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(i)

Summary.

In this paper the method used by Wood (1968, 1970) is extended to
cover the case of the flow of a stably layered fluid from a reservoir
through a contraction with a round crested weir at its minimum width.
The conditions under which a single layer may be separated from a two
layer system by having this lighter layer alone flowing over a weir are
first examined. The conditions under which two layers continuously de-
crease in depth from the reservoir to and downstream of the weir are
determined. It is shown that in this case the theory involves computations
not only at the section of minimum width but also at a section upstream of
this point (the virtual point of control). For a weir shape, chosen so as
to simplify the algebra, complete solutions are obtained.

For the case of the flow of single layer, the depth of flow over the
weir depends only on the depth of the lipstream layer, and is two thirds
of that depth. For the two layer system it is shown that the depth of the
layers over the weir depend not only on the depth upstream but also on the
width of the crest and indirectly on the geometry of the crest and the con-
traction.

Some simple experiments were carried out to verify the major con-
clusions of this theory. The method presented should have applications
in predicting flow in numerous engineering fields where more than one

layer is flowing and where viscous effects are likely to be small.
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1. Introduction

The problem of the selective withdrawal of a fluid from a stably
stratified reservoir is one of obvious practical importance (Brooks and
Koh 1969). A particular case of this general problem involves the flow of
two layers over a weir and for this case the problem is to determine for
various upstream conditions the relative discharge in each layer and hence
the properties of the total discharge. Where both layers in a two layered
system were flowing under air and over a sharp crested weir the problem
was examined experimentally by Schlag (1959). In this case the curvature of
the streamlines over the weir was important and no simple theory could be
developed. When, however, the weir is round crested and the flow is grad-
ually varied the theory used by Wood (1968, 1970) may be used to obtain a
complete solution. In obtaining this solution it has been assumed that the
fluid flows from a reservoir through a smoothly contracting channel in which
there is a definite minimum width and that the crest of the round crested weir
is at this minimum width. Under these conditions it is reasonable to make the
hydrostatic approximation and to use arguments that are extensions of the one
dimensional ones used in open channel hydraulics.

The fluid is considered as inviscid and only steady flows are considered.
This latter restriction is of minor importance provided that the reservoir is
sufficiently large so that the time for a particle to travel through the con-

traction and over the weir is short compared to the time for the streamline



2.
patterns to change due to the withdrawal of fluid from the reservoir.
2. Theory

Consider a channel leading from an infinite reservoir as in Figure la.
Let there be a broad crested weir in the channel as in Figure 1b. Let the
datum be arbitary and let the depths and densities of the layers in the in-
finite reservoir be Y _, Y, and Y, and Loy o +4Fi,and fo t4f; +afs
respectively. Further let the height of the weir at any section x be h, and
the depth of the layers at this section be Yor Y1 and Yo Let the width of
the contraction be b (x), the discharge in each of the flowing layers be Ql
and Q2 and the maximum height of the weir at the section x = 0 be H.

It will be assumed that the fluid is inviscid and that the vertical curv-
ature of all of the streamlines is sufficiently small such that the flow is grad-
ually varied and the pressures may be taken as hydrostatic.

Then Bernoulli's equation for each of the flowing layers may be
written as ,

S ) 4 S Jeth = Vi "
and

S (3 ) eyt stz ) gt )

= o2 Y1 4+ (1+3) Vo (2)

where S o= /St 4

P = fo t 4L ¢ 4/
X2 = “’/9/4/02



30
As in the previous two papers (Wood 1968 and 1970) these two equations

together with the condition that _zy_l and %2. remain finite determine the
X

final steady state flow over the weir.

(a) The Flow of the Single Layer over the Weir

Consider firstly the case where there is no flow in layer 2, (Fig. lc).
In this case we will consider that the shape of the bump (h(x) ) and the total
depth behind the bump (Y1 + Yz) are known. However, the individual values
of Y1 and Y2 are not known. It is then required to determine the minimum
value of Y; such that there is no flow in the lower layer.

