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Abstract

Degenerate microwave amplifiers o↵er the potential to perform a measurement of weak mi-

crowave signals free from any degradation to their signal-to-noise ratio, a benefit a↵orded

by the quantum mechanics of their phase sensitive gain [1]. The degenerate parametric

amplifier may even be used to enhance the signal-to-noise ratio of a weak measurement

by squeezing the vacuum fluctuations below the standard quantum limit. Consequently,

parametric amplifiers have featured in a number of recent sensitivity breakthroughs across

multiple fields. These include the detection of gravitational waves [2], the search for dark

matter [3], and high sensitivity electron spin resonance spectroscopy [4]. In this thesis,

we present a novel microwave degenerate parametric amplifier based on the non-linear

superconducting phenomenon of kinetic inductance. The device is a simple and robust

quantum limited phase sensitive amplifier, which is well described by theory and shows

potential as a highly-e↵ective tool for the production of squeezed microwave light.
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b̂in and b̂out. The input field is coupled to the cavity at rate , and the cavity

to the bath at rate �. The accompanying circuit is coloured according to

the correspondence with the associated fields and coupling constants. The

bath continuum is coupled to the circuit via the resistor. . . . . . . . . . 37

2.7 (a) The SQUID: a parallel pair of Josephson junctions with equivalent

inductance LJ . The SQUID flux and current are depicted. (b) The equiv-

alent circuit for the JPA, whereby N � 1 SQUIDs replace the inductor in

the quantum LC resonator. An externally applied magnetic field Bext is

depicted and is one of the methods for pumping the JPA, called the flux

pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 (a) The input phase space, with contour of constant magnitude depicted

(blue circle). (b) Banana-type distortion of the input phase space, as

observed in 4WM JPAs (e.g. [6]). (c) S-type distortion of the input phase

space, as observed in 3WM JPAs (e.g. [7]). . . . . . . . . . . . . . . . . 43

7



3.1 The Kinetic Inductance Parametric Amplifier (KIPA) with simplified schematic

showing device operation, and SEM image of the KIPA cavity. A pump,

signal and DC bias are combined and fed into the single port of the KIPA.

Microwaves propagate through the Photonic Band-Gap (PBG) filter before

reaching the cavity formed by an Inter-Digitated Capacitor (IDC) struc-

ture. The IDC is shorted to ground at one end, forming a �/4 resonant

cavity. The ports A and B correspond to the input and output ports of

the PBG structure, and coincide with the PBG ports depicted in Figure

3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 (a) The �/4 transmission line resonator of the KIPA, drawn to scale. The

resonator has length l with interdigitated capacitor fingers that provide

additional capacitance to ground. The critical dimensions are labelled:

the centre line width w, the gap width g, the finger width s, and the finger

height h. (b) Characteristic impedance of a section of IDC as a function

of the finger height h. Results are obtained from Sonnet simulations for a

centre line width of w = 2 µm. . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 (a) Geometry of the linear photonic band-gap filter, featuring 6 sections of

alternating impedance: Zlow and Zhigh, with ports A and B. (b) Simulation

of the transmission scattering parameter SAB as obtained using the ABCD

matrix approach. The band-stop region is centred about the resonant

frequency of the IDC: f0 = !0/2⇡. DC current may flow through the

PBG, and the PBG is designed such that the 3WM pump at frequency

fp ⇡ 2f0 is minimally attenuated. . . . . . . . . . . . . . . . . . . . . . . 54

3.4 The KIPA fabrication procedure. See main text for details. . . . . . . . 55

3.5 An image of the KIPA enclosure mounted to our dilution refrigerator. . . 58

4.1 Cryogenic microwave setup for amplifier characterisation experiments. The

legend defines the type of coaxial cables used throughout the setup: Stain-

less Steel (SS), Silver Cupro-Nickel (SCN) and Silver-plated Copper (SC).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8



4.2 Room temperature microwave setup for amplifier characterisation. A mi-

crowave switch allows us to perform a traditional VNA style measurement,

or alternatively supply the signal from a separate microwave source while

using one port of the VNA as a spectrum analyser. The microwave source

generates a pulse at the beginning of each phase modulation period, which

is used to trigger the VNA in the phase sensitive amplification experiment. 67

4.3 (a) The phase response at di↵erent bias currents after line delay removal.

Due to the current dependence of kinetic inductance, the resonant fre-

quency changes resulting in a frequency shift in the phase response. Note

the significant ripples present throughout the frequency span of the mea-

surement. (b) The di↵erence in phase response at adjacent bias currents.

Data is o↵set for illustrative purposes. The ripples cancel, leaving behind

a peak at the average of the two resonant frequencies. The data is filtered

(black traces) to reduce noise in the peak measurement. The filtered data

is also slightly o↵set for visual clarity. . . . . . . . . . . . . . . . . . . . 70

4.4 KIPA phase response as a function of bias current. The measured reso-

nance frequency (diamonds) is fit to theory (solid line). The vertical axis

is the frequency shift �! = !(I)� !0(0). . . . . . . . . . . . . . . . . . 71

4.5 Magnitude response (top left) and fit (bottom left) of a similar device to

the KIPA. Coupling and internal quality factors were extracted from the

fits (top right), as was the resonance frequency (bottom right). . . . . . 73

4.6 (a) Phase insensitive gain as a function of frequency ! = �! + !p/2 for

di↵erent pump powers (circles). Traces are labelled by the pump power

at the cavity input. The fitted theoretical frequency response is plotted

(solid lines). The parameters ||, Arg() and the pump line transmittance

�p were the only free parameters. (b) || as a function of the estimated

pump current in the device (circles), with linear fit (solid line). (c) Arg()

as a function of pump power. The dashed line is a guide for the eye. . . 74

4.7 Bandwidth vs peak phase insensitive gain (top) and Gain Bandwidth Prod-

uct (GBP) vs peak phase insensitive gain (bottom). The solid black line is

a log-linear fit to the bandwidth as a function of gain in dB. The dashed

black line is the average GBP across all gains. . . . . . . . . . . . . . . . 77

9



4.8 The mixing rate |⇠| and parametric self oscillation threshold
p
�2 + (+ �)2/4

vs the pump power at the output of our microwave source. The parametric

self oscillation threshold occurs at the intersection of these curves indicated

by the black dashed line at Ppump = 4.033 dBm. . . . . . . . . . . . . . 78

4.9 Measured gain (a) and theoretical gain (b) as a function of the pump/signal

phase for an input signal of frequency !s = !p/2. Traces are labelled by

the pump power at the cavity input. Disagreement between theory and

experiment at the highest pump power (-31.8 dBm) is due to an increasing

sensitivity of the peak theoretical gain to coupling rate ||. The discrep-

ancy is explained by a small error in the fitted parameter, arising from the

manual fitting process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Peak phase sensitive gain as a function of the input signal power at the

sample, with 1 dB compression power (referred to the output of the device)

as a function of the KIPA gain (inset). . . . . . . . . . . . . . . . . . . . 81

5.1 The room temperature setup used for the experiments in this chapter. A

microwave switch passes a coherent signal tone of frequency !s and vari-

able phase 's to the input of the fridge, or disables the input altogether

with a 50⌦ load allowing the KIPA cavity to reside in the vacuum state.

The detection path now consists of a room temperature microwave am-

plifier followed by a homodyne detection circuit driven by an independent

microwave source as the local oscillator. The baseband I and Q signals

are low pass filtered down to 1.9 MHz and then amplified further before

digitisation by an ADC. Alternatively, a microwave switch can redirect the

detected microwaves to a spectrum analyser used to characterise the noise

temperature of the KIPA. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 KIPA response to coherent inputs of constant amplitude and varying phase

plotted on two di↵erent scales. Top: outputs are plotted with an equal

aspect ratio, where the reflected input sweep with the KIPA o↵ is observed

as a circle (green). Turning the KIPA on stretches the circle to an ellipse,

which resembles a blue line in this plot. Bottom: the same outputs plotted

with an exaggerated scale along Q so that the elliptical transformation may

be observed. Solid lines are a guide for the eye. . . . . . . . . . . . . . . 85

10



5.3 Visualisation of the linear transformation AG(0) acting on points on the

unit circle. The red (blue) points/lines correspond to the standard basis

vectors in V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Visualisation of the linear transformation AG(⇡/2�arccos(��/|⇠|)) acting

on points on the unit circle. The red (blue) points/lines correspond to the

standard basis vectors in V . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 (a) An input signal (green) represented by points of constant amplitude on

the IQ-plane, with a 5% reflected signal (blue). (b) The theoretical output

of the KIPA (green) superimposed with the total reflected signal with a

phase shift of zero (dark blue) and a phase shift of ⇡/3 (light blue). . . . 90

5.6 Top: Ellipses measured by sweeping the phase of a fixed amplitude input,

normalised by the amplitude of the input (||Io↵|| or ||Qo↵||). This is the

same data as is presented in Figure 5.2. Bottom: Predicted ellipses from

the DPA squeezing transformation with a 2% in-phase reflection coe�cient. 91

5.7 Amplification and de-amplification as a function of pump power (triangles)

with theoretical gain with a 2% in-phase reflection coe�cient (solid black

lines). The predicted deamplification for an ideal DPA with no reflected

component is also plotted (dashed black line), indicating the discrepancy

produced by the reflected input. . . . . . . . . . . . . . . . . . . . . . . 92

5.8 (a) The simulated non-degenerate noise photon number nk as a function of

temperature for di↵erent values of Qi. (b) The simulated degenerate noise

photon number nk as a function of temperature for di↵erent values of Qi.

(c) The simulated degenerate (non-degenerate) noise photon number for

Gk = 31 dB (25 dB) as a function of the internal quality factor Qi. . . . 95

11



5.9 (a) The complete detection chain model, consisting of the KIPA and at-

tenuator ↵1 at 20mK, attenuator ↵2 and the HEMT at 4K, and the room

temperature amplifier at 300K. The attenuators are modeled as beam split-

ters, mixing in the thermal operators v̂1 and v̂2 with the detected field as

it propagates along the detection chain. Each amplifier contributes noise

to its output, denoted here by the field operators ĥk (KIPA), ĥH (HEMT),
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Chapter 1

Introduction

Low noise and high gain microwave amplifiers have become a staple in contemporary

experiments in the fields of condensed matter physics and quantum engineering. In order

to sensitively measure weak microwave signals emitted by quantum systems, experimen-

talists require an amplifier that boosts the strength of the signal without excessively

degrading the Signal to Noise Ratio (SNR). Microwave amplifiers based on parametric

photon conversion are becoming an increasingly popular choice as they can operate very

close to the quantum noise limit (also known as the Standard Quantum Limit), where

only the minimal amount of noise required by quantum mechanics is added to the am-

plified signal. Parametric microwave amplifiers have enabled the high-fidelity readout of

quantum bits in elementary quantum processors [8], and pushed the sensitivity of electron

spin resonance to new limits [4, 9, 10, 11].

Parametric amplifiers largely fall into one of two classes: phase insensitive or phase

sensitive. In quantum mechanics, a classical electromagnetic field a(t) = I cos(!t) +

Q sin(!t) (with angular frequency !) can be described by dimensionless quadrature field

operators Î and Q̂. A phase insensitive amplifier applies gain G equally to both quadra-

tures hÎouti = GhÎi and hQ̂outi = GhQ̂i (where Îout and Q̂out represent the field at the

output of the amplifier), unavoidably adding at least 1/4 photon of noise to each quadra-

ture in the process [1]. Conversely, for a phase-sensitive amplifier, one field quadrature is

amplified hÎouti = GhÎi, whilst the other is deamplified hQ̂outi = hQ̂i/G. This definition

of quadrature gain allows for amplification without any added noise [1]. The noiseless na-

ture of a phase-sensitive amplifier makes it distinctly useful for detecting small microwave

signals containing only a handful of photons [12].
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Phase sensitive parametric amplifiers not only de-amplify wave-packets of photons

along a single quadrature, but have been shown to suppress the fluctuations of the elec-

tromagnetic field in a phenomenon known as squeezing. Electromagnetic radiation cooled

to its ground state will produce noise (known as the vacuum fluctuations) such that the

uncertainty relation holds: h�Q̂
2
ih�Î

2
i � 1/16, where h�Î

2
i and h�Q̂

2
i represent the

variances of the field quadratures (in photon units). Simply cooling the microwave radia-

tion in a given system will produce vacuum fluctuations that are equal on each quadrature:

h�Q̂
2
i = h�Î

2
i = 1/4, commonly referred to as the Standard Quantum Limit (SQL).

Historically, the SQL has been considered a fundamental limit on photon detection sen-

sitivity until the advent of squeezing technology. A phase sensitive amplifier may reduce

(or squeeze) the vacuum fluctuations along one quadrature, while amplifying the vacuum

fluctuations along another such that the uncertainty relation still holds. In applications

where the measurement may be projected onto a single quadrature, squeezed noise can

be used to enhance SNR in experiments requiring high sensitivity. So far, squeezing tech-

nology has been successfully deployed in the search for dark matter axions [13, 3], the

manipulation of the coherence properties of a superconducting qubit [14], the detection of

gravitational waves [2], and high sensitivity electron spin resonance (ESR) spectroscopy

[7].

Squeezed vacuum states may also prove to be a valuable resource in quantum comput-

ing [15]. Measurement-based computation using highly-entangled cluster states encoded

in the modes of an electromagnetic field is one credible pathway to achieving large-

scale quantum computation [15]. Critically, it has been shown that fault-tolerance in this

scheme can be attained using vacuum states squeezed by at least 15�17 dB [16]. Circuit-

based microwave squeezers are a particularly attractive platform in this context, as they

combine manufacturability with another key requirement in cluster-state computing, the

ability to engineer non-Gaussian states of light [15].

The simplest parameteric microwave amplifier is the Degenerate Parametric Amplifier

(DPA), characterised by a pumped non-linear cavity that facilitates the conversion of

pump photons to signal photons via multi-wave mixing. In this thesis, I present a new

type of phase-sensitive microwave parametric amplifier that behaves as a near-ideal DPA.

Our device is fabricated using a single-step lithography process on a thin film on NbTiN,

which provides the non-linearity responsible for multi-wave mixing. This non-linearity
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originates from a kinetic inductance intrinsic to the NbTiN film [17, 18, 19, 20]. As such,

we have decided to call our device a Kinetic Inductance Parametric Amplifier, or KIPA

for short.

We observe in excess of 40 dB gain for phase insensitive operation and up to 50 dB of

gain in phase sensitive mode, with a gain-bandwidth product of approximately 100 MHz.

A 1 dB-compression power of�43 dBm enables high gain amplification of small microwave

signals without device saturation and is nearly five orders of magnitude improvement

on other microwave parametric amplifiers [21, 22]. Phase sensitive amplification of a

coherent tone is used to observe deamplification of up to 26 dB without the distortions,

known to limit the achievable squeezing, commonly observed in other devices [7, 5, 20].

We successfully predict the behaviour of the KIPA using a theoretical framework based

on the ideal DPA and present early measurements on its noise squeezing properties.

Combined with a statistical analysis of the output noise fields for a vacuum state input,

we produce a body of evidence to suggest that our device well approximates the ideal

DPA, even for phase sensitive gains as high as 30 dB. Finally, we find a phase sensitive

noise temperature of 0.07 photons, demonstrating that the KIPA is quantum limited.

This thesis is organised into four chapters:

• Background: We begin the thesis with a review of the literature on microwave

parametric amplifiers and present the mathematical background required to develop

the theory of the KIPA in later chapters.

• The Kinetic Inductance Parametric Amplifier: In this chapter we describe

how the KIPA was designed and manufactured, and present the derivation of the

KIPA Hamiltonian.

• Amplifier Performance: This chapter presents a series of experiments that we

use to quantify the KIPA’s utility as a microwave amplifier. We measure the phase

insensitive and phase sensitive gains of the KIPA as well as its 1 dB-compression

power.

• Quantum Characteristics: We conclude the thesis with a series of experiments

used to understand the KIPA’s noise properties and potential as a squeezer.

17



Chapter 2

Background

This chapter begins with a review of the quantum limits on amplifiers first introduced

by Caves and the phenomenon of squeezing. The Degenerate Parametric Amplifier (DPA)

is a technology that has been demonstrated to operate close to these limits, which we

review and explore its ability to squeeze the vacuum. The requisite background theory to

understand how a DPA operates is then presented, starting with the quantum mechan-

ical microwave resonator and the theory of coupling to a microwave cavity, followed by

a description of two di↵erent types of non-linear microwave media that can be used to

construct a DPA – the Josephson junction and kinetic inductance. The Josephson Para-

metric Amplifier (JPA) currently represents the state-of-the-art in microwave squeezing

technology. We review a selection of these amplifiers to provide a comparison to the new

kind of microwave squeezer described in this thesis, the Kinetic Inductance Parametric

Amplifier (KIPA). To finish we briefly introduce the kinetic inductance Travelling Wave

Parametric Amplifier (TWPA) to motivate the potential use of kinetic inductance in a

DPA, as is achieved by this work.

2.1 Linear Amplifiers: Quantum Limits & Squeezing

The formalism of squeezing was first introduced by Carlton Caves in his seminal

paper: Quantum limits on noise in linear amplifiers [1]. Shortly after its publication,

squeezing was first demonstrated by Slusher et al. in the optical domain [23] and then by

Movshovich et al. at microwave frequencies [24]. Since then, quantum limited amplifiers

that produce squeezing have become a powerful tool in modern experimental quantum
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physics [14, 7, 13, 2, 25], all strictly adhering to the theory first introduced by Caves in

1982 [1]. We begin our review of the literature with the quantum mechanical noise limits

of linear amplifiers, first discovered by Caves. Following this, we define the phenomenon

of squeezing, a consequence of Caves’ fundamental limits. Caves’ theory extends to

multi-mode (wideband) linear amplifiers and generalises to the situation where there

is a frequency di↵erence between input and output modes. These generalisations are

beyond the scope of this thesis, therefore, we confine the discussion to the amplification

of narrow-band signals where input and output mode frequencies coincide.

Consider a narrow-band input signal y(t) = A cos(!t+') with amplitude A, frequency

!, and phase '. The input y(t) may be equivalently represented by its quadratures I

and Q (I,Q 2 R) such that y(t) = I cos(!t) + Q sin(!t), where A =
p
I2 +Q2 and

' = arctan(�I/Q). Another way to represent y is as a complex phasor rotating at

frequency !, where y = I + jQ. In the classical picture, a linear amplifier is a device

that linearly increases the quadratures of our input phasor to
p
GII + j

p
GQQ where

GI , GQ 2 C. Note that the power gains GI and GQ are not required to be equal.

In the quantum picture, the input quadratures I and Q are promoted to the operators

Î and Q̂ such that the canonical commutation relation
⇥
Î , Q̂

⇤
= i/2 is satisfied. Conse-

quently, the variances of the quadrature operators must obey the Heisenberg uncertainty

principal [26]:

h�Î
2
ih�Q̂

2
i �

|h
⇥
Î , Q̂

⇤
i|

2

4
=

1

16
(2.1)

In this picture, the phasor and its conjugate relate to the creation and annihilation

operators as:

â
† = Î + jQ̂ (2.2)

â = Î � jQ̂ (2.3)

obeying the commutation relation
⇥
â, â

†] = 1. In the Fock basis, the states |0i, |1i, · · · |ni

represent the photon population of the electromagnetic mode. Acting on the state |ni,

the creation operator populates the mode with an extra photon: â†|ni =
p
n+ 1|n+ 1i,

while the annihilation operator depopulates the mode by one photon: â|ni =
p
n|n� 1i

for n � 1 [27]. If the mode is in the ground (or vacuum) state |0i then the eigenvalue

is zero and we have â|0i = 0. It is useful to also define the number operator â†â, whose
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expectation provides the number of photons n in the mode:

hâ
†
âi = hn|â

†
â|ni = n (2.4)

We proceed with a simplified proof of Caves’ fundamental noise limits for linear am-

plifiers by making two assumptions: that the phase of the input and the output are the

same, and that no mixing of quadratures occurs. The former is equivalent to applying a

suitable rotation of basis to the output vector space, however, the latter is not guaranteed

to be true in practice as has been observed in our device. For the complete proof see

Caves [1]. Under these assumptions, a linear amplifier produces the output operators Îout

and Q̂out related to the input field (Î, Q̂) by:

Îout =
p

GI Î + FI (2.5)

Q̂out =
p
GQQ̂+ FQ (2.6)

With quadrature power gains GI and GQ. When GI = GQ the amplifier is said to

be phase insensitive, and when GI 6= GQ the gain in phase sensitive. Caves introduces

the additional ‘noise’ operators FI and FQ to ensure that the output fields satisfy the

canonical commutation relation [Îout, Q̂out] = i/2 [1]. Without loss of generality, it is

assumed that hFIi = hFQi = 0 [1]. In order to satisfy the canonical commutation

relation, the commutator of the noise fields must equal:

⇥
FI ,FQ

⇤
=

i

2
(1�

p
GIGQ) (2.7)

giving the uncertainty relation:

h�F
2
I
ih�F

2
Q
i �

|h
⇥
FI ,FQ

⇤
i|

2

4
=

|GIGQ|

16

����1�
1p

GIGQ

����
2

(2.8)

Assuming that the noise operators and input field quadratures are uncorrelated, the

fluctuations of the output quadrature operators are given by:

h�Î
2
outi = |GI |h�Î

2
i+ h�F

2
I
i (2.9)

h�Q̂
2
outi = |GQ|h�Q̂

2
i+ h�F

2
Q
i (2.10)

We may now write down an uncertainty relation for the output field quadratures using

Equations 2.1 and 2.8:

h�Î
2
outih�Q̂

2
outi � |GIGQ|h�Î

2
ih�Q̂

2
i+ h�F

2
I
ih�F

2
Q
i (2.11)

�
|GIGQ|

16
+

|GIGQ|

16

����1�
1p

GIGQ

����
2

(2.12)
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Referring the output quadrature fluctuations to the input of the device using Îe =

Îout/
p
GI and Q̂e = Q̂out/

p
GQ, and subtracting the quadrature fluctuations of the input,

we arrive at an expression for the minimum input referred noise a linear amplifier must add

to the signal, defined by Caves as the Amplifier Uncertainty Principal or the Fundamental

Theorem for Phase Sensitive Linear Amplifiers [1]:

h�Î
2
e
ih�Q̂

2
e
i � h�Î

2
ih�Q̂

2
i �

1

16

����1�
1p

GIGQ

����
2

(2.13)

Note that in the special case where the product
p
GIGQ = 1 (i.e. no amplification

takes place), a linear amplifier may contribute no noise whatsoever yet the input and

output fluctuations still obey the Heisenberg uncertainty principal. Further, in the case

where GI = GQ = G, the amplifier is said to be phase insensitive as the amplitude of the

signal increases by
p
G irrespective of the phase of the input. The uncertainty relation

reduces to the Fundamental Theorem for Phase Insensitive Linear Amplifiers [1]:

h�Î
2
e
ih�Q̂

2
e
i � h�Î

2
ih�Q̂

2
i �

1

16

����1�
1

G

����
2

(2.14)

If the power gain G is large, then the phase insensitive amplifier contributes at mini-

mum an additional 1/4 photons to the input referred fluctuations.

