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(i) 

S u m m a r y . 

In this paper the method used by Wood (1968, 1970) is extended to 

cover the case of the flow of a stably layered fluid from a reservoir 

through a contraction with a round crested weir at its minimum width. 

The conditions under which a single layer may be separated from a two 

layer system by having this lighter layer alone flowing over a weir are 

first examined. The conditions under which two layers continuously de-

crease in depth from the reservoir to and downstream of the weir are 

determined. It is shown that in this case the theory involves computations 

not only at the section of minimum width but also at a section upstream of 

this point (the virtual point of control). For a weir shape, chosen so as 

to simplify the algebra, complete solutions are obtained. 

For the case of the flow of single layer, the depth of flow over the 

weir depends only on the depth of the upstream layer, and is two thirds 

of that depth. For the two layer system it is shown that the depth of the 

layers over the weir depend not only on the depth upstream but also on the 

width of the crest and indirectly on the geometry of the crest and the con-

traction. 

Some simple experiments were carried out to verify the major con-

clusions of this theory. The method presented should have applications 

in predicting flow in numerous engineering fields where more than one 

layer is flowing and where viscous effects are likely to be small. 
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L i s t o^ F igu r e s . 

Figure 1: The plan and elevation of layered flows over a weir at the exit 

to a reservoir. 

Plan 

Elevation of a two layer flow 

Elevation of the single layer flow 

The flow of a single layer over a weir 

Figure 2a: A plot of the maximum value of Y^ against the total head over the 

weir for a weir of geometry ^¿J^" ^ ^ ^ ( ^ ^ ^ con-

traction of geometry ^ ^ = / ^ ¿̂  a ^ y y c 
ty/Ti ' 

Figure 2b: A plot of the maximum value of Ŷ ^ against the total head over a 

weir. The effects of the geometry of the weir and contraction 

ioYOC^^ = 200. 

Figure 3: The points of control in a two layer flow. 

Figure 4: A plot of (1 - IF^^ ) (1 + ~ ^ ~ ^ \2 " 

Figure 5: The nomenclature used in plotting the results for the two layered 

flow. 

Figure 6: The two layered flow for = 100. A plot of y /(Y^ + Y2) at 
X ̂  ¿1 

the minimum width against (Y^ + Y2) for a range of Y ^ / b ^ . 

Figure 7: The two layered flow for oC ^^ = 1. A plot of (y^ + + ^2) 

at the minimum width against Y^j {Y^ + Y2) for a range of Y^^/bj^. 

Figure 8: The two layered flow for oC^^ = 1 . A plot of y2/ (Ŷ ^ + Y2) at the 

minimum width against Y^liY-^ + Y2) for a range of Y^^/b^i. 

Figure 9: The results for a single layer flowing over a weir. 

Figure 10: A typical two layered experiment. 



L i s t o f F i g u r e s ( c o n t ' d . ) 

Figure 11: The two layered flow. Typical experimental results, A 
comparison of the predicted results for I ^ ^̂ ^ 
experimental results. 

Figure 12: The two layered flow. Typical experimental results. A 
comparison of the predicted results for { j i + y2)/(Y^ + Y^) 
and the experimental results. 



1 . 

1. In t roduct ion 
The p r o b l e m of the se lec t ive wi thdrawal of a f luid f r o m a s tab ly 

s t r a t i f i e d r e s e r v o i r i s one of obvious p r a c t i c a l i m p o r t a n c e (Brooks and 
Koh 1969). A p a r t i c u l a r c a s e of th i s gene ra l p r o b l e m involves the flow of 
two l a y e r s ove r a w e i r and f o r this ca se the p r o b l e m i s to d e t e r m i n e f o r 
v a r i o u s u p s t r e a m condit ions the r e l a t i v e d i s c h a r g e in each l a y e r and hence 
the p r o p e r t i e s of the total d i s c h a r g e . Where both l a y e r s in a two l a y e r e d 
s y s t e m w e r e f lowing u n d e r a i r and ove r a s h a r p c r e s t e d w e i r the p r o b l e m 
w a s examined expe r imen ta l l y by Schlag (1959). In th is c a s e the c u r v a t u r e of 
the s t r e a m l i n e s ove r the we i r was impor t an t and no s imple t heo ry could be 
deve loped . When, however , the we i r i s round c r e s t e d and the flow i s g r a d -
ua l ly v a r i e d the theory u sed by Wood (1968, 1970) m a y be u sed to obtain a 
comple t e solut ion. In obtaining th is solution it ha s been a s s u m e d that the 
f l u i d f lows f r o m a r e s e r v o i r through a smooth ly con t rac t ing channel in which 
t h e r e i s a def ini te m i n i m u m width and that the c r e s t of the round c r e s t e d w e i r 
i s at th i s m i n i m u m width. Under these condit ions i t i s r e a s o n a b l e to make the 
h y d r o s t a t i c approx imat ion and to u s e a r g u m e n t s that a r e ex tens ions of the one 
d imens iona l ones u sed in open channel hyd rau l i c s . 