Simple broad crested weir theory yields for the weir discharge

(Henderson 1966)

2
2 2 4/ 2 ( 2
Q= 35 &Y Py 3 ¥o)
where YT = Y1+ Yy — H
b, = width at the top of the crest
H = the maximum height of the weir
Equation (1) then becomes
———‘Ai—+y+y+h= Y . + Y (3)
2 .2 1 2 1 2
y, b
1
4 3 2
where A = 57 YT bm

Downstream of the point of contact of the interface with the solid
boundary of the weir (point A, Fig. 1c) we have Yo = 0 and equation (3)

becomes



+ =
y1+h | Y1+ Y (4)

Thus if we assume the point of contact of the interface with the weir
occurs at a particular value of (x) then the value of Y4 ( = yc) may be com-
puted from the known values of b, h, Y1 + Y2 and A. This value will be
in the region of subcritical flow and thus only the larger of the two real
solutions will be physically realistic (Henderson 1966). The smaller of
the two solutions represents a supercritical flow and occurs downstream
of the crest,

Upstream of the point of contact there are values of Yy and for the

lower layer we have from equation (2) with Q2 =0

“12y ! + (1 +o(12) (y2+ h) =o(12 Y1+ (1 +0(12) Y2 (5)

Solving for (y 9 + h) from the above and substituting into equation (3) we
get

(1 +0(12) — 5 * Y4 = Y (6)

This eguation must also hold at the point of contact and thus having com-

puted Y from equation (4) the appropriate value of Y, may be obtained by

1
substituting Y17 Y, into equation (6) and solving. By varying the positior
of the point of contact of the interface with the solid surface (A of Fig. lc)

the curve of Y1 versus x(c' can be obtained and the minimum value of Y

selected.



5.

It is now proposed to show that search for the minimum value of

Y1 should only commence when (1 +o( )IF 2< 1 where IF 2 (by
/
Differentiating equation (6) with respect to x we get
y/ dé
dy/ _ (7 +a,2) [ dz
oAz /-(/*0//2)/;2
, b
‘and thus from (5) V2t B - £7 £ 7= (7)
dx (r-Cr+a,2)F2)
Since it is required that ii(_y_zc%l’ﬂ be of the opposite sign to 3—2 it is

apparent that at the point of contact

1+ o,y Fo<1 8)

and the search for the minimum value of Y1 should start only after this

requirement is satisfied. A computer program was written to obtain
the minimum of Y1 for a range of values of YT for weirs of variable
geometry and the result is plotted in Fig. (2).

(b) The Case of Both Layers flowing over the Crest

For this case the method used by Wood (1968, 1970) is followed
and the conditions that %—z’{l and %2 remain finite for all x are

determined.

Defining ‘y,/=—>-/-/— ) ,_7 )/ -22 =-);-)anc///—>/,

and substituting into equations (1) and (2) we get

_A_li

/ 4 /‘— / 9
2 g by,))’/ rY T th =)z )



and

—ZL.dﬁ ( *+ oy, ‘7/ t(/*%2)(Y, *A) Az *{”0//2))/(10)

1

If Q1 and Q2 and 0(12 and the conditions at infinity Y2 are known these

1
two equations determine Yy and yzl in terms of b at every x. Two

further equations are required to solve for Q1 and QZ' These equations
come from the condition that as b varies from its large value at x = - oo
through its minimum at x = 0 to a large value at x = + ©0 it is required
that the depths of both layers continuously decrease from their values

in the reservoir (Y1 and Y2) at x = - 00 to very small values at x = + 00

These conditions determine a possible flow. To obtain this flow it is

1 !
necessary to obtain the conditions for which %—1 and %Yz are always
X X
finite.

Differentiating (9) and (10) with respect to x and solving for %1

and %2 we get
de” _ 1 db o
o % b dr D (11)
Ay, 1 db O3
Az b dZ 0o (12)
-1 -FH 1+ S Em2) -
where D1 = 1 0(12 9 0(12

/(/ db) A %](/*a’/z - £°)
o) Bt H) B



03=(/—/;2)/;/2-231/"‘(/* :)dj/(j A)]

/
+ Lé/ L 4. 2,7
gz () - w2 /b9
P C»?,‘7
anad F°
T 4£9 5y}
2 [fé @:
and =
db dn’
Now at the crest of the weir G and I equal zero and hence from
! !
equations (11) and (12) we have —g—z;l and (—%%’2 equal zero or D1 = 0,

We require the interfaces to be continuously sloping and can therefore ex-

clude the case where the slopes are zero. Further, if at any other point
'

D1 = 0 then to obtain finite values of :11_;}’1 and %2 then D2 and Dg must

equal zero.

It can be shown that the condition Dy and D3 equal zero together
implies that D; also equals zero. It is these two conditions which
ultimately enable the relationships between Ql’ Qz, yll and y2' to be
obtained.