Caves’ fundamental theorems for linear amplifiers are illustrated in Figure 2.1 assum-

ing the optimal phase insensitive amplifier and the optimal phase insensitive amplifier.

For the phase insensitive amplifier, setting GI = GQ = G implies that inputs of

constant magnitude map to outputs of constant magnitude, hence the gain is insensitive

to phase. The phase insensitive amplifier not only amplifies the input fluctuations h�Î
2
i

and h�Q̂
2
i by the gain G, but also contributes G/4 photons of noise to each quadrature

(or 1/4 photons referred to the amplifier input).

For the phase sensitive amplifier, the picture is more interesting. One quadrature Î is

amplified by
p
G while the other is deamplified by

p
G. Upon inspection of the noise along

the amplified quadrature, the input fluctuations increase by G and the amplifier adds no

additional noise. If we can project our measurement onto the amplified quadrature then

optimal phase sensitive amplification o↵ers a better Signal to Noise Ratio (SNR) than

is permitted by the quantum mechanics of the optimal phase insensitive amplifier. If

the signal of interest is only on the order of a few photons, this enhancement in SNR
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Figure 2.1: A depiction of the optimal phase insensitive amplifier and optimal phase

sensitive amplifier acting on an input with expectations hÎi = I0 and hQ̂i = Q0 with

quadrature variances h�Î
2
i and h�Q̂

2
i (dark blue circle). The phase insensitive ampli-

fier increases both quadratures by the amplitude gain
p
G and the noise on both input

quadratures by G (purple circle). Further, the optimal amplifier adds an additional G/4

photons to the output variance (blue annulus). The phase sensitive amplifier increases

the amplitude on Î by
p
G while decreasing the amplitude on Q̂ by

p
G. The amplifier

contributes no additional noise, and instead amplifies the input noise along Î by gain

G and deamplifies the noise by G along Q̂ (pink ellipse). The dashed lines are used to

indicate the mapping of inputs of constant magnitude to the output planes of the phase

sensitive and phase insensitive amplifier.
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is significant. An example use is the inductive detection of spins in quantum-limited

Electron Spin Resonance (ESR) experiments, where a small ensemble of spins produces

a fluctuation of signal amplitude at the resonance frequency (also known as a spin echo)

that may be projected onto a single quadrature without loss of information.

Turning now to the deamplified quadrature, we find that in order for equality to hold

in Equation 2.12, the fluctuations along Q̂ must be decreased by G such that:

h�Î
2
outih�Q̂

2
outi = h�Î

2
ih�Q̂

2
i (2.15)

Along one quadrature, the noise is reduced below the intrinsic noise of the input.

Consider the vacuum state |0i as an input to this amplifier. The fluctuations of the

vacuum state along Q̂ are h�Q̂
2
i = 1/4, and are commonly referred to in the literature

as the Standard Quantum Limit (SQL) [27]. The optimal phase sensitive amplifier is able

to reduce the noise below the SQL, and permits the measurement of signals weaker than

the vacuum noise along a single quadrature. The is precisely the definition of Squeezing:

a reduction of noise below the SQL. The Squeezing Level S quantifies the reduction in

vacuum fluctuations by the amplifier, and is typically expressed in dB. For squeezing

along Q̂:

S = 10 log10
h�Q̂

2
i

h�Q̂
2
outi

(2.16)

For the optimal phase sensitive amplifier S = 10 log10 G.

2.2 The Degenerate Parametric Amplifier

The simplest and most common device used to realise squeezing is the Degenerate

Parametric Amplifier (DPA), which uses multi-wave mixing arising from some non-linear

medium to produce phase sensitive amplification approaching the quantum limits intro-

duced by Caves [5, 12, 22, 28]. The degenerate parametric amplifier is constructed from

a cavity containing a non-linear medium (see Figure 2.2). For example in the optical

domain, the DPA may be realised using a pair of mirrors that sandwich a crystal that

displays a power-dependent refractive index [27]. An external stimulus, called the pump,

is applied to the non-linear medium causing a modulation of the cavity resonant fre-

quency (!0). If this modulation occurs at the correct frequency, energy may be converted

from the pump tone down to the cavity frequency. In the quantum optics example, the
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Figure 2.2: The quantum optics model for an ideal degenerate parametric amplifier,

adapted from [5] Figure 1(a). A non-linear medium in between two mirrors is driven by

an external stimulus called the pump. Photons enter and leave the cavity at the rate 

through one of mirrors, defined as the signal port. The other mirror, called the losses

port, removes photons from the cavity and contributes thermal noise at a rate �.

oscillating refractive index due to the pump modulates the optical path length between

the mirrors and consequently the resonant frequency of the cavity.

In this section we present the Hamiltonian for a DPA that operates using a Three

Wave Mixing (3WM) process. Although parametric amplification may be realised by a

number of mixing processes, 3WM is the simplest and is the mixing process we use in the

KIPA developed in this thesis. In quantum optics, 3WM arises in non-linear materials

with a second order susceptibility �(2). If a pump tone is applied with frequency !p ⇠ 2!0,

the second order susceptibility splits the pump photons into two, referred to as the signal

and the idler, such that two conditions are satisfied [29]:

1) The frequency matching condition: !p = !s + !i, where !s and !i are the frequencies

of the signal and idler photons, respectively.

2) The phase matching condition: kp = ks+ki, where kp, ks and ki are the pump, signal

and idler wave-vectors, respectively.

Similar frequency matching and phase matching conditions exist for higher order mixing

processes.
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The Hamiltonian for the 3WM DPA is given by Milburn and Walls [29]:

H = ~!â†â| {z }
H0

+ i~�(2)(â†2âp � â
2
â
†
p
)

| {z }
H1

(2.17)

where â†
p
and âp are the creation and annihilation operators for the pump field. Here,

H0 is the Hamiltonian for the quantum harmonic oscillator and H1 captures the pump-

cavity interaction, where a pump photon may be exchanged for two cavity photons and

vice versa. In practice, the pump contains many more photons than are present in the

signal and idler modes allowing us to make the strong pump approximation [27, 5]. In

this approximation we replace the pump annihilation operator âp with the coherent tone

âp ! ↵e
�i!pt�i'p , giving the interaction Hamiltonian [27, 5]:

H1 = i~↵�(2)(â†2e�i!pt�i'p � â
2
e
i!pt+i'p) (2.18)

In a frame rotating at close to half the pump frequency ! ⇠ !p/2, the Hamiltonian

becomes time independent [5]:

HDPA = ~

�â

†
â+ i

⇠

2
â
†2
� i

⇠
⇤

2
â
2

�
(2.19)

where � = !0�!p/2 is the detuning between the resonance frequency and half the pump,

and ⇠ = 2↵�(2)
e
�j'p is the amplitude of the parametric pump.

To simplify the remainder of this discussion we assume 'p = 0 and ⇠ 2 R. For the

cavity creation and annihilation operators, we may write down the equations of motion

in the Heisenberg picture [27]:

@â

@t
=

1

i~ [â, H1,DPA] = ⇠â
† (2.20)

@â
†

@t
=

1

i~ [â
†
, H1,DPA] = ⇠â (2.21)

Inverting Equations 2.2 and 2.3 we obtain the quadrature operators Î and Q̂ in terms

of the creation and annihilation operators:

Î =
1

2
(â† + â) (2.22)

Q̂ =
i

2
(â† � â) (2.23)

Combining this with the equations of motion above provides the Heisenberg picture

dynamics for the quadrature operators [27]:

@Î

@t
= ⇠Î ,

@Q̂

@t
= �⇠Q̂ (2.24)
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Solving these equations, we immediately obtain phase sensitive amplification, where

the Î quadrature is amplified while the Q̂ quadrature is deamplified [27]:

hÎ(t)i = e
⇠t
hÎ(0)i, hQ̂(t)i = e

�⇠t
hQ̂(0)i (2.25)

Similarly, the quadrature variances demonstrate squeezing and are given by [27]:

h�Î(t)2i = e
2⇠t
h�Î(0)2i, h�Q̂(t)2i = e

�2⇠t
h�Q̂(0)2i (2.26)

The frequency matching and phase matching conditions provide us with a more in-

tuitive explanation for the phase sensitive amplification produced by an ideal DPA. In

the frame rotating at !p/2, the signal and idler map onto the same frequency, due to the

frequency matching condition. In telecommunications terms, the signal and idler form

two side-bands about !p/2 which are mapped to the same frequency when we demod-

ulate at !p/2, equivalent to moving to the rotating frame. Now, the phase matching

condition restricts the signal and idler phases to be locked with the pump phase. There-

fore, depending on the phase of the input the signal and idler tones will constructively

or destructively interfere, giving rise to phase sensitive gain.

We have shown that the degenerate parametric amplifier may be realised with a

cavity and suitable non-linear medium. In the following sections we present the theory of

microwave cavities using the framework of Circuit Quantum Electrodynamics (cQED),

and the phenomenon of kinetic inductance, the non-linear medium employed by the KIPA.

2.3 The Quantum LC Resonator

The cavity in our device may be modelled by a microwave frequency LC resonator,

with a non-linear inductance. To begin, we formulate the physics of the linear LC circuit

for quantised microwave fields, which we later build on to describe the distributed linear

LC resonator, and ultimately the Hamiltonian for the non-linear cavity of the KIPA.

In terms of the current (I) and voltage (V ), the current flowing through a parallel LC

resonator (as depicted in Figure 2.3a) is given by [30]:

I = CV̇ (2.27)

Re-written in terms of the magnetic flux in the loop � = LI and the charge on the

capacitor Q = CV , we obtain

� = LQ̇ (2.28)
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b)a) c)

Figure 2.3: (a) The ideal LC resonator, labelled with the quantised flux and charge

variables. (b) The parallel RLC circuit, where R is included to model internal cavity

losses. (c) The frequency response of the RLC resonator, characterised by a line-width �

that corresponds to the loss rate of the system.

Here, Q and � are canonically conjugate variables, analogous to position and momen-

tum in a mechanical system. Using the expressions for energy stored in an inductor and

capacitor, the Lagrangian for this system is as follows [31]:

L(�, Q) =
1

2L
�2

�
1

2C
Q

2 (2.29)

capturing the dynamics of the transfer of energy between the inductor and capaci-

tor. In this definition of the Lagrangian, the charge Q is taken as the coordinate. The

conjugate momentum can found from the Lagrangian:

p =
@L

@Q̇
(2.30)

Substituting Equation 2.28 into the Lagrangian (2.29) and evaluating the conjugate

momentum above (2.30) yields the flux p = �, as expected. Although trivial to write

down, we derive the classical Hamiltonian using the Legendre transformation, a step that

will appear throughout this thesis:

H(�, Q) = Q̇
@L

@Q̇
� L (2.31)

= Q̇LQ̇+
1

2C
Q

2
�

1

2L
�2 (2.32)

=
1

2L
�2 +

1

2C
Q

2 (2.33)

To obtain the quantum description for the LC resonator, we replace the classical
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variables (�, Q) and the Hamiltonian function with operators [31]:

� ! �̂ (2.34)

Q ! Q̂ (2.35)

H ! Ĥ (2.36)

such that the commutator of the conjugate quantised flux (�̂) and quantised charge

(Q̂) operators satisfy the relation:

[Q̂, �̂] = i~ (2.37)

as is required in the equivalent quantum mechanical description for position and momen-

tum operators. To simplify notation, we denote the quantum Hamiltonian operator using

H = Ĥ for the remainder of this thesis.

The quantum LC resonator behaves as a cavity, which may be populated by electro-

magnetic energy at the fundamental resonance frequency of the circuit: !0 = 1/
p
LC. We

can equate the LC circuit Hamiltonian with the Hamiltonian for the quantum harmonic

oscillator in terms of the photon creation and annihilation operators â† and â [31]:

H =
1

2L
�̂2 +

1

2C
Q̂

2 (2.38)

= ~!0(â
†
â+ 1

/2) (2.39)

Where we have used the following expansion of the ladder operators â and â
† on the

flux and charge operators:

â =
1

p
2~Z0

(�̂+ iZ0Q̂) (2.40)

â
† =

1
p
2~Z0

(�̂� iZ0Q̂) (2.41)

Here, Z0 =
p
L/C is the characteristic impedance of the circuit. It is straightforward

to verify that the operators â and â
† satisfy the bosonic commutation relation:

[â, â†] = 1 (2.42)

So far we have assumed an ideal system without loss, free from any undesirable

coupling to the environment (also referred to as the bath). In practice, photon losses

occur and may be modelled by an equivalent parallel resistance (Figure 2.3b), giv-

ing the resonance an “internal quality factor” Qi = !0RC with associated loss rate
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� = !0/Qi = 1/RC [30]. The equivalent resistance loss model captures first-order/linear

photon losses. While higher order loss mechanisms exist (e.g. two photon loss [32]), the

first order loss model works well in practice for small signal powers [5], and losses are

approximated to the first order for the remainder of this thesis. As such, we imply a

small parallel resistance for the remaining circuit models presented henceforth.

In order for quantum e↵ects to become significant in an LC resonator, two conditions

must be satisfied: the resonator must be well isolated from its environment such that its

energy level broadenings are narrower than their separation, and, the energy separation

between the eigenstates of H must be larger than the thermal energy of the system [33].

The former condition is equivalent to requiring a high internal quality factor, where

the loss rate � is considerably slower than the system dynamics. The KIPA operates in

the microwave domain with a resonant frequency !0 ⇠ 2⇡ · 7GHz and is fabricated from

the superconductor NbTiN. High internal quality factors in superconducting microwave

resonators are frequently observed in the laboratory, ranging from Qi ⇠ 103 to 108 [34,

33], and are su�ciently large to not prohibit the experimental observation of quantum

phenomena.

To satisfy the second condition, we require ~!0 � kBT . For !0 ⇠ 2⇡ ·7GHz, this limit

corresponds to a system temperature below T = 336mK. Given that the experiments

presented in this thesis are performed at T = 20mK, the cavity of the KIPA is in the

ground state |0i when the system is at thermal equilibrium. After the cavity has been

populated with photons due to some past experimental stimulus, the resonator will relax

back to the ground state on a timescale of order T� = 1/�.

2.4 The Quantum �/4 Resonator

In the microwave frequency range, coplanar waveguide (CPW) resonators are popular

structures used in circuit cQED experiments due to their manufacturability and simple

electromagnetic mode distributions. Further, if realised using superconductors, extremely

low losses are achievable. The dominant loss mechanism in superconducting CPW res-

onators is due to the absorption of microwave photons by Two Level Systems (TLS),

typically concentrated on the surface of the substrate [35]. Engineering considerations

to minimise coupling to TLSs, such as overetching the substrate, have yielded internal
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c)

a) b)
1
3
5

Figure 2.4: (a) A cross-section of coplanar waveguide with center line width w, gap width

s and thickness t. Electric ( ~E) and magnetic ( ~B) field distributions are illustrated. (b)

The geometry of a �/4 resonator with centre line grounded at one end. The voltage V as

a function of position x is overlaid for the 1st, 3rd and 5th harmonics. (c) The telegrapher

circuit model for the �/4 resonator, where each inductor-capacitor pair approximates the

response of a small length �x of the distributed resonator.
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quality factors as high as Qi = 106 at X-band frequencies [36].

The coplanar waveguide is a type of transmission line created from a strip of metal

of width w sandwiched between two ‘large’ grounded conductive planes a distance s

away, as illustrated in Figure 2.4a. The conductor rests on a dielectric substrate with

relative permittivity ✏r, while the surface of the conductor is exposed to air or in our

case vacuum. Typically, the thickness of the conductor t is much smaller than the size of

the gap or the width of the central conductor t ⌧ w, s, giving the circuit an equivalent

permittivity of ✏0 = ✏0(1 + ✏r)/2, where ✏0 is the permittivity of free space [30]. The

coplanar waveguide supports a quasi transverse electromagnetic (TEM) mode where the

electric field concentrates between the central conductor and the ground planes, and the

magnetic field circulates around the central conductor, as shown in Figure 2.4a [30]. When

fabricated with a superconducting film and low loss dielectric substrate such as Sapphire

or Silicon, the voltage and current distributions along the centre line are 90� out of phase,

and are related by the characteristic impedance of the CPW Zcpw =
p
L0/C 0, where L

0

and C
0 are the inductance and capacitance per unit length, respectively. Electromagnetic

radiation propagates along the CPW at a velocity v = c

p
✏0/✏0, where c is the speed of

light. For a Silicon substrate at low temperatures ✏0 = ✏0(1 + 11.45)/2, corresponding to

a phase velocity of v = 1.2⇥ 108 m/s.

Microwave resonators are realised by imposing boundary conditions on a fixed length

l of coplanar waveguide [30]. To illustrate, we present the �/4 resonator (Figure 2.4b),

the same style of resonator that features in the KIPA. The quarter wavelength resonator

is a formed by a length of CPW l = �/4 with one end shorted to ground. The resonator

supports standing waves of odd multiples of the fundamental frequency f0 = v/� = v/4l

where the boundary condition requires the electric field and voltage to be zero at the

shorted end of the resonator as shown in Figure 2.4. For a 4mm long strip on a Silicon

substrate, the CPW will resonate at 7.5GHz, 15GHz, 22.5GHz, etc. In this work, we are

only concerned with the fundamental resonance f0. To obtain the quantum mechanical

description of the �/4 resonator we adapt the Hamiltonian derivation for a �/2 resonator

presented by Blais et al. [33].

Using the telegrapher model, we may represent the distributed resonator as a string

of small inductances L0 in series interleaved with a parallel array of capacitances C0, as

illustrated in Figure 2.4c [30]. Let qn be the charge on the n-th circuit node, and �n be
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the total quantised flux entering the n-th circuit node, as illustrated for the flux in Figure

2.4c. Applying Kirchho↵’s laws in terms of the magnetic flux and charge, we have:

1

L0
(�n+1 � �n) = q̇n ) ��n = L0q̇n (2.43)

and,

1

C0
(qn+1 � qn) = �̇n ) �qn = C0�̇n (2.44)

where, ��n = �n+1 � �n and �qn = qn+1 � qn. The Lagrangian associated with this

circuit model is:

L�/4 =
N�1X

n=0


1

2L0
�
2
n
�

1

2C0
q
2
n

�
(2.45)

To obtain the telegrapher equations, we set L0 = L
0�x and C0 = C

0�x, where L
0

and C
0 are the inductance and capacitance per unit length, respectively, and �x = l/N .

Further, we define Qn to be the cumulative charge on the n-th circuit node:

Qn =
nX

i=0

qi (2.46)

and �n to be the cumulative flux on the n-th circuit node:

�n =
nX

i=0

�i (2.47)

Taking the limit of �x ! 0 and N ! 1 such that N�x = l, and substituting

the cumulative charge and flux variables from Equations 2.46 and 2.47, the Kirchho↵

Equations 2.43 and 2.44 become the telegrapher equations:

��n

�x
= L

0
Q̇n !

@�

@x
= L

0@Q

@t
(2.48)

�Qn

�x
= C

0�̇n !
@Q

@x
= C

0@�

@t
(2.49)

where ��n = �n+1 � �n and �Qn = Qn+1 �Qn.

Di↵erentiating Equation 2.49 with respect to x and substituting Equation 2.48, we

arrive at the wave equation for the cumulative charge:

v
2
0

@
2
Q(x, t)

@x2
�
@
2
Q(x, t)

@t2
= 0 (2.50)
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where v0 = 1/
p
L0C 0 is the microwave phase velocity, or equivalently, the speed of light in

the CPW. Applying the usual separation of variables, we write the solutions to Equation

2.50 as the Fourier expansion of the resonant modes of the circuit:

Q(x, t) =
1X

m=0

Amum(x)Qm(t) (2.51)

If we let !m be the frequency of the m-th mode then a classical solution for the

temporal component is Qm(t) = cos(!mt + ✓m) and the spatial component is um(x) =

cos(kmx + 'm), with km = !m/v0. Going forward, we will assume no particular form of

the solution for Qm(t). For the �/4 resonator the boundary conditions require:

�(0, t) = 0 ) Q̇(0, t) = 0 (open circuit) (2.52)

q(l, t) = 0 )
@Q

@x

����
x=l

= 0 (short circuit end) (2.53)

giving 'm = kml and !m = 2⇡ · (2m + 1)v0/4l = 2⇡ · (2m + 1)f0. In other words, the

resonant frequencies are odd multiples of f0 = v/4l, as predicted. The spatial component

becomes:

um(x) = cos

✓
2⇡

2m+ 1

4l
(x� l)

◆
(2.54)

To simplify the derivation of the Hamiltonian, we normalise the mode functions by

choosing the coe�cients Am such that [33]:

1

l

Z
l

0

Amum(x)Am0um0(x) dx = �mm0 (2.55)

giving Am =
p
2.