The f lu id i s cons ide red as inv isc id and only s t eady f lows a r e c o n s i d e r e d . 
Th i s l a t t e r r e s t r i c t i o n i s of m i n o r i m p o r t a n c e provided that the r e s e r v o i r i s 
su f f ic ien t ly l a r g e so that the t ime for a p a r t i c l e to t r a v e l t h rough the con-
t r a c t i o n and ove r the w e i r i s shor t c o m p a r e d to the t i m e f o r the s t r e a m l i n e 



2. 

p a t t e r n s to change due to the wi thdrawal of f luid f r o m the r e s e r v o i r . 
2. T h e o r y 

C o n s i d e r a channel l ead ing f r o m an inf in i te r e s e r v o i r a s in F i g u r e l a . 
Le t t h e r e b e a b r o a d c r e s t e d w e i r in the channel a s in F i g u r e l b . Le t the 
da tum be a r b i t a r y and le t the depths and dens i t i e s of the l a y e r s in the in-
f in i te r e s e r v o i r be Y , Y and Y and /¿> ^ /© , and A ^ ^ f ^ o 1 ¿i 
r e s p e c t i v e l y . F u r t h e r l e t the height of the we i r at any sec t ion x b e h , and 
the depth of the l a y e r s at th i s sec t ion be y , y and y . Let the width of o 1 ¿i 
the con t r ac t ion be b (x), the d i s c h a r g e in each of the f lowing l a y e r s be Q^ 
and Q and the m a x i m u m height of the w e i r at the sec t ion x = 0 be H. 

¿1 

It wil l b e a s s u m e d that the f luid i s invisc id and that the v e r t i c a l cu rv -
a t u r e of a l l of the s t r e a m l i n e s i s suf f ic ien t ly s m a l l such that the f low i s grad-
ua l ly v a r i e d and the p r e s s u r e s m a y b e taken a s h y d r o s t a t i c . 

Then B e r n o u l l i ' s equation f o r each of the f lowing l a y e r s m a y be 
w r i t t e n as 

and 
I r O2 

^ c/,2 Yt 

w h e r e ^ A ^ ^ A 

(2^ 



3. 
As in the previous two papers (Wood 1968 and 1970^ these two equations 

together with the condition that and remain finite determine the 
dx ox 

final steady state flow over the weir. 

(a) The Flow of the Single Layer over the Weir 

Consider firstly the case where there is no flow in layer 2, (Fig. Ic) . 

In this case we will consider that the shape of the bump (h(x) ) and the total 

depth behind the bump (Y^ + Y^) are known. However, the individual values 

of Y and Y are not known. It is then required to determine the minimum 
J. ¿t 

value of Y^ such that there is no flow in the lower layer. 

Simple broad crested weir theory yields for the weir discharge 

(Henderson 1966) 

i f «-T {I 4 
where Y ^ = Y^ + Yg - H 

^m ^ width at the top of the crest 
H = the maximum height of the weir 

Equation (1) then becomes 

where A = ^ ^ b ^ 

Downstream of the point of contact of the interface with the solid 

boundary of the weir (point A, Fig. Ic) we have Yg = ^ ^ ^ equation (3^ 

becomes 



+ y , + h = Y + Y^ (4) 
2 2 1 2 

Thus if we a s s u m e the point of contac t of the i n t e r f a c e with the w e i r 
o c c u r s at a p a r t i c u l a r value of (x) then the value of y . ( = y ) m a y be com-X o 
puted f r o m the known va lues of b, h, Y + Y and A. This va lue wil l be 1 z 
in the r eg ion of s u b c r i t i c a l f low and thus only the l a r g e r of the two r e a l 
so lu t ions wil l be phys ica l ly r e a l i s t i c (Henderson 1966). The s m a l l e r of 
the two so lu t ions r e p r e s e n t s a s u p e r c r i t i c a l f low and o c c u r s d o w n s t r e a m 
of the c res to 