The condition that Dy = 0 at the minimum width (where g—z =0
and —g-h;, = 0) gives us three equations at this point [(9), (10) and D, = 0],,

However, a fourth equation is required and it is therefore necessary to ex-

amine the variation of D1 with x.



1

9 and IE‘12 and IF, 2 tend

In the reservoir where x = - 00, yzy =Y 9

to zero. Hence D1 [(/ ~E)( g, - 4 J)-a%_, ends to one. Similarly

2
when x = + 00 , IE‘l and IE‘22 tend to large values and D1 tends to a

large positive value. It can also be shown that D1 has only one turning

point and thus the graph of D, versus x is as in Figure (3) and the equation

1
= 3\
Dl 0 (1

holds at the position of minimum width and at some other point upstream
of the position of minimum width. This second point is called the point
. a9, d% .
of virtual control (Wood 1968). In order that Tz ond —7  remain
finite at this point, then from equations (11) and (12)
D2 = 0 (14)

and D3

0 (15)

Thus at the section of the virtual control we have four equations (9, 10,

14 and 15) and if the height h' at the position of virtual control is known

Q2 1
s yl
bY1 bY2

and Y2!~ Up to this stage the position of the datum has not been defined.

these equations may be solved for the four unknowns v, = El s Vo =

1

It is convenient to define the datum as a horizontal line through the point
of virtual control and to measure all the depths in the reservoir from

this line. It also simplifies the expressions for D2 and D3 if the bump

shape is defined by

/ b
7 = - ébm 7 Tz (16)
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where ) is a constant which defines the shape of the bump as

H-4h b
o~ ¥ lye o (17)

It also greatly simplifies the algebra if the following variables are used:-

—.é’l/‘ _/pl vt Y, /
¢’ =5 s o ¢—;;;9—37 > Y, and Yz

Using these variables the Bernoulli equations (1) and (2) become

/

b+ g vy eh =1+ )2 (18)
/
and oy Be? 4 oz (1t e2)( S+ A ) = Kz + (17e2) B

1
These equations are solved for y " and vy, +h'. Then noting that h'=0
1 2 g

at the virtual control we obtain from D2 = 0 (Equation 14).
4 - — (% (st g2 -apc?) - wwzfc?] 20)
0//2/0936" + (-7 -22;) -f(/*a(,e)]
where (3 - [5m
v
and from D3 = 0 (equation 15)
é = ~l(xypc? - A1z ) ~0.58(F + Gtz — ay2C°)] _
a(,zfa/,zc"-f c*C-3-2al2) + €77 ‘-\//z)]

21
capB(wac p i (G2 ) (1720 ] @y

When equations (20) and (21) are satisfied the equation (13) (D1 = 0) is

also satisfied. Equations (20) and (21) lead to the following quadratic for

C2



10.
Ac? + 82+ p = 0 (22)

4
where A = (C7-e2)( 2,7 - a/,,lg)

B =2m(irn-oz) + 27 (m+ az) +
BC3PCrn=os2) + a2 (ctyy #m) ~ 2atrs i)

= Cmtoap)(lm+ 8p) + 28 mp

and =C /% v2) 7/2/

= -zt 2")

/g/*a’/.’

3y ©

This equation is solved fortc2 and it is apparent that two values of c

will satisfy all the conditions at the virtual control and it remains to de-

termine which of the pair of values satisfies the particular flow situation.
Consider the plot of &y = (/- F)(s+ 0z - f2°) - otiz for the

case of 0(12 = 1 (Figure 4. The curves FG and HI represents D1 =0

1) rep-

and between the curves D, is negative. The point A (1 + &

1 12’

resents the position in the reservoir and the point E where (1 - IFy 2y and

1+ o&x - IE‘22) are both large and negative represents a point in the

12

channel downstream of the reservoir. Now as the surfaces from the up-
stream reservoir to the downstream reservoir are smooth and continuous
then as we move from the upstream reservoir to the downstream channel