Returning now to the Lagrangian, we re-write the charge and flux variables in terms

of the new cumulative charge/flux coordinates and apply the substitution from the first

telegrapher Equation 2.48:

L�/4 =
�x

2

N�1X

n=0

1

L0

✓
��n

�x

◆2

�
1

C 0

✓
�Qn

�x

◆2

(2.56)

=
�x

2

N�1X

n=0

L
0
Q̇

2
n
�

1

C 0

✓
�Qn

�x

◆2

(2.57)

The equation is now a function of the cumulative charges Qn and their derivatives.

In the limit of �x ! 0 and N ! 1, as was taken to derive the telegrapher equations,

we arrive at the form:

L�/4 =
1

2

Z
l

0

L
0
✓
@Q

@t

◆2

�
1

C 0

✓
@Q

@x

◆2

dx (2.58)
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Substituting the Fourier series solution for Q(x, t) (Equation 2.51), the Lagrangian

simplifies to:

L�/4 =
1

2

X

m

L
0
Q̇

2
m

Z
l

0

A
2
m
cos2(kmx+ 'm)dx

�
1

C 0

✓
!m

v0

◆2

Q
2
m

Z
l

0

A
2
m
sin2(kmx+ 'm)dx

(2.59)

=
1

2

X

m

LT Q̇
2
m
� LT!

2
m
Q

2
m

(2.60)

where LT = lL
0 is the total inductance of the resonator. The time-dependent mode

amplitudeQm (which has units of a charge) plays the role of a position, with the conjugate

momentum then given as (see Equation 2.30):

Pm =
@L�/4

@Q̇m

= LT Q̇m (2.61)

with units of a magnetic flux.

Applying the Legendre transformation to Equation 2.58, we obtain the Hamiltonian:

H =

Z
l

0

Q̇
@L�/4

@Q̇
dx� L�/4 (2.62)

=

Z
l

0

L
0@Q

@t

2

dx�

✓
1

2

Z
l

0

L
0
✓
@Q

@t

◆2

�
1

C 0

✓
@Q

@x

◆2

dx

◆
(2.63)

=
1

2

Z
l

0

1

C 0

✓
@Q

@x

◆2

+ L
0
✓
@Q

@t

◆2

dx (2.64)

Inserting once again the mode expansion for Q(x, t), we find:

H =
1

2

X

m

LT!
2
m
Q

2
m
+ LT Q̇

2
m

(2.65)

=
1

2

X

m

LT!
2
m
Q

2
m
+

1

LT

P
2
m

(2.66)

The Hamiltonian reduces to a sum of LC oscillator Hamiltonians that oscillate at the

harmonics !m and each have a fictitious mass of LT . The Hamiltonian for the quantum

�/4 resonator is obtained in the usual way, by promoting the conjugate variables Qm and

Pm to the operators:

Qm ! Q̂ = i

r
~

2Zm

(â†
m
� âm) (2.67)

Pm ! �̂ =

r
~Zm

2
(â†

m
+ âm) (2.68)
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b)

a)

Figure 2.5: (a) The LCR resonator, capacitvely coupled to the input source via a

transmission line with characteristic impedance Zc. The coupling circuit is emphasised,

but may be substituted by an arbitrary circuit with transfer function T (z). (b) A dis-

tributed �/4 resonator capacitvely coupled to a CPW transmission line with characteristic

impedance Zc.

where we have defined the mode impedance Zm = LT!m. This provides the familiar Fock

basis Hamiltonian:

H =
1X

m=0

~!m(â
†
m
âm + 1

/2) (2.69)

2.5 Coupling to the Resonator

The resonators we have presented so far are totally isolated from their environment.

To build a useful amplifier, we need to get photons (signal) into the cavity and back out

of it again. Typically, this is achieved using a capacitive coupler, as presented in the

circuit model shown in Figure 2.5a. In the case of CPW resonators, a transmission line

transports the signal to the resonator, where typically a small gap defines a capacitance

between the transmission line and the resonator [30], as illustrated in Figure 2.5b. When

observed through the transmission line, the additional capacitance (Cc), any loss (Rc),

and the characteristic impedance (Zc) of the transmission line will load the circuit and
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increase the observed line-width relative to �, the line-width of the isolated resonance.

The observed total quality factor Qt may be decomposed into the internal quality factor

Qi = !0/� introduced earlier and a so-called coupling quality factor Qc = !0/, where

!0 is the resonance frequency (e.g. the fundamental frequency of a �/4 resonator) and 

is defined as the rate at which photons enter and leave the cavity, known as the coupling

rate [30]. The total quality factor is given by:

1

Qt

=
1

Qc

+
1

Qi

(2.70)

A resonator is said to be: over-coupled if Qi � Qc, under-coupled if Qi ⌧ Qc, and

critically-coupled if Qi ⇡ Qc [30]. A more detailed circuital analysis of the capacitvely

coupled LC resonator may be found in [37].

Although the capacitive coupler is the simplest coupling mechanism, coupling to a

resonator may be achieved with any coupling circuit that influences the rate that photons

enter and leave the cavity. However, in order to measure quantum e↵ects in practice we

require the coupling rate  to not be excessively faster than the dynamics of the system

under observation, as was required for the loss rate �. Conversely, designing  to be

small will limit the response time of the resonator and exacerbate cavity ring-down. In

the case of the KIPA, we define the coupling quality factor Qc using a band-stop filter,

centred about the resonance frequency. The depth of the band-stop region may be used

to design the coupling rate , as will be discussed in greater detail in Section 3.1.2.

In the presence of a coupling circuit, the boundary conditions (e.g. Equations 2.52,

2.53) of the �/4 resonator wave equation (Equation 2.50) change, shifting the resonance

frequency and modifying the amplitudes and phases of the mode functions [33]. A com-

plete quantum mechanical treatment of the loaded circuit is beyond the scope of this

thesis. Instead, we adopt the boundary conditions of the isolated resonator as an ap-

proximation, and turn to input-output theory for a quantum mechanical description of a

resonator with an input port and loss channel.

2.6 Input Output Theory

The field operators â, �̂ and Q̂ and Hamiltonian H so far describe the intracavity

field dynamics. In the experimental setting we stimulate the resonator with an input field

operator âin and measure a reflected response âout that enter and exit the cavity via the
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Figure 2.6: The single port input-output theory system, with input and output fields âin

and âout, intracavity field operator â, and bath input and output fields b̂in and b̂out. The

input field is coupled to the cavity at rate , and the cavity to the bath at rate �. The

accompanying circuit is coloured according to the correspondence with the associated

fields and coupling constants. The bath continuum is coupled to the circuit via the

resistor.

coupling circuit. For example, a Vector Network Analyser (VNA) measures the reflection

parameter �(!) = hâini/hâouti. To obtain a classical description of the microwave response

we would typically adopt a scattering matrix approach [30].

Input-Output theory, developed by Gardiner and Collett [38], extends the scattering

matrix formalism to the quantum regime. Let H be the Hamiltonian written in terms

of the creation and annihilation operators â
† and â, where H is coupled to the bath at

rate �, used to model the losses in the system, and input field âin at rate  (see Figure

2.6). Gardiner and Collett provide the following Heisenberg picture master equation to

describe the system:

@â(t)

@t
=

[â, H]

i~ � ̄â(t) +
p
âin +

p
�b̂in(t) (2.71)

where ̄ = (� + )/2. The output field operator âout is then given by the input-output

relation:

âout(t)� âin(t) =
p
â(t) (2.72)

Consider now the quantum LC resonator with the quantum harmonic oscillator Hamil-

tonian given by Equation 2.39. We re-write Equation 2.71 in the Fourier domain using:
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â[!] =
1

p
2⇡

Z 1

�1
e
i!t

â(t)d! (2.73)

which gives:

�i!â[!] = �
i

~
⇥
â[!], ~!0â

†[!]â[!]
⇤
� ̄â[!] +

p
âin[!] +

p
�b̂in[!] (2.74)

�i!â = �i!0â� ̄â+
p
âin +

p
�b̂in (2.75)

Substituting for â using the input output relation (Equation 2.72) yields the output

field operator in terms of the input and bath fields:

�i!(âout � âin) = �(̄+ i!0)(âout � âin) + âin +

r
�


b̂in (2.76)

) âout =

✓


̄� i(! � !0)
� 1

◆
âin +

p
�/

̄� i(! � !0)
b̂in (2.77)

Treating the bath input field b̂in as a thermal state such that hb̂ini = 0, we retrieve

the expression for the reflection parameter:

�[!] =
hâout[!]i

hâin[!]i
(2.78)

=


̄� i(! � !0)
� 1 (2.79)

This matches the expression for the reflection parameter of a lumped element LC

resonator, obtained using the scattering matrix approach [30].

We may now apply the same mathematics to the ideal DPA Hamiltonian (Equation

2.19) to obtain an equation relating its input and output fields. We follow the derivation

of Samuel Boutin [39], first by writing the master equation in the Fourier domain as

before:

�i!â = �

✓
̄â+ i�â+ i

⇠

2

⇥
â, â

†2⇤+ i
⇠

2

⇥
â, â

2
⇤◆

+
p
âin +

p
�b̂in (2.80)

�i!â = �((̄+ i�)â+ i⇠â
†) +

p
âin +

p
�b̂in (2.81)

Next, we take the Hermitian conjugate of both sides. Note that in the Fourier domain

(â[!])† = â
†[�!]. To simplify notation the frequency reversal is implied:

i!â
† = �((̄� i�)â† � i⇠

⇤
â) +

p
â

†
in +

p
�b̂

†
in (2.82)
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Combined with Equation 2.81, we obtain the matrix equation:

i!

0

@�â

â
†

1

A =

0

@�i�� ̄ �i⇠

i⇠
⇤

i�� ̄

1

A

0

@ â

â
†

1

A+
p


0

@âin

â
†
in

1

A+
p
�

0

@b̂in

b̂
†
in

1

A (2.83)

)

0

@ â

â
†

1

A = �
p


0

@�i�+ ̄+ i! �i⇠

i⇠
⇤

i�� ̄� i!

1

A
�1 "0

@âin

â
†
in

1

A+

r
�



0

@b̂in

b̂
†
in

1

A
#

(2.84)

= �

p


D[!]

0

@�i�+ ̄+ i! �i⇠

i⇠
⇤

i�� ̄� i!

1

A
"0

@âin

â
†
in

1

A+

r
�



0

@b̂in

b̂
†
in

1

A
#

(2.85)

where D[!] = �2 + (̄ � i!)2 � |⇠|
2. Substituting the input output relation (Equation

2.72) gives the input output equation for the ideal DPA [5]:

âout[!] = gS[!]âin[!] + gI [!]â
†
in[�!] +

r
�




(gS[!] + 1)b̂in[!] + gI [!]b̂

†
in[�!]

�
(2.86)

where we make the frequency reversal explicit, and:

gS[!] =
̄� i(�+ !)

D[!]
� 1, and gI [!] =

�i⇠

D[!]
(2.87)

2.7 The JPA

The Josephson Parametric Amplifier (JPA) represents the state of the art for mi-

crowave frequency squeezing. Realised from both distributed microwave resonators [28,

12] and lumped element resonators [40, 22, 41, 6], the JPA consists of one or more Super-

conducting Quantum Interference Devices (SQUIDs), each formed by a parallel pair of

Josephson junctions (see Figure 2.7a). Constructed from a pair of superconducting plates

separated by a thin insulator, the Josephson junctions provide the non-linearity required

for parametric amplification in the form of a non-linear inductance. Cooper pairs may

tunnel through the thin insulating barrier, with the junction current set by the phase

di↵erence ' between the superconducting condensates on either side of the barrier [33].

The Josephson junction super-current and voltage are related to the phase di↵erence '

by the DC and AC Josephson relations [8, 33]:

I = Ic sin('), V =
�0

2⇡

@'

@t
(2.88)

where Ic is the critical current of the Josephson junction, and �0 = h/2e is the flux

quantum.
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a) b)

Figure 2.7: (a) The SQUID: a parallel pair of Josephson junctions with equivalent

inductance LJ . The SQUID flux and current are depicted. (b) The equivalent circuit for

the JPA, whereby N � 1 SQUIDs replace the inductor in the quantum LC resonator. An

externally applied magnetic field Bext is depicted and is one of the methods for pumping

the JPA, called the flux pump.

Two Josephson junctions in a loop form a SQUID, where the current flowing through

each junction is related to the flux threading the loop �. Configured as a SQUID, the

phase di↵erence is related to the flux by [33]:

'(t) = 2⇡
�(t)

�0
(mod 2⇡) (2.89)

Applying the Josephson relation for current, and using the relation � = LI we find

that the SQUID has a flux-dependent inductance given by [33]:

LJ(�) =

✓
@I

@�

◆�1

=
�0

2⇡Ic
sec

✓
2⇡

�

�0

◆
(2.90)

The Josephson inductance may be alternatively expressed as a Taylor series expansion

with respect to the current I flowing through the terminals of the SQUID [5]:

LJ(I) = LJ,0


1 +

1

6

✓
I

Ic

◆2

+ · · ·

�
(2.91)

The microwave resonance in a JPA is formed by capacitively shunting the non-linear

inductance of one or more SQUIDs to ground, as illustrated by the equivalent circuit for a

JPA in Figure 2.7b. In the absence of a flux or current in the SQUID, the JPA behaves as

the microwave resonators presented earlier in Sections 2.3 and 2.4. To produce parametric

amplification the SQUIDs are pumped with a microwave current, thereby modulating

the Josephson inductance (Equation 2.91), or via an external line that generates a flux

through the SQUIDs (Equation 2.90). The former pumping scheme enables Four Wave
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Device [40] [28] [12] [21]? [22] [6]

Year 1988-90 2008-09 2013 2014 2014-17 2018

Degenerate Gain (dB)* - 16 ⇠ 10 ⇠ 20 6 [7] 9

GBP (MHz)* - 11 ⇠ 15 100 60 ⇠ 85

1db Compression (dBm)† - -111 -113 -90 -103 -

!0/2⇡ (GHz) 19.16 7.004 5.64 7.8 (7.9) 5.97 7.003

Quality Factor (Qt) - 620 312 - 70 65

Squeezing (dB) 3.28§ 10§ 4.9± 0.2§ � 12 � 1.2 [7] � 3.84

Noise Temp. (photons) 0.146 0.23 0.16 - -  0.046

* Measurements reported at the operating point of maximum squeezing.

†
The 1dB compression point is referred to the output of each JPA. It is commonly reported in the

literature as the input saturation power for ⇠ 20 dB of gain, however, we opt for the standard

microwave engineering definition instead.

?
This device is not a DPA in the sense that it has a di↵erent Hamiltonian from Equation 2.19. Two

adjacent cavities are coupled, and their modes entangled to produce squeezing.

§
Squeezing measurements are inferred at the output of the squeezer as opposed to a direct observa-

tion of noise reduction at the output of the detection chain. In the latter case, a lower bound on

squeezing is measured.

Table 2.1: Performance characteristics of various notable JPAs.

Mixing (4WM) to occur, while the latter gives rise to a 3WM process. In either case, the

rotating frame Hamiltonians for both pumping schemes are approximately that of the

ideal DPA (Equation 2.19) [5] and therefore the flux or current pumped JPA are capable

of phase sensitive amplification and squeezing.

I only provide a brief overview of the operation of a JPA here. The complete theoretical

details of this amplifier are beyond the scope of this thesis, but more detail regarding

the theory of Josephson junctions and SQUIDs may be found in [8, 33] and I recommend

Boutin et al. [5] for the theory of JPAs.

Squeezing at microwave frequencies was first demonstrated by Movshovich et al. in

1990 [24] using the JPA developed by Yurke et al. [40]. A squeezing level on the order of

3 dB was observed in a 19 GHz microwave resonator containing a single SQUID. Since

41



then, there has been a resurgence of interest in JPAs as a probe for weak microwave signals

in cryogenic cQED experiments [14, 7, 13] and improvements in SQUID manufacturing

and the use of SQUID arrays has produced improved amplifiers that attain higher levels of

squeezing. Table 2.1 presents a summary of some notable JPAs and their key performance

characteristics. We introduce some additional metrics for amplifier performance:

• Gain Bandwidth Product (GBP): Parametric amplifiers have gain that may be tuned

with the strength and frequency of the pump. However, the product of the gain and

the bandwidth of the amplifier frequency response (the GBP) is approximately con-

stant [30]. For di↵erent amplifiers set to the same gain, a higher GBP corresponds

to a wider bandwidth, making the amplifier more versatile.

• The 1dB Compression Point: Parametric amplifiers saturate if the input power is

su�ciently high. The 1 dB compression point is usually defined as the output power

at which the gain of the amplifier drops by 1 dB, beyond which the amplifier no

longer has a linear response [30]. Referred to the input, the 1dB compression point

sets the upper limit for the usable input power.

• Noise Temperature: In practice, parametric amplifiers do not reach the true quan-

tum limit according to Caves’ fundamental theorems for linear amplifiers, largely

due to non-negligible losses from the cavity (� > 0 or Qi < 1). The noise tem-

perature, reported in photons and referred to the amplifier input, is a measure-

ment of the fluctuations of the noise operators introduced in Equations 2.5 and

2.6: h�F
2
I
i/GI + h�F

2
Q
i/GQ, and characterises the excess noise contributed by the

amplifier.

Each of the JPAs presented in Table 2.1 represent the state of the art with respect

to microwave amplifier noise performance. Some have been proven to contribute less

than 1/2 a photon referred to the input in phase sensitive mode, close to the quantum

limit defined in Equation 2.13. Although the input referred noise from the amplifiers

of Eichler et al. and Zhou et al.was not measured [21, 22], the observation of vacuum

squeezing using these devices implies comparable noise performance.

JPAs su↵er from limited dynamic range quantified by their low 1dB compression

power. For example, Zhong et al. report that their compression point of �113 dBm
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a) b) c)

Figure 2.8: (a) The input phase space, with contour of constant magnitude depicted

(blue circle). (b) Banana-type distortion of the input phase space, as observed in 4WM

JPAs (e.g. [6]). (c) S-type distortion of the input phase space, as observed in 3WM JPAs

(e.g. [7]).

corresponds to approximately 10 photons at the input of their device. However, the con-

version from compression power to photons depends on the cavity frequency and coupling

rate and will di↵er between devices. A compression power of �73 dBm (�93 dBm at

the input) is the highest observed in any parametric amplifier based on SQUIDs [42],

however, this amplifier is not a JPA/DPA and has not yet been demonstrated as a phase

sensitive amplifier capable of vacuum squeezing.

From the family of devices that use the non-linear cavity model depicted in Figure

2.7, Castellanos-Beltran et al. hold the record for 10 dB of vacuum squeezing [28]. Eichler

et al. deviate from this simple design by capacitively coupling two non-linear cavities of

distinct resonant frequency [21]. By entangling the pair of cavity modes, they attain

12 dB of squeezing, the current state-of-the-art in microwave squeezing. Note that this

device is not a DPA since its Hamiltonian di↵ers from Equation 2.19, but as is the case

with other JPAs, the use of SQUIDs will impose an upper limit on squeezing.

A recent theoretical investigation of JPAs has uncovered di↵erences between the JPA

Hamiltonian for various pumping schemes, and the Hamiltonian of the ideal DPA (Equa-

tion 2.19), which arise from the SQUID non-linearity (Equation 2.90) and become sig-

nificant in the high gain limit(> 10 dB) [5]. Boutin et al. show that these di↵erences,

which we will refer to as Hamiltonian non-idealities, are the dominant mechanism by

which squeezing is suppressed in JPAs at high gains and that minimising/eliminating

these non-idealities is the path towards attaining even greater levels of squeezing [5].
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Hamiltonian non-idealities, manifest themselves as a distortion of the phase space (IQ

plane) as has been observed by experimentally imaging the IQ plane [6, 7], and through

the measurement of statistical moments and cumulants of the noise distribution at the

output of the amplifier [5]. In a 4WM JPA, this distortion is ‘banana’ shaped (Figure

2.8b) [6], while in a 3WM JPA the distortion appears ‘S’-shaped (Figure 2.8c) [7]. The

‘wings’ of the distortion mix Î and Q̂ at the most amplified point, artificially increas-

ing the output fluctuations along Q̂ and consequently decreasing the measured squeezing.

The amplified/squeezed vacuum state for the ideal DPA has a Gaussian quasi-probability

distribution [43]. Phase space distortion reduces the ‘Gaussianity’ of the output state,

and may be quantified through the statistical moments of the output field. A fundamen-

tal component of this work is the experimental characterisation of the amplifier output

phase space and the statistical properties of the output noise in order to quantify the

significance of Hamiltonian non-idealities in the KIPA, which we discuss in greater detail

in a later chapter (Sections 5.2 and 5.6).

2.8 Kinetic Inductance

Kinetic inductance is a phenomenon of high-conductivity metals associated with the

inertia of charge-carrying particles. In terms of the Drude conductivity model, kinetic

inductance becomes significant in materials where the mean time between collisions ⌧

is greater than the period of the alternating current flowing through the material. This

condition is often met in superconducting films operated at low temperatures, including

the NbTiN film used to define the KIPA circuit. During one period of the alternating

signal, the inertia of the Cooper pairs prevents them from reversing direction instanta-

neously with the electric field, thus delaying the current with respect to the voltage as

is similarly achieved by an inductance. The kinetic inductance Lk of a superconducting

material is defined by equating the kinetic energy of the Cooper pairs with an equivalent

inductive energy 1/2LkI
2. However, unlike a typical inductor, the kinetic inductance of

superconducting films non-linearly depends on the current flowing through the film. In

this section we derive an expression for the kinetic inductance following the approach of

Anlage et al. [44], using Ginzburg and Landau’s theory of superconductors.