U p s t r e a m of the point of contact t h e r e a r e va lues of y and f o r the ¿i 

l o w e r l a y e r we have f r o m equation (2) with Q = 0 ¿1 
(5) 

Solving fo r (y + h) f r o m the above and subs t i tu t ing into equation (3)̂  we ¿i 

get 

This equat ion m u s t a l so hold at the point of contact and thus having com-
puted y^ f r o m equation (4) the a p p r o p r i a t e va lue of Y^ m a y be obta ined by 
subs t i tu t ing y = y into equat ion (6) and solving. By va ry ing the pos i t ion J. c 
of the point of contact of the i n t e r f a c e with the sol id s u r f a c e (A of Fig» Ic) 
the c u r v e of Y^ v e r s u s x(c^ can be obtained and the m i n i m u m value of Y^ 
s e l e c t e d . 
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It is now proposed to show that search for the minimum value of 

Y^ should only commence when (1 + OC < 1 where IF^^ ^¿ry^ ) 

Differentiating equation (6) with respect to x we get 

. ^ i / f 

and thus f rom (5) ^̂  _ - ^ ^ ^ (7) 
dx " ( / - ( 

Since it is required that ^^^^^ ^̂  ^^ ^^^ opposite sign to it is 

apparent that at the point of contact 

(1 + ^ 12̂  ^ ^̂ ^ 

and the search for the minimum value of Y^ should start only after this 

requirement is satisfied. A computer program was written to obtain 

the minimum of Y^ for a range of values of Y ^ for weirs of variable 

geometry and the result is plotted in Fig. (2). 

(b) The Case of Both Layers flowing over the Crest 

For this case the method used by Wood (1968, 1970) is followed 

and the conditions that and remain finite for all x are dx dx 

H 
determined. 

Defining y / = f ^ , y / - f ^ = ^ ^ ^ ^ 

and substituting into equations (1) and (2) we get 
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and 

J 
If Q^ and Q^ and ^^^ ^^^ condit ions at infinity Y^ are known these 

I I 
two equations de termine y and y in t e r m s of b at e v e r y x . Two 

•L ¿J 

fur ther equations a r e r e q u i r e d to s o lve f o r Q and Q . These equations 
1 ^ 

c o m e f r o m the condit ion that as b var i es f r o m its l a r g e value at x = - 0 0 

through its m i n i m u m at x = 0 to a l a rge value at x = + it i s r e q u i r e d 

that the depths of both l a y e r s continuously d e c r e a s e f r o m their values 

in the r e s e r v o i r (Y^ and Y^) at x = - to v e r y smal l values at x = + 0 0 . 

T h e s e condit ions determine a p o s s i b l e f l o w . To obtain this f low it is 

n e c e s s a r y to obtain the condit ions f o r which and a lways 
dx dx 

f in i te . 
I 

Dif ferentiat ing (9) and (10) with r e s p e c t to x and so lv ing f o r 

and ^ ^ we get dx ^ 
_ / of 6 D2 

¿> c^z. D / (11) 

^^ b O, (12) 

where D^ = (1 - IF^^) ^̂  ^ ^ 12 ~ ^ ~ ^ 1 2 
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ano/ ff^ ~ 

and ^ = - A 

db dh ^ Now at the crest of the weir -ir- and -r;— equal zero and hence from dx dx 

equations (11) and (12) we have s-̂ d equal zero or D^ = 0. 

We require the interfaces to be continuously sloping and can therefore ex-

clude the case where the slopes are zero. Further, if at any other point 
? I 

D, = 0 then to obtain finite values of - ^ l a n d then D^ and Do must 1 dx dx 2 o 

equal zero. 

