applications. A

subsequent stream of work that can build on top of it could be to correlate the QoE

metrics and other network QoS datasets to diagnose network issues and pinpoint

the cause of poor experience and subsequently recommend corrective actions that

can be taken to improve the user experience. In addition to that, applications with

increasing usage such as teleconferencing and cloud gaming can be studied in a similar

fashion to infer and improve their QoE.

In addition to the future directions listed above, we hope researchers can build upon

these contributions to explore further aspects of application-aware network monitoring to

help network operators effectively manage and tune their networks for modern Internet

applications.
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