As we considered in the distributed resonator, we model the superconducting trans-
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mission line as a string of infinitesimally small lumped element inductors and capacitors.

The voltage di↵erence across one of these inductors V is related to the current flowing

through it I by:

V = �xL
0@I

@t
(2.92)

= �x(L0
N
+ L

0
k
)
@I

@t
(2.93)

where �x is the length of the lumped element inductor and L
0 is the inductance per

unit length of the superconductor. The inductance L
0 may be decomposed into a sum

of two contributions: L0
k
the kinetic inductance, and L

0
N

the inductance associated with

the conversion of Cooper pairs to normal electrons [45]. In this derivation we neglect any

geometric inductance from the superconducting film. In the “dirty limit”, the normal

electron ohmic resistance is high and the time between collisions ⌧ is short, allowing us

to neglect the inductance L
0
N

[45]. In terms of the electric field E = V/�x, we find:

E = L
0
k

@I

@t
(2.94)

The London acceleration equation for a thin film of superconducting wire states [46]:

@J

@t
=

ns(2e)2

2me

E (2.95)

where ns is the density of Cooper pairs, which each have a mass 2me and charge 2e.

The current density J = �2evsns where vs is the super-current velocity. In the steady

state, the density of Cooper pairs ns is constant, allowing us to re-write the first London

equation as the acceleration equation:

E = �
me

e

@vs

@t
(2.96)

Combined with Equation 2.94 we find [44]:

L
0
k
= �

me

e

✓
@I

@t

◆�1
@vs

@t
(2.97)

= �
me

e

@vs

@I
(2.98)

We now assume operation of the film near its critical temperature Tc so that we can

draw upon Ginzburg Landau theory. In the case of the thin film or wire, Ginzburg Landau
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theory provides an analytical solution for the super-current through the cross-sectional

area A [47]:

I = �e| |
2
vsA (2.99)

The factor  is the so-called complex order parameter introduced by Ginzburg and

Landau, and may be understood as a psuedo-wavefunction whereby | (x)|2 measures

the local density of Cooper pairs at position x. Superconductors are well established

as non-linear materials [48] where the non-linearity in the thin film or wire is explained

in Ginzburg Landau theory by a dependence of local Cooper pair density | |
2 on the

super-current velocity vs, according to [45, 47]:

| |
2

| 1|2
= 1�

v
2
s

3v2
m

(2.100)

where vm is the velocity corresponding to the critical (maximum) super-current Ic, and

| 1|
2 is the super-electron density at an infinitely far away point where local magnetic

fields have decayed to zero [47]. The relative Cooper pair density increases with the

velocity vs up to vm, beyond which depairing of electrons becomes thermodynamically

favorable reducing the Cooper pair density to zero as the critical current is exceeded [44].

Substituting Equation 2.100 into our expression for current, we obtain:

I = �eA| 1|
2
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3
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(2.101)

with derivative:
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Continuing the derivation of Analge et al. this derivative may now be substituted into

our earlier expression for the kinetic inductance (Equation 2.98) [44]:

L
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me

e2A| 1|2
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(2.103)

For small currents, we may approximate vs/vm ⇡ 2I/3Ic and using the Taylor series

expansion for 1/(1� x) about x = 0 we obtain:

L
0
k
=

me

e2A| 1|2


1 +

4

9

I
2

I2
c

+ · · ·
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(2.104)

which may be re-written as the standard non-linear current dependence for kinetic in-

ductance [34]:

Lk = Lk,0


1 +

✓
I

I
⇤
2

◆2

· · ·

�
(2.105)
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where,

Lk,0 =
me

| 1|2e2

l

A
(2.106)

and l is the length of the film or wire. The kinetic inductance of the film at zero current is

given by Lk,0, while I⇤2 sets the strength of the quadratic non-linearity. Often we write the

quotient l/A as n⇤/t where t is the thickness of the film and n⇤ is the so-called ‘number

of squares’ parameter corresponding to the number of w⇥w squares that fill in the area

of the resonator.

While a number of assumptions have been made in this derivation (e.g. operation in

the dirty limit and at a temperature close to Tc), the kinetic inductance current depen-

dence on I
2 and I

4 has been shown to work well in practice [49, 50], including by this

work. Equation 2.104 predicts that I⇤2 = 3/2 Ic, which we test experimentally in Section

4.3.

In the KIPA, the kinetic inductance of the superconducting film is the dominant

source of inductance in our microwave resonator. A strong pump current modulates

the inductance according to Equation 2.105 and consequently the resonant frequency

of the cavity, giving rise to parametric mixing processes. In the following chapters we

shall demonstrate how the non-linear current dependence of kinetic inductance may be

exploited to realise a degenerate parametric amplifier capable of squeezing.

2.9 The Kinetic Inductance TWPA

The non-linearity of kinetic inductance already features in a number of cryogenic

amplifiers [51, 18, 52, 20]. In contrast to the DPA which benefits from a cavity, ki-

netic inductance is used to generate multi-wave mixing as signal and pump microwaves

propagate along a transmission line in a so-called Travelling Wave Parametric Amplifier

(TWPA). Because there is no cavity involved, the TWPA is a broadband device and has

been demonstrated to produce 10� 20 dB of gain over a multi GHz bandwidth [52, 20].

A CPW transmission line designed to have high kinetic inductance is su�cient to re-

alise parametric amplification. However, the quadratic kinetic inductance characteristic

(Equation 2.105) has been found to generate pump harmonics [51] and a number of other

mixing processes that compete with the intended 3WM or 4WM [18]. Pump harmonic
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generation depletes the pump while unintended mixing processes increase the noise con-

tributed by the amplifier [20]. As such, dispersion engineering is used to attenuate pump

harmonics [51] and constrain the set of frequencies able to satisfy the phase matching

condition [20].

The TWPA has not yet been demonstrated to squeeze the vacuum, but has already

demonstrated the potential of kinetic inductance as a non-linear medium. Output re-

ferred 1 dB compression points have been reported to be as high as �34 dBm [51], four

orders of magnitude higher than observed in the best SQUID-based amplifier [42]. Re-

cently, the input referred noise power of a kinetic inductance TWPA fabricated from

NbTiN has been measured to be 0.77± 0.4 photons [20]. Kinetic inductance TWPAs are

readily approaching the quantum limit and superconducting materials including NbTiN

have robust power handling capabilities that do not appear at present an obstacle to

quantum limited amplification.
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Chapter 3

The Kinetic Inductance Parametric

Amplifier

Across the remaining chapters in this thesis, we experimentally characterise a new type

of phase-sensitive microwave parametric amplifier, that we call the Kinetic Inductance

Parameteric Amplifier, or KIPA for short. We begin this chapter with a high level

description of how the device works, followed by a discussion of the microwave circuit

design process and parameters chosen in the case of the KIPA. We then go on to explain

the manufacturing process for this device and detail its packaging. To conclude this

chapter, we derive the Hamiltonian that describes the KIPA and draw connections with

the ideal DPA.

It should be noted that the design, fabrication and packaging of the KIPA were all

developed by another student; Mykhailo Savytskyi, and should not be considered as

original work here. In addition, Sections 3.1.1, 3.1.2, 3.2 and 3.3 have been reproduced

with permission. Although the work is not original, it is included here to provide the

complete story of the KIPA.

The KIPA Hamiltonian deriviation (Section 3.4) is original work, and was completed

in collaboration with Dr Arne Grimmsmo (University of Sydney).

3.1 Device Design and Operation

The Kinetic inductance Parametric Amplifier, depicted in Figure 3.1, is a geometri-

cally defined microwave device, realised from a single layer of NbTiN on Silicon. The
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A
B

Figure 3.1: The Kinetic Inductance Parametric Amplifier (KIPA) with simplified

schematic showing device operation, and SEM image of the KIPA cavity. A pump, signal

and DC bias are combined and fed into the single port of the KIPA. Microwaves propa-

gate through the Photonic Band-Gap (PBG) filter before reaching the cavity formed by

an Inter-Digitated Capacitor (IDC) structure. The IDC is shorted to ground at one end,

forming a �/4 resonant cavity. The ports A and B correspond to the input and output

ports of the PBG structure, and coincide with the PBG ports depicted in Figure 3.3.

device contains no Josephson junctions (making it robust to electrostatic discharge) and

is produced with a single-step lithography process. The nonlinearity responsible for para-

metric amplification in this device originates from a kinetic inductance (see Section 2.8)

intrinsic to the NbTiN film. Recall that the kinetic inductance depends non-linearly on

the current flowing through the film according to [34]:

Lk ⇡ Lk,0


1 +

✓
I

I
⇤
2

◆2�
(3.1)

This form of nonlinear inductance is analogous to an optical Kerr media. When a

current passing through the film I = Iµw consists of two di↵erent microwave tones, i.e.

a signal tone and a much stronger ‘pump’ tone, the nonlinearity gives rise to four wave

mixing (4WM), where energy transfer from the pump to the signal can e↵ect parametric

amplification [51, 52]. Introducing a DC current bias on top of the microwave tones

I = IDC + Iµw lowers the order of the nonlinearity:

Lk = Lk,0


1 +

✓
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I
⇤
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◆2
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In addition to the Kerr component (/ I
2
µw
), a new term linear in Iµw appears which

can facilitate a three wave mixing (3WM) process, as has been demonstrated recently in
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traveling wave devices [18, 20]. However, at high pump powers (where Iµw & 2IDC) the

competition between 4WM and 3WM processes is known to degrade the parametric gain

[53] and limit the ultimate device performance.

We exploit 3WM in a DC-current-biased resonator to produce a degenerate parametric

amplifier. Critically, the resonant nature of our KIPA strongly suppresses 4WM and

higher-order processes, permitting extremely high levels of pure 3WM gain. The device

(see Figure 3.1) is fabricated from a 9.5 nm thick film of NbTiN on Silicon, benefiting from

the high magnetic field resilience (up to B? ⇡ 350 mT) and high critical temperature

(Tc ⇡ 10.5 K) that are characteristic of this superconductor [54, 55]. NbTiN on Silicon

can exhibit extremely low losses with internal quality factors Qi greater than 106 [36],

which prove crucial to the generation of highly squeezed states.

The KIPA is defined geometrically by a coplanar waveguide (CPW) quarter-wavelength

resonator coupled to a single port via a microwave Bragg mirror that produces a Pho-

tonic Band-Gap (PBG) [56]. The Bragg mirror, or PBG, can equivalently be viewed as

a stepped-impedance band-stop filter. The PBG (which has a frequency response de-

picted in Figure 3.3b) mimics the role of a capacitive coupler commonly found in JPAs

[28, 21, 22], but importantly does not break the inner track of the CPW, allowing a DC

current to pass through the cavity of our device. The resonator is realised using a seg-

ment of CPW featuring an interdigitated capacitor (IDC) (see Section 3.1.1) terminated

in a short, and is designed to produce a resonance at the centre of the band-stop region

!0/2⇡ ⇡ 7.2GHz. The KIPA is designed to operate in the highly over-coupled regime,

where the coupling rate to the port far exceeds the internal rate of loss (Qc ⌧ Qi).

3.1.1 The Resonator

For the purposes of producing parametric amplification, it is desirable to maximise the

nonlinearity of the film in order to e�ciently convert pump photons to signal photons, and

thus reduce the required pump power in the device. That is, the objective is to minimise

I
⇤
2 , which scales with the critical current Ic. To maximise the kinetic inductance we

must ensure that it dominates over the geometric inductance present in the resonator.

The fraction of kinetic inductance in the resonant section of the CPW is determined by

several parameters (see Section 2.8) and can enhanced by reducing the thickness of the

superconducting film, which results in a higher room-temperature sheet resistance Rs and
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a)

b)

Figure 3.2: (a) The �/4 transmission line resonator of the KIPA, drawn to scale. The

resonator has length l with interdigitated capacitor fingers that provide additional ca-

pacitance to ground. The critical dimensions are labelled: the centre line width w, the

gap width g, the finger width s, and the finger height h. (b) Characteristic impedance of

a section of IDC as a function of the finger height h. Results are obtained from Sonnet

simulations for a centre line width of w = 2 µm.
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a larger per-square value of the kinetic inductance. In addition, we may reduce the width

of the central conductor w (see Equation 2.106) to raise the e↵ective number of squares

in the resonator wire and hence the total kinetic inductance. Both of these changes also

result in a smaller critical current Ic. A film thickness of 9.5 nm, a centre conductor width

of w = 2 µm, and a gap width of g = 2 µm were selected for the KIPA. Simulations of

the complete structure in Sonnet predict a sizeable kinetic inductance of Lk,0 = 3.72 nH.

Whilst the strong nonlinearity is desirable in realising a DPA, the higher inductance

of the transmission line leads to a large characteristic impedance, which has several detri-

mental e↵ects. A smaller resonator impedance reduces the power requirements as it

provides a larger pump current for a given power. Excessive pump powers may lead to

sample heating, which would prove an obstacle to quantum limited amplification. To

compensate for the high kinetic inductance and reduce the impedance, we introduce an

Inter-Digitated Capacitor (IDC) to the resonant CPW section. The IDC is a microwave

planar capacitor that consists of a dense set of interlocking fingers between the central

conductor and ground plane, as shown in Figure 3.2a. This structure boosts the capaci-

tance per unit length and therefore lowers the characteristic impedance to Z0 =
p
L/C,

where L and C are the inductance and capacitance per unit length, respectively. The en-

hanced L and C in the resonator can considerably reduce its phase velocity vp = 1/
p
LC,

shortening the required resonator length l.

To engineer the IDC resonator with the desired capacitance we perform an electro-

magnetic simulation using Sonnet. Figure 3.2b depicts the dependence of the IDC CPW

characteristic impedance Z0 on the capacitor finger length h, extracted from Sonnet sim-

ulations for a w = 2 µm wide central line. A finger height of h ⇡ 45 µm and finger width

of s = 2 µm was selected for the KIPA, giving a characteristic impedance of Z0 ⇡ 45⌦.

3.1.2 The Photonic Band-Gap Coupling Circuit

The photonic band-gap is formed by a periodic structure of alternating sections of

transmission line of ‘low’ and ‘high’ impedance (see Figure 3.3a). The resulting circuit

model is equivalent to an LC ladder filter [30]. Reflections occur at each point of abrupt

change in impedance, resulting in constructive or destructive interference with the prop-

agating signal dependent on its frequency. Consequently, the PBG has a band-stop filter

response, which blocks the propagation of photons in the band-stop region, hence the
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Figure 3.3: (a) Geometry of the linear photonic band-gap filter, featuring 6 sections

of alternating impedance: Zlow and Zhigh, with ports A and B. (b) Simulation of the

transmission scattering parameter SAB as obtained using the ABCD matrix approach.

The band-stop region is centred about the resonant frequency of the IDC: f0 = !0/2⇡.

DC current may flow through the PBG, and the PBG is designed such that the 3WM

pump at frequency fp ⇡ 2f0 is minimally attenuated.

name “photonic band-gap”. Further, we adopt this filter geometry for the coupling cir-

cuit because the centre conductor remains unbroken throughout, allowing us to pass a

DC current through the �/4 IDC connected to one end of the PBG.

The stepped-impedance filter can readily be designed using the ABCD matrix ap-

proach [30]. For a section of transmission line with length l and characteristic impedance

Z0, the ABCD matrix is written in the following form:
0

@A B

C D

1

A =

0

@ cos(�l) iZ0 sin(�l)

(i/Z0) sin(�l) cos(�l)

1

A (3.3)

where � = !/vp is the phase constant. We find the total ABCD matrix for the complete

PBG structure by taking the product of the matrices for each individual CPW section

in the order that they appear in the pattern. The ABCD matrix that results from the

product can be conveniently converted to the conventional scattering matrix S:
0

@S11 S12

S21 S22

1

A =

0

@
A+B/Z0�CZ0�D

A+B/Z0+CZ0+D

2(AD�BC)
A+B/Z0+CZ0+D

2
A+B/Z0+CZ0+D

�A+B/Z0�CZ0+D

A+B/Z0+CZ0+D

1

A (3.4)

Adopting the ABCD matrix approach, MATLAB is used to simulate the PBG trans-
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Figure 3.4: The KIPA fabrication procedure. See main text for details.

mission response S21 in order to determine the band-stop parameters of the PBG struc-

ture. The parameters for each CPW segment used in the calculation (i.e. the impedance

Z0 and e↵ective dielectric constant ✏eff ) are obtained from Sonnet simulations. The low

and high impedance CPW sections have lengths llow = 3.4 mm and lhigh = 3.455 mm,

with corresponding impedances Zlow = 52 ⌦ and Zhigh = 122 ⌦. These values produce a

band-stop region that is approximately centred about the resonant frequency of the KIPA

!0/2⇡ ⇡ 7 GHz, with minimal attenuation around the 3WM pump frequency !p ⇡ 2!0

(see Figure 3.3). The number of segments increases the depth of the band-stop region

and consequently modifies the coupling quality factor of the resonator connected to one

end of the PBG. As the KIPA is to operate in the over coupled regime, the KIPA was

designed to use 6 sections of alternating impedance (3 low impedance, 3 high impedance)

giving an approximate Qc ⇠ 100, as obtained from Sonnet simulations.

3.2 Device Fabrication

The KIPA is fabricated from a thin NbTiN film measuring 9.5 nm in thickness and

is deposited on top of a high resistivity (> 5 k⌦cm) natural silicon FZ sample. Electron
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Beam Lithography (EBL) is used to pattern a resist mask onto the silicon chip. EBL was

chosen for the fabrication of the KIPA as yield was expected to be high and few devices

were needed, and the pattern is defined in software, facilitating rapid design iteration.

The fabrication steps for the KIPA are as follows, and are diagrammed accordingly

in Figure 3.4:

1) Clean: The silicon sample is first cleaned in a piranha solution (a 3:1 mixture of

sulfuric acid H2SO4 and 30% hydrogen peroxide H2O2) for 10 minutes on a hotplate

set to 115�C in order to remove any organic contaminates. Following this the sample is

rinsed in deionized (DI) water for 10 minutes. Next a 15-second dip in a hydrofluoric

(HF) acid bath (10:1 mixture, with 10 parts water to 1 part 49% HF) is performed to

strip the native oxide, followed by 5 minute a DI rinse.

2) Metal Deposition: A high quality NbTiN film is deposited on the silicon by mag-

netron sputtering a NbTiN target in a N2 gas atmosphere. The sputtering is a com-

mercial service performed by the company “Star Cryo”.

3) Resist: We spin the positive electron-beam resist AR-P 6200 from “Allresist”, referred

to as CSAR 62 on top of NbTiN film at a speed 4000 RPM for 60 seconds to achieve

a 200 nm thick resist layer. We bake the sample at 150�C for 3 minutes to remove

solvents and harden the resist.

4) Exposure: Next we use a Raith-150 TWO EBL system to expose the resonator

pattern on the chip at a beam acceleration of 20 kV and an aperture of 60µm.

5) Develop: We develop the exposed chip in n-amyl acetate for 60 seconds, followed

by a 30 second rinse in isopropanol (IPA). A short (1 minute) and low-power (50 W)

oxygen plasma ash is then performed to remove and residual CSAR in the exposed

and developed regions.

6) Etch: We remove the NbTiN regions exposed by the above steps with a Reactive Ion

Etch (RIE), using an in-house built hollow cathode tool. The etch is performed with

a CF4/Ar ion plasma and removes the NbTiN at a rate of 4.5 nm/min.

7) Post-Etch: The KIPA is etched for 9 minutes, resulting in some etching of the Silicon.

The 200 nm of CSAR is su�cient thick to survive the 9.5 nm etch of the NbTiN.
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8) Final Clean: After the RIE we strip o↵ any residual CSAR using the AR 600-71

remover from “Allresist”. The sample is placed in the remover and left in an ultrasonic

bath for 10 minutes to help remove any resist that remains on the NbTiN, followed

by a 2 minute rinse in DI water.

All fabrication processes were carried out in the ANFF-NSW clean-room facilities,

which are graded ISO 5/Class 100 (EBL) and ISO 7/Class 10000 (RIE).

3.3 Device Packaging

After fabrication of the KIPA, the silicon chip is secured with a small amount of wax

to a PCB that was specifically designed for this chip. The PCB is made on a Rogers

RO3006 0.635 mm thick laminate covered with 1 oz of copper on both sides with an

immersion silver finish. This board contains of a single 50 ⌦ CPW trace connected

to the external measurement line at one end via a surface-mount mini-SMP (SMPM)

microwave connector. The other end of the PCB is wire bonded to the input port of

the superconducting resonator. The bond wires are 50 µm in diameter and made from

aluminum. The transmission line on the PCB is surrounded by an array of vias connecting

top and bottom ground planes in order to suppress unwanted parasitic modes. The circuit

board also has a milled region without any metalisation to accommodate the silicon chip.

We bond across the first few cells in the resonator PBG structure in order to connect

the ground planes. This is critical for suppressing parasitic CPW modes and unintended

ground plane resonances in the device [57], particularly given that our PCB does not

enclose the chip.

The PBG provides a means to decouple the resonator from the port. Much like an

optical Bragg reflector, the PBG supports a fraction of the mode field inside it. As the

ground plane separation is relatively large in this part of the device, radiation losses can’t

be neglected. To suppress radiation losses, we place the chip inside a 3D rectangular

copper cavity with a fundamental frequency slightly higher than the superconducting

resonator. The PCB allows most of the chip to protrude into the microwave cavity via a

rectangular waveguide with a cuto↵ frequency far-exceeding that of the cavity. This helps

us to maintain a high internal quality factor of the 3D cavity (Qi ⇡ 2000), which would

otherwise be destroyed by the presence of the PCB and bond wires. The copper enclosure
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Figure 3.5: An image of the KIPA enclosure mounted to our dilution refrigerator.

is thermally anchored to the mixing plate of our dilution refrigerator, as depicted in Figure

3.5.