It can be shown that the condition D2 and D3 equal zero together 

implies that D-̂  also equals zero. It is these two conditions which 
1 ! 

ultimately enable the relationships between Q^, Qg, y^ and y^ to be 

obtained» 
The condition that D-ĵ  = 0 at the minimum width (where ^ 
„ / 

and = 0) gives us three equations at this point [ (9), (10) and D^ = oj 

However, a fourth equation is required and it is therefore necessary to ex-

amine the variation of D^ with x. 



to 

8, 
, I 2 2 

In the reservoir where x = - <X>, y_ = Y and IF and IF tend ¿ i i ^ 
zero. Hence D^ ( ( / ' >> - ¿<^/tends to one. Similarly 

2 2 

when X = + oo , IF̂  and IF̂  tend to large values and D̂  tends to a 

large positive value. It can also be shown that D^ has only one turning 

point and thus the graph of D^ versus x is as in Figure (3) and the equation 

D^ = 0 (13^ 

holds at the position of minimum width and at some other point upstream 

of the position of minimum width. This second point is called the point 

of virtual control (Wood 1968K In order that remam 

finite at this point, then from equations (11) and (12"» 

D_ = 0 (14) 

and " ^ ^̂ ^̂  
Thus at the section of the virtual control we have four equations (9, 10, 

14 and 15) and if the height h' at the position of virtual control is known 
Q1 Q? I 

these equations may be solved for the four unknowns v = —^ , V2 =.— 

and y Up to this stage the position of the datimi has not been defined. 

It is convenient to define the datum as a horizontal line through the point 

of virtual control and to measure all the depths in the reservoir from 

this line. It also simplifies the expressions for D^ and D^ if the bump 

shape is defined by 
= - if tm (16) 
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where if is a constant which defines the shape of the bump as 

It also greatly simplifies the algebra if the following variables are used: 

Using these variables the Bernoulli equations (1) and (2) become 

(18^ 

! ' 

These equations are solved for y^ and y^ + h'. Then noting that h' = 0 

at the virtual control we obtain from Dg ^ ^ (Equation 14). 

where ^ _ ¿T im 
^ ^ Y. 

and from D3 = 0 (equation 15) 

fi ' i 91 \ 

When equations (20) and (21) are satisfied the equation (13) (D^ = 0) is 

also satisfied. Equations (20) and (21) lead to the following quadratic for 



10. 

/ I c ^ - i - S c ^ - ^ D - O ( ^ 2 ) 

A = C - ^^^/B) 

S ^ i ^ - -f- ^ ^ /r) -f-

^ C^fi C ' o/,^ ) ^ ( ^c/y^ 

D = ^/S /rjJ) 

O^c/ //) = C / -f ) Y^^ 

n = ' C/,2 ( ^ 

fi / 

2 2 This equation is solved for c and it is apparent that two values of c 

will satisfy all the conditions at the virtual control and it remains to de-

termine which of the pair of values satisfies the particular flow situation. 

Consider the plot of D/ ^ C ^ ̂  / - ) - for the 

case oi = 1 (Figure . The curves FG and HI represents D = 0 
12 

and between the curves D^ is negative. The point A (1 + 1) rep-
2 

resents the position in the reservoir and the point E where (1 - IF̂  ^ and 
2 

{1 + (X - JF ) are both large and negative represents a point in the 
12 2 

channel downstream of the reservoir . Now as the surfaces f rom the up-

stream reservo ir to the downstream reservoir are smooth and continuous 

then as we move f rom the upstream reservoir to the dQwnstream channel 
9 2 (1 - IF ) and (1 - IF„ ) vary continuously. Hence in the reservoir 

1 12 2 2 
where the f irst value at which D^ = 0 occursfat b) (1 - IF̂  ) and 

2 
{I + a - JF ) are both positive. This condition enables us to select 

12 2 ' 2 
the correct value of c . 



1 1 . 
1 t 

The remaining properties (y , y and 0) at the virtual control are 
J. ¿1 

then calculated from equations (20), (18) and (19). Now all the properties 

at the virtual control are known and the ratio of the discharges in the layers 

can be computed from 

^ ^ df ^ (23) 

and for each flow situation a new constant 

may be defined. Since the flow is steady the value of Q must be ¿i 1 
I f 

independent of x. Now y^ and y^ obtained from equations (18) and (19) 

are substituted into equation (22) and we obtain 

A = - c C Y^' ' /?') 
^ O^, -f- o^,^ ry-c'JCc^ OP,) (25) 

This equation must hold at the position of minimum width (i .e. at the crest 
of the weir) and thus at this point equation (25), the two Bernoulli equations 