(1 - ]Flz) and (1 +o(12 - IF 2) vary continuously. Hence in the reservoir

2
2
where the first value at which D1 =0 occurs(at B) (1 - IF1 } and
(1 + x 19 ° IE‘22) are both positive. This condition enables us to select

the correct value of cz.
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! 1
The remaining properties (y1 > Vg and @) at the virtual control are
then calculated from equations (20), (18) and (19). Now all the properties

at the virtual control are known and the ratio of the discharges in the layers

can be computed from

Qr 2  f 2 .72, 2
@/ '7;6( 7/ (23)
and for each flow situation a new constant
/ 2
ﬁ __0_2 ‘ = 62 é 2 = 0 /

may be defined. Since the flow is steady the value of Q21 must be

independent of x. Now yz' and y1' obtained from equations (18) and (19)

are substituted into equation (22) and we obtain

4 - Qzr - c (3 =-4")
Gley + oz (/-c?)( €+ Q) (25)

This equation must hold at the position of minimum width (i.e. at the crest
of the weir) and thus at this point equation (25), the two Bernoulli equations
(18) and (19) and D1 = 0 (equation (13)) hold. There are, however, five
unknowns 0, 02, yll, yzg and the difference in elevation between the crest
of the weir and the position of the virtual control. /\m The additional condition
comes from having to simultaneously satisfy the equation of continuity for
each layer and the relationship between the elevation of the crest of the
weir above the virtual control and the width of the éontraction.

2
The method of solution was to assume a value of ¢ at the minimum

/
: 2 ' ' hp/)
width (¢ ) and calculate the other values of § , Yim * Yo and ‘L( ‘: ar
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the minimum width to satisfy equations (9), (10), (13) and (24). The
equation of continuity for layer (2) between the virtual control where the

. / .
variables are y2v’ (Z)V, bv, and cv and the minimum width is

;7 @ @l 2
”)
and was then used to calculate the ratio of z— . This was then sub-
v

stituted into equation (17) and a new value of h and hence h "= h /Y
m m m 1
was obtained. The process was continued until both values of hm' agreed
and the solution was then complete.
The results were then converted into values where the depth was
measured from the crest of the weir as in Figure 5 and all depths were
written in terms of bm the width of the contraction at the crest of the weir.

Discussion of the Results

The results for a single layer system show the effects of (1) changes
in the density difference between the flowing and stationary layer and
(2) the geometry of weir and bump on the depth of withdrawal. As was
expected, the smaller the density difference between the flowing and
stationary layer (the greater the value of o/ 12) the greater the depth
from the crest to the stationary layer. The effect of the geometry of the

weir crest and of the contraction was, however, surprising. Steepening

7/
the weir crest (i.e. increasing e in the equation for the weir crest
H-h _ X . . . .
—_— = e(— ) and increasing the radius of curvature of the contraction
bm bm

(i.e. increasing a in the equation defining the contractlon[Zb =1+ a(b )Z
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has the effect of increasing the depth from the crest to the stationary

layer.

This effect of the geometry is also important for the case where both
layers are flowing. For the case where b’ = 0 (i.e. no bump) it was
shown by Wood (1968) and Yih (1969) that Y4 and Yo at the minimum width

were both two thirds of Y1 and Y2 respectively. No such beautifully

simple result was obtained in this case. Indeed y1! and yz' depend on the

1
density differences, Y2 , and the geometry of the weir and the contraction

in a most complicated manner. For large values of & 12 the value

Y1t Y2

Y1+ Y2

layer. Indeed for = 1.6 and 0612 = 100 the maximum departure from

is always close to the value of two thirds expected for a single

the value of two thirds was only 0.007. For this case, however, the
values of y2/Y2 depart markedly from two thirds. The results for any

particular value of Yy, Y5 and b can be obtained from Figure 6 where

_ Y2 isplotted against b5 for various values of —L . If
Y] = Yy thenfor ! of 27, 72 = 0.76 andfor L = 0.64 then 22 =1.14,
bm Y m Y2

This shows that decreasing the width of weir not only decreases the dis-
charge through contraction but also changes the ratio of the flows in the
two layers.

For the caseof ¥ = 1.6 and &, = 1both of the values of

_3% and _Y_1y_42~72 depart markedly from the value of two thirds
Y1+ Yg

Y1+ Yo

(Figures 7 and 8). In this case the value of tends to two
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thirds when Y,/ (Y + Yp) tends to a small value. The result de-
Y
pends on .5_1_ but the effect is small with the smaller valuegof Y,/(Y, +Y1,)
m

The values of y5/(Y; + Yg) are less dependent on the values of Y /by,

than was the case for the larger values of 0(12 (compare Figures 6 and 8).