3.4 The KIPA Hamiltonian

3.4.1 The Cumulative Charge and Flux of the Pump & Bias

In Section 2.4 we codified the �/4 resonator problem in terms of a cumulative flux

�(x, t) and a cumulative chargeQ(x, t). Before attempting to write down the Hamiltonian

for the KIPA in the presence of a pump, we begin by determining the relationship between

voltage and Q, and current and �.

Using the fact that qn = C0Vn, where qn is the charge on the n-th node and Vn is

the voltage on the n-th node, combined with the definition of the cumulative charge

(Equation 2.46):

Qn = C
0

nX

i=0

Vi�x (3.5)

In the limit of �x ! 0 the spatial distribution of charge is:

Q(x) = C
0
Z

x

0

V (u) du (3.6)
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By the fundamental theorem of calculus, we have:

@Q

@x
= C

0
V (x) (3.7)

In the presence of a DC bias current and a pump tone, we may decompose the total

cumulative charge into its constituent components: Qtot = QDC + QAC + Q where Q is

the charge associated with the cavity mode. We note here that the DC bias does not

contribute a charge component. Because the NbTiN film is superconducting, the device

displays zero DC resistance for all x and therefore the bias does not contribute a DC

voltage. As per Equation 3.6, we have QDC = 0 and hence Q̇DC = 0 and @QDC/@x = 0.

Using Equation 3.7, the spatial and time derivatives of the total charge in the KIPA

transform into:

@Qtot

@x
= C

0(V (x) + VAC) =
@Q

@x
+ C

0
VAC (3.8)

Q̇tot = Q̇+ IAC (3.9)

Conversely, the momentum variable of the mode LT Q̇ introduces a current IQ that per-

turbs the inductance:

IQ = Q̇ (3.10)

which we later use in our expression of the Lagrangian for the KIPA.

3.4.2 The Pump Mode

Before proceeding to evaluate the Hamiltonian, we first address the spatial distribution

of the pump. As the cavity is a transmission line with a shorted end, the pump must obey

the telegrapher equations with a null at x = l. The pump used to operate KIPA is close

to twice the resonant frequency of the circuit: !p ⇡ 2!0. Therefore, we approximate

the spatial distribution by the half wavelength mode to simplify the derivation of the

Hamiltonian:

IAC(x, t) = cos

✓
⇡

l
(x� l)

◆
IAC(t) (3.11)

VAC(x, t) = sin

✓
⇡

l
(x� l)

◆
VAC(t) (3.12)

where the time dependencies are IAC(t) = Ip cos(!pt+ �p) and VAC(t) = Vp sin(!pt+ �p)

with peak pump current Ip and voltage Vp.
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3.4.3 The Lagrangian and Hamiltonian

We start our derivation with the Lagrangian for a �/4 resonator, as we derived in

Section 2.4:

L =
1

2

Z
l

0

L
0
Q̇

2
tot �

1

C 0

✓
@Qtot

@x

◆2

dx (3.13)

Next, we apply a DC current IDC and an AC pump with current IAC(x, t) and volt-

age VAC(x, t) through the device. Substituting in the quadratic expression for kinetic

inductance and applying Equations 3.8 and 3.9, we obtain the Lagrangian:

L =
1

2

Z
l

0

L
0
k,0


1 +

✓
Q̇+ IDC + IAC

I⇤

◆2�
(Q̇+ IAC)

2
�

1

C 0

✓
@Q

@x
+ C

0
VAC

◆2

dx (3.14)

where L
0
k,0 is the kinetic inductance per unit length at zero current.

As previously, we apply the Legendre transformation to obtain the Hamiltonian, this

time using the SymPy symbolic algebra package to expand L with respect to Q̇:

HKIPA = Q̇
@L

@Q̇
� L (3.15)

= H0 +H1 (3.16)

where H0 is the Hamiltonian for the �/4 resonator obtained in Section 2.4 but now with

a biased inductance,

H0 =
1

2

Z
l

0

1

C 0

✓
@Q

@x

◆2

+ L
0
k,0

"
1 +

✓
IDC

I
⇤
2

◆2
#✓

@Q

@t

◆2

dx (3.17)

andH1 captures the nonlinear terms and the fast-oscillating linear components introduced

through the kinetic inductance:

H1 =

Z
l

0

VAC
@Q

@x
+A(Q̇)4 + B(Q̇)3 + C(Q̇)2dx (3.18)

with coe�cients:

A =
3L0

k,0

2(I⇤2 )
2

(3.19)

B = 2L0
k,0

2IAC + IDC

(I⇤2 )
2

(3.20)

C = L
0
k,0

3IAC(IDC + IAC)

(I⇤2 )
2

(3.21)

All constants terms are dropped for brevity. From Section 2.4 we have the mode

expansion that diagonalises our system with respect to H0. As the only mode used for
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amplification in the KIPA is the fundamental, we truncate the expansion to the first

mode:

Q(x) = A0 cos

✓
⇡

2l
(x� l)

◆
Q̂ (3.22)

�(x) =
A0

lk0
sin

✓
⇡

2l
(x� l)

◆
�̂ (3.23)

The mode solution for the flux was found by inserting Equation 2.51 into the telegrapher

Equation 2.48. Recall, the operators are given by:

Q̂ = i

r
~

2Z0
(â† � â) (3.24)

�̂ =

r
~Z0

2
(â† + â) (3.25)

We note that now the total inductance is now given by LT = Lk,0(1 + (IDC/I
⇤
2 )

2), the

resonance frequency !0 = ⇡/2
p
LTCT is shifted by the DC bias, and the characteristic

impedance of the fundamental is given by Z0 = LT!0. We again take advantage of the

first telegrapher equation (Equation 2.48) to express the derivative of the charge in terms

of the flux operator:

@Q

@t
=

A0

LT

cos

✓
⇡

2l
(x� l)

◆
�̂ (3.26)

Combining everything together, we evaluate the integrals for the fundamental cavity

mode and pump mode:

H0 =
1

2

"
LT!

2
0Q̂

2 +
1

LT

�̂2

#
(3.27)

H1 = A
0�̂4 + B

0�̂3 + C
0�̂2 �

4VAC(t)

3
p
2

Q̂ (3.28)

where,

A
0 =

9

4((I⇤2 )
2 + I

2
DC)L

3
T

(3.29)

B
0 =

32(6IAC(t) + 5IDC)

15⇡2
p
2((I⇤2 )

2 + I
2
DC)L

2
T

(3.30)

C
0 =

3IAC(t)(IAC(t) + IDC)

2((I⇤2 )
2 + I

2
DC)LT

(3.31)

3.4.4 The Hamiltonian in the Rotating Frame

Substituting the operator definitions for Q̂ and �̂ from Equations 3.24 and 3.25, we

rewrite the total Hamiltonian in the Fock basis:

H = ~!0â
†
â+A

00(â† + â)4 + B
00(â† + â)3 + C

00(â† + â)2 � i
2VAC(t)

p
~Z0

3
(â† � â) (3.32)
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where,

A
00 =

9~2!2
0

16((I⇤2 )
2 + I

2
DC)LT

(3.33)

B
00 =

8~!0

p
~!0LT (6IAC(t) + 5IDC)

15⇡2((I⇤2 )
2 + I

2
DC)LT

(3.34)

C
00 =

3~!0IAC(t)(IAC(t) + IDC)

4((I⇤2 )
2 + I

2
DC)

(3.35)

Rewriting IAC(t) = Ip(ej(!pt+'p) + e
�j(!pt+'p))/2 and dropping all fast rotating and

constant terms, the Hamiltonian simplifies to:

H/~ = (!0 +K + �!)â†â+
⇠

2
e
�j!ptâ

†2 +
⇠
⇤

2
e
j!ptâ

2 +
K

2
â
†2
â
2 (3.36)

where,

K =
27~!2

0

8((I⇤2 )
2 + I

2
DC)LT

(3.37)

⇠ =
3!0IDCIpe

�j'p

4((I⇤2 )
2 + I

2
DC)

(3.38)

�! = �
3!0I

2
p

8((I⇤2 )
2 + I

2
DC)

= �
|⇠|

2

Ip

IDC
(3.39)

The �! term arises from the square of the pump current found in C
00, which has a

non-zero average value of I2
p
/2 and causes an e↵ective detuning of the cavity frequency.

In a frame rotating at half the pump frequency !p/2, the KIPA Hamiltonian becomes:

HKIPA/~ = �â
†
â+

⇠

2
â
†2 +

⇠
⇤

2
â
2 +

K

2
â
†2
â
2 (3.40)

with detuning � = !0 +K + �! � !p/2.

The KIPA Hamiltonian resembles the Hamiltonian of an ideal DPA with an additional

Kerr shift HKerr = (K/2)â†2â2:

HKIPA = HDPA +HKerr (3.41)

Thus, the KIPA will behave as a degenerate parametric amplifier. In later sections

we show that the Kerr term, which is limited by the material parameters and resonator

geometry, is negligible. Because K is independent of the pump, we find the KIPA to well

approximate the ideal DPA Hamiltonian even at high signal gains (G ⇡ 30 dB).
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Chapter 4

Amplifier Performance

In this chapter we characterise the KIPA as a classical amplifier. We begin with a

summary of the experimental setup used to perform each of the measurements presented

in this chapter. The experiments start with a characterisation of the bias current response

to determine an appropriate operating point for the current bias and pump frequency.

We then measure and fit the gain in non-degenerate and degenerate modes of operation.

To conclude, we measure the 1 dB compression power of the device at various phase

sensitive gains.

4.1 Cryogenic Setup

Figure 4.1 depicts the microwave circuit employed for the experiments detailed in this

chapter. Microwave components are distributed between the di↵erent temperature stages

of the fridge to supply the amplifier input signal, bias current, and pump tone without

significant conduction of room temperature noise. A circulator redirects the reflected

KIPA output signal to a High Electron Mobility Transistor (HEMT) amplifier situated

at 4K, where the signal is amplified up to room temperature.

4.1.1 The Signal Line

Three 20 dB attenuators are used to thermalize the line and minimise the transmission

of thermal noise above 20mK, and are situated at the 4K, 100mK and 20mK stages,

respectively. The number of noise photons at frequency ! at the output of an attenuator
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Figure 4.1: Cryogenic microwave setup for amplifier characterisation experiments. The

legend defines the type of coaxial cables used throughout the setup: Stainless Steel (SS),

Silver Cupro-Nickel (SCN) and Silver-plated Copper (SC).
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at temperature Tatt is given by:

nout = �attnin + (1� �att)
1

2
coth

✓
~!

kBTatt

◆
(4.1)

where kB = 1.38 ⇥ 10�23 is the Boltzmann constant, and �att is the power transmission

coe�cient. The number of input noise photons is similarly given by 1/2 coth(~!/kBTin)

where Tin is the temperature of the input noise. Applying Equation 4.1 for the three 20

dB attenuators at their three respective temperatures, we find good thermal isolation at

7 GHz with the addition of only 2.4⇥ 10�3 photons from the higher temperature stages

down to 20 mK, in principle.

Before arriving at the KIPA, the signal is directed through the high frequency port of a

bias-T (PE1615 Pasternack Enterprises), followed by a cryogenic circulator (CTH0408KCS

Quinstar Technology Inc.), and then the low frequency port of our diplexer (DPX-1114

Marki Microwave Inc.), as illustrated in Figure 4.1. The purpose of the diplexer is to

combine the pump and signal onto the same line while minimising the coupling of the

reflected amplified signal back into the pump line. It is preferable to place the diplexer

before the circulator to minimise insertion loss along the detection path. However, this

was not possible because the ⇠ 14 GHz pump was out of the bandwidth of our cryogenic

circulator.

4.1.2 The DC Line

A current source (GS2000 Yokogawa Electric Corp.) at room temperature supplies

the DC bias current required to operate the KIPA. The bias current is directed through

a series of base-band low pass filters (VLF-105+ MiniCircuits Technologies), used to

minimise the conduction of room temperature noise at the pump and signal frequencies

down to the base temperature stage at 20 mK. Additionally, A 0 dB attenuator is used

to thermalize the DC line to the 4 K stage. The DC current is combined with the signal

line using a bias-T, where it has a direct conduction path through the circulator, the

diplexer and then the KIPA.

4.1.3 The Pump Line

An E8267D microwave source (Keysight Technologies Inc) supplies the pump tone

for all experiments via a high-pass filter. The E8267D produces a sub-harmonic at the
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detrimental frequency of !p/2, that is 60 dB weaker than the output, resulting in room

temperature signal powers as high as �56 dBm in our experiments. The high-pass filter

reduces the sub-harmonic by a further 25 dB.

As with the signal line, a series of three attenuators at di↵erent temperature stages

are used to thermalize the line and minimise the conduction of room temperature noise at

the signal/cavity frequency !0. A 10 dB attenuator is used at the 4K temperature stage,

followed by two 3 dB attenuators at the 900mK (still) and 100mK stages, respectively.

Taking into consideration the 40 dB stop-band rejection of the diplexer at !0 ⇠ 7 GHz,

only 2.5⇥ 10�3 photons at !0 reach the 20 mK stage.

Repeating the calculation at the pump frequency, we find that 9.42 photons reach the

input port of the device. The ‘noisy’ pump is not anticipated to influence the operation

of the device, which operates in the strong pump limit.

4.1.4 The Detection Path

A cryogenic circulator (CTH0408KCS Quinstar Technology Inc.) routes the reflected

output of the KIPA through the detection chain. A DC block immediately follows

to prevent the bias current from reaching the DC sensitive HEMT. A band-pass fil-

ter (BPC50403-01 Microtronics Engineering) then heavily attenuates any pump power

leakage that reaches the circulator and HEMT. An isolator (Raditek RADC-4-10-Cryo-

0.02-4K-S23-1WR-DMS-b) thermalize the line to 20 mK and absorb any reflections or

noise originating from the HEMT. The HEMT (LNF-LNC4 Low Noise Factory), situated

at 4 K, amplifies the KIPA output by approximately 40 dB and is connected directly to

the output of the fridge.

4.2 Room Temperature Setup

For the bias current response experiment (Section 4.3) and the phase insensitive gain

measurement (Section 4.4), the room temperature setup is simply the VNA with an ad-

ditional 35 dB microwave pre-amplifier connected to the detection chain, as diagrammed

in Figure 4.2.

The phase sensitive gain characterisation (Section 4.5) and 1 dB-compression point

measurement (Section 4.6) require an additional microwave source (see Figure 4.2). The
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Figure 4.2: Room temperature microwave setup for amplifier characterisation. A mi-

crowave switch allows us to perform a traditional VNA style measurement, or alterna-

tively supply the signal from a separate microwave source while using one port of the

VNA as a spectrum analyser. The microwave source generates a pulse at the beginning

of each phase modulation period, which is used to trigger the VNA in the phase sensitive

amplification experiment.

signal port of the VNA is terminated with 50⌦ by a microwave switch and configured

for a zero span measurement at frequency !p/2. Although still configured for an S21 type

measurement, the VNA functions as a spectrum analyser, while the separate microwave

source is used to stimulate the device. The microwave source is programmed for saw-

tooth phase modulation at half the pump frequency !p/2, ramping the phase from �2⇡

to 2⇡ on each cycle. The microwave source concurently generates a trigger pulse at the

beginning of each period of the phase ramp, which is used to trigger the zero-span data

acquisition on the VNA. As there is no direct path from the VNA signal port to the VNA

detection port, we cannot rely on the incident power reported from the VNA. Instead, we

perform consecutive measurements with the KIPA on and o↵, and measure the di↵erence

in microwave power (i.e. the gain).

4.3 Bias Current Response

To operate the KIPA we must first choose the two parameters: the bias current IDC

and the pump frequency !p. A non-zero bias current is needed for 3WM to occur. There-

fore, we first choose a bias current and then optimise the pump frequency accordingly.

We begin the experimental characterisation of the KIPA by measuring the response of
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the resonator to the bias current without the pump active.

The resonant frequency of the KIPA is given by:

!0(I) =
1p

(Lg + Lk(0) +�Lk(I))C
(4.2)

where Lg is the geometric inductance of the circuit, Lk(0) is the kinetic inductance for zero

bias current, and C the capacitance of the resonator. We define�Lk(I) = Lk(I)�Lk(0) =

Lk,0(I2/I⇤22 + · · · ), where Lk(I) is the current dependent kinetic inductance defined in

Equation 2.105. By definition �Lk(0) = 0. Approximated to the first order, the resonant

frequency changes linearly with the kinetic inductance:

!0(I) ⇡
1p

(Lg + Lk(0))C
�

1

2(Lg + Lk(0))
p

(Lg + Lk(0))C
�Lk(I) (4.3)

While the capacitance and the geometric inductance may be approximated from sim-

ulation, we treat them here as unknowns. It is therefore useful to consider the relative

frequency shift:

�!0(I) = !0(I)� !0(0) (4.4)

⇡ �
1

2(Lg + Lk(0))
p
(Lg + Lk(0))C

�Lk(I) (4.5)

⇡ �
!0(0)

2

Lk,0

Lg + Lk,0

✓
I

I
⇤
2

◆2

+ · · ·

�
(4.6)

⇡ �
!0(0)

2

✓
I

I
⇤
2

◆2�
(4.7)

where we use Lk,0 � Lg in the last line, as has been intentionally designed for through

the resonator geometry and choice of superconductor. Without knowing Lg, Lk(0) or C,

Equation 4.7 provides us with a means to quantify the KIPA non-linearity constant I
⇤
2

by observing the resonance frequency shift with an applied DC current.

4.3.1 Measurement

To measure the resonator response we perform a reflection measurement using the

VNA, where one port of the VNA is used to stimulate the KIPA via the signal line, and

a second port measures the reflected response routed through the detection chain via the

circulator. Meanwhile, a bias current is applied through the DC port of our setup.
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Because the KIPA is deliberately over-coupled ( � �), the magnitude response of

the cavity reflection parameter (Equation 2.79) near the resonance frequency !0 is:

|�(!)]| ⇡

����
2

+ �
� 1

���� (4.8)

⇡ 1 (4.9)

Due to the flat magnitude response and the orders of magnitude di↵erence between

 and �, an accurate fit to the reflection parameter (Equation 2.79) is not possible.

However, the resonance frequency may be extracted from the phase response, where a 2⇡

phase shift occurs centred about the resonance frequency.

Sweeping the bias current from 0 mA up to the approximate critical current Ic = 0.9

mA, we observe the phase response of the KIPA, as shown in Figures 4.3a and 4.4. Line

delay is first removed from the phase response by subtracting a linear fit to the phase

away from the resonance. Further complicating the fitting of the resonance are significant

ripples that are present throughout the phase response (see Figure 4.3a) that are likely

due to microwave reflections in the setup.

In order to robustly extract the resonant frequency from this data, we take the di↵er-

ence between traces at adjacent bias currents Ij and Ij+1, as illustrated in Figure 4.3b.

Since the ripples are common to each measurement, taking the di↵erence between traces

leaves behind the di↵erence in phase responses while the ripples cancel. For the ideal re-

flection style resonator, a peak occurs exactly half-way between the two distinct resonant

frequencies. A Savitzky-Golay filter (window length: 253, polynomial order: 5) is applied

to the data to reduce noise, after which the frequency at the peak is extracted. We use

this value to estimate the resonant frequency at (Ij + Ij+1)/2, as plotted in Figure 4.4

(white diamonds).

We measure a native resonance frequency of !0 = !0(0) = 7.2898 GHz, and over 100

MHz of frequency tunability. The error (standard deviation) on the predicted resonant

frequency is measured at � = 2.16 MHz.

We proceed to fit our quadratic expression for the relative frequency shift (Equation

4.7) to the extracted resonant frequencies and find good agreement with theory. We

extract a second order non-linearity of I⇤2 = 5.102 mA. Ginzburg Landau theory predicts

I
⇤
2 = 3/2Ic (see Section 2.8), which is not reflected in our data. However, the derivation

presented in Section 2.8 assumes operation near the critical temperature. For NbTiN this
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Figure 4.3: (a) The phase response at di↵erent bias currents after line delay removal.

Due to the current dependence of kinetic inductance, the resonant frequency changes

resulting in a frequency shift in the phase response. Note the significant ripples present

throughout the frequency span of the measurement. (b) The di↵erence in phase response

at adjacent bias currents. Data is o↵set for illustrative purposes. The ripples cancel,

leaving behind a peak at the average of the two resonant frequencies. The data is filtered

(black traces) to reduce noise in the peak measurement. The filtered data is also slightly

o↵set for visual clarity.
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Figure 4.4: KIPA phase response as a function of bias current. The measured resonance

frequency (diamonds) is fit to theory (solid line). The vertical axis is the frequency shift

�! = !(I)� !0(0).

is approximately Tc ⇡ 10.5 K [54, 55], well above the device temperature of 20 mK used

in these experiments and is a likely cause for this discrepancy. In addition, the if the

critical current is limited by local defects or nonidealities in the fabrication (such as edge

roughness, constrictions etc.), then we would also expect a discrepancy. Despite this, the

predicted quadratic approximation fits the data well.

4.3.2 Kerr Shift

A comparison of the expressions for K (Equation 3.37) and ⇠ (Equation 3.38) reveals

why the KIPA functions as an ideal DPA: the photon energy is a minuscule fraction of the

characteristic nonlinear inductive energy (i.e. ~!0/(LT ((I⇤2 )
2+I

2
DC)) ⇡ ~!0/(LT I

⇤
2
2) ⌧ 1)

by virtue of I⇤2 being large. In fact, one can show that LT I
⇤
2
2 = Ep, where Ep is the

superconducting pairing energy [34], which itself depends on the e↵ective volume of the

nonlinear inductance.