(18) and (19) and D^ = 0 (equation (13)) hold. There are, however, five 
2 ' ' 

unknowns 0, c , y , y» and the difference in elevation between the crest 

of the weir and the position of the virtual c o n t r o l . T h e additional condition 

comes from having to simultaneously satisfy the equation of continuity for 

each layer and the relationship between the elevation of the crest of the 

weir above the virtual control and the width of the contraction. 2 The method of solution was to assume a value of c at the minimum 

width (c and calculate the other values of 0^ , y ^ ^ , ^ 
h 
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the minimum width to satisfy equations (9), (10), (13) and (24), The 

equation of continuity for layer (2) between the virtual control where the 

variables are y / , 0 , b , and c and the minimum width is 2v V V V 

^ ¿ f c f = ^rn é>m ^^ 

and was then used to calculate the ratio of - — . This was then sub-

stituted into equation (17) and a new value of h and hence h = h /Y^ m m m 1 

was obtained. The process was continued until both values of h^ ' agreed 

and the solution was then complete. 

The results were then converted into values where the depth was 

measured from the crest of the weir as in Figure 5 and all depths were 

written in terms of b the width of the contraction at the crest of the weir. m 
Discussion of the Results 

The results for a single layer system show the effects of (1) changes 

in the density difference between the flowing and stationary layer and 

(2) the geometry of weir and bump on the depth of withdrawal. As was 

expected, the smaller the density difference between the flowing and 

stationary layer (the greater the value of ô  ^^ the greater the depth 

from the crest to the stationary layer. The effect of the geometry of the 

weir crest and of the contraction was, however, surprising. Steepening 
/ t 

the weir crest ( i .e . increasing e in the equation for the weir crest 
2 

•S— = qÌt^ ) ) and increasing the radius of curvature of the contraction 
bm ^ ^ 

t I rlQ /Xr " I\ 
( i .e . increasing a in the equation defining the contraction!^ = 1 + ) J 
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has the effect of increasing the depth from the crest to the stationary 

layer. 

This effect of the geometry is also important for the case where both 

layers are flowing. For the case where = 0 (i. e. no bump) it was 

shown by Wood (1968) and Yih (1969) that y and y at the minimum width 
X ¿J 

were both two thirds of Y^ and Y^ respectively. No such beautifully 

simple result was obtained in this case. Indeed y ' and y ' depend on the J. ^ 
f 

density differences, Y^ , and the geometry of the weir and the contraction 

in a most complicated manner. For large values of the value J. o 
^^^ ^^ is always close to the value of two thirds expected for a single 
Yl+ Y2 

layer. Indeed for ¡f = 1.6 and ^^^ maximum departure from 

the value of two thirds was only 0. 007. For this case, however, the 

values of J 2 markedly from two thirds. The results for any 

particular value of Y2 and b ^ can be obtained from Figure 6 where 

y2 is plotted against ± for various values of If Yi + Y2 Yi+ ¥3 b ^ 
Yi = Y , then for of 27, Z ? = 0.76 and for ^ = 0. 64 then =1.14, 

bm Y2 bm Yg 

This shows that decreasing the width of weir not only decreases the dis-

charge through contraction but also changes the ratio of the flows in the 

two layers. 

For the case of if = 1. 6 and ~ ^ ^̂  values of 
^^ and ^̂  depart markedly from the value of two thirds 
Yi + ^2 Yi + Y2 

(Figures 7 and 8). In this case the value of ^^ ^ tends to two 
Yl + Y2 
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thirds when Y^/ (Y^ + Y2'' tends to a small value. The result de-

pends on ^ ^ but the effect is small with the smaller values of ^i/iX 

The values of 72/(Y^ + Y2) are less dependent on the values of Y^/bm 

than was the case for the larger values of „ (compare Figures 6 and 8). J. ̂  
Experiments 

Two sets of experiments were carried out to confirm the major 

features of this analysis. In both series of experiments reservoirs were 
b /2 X ^ formed by placing a contraction of shape ——- = 1 + 0.0277 (—^ ) in bm t)m 

a flume that was eight feet long, two feet wide and one foot deep. For 

work with case (a) (the condition for the minimum value of the upper 

layer such that there is no flow in the lower layer) a weir of shape 
H - h X ^ , — = 0.020 (—r ) was used, and for case (b) (two flowing layers) bm bm 

a weir of shape (H - h)A)ni ^ 1.60 logg (b/bm) was placed in the centre 

of the contraction and the two reservoirs were separated by a sliding 

gate in the contraction. In both cases b^^ was 0. 05 2 ft. 