Experiments

Two sets of experiments were carried out to confirm the major

features of this analysis. In both series of experiments reservoirs were

2
b/2 11 0.0277 2= in

formed by placing a contraction of shape
bm bm

a flume that was eight feet long, two feet wide and one foot deep. For
work with case (a) (the condition for the minimum value of the upper

layer such that there is no flow in the lower layer) a weir of shape

- 2
H-b 0.020 (—=—) was used, and for case (b) (two flowing layers)
bm bm

a weir of shape (H - h)/bm = 1.60 loge (b/bm) was placed in the centre
of the contraction and the two reservoirs were separated by a siiding
gate in the contraction. In both cases by, was 0.052 ft.

For the experiments the flume was partially filled with fresh water
and the two coloured layers of salt water of different densities (layers 1
and 2) were slowly pumped in beneath the top layer of fresh water. (An
exception to this method was case (a) where & 19~ 200, In this case
only fresh water and salt water were used as the upper interface was be-

tween air and fresh water). In all cases circulation velocities in the

fresh water ( f» ) above the flowing layers were kept very small by
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having large flow areas above the level of the flowing layers.

Case (a): Determination of the minimum Y for no flow in the lower layer.

After the layers had been set up in the flume the gate was removed
and the flow commenced. A constant discharge was then maintained in
layer (1) for some hours and the flow was observed until the flow in layer
(2) ceased. The conditions at which this occurred were then recorded
and it can be seen in Figure 2a that the agreement between the experimental

and theoretical predictions for & ranging from one to 200 was satis-

12

factory. As was to be expected, for a given (Y1 + Y_. - H), the viscous

2
effects made the depth below the weir at which the flow ceased slightly
greater than the inviscid theory would predict.

Further experiments to verify the effect of geometry changes are

planned once larger scale experimental equipment becomes available,

Case (b): Flow in both Layers

In this case it was proposed to check the theory by making measure-
ments of the depths of the layers over the weir crest. In order to check
the performance of the equipment a number of experiments were carried
out with a single layer flowing over the weir., In this case water was
pumped into the reservoir upstream of the contraction and allowed to flow
over the weir in the centre of the contraction. The velocity head in the
reservoir was small enough to be neglected and under these conditions

the one dimensional inviscid theory predicts that the depth over the weir
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would be 2/3 of that far upstream. In the experiments depths were
measured over the weir and upstream in the reservoir and Figure 9
shows a comparison between the experimental points and theoretical
line, It is to be noted that for large depths in the reservoir the ex-
perimental points were above those predicted. Experiments carried
out previously with the flow of a single layer through a contraction (Wood
1970) also gave depths through the contraction that were always greater
than the theoretical value of 2/3. In this case it was shown that the
measured depth would be the critical depth plus one third of the displace-
ment thickness. It is believed that it is this same effect that is causing
the discrepancy in this case. From these preliminary experiments it
was concluded that errors at least of the order of +5 pc. could be ex-
pected in the two layer experiments.

The two layer experiments were commenced by removing the gate
and a short time after this the flow settled down and the reservoir level
changes became slow. A typical experiment is illustrated in Figure 10.

Once the level changes in the reservoirs became slow the depths in

the reservoirs and at the contraction were continuously measured. Values

1 T Y2 and __yL__ were then plotted against the values of __El_ .
Yi+ Y2 Yi+ Yo Y1+ Yo
Theoretical values of y1 + yg and yo were then obtained using

Y1 + Yo Y+ Y2
the measured values of ¢ 19, Y1 and Y7 and Figures 7 and 8.

Yi+ Yo bm
Straight lines were then drawn through these deduced points. Typical
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results are shown in Figures 11 and 12,

It can be seen that the agreement between the experimental and
theoretical values was reasonable. Indeed the trend in the curves of
%%—:—‘YY% is the same as obtained for a single layer system. That is the
experimental depths are greater than those deduced. As in the single
layer experiments this was particularly noticeable when the depths over
the weir were large.

It therefore appears that the theory is satisfactory for deducing the

depths of flow of a two layer system over a weir provided the flow is grad-

ually varied. Values of the discharge in each layer can be computed from

J1* Y2 and __ 1
Yi+ Y9 Yy + Yo

and from the two Bernoulli equations (9) and (10).

the deduced values of (from Figures 7 and 8)
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Fig. 1: The plan and elevation of layered
flows over a weir at the exit to a reservoir.
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two layered flow.
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Fig.11: The two layered flow. Typical experimental results. A
comparison of the predicted results for yz/(Y1 + Yz) and the
experimental results.
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