The greater the volume over which LT is spread, the smaller the Kerr interaction. On

the other hand, the 3WM strength is in some sense independent of I⇤2 , since IDC and Ip
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can always be raised to a sizable fraction of I⇤2 , with the provision that they are kept

su�ciently small so that device heating does not occur.

In the worst case, setting IDC = 0 gives the highest value for the Kerr coe�cient

K. Using the estimated kinetic inductance of Lk,0 = 3.72 nH, we find K  1.13 Hz,

a completely negligible quantity relative to all other system parameters. Compared to

the coupling rate, we achieve the ratio: K/ ⇠ 10�7, smaller than the typical values of

K/ > 10�4 seen in JPAs [5]. Because the Kerr term is so small, we approximate the

Hamiltonian for the KIPA with the Hamiltonian for the ideal DPA for the remainder of

this work:

HKIPA ⇡ HDPA (4.10)

4.3.3 Choice of Bias Current

Figure 4.5 depicts the reflection response of a device similar to the KIPA, with a dif-

ferent resonator geometry and a coupling circuit designed to be closer to critical coupling

than the KIPA. As such, the magnitude response shows a distinct dip and both the loss

rate � = !0/Qi and coupling rate  = !0/Qc may be extracted. Although resonator

losses are sensitive to the device geometry, we observe a current dependent loss rate in

this similar device. We are unable to perform an equivalent measurement in the KIPA

due to its coupling regime, however, a current dependent loss rate may be used to inform

the choice of bias current. From the input output relation for the DPA (Equation 2.86),

bath photons couple into the output field at a rate proportional to
p
�. To maximise the

achievable squeezing for the ideal DPA it makes sense to optimise the bias current such

that � is minmal (Qi is large). Alternatively, squeezing might be measured as a function

of bias current, and the operating bias current determined by the measured maximum.

If the KIPA and this device share a similar current dependence for losses, then a small

bias current is preferable.

Conversely, a large bias current minimises the required pump power to achieve the

same gain since the mixing strength |�| / IDCIp. For the experiments detailed in this

chapter, we elected to use a bias current of IDC = 0.834 mA; close to the critical current

of the film but with a su�cient margin for additional microwave currents applied through

the pump and signal. From the fit to the bias current response, we extract a resonant

frequency of !0 = 7.1924 GHz at this bias current. The corresponding pump power for
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Figure 4.5: Magnitude response (top left) and fit (bottom left) of a similar device to the

KIPA. Coupling and internal quality factors were extracted from the fits (top right), as

was the resonance frequency (bottom right).
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Figure 4.6: (a) Phase insensitive gain as a function of frequency ! = �! + !p/2 for

di↵erent pump powers (circles). Traces are labelled by the pump power at the cavity

input. The fitted theoretical frequency response is plotted (solid lines). The parameters

||, Arg() and the pump line transmittance �p were the only free parameters. (b) ||

as a function of the estimated pump current in the device (circles), with linear fit (solid

line). (c) Arg() as a function of pump power. The dashed line is a guide for the eye.

20 dB of gain with this bias current was within 15 dB of the maximum operating power

of our source. Weaker biases may necessitate additional amplification of the pump tone,

additional filtering (with associated insertion loss) between the KIPA and the HEMT,

and/or increases the potential for sample heating. Hence, to simplify the initial experi-

ments, we characterise the KIPA’s performance as a microwave amplifier and a squeezer

at a bias current close to the critical current. The value of IDC = 0.834 mA is used for

the remainder of the experiments presented in this thesis.

4.4 Phase Insensitive Gain

Phase insensitive gain is readily observable using a VNA once an appropriate pump

tone and bias current are applied to the device concurrently. For the following measure-
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ments we chose a pump frequency of !p/2⇡ = 14.381GHz ⇡ !0/⇡, close to twice the

resonant frequency of !0 = 7.1924 GHz for the bias current IDC = 0.834 mA. Ideally,

the KIPA should be operated at precisely !p = 2(!0 + �!) for maximal squeezing (see

Section 5.5.1). However, in our experiments we optimised the pump frequency for gain at

a fixed pump power and bias current, arriving at a close to optimal pump configuration.

A fixed pump frequency of !p/2⇡ = 14.381 GHz is used throughout these experiments

despite the expected shift in resonance (see Equation 3.39).

The VNA supplies a signal tone, which is swept about !p/2, while the reflected re-

sponse from the KIPA is measured. Because the magnitude response of the KIPA is

approximately flat, we measure gain by taking the di↵erence between the response with

the pump on and the pump o↵, depicted in Figure 4.6 at di↵erent pump powers. The

KIPA produces an amplified signal tone !s at its output, along with an idler at !i such

that energy is conserved in the 3WM process !p = !s+!i. Phase insensitive gain occurs

when !s = !p/2+�! with |�!| exceeding the measurement bandwidth resolution. Gain

increases with the pump power and is found to be in excess of 40 dB before the KIPA

crosses the threshold where spontaneous parametric oscillations occur (see below).

4.4.1 Gain Feature Fits

To characterise the line-shape of the amplification feature, we assume that the KIPA

operates as an ideal DPA and use Boutin’s reflection parameter for the signal gain re-

written in the lab frame (gS[!] ! �(!) using ! ! ! � !p/2: see Equation 2.87) [5]:

�(!) =
(+ �)/2 + i(�+ ! � !p/2)

�2 +
⇥
(+ �)/2 + i! � i!p/2

⇤2
� |⇠|2

� 1 (4.11)

To fit the data in Figure 4.6, we adopt a complex coupling rate in the reflection

model �(!) (Equation 4.11):  2 R !  2 C, with complex phase Arg(). A complex

quality factor may be used to model an asymmetric response that occurs due to an

impedance mismatch across the coupling circuit where reflections at the coupler interfere

with photons exiting the resonator [58]. This is a standard trick [59] [58], which has been

routinely used in our lab to fit similar NbTiN resonators showing clear evidence of an

asymmetric magnitude response, including the fits depicted in Figure 4.5.

The pump current in our device is not precisely known. Assuming the simulated

impedance of Z0 = 45⌦, we introduce a loss parameter �p that quantifies the amount
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of pump power transmitted from room temperature down to the sample such that I2
p
=

2�pPpump/Z0, where Ppump is the pump power at room temperature.

We may predict the parameter � = !0+�!�!p/2 from our theory (Equation 3.39) as

!p and IDC are known, and we have measured !0 and I
⇤
2 in Section 4.3. Further, Equation

3.38 allows us to also predict |⇠| as a function of the pump current in the sample. To

further constrain the model we estimate the internal quality factor Qi = !0/� to be 105

for all pump powers. We base this estimate on the internal quality factors observed in

similar devices (e.g. the device measured in Figure 4.5), and note that in the over-coupled

regime Qi has minimal impact on the predicted gain as + � ⇡ .

We are left with a model where the only free parameters are ||, Arg() and �p. We

impose the additional constraint that �p is constant across each of the pump powers. Fits

were performed using the FitKit fitting framework in Python [60].

We observe a log-linear shift in  from ⇠ 52 MHz to ⇠ 56 MHz corresponding to

a coupling quality factor of Qc ⇡⇠ 135. There are two plausible explanations for the

change in  with pump power. The pump current increases the kinetic inductance thus

modifying the loading on the coupling circuit which results in a shift in coupling rate .

Alternatively, an error in the estimate of !0 and hence �! can be compensated for by a

shift in  by the model. Likely a combination of both e↵ects occurs here. To minimise

the error on the fit to !0, one could redevelop the theory with an additional quartic term

in the expansion for kinetic inductance (Equation 2.105) and reduce errors in the fit to

the frequency shift depicted in Figure 4.4. A weak drift (⇠ 30 mrad) in the phase of the

coupling rate was necessary to fit the data (see Figure 4.6c). This is not unreasonable,

as a small shift in the cavity impedance due to the pump current will influence any

reflections that occur at the cavity input.

From the fits, we extract a pump attenuation of �10log(�p) = 35.75 dB. Based on

the room temperature attenuation of the lines and room temperature insertion losses of

components, we estimate this loss to be on the order of ⇠ 30 dB. We find good agreement

between experiment in theory here as the ⇠ 6 dB discrepancy may be explained by loss

in the band-pass region of the PBG filter and the drop in pump current due to slight

pump depletion, neither of which are taken into account in the loss estimate of 30 dB.

We aim to characterise both the pump loss in the PBG structure and the pump depletion

phenomenon in our device in future measurements to validate the extracted value of �p.
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Figure 4.7: Bandwidth vs peak phase insensitive gain (top) and Gain Bandwidth Product

(GBP) vs peak phase insensitive gain (bottom). The solid black line is a log-linear fit

to the bandwidth as a function of gain in dB. The dashed black line is the average GBP

across all gains.

Overall, we find excellent quantitative agreement with our theory, and are able to pre-

dict the observed gain curves from our expression for the KIPA Hamiltonian (Equations

3.40, 3.38 and 3.39) derived in the previous chapter.

4.4.2 Gain Bandwidth Product

From the fits to the amplification features depicted in Figure 4.6, we can extract the

Gain Bandwidth Product (GBP), defined by the product of the peak phase insensitive

gain G and the bandwidth when the gain drops to G/2 [22]. We find that the GBP of

the KIPA shows good consistency across the di↵erent pump powers, as evidenced by the

highly linear log-log plot of the gain and bandwidth (see Figure 4.7), and we extract an

average GBP of 98 MHz.

4.4.3 Parametric Self Oscillations

Increasing the pump current Ip, and hence the mixing strength ⇠, will not increase

the gain indefinitely. Past a certain threshold, the device enters the regime of parametric

self-oscillation and ceases to behave as an amplifier [61]. Pumped at twice the resonant
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Figure 4.8: The mixing rate |⇠| and parametric self oscillation threshold
p
�2 + (+ �)2/4 vs the pump power at the output of our microwave source. The

parametric self oscillation threshold occurs at the intersection of these curves indicated

by the black dashed line at Ppump = 4.033 dBm.

frequency, the cavity spontaneously produces photons at !0 that grow exponentially in

number [61]. Competition from system non-linearities eventually limit growth, resulting

in a fixed power !0 tone in steady state.

Although, we do not study the KIPA in the self-oscillation regime in this work, we

have su�cient theory to predict the range of pump currents at which the KIPA behaves

as a parametric amplifier. The parametric oscillation threshold corresponds to the zero

crossing of the denominator of |�(!)|. At the point of maximum phase sensitive ampli-

fication, spontaneous oscillations occur when |⇠|
2
� �2 + ( + �)2/4. Using our theory

(Equations 3.38 and 3.39) along with the coupling rate || extracted from the fits de-

picted in Figure 4.6, we can predict the pump current at which parametric self-oscillation

occurs. We assume a real coupling rate  to simplify the analysis.

Figure 4.8 depicts the predicted |⇠| as a function of pump power alongside the pre-

dicted threshold of parametric self-oscillation:
p
�2 + (+ �)2/4. The threshold in-

creases with the pump power due to the pump dependent detuning �!, which increases

�2 as the pump current increases. The curves intersect at a pump power of Ppump = 4.030
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Figure 4.9: Measured gain (a) and theoretical gain (b) as a function of the pump/signal

phase for an input signal of frequency !s = !p/2. Traces are labelled by the pump power

at the cavity input. Disagreement between theory and experiment at the highest pump

power (-31.8 dBm) is due to an increasing sensitivity of the peak theoretical gain to

coupling rate ||. The discrepancy is explained by a small error in the fitted parameter,

arising from the manual fitting process.

dBm referred to the output of our microwave source.

We found during the experiment that increasing the pump power to 4.10 dBm from

4.00 dBm would cause the KIPA to self-oscillate. Again, we find excellent quantitative

agreement between experiment and theory.

4.5 Phase Sensitive Amplification

When applying a signal tone at half the pump frequency !s = !p/2, the KIPA enters

the degenerate mode of operation, producing phase sensitive gain as the signal and idler

tones interfere. From Boutin’s input output equations (see Equation 2.87), the rotating

frame gain is: �('p) = gS[0] + gI [0]. More explicitly, the phase sensitive gain is:

|�('p)| =

����
(+ �)/2 + i�+ i|⇠|e

�j'p

�2 + (+ �)2/4� |⇠2|
� 1

���� (4.12)

=

s
((+ �)/2� |⇠| sin('p))

�2 + (+ �)2/4� |⇠|2
� 1

�2
+


(�+ |⇠| cos('p))

�2 + (+ �)2/4� |⇠|2

�2
(4.13)
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where we separate out the modulus of ⇠ and its argument corresponding to the pump

phase 'p (see Equation 3.38). From Equation 4.13 we observe that the KIPA gain is

sensitive to the pump phase 'p.

Experimentally, we observe phase sensitive amplification by modulating the phase of

a signal tone of frequency !p/2 = 7.1905 GHz, as is described in Section 4.2. As 'p

represents the phase di↵erence between the signal and the pump, phase modulation of

either tone will allow us to characterise the phase sensitive gain. Figure 4.9a depicts the

gain of the KIPA as a function of pump phase, where up to 26 dB of de-amplification and

close to 50 dB of amplification are observed. Compared to phase insensitive amplifica-

tion, additional gain is observed in degenerate mode due to the constructive interference

that occurs between the signal and idler. The traces are aligned such that the point of

maximum de-amplification occurs for 'p = 0.

Figure 4.9b depicts the phase sensitive gain predicted by our theory (Equation 4.13),

where we apply the linear fit to  shown in Figure 4.6, the extracted pump loss �p = 35.75

dB, and the pump current dependent expressions for ⇠ and �! from our Hamiltonian

derivation (Equations 3.38 and 3.39). We find excellent agreement in theory for each

pump power aside from Pp = �31.8 dBm. Both the degenerate and non-degenerate

gain become increasingly sensitive to the value of  as the asymptote of parametric self

oscillation is approached. Consequently, the discrepancy in the predicted phase sensitive

gain at the highest pump power before self-oscillation may be explained by small errors in

the linear fit to  (see Figure 4.6). Further, the theory predicts greater de-amplification

than is observed experimentally for the three highest operating points. To obtain the data

plotted in Figure 4.9a, significant averaging was required to reduce noise. We believe that

the maximum de-amplification of 26 dB measured is limited by our ability to resolve the

sharp gain feature at 'p = 0, which is highly sensitive to instrumental phase noise and

slow phase drifts between the signal and pump.

4.6 1dB Compression Power

We anticipate that the KIPA is most likely to be used as a phase sensitive amplifier

where input referred noise is minimal. As such, the 1 dB compression point of the KIPA

is characterised here in phase sensitive mode. After calibrating the phase of the pump
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Figure 4.10: Peak phase sensitive gain as a function of the input signal power at the

sample, with 1 dB compression power (referred to the output of the device) as a function

of the KIPA gain (inset).

to achieve maximum amplification (i.e. 'p ⇡ ⇡/2), we characterise the degenerate 1

dB compression point of the KIPA by increasing the signal power until the gain drops

by 1 dB, as is presented in Figure 4.10. For ⇠ 20 dB of phase sensitive gain, we find

a minimum compression power of �43 dBm at the KIPA output, comparable to the

compression performance of kinetic inductance travelling wave amplifiers [51, 18, 20].

Our HEMT saturates for approximate input powers of ⇠ �50 dBm. Factoring in the

loss between the KIPA and the HEMT, we are unable to rule out the possibility that the

measured the 1 dB compression point is limited by the HEMT, and that the dynamic

range of the KIPA is indeed higher. We speculate that the linear range of operation for

the KIPA is limited either by the critical current of the film or by two photon losses,

which become significant at high input powers [32].

Among the family of quantum limited amplifiers, the KIPA o↵ers unprecedented levels

of gain with a 1 dB compression comparable to the state-of-the-art.
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Chapter 5

Quantum Characteristics

In this chapter we document a series of experiments used to understand the quantum

behaviour of the KIPA. While we have not yet successfully measured squeezing with the

KIPA, we show near quantum limited noise performance and provide a body of evidence

to support the claim that the KIPA behaves as a highly idealised DPA.

I’d like to acknowledge Dr Arne Grimmsmo for his contributions to the noise temper-

ature theory presented here.

5.1 Experimental Setup

For the experiments outlined in this chapter, we use the same Cryogenic setup as

described in Chapter 4. However, a di↵erent room temperature setup is required for ho-

modyne detection and the characterisation of the KIPA noise temperature, as is depicted

in Figure 5.1.

The output of the fridge connects directly to a ⇠ 30 dB gain microwave HEMT low

noise amplifier. In our e↵orts to measure squeezing and the noise temperature of our

device, it is desirable to minimise the noise along the detection chain where possible.

However, we note that the dominant source of detection chain noise arises from the

HEMT at 4 K. A microwave switch follows the microwave amplifier, allowing us to select

between a spectrum analyser or an IQ demodulator for microwave detection.

Our homodyne detection setup consists of an IQ mixer (IQ4509, Marki Microwave

Inc), driven by a local oscillator supplied from an additional microwave source (E8267D,

Keysight Technologies) that is phase-locked with the pump source using a 1 GHz refer-
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Figure 5.1: The room temperature setup used for the experiments in this chapter. A

microwave switch passes a coherent signal tone of frequency !s and variable phase 's

to the input of the fridge, or disables the input altogether with a 50⌦ load allowing the

KIPA cavity to reside in the vacuum state. The detection path now consists of a room

temperature microwave amplifier followed by a homodyne detection circuit driven by an

independent microwave source as the local oscillator. The baseband I and Q signals

are low pass filtered down to 1.9 MHz and then amplified further before digitisation by

an ADC. Alternatively, a microwave switch can redirect the detected microwaves to a

spectrum analyser used to characterise the noise temperature of the KIPA.
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ence. The high frequency reference is crucial to slowing phase drifts between the sources,

allowing for longer measurement times and more averaging before we are required to re-

calibrate the measurement. The baseband I and Q quadratures output from the mixer are

then filtered by 1.9 MHz low pass filters (SLP-1.9+, Mini-Circuits Technologies) and then

amplified by a series pair of 5⇥ JFET pre-amps (SIM914, Stanford Research Systems),

providing a baseband gain of ⇠ 18 dB. The amplified baseband signal is then sampled at

6.25 MHz using two digitiser channels of a PXI card (M3300A, Keysight Technologies).

We begin this chapter by imaging the squeezing transformation (see Section 5.2) where

we supply a microwave tone at the degenerate amplification frequency (!s = !p/2) and

vary its phase using a third microwave source (E8267D, Keysight Technologies) that is

again phase-locked with the pump and local oscillator using the 1 GHz reference clock.

By probing the KIPA output for di↵erent signal phases ('s) we may image the phase

sensitive transformation of the output field using our homodyne detection setup.

In addition, we study the output noise spectrum of the detection chain as a function

of fridge temperature and in the absence of a coherent tone, allowing us to extract the

noise temperature of the KIPA. For these experiments we use the microwave switch on

the detection side to select the spectrum analyser.

In the remaining measurements, we study the response of the KIPA to input vacuum

fluctuations where we measure squeezing and perform statistical analyses of the noise

field. To prepare the KIPA cavity in the vacuum state, we use a microwave switch on

the fridge input to provide a 50⌦ termination. The 50⌦ load presents 300 K noise to the

input line, which we have previously shown is su�ciently attenuated along the signal line

down to 20 mK such that vacuum fluctuations are the dominant source of noise at the

operating frequency of ⇠ 7 GHz (see Section 4.1.1).

5.2 The Squeezing Transformation

The phase-dependent interference of the signal and idler fields in a DPA results in an

a�ne transformation applied to the IQ-plane of the input field, also commonly called the

squeezing transformation [1]. As this a�ne transformation acts equally on both coherent

inputs and the vacuum, we begin with a characterisation of the squeezing transformation

for coherent inputs. The fields, which initially occupy a circular region on the IQ-plane,
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Figure 5.2: KIPA response to coherent inputs of constant amplitude and varying phase

plotted on two di↵erent scales. Top: outputs are plotted with an equal aspect ratio,

where the reflected input sweep with the KIPA o↵ is observed as a circle (green). Turning

the KIPA on stretches the circle to an ellipse, which resembles a blue line in this plot.

Bottom: the same outputs plotted with an exaggerated scale along Q so that the elliptical

transformation may be observed. Solid lines are a guide for the eye.

85



are stretched to form an ellipse, with the area being conserved in the process. One

quadrature is amplified, while the orthogonal quadrature is said to be ‘deamplified’.

Coherent states are useful for studying the squeezing transformation since any noise field

that couples into the cavity through the loss channel � may be neglected (see Section

5.3), permitting a clear inspection of any deviations from the expected transformation.

Hamiltonian non-idealities manifest as an S or ‘banana’-shaped distortion (see Figure

2.8) of the phase space at high gains, as has been experimentally observed [7, 6] and

modelled [5] in JPAs for gains typically exceeding ⇠ 10 dB. While the deamplification

of coherent inputs are related to a device’s squeezing potential, the deamplification level

is not in general equal to squeezing as mixing of the bath field contributes additional

variance to the squeezed vacuum. Instead, the de-amplification presents an upper limit

on the squeezing a device may produce.

We probe the squeezing transformation by sweeping the phase of a coherent state

incident on the KIPA and use homodyne detection to measure the transformed output.

A coherent tone of power �100 dBm at the KIPA input, corresponding to approximately

250 intracavity photons on average. This input power was optimised to provide good

signal-to-noise without saturating the amplifier chain. Our results are shown in Figure

5.2 for di↵erent pump powers. When the KIPA is o↵ the input coherent state phase

sweep traces out a circle on the IQ-plane. Activating the KIPA maps the circle to an

ellipse at the detector with no noticeable S-type distortion, even for a degenerate gain

of 30 dB. This exceeds the achievable phase-sensitive gain without distortion observed in

JPAs by approximately two orders of magnitude [7, 6]. Further, increases in gain (up to

50 dB) did not produce any obvious distortions, though at these higher gains the signal

power had to be reduced to avoid saturating the cryogenic HEMT and room temperature

amplifiers, resulting in significant degradation in the SNR. The lack of S-type features

at high gain support the idea that the KIPA is well-approximated by an ideal DPA and

that the self-Kerr correction may be neglected.