For the experiments the flume was partially filled with fresh water 

and the two coloured layers of salt water of different densities (layers 1 

and 2) were slowly pumped in beneath the top layer of fresh water, (An 

exception to this method was case (a) where oC ^ ^ CRse 

only fresh water and salt water were used as the upper interface was be-

tween air and fresh water). In all cases circulation velocities in the 

fresh water ( / o ) above the flowing layers were kept very small by 
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having large flow areas above the level of the flowing layers. 

Case (a) : Determination of the minimum Y-| for no flow in the lower layer. 

After the layers had been set up in the flume the gate was removed 

and the flow commenced. A constant discharge was then maintaiaed in 

layer (1) for some hours and the flow was observed until the flow in layer 

(2) ceased. The conditions at which this occurred were then recorded 

and it can be seen in Figure 2a that the agreement between the experimental 

and theoretical predictions for OC from one to 200 was satis-

factory. As was to be expected, for a given (Y^ + Y^ - H), the viscous 

effects made the depth below the weir at which the flow ceased slightly 

greater than the inviscid theory would predict. 

Further experiments to verify the effect of geometry changes are 

planned once larger scale experimental equipment becomes available. 

Case (b): Flow in both Layers 

In this case it was proposed to check the theory by making measure-

ments of the depths of the layers over the weir crest . In order to check 

the performance of the equipment a number of experiments were carried 

out with a single layer flowing over the weir. In this case water was 

pumped into the reservoir upstream of the contraction and allowed to flow 

over the weir in the centre of the contraction. The velocity head in the 

reservo ir was small enough to be neglected and under these conditions 

the one dimensional inviscid theory predicts that the depth over the weir 
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would be 2/3 of that far upstream. In the experiments depths were 

measured over the weir and upstream in the reservoir and Figure 9 

shows a comparison between the experimental points and theoretical 

line. It is to be noted that for large depths in the reservoir the ex-

perimental points w^ere above those predicted. Experiments carried 

out previously with the flow of a single layer through a contraction (Wood 

1970) also gave depths through the contraction that were always greater 

than the theoretical value of 2 /3 . In this case it was shown that the 

measured depth would be the critical depth plus one third of the displace-

ment thickness. It is believed that it is this same effect that is causing 

the discrepancy in this case. From these preliminary experiments it 

was concluded that errors at least of the order of +5 pc. could be ex-

pected in the two layer experiments. 

The two layer experiments were commenced by removing the gate 

and a short time after this the flow settled down and the reservoir level 

changes became slow« A typical experiment is illustrated in Figure 10. 

Once the level changes in the reservoirs became slow the depths in 

the reservo irs and at the contraction were continuously measurede Values 

^ ^2 ^2 were then plotted against the values of ^^ — 
Y i + Y2 Yi+ Y2 Y2 

Theoretical values of y^ + ^^^ 72 were then obtained using 
Yi + Y2 YI + Y2 

the measured values of OC x2 » Y i and and Figures 7 and 8. 
Yl+ Y2 ^m 

Straight lines were then drawn through these deduced points. Typical 



17. 

results are shown in Figures 11 and 12. 

It can be seen that the agreement between the experimental and 

theoretical values was reasonable. Indeed the trend in the curves of 
y-i + yp 

Ŷ  ^ Y2 ^̂  ^ same as obtained for a single layer system. That is the 

experimental depths are greater than those deduced. As in the single 

layer experiments this was particularly noticeable when the depths over 

the weir were large. 

It therefore appears that the theory is satisfactory for deducing the 

depths of flow of a two layer system over a weir provided the flow is grad-

ually varied. Values of the discharge in each layer can be computed from 

the deduced values of ^^ "*" ^^ and ^̂  (from Figures 7 and 8) Y i + Y2 Yi + Y2 and from the two Bernoulli equations (9) and (10). 
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Fig. 4: A plot of (1 - I F ^ ) - ^ 2 ' 12 D. 
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Figo 10: A typical two layered experiment. 
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