In the following sections, we show that the data illustrated in Figure 5.2 may be

entirely explained by the input output theory of the ideal DPA in conjunction with weak

microwave reflections that occur in the experimental setup, providing further evidence

that the KIPA behaves as a highly idealised squeezer.
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5.3 Squeezing Transformation of the DPA

Re-writing Boutin’s input ouptput relation (Equation 2.86) in the degenerate case

(! = 0) [5], we find:

aout = gsain + gia
†
in +

r
�
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giving the output quadrature relations:
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we arrive at a set of linear equations for the output field quadratures:
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where Ib and Qb are the quadratures of the bath field. As a function of the pump phase

'p, the a�ne transformation of the quadratures AG is given by:

AG('p) =

0

@Re(✏) �Im(✏)

Im(✏0) Re(✏0)

1

A (5.10)

=


�2 + (+ �)2/4� |⇠|2

0

@(+ �)/2� |⇠| sin('p) �|⇠| cos('p) +�

�|⇠| cos('p)�� (+ �)/2 + |⇠| sin('p)

1

A�

(5.11)

The pump phase 'p has the e↵ect of rotating the basis of the transformation. In

fact, one can show that AG('p) = R
T ('p)AG(0)R('p) where R(✓) is the standard 2 ⇥ 2

rotation matrix.
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Figure 5.3: Visualisation of the linear transformation AG(0) acting on points on the unit

circle. The red (blue) points/lines correspond to the standard basis vectors in V .

As the bath is a thermal state, taking the expectation of both sides of Equation 5.9

gives the simple expression:

0

@ hIouti

hQouti

1

A = AG('p)

0

@ hIini

hQini

1

A (5.12)

Assuming � = 0 we find AG ! in the limit that |⇠| ! 0, as expected. Conversely,

if � 6= 0 then AG is an a�ne transformation that will always mix the input quadratures

to some degree, limiting the achievable squeezing for a given mixing rate ⇠. Figure 5.3

illustrates the mapping of points on the unit circle (I,Q)T = (sin(�), cos(�))T in the

vector space V 2
2 by the linear transformation AG(0) : V ! W . Setting 'p = 0 yields

a mapping where the standard unit vectors in V do not map to the standard unit vectors

in W , nor do they correspond to the principal axes of the elliptical output state.

We may align the axis of amplification along Q, as depicted in Figure 5.4, by choosing

'p = ⇡/2�arccos(��/|⇠|). Note that in Figure 5.4, we deliberately set� 6= 0 to illustrate

the fact that orthogonal vectors in V do not necessarily map to orthogonal vectors in

W . On the other hand, when � = 0, the optimal angle of rotation will correspond

to 'p = 3⇡/2 giving a strictly diagonal matrix AG('p) with partial diagonal elements

( + �)/2 + |⇠| and ( + �)/2 � |⇠|, such that orthogonality is preserved. Degenerate

amplification increases as |⇠| approaches the asymptote of self oscillation (|⇠|2 = �2 +

(+ �)2/4), while simultaneously, deamplification approaches 0.
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Figure 5.4: Visualisation of the linear transformation AG(⇡/2� arccos(��/|⇠|)) acting

on points on the unit circle. The red (blue) points/lines correspond to the standard basis

vectors in V .

The expression for gain as a function of the pump phase 'p, as given by:

g('p) =
||(hIouti, hQouti)T ||

||(hIini, hQini)T ||
(5.13)

=

s
(Iing11('p) +Qing12('p))2 + (Iing21('p) +Qing22('p))2

I
2
in +Q

2
in

(5.14)

corresponds exactly with the expression for phase sensitive gain given earlier in Equation

4.13, where gij are the matrix elements of AG('p).

5.3.1 Reflections with the Predicted DPA Transformation

The ellipses depicted in Figure 5.2 are not simply a result of the squeezing transfor-

mation applied to coherent inputs of fixed magnitude. Because our setup is not perfectly

impedance matched, reflections will occur at the input to KIPA (e.g. from the PCB

and input connector) that superimpose on the squeezing transformation. Although these

reflections are account for a small percentage of the detected signal, they become consid-

erable as the deamplification increases.

To be precise, we define ‘reflections’ to be the total microwave signal that propagates

towards the HEMT input that has not been amplified by the KIPA. The total reflected

signal will have a constant amplitude that is a fraction of the input amplitude, and,

relative to the KIPA output, will be o↵set in phase according to the di↵erence in path

length. Taking the vector sum between the total reflected signal and the phase sensitive
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Figure 5.5: (a) An input signal (green) represented by points of constant amplitude on

the IQ-plane, with a 5% reflected signal (blue). (b) The theoretical output of the KIPA

(green) superimposed with the total reflected signal with a phase shift of zero (dark blue)

and a phase shift of ⇡/3 (light blue).

output of the KIPA gives a resulting ellipse that we observe at the output of our fridge

(see Figure 5.5). That is,

0

@ hIouti

hQouti

1

A =

"
T AG('p) +RR(�)

#0

@ hIini

hQini

1

A (5.15)

where T is the fraction of the input signal transmitted to the KIPA,R is the fraction of the

input signal that is reflected and R(�) is the standard rotation matrix that accounts for a

phase shift of �. Figure 5.5b illustrates the e↵ect of a 5% reflection on the measurement

of the output of a DPA. In the worst case of � = 0, the output of the KIPA and the

reflected signal constructively interfere and increase the observed deamplification by ⇠ 9

dB. The error introduced by the reflected signal will depend on the phase relationship

between the KIPA output and the reflected signal, which in general is unknown. To

proceed with the analysis, we define an in-phase reflection coe�cient R0 and set � = 0.

The in-phase reflection coe�cient R
0 represents a lower bound for the reflections that

may occur in our setup.

Using Equation 5.15 combined with the DPA parameters extracted from the fits in

Chapter 4 (, |⇠|, �, etc.), we are able to predict the transformation of a unit magnitude
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Figure 5.6: Top: Ellipses measured by sweeping the phase of a fixed amplitude input,

normalised by the amplitude of the input (||Io↵|| or ||Qo↵||). This is the same data as is

presented in Figure 5.2. Bottom: Predicted ellipses from the DPA squeezing transforma-

tion with a 2% in-phase reflection coe�cient.

91



Figure 5.7: Amplification and de-amplification as a function of pump power (triangles)

with theoretical gain with a 2% in-phase reflection coe�cient (solid black lines). The

predicted deamplification for an ideal DPA with no reflected component is also plotted

(dashed black line), indicating the discrepancy produced by the reflected input.

input by the KIPA for di↵erent levels of in-phase reflection. We fit the in-phase reflection

coe�cient to be ⇠ 2% and find excellent agreement between theory and experiment (see

Figure 5.6).

The most likely sources of reflections from our setup are the connection from the

coaxial lines to our bespoke PCB, and at the junction between the PCB and the chip.

Assuming 50 ⌦ lines down to the sample, a 2% reflection rate corresponds to an equivalent

PCB impedance of:

ZPCB = ZCPW
1�R

1 +R
= 48 ⌦ (5.16)

which is entirely realistic accounting for the uncertainty in the design and manufacturing

tolerances of the PCB.

The maximum deamplification level GS is defined as the greatest reduction in am-

plitude of a coherent input by the squeezing transformation. We additionally define the

maximum amplification level GA as being the corresponding increase in gain that occurs

orthogonal to the axis of deamplification. GS and GA are measured by comparing the

input and output amplitudes of the ellipses presented in Figure 5.2 as a function of the

input phase. We plot the maximum deamplification and maximum amplification in Fig-

ure 5.7, where up to 26 dB of deamplification is observed for 30 dB of amplification. We

repeat the process of measuring GS and GA from our theoretically predicted ellipses over

a finer sweep of pump powers, and again find excellent agreement with theory where the
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fits deviate by less than 1 dB from the measurements. Deviation between experiment and

theory seems to increase as the gain goes to zero. We attribute this to increased sensitiv-

ity to the quadrature and phase imbalance of our demodulator at low gains. We observe

some asymmetry GS 6= GA in our data as shown in Figure 5.7, as has been attributed to

weak reflections in the experimental setup. The ideal amplifier symmetrically transforms

both quadratures (i.e. GS = GA) [1], however, according to our model for the squeezing

transform, symmetry is broken if either Qi < 1 or |�| > 0. While some asymmetry is

expected, for our estimate of Qi = 105 this asymmetry is small and is evident in Figure

5.7 where we show the predicted GS for the reflection-less DPA measurement.

5.4 Noise Temperature

5.4.1 Non-Degenerate Noise Temperature Theory

The output fluctuations of the KIPA operating as a non-degenerate amplifier are given

by the input output theory for the KIPA (Equation 2.86) as:

h�I
2
outi =

✓
|gs|

2 +
�


|gs + 1|2

◆✓
nth

2
+

1

4

◆
+ |gi|

2

✓
1 +

�



◆✓
nth

2
+

1

4

◆
(5.17)

where the signal and idler gains (gs(!) and gi(!)) depend on the frequency of the signal

being amplified.

One fundamental identity of the DPA is the relationship between the signal and idler

gains [5]:

|gi|
2

✓
1 +

�



◆
= |gs|

2 +
�


|gs + 1|2 � 1 (5.18)

which holds for all ! (see Equation 2.87), and is a by-product of the KIPA output field

satisfying the commutation relation [âout, â
†
out] = 1. Substituting Equation 5.18 into our

expression for the quadrature fluctuations along Î, we obtain:

h�I
2
outi =

✓
|gs|

2 +
�


|gs + 1|2

◆✓
nth +

1

2

◆
�

nth

2
�

1

4
(5.19)

Referring the quadrature fluctuations to the input of the KIPA and subtracting the
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vacuum contribution, we find:
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As required by Cave’s fundamental theorem of phase sensitive amplifiers, the KIPA/DPA

does indeed add 1/4 photons to the input referred noise in the limit of high gain [1]. Fur-

ther, equality only holds in the limit of zero temperature (T ! 0) and no losses (� ! 0).

To maintain consistency with the input-output models for phase sensitive amplifiers

used later in this section (see Equation 5.34), we write the phase insensitive output of

the KIPA as follows:
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nth
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+
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4
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+
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+

1

4

◆
(5.23)

where Gk = |gs|
2 and nk is the input referred noise contribution by the KIPA. Comparing

Equation 5.19 with the (Gk � 1) term from this expression we obtain a relation for the

additional noise photons contributed by the KIPA nk:

nk =
2
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2 � 1
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|gs + 1|2

|gs|
2 � 1

(nth + 1) (5.26)

The temperature dependence for nk is depicted in Figure 5.8 for various internal quality

factors, and using the same DPA parameters as were measured in the previous chapter.

Compared to nth the change in nk is small even as we leave the over-coupled regime

with Qi ⇠ 103. At zero temperature nk appears to decrease by an approximate order of

magnitude for every increase in the order of magnitude for Qi, further motivating the

desire to maximise the Qi of a DPA.

Operating the KIPA such that ~!0 ⌧ kBT , we have:

nk0 =
�



|gs + 1|2

|gs|
2 � 1

(5.27)

We plot nk0 as a function of Qi = !0/� and observe rapid convergence to zero as Qi ! 1.

94



Figure 5.8: (a) The simulated non-degenerate noise photon number nk as a function

of temperature for di↵erent values of Qi. (b) The simulated degenerate noise photon

number nk as a function of temperature for di↵erent values of Qi. (c) The simulated

degenerate (non-degenerate) noise photon number for Gk = 31 dB (25 dB) as a function

of the internal quality factor Qi.

5.4.2 Degenerate Noise Temperature Theory

The output fluctuations of the KIPA in degenerte mode as a function of the pump

phase 'p are given by (see Section 5.5.1):

h�Iout('p)
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with phase sensitive power gain Gk('p) = |gs + g
⇤
i
('p)|2. Referred to the KIPA input,

the excess quadrature fluctuations contributed by the amplifier are:
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As predicted by Caves, the excess quadrature fluctuations referred to the input can

be as small as zero in limit of ~! ⌧ kBT and provided there are no losses in the system

(i.e. � = 0) [1].

Writing Gk = |gs + g
⇤
i
('p)|2, we define a similar expression to Equation 5.23 for the

phase sensitive amplifier, along the amplified quadrature:

h�Iouti = Gk

✓
nth

2
+

1

4
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✓
nk

2

◆
(5.30)
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a) b)

20mK 4K 300K

Figure 5.9: (a) The complete detection chain model, consisting of the KIPA and at-

tenuator ↵1 at 20mK, attenuator ↵2 and the HEMT at 4K, and the room temperature

amplifier at 300K. The attenuators are modeled as beam splitters, mixing in the thermal

operators v̂1 and v̂2 with the detected field as it propagates along the detection chain.

Each amplifier contributes noise to its output, denoted here by the field operators ĥk

(KIPA), ĥH (HEMT), and ĥR (room temperature amplifier). (b) The simplified detec-

tion chain model, where the attenuators and amplifiers after the KIPA may be modeled

as an e↵ective amplifier with gain GT and noise field ĥtot.
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Again, we simulate nk for varied internal quality factors and temperatures and find

similar behaviour to the non-degenerate case. In the limit of high gain, the minimum noise

added nk0 is approximately half the corresponding noise added in the non-degenerate case

(see Figure 5.8).

5.4.3 Noise Temperature Measurement

The detection chain of the KIPA consists of a series of amplifiers and attenuators,

which we depict in Figure 5.9a. Directly after the KIPA there are microwave losses asso-

ciated with the diplexer, the circulator and the microwave lines. To model the detection

chain we divide these losses into two e↵ective attenuators, one at 20mK and the other

at 4K. Each attenuator acts like an optical beam splitter, where the transmitted field is

reduced by
p
↵ and the open port mixes the thermal field v̂ into the output according to
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the beam splitter equation [27]:

ĉout =
p
↵ĉin +

p
1� ↵v̂ (5.33)

At 4K we have the HEMT amplifier, followed by a second microwave amplifier at room

temperature. Each amplifier contributes additional noise to its output field as follows [1]:

ĉout =
p
Gampĉin +

p
Gamp � 1ĥ† (5.34)

Combining the attenuator models for ↵1 and ↵2 (Equation 5.33), with the amplifier

models for the HEMT and room temperature amplifier (Equation 5.34), we may simplify

the detection chain to a single equivalent amplifier with gain GT and noise contribution

ĥtot (see Figure 5.9b). The total output field at the end of the detection chain is given

by:

ĉtot =
p

GT âout +
p
GT � 1ĥ†

tot (5.35)

where,

GT = GRGH↵1↵2 (5.36)
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Rewriting the output field ĉout as a pump phase dependent quadrature operator

Îout('p) = (ĉ†oute
�i'p + ĉoute

i'p)/2, we have:

Îtot('p) =
p
GT Îout('p) +

p
GT � 1Îh(�'p) (5.38)

where Îout('p) is the pump phase dependent quadrature operator at the KIPA output,

and Îh is the detection chain noise quadrature operator Îh(�'p) = (ĥ†
tote

i'p+ĥtote
�i'p)/2.

Assuming ĥtot and âout are composed of uncorrelated thermal states, we have hÎouti =

hÎhi = 0 and therefore the quadrature fluctuations at the detector simplify to:

h�Î
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where we introduce the e↵ective system noise photon number nsys:

nsys = hĥ
†
totĥtoti (5.41)

=
GRGH
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nR
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(5.42)

The average microwave noise power that would be measured by a spectrum analyser

is simply the sum of the output quadrature variances:

P̄tot = z(h�I
2
toti+ h�Q

2
toti) (5.43)

We introduce the parameter z here that converts the units from photons to Watts as is

measured by the spectrum analyser.

In non-degenerate operation, the variance of both the KIPA output and the system

noise fields are independent of the pump phase, allowing us to write the measured mi-

crowave power as:
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In non-degenerate mode, the output fluctuations of the KIPA are given by (see Section

5.4.1):
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with Gk = |gs|
2 as defined in Equation 2.87, thermal noise population nth = hâ

†
inâini,

and additional noise photons added by the KIPA nk = hĥ
†
k
ĥki. In the non-degenerate

case, the idler mode contributes a minimum nth/2 + 1/4 input referred photons to the

variance at the signal frequency, while an additional nk/2 photons arise from internal

cavity losses. The excess noise nk is expected to vary with temperature (see Section

5.4.1), however, for Qi > 104 this dependence is negligible compared to nth � nk and

therefore we approximate nk ⇡ nk0 to be constant with temperature.

Substituting Equation 5.46 into Equation 5.45, we arrive at:

P̄tot = zGTGk

✓
nth +

1

2

◆
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2
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(5.47)
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Figure 5.10: (a) The di↵erence power reported by the spectrum analyser for the KIPA

on vs o↵ in non-degenerate mode as a function of the thermal photon population at the

mixing plate for di↵erent non-degenerate (ND) gains (see legend). Solid lines are linear

fits. (b) The gradient m of the linear fits presented in (a) (P̄on � P̄o↵ = m · nth + b) vs

Gk � 1 = |gs|
2
� 1.

Both nsys and the conversion factor zGT are unknown. We begin by finding zGT ,

observing that when the KIPA is o↵ (i.e. Gk = 1), Equation 5.47 simplifies to:

P̄o↵ = zGT

✓
nth +

1

2

◆
+ z(GT � 1)

✓
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1

2

◆
(5.48)

The di↵erence in power when the KIPA is on compared to o↵ removes the dependence

on nsys:

P̄tot � P̄o↵ = zGT (Gk � 1)

✓
2nth + nk0 + 1

◆
(5.49)

To extract zGT and nsys we sweep the temperature of the mixing chamber of our

dilution refrigerator while operating the KIPA as a non-degenerate amplifier (500kHz

detuned from !p/2). At each temperature, we measure the noise power at the output

of our detection chain using a spectrum analyser configured in zero-span mode with a

measurement bandwidth of 130 kHz. At each KIPA gain Gk = |gs|
2, we expect the

di↵erence in power to increase linearly according to P̄on � P̄o↵ = m ·nth + b with gradient

m = 2zGT (Gk � 1) and intercept b = zGT (Gk � 1)(nk0 + 1). Results are presented in

Figure 5.10a and show clear linearity with nth for various non-degenerate gains.
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Using the fact that m = 2zGT (Gk � 1), we plot m against Gk � 1 to determine the

conversion factor zGT = 89.9 fW/photon (see Figure 5.10b). We constrain the linear fit to

the lower gain points as the four highest gains deviate from the expected linear behaviour.

We attribute this to the amplified noise feature narrowing with gain as is observed for

coherent inputs (e.g. Figure 4.6). The total noise power measured corresponds to the

integrated power spectral density over the measurement bandwidth. At the lower gains

this is approximately flat over the 130 kHz bandwidth, however at the higher gains this

approximation no longer holds.

To determine nsys we consider only the noise measurements where nth = 0, allowing

us to re-write Equation 5.48 as:

nsys ⇡
P̄o↵

zGT

� 1 (5.50)

where we approximate GT � 1 ⇡ GT . Given that GT = ↵1↵2GHGR ⇠ 70 dB, this

is justified. We extract nsys = 84.7 photons. To validate this number, we substitute

data-sheet values for the HEMT and room temperature amplifier into Equation 5.42 and

estimate the losses ↵1 and ↵2 based on cable, circulator and diplexer insertion losses

at room temperature. Equation 5.42 gives ñsys ⇡ 64 photons – a reasonable agreement

provided the uncertainty in the estimated losses.

Given the conversion factor GT we may extract the noise temperature of the KIPA

in non-degenerate mode by considering the noise referred to the input of the KIPA in

photon units and observing that as Gk ! 1:

ntot =
P̄tot

zGTGk

(5.51)

⇡ (2nth + nk0 + 1) +
1

Gk

✓
nsys � nth � nk0

◆
(5.52)

! 2nth + nk0 + 1 (5.53)

The input referred noise term nk0 is the only unknown in this expression. We fit

Equation 5.52 to the experimentally measured noise power referred to KIPA input and

converted into photons, as is shown in Figure 5.11. From the fit we extract nk0 =

0.16 photons. On a single measurement quadrature the total input referred fluctuations

(including the vacuum contribution) are h�I
2
ampi = 0.58 photons, very near the standard

quantum limit of 0.5 photons. However, according to theory this is higher than we should

expect for Qi ⇡ 105. Figure 5.8c suggests that Qi should be closer to 2, 000, however,
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Figure 5.11: The input referred noise ntot measured by the spectrum analyser and

converted to photon units for the KIPA operating as a degenerate (blue points) and

non-degenerate amplifier (green points). Fits to theory are depicted in black.

we note that this Figure cannot be used to read o↵ the correct Qi as nk depends on the

gain, which itself is dependent on Qi. In addition, such a Qi would produce a measurable

dip in the resonator S11 response, which was not observed. One possibility is that nth,

which we simply calculate here based on the reading of a thermometer on the dilution

refrigerator mixing chamber plate, is not an accurate measurement of the actual thermal

photon occupation of the electromagnetic field. This could arise from inadequate filtering

or thermalisation of cables. In particular, the DC current line must remain unattenuated

at temperatures below 4 K (a method typically used to thermalise the inner conductor of

the cable) due to the high resistance of the attenuators and risk of heating. The DC line

is instead heavily filtered at 7 GHz, however, we cannot be certain of the exact physical

temperature of the cable. Future work will improve the thermalisation and filtering of the

lines to remove this potential thermal contribution. In addition, a calibrated cryogenic

noise source could be used to precisely measure the thermal population of the field at the

base temperature of the fridge.

We turn our attention now to the degenerate gain. Because the fluctuations along

one quadrature of the KIPA output are squeezed and are therefore considerably smaller

than the fluctuations along the orthogonal amplified quadrature, the total noise power
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measured at the spectrum analyser may be approximated by:
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From Equation 5.30, we have:

P̄tot = zGTGk

✓
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1
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+ zGT (Gk � 1)
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2

◆
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giving:

ntot =
P̄tot

zGTGk

(5.57)
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nk0
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+

1

4
+
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Gk

✓
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1

2
�

nk0

2

◆
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As before, we fit Equation 5.58 to the measured noise power at the spectrum analyser,

referred to the input of the KIPA and expressed in photons. The results are depicted

in Figure 5.11. We find nk0 = 0.07 photons, very close to half the value of nk0 in the

non-degenerate case as is predicted by theory.

We conclude that the KIPA is near quantum limited. However, discrepancy between

theory and experiment suggests that our initial guess of Qi = 105 based on measurements

in similar devices is perhaps too optimistic or additional thermalisation and filtering of

the measurement lines is warranted.

5.5 Vacuum Squeezing

In this section we present our e↵orts towards measuring vacuum squeezing produced

the KIPA 5.1. To measure squeezing in the presence of a substantial system noise nsys,

we observe the reduction in variance along the squeezed quadrature with the KIPA on

compared to o↵ using our homodyne detection setup. The di↵erence in variance reduces

to ��2 = zGT (1�Gk)(nk,0/2+1/4) free from nsys. To measure the squeezing, we convert

to photon units by dividing by zGT and apply this reduction to the output fluctuations,

giving h�Q
2
outi = nk,0/2 + 1/4���2

/zGT . We observe a reduction in the variance with

phase sensitive KIPA gain (see Figure 5.12), which is indicative of squeezing. However,

the decrease in variance we observe is greater than the vacuum fluctuations. These are

delicate measurements where quadrature imbalance, and HEMT saturation are important
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Figure 5.12: The measured KIPA output variance in photon units along the squeezed

quadrature Q̂. The data show a non-physical reduction in variance and must be a result

of analysis or methodological errors in its measurement.

to quantify and as such we don’t obtain quantitative agreement with theory. Further,

the transformation of the measured data into photon units is highly sensitive to the value

of zGT and any thermal o↵set that may be present in the cavity, both of which are

subject to uncertainty. In order to reduce this uncertainty our group is in the process

of repeating the experiment, this time keeping the temperature of the mixing plate fixed

and varying the temperature of the KIPA input using a heated attenuator as a calibrated

noise source, the methodology used by Zhong et al. [12]. Combined with a calibration of

the quadrature imbalance of our detection chain and a thorough characterisation of its

saturation point, we are optimistic we can resolve the squeezing level produced by the

KIPA.

In the context of the experimental setup presented here, measuring squeezing by the

KIPA is challenging. On a single quadrature, the detection chain contributes a variance

of nsys/2 + 1/4 ⇡ 43 photons, while the squeezing amounts to at most a 1/4 photon

reduction in variance along the squeezed quadrature. The data presented in Figure 5.12

were collected close to the quantisation limits of our digitiser as a comparatively high full

scale voltage is required to avoid clipping. Further, the magnitude of the reduction in

variance is sensitive to channel imbalances in our setup arising from the mixer and base-

band preamps. We did not realise this when performing the squeezing measurement and

had insu�cient data to compensate for the imbalance during analysis. We aim to repeat

this measurement by first learning the linear transformation applied by our detection
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chain, and then applying its inverse to the noise samples collected in order to minimise

its influence on the squeezing measurement.

We are also investigating the possibility of using two KIPAs back-to-back to di-

rectly measure the squeezing. A follow on KIPA used as a phase insensitive ampli-

fier will dramatically reduce nsys and place an upper bound on squeezing by measuring

h�Q
2
toti/h�Q

2
o↵i, as has been successfully demonstrated by Malnou et al. [6].

While the source of error here is still under investigation, we use this section to

articulate some of the theory we have developed in our e↵orts to understand the KIPA

as a microwave squeezer.

5.5.1 Squeezing Theory

In this section we assume that squeezing is measured over a narrow-band such that

the frequency dependence of gs and gi may be ignored, allowing us to draw on the theory

presented in Section 5.3. Extending this theory to arbitrary bandwidths is beyond the

scope of this thesis but will become important to explain an observed squeezing level over

a bandwidth that is ‘useful’ (e.g. the 1� 5 MHz range).

In terms of the matrix elements gij of the squeezing transformation matrix AG, Equa-

tion 5.9 becomes:
0
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To obtain expressions for the vacuum squeezing, we now model the input field as a

vacuum state with variances h�I
2
i = h�Q

2
i and zero mean: hIi = hQi = 0 Assuming

the bath and the input fields are uncorrelated, and using the fact that hIQi+ hQIi = 0,

we may write the system of linear equations for the second order moments of the output

quadratures:
0
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2
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1
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2
11 g

2
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2
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2
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2
12
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hQ
2
b
i

1

A (5.61)

Since the vacuum and bath fields are at the same temperature, we define h�I
2
v
i =

hI
2
ini = hI

2
b
i = 1/4 and h�Q

2
v
i = hQ

2
ini = hQ

2
b
i = 1/4. Thus, the variances of the output
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Figure 5.13: (a) The simulated noise variance gain S('p) as a function of the pump phase

using the DPA parameters obtained in Section 4.4, for an assortment of pump powers.

(b) The vacuum squeezing level Sv, as a function of the phase sensitive gain using the

DPA parameters obtained in Section 4.4 for di↵erent internal quality factors. The line of

symmetric phase sensitive gain is plotted (black dashed line).

quadratures are given by:
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The increase/decrease in quadrature variance as a function of the pump phase 'p is

described by:

S('p) = 10 log10
h�I

2
outi

h�I2
v
i

= 10 log10

✓
g
2
11 + g

2
12 +

�


((g11 + 1)2 + g

2
12)

◆
(5.63)

and the vacuum squeezing level Sv is defined by the minimum of S:

Sv = min
'p

S('p) (5.64)

Using the DPA parameters extracted from the phase-insensitive gain features (see

Section 4.4), we can simulate the expected noise variance gain (Equation 5.63) as a

function of the pump phase, again assuming a Qi ⇡ 105. The results are depicted in

Figure 5.13a, where we observe a similar phase dependent response as was measured in
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Section 4.5 for strong coherent inputs. In contrast to the phase-sensitive gain for coherent

inputs, the coupling of the bath mode into the cavity requires a strictly asymmetric noise

variance gain such that (min'p S('p) ⇥ max'p S('p)) � 1, where equality holds only in

the limit of Qi ! 1. We observe a weak shift in the pump phase corresponding to the

point of maximum squeezing as the pump power increases, which is a consequence of the

non-zero detuning between the cavity and the pump �.

Equipped with this squeezing model and a realistic set of resonator parameters, we

can study the e↵ect of Qi on the maximum attainable squeezing. Figure 5.13b plots

the vacuum squeezing level Sv against the maximum variance gain, or anti-squeezing

gain. In the limit of no losses, Cave’s theory predicts symmetric squeezing and anti-

squeezing with zero noise photons contributed by the amplifier [1]. We observe here

that the squeezing/anti-squeezing relationship of the KIPA closely follows the expected

symmetric behaviour before the squeezing level plateaus to a constant level as the anti-

squeezing gain increases. The squeezing level plateaus as the total cavity fluctuations are

limited by the bath mode variance, which is not squeezed by the KIPA since:

✓
AG +

◆0

@Var(Ib)

Var(Qb)

1

A �

0

@Var(Ib)

Var(Qb)

1

A (5.65)

We observe an approximate 10 dB improvement in the maximum achievable squeezing

for each order of magnitude increase in Qi. The order of magnitude improvement in

squeezing performance is a result of the corresponding order of magnitude decrease in

�/, which sets the magnitude of the bath variance contribution to the KIPA output (see

Equation 5.9). For our estimate of Qi = 105, our theory predicts up to Sv ⇡ �29 dB

of squeezing produced by the KIPA, corresponding to approximately 40 dB of phase

sensitive gain.

5.6 Statistical Properties of the Output Field

The Wigner function of the vacuum state |0i is a Gaussian quasi-probability distribu-

tion with variance 1/4 along each axis in the I,Q basis. According to Equation 5.9, the

ideal DPA linearly transforms this probability distribution (to a bivariate Gaussian with

unequal quadrature variances) and mixes in a statistically uncorrelated vacuum state

from the bath. Assuming our detection chain is linear and only contributes thermal noise
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ADC

LO

Figure 5.14: The simplified detection chain model used in the statistical analysis of

the output field. The KIPA output field D̂ = âout is depicted as a squeezed Gaussian

quasi-probability distribution. The detection chain is simplified to a single amplifier with

equivalent gain G and noise contribution ĥ referred to the KIPA output. The output of

the detection chain is down-converted into Î and Q̂ observables by a mixer, and the noise

is digitised by an Analog to Digital Converter (ADC).

to the detected output, it is expected that the quasi-probability distribution of the noise

we measure at room temperature is also Gaussian.

As was the case for coherent inputs, a non-linear distortion of the phase space (see

Figure 2.8) is an indication of Hamiltonian non-idealities. In the context of measuring

noise, a non-linear distortion of the phase space may be quantified by the statistical

moments of the output field. Boutin et al. demonstrate that deviations from Gaussianity

measured using the statistical moments or cumulants of the observed output noise field

are a symptom of the system Hamiltonian deviating from the Hamiltonian of the ideal

DPA, which in turn limits the attainable squeezing of a device [5]. In this section we infer

the moments and cumulants of the KIPA output field using Eichler et al. ’s single path

reconstruction technique [43] to support the claim that the KIPA is a highly idealised

DPA that produces squeezed Gaussian noise.

To study the statistical properties of the KIPA, we consider the simplified detection

chain model presented in Figure 5.14, where the detection chain gain is represented by a

single amplifier with gain G with noise contribution ĥtot as is similarly defined in Section

5.4. The output field of the detection is down-converted using a microwave mixer, allowing

us to measure the quadrature observables Î and Q̂, which we refer here to the output of

the KIPA to simplify notation. Adopting Boutin et al. ’s notation, we denote the output

field of the KIPA by the operator D̂ = âout, and define ĥ as the noise operator ĥtot referred

to the output of the KIPA (i.e. ĥ = ĥtot/
p
G). From the beam splitter relations for the
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mixer, it follows that [43]:

D̂ + ĥ
† =

p

2(Î + iQ̂) = Ŝ (5.66)

Using the complex observable Ŝ we may reconstruct the moments and cumulants of

the KIPA output field D̂ and the equivalent detection chain noise field ĥ.

5.6.1 Moments

Experimentally, we collect N = 106 samples of the operators Î and Q̂, allowing us to

estimate the complex quasi-probability distribution Pon(o↵)(Ŝ) of the observable Ŝ with

the KIPA on (o↵) using a 2-dimensional histogram of the (I, Q) sample pairs, which

we denote P
?

on(o↵)[i, j] at bin position (i, j). The axes of the 2-dimensional histogram

correspond to the real and imaginary parts of the observable Ŝ, or equivalently
p
2Î and

p
2Q̂. By definition, the normally ordered moments of Ŝ are given by:

h(Ŝ†)nŜm
ion(o↵) =

Z

S

(Ŝ⇤)nŜm
Pon(o↵)(S)dS (5.67)

⇡ 2(n+m)/2
X

k

X

j

(I[k]� iQ[j])n(I[k] + iQ[j])mP ?

on(o↵)[k, j]�I�Q

(5.68)

where I[k] and Q[j] are the quadrature voltages at bin positions k and j respectively, and

�I and �Q are the histogram bin widths. We construct the histogram P
? by binning

the sampled noise pairs into 256⇥ 256 bins over a ±4mV range, and then use Equation

5.68 to obtain the moments for Ŝ. Histograms for the KIPA on (GA ⇡ 30 dB) and the

KIPA o↵ are depicted in Figure 5.15 along with the uni-variate histograms of Î and Q̂.

Along one axis, amplification of the noise is obvious when the KIPA is active. Due to the

84.7 noise photons contributed by the detection chain, there is little discernible di↵erence

along the squeezed quadrature which can at most reduce by 1/2 a photon. As discussed

previously, we infer the squeezing from this weak di↵erence in noise. Gaussian fits to the

uni-variate histograms for both the KIPA on and the KIPA o↵ case show no evidence of

non-gaussian character, which we now examine more closely from the inferred moments

of the KIPA output field.

As D̂ is a squeezed thermal state that is uncorrelated with the detection chain noise
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Figure 5.15: Two dimensional histograms (256 ⇥ 256 bins) of the output field with the

KIPA on (left) and the KIPA o↵ (right) obtained from N = 106 samples of noise on each

detection quadrature. Histograms of the marginal distributions are shown (light blue)

with Gaussian fits (solid black line).

field ĥ, we may expand the normally ordered moments of Ŝ = D̂ + ĥ
†, giving [43]:

h(Ŝ†)nŜm
ion(o↵) =

n,mX

k,j=0

✓
n

k

◆✓
m

j

◆
h(D̂†)kD̂j

ihh
n�k(h†)m�j

i (5.69)

When the KIPA is o↵ (Ip = 0), the output field is simply in the vacuum state,

corresponding to h(D†)nDm
i = 0 for all n,m 6= 0. Thus, Equation 5.69 simplifies to:

h(Ŝ†)nŜm
io↵ = hh

n(h†)mi (5.70)

Using this equation to calculate the moments of the detection chain noise field when

the device is o↵, we may reconstruct the moments of the field D̂ by solving Equation 5.69

recursively and using the fact that h(D̂†)0D̂0
i = 1:

h(D̂†)nD̂m
i = h(Ŝ†)nŜm

i⇢a �

n,mX

k 6=n^j 6=m

✓
n

k

◆✓
m

j

◆
h(D̂†)kD̂j

ihh
n�k(h†)m�j

i (5.71)

In order to quantify di↵erences between our measured moments and the ideal DPA

and detection chain, which produce Gaussian noise fields, we construct a Gaussian model

for our system that uses the mean and covariance matrix measured from our raw data.

The ideal Gaussian fields are then sampled N = 106 times (the same as the number
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Figure 5.16: The real and imaginary parts of the moments of the field D̂ evaluated

recursively using Equation 5.71. All data is presented with error bars obtained from

repeated measurement/simulation (blue and pink shaded areas). Vertical axes are in

arbitrary units and are kept consistent between real and imaginary parts. The horizontal

axis defines the pump power at the microwave source.
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of samples collect in the experiment) to artificially generate noise data that follow the

expected distribution for the DPA and detection chain. Note that this simulated data

does not model any theoretical behaviour of the KIPA, but is simply used to reveal

deviation from Gaussianity if present, and quantify errors in moment estimation due to

sampling and the approximation we make in Equation 5.68.

The statistical moments of the KIPA output field D̂ up to order 4 (presented in Figure

5.16) show excellent agreement with the simulated Gaussian noise. Both the experimental

and simulated second and fourth order moments coincide with near negligible errors. The

third order moments for an ideal Gaussian distribution are zero, which is reflected in both

the experimental and simulated data where error bars in each case cross zero. The error

bars on the third order moments are comparable for the experimental and simulated

datasets, indicating that the errors we see on the experimental data are determined

by the collection of a finite number of samples or equivalently the finite resolution of

the 2-dimensional histogram. While not visible in Figure 5.16, the error bars the for

the remaining moments are comparable between the simulated and experimental data,

lending more evidence to this claim.

From the moments of the KIPA output field, we are unable to find evidence of any

deviation from Gaussianity to within the sensitivity permitted by a 256 ⇥ 256 pixel

estimate of the output quasi-probability distribution and N = 106 noise samples. This

supports the derived KIPA Hamiltonian (see Section 3.4) and its negligible Kerr term.

5.6.2 Cumulants

Typically, the cumulants of the noise are been presented in microwave squeezing work

[21, 12, 5], as the cumulants of a Gaussian distribution should be exactly zero for n+m >

2 and deviations from Gaussianity appear more obvious. Cumulants of a uni-variate

distribution also o↵er the advantage of being able to reconstruct the density function

using the Gram-Charlier or Edgeworth series, however extending these reconstruction

techniques to the bivariate case is beyond the scope of this work. The cumulants, denoted

hh· · · ii, are derived from the statistical moments using the formula [62]:

hh(b†)nbmii =
@
n

@xn

@
m

@ym
log

"
X

i,j

h(b†)nbmixi
y
j

i!j!

#�����
x=y=0

(5.72)

Neglecting moments greater than order 4, we extract expressions for the cumulants
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Figure 5.17: The real and imaginary parts of the cumulants of the field D̂ evaluated

using the experimentally measured moments and simulated Gaussian moments that are

presented in Figure 5.16. All data is presented with error bars obtained from repeated

measurement/simulation (blue and pink shaded areas). Vertical axes are in arbitrary

units and are kept consistent between real and imaginary parts. The horizontal axis

defines the pump power at the microwave source.
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using the Python computer algebra library SymPy. The algebraic expressions for the

cumulants up to order four may be found in Appendix A. Using the results obtained for

the moments from the previous section, we extract the cumulants, presented in Figure

5.17. The error bars of all third and fourth order cumulants cross over zero, as is expected

for Gaussian fields. Further, comparing the experimental and artificial noise we find that

the third and fourth order cumulants and their error bars have significant overlap. We are

unable to rule out that the error bars and small deviations from zero aren’t a consequence

of sampling aretfacts, as the sampled simulated distributions would suggest. The increase

in error with pump power is a by-product of the increase in the anti-squeezed variance,

which factors into the calculation of the moments of Ŝ (see Equation 5.68). Again, there

is no significant evidence to suggest that the KIPA output field is any less Gaussian

than our artificially generated Gaussian noise, further supporting the hypothesis that the

KIPA Hamiltonian well approximates the Hamiltonian of the DPA.
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Chapter 6

Conclusion

In this thesis we have presented the theoretical and experimental characterisation of

a novel microwave amplifier called the KIPA, based on parametric mixing processes that

take place in superconductors featuring high kinetic inductance, as occurs in the NbTiN

film that makes up our device. The simple design of the KIPA facilitates a three wave

mixing process by passing a bias current through the resonant geometry, enabling phase

sensitive amplification by an o↵ resonant pump. We derive the Hamiltonian of the KIPA

using the principals of circuit-QED and find close agreement with the Hamiltonian for

an ideal degenerate parametric amplifier. By extracting the non-linearity constant of

the film, I⇤2 , we are able to show that the additional Kerr term present in the KIPA

Hamiltonian is negligible compared to the remaining DPA components. Already, this

shows evidence that the KIPA is a highly-idealised DPA that is free from the non-idealities

that limit squeezing in similar microwave frequency devices [5].

We characterise the KIPA as a phase insensitive and a phase sensitive amplifier, where

we find in approximately 40 dB and 50 dB of gain respectively. Combining our theory

for the KIPA Hamiltonian with input-output formalism, we find excellent fits to theory

for the phase sensitive and phase insensitive gain profiles arising from realistic system

parameters. In phase insensitive, or non-degenerate, operation the KIPA maintains a gain

bandwidth product of 98 MHz. In phase sensitive operation, we find a 1 dB compression

power of �43 dBm referred to the KIPA output, orders of magnitude greater than has

been realised in JPAs. Further, we speculate that the compression power of the KIPA

may be even higher than the value reported here as we are unable to rule out compression

of our HEMT.
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Using homodyne detection, we image the phase space of the KIPA output for a phase

swept coherent input and find no obvious distortion of the phase space, which has been

shown to be a typical symptom of limited squeezing ability [5]. Using the Hamiltonian of

the DPA and input-output theory we are again able to accurately predict the observed

linear distortion of the phase space, assuming some weak reflections in our setup. Up to

26 dB of deamplification is observed, showing promise of significant squeezing potential

by this device. We find the KIPA to be quantum limited, producing an additional 0.07

input referred photons in phase sensitive operation. We believe a sizeable portion of this

contribution to the output fluctuations could be explained by a thermal o↵set in our

setup. Although future work is needed to fully understand the noise squeezing properties

of the KIPA, we observed additional evidence of near ideal DPA operation by studying

the statistical properties of the output field. We extract the moments and cumulants of

the noise distribution inferred to the KIPA output and find no significant deviation from

Gaussianity.

The highly idealised nature of the KIPA raises the exciting prospect that it is capable

of squeezing the vacuum to levels not observed before in the microwave regime. Due to its

compact nature, it is foreseeable that the KIPA may be engineered to interact with other

quantum systems ‘on-chip’, providing access to squeezing that is not limited by the losses

between elements of an experimental setup. Squeezing levels < 5 dB have already been

used to enhance the sensitivity and accelerate the measurement of a number of physical

phenomena, including the search for dark matter axions and the weak measurement of

electron spin resonance echos. We envisage that the KIPA can contribute to these e↵orts

and may facilitate new experiments in quantum metrology and quantum computing with

microwave cluster states.

The next steps for this device require us to robustly characterise its squeezing abilities.

We aim to refine our measurement of the squeezing level inferred from the reduction in

detection chain noise with the KIPA active. Repeating this across multiple bias currents

will unveil the influence of the bias current on the losses present in our system and their

impact on squeezing. Ultimately we wish to then characterise squeezing with a follow

on quantum limited amplifier, which will allow us to place a concrete upper bound on

the achievable squeezing by this device. Combined with new theory to characterise the

squeezing as a function of the measurement bandwidth, we hope to attain a complete
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theoretical framework that accurately models the behaviour of our device.

The KIPA is an incredibly simple device to manufacture, and despite this, we are able

show here that it robustly behaves as an ideal degenerate parametric amplifier, a claim

not yet made in the microwave domain.
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Appendices

A Algebraic Expressions for the Cumulants
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Table 1: Analytical expressions for the cumulants of the field â in terms of its moments

up to order n+m = 4. For brevity, the shorthand anm = h(â†)nâmi is used